WorldWideScience

Sample records for phase-dependent spiral attenuation

  1. Hepatic hemangioma: contrast enhancement patterns on two-phase spiral CT

    International Nuclear Information System (INIS)

    Yun, Eun Joo; Choi, Byung Ihn; Han, Joon Koo; Jang, Hyun Jung; Kim, Tae Kyoung; Kim, Ah Young; Lee, Ki Yeol

    1998-01-01

    To evaluate contrast enhancement patterns of hemangioma according to size, as seen during the arterial and portal venous phase of spiral CT. Overall, the most common enhancement pattern was peripheral high (44/82, 53.7%), during the arterial and portal venous phase. The second and third most common patterns were uniform high (11/82, 13.4%) and peripheral high-uniform high (9/82, 11.0%), also during the arterial and portal venous phase. In tumors smaller than 20 mm, low-low attenuation was seen in eight (9.8%), and iso-low attenuation in two (2.4%), during the arterial and portal venous phase, respectively. On two-phase spiral CT, the most common enhancement pattern of hemangioma was peripheral high, seen during the arterial and portal venous phase. However, a small hemangioma less than 2cm may show atypical patterns, including low and iso attenuation. (author). 23 refs., 1 tab., 4 figs

  2. Hermite-Gaussian beams with self-forming spiral phase distribution

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  3. Three phase spiral liver Scanning

    International Nuclear Information System (INIS)

    Kanyanja, T.A.

    2006-01-01

    The ability to perform rapid back-to-back spiral acquisitions is an important recent technical advantage of spiral CT. this allows imaging of the upper abdomen (liver) during peak arterial enhancement (arterial phase) and during peak hepatic parenchymal enhancement (portal venous phase). Breatheld spiral CT has completely replaced dynamic incremental CT for evaluation of the liver. in selected patients with hyper vascular metastasis (hepatoma, neuroendocrine tumors, renal cell carcinoma, etc.) a biphasic examination is performed with one spiral acquisition obtained during the hepatic arterial phase and a second acquisition during the portal venous phase

  4. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  5. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  6. Recurrent pyogenic cholangitis: clinico-pathologic correlation of focal attenuation differences on multi-phasic spiral CT

    International Nuclear Information System (INIS)

    Jeong, Jun Yong; Han, Joon Koo; Kim, Tae Kyoung; Kim, Seog Joon; Kim, Hyun Bum; Choi, Byung Ihn

    2002-01-01

    To determine the clinical and the pathologic significance of the focal attenuation differences (FAD) and bile duct wall enhancement occurring in recurrent pyogenic cholangitis (RPC) and seen at multiphasic spiral CT. Among the multiphasic (non-contrast, arterial and portal or delayed phase) spiral CT findings of 60 consecutive patients, two types of FAD were noted during the non-contrast phase. These were Type A (iso) and Type B (low attenuation), and their distribution pattern (lobar versus patchy, multifocal) and the and the presence or absence of bile duct wall enhancement were recorded. The radiologic findings were correlated with the clinical and pathologic findings. Two types of FAD were noted in 40 of the 60 patients. Active in flammation was present in 19 of the 27 with Type-A and in ten of the 15 in whom the presence of RPC was pathologically proven. Ten of the 13 with Type-B FAD were in a subclinical state, and nine of the ten in whom RPC was pathologically proven had chronic inflammation. Among 20 patients who did not have FAD, RPC was subclinical in 18 and dormant in nine of the eleven in whom its presence was pathologically proven (p<0.001). Clinico-pathologic correlation with bile duct wall enhancement and the distribution pattern of FAD showed no statistical significance. The inflammatory activity of RPC can be predicted by analysis of the FAD seen at multiphasic spiral CT

  7. TRIPLE PHASE SPIRAL C.T. IN THE EVALUATION OF HEPATIC MASSES

    Directory of Open Access Journals (Sweden)

    Prasad

    2015-10-01

    Full Text Available BACKGROUND AND OBJECTIVE : The goal of the study is to determine the value of various phases of Triple, Helical CT, Hepatic arterial Phase (HAP, Portal venous phase (PVP and Equilibrium Phase (EP, is the detection and characterization of Hepatic Lesions and to evaluate whether u nenhanced and hepatic arterial phases when used in conjunction with porto venous phase would lead to detection of greater number of lesions or better characterization of lesion. METHODOLOGY : The study population consists of 50 Patients aged between 30 Years and 80 Years were examined with multiphase (plain, hepatic arterial, portal venous and equilibrium phases. Spiral CT of liver. Patients were referred for CT scan when liver diseases were suspected clinically, if ultrasound and other previous investi gations revealed lesions which had to be further evaluated by spiral CT and to detect liver metastases in known cases of primary extra hepatic malignancy. CT TECHNIQUE: Helical scanning of liver with Toshiba astein s4, continuous spiral run and the images were reconstructed at 5mm intervals. Contrast material 100ml was injected through 18 or 20G catheter at the rate of 3ml per second using automatic medrad power injector. Non - ionic contrast [IOHEXOl – 300mg perml was used in all the patients]. After obtaine d unenhanced CT scan HAP scanning was initiated 25 seconds after initiation of contrast injection. Portal venous phase scanning was initiated 60 - 65 seconds after start of contrast injection. Equilibrium phase scanning was initiated after 180 seconds after the start of contrast injection. IMAGE EVALUATION: All the images of 4 phases were reviewed. First Step : The presence, appearance and enhancement of each Lesion were noted in all phases and lesion were described Isodense, Hypodense Hyperdense based on thei r attenuation relative to liver parenchyma during that phase of scanning. Based on enhancement pattern of the lesion during various phases they were

  8. The ultraviolet attenuation law in backlit spiral galaxies

    International Nuclear Information System (INIS)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-01-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  9. The ultraviolet attenuation law in backlit spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Manning, Anna M. [Stennis Space Center, MS 39522 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2201-AZ Noordwijk (Netherlands); Lintott, Chris J. [Astrophysics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin, E-mail: wkeel@ua.edu, E-mail: ammanning@bama.ua.edu, E-mail: bholwerd@rssd.esa.int, E-mail: Twitter@BenneHolwerda, E-mail: cjl@astro.ox.ac.uk, E-mail: Twitter@chrislintott, E-mail: kevin.schawinski@phys.ethz.ch, E-mail: Twitter@kevinschawinski [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  10. The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

    Science.gov (United States)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly "gray" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  11. Spiral phases of doped antiferromagnets

    International Nuclear Information System (INIS)

    Shraiman, B.I.; Siggia, E.D.

    1990-01-01

    The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs

  12. Investigation on filter method for smoothing spiral phase plate

    Science.gov (United States)

    Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian

    2018-03-01

    Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.

  13. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  14. GAMA/H-ATLAS: THE DUST OPACITY-STELLAR MASS SURFACE DENSITY RELATION FOR SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Grootes, M. W.; Tuffs, R. J.; Andrae, E. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Popescu, C. C.; Pastrav, B. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gunawardhana, M.; Taylor, E. N. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 206 (Australia); Kelvin, L. S.; Driver, S. P. [Scottish Universities' Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom); Liske, J. [European Southern Observatory, Karl-Schwarzschild Str. 2, D-85748 Garching (Germany); Seibert, M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Graham, Alister W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baldry, I. K. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Bourne, N. [Centre for Astronomy and Particle Theory, The School of Physics and Astronomy, Nottingham University, University Park Campus, Nottingham NG7 2RD (United Kingdom); Brough, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dariush, A. [Physics Department, Imperial College, Prince Consort Road, London SW7 2AZ (United Kingdom); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L., E-mail: meiert.grootes@mpi-hd.mpg.de [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); and others

    2013-03-20

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, {tau}{sup f}{sub B}, and the stellar mass surface density, {mu}{sub *}, of nearby (z {<=} 0.13) spiral galaxies. This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sersic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the {tau}{sub B}{sup f} - {mu}{sub *} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the {tau}{sub B}{sup f} - {mu}{sub *} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu and Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar

  15. Enhanced dual-phase spiral CT features of polypoid ampullary carcinoma

    International Nuclear Information System (INIS)

    Zeng Mengsu; Yan Fuhua; Zhou Kangrong; Chen Huiming; Chen Gang; Chen Jin

    2001-01-01

    Objective: To understand CT features of polypoid ampullary carcinoma by enhanced dual-phase spiral CT. Methods: 15 cases of polypoid ampullary carcinoma (PAC) confirmed by surgical and pathological results were studied with thin slice enhanced dual-phase spiral CT (including arterial and portal phase scanning)with retrospective analysis, the scanning parameters were 5 mm thickness and 1.0 pitch for arterial phase scanning, and 5 mm thickness and 5 mm space for portal phase scanning. Results: All cases could display an enhanced mass as local filling defect at the site of the duodenal Vater's ampulla during arterial and portal phase scanning, the tumors ranged in size from 1 cm to 5 cm with mean of 2.3 cm, all were accompanied with dilated intrahepatic and common bile duct, enlarged gallbladder and dilated pancreatic duct, except one case which had marked atrophy of the pancreatic body and tail. Conclusion: The thin slices enhanced dual-phase spiral CT could not only accurately define the level of obstruction, but also demonstrate an enhanced mass as direct CT sign of the PAC, which is crucial for diagnosis of the PAC

  16. Frequency spirals

    International Nuclear Information System (INIS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-01-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  17. Frequency spirals

    Energy Technology Data Exchange (ETDEWEB)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu [Center for Applied Mathematics, Cornell University, Ithaca, New York 14853 (United States)

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  18. Spiral CT findings of inflammatory pseudotumor of the liver

    International Nuclear Information System (INIS)

    Lee, Ha Jong; Nam, Kyung Jin; Lee, Ki Nam; Park, Byeong Ho; Choi, Jong Cheol; Koo, Bong Sik; Nam, Ki Dong; Kim, Chan Seong

    1998-01-01

    To assess the spiral CT findings of inflammatory pseudotumor of the liver(IPTL), in order to distinguish this tumor from hepatocellular carcinoma, hepatic abscess or other space occupying liver lesions. The spiral CT findings of IPTL were retrospectively evaluated in six patients. All cases were confirmed by ultrasonography-guided gun biopsy. Four patients were men and two were women, and they were aged between 37 and 74 (mean, 49) years. The site, size, and number of IPTL were assessed, and their enhancement patterns were evaluated during the arterial, portal and delayed phases of spiral CT. Five cases involved a solitary mass and in one there were multiple masses with surrounding small nodules. Four cases occurred in the right lobe and two in the left lobe. Four of five surrounding nodules were in the left lobe. During the arterial phase of spiral CT scanning, three layers were separated from four of five cases of solitary mass;they were composed of central and peripheral portions of low attenuation, and an intermediate portion of isoattenuation. Delayed enhancement of the peripheral portion was prominent during the delayed phase. In the case involving multiple masses three layers were not seen during the arterial phase, but during the delayed phase enhancement was noted. The features of three layers, as seen on spiral CT, is considered to be very specific for distinguishing IPTL from other hepatic focal lesions.=20

  19. Superconducting spiral phase in the two-dimensional t-J model

    International Nuclear Information System (INIS)

    Sushkov, Oleg P.; Kotov, Valeri N.

    2004-01-01

    We analyze the t-t ' -t '' -J model, relevant to the superconducting cuprates. By using chiral perturbation theory we have determined the ground state to be a spiral for small doping δ1 near half filling. In this limit the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green's functions and address the issue of stability of the spiral state, leading to the phase diagram of the model. At t ' =t '' =0 the spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state remains unclear. However, for values of t ' and t '' corresponding to real cuprates the (1,0) spiral state is stabilized by quantum fluctuations ('order from disorder' effect). We show that at δ≅0.119 the spiral is commensurate with the lattice with a period of eight lattice spacings. It is also demonstrated that spin-wave mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is derived. Even though one cannot classify the gap symmetry according to the lattice representations (s,p,d, ellipsis (horizontal)) since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along the (1,±1) directions

  20. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  1. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  2. Nonplanar spiral states of the t-J model with classical spins

    International Nuclear Information System (INIS)

    Hamada, M.; Shimahara, H.; Mori, H.

    1995-01-01

    The spiral state in the two-dimensional t-J model is studied by numerical diagonalization of an effective Hamiltonian. We examine all possibilities of the spiral spin states including the nonplanar states. It is found that nonplanar spiral states occur, but the deviations from the planar spiral state in the nonplanar spiral states are small for small hole concentrations where our effective Hamiltonian is valid. The modulation of the spin configuration increases continuously from the antiferromagnetic order as the hole concentration increases, and discontinuously changes at a critical hole concentration. Then the state undergoes the first-order phase transition either to the (π,0) phase or to the ferromagnetic phase, depending on the value of J/t

  3. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  4. Wedge-shaped parenchymal enhancement peripheral to the hepatic hemangioma : two-phase spiral CT findings

    International Nuclear Information System (INIS)

    Kim, Kyoung Won; Kim, Tae Kyoung; Han, Joon Koo; Kim, Ah Young; Lee, Hyun Ju; Song, Chi Sung; Choi, Byung Ihn

    2000-01-01

    To determine the incidence of hepatic hemangiomas associated with wedge-shaped parenchymal enhancements adjacent to the tumors as seen on two-phase spiral CT images obtained during the hepatic arterial phase and to characterize the two-phase spiral CT findings of those hemangiomas. One hundred and eight consecutive hepatic hemangiomas in 63 patients who underwent two-phase spiral CT scanning during an 11-month period were included in this study. Two-phase spiral CT scans were obtained during the hepatic arterial phase (30-second delay) and portal venous phase (65-second delay) after injection of 120 mL of contrast material at a rate of 3 mL/sec. We evaluated the frequency with which wedge-shaped parenchymal enhancement was adjacent to the hemangiomas during the hepatic arterial phase and divided hemangiomas into two groups according to whether or not wedge-shaped parenchymal enhancement was noted (Group A and Group B). The presence of such enhancement in hemangiomas was correlated with tumor size and the grade of intratumoral enhancement. In 24 of 108 hemangiomas, wedge-shaped parenchymal enhancement adjacent to hepatic tumors was seen on two-phase CT images obtained during the hepatic arterial phase. Mean hemangioma size was 22mm in group A and 24mm in group B. There was no statistically significant relationship between lesion size and the presence of wedge-shaped parenchymal enhancement adjacent to a hemangioma. In 91.7% and 100% of tumors in Group A, and in 9.6% and 17.8% in Group B, hemangiomas showed more than 50% intratumoral enhancement during the arterial and portal venous phase, respectively. Wedge-shaped parenchymal enhancements peripheral to hepatic hemangiomas was more frequently found in tumors showing more than 50% intratumoral enhancement during these two phases (p less than 0.01). Wedge-shaped parenchymal enhancements is not uncommonly seen adjacent to hepatic hemangiomas on two-phase spiral CT images obtained during the hepatic arterial phase. A

  5. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    International Nuclear Information System (INIS)

    Kim, Sangroh; Yoshizumi, Terry T; Yin Fangfang; Chetty, Indrin J

    2013-01-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the

  6. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral

  7. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  8. Spiral CT dual-phase scanning for hepatocellular carcinoma: comparison study on the peripheral enhancement and pathology

    International Nuclear Information System (INIS)

    Chen Wenxia; Min Pengqiu; Zhou Xiangping; Song Bin; Liu Yan; Shen Mingen; Li Zhenlin; Yang Min

    2002-01-01

    Objective: To compare the peripheral enhancement features of hepatocellular carcinoma (HCC) lesions in arterial and portal venous phases with histopathology, and to study the histopathologic bases of peripheral enhancement of the HCC lesions and how it affects the biologic behavior and prognosis. Methods: Forty-two histopathologically proven HCC patients were included. First, an unenhanced scanning covering the whole liver was done, and followed by arterial and portal venous phase scanning. The delay time was 20 sec and 60 sec after the injecting of contrast media. the slides of 5 μm thickness were stained with HE and the standard immunoperoxidase method using the polyclonal antibody of factor VIII-related antigen (F8RA). The pseudo capsule of the lesion, tumor invasion of the pseudo capsule, and the number of positive stained tumor vessels in the pseudo capsule were evaluated. Results: Among the 42 cases, in arterial phase, the pseudo capsule of the HCC lesions was demonstrated as hyper-or hypo-attenuation in 13 and 8 cases, respectively, and no marked pseudo capsule was perceived in 21 cases. In portal venous phase, hyper-attenuated pseudo capsule was shown in 27 cases, hypo-attenuated pseudo capsule in 2 cases, and no pseudo capsule in 13 cases. On CT scans, daughter foci were showed in 14 cases, in which 9 cases were single and 5 of 42 patients, and tumor cells invaded the pseudo capsule in 16 caes among these cases. F8RA immunohistochemical staining showed that the pseudo capsule contained rich positive staining neo-vascular structure in 15 of 25 cases, and the other 10 cases had thick pseudo capsule but few neo-vascular structure. HE staining showed no marked pseudo capsule in 17 cases, in which 8 cases exhibited no clear border between the tumor tissue and liver parenchyma. Conclusion: The peripheral enhancement features of HCC on spiral CT dural-phase scanning could reflect the histopathologic characteristics and predict the biologic behavior and prognosis

  9. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  10. Staging of gastric adenocarcinoma using two-phase spiral CT: correlation with pathologic staging

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Lee, Dong Ho; Ko, Young Tae; Lim, Joo Won

    1998-01-01

    To correlate the preoperative staging of gastric adenocarcinoma using two-phase spiral CT with pathologic staging. One hundred and eighty patients with gastric cancers confirmed during surgery underwent two-phase spiral CT, and were evaluated retrospectively. CT scans were obtained in the prone position after ingestion of water. Scans were performed 35 and 80 seconds after the start of infusion of 120mL of non-ionic contrast material with the speed of 3mL/sec. Five mm collimation, 7mm/sec table feed and 5mm reconstruction interval were used. T-and N-stage were determined using spiral CT images, without knowledge of the pathologic results. Pathologic staging was later compared with CT staging. Pathologic T-stage was T1 in 70 cases(38.9%), T2 in 33(18.3%), T3 in 73(40.6%), and T4 in 4(2.2%). Type-I or IIa elevated lesions accouted for 10 of 70 T1 cases(14.3%) and flat or depressed lesions(type IIb, IIc, or III) for 60(85.7%). Pathologic N-stage was NO in 85 cases(47.2%), N1 in 42(23.3%), N2 in 31(17.2%), and N3 in 22(12,2%). The detection rate of early gastric cancer using two-phase spiral CT was 100.0%(10 of 10 cases) among elevated lesions and 78.3%(47 of 60 cases) among flat or depressed lesions. With regard to T-stage, there was good correlation between CT image and pathology in 86 of 180 cases(47.8%). Overstaging occurred in 23.3%(42 of 180 cases) and understaging in 28.9%(52 of 180 cases). With regard to N-stage, good correlation between CT image and pathology was noted in 94 of 180 cases(52.2%). The rate of understaging(31.7%, 57 of 180 cases) was higher than that of overstaging(16.1%, 29 of 180 cases)(p<0.001). The detection rate of early gastric cancer using two-phase spiral CT was 81.4%, and there was no significant difference in detectability between elevated and depressed lesions. Two-phase spiral CT for determing the T-and N-stage of gastric cancer was not effective;it was accurate in abont 50% of cases understaging tended to occur.=20

  11. Three phase dynamic CT with double spiral CT: utility of determination of stomach cancer stage

    International Nuclear Information System (INIS)

    Jung, Min Ha; Kim, Hong In; Kim, Tae Hyung; Lee, Ki Yeol; Cho, June Il; Park, Cheol Min; Cha, In Ho

    1997-01-01

    To evaluate the utility of three phases of spiral CT in the diagnosis of stomach cancer. Between August 1994 and March 1995, thirty eight patients with stomach cancer, demonstrated on spiral CT, underwent surgery. Twenty-eight cases were advanced and ten were early. There were 27 men, and 11 women, and their average age was 52.8 years old (33-77). After ingestion of 600-700ml of water, 120-140ml of nonionic contrast material was injected intravenously. Spiral CT scanning was performed in 10mm slice thickness and of 10mm/sec table speed. Three phase image were obtained at 25sec (arterial phase), 60-65sec (venous phase) and 4min (equilibrium phase) after the start of bolus injection. On each phase, CT findings were compared with pathologic results, and tumor detectibility, depth of tumor invasion and lymph node metastasis was analysed. Thirty of the 38 carcinomas (79%) were detected on the arterial phase, 33 (81%) on the venous phase and 30 (79%) on the equilibrium phase. Depth of tumor invasion was measured accurately in 27 of 38 cases (71%) : T1-4/10 (40%), T2-8/11 (73%), T3-13/15 (87%), T4-2/2 (100%). We overstaged one case of T1 as T2 and two cases of T2 as T3, and understaged one case of T2 as T1 and two cases of T3 as T2. Among the 16 enlarged lymph nodes larger than 8mm, 13 cases were positive on pathologic examination and the sensitivity was 65%. With three-phase spiral CT scanning, we obtained 71% accuracy of depth of tumor invasion. The venous phase is most useful for tumor detection and for determining depth of tumor invasion and lymph node metastasis

  12. The experimental study on bowel ischemia in closed loop obstruction by using multi-phase spiral CT

    International Nuclear Information System (INIS)

    Zhang Xiaoming; Yang Hanfeng; Huang Xiaohua; Tang Xianying; Jian Pu; Yang Zhengwei; Zhou Jiyong; Zhao Zongwen

    2005-01-01

    Objective: To evaluate the bowel ischemia in experimental closed loop obstruction by using multi-phase spiral CT. Methods: Twenty-four New Zealand rabbits of both sexes (mean age, 4 months, and mean body weight, 2.5-3.0 kg) were divided randomly into three groups with each group containing 8 rabbits. After clamping 10-15 cm segments of small bowel and their veins for 0.5 hours (Group A), 1-2 hours (Group B), and 3-5 hours (Group C), respectively, multi-phase spiral CT was performed at baseline, and at arterial, venous, and delayed phases after intravenous contrast administration. Then the rabbits were sacrificed to observe their surgical and histological changes. Two radiologists, blinded to the animal model classification and their histological results, individually reviewed the CT images to observe the CT appearances of the closed loop. Statistical significance criteria was determined by P 0.05) at baseline, however, they were significantly different (P<0.05) at all phases after enhancement. Among rabbits without necrotic closed loop, 11 of 13 had continuous enhancement at all phases, while only 1 of 11 rabbits with necrotic closed loop showed continuous enhancement (P<0.05). Conclusion: The ischemia of bowel wall in different phases after clamping small bowel and their veins can be evaluated by using enhanced multi-phase spiral CT. Continuous enhancement of bowel wall in multi-phase spiral CT can be seen prominently in the early bowel ischemia, but necrotic bowel shows no enhancement. (authors)

  13. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.

    Science.gov (United States)

    Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari

    2005-05-01

    We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.

  14. Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.

  15. Study of metastatic lymph nodes in advanced gastric cancer with spiral computed tomograph

    International Nuclear Information System (INIS)

    Su Yijuan

    2008-01-01

    Objective: To study the characteristics of spiral computed tomography (SCT) in the diagnosis of lymph nodes metastases in gastric cancer. Methods: The characteristics of spiral computed tomography (SCT) of metastatic lymph nodes in 35 gastric cancer patients were analyzed and compared with operation and pathology. Results: A total amount of 379 lymph nodes (positive 173, negative 206) were detected by SCT and confirmed by pathology in metastasis-positive or metastasis-negative patients. The positive rate with diameter of lymph nodes ≥ 10 mm is 62.7%. The positive rate with ir- regular shape and uneven enhancement lymph nodes were 96.3% and 89.4%. If the attenuation values, more than or equal to 25 HU in plain scan or 70 HU in arterial phase or 80 HU in venous phase, were used as the threshold to detect the metastasis-positive lymph nodes, the positive rate were 55.7%, 56.3%, 67.8% respectively. Conclusion: SCT is valuable in judging the metastasis in gastric cancer. The reference of diameter ≥ 10mm, combining with the shape and the attenuation values can dramatically improve the diagnosis of lymph node metastasis in gastric cancer. (authors)

  16. Yiguanjian cataplasm attenuates opioid dependence in a mouse

    Science.gov (United States)

    Gao, Shuai; Gao, Hong; Fan, Yuchen; Zhang, Guanghua; Sun, Fengkai; Zhao, Jing; Li, Feng; Yang, Yang; Wang, Kai

    2016-08-01

    To investigate the effect of Yiguanjian (YGJ) cataplasm on the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. One hundred Swiss albino mice, of equal male to female ratio, were randomly and equally divided into 10 groups. A portion (3 cm2) of the backside hair of the mice was removed 1 day prior to the experiment. Morphine (5 mg/kg) was intraperitoneally administered twice daily for 5 days. YGJ cataplasm was prepared and pasted on the bare region of the mice immediately before morphine administration on day 3 and subsequently removed at the end day 5. On day 6, naloxone (8 mg/kg) was intraperitoneally injected to precipitate opioid withdrawal syndrome. Behavioral observation was performed in two 30-min phases immediately after naloxone injection. The YGJ cataplasm significantly and dose-dependently attenuated morphine-naloxone- induced experimental opioid withdrawal, in terms of withdrawal severity score and the frequencies of jumping, rearing, forepaw licking, and circling behaviors. However, YGJ cataplasm treatment did not alter the acute analgesic effect of morphine. YGJ cataplasm could attenuate opioid dependence and its associated withdrawal symptoms. Therefore, YGJ cataplasm could serve as a potential therapy for opioid addiction in the future.

  17. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  18. Collective excitations in itinerant spiral magnets

    International Nuclear Information System (INIS)

    Kampf, A.P.

    1996-01-01

    We investigate the coupled charge and spin collective excitations in the spiral phases of the two-dimensional Hubbard model using a generalized random-phase approximation. Already for small doping the spin-wave excitations are strongly renormalized due to low-energy particle-hole excitations. Besides the three Goldstone modes of the spiral state the dynamical susceptibility reveals an extra zero mode for low doping and strong coupling values signaling an intrinsic instability of the homogeneous spiral state. In addition, near-zero modes are found in the vicinity of the spiral pitch wave number for out-of-plane spin fluctuations. Their origin is found to be the near degeneracy with staggered noncoplanar spiral states which, however, are not the lowest energy Hartree-Fock solutions among the homogeneous spiral states. copyright 1996 The American Physical Society

  19. Spiral model of the Galaxy from observations of the interstellar light attenuation

    International Nuclear Information System (INIS)

    Urasin, L.A.

    1987-01-01

    The model of two arms spiral structure of the Galaxy is made from the observations of space distribution of the interstellar dust matter. This model is the logarithmic spiral with characteristic angle (pith) 6.5 deg

  20. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    Science.gov (United States)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  1. Temperature-dependent pitch and phase diagram for incommensurate XY spins in a slab geometry

    International Nuclear Information System (INIS)

    Collins, M.; Saslow, W.M.

    1996-01-01

    Strain-engineered Heisenberg antiferromagnets recently have been produced by controlling the layer thickness of MnSe/ZnTe superlattices. Neutron-scattering studies reveal a spiral that tends to untwist with increasing temperature. To simulate this system, we employ an XY model with nearest- and second-nearest neighbor antiferromagnetic interactions. The bulk mean-field phase diagram has four possible phases, for the full range of the exchange constants. Monte Carlo calculations are performed for a slab geometry, using an algorithm that allows the system to choose incommensurate boundary conditions. The phase diagram is constructed by monitoring the spiral pitch as a function of temperature for a range of exchange constants. For appropriate exchange constants, good agreement is obtained with experiment. From the mean-field phase diagram it appears that strain engineering an NaCl structure in a superlattice configuration might produce a type of spiral phase, and an associated antiferromagnetic-to-spiral phase transition. copyright 1996 The American Physical Society

  2. On the possibility of simultaneous spiral and superfluid ordering in a Fermi-liquid

    International Nuclear Information System (INIS)

    Peletminskij, S.V.; Yatsenko, A.A.; Shulga, S.N.

    2004-01-01

    The paper concerns a particular possibility of ordering for Fermi systems - a superfluid spiral ordering, at which in addition to the phase invariance breakdown there occurs a violence of the translational and the spin rotation invariance. A general approach of studying of the superfluid spiral ordering is formulated on the basis of the Fermi liquid method. For a monocomponent Fermi system self-consistency equations for four order parameters and the temperature of simultaneous transition to spiral and superfluid states are obtained. The system of equations is studied under the assumption of two order parameters being distinct from zero. The spiral parameter dependences of the transition temperature and the energy gap in the spectrum of elementary fermion excitations are calculated. An interval of the spiral parameter values within which the superfluid spiral ordering can exist is determined. The spin correlation function at the spiral ordering is studied

  3. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  4. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  5. A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT

    International Nuclear Information System (INIS)

    Vembar, M.; Garcia, M.J.; Heuscher, D.J.; Haberl, R.; Matthews, D.; Boehme, G.E.; Greenberg, N.L.

    2003-01-01

    In this investigation, we describe a quantitative technique to measure coronary motion, which can be correlated with cardiac image quality using multislice computed tomography (MSCT) scanners. MSCT scanners, with subsecond scanning, thin-slice imaging (sub-millimeter) and volume scanning capabilities have paved the way for new clinical applications like noninvasive cardiac imaging. ECG-gated spiral CT using MSCT scanners has made it possible to scan the entire heart in a single breath-hold. The continuous data acquisition makes it possible for multiple phases to be reconstructed from a cardiac cycle. We measure the position and three-dimensional velocities of well-known landmarks along the proximal, mid, and distal regions of the major coronary arteries [left main (LM), left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX)] during the cardiac cycle. A dynamic model (called the 'delay algorithm') is described which enables us to capture the same physiological phase or 'state' of the anatomy during the cardiac cycle as the instantaneous heart rate varies during the spiral scan. The coronary arteries are reconstructed from data obtained during different physiological cardiac phases and we correlate image quality of different parts of the coronary anatomy with phases at which minimum velocities occur. The motion characteristics varied depending on the artery, with the highest motion being observed for RCA. The phases with the lowest mean velocities provided the best visualization. Though more than one phase of relative minimum velocity was observed for each artery, the most consistent image quality was observed during mid-diastole ('diastasis') of the cardiac cycle and was judged to be superior to other reconstructed phases in 92% of the cases. In the process, we also investigated correlation between cardiac arterial states and other measures of motion, such as the left ventricular volume during a cardiac cycle, which earlier has been

  6. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  7. Novel type of chimera spiral waves arising from decoupling of a diffusible component

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; Yang, Tao; Liu, Yang; Zhao, Yuemin; Gao, Qingyu, E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)

    2014-07-14

    Spiral waves composed of coherent traveling waves surrounding a core containing stochastically distributed stationary areas are found in numerical simulations of a three-variable reaction-diffusion system with one diffusible species. In the spiral core, diffusion of this component (w) mediates transitions between dynamic states of the subsystem formed by the other two components, whose dynamics is more rapid than that of w. Diffusive coupling between adjacent sites can be “on” or “off” depending on the subsystem state. The incoherent structures in the spiral core are produced by this decoupling of the slow diffusive component from the fast non-diffusing subsystem. The phase diagram reveals that the region of incoherent behavior in chimera spirals grows drastically, leading to modulation and breakup of the spirals, in the transition zones between 1{sup n-1} and 1{sup n} local mixed-mode oscillations.

  8. Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism

    Science.gov (United States)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small. A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and create a spiral arm. More than one spiral arm can form because such constructive interference can occur for different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be common for both primary and additional arms. When a planet has a sufficiently large mass (≳3 thermal masses for (h/r) p = 0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.

  9. Spiral CT in kidney: assumption of renal function by objective evaluation of renal cortical enhancement

    International Nuclear Information System (INIS)

    Choi, Bo Yoon; Lee, Jong Seok; Lee, Joon Woo; Myung, Jae Sung; Sim, Jung Suk; Seong, Chang Kyu; Kim, Seung Hyup; Choi, Guk Myeong; Chi, Seong Whi

    2000-01-01

    To correlate the degree of renal cortical enhancement, objectively evaluated by means of spiral CT with the serum level of creatinine, and to determine the extent to which this degree of enhancement may be used to detect renal parenchymal disease. Eighty patients (M:F = 50:30; age + 25-19, (mean 53) years) with available serum level of creatinine who underwent spiral CT between September and October 1999 were included in this study. In fifty patients the findings suggested hepatic or biliary diseases such as hepatoma, biliary cancer, or stone, while in thirty, renal diseases such as cyst, hematoma, or stone appeared to be present. Spiral CT imaging of the cortical phase was obtained at 30-40 seconds after the injection of 120 ml of non-ionic media at a rate of 3 ml/sec. The degree of renal cortical enhancement was calculated by dividing the CT attenuation number of renal cortex at the level of the renal hilum by the CT attenuation number of aorta at the same level. The degree of renal cortical enhancement was compared with the serum level of creatinine, and the degree of renal cortical enhancement in renal parenchymal disease with that of the normal group. Among eighty patients there were five with renal parenchymal disease and 75 with normal renal function. The ratio of the CT attenuation number of renal cortex to that of aorta at the level of the renal hilum ranged between 0.49 and 0.99 (mean, 0.79; standard deviation, 0.15). while the serum level of creatinine ranged between 0.6 and 3.2 mg/dl. There was significant correlation (coefficient of -0.346) and a statistically significant probability of 0.002 between the ratio of the CT attenuation numbers and the serum level of creatinine. There was a significant difference (statistically significant probability of less than 0.01) between those with renal parenchymal disease and the normal group. The use of spiral CT to measure the degree of renal cortical enhancement provides not only an effective index for

  10. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung

    2010-06-01

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  11. A spiral wave front beacon for underwater navigation: transducer prototypes and testing.

    Science.gov (United States)

    Dzikowicz, Benjamin R; Hefner, Brian T

    2012-05-01

    Transducers for acoustic beacons which can produce outgoing signals with wave fronts whose horizontal cross sections are circular or spiral are studied experimentally. A remote hydrophone is used to determine its aspect relative to the transducers by comparing the phase of the circular signal to the phase of the spiral signal. The transducers for a "physical-spiral" beacon are made by forming a strip of 1-3 piezocomposite transducer material around either a circular or spiral backing. A "phased-spiral" beacon is made from an array of transducer elements which can be driven either in phase or staggered out of phase so as to produce signals with either a circular or spiral wave front. Measurements are made to study outgoing signals and their usefulness in determining aspect angle. Vertical beam width is also examined and phase corrections applied when the hydrophone is out of the horizontal plane of the beacon. While numerical simulations indicate that the discontinuity in the physical-spiral beacon introduces errors into the measured phase, damping observed at the ends of the piezocomposite material is a more significant source of error. This damping is also reflected in laser Doppler vibrometer measurements of the transducer's surface velocity.

  12. Solvable model of spiral wave chimeras.

    Science.gov (United States)

    Martens, Erik A; Laing, Carlo R; Strogatz, Steven H

    2010-01-29

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.

  13. Solvable Model of Spiral Wave Chimeras

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.

    2010-01-01

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....

  14. Radiation induced time dependent attenuation in a fiber

    International Nuclear Information System (INIS)

    Kelly, R.E.; Lyons, P.B.; Looney, L.D.

    1985-01-01

    Characteristics describing the time dependent attenuation coefficient of an optical fiber during and following a very short and intense radiation pulse are analyzed. This problem is important for transmission applications when the fiber is subjected to gamma, electron, or neutron beams. Besides time, the attenuation coefficient is a function of temperature, dose rate, dose, nature of the radiation (n, e, γ), fiber composition and purity, pre-existing solid state defects, and wavelength of the transmitted signal. The peak attenuation for a given fiber is mainly determined by the dose rate and pulse length, but temperature and strain (or athermal) annealing also contribute to a partial recovery during the pulse duration. The peak attenuation per unit dose appears to be smaller at high doses, perhaps caused by particle track overlap, which produces a saturation effect. After pulse termination, the attenuation coefficient tends to recover towards its pre-radiation value at different rates, depending upon the factors mentioned above. In particular, ionized electrons relax back to the positive lattice ions at a rate which depends upon initial separation distance and temperature. The initial separation distance is a function of beam energy. Some electrons will encounter a trap in the lattice and may recombine by quantum mechanical tunneling or be removed by photons (hence, absorption). Besides ionization, radiation may induce lattice displacements which in turn produce additional absorption centers. The displacement contribution has a different time constant than that associated with ionization. These topics, as they influence fiber characteristics, are discussed, along with supporting experimental data

  15. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  16. SPIRAL COUNTER-CURRENT CHROMATOGRAPHY OF SMALL MOLECULES, PEPTIDES AND PROTEINS USING THE SPIRAL TUBING SUPPORT ROTOR

    OpenAIRE

    Knight, Martha; Finn, Thomas M.; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-01-01

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was c...

  17. Tracking Target and Spiral Waves

    DEFF Research Database (Denmark)

    Jensen, Flemming G.; Sporring, Jon; Nielsen, Mads

    2002-01-01

    A new algorithm for analyzing the evolution of patterns of spiral and target waves in large aspect ratio chemical systems is introduced. The algorithm does not depend on finding the spiral tip but locates the center of the pattern by a new concept, called the spiral focus, which is defined...... by the evolutes of the actual spiral or target wave. With the use of Gaussian smoothing, a robust method is developed that permits the identification of targets and spirals foci independently of the wave profile. Examples of an analysis of long image sequences from experiments with the Belousov......–Zhabotinsky reaction catalyzed by ruthenium-tris-bipyridyl are presented. Moving target and spiral foci are found, and the speed and direction of movement of single as well as double spiral foci are investigated. For the experiments analyzed in this paper it is found that the movement of a focus correlates with foci...

  18. Kidney spiral CT, indications, realization, results

    International Nuclear Information System (INIS)

    Braunschweig, R.; Beilicke, M.; Hundt, W.; Breiteneder, T.; Reiser, M.

    1999-01-01

    The introduction of spiral computed tomography (spiral CT) has vastly enriched the methodologically diversity of computer-tomographic scans. It allows for the recording of different perfusion or excretion stages of the kidney parenchyma of the urine draining paths by carrying out long-distance, phase-identical multiple examinations of the retroperitoneum. The description of the findings which are characterized by their local and contrasts behavior is possible. The following report describes the indications and technological process of kidney spiral CT using kidney-typical intravenous contrast media. Special emphasis is put on the advantages and limits of multiple phase spiral CT. Decisive preconditions are: 1. Specific clinical query, 2. selection of the corresponding phase contrasts of the kidneys and uretra or bladder, 3. exact technical and temporal adjustment of the acquisition parameters. Scanning times are in the range of seconds. The overall examination can be carried out quick and without any major strain on the part of the patient. A sound proof and a general differentiation of focal kideny lesions can be derived from the acquired data. This is also true for kidneys and ureters findings. Bladder findings can be localized and differentiated according to stage. More than two 'spiral acquisitions' should be carried out with restraint taking exposure to radiation into account. Due to the sound registration of focal lesions, its capability of reproduction and its short-time examination, the spiral CT of the kidneys can be said to be the most effective current scanning method of the retroperitoneum following clinical examinations and sonography. (orig.) [de

  19. Quantitative evaluation in enhancement of pancreas and adjacent vessels during spiral CT

    International Nuclear Information System (INIS)

    Kim, Hyoung Seuk; Shin, Kue Hee; Park, Cheol Min; Cha, Sang Hoon; Chung, Kyoo Byung

    1997-01-01

    To determine by quantitative evaluation of pancreatic and adjacent vascular enhancement during spiral CT, the ideal scan delay for examination of the pancreas. Dual(n=3D90) and triple(n=3D90) phase spiral CT scans of patients whose pancreas showed no pathologic condition were retrospectively evaluated. Dual-phase scans were performed at 43 seconds(early), and 5-6 minutes(delayed) after the injection of 120ml of contrast material at an injection rate of 3ml/sec;triple-phase scans were performed at 25 seconds(arterial),60-65 seconds (portal) and 5-6 minutes (delayed) after the injection of 120-140ml of contrast material at an injection rate of 2-4ml/sec, and ten patients also underwent precontrast scanning. CT attenuation values(HU) were measured in the head, body and tail of the pancreas, aorta, and main portal vein during each phase of all scans. Triple-phase protocol was used to measure the effect of different total volumes and injection rates on enhancement of the pancreas and adjacent vessels. There was no significant difference in the degree of enhancement of the pancreas head, body and tail during each phase(p>0.05). The pancreas was maximally enhanced on 43 second delayed scan(132±20HU)(p 0.05). The main portal vein showed maximum enhancement on 43-second delayed scan(207±44HU)(p<0.05). Different total volume of contrast material did not change the enhancement of the pancreas and adjacent vessels. At an injection rate of 2ml/sec, peak enhancement of the pancreas, aorta and portal vein was obtained on 60-65 second delayed scan, and at 4ml/sec, peak enhancement was obtained on 25 second delayed scan(p<0.05). Observing the usual protocols for abdominal spiral CT scanning, the pancreas was most effectively evaluated using a 43-second delayed scan. An increased injection rate resulted in earlier enhancement of the pancreas, aorta and portal vein

  20. Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons

    International Nuclear Information System (INIS)

    Ma Jun; Zhang Cairong; Yang Lijian; Wu Ying

    2010-01-01

    The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave. (interdisciplinary physics and related areas of science and technology)

  1. Automatic exposure control to reduce the dose in subsecond multislice spiral CT: phantom measurements and clinical results

    International Nuclear Information System (INIS)

    Greess, H.; Bautz, W.; Baum, U.; Wolf, H.; Suess, C.; Kalender, W.A.

    2004-01-01

    Purpose: To investigate the potential of dose reduction in multislice spiral CT (MSCT) with automatic exposure control. Materials and Methods: The study was performed on a Sensation 4 multislice scanner. This prototype implementation analyzed the distribution of the attenuation along the z-axis in the lateral and sagittal directions of the digital radiogram. Depending on this distribution of the attenuation, the tube current (mA) is defined for every tube rotation. In addition, the tube current was modulated during each tube rotation. First, a three step oval water phantom was measured to evaluate the potential of this method with respect to dose reduction and image quality. In a patient study (n=26), four different scan regions (shoulder, thorax, abdomen, pelvis) were examined and dose (mAs) and image quality evaluated in comparison to examinations with a standard protocol for these regions in adults and a weight-adjusted standard protocol in children. The image quality was classified in consensus as good, sufficient and poor image quality. Results: By adapting and modulating the tube current, we substantially reduced the variation of noise in one spiral scan and in one scan region of our patient collective. The dose (average mAs) was reduced by 31% to 66% in children (mean 44%) and between 35% and 64% in adults (mean 53%), depending on the scan region. The image quality was substantially improved in regions with high attenuation and did not suffer in low attenuation regions. Conclusion: The dose can be reduced substantially by an automatic exposure control including angular tube current modulation with the same or improved image quality. (orig.) [de

  2. Non-local coexistence of multiple spiral waves with independent frequencies

    International Nuclear Information System (INIS)

    Zhan Meng; Luo Jinming

    2009-01-01

    The interactions of several spiral waves with different independent rotation frequencies are studied in a model of two-dimensional complex Ginzburg-Laudau equation. We find a general coexistence phenomenon, non-local non-phase-locking-invasion coexistence, that is, the non-slowest spiral wave can survive and not be killed by the fastest spiral wave as it is insulated from the fastest one with the sacrifice of the slowest one, which stays in the spatial position between the fastest spiral and the non-slowest one. Both the parameter non-monotonicity and the non-phase-locking invasion between the fastest and the slowest spiral waves play key roles in this phenomenon. Importantly, the results could give a general idea for extensively observed coexistence of spiral waves in various inhomogeneous circumstances.

  3. Spiral counter-current chromatography of small molecules, peptides and proteins using the spiral tubing support rotor.

    Science.gov (United States)

    Knight, Martha; Finn, Thomas M; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-09-09

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was constructed by laser sintering technology into which FEP tubing was placed in 4 spiral loops per layer from the bottom to the top and a cover affixed allowing the tubing to connect to flow-tubing of the planetary centrifuge. The rotor was mounted and run in a P.C. Inc. type instrument. Examples of compounds of molecular weights ranging from <300 to approximately 15,000 were chromatographed in appropriate two-phase solvent systems to assess the capability for separation and purification. A mixture of small molecules including aspirin was completely separated in hexane-ethyl acetate-methanol-water. Synthetic peptides including a very hydrophobic peptide were each purified to a very high purity level in a sec-butanol solvent system. In the STS rotor high stationary phase retention was possible with the aqueous sec-butanol solvent system at a normal flow rate. Finally, the two-phase aqueous polyethylene glycol-potassium phosphate solvent system was applied to separate a protein from a lysate of an Escherichia coli expression system. These experiments demonstrate the versatility of spiral CCC using the STS rotor. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith [Department of Physics and Astronomy, East Tennessee State University, Johnson City TN 37614 (United States); Zaragoza-Cardiel, Javier [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain); Struck, Curtis, E-mail: smithbj@etsu.edu [Department of Physics and Astronomy, Iowa State University, Ames IA 50011 (United States)

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  5. The Hubble law and the spiral structures of galaxies from equations of motion in general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1975-01-01

    Fully exploiting the Lie group that characterizes the underlying symmetry of general relativity theory, Einstein's tensor formalism factorizes, yielding a generalized (16-component) quaternion field formalism. The associated generalized geodesic equation, taken as the equation of motion of a star, predicts the Hubble law from one approximation for the generally covariant equations of motion, and the spiral structure of galaxies from another approximation. These results depend on the imposition of appropriate boundary conditions. The Hubble law follows when the boundary conditions derive from the oscillating model cosmology, and not from the other cosmological models. The spiral structures of the galaxies follow from the same boundary conditions, but with a different time scale than for the whole universe. The solutions that imply the spiral motion are Fresnel integrals. These predict the star's motion to be along the 'Cornu Spiral'. The part of this spiral in the first quadrant is the imploding phase of the galaxy, corresponding to a motion with continually decreasing radii, approaching the galactic center as time increases. The part of the Cornu Spiral' in the third quadrant is the exploding phase, corresponding to continually increasing radii, as the star moves out from the hub. The spatial origin in the coordinate system of this curve is the inflection point, where the explosion changes to implosion. The two- (or many-) armed spiral galaxies are explained here in terms of two (or many) distinct explosions occurring at displaced times, in the domain of the rotating, planar galaxy. (author)

  6. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  7. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.

    2013-01-01

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L) J , as a function of (g – i) versus (i – J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  8. Magnetization reversal in ferromagnetic spirals via domain wall motion

    Science.gov (United States)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  9. Continuous Fuel Level Sensor Based on Spiral Side-Emitting Optical Fiber

    Directory of Open Access Journals (Sweden)

    Chengrui Zhao

    2012-01-01

    Full Text Available A continuous fuel level sensor using a side-emitting optical fiber is introduced in this paper. This sensor operates on the modulation of the light intensity in fiber, which is caused by the cladding’s acceptance angle change when it is immersed in fuel. The fiber is bent as a spiral shape to increase the sensor’s sensitivity by increasing the attenuation coefficient and fiber’s submerged length compared to liquid level. The attenuation coefficients of fiber with different bent radiuses in the air and water are acquired through experiments. The fiber is designed as a spiral shape with a steadily changing slope, and its response to water level is simulated. The experimental results taken in water and aviation kerosene demonstrate a performance of 0.9 m range and 10 mm resolution.

  10. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  11. SPIRAL2 Week 2012 - Slides of the presentations

    International Nuclear Information System (INIS)

    Staley, F.; Jacquemet, M.; Lewitowicz, M.; Bertrand, P.; Tuske, O.; Caruso, A.; Leyge, J.F.; Perrot, L.; Di Giacomo, M.; Ausset, P.; Moscatello, M.H.; Savalle, A.; Rannou, B.; Lambert, M.; Petit, E.; Hulin, X.; Barre-Boscher, N.; Tusseau-Nenez, S.; Tecchio, L.B.

    2013-01-01

    The main goal of the 5. edition of the SPIRAL2 Week is to present and discuss the current status of the SPIRAL2 project in front of a large community of scientists and engineers. The program of the meeting will include presentations on scientific and technical developments related to the baseline project, experiments and theory. The main topics to be discussed at the conference are: -) physics and detectors at SPIRAL2, -) driver accelerators, -) production of radioactive ion beams (RIB), -) safety, -) buildings and infrastructure, -) RIB facilities worldwide, and -) SPIRAL2 preparatory phase. This document is made up of the slides of the presentations

  12. THE BEHAVIOR OF THE PITCH ANGLE OF SPIRAL ARMS DEPENDING ON OPTICAL WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E.; Puerari, Ivânio; Rosales-Ortega, F. F.; Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); González-Lópezlira, Rosa A. [Centro de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, México, C.P. 58089 (Mexico); Fuentes-Carrera, Isaura, E-mail: ericmartinez@inaoep.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07730 México, D.F. (Mexico)

    2014-09-20

    Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.

  13. Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging: multicenter study comparing MR and dual-phase spiral CT

    NARCIS (Netherlands)

    M. Oudkerk (Matthijs); C.G. Torres; B. Song; M. Konig; J. Grimm; J. Fernandez-Cuadrado; B. op de Beeck; M. Marquardt; P. van Dijk (Pieter); J.C. de Groot (Jan Cees)

    2002-01-01

    textabstractPURPOSE: To evaluate whether mangafodipir trisodium (Mn-DPDP)-enhanced magnetic resonance (MR) imaging surpasses dual-phase spiral computed tomography (CT) in differentiating focal liver lesions. MATERIALS AND METHODS: One hundred forty-five patients who had or were

  14. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, Kengo; Lin, Chia Hui [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Hosokawa, Takashi [Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Sakurai, Yuya, E-mail: tomida@vega.ess.sci.osaka-u.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-01-20

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  15. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    International Nuclear Information System (INIS)

    Tomida, Kengo; Lin, Chia Hui; Machida, Masahiro N.; Hosokawa, Takashi; Sakurai, Yuya

    2017-01-01

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  16. Pulsatile spiral blood flow through arterial stenosis.

    Science.gov (United States)

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  17. Fabrication techniques of X-ray spiral zone plates

    International Nuclear Information System (INIS)

    Gao Nan; Zhu Xiaoli; Li Hailiang; Xie Changqing

    2010-01-01

    The techniques to make X-ray spiral zone plates using electron beam and X-ray lithography were studied. A master mask was fabricated on polyimide membrane by E-beam lithography and micro-electroplating. Spiral zone plates were efficiently replicated by X-ray lithography and micro-electroplating. By combining the techniques, spiral zone plates at 1 keV were successfully fabricate. With an outermost zone width of the 200 nm, and the gold absorbers thickness of 700 nm, the high quality zone plates can be used for X-ray phase contrast microscopy.(authors)

  18. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  19. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  20. Functioning islet cell tumor of the pancreas. Localization with dynamic spiral CT

    International Nuclear Information System (INIS)

    Chung, M.J.; Choi, B.I.; Han, J.K.; Chung, J.W.; Han, M.C.; Bae, S.H.

    1997-01-01

    Purpose: The purpose of this study was to evaluate the usefulness of dynamic spiral CT, including multidimensional reformation, in the detection and localization of islet cell tumors of the pancreas. Material and Methods: Seven patients with histopathologically proven functioning islet cell tumors of the pancreas were studied with 2-phase contrast-enhanced spiral CT. Scanning of the arterial phase and late phase was started 30 s and 180 s, respectively, after injection of 100 ml of contrast medium at a rate of 3 ml/s. Results: Axial images in the arterial phase depicted the lesions in 5 patients, but in the late phase in only one patient. Multiplanar reformatted images of the arterial phase depicted the lesions in all 7 patients. Maximal intensity projection images demonstrated all lesions with information of their relationship to the vascular structure. Conclusion: Dynamic spiral CT with scanning during the arterial phase and retrospective multidimensional reformation is useful for preoperative detection and localization of small islet cell tumors of the pancreas. (orig.)

  1. How does a planet excite multiple spiral arms?

    Science.gov (United States)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-01-01

    Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.

  2. Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose)

    International Nuclear Information System (INIS)

    Greess, Holger; Noemayr, Anton; Baum, Ulrich; Lell, Michael; Boewing, Bernhard; Bautz, Werner A.; Wolf, Heiko; Kalender, Willi

    2002-01-01

    In a controlled patient study we investigated the potential of attenuation-based on-line modulation of the tube current to reduce milliampere values (mAs) in CT examinations of children without loss of image quality. mAs can be reduced for non-circular patient cross sections without an increase in noise if tube current is reduced at those angular positions where the patient diameter and, consequently, attenuation are small. We investigated a technical approach with an attenuation-based on-line control for the tube current realised as a work-in-progress implementation. The CT projection data are analysed in real time to determine optimal mAs values for each projection angle. We evaluated mAs reduction for 100 spiral CT examinations with attenuation-based on-line modulation of the tube current in a group of children. Two radiologists evaluated image quality by visual interpretation in consensus. We compared the mAs values read from the CT scanner with preset mAs of a standard protocol. Four different scan regions were examined in spiral technique (neck, thorax, abdomen, thorax and abdomen). We found the mAs product to be reduced typically by 10-60% depending on patient geometry and anatomical regions. The mean reduction was 22.3% (neck 20%, thorax 23%, abdomen 23%, thorax and abdomen 22%). In general, no deterioration of image quality was observed. There was no correlation between the age and the mean mAs reduction in the different anatomical regions. By classifying the children respectively to their weight, there is a positive trend between increasing weight and mAs reduction. We conclude that mAs in spiral CT examinations of children can be reduced substantially by attenuation-based on-line modulation of the tube current without deterioration of image quality. Attenuation-based on-line modulation of tube current is efficient and practical for reducing dose exposure to children. (orig.)

  3. Curcumin Attenuates Opioid Tolerance and Dependence by Inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II α Activity

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena

    2015-01-01

    Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug’s poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1–10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity. PMID:25515789

  4. Threshold-dependent variability of coronary artery calcification measurements - implications for contrast-enhanced multi-detector row-computed tomography

    International Nuclear Information System (INIS)

    Moselewski, Fabian; Ferencik, Maros; Achenbach, Stephan; Abbara, Suhny; Cury, Ricardo C.; Booth, Sarah L.; Jang, Ik-Kyung; Brady, Thomas J.; Hoffmann, Udo

    2006-01-01

    Introduction: The present study investigated the threshold-dependent variability of coronary artery calcification (CAC) measurements and the potential to quantify CAC in contrast-enhanced multi-detector row-computed tomography (MDCT). Methods: We compared the mean CT attenuation of CAC to luminal contrast enhancement of the coronary arteries in 30 patients (n = 30) undergoing standard coronary contrast-enhanced spiral MDCT. The modified Agatston score [AS], calcified plaque volume [CV], and mineral mass [MM]) at four different thresholds (130, 200, 300, and 400 HU) were measured in 50 patients who underwent non-contrast-enhanced MDCT. Results: Mean CT attenuation of CAC was similar to the attenuation of the contrast-enhanced coronary lumen (CAC 297.1 ± 68.7 HU versus 295 ± 65 HU (p < 0.0001), respectively). Above a threshold of 300 HU CAC measurements significantly varied to standard measurements obtained at a threshold of 130 HU (p < 0.0001). The threshold-dependent variation of MM measurements was significantly smaller than for AS and CV (130 HU versus 400 HU: 63, 75, and 81, respectively; p < 0.001). These differences resulted in a change of age and gender based percentile category for AS in 78% of subjects. Discussion: We demonstrated that CAC measurements are threshold dependent with MM measurements having significantly less variation than AS or CV. Due to the similarity of mean CT attenuation of CAC and the contrast-enhanced coronary lumen accurate quantification of CAC may be difficult in standard coronary contrast-enhanced spiral MDCT

  5. Threshold-dependent variability of coronary artery calcification measurements - implications for contrast-enhanced multi-detector row-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moselewski, Fabian [Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Ferencik, Maros [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Achenbach, Stephan [Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Department of Internal Medicine II (Cardiology), University of Erlangen (Germany); Abbara, Suhny [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cury, Ricardo C. [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Booth, Sarah L. [Jean Mayer USDA Human Nutrition Research Center on Aging, 711 Washington St., Boston, MA 02114 (United States); Jang, Ik-Kyung [Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Brady, Thomas J. [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Hoffmann, Udo [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)]. E-mail: uhoffman@partners.org

    2006-03-15

    Introduction: The present study investigated the threshold-dependent variability of coronary artery calcification (CAC) measurements and the potential to quantify CAC in contrast-enhanced multi-detector row-computed tomography (MDCT). Methods: We compared the mean CT attenuation of CAC to luminal contrast enhancement of the coronary arteries in 30 patients (n = 30) undergoing standard coronary contrast-enhanced spiral MDCT. The modified Agatston score [AS], calcified plaque volume [CV], and mineral mass [MM] at four different thresholds (130, 200, 300, and 400 HU) were measured in 50 patients who underwent non-contrast-enhanced MDCT. Results: Mean CT attenuation of CAC was similar to the attenuation of the contrast-enhanced coronary lumen (CAC 297.1 {+-} 68.7 HU versus 295 {+-} 65 HU (p < 0.0001), respectively). Above a threshold of 300 HU CAC measurements significantly varied to standard measurements obtained at a threshold of 130 HU (p < 0.0001). The threshold-dependent variation of MM measurements was significantly smaller than for AS and CV (130 HU versus 400 HU: 63, 75, and 81, respectively; p < 0.001). These differences resulted in a change of age and gender based percentile category for AS in 78% of subjects. Discussion: We demonstrated that CAC measurements are threshold dependent with MM measurements having significantly less variation than AS or CV. Due to the similarity of mean CT attenuation of CAC and the contrast-enhanced coronary lumen accurate quantification of CAC may be difficult in standard coronary contrast-enhanced spiral MDCT.

  6. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  7. The Spiral-in Method for Designing and Connecting Learning Objects

    DEFF Research Database (Denmark)

    Vlachos, Evgenios

    2012-01-01

    . The Spiral-in Method (SiM) encloses pedagogical and didactic potentials, addresses issues on both the educator and the group learners and implements personalized mechanisms. This methodology structures the design process into four distinct phases, fragmentation, coordination, combination and grouping...... given, LOs are created and connected in a linear structure, like a spiral. The LOs are grouped together into lessons attempting to satisfy short-term learning outcomes. The spiral has to be fully wrapped for the possession of the subject matter....

  8. Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.

  9. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    occurring in less than 1,000 million years, the existence of such a large fraction of these LIRGs in the past Universe has important consequences on the total stellar formation rate. As François Hammer (Paris Observatory, France), leader of the team, states: "We are thus led to the conclusion that during the time span from roughly 8,000 million to 4,000 million years ago, intermediate mass galaxies converted about half of their total mass into stars. Moreover, this star formation must have taken place in very intense bursts when galaxies were emitting huge amount of infrared radiation and appeared as LIRGs." Another result could be secured using the spectra obtained with the Very Large Telescope: the astronomers measured the chemical abundances in several of the observed galaxies (PR Photo 02a/05). They find that galaxies with large redshifts show oxygen abundances two times lower than present-day spirals. As it is stars which produce oxygen in a galaxy, this again gives support to the fact that these galaxies have been actively forming stars in the period between 8,000 and 4,000 million years ago. And because it is believed that galaxy collisions and mergers play an important role in triggering such phases of enhanced star-forming activity, these observations indicate that galaxy merging still occurred frequently less than 8,000 million years ago. Spiral Rebuilding ESO PR Photo 02b/05 ESO PR Photo 02b/05 The Spiral Rebuilding Scenario [Preview - JPEG: 471 x 400 pix - 80k] [Normal - JPEG: 941 x 800 pix - 207k] Caption: ESO PR Photo 02b/05: Schematic representation of the newly proposed scenario of "spiral galaxy rebuilding": galaxies collide (1), then merge (2), inducing a burst of stellar formation activity. After the merging, the gas and the stars fall towards the centre in a very compact structure (3). Part of the gas which did not fall back initially, gradually rebuilds a disc around the compact structure, making a new spiral galaxy (4 and 5). The images are pictures

  10. Spiral density waves in M81. I. Stellar spiral density waves

    International Nuclear Information System (INIS)

    Feng, Chien-Chang; Lin, Lien-Hsuan; Wang, Hsiang-Hsu; Taam, Ronald E.

    2014-01-01

    Aside from the grand-design stellar spirals appearing in the disk of M81, a pair of stellar spiral arms situated well inside the bright bulge of M81 has been recently discovered by Kendall et al. The seemingly unrelated pairs of spirals pose a challenge to the theory of spiral density waves. To address this problem, we have constructed a three-component model for M81, including the contributions from a stellar disk, a bulge, and a dark matter halo subject to observational constraints. Given this basic state for M81, a modal approach is applied to search for the discrete unstable spiral modes that may provide an understanding for the existence of both spiral arms. It is found that the apparently separated inner and outer spirals can be interpreted as a single trailing spiral mode. In particular, these spirals share the same pattern speed 25.5 km s –1 kpc –1 with a corotation radius of 9.03 kpc. In addition to the good agreement between the calculated and the observed spiral pattern, the variation of the spiral amplitude can also be naturally reproduced.

  11. Choice ofoptimal phase for liver angiography and multi-phase scanning with multi-slice spiral CT

    International Nuclear Information System (INIS)

    Fang Hong; Song Yunlong; Bi Yongmin; Wang Dong; Shi Huiping; Zhang Wanshi; Zhu Hongxian; Yang Hua; Ji Xudong; Fan Hongxia

    2008-01-01

    Objective: To evaluate the efficacy of test bolus technique with multi-slice spiral CT (MSCT) for determining the optimal scan delay time in CT Hepatic artery (HA)-portal vein (PV) angiography and multi-phase scanning. Methods: MSCT liver angiography and multi-phase scanning were performed in 187 patients divided randomly into two groups. In group A (n=59), the scan delay time was set according to the subjective experiences of operators; in group B (n=128), the scan delay time was determined by test bolus technique. Abdominal aorta and superior mesenteric, vein were selected as target blood vessels, and 50 HU was set as enhancement threshold value. 20 ml contrast agent was injected intravenously and time-density curve of target blood vessels were obtained, then HA-PV scanning delay time were calculated respectively. The quality of CTA images obtained by using these 2 methods were compared and statistically analysed using Chi-square criterion. Results: For hepatic artery phase, the images of group A are: excellent in 34 (58%), good in 17 (29%), and poor in 8 (13%), while those of group B are excellent in 128(100%), good in 0(0%), and poor in 0(0%). For portal vein phase, the images of group A are: excellent in 23 (39%), good in 27 (46%), and poor in 9 (15%), while those of group B are excellent in 96 (75%), good in 28 (22%), and poor in 4 (3%) respectively. There was statistically significant difference between the ratios of image quality in group A and group B (χ 2 =14.97, 9.18, P< 0.05). Conclusion: Accurate scan delay time was best determined by using test bolus technique, which can improve the image quality of liver angiography and multi-phase scanning. (authors)

  12. Logarithmic Spiral

    Indian Academy of Sciences (India)

    Switzerland) even today can see the. Archimedian spiral and the inscription under it on the tombstone of Jacob Bernoulli 1. Logarithmic Spiral in Nature. Apart from logarithmic spiral no other curve seems to have attracted the attention of scientists, ...

  13. Spiral 2 workshop

    International Nuclear Information System (INIS)

    2004-01-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop

  14. Spiral 2 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The accelerator and experimental facilities at GANIL will be transformed over the next 5-10 years. The centerpiece of the additions to the accelerator complex will be Spiral-2. This is the first phase of a new radioactive beam facility based on the ISOL principle. The main aim of Spiral-2 will be to produce intense, high quality beams of neutron-rich nuclei created in neutron-induced fission of heavy elements and accelerated by the existing CIME cyclotron. The principal aims of this workshop will be a) to publicize the new facilities, b) to discuss and define the science which might be carried out with them, c) to discuss the instrumentation and infrastructure required to exploit the new facilities and d) to help form collaborations of scientists wishing to design and construct the equipment needed to undertake the science programme. This document gathers most of the slides presented in the workshop.

  15. Evaluation of 16 detector row spiral CT in diagnosing pulmonary embolism

    International Nuclear Information System (INIS)

    Yu Xiaokun; Li Lei

    2008-01-01

    Objective: To investigate the value of 16 detector row spiral CT in the diagnosis of pulmonary embolism(PE). Methods: Imaging data of 20 patients (plain 16 detector row spiral CT scanning plus enhanced scanning imaging) highly suspected of PE was retrospectively analyzed. Results: Among the 20 cases, embolism was showed in 13 patients on 16 detector row spiral CT pulmonary angiography (MSCTPA). 6 cases of the 13 PE's patients have masculine findings on plain MSCT scanning images. Localized tenuous lung markings, dilated pulmonary artery, 'mosaic' sign, pleural or pericardial effusion, local high attenuation centrally in the pulmonary arteries and lung infarction occurred respectively. Conclusion: MSCTPA may be an effective, simple and safe technique for the diagnosis of PE. It was a reliable means in defecting PE However, for the cases unfit for contrast media and cases only suitable for unenhanced CT because of nonspecific heart-pulmonary symptom, noticeable abnormal signs of plain MSCT scanning could suggest the occurrence of pulmonary embolism. (authors)

  16. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  17. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  18. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem; Khan, S. M.; Nour, Maha A.; Rehman, M. U.; Rojas, J. P.; Hussain, Muhammad Mustafa

    2017-01-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  19. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice.

    Science.gov (United States)

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.

  20. Geometrical study of phyllotactic patterns by Bernoulli spiral lattices.

    Science.gov (United States)

    Sushida, Takamichi; Yamagishi, Yoshikazu

    2017-06-01

    Geometrical studies of phyllotactic patterns deal with the centric or cylindrical models produced by ideal lattices. van Iterson (Mathematische und mikroskopisch - anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Verlag von Gustav Fischer, Jena, 1907) suggested a centric model representing ideal phyllotactic patterns as disk packings of Bernoulli spiral lattices and presented a phase diagram now called Van Iterson's diagram explaining the bifurcation processes of their combinatorial structures. Geometrical properties on disk packings were shown by Rothen & Koch (J. Phys France, 50(13), 1603-1621, 1989). In contrast, as another centric model, we organized a mathematical framework of Voronoi tilings of Bernoulli spiral lattices and showed mathematically that the phase diagram of a Voronoi tiling is graph-theoretically dual to Van Iterson's diagram. This paper gives a review of two centric models for disk packings and Voronoi tilings of Bernoulli spiral lattices. © 2017 Japanese Society of Developmental Biologists.

  1. Triangular spiral tilings

    International Nuclear Information System (INIS)

    Sushida, Takamichi; Hizume, Akio; Yamagishi, Yoshikazu

    2012-01-01

    The topology of spiral tilings is intimately related to phyllotaxis theory and continued fractions. A quadrilateral spiral tiling is determined by a suitable chosen triple (ζ, m, n), where ζ element of D/R, and m and n are relatively prime integers. We give a simple characterization when (ζ, m, n) produce a triangular spiral tiling. When m and n are fixed, the admissible generators ζ form a curve in the unit disk. The family of triangular spiral tilings with opposed parastichy pairs (m, n) is parameterized by the divergence angle arg (ζ), while triangular spiral tilings with non-opposed parastichy pairs are parameterized by the plastochrone ratio 1/|ζ|. The generators for triangular spiral tilings with opposed parastichy pairs are not dense in the complex parameter space, while those with non-opposed parastichy pairs are dense. The proofs will be given in a general setting of spiral multiple tilings. We present paper-folding (origami) sheets that build spiral towers whose top-down views are triangular tilings. (paper)

  2. Evaluation of spiral CT in staging of colon and rectum carcinoma

    International Nuclear Information System (INIS)

    Hundt, W.; Braunschweig, R.; Reiser, M.

    1999-01-01

    The purpose of our study was to evaluate the capability of a subsecond spiral-CT scanner using two contrast medium phases in staging of colorectal cancer. In our study we included 37 patients with proven rectum or colon carcinoma. Spiral CT was performed following tap-water enema of the colon in the arterial and venous phases of contrast medium enhancement. Our results were compared with the findings of pathological examination after surgery. The tumor's size and extension were evaluated in the arterial and venous phases, the lymph nodes in the venous phase of the CT scan. The tumor was in the rectum (n = 14), sigma (n = 11), descending colon (n = 6), and cecum (n = 6). Two-phase spiral CT had a sensitivity of 97.2 % in the arterial phase and 89.1 % in the venous phase in detecting the carcinoma. The staging results were in the arterial phase in 30 of 37 cases (81.0 %) and in the venous phase in 24 of 37 cases (64.8 %) according to pathology. In 27 of 32 patients (84.3 %) lymph nodes were detected. The correct classification of the N-stage was possible in 23 of 34 cases (67.6 %). The combined use of arterial and venous phases in staging of colorectal cancer can improve the T- and N-stage classification in comparison with using only one contrast medium phase. The arterial phase is superior compared with the venous phase for local tumor staging and the venous phase is used for lymph node assessment. (orig.) (orig.)

  3. Spiral phase plates for the generation of high-order Laguerre-Gaussian beams with non-zero radial index

    Science.gov (United States)

    Ruffato, G.; Carli, M.; Massari, M.; Romanato, F.

    2015-03-01

    The work of design, fabrication and characterization of spiral phase plates for the generation of Laguerre-Gaussian (LG) beams with non-null radial index is presented. Samples were fabricated by electron beam lithography on polymethylmethacrylate layers over glass substrates. The optical response of these phase optical elements was measured and the purity of the experimental beams was investigated in terms of Laguerre-Gaussian modes contributions. The farfield intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analyses. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order Laguerre-Gaussian beams. A novel application consisting in the design of computer-generated holograms encoding information for light beams carrying phase singularities is shown. A numerical code based on iterative Fourier transform algorithm has been developed for the computation of the phase pattern of phase-only diffractive optical element for illumination under LG beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements.

  4. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Nelson, Richard P.; Richard, Samuel

    2016-01-01

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10 −4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10 −5 . This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  5. Quantification of numerical aperture-dependence of the OCT attenuation coefficient (Conference Presentation)

    Science.gov (United States)

    Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-03-01

    Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10

  6. The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue

    Science.gov (United States)

    Zhang, Juan; Tang, Jun; Ma, Jun; Luo, Jin Ming; Yang, Xian Qing

    2018-02-01

    Rotating spiral waves in cardiac tissue are implicated in life threatening cardiac arrhythmias. Experimental and theoretical evidences suggest the inhomogeneities in cardiac tissue play a significant role in the dynamics of spiral waves. Based on a modified 2D cardiac tissue model, the interaction of inhomogeneity on the nearby rigidly rotating spiral wave is numerically studied. The adjacent area of the inhomogeneity is divided to two areas, when the initial rotating center of the spiral tip is located in the two areas, the spiral tip will be attracted and anchor on the inhomogeneity finally, or be repulsed away. The width of the area is significantly dependent on the intensity and size of the inhomogeneity. Our numerical study sheds some light on the mechanism of the interaction of inhomogeneity on the spiral wave in cardiac tissue.

  7. The cold interstellar medium - An HI view of spiral galaxies

    NARCIS (Netherlands)

    Sancisi, R; Bender, R; Davies, RL

    1996-01-01

    An HI view of spiral galaxies is presented. In the first part the standard picture of isolated, normal spiral galaxies is briefly reviewed. In the second part attention is drawn to all those phenomena, such as tidal interactions, accretion and mergers, that depend on the galaxy environment and seem

  8. Design studies of heavy ion linear accelerators constructed of independently phased spiral resonators

    International Nuclear Information System (INIS)

    Stokes, R.H.; Armstrong, D.D.

    1975-01-01

    Preliminary design studies are reported for two linear accelerators for heavy ions. One accelerator is a high-intensity machine which would operate with 100 percent duty factor and would produce tin ions with 6.1 MeV/A. Alternatively, it could be operated under pulsed conditions with 25 percent duty factor and would then accelerate uranium ions to 8.1 MeV/A, tin ions to 10.5 MeV/A, and all lighter ions to higher velocities. It would be injected with a positive multicharge ion source and a 4-MV single-ended dc generator. Also, design studies are reported for small postaccelerator injected by a model FN tandem. Both accelerators use three-drift-tube spiral resonators operating at room temperature. Magnetic quadrupole singlets are placed between all resonators to provide radial focussing. Each resonator is independently phased according to the velocity of the ion to be accelerated. The ability to adjust the phase of each resonator permits variations in final energy and other beam properties with great flexibility. (U.S.)

  9. Spiral loaded cavities for heavy ion acceleration

    International Nuclear Information System (INIS)

    Schempp, A.; Klein, H.

    1976-01-01

    A transmission line theory of the spiral resonator has been performed and the calculated and measured properties will be compared. Shunt impedances up to 50 MΩ/m have been measured. In a number of high power tests the structure has been tested and its electrical and mechanical stability has been investigated. The static frequency shift due to ponderomotoric forces was between 0.2 and 50 kHz/kW dependent on the geometrical parameters of the spirals. The maximum field strength obtained on the axis was 16 MV/m in pulsed operation and 9.2 MV/m in cw, corresponding to a voltage gain per cavity of up to 0.96 MV. The results show that spiral resonators are well suited as heavy ion accelerator cavities. (author)

  10. The influence of long-range links on spiral waves and their application for control

    International Nuclear Information System (INIS)

    Qian Yu

    2012-01-01

    The influence of long-range links on spiral waves in an excitable medium has been investigated. Spatiotemporal dynamics in an excitable small-world network transform remarkably when we increase the long-range connection probability P. Spiral waves with few perturbations, broken spiral waves, pseudo spiral turbulence, synchronous oscillations, and homogeneous rest state are discovered under different network structures. Tip number is selected to detect non-equilibrium phase transition between different spatiotemporal patterns. The Kuramoto order parameter is used to identify these patterns and explain the emergence of the rest state. Finally, we use long-range links to successfully control spiral waves and spiral turbulence. (interdisciplinary physics and related areas of science and technology)

  11. Propagation of spiral waves pinned to circular and rectangular obstacles.

    Science.gov (United States)

    Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2015-05-01

    We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.

  12. Spirals in a reaction-diffusion system: Dependence of wave dynamics on excitability

    Science.gov (United States)

    Mahanta, Dhriti; Das, Nirmali Prabha; Dutta, Sumana

    2018-02-01

    A detailed study of the effects of excitability of the Belousov-Zhabotinsky (BZ) reaction on spiral wave properties has been carried out. Using the Oregonator model, we explore the various regimes of wave activity, from sustained oscillations to wave damping, as the system undergoes a Hopf bifurcation, that is achieved by varying the excitability parameter, ɛ . We also discover a short range of parameter values where random oscillations are observed. With an increase in the value of ɛ , the frequency of the wave decreases exponentially, as the dimension of the spiral core expands. These numerical results are confirmed by carrying out experiments in thin layers of the BZ system, where the excitability is changed by varying the concentrations of the reactant species. Effect of reactant concentrations on wave properties like time period and wavelength are also explored in detail. Drifting and meandering spirals are found in the parameter space under investigation, with the excitability affecting the tip trajectory in a way predicted by the numerical studies. This study acts as a quantitative evidence of the relationship between the excitability parameter, ɛ , and the substrate concentrations.

  13. Spirals in a reaction-diffusion system: Dependence of wave dynamics on excitability.

    Science.gov (United States)

    Mahanta, Dhriti; Das, Nirmali Prabha; Dutta, Sumana

    2018-02-01

    A detailed study of the effects of excitability of the Belousov-Zhabotinsky (BZ) reaction on spiral wave properties has been carried out. Using the Oregonator model, we explore the various regimes of wave activity, from sustained oscillations to wave damping, as the system undergoes a Hopf bifurcation, that is achieved by varying the excitability parameter, ε. We also discover a short range of parameter values where random oscillations are observed. With an increase in the value of ε, the frequency of the wave decreases exponentially, as the dimension of the spiral core expands. These numerical results are confirmed by carrying out experiments in thin layers of the BZ system, where the excitability is changed by varying the concentrations of the reactant species. Effect of reactant concentrations on wave properties like time period and wavelength are also explored in detail. Drifting and meandering spirals are found in the parameter space under investigation, with the excitability affecting the tip trajectory in a way predicted by the numerical studies. This study acts as a quantitative evidence of the relationship between the excitability parameter, ε, and the substrate concentrations.

  14. Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications

    Science.gov (United States)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

  15. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Nelson, Richard P.; Richard, Samuel, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: r.p.nelson@qmul.ac.uk, E-mail: samuel.richard@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2016-09-20

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10{sup −4} in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10{sup −5}. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  16. Signal displacement in spiral-in acquisitions: simulations and implications for imaging in SFG regions.

    Science.gov (United States)

    Brewer, Kimberly D; Rioux, James A; Klassen, Martyn; Bowen, Chris V; Beyea, Steven D

    2012-07-01

    Susceptibility field gradients (SFGs) cause problems for functional magnetic resonance imaging (fMRI) in regions like the orbital frontal lobes, leading to signal loss and image artifacts (signal displacement and "pile-up"). Pulse sequences with spiral-in k-space trajectories are often used when acquiring fMRI in SFG regions such as inferior/medial temporal cortex because it is believed that they have improved signal recovery and decreased signal displacement properties. Previously postulated theories explain differing reasons why spiral-in appears to perform better than spiral-out; however it is clear that multiple mechanisms are occurring in parallel. This study explores differences in spiral-in and spiral-out images using human and phantom empirical data, as well as simulations consistent with the phantom model. Using image simulations, the displacement of signal was characterized using point spread functions (PSFs) and target maps, the latter of which are conceptually inverse PSFs describing which spatial locations contribute signal to a particular voxel. The magnitude of both PSFs and target maps was found to be identical for spiral-out and spiral-in acquisitions, with signal in target maps being displaced from distant regions in both cases. However, differences in the phase of the signal displacement patterns that consequently lead to changes in the intervoxel phase coherence were found to be a significant mechanism explaining differences between the spiral sequences. The results demonstrate that spiral-in trajectories do preserve more total signal in SFG regions than spiral-out; however, spiral-in does not in fact exhibit decreased signal displacement. Given that this signal can be displaced by significant distances, its recovery may not be preferable for all fMRI applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils.

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-04-10

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.

  18. Evaluation of frequency-dependent ultrasound attenuation in transparent medium using focused shadowgraph technique

    Science.gov (United States)

    Iijima, Yukina; Kudo, Nobuki

    2017-07-01

    Acoustic fields of a short-pulsed ultrasound propagating through a transparent medium with ultrasound attenuation were visualized by the focused shadowgraph technique. A brightness waveform and its spatial integrations were derived from a visualized field image and compared with a pressure waveform measured by a membrane hydrophone. The experimental results showed that first-order integration of the brightness wave has good agreement with the pressure waveforms. Frequency-dependent attenuation of the pulse propagating through castor oil was derived from brightness and pressure waveforms, and attenuation coefficients determined from focused shadowgraphy and hydrophone techniques showed good agreement. The results suggest the usefulness of the shadowgraph technique not only for the visualization of ultrasound fields but also for noncontact estimation of rough pressure waveforms and correct ultrasound attenuation.

  19. Synchronizing spiral waves in a coupled Rössler system

    International Nuclear Information System (INIS)

    Gao Jia-Zhen; Yang Shu-Xin; Xie Ling-Ling; Gao Ji-Hua

    2011-01-01

    The synchronisation of spiral patterns in a drive-response Rössler system is studied. The existence of three types of synchronisation is revealed by inspecting the coupling parameter space. Two transient stages of phase synchronisation and partial synchronisation are observed in a comparatively weak feedback coupling parameter regime, whilst complete synchronisation of spirals is found with strong negative couplings. Detailed observations of the synchronous process, such as oscillatory frequencies, parameters mismatches and amplitude variations, etc, are investigated via numerical simulations. (general)

  20. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-01-01

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906

  1. Nuclear Spiral Shocks and Induced Gas Inflows in Weak Oval Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong-Tae [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Elmegreen, Bruce G., E-mail: wkim@astro.snu.ac.kr, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-05-20

    Nuclear spirals are ubiquitous in galaxy centers. They exist not only in strong barred galaxies but also in galaxies without noticeable bars. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like and oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in large mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies as well as to drive supersonic turbulence at small radii.

  2. THE STRUCTURE OF SPIRAL SHOCKS EXCITED BY PLANETARY-MASS COMPANIONS

    International Nuclear Information System (INIS)

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.; Dong, Ruobing

    2015-01-01

    Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three-dimensional (3D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the nonlinear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is also excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3D hydrodynamical models than images based on two-dimensional models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companion’s position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companion’s mass

  3. THE STRUCTURE OF SPIRAL SHOCKS EXCITED BY PLANETARY-MASS COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R. [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Dong, Ruobing, E-mail: zhzhu@astro.princeton.edu, E-mail: rdong2013@berkeley.edu [Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States)

    2015-11-10

    Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three-dimensional (3D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the nonlinear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is also excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3D hydrodynamical models than images based on two-dimensional models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companion’s position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companion’s mass.

  4. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  5. Angular momentum redistribution by spiral waves in computer models of disc galaxies

    International Nuclear Information System (INIS)

    Sellwood, J.A.; James, R.A.

    1979-01-01

    It is shown that the spiral patterns which develop spontaneously in computer models of galaxies are generated through angular momentum transfer. By adjusting the distribution of mass in the rigid halo components of the models it is possible to alter radically the rotation curve of the disc component. Either trailing or leading spiral arms develop in the models, dependent only on the sense of the differential shear; no spirals are seen in models where the disc rotates uniformly. It is found that the distribution of angular momentum in the disc is altered by the spiral evolution. Although some spiral structure can be seen for a long period, the life of each pattern is very short. It is shown that resonances are of major importance even for these transient patterns. All spiral wave patterns which have been seen possess both an inner Lindblad resonance and a co-rotation resonance. (author)

  6. Electromechanics of graphene spirals

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Topi; Koskinen, Pekka, E-mail: pekka.koskinen@iki.fi [NanoScience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  7. Detection of hepatocellular carcinoma with multi-slice spiral CT by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... The purpose of the study is to evaluate the effect of iodine concentration of contrast material on detection of hepatocellular carcinoma with multi-slice spiral computed tomography (CT) by using double-arterial phase and portal venous phase enhanced scanning. Ninety-four (94) patients with hepatocellular ...

  8. Considerations of an oscillating spiral universe cosmology

    International Nuclear Information System (INIS)

    Sachs, M.

    1989-01-01

    It is proposed that if the spiral configuration of galaxies is explicable in terms of the equations of motion of its constituent stars, as an expression of global laws of nature, then the universe as a whole may be similarly described in terms of the motions of its constituent galaxies with a similar spiral dynamics. With the functional form of the spiral paths in terms of Fresnel integrals, taken from solutions of equations in general relativity (from previous analyses of galactic configurations) the density of the universe at the big bang stage is determined. It is found to depend, numerically, on the neutron lifetime and the period of oscillation of the universe as a whole. There is some concluding discussion of the implications of this analysis of the matter of the universe at the big bang stage vis a vis the black hole state of matter

  9. : Nuclear Spirals and Mass Accretion to Supermassive Black Holes in Weakly-Barred Galaxies

    Science.gov (United States)

    Kim, Woong-Tae; Elmegreen, Bruce

    2018-01-01

    Disk galaxies, especially barred-spiral galaxies, abound with rings and spirals in their nuclear regions. Nuclear spirals existing even in weakly barred galaxies are thought to channel gas inflows to supermassive black holes residing at the centers. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like or oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in large mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies.

  10. SPIRAL2 Week 2011 - Slides of the presentations

    International Nuclear Information System (INIS)

    Gales, S.; Jacquemet, M.; Lewitowicz, M.; Petit, E.; Biarrote, J.L.; Uriot, D.; Thuillier, T.; Peaucelle, C.; Barue, C.; Van Hille, C.; Bernaudin, P.E.; Galdemard, P.; Ausset, P.; Dolegieviez, P.; Levallois, R.; Marchetto, M.; Pasini, M.; Quiclet, M.; Danna, O.; Lunney, D.; Di Giacomo, M.

    2013-01-01

    The main goal of the meeting is to present and discuss the current status of the SPIRAL2 project at GANIL in front of a large community of scientists and engineers. The program of the meeting will include presentations on scientific and technical developments related to the baseline project, experiments and theory. The main topics to be discussed at the conference have been: -) Driver Accelerators, -) Production of radioactive ion beams (RIB), -) Safety, -) RIB Facilities Worldwide (FAIR, Riken Nishina Center, SPES project, FRIB project) -) FP7 SPIRAL2 Preparatory Phase, -) Experiments with RIB and Theory. This document is made up of the slides of the presentations

  11. Observations of barred spirals

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1990-01-01

    Observations of barred spiral galaxies are discussed which show that the presence of a bar increases the likelihood for grand design spiral structure only in early Hubble types. This result is contrary to the more common notion that grand design spiral structure generally accompanies bars in galaxies. Enhanced deprojected color images are shown which reveal that a secondary set of spiral arms commonly occurs in barred galaxies and also occasionally in ovally distorted galaxies. 6 refs

  12. Analisa Kekuatan Spiral Bevel Gear Dengan Variasi Sudut Spiral Menggunakan Metode Elemen Hingga

    OpenAIRE

    Deta Rachmat Andika; Agus Sigit Pramono

    2017-01-01

    Seiring perkembangan zaman,  teknologi roda gigi dituntut untuk mampu mentransmisikan daya yang besar dengan efisiensi yang besar pula. Pada jenis intersecting shaft gear, tipe roda gigi payung spiral (spiral bevel gear)  merupakan perkembangan dari roda gigi payung bergigi lurus (straight bevel gear). Kelebihan dari spiral bevel gear antara  lain adalah kemampuan transmisi daya dan efisiensi yang lebih besar pada geometri yang sama serta tidak terlalu berisik. Akan tetapi spiral bevel gear j...

  13. Barred spiral structure of galaxies

    International Nuclear Information System (INIS)

    Chen, Z.; Weng, s.; Xu, M.

    1982-01-01

    Observational data indicate the grand design of spiral or barred spiral structure in disk galaxies. The problem of spiral structure has been thoroughly investigated by C. C. Lin and his collaborators, but yet the problem of barred spiral structure has not been investigated systematically, although much work has been done, such as in Ref. 3--7. Using the gasdynamic model for galaxies and a method of integral transform presented in Ref. 1, we investigated the barred spiral structure and obtained an analytical solution. It gives the large-scale pattern of barred-spirals, which is in fairly good agreement with observational data

  14. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue

    International Nuclear Information System (INIS)

    Marcotte, Christopher D.; Grigoriev, Roman O.

    2015-01-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals

  15. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.

    Science.gov (United States)

    Marcotte, Christopher D; Grigoriev, Roman O

    2015-06-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  16. Spiral branches and star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.

    1974-01-01

    Origin of spiral branches of galaxies and formation of stars in them are considered from the point of view of the theory of the gravitational gas condensation, one of comparatively young theories. Arguments are presented in favour of the stellar condensation theory. The concept of the star formation of gas is no longer a speculative hypothesis. This is a theory which assumes quantitative verification and explains qualitatively many facts observed. And still our knowledge on the nature of spiral branches is very poor. It still remains vague what processes give origin to spiral branches, why some galaxies have spirals and others have none. And shapes of spiral branches are diverse. Some cases are known when spiral branches spread outside boundaries of galaxies themselves. Such spirals arise exclusively in the region where there are two or some interacting galaxies. Only first steps have been made in the explanation of the galaxy spiral branches, and it is necessary to carry out new observations and new theoretical calculations

  17. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    Science.gov (United States)

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  19. Gastric spiral bacteria in small felids.

    Science.gov (United States)

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  20. Two-phase flow void fraction measurement using gamma ray attenuation technique

    International Nuclear Information System (INIS)

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  1. Spiral chain structure of high pressure selenium-II' and sulfur-II from powder x-ray diffraction

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami; Yamada, Takahiro; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki; Le Bihan, Tristan

    2004-01-01

    The structure of high pressure phases, selenium-II ' (Se-II ' ) and sulfur-II (S-II), for α-Se 8 (monoclinic Se-I) and α-S 8 (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II ' and S-II were found to be isostructural and to belong to the tetragonal space group I4 1 /acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4 1 and 4 3 screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemical bonds of the phases are also discussed from the interatomic distances that were obtained

  2. Spiral CT for evaluation of chest trauma; Spiral-CT beim Thoraxtrauma

    Energy Technology Data Exchange (ETDEWEB)

    Roehnert, W. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik; Weise, R. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik

    1997-07-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [Deutsch] Nach Einfuehrung der Spiral-CT in unserer Einrichtung versuchten wir, den Stellenwert der Computertomographie in der Notfalldiagnostik des Thoraxtraumas neu zu bestimmen. Dazu wurden retrospektiv ueber einen Zeitraum von 10 Monaten alle mittels Spiral-CT untersuchten Notfallpatienten mit Thoraxverletzungen ausgewertet. Im Vordergrund standen folgende Befunde unterschiedlichen Schweregrades: Pneumothorax, Haematothorax, Lungenkontusion/-lazeration, Mediastinalhaematom, Gefaessruptur, Herz- und Herzbeutelverletzung. Auf die unterschiedlichen Frakturen wird bewusst nicht naeher eingegangen. In vielen Faellen liefert die Spiral-CT mit relativ geringem Zeitaufwand wesentliche diagnostische Aussagen. Haeufig kann auf eine Angiographie verzichtet werden. Ein starres diagnostisches Stufenschema laesst sich nicht definieren. Die Thoraxuebersichtsaufnahme besitzt einen unveraendert hohen Stellenwert. (orig.)

  3. Attenuated phase-shift mask (PSM) blanks for flat panel display

    Science.gov (United States)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  4. The Clinical Learning Spiral: A Model to Develop Reflective Practitioners.

    Science.gov (United States)

    Stockhausen, Lynette

    1994-01-01

    The Clinical Learning Spiral incorporates reflective processes into undergraduate nursing education. It entails successive cycles of four phases: preparative (briefing, planning), constructive (practice development), reflective (debriefing), and reconstructive (planning for change and commitment to action). (SK)

  5. High assurance SPIRAL

    Science.gov (United States)

    Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.

    2014-06-01

    In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.

  6. The 1+/n+ solution for SPIRAL ?

    International Nuclear Information System (INIS)

    Villari, A.C.C.; Bruandet, J.S.; Chauvin, N.; Curdy, J.C.; Gaubert, G.; Lamy, T.; Maunoury, L.; Sole, J.P.; Sortais, P.; Vieux-Rochaz, J.L.

    1997-01-01

    The use of a primary ion source for the production of 1+ ions in the production cave of SPIRAL with subsequent injection in an ECRIS (Electron Cyclotron Resonance Ion Source) for charge multiplication is discussed. The first results obtained at ISN Grenoble for the production of Rb (9+) and Ar (8+) stable beams are presented. The overall efficiency of this system for the production of the Ar beams is compared with the present situation where the ECRIS is placed inside the cave of SPIRAL. An important gain in the reliability and reduction of functioning costs would be obtained in the case of the implementation of the 1+/n+ mode in the SPIRAL project at GANIL. A reduction of overall efficiency of a factor 1.5 to 3 with respect to the present NANOGAN-II ensemble is expected for light noble gas radioactive ion beams. This factor can be reduced depending on the choice of the ECRIS for a particular multicharged ion production. Finally, important R and D is needed for extending the range of elements to be produced in the 1+/n+ mode and to define 'good' ion sources with small energy dispersion for 1+ production. (authors)

  7. Dual source multidetector CT-angiography before transcatheter aortic valve implantation (TAVI) using a high-pitch spiral acquisition mode

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, W.; Anders, K.; May, M.S.; Uder, M. [University of Erlangen, Department of Radiology, Erlangen (Germany); Schuhbaeck, A.; Gauss, S.; Marwan, M.; Arnold, M.; Muschiol, G.; Daniel, W.G.; Achenbach, S. [University of Erlangen, Department of Cardiology, Erlangen (Germany); Ensminger, S. [University of Erlangen, Department of Cardiac Surgery, Erlangen (Germany)

    2012-01-15

    Transcatheter Aortic Valve Implantation (TAVI) is an alternative to surgical valve replacement in high risk patients. Angiography of the aortic root, aorta and iliac arteries is required to select suitable candidates, but contrast agents can be harmful due to impaired renal function. We evaluated ECG-triggered high-pitch spiral dual source Computed Tomography (CT) with minimized volume of contrast agent to assess aortic root anatomy and vascular access. 42 patients (82 {+-} 6 years) scheduled for TAVI underwent dual source (DS) CT angiography (CTA) of the aorta using a prospectively ECG-triggered high-pitch spiral mode (pitch = 3.4) with 40 mL iodinated contrast agent. We analyzed aortic root/iliac dimensions, attenuation, contrast to noise ratio (CNR), image noise and radiation exposure. Aortic root/iliac dimensions and distance of coronary ostia from the annulus could be determined in all cases. Mean aortic and iliac artery attenuation was 320 {+-} 70 HU and 340 {+-} 77 HU. Aortic/iliac CNR was 21.7 {+-} 6.8 HU and 14.5 {+-} 5.4 HU using 100 kV (18.8 {+-} 4.1 HU and 8.7 {+-} 2.6 HU using 120 kV). Mean effective dose was 4.5 {+-} 1.2 mSv. High-pitch spiral DSCTA can be used to assess the entire aorta and iliac arteries in TAVI candidates with a low volume of contrast agent while preserving diagnostic image quality. (orig.)

  8. Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations.

    Science.gov (United States)

    Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A

    2016-05-07

    Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.

  9. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  10. Angiogenesis in hepatocellular carcinoma: correlation of single-level dynamic spiral CT scans in arterial phase and expression of α-smooth muscle actin

    International Nuclear Information System (INIS)

    Liu Yan; Min Pengqiu; Chen Weixia; Zhang Lin

    2005-01-01

    Objective: To investigate the correlation between the single-level dynamic spiral CT scans (SDCT) of hepatocellular carcinoma (HCC) in arterial phase (AP) and the immunohistochemistry expression of α-smooth muscle actin (ASMA). Methods: 33 cases of suspected HCC undergoing spiral CT plain scan of the whole liver, the single-level dynamic scan of the target level of lesion in AP and finally the whole liver scan in portal-venous phase before operations and proved after were included into the study. After the SDCT, a time-density curve (T-DC) was drawn according to the density change of the region of interest (ROI) of the tumor parenchyma with some parameters calculated, and signs of enhancement evaluated. Slices of post-operation specimen underwent hemotoxylin-eosin (HE) and ASMA immunohistochemistry staining. Then the slices were evaluated with emphases on the ASMA-positive neovasculatures in the parenchyma and mesenchyma of carcinomas, and the average count in a low microscopic field (x 100) was recorded (5 low microscopic field were observed and then an average was calculated.). Finally the immunohistochemistry and histologic results were correlated with image findings. Results: According to the PV of the tumor parenchyma, T-DC was divided into type I, II and III in which the criteria were PV>80, 40 HU< PV< 80 HU and PV<40 HU respectively. In the 33 cases, type I, II and III of T-DC were 3, 17 and 13 cases with PV of 103.30, 57.65 and 33.55 HU respectively. In ASMA immunohistochemistry study, ASMA-positive neovasculatures were devided into type A with a thick wall and B with a thin wall. The mean count of neovasculatures of tumor parenchyma in type I, II and III of T-DC were 10, 4.59 and 1 respectively. Statistically, different types of T-DC were significantly correlated with the count of neovasculatures in the parenchyma of carcinomas (r=-0.567, P<0.01). Homogeneous and inhomogeneous enhancement of carcinomas during SDCT in AP were correlated with the

  11. Fluid mechanics and heat transfer spirally fluted tubing

    Science.gov (United States)

    Larue, J. C.; Libby, P. A.; Yampolsky, J. S.

    1981-08-01

    The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.

  12. Simulations of the flocculent spiral M33: what drives the spiral structure?

    Science.gov (United States)

    Dobbs, C. L.; Pettitt, A. R.; Corbelli, E.; Pringle, J. E.

    2018-05-01

    We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and velocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined Q (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of Qstars with most of these models, however, because Qstars stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.

  13. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  14. PHASE COHERENT STAR FORMATION PROCESSES IN THE DISKS OF GRAND DESIGN SPIRALS

    NARCIS (Netherlands)

    BECKMAN, JE; CEPA, J; KNAPEN, JH

    1991-01-01

    We show examples of a new technique we have devised to compare star formation efficiencies in the arms and discs of spirals. First results show striking evidence of the presence and influence of density wave systems of star formation in grand design galaxies.

  15. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  16. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  17. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  18. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  19. A spiral model of musical decision-making.

    Science.gov (United States)

    Bangert, Daniel; Schubert, Emery; Fabian, Dorottya

    2014-01-01

    This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1) and deliberate (Type 2) decision-making processes changes with increasing expertise and conceptualizes this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning toward greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural), increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion toward the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans' (2011) Intervention Model of dual-process theories, Cognitive Continuum Theory Hammond et al. (1987), Hammond (2007), Baylor's (2001) U-shaped model for the development of intuition by level of expertise. By theorizing how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally.

  20. A spiral model of musical decision-making

    Directory of Open Access Journals (Sweden)

    Daniel eBangert

    2014-04-01

    Full Text Available This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1 and deliberate (Type 2 decision-making processes changes with increasing expertise and conceptualises this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning towards greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural, increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion towards the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans’ (2011 Intervention Model of dual-process theories, Cognitive Continuum Theory (Hammond et al., 1987; Hammond, 2007, and Baylor’s (2001 U-shaped model for the development of intuition by level of expertise. By theorising how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally.

  1. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Mai, J.L.; Good, M.S.

    1993-01-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V 0 depends linearly upon the volume fraction (V is the received voltage for the slurry and V 0 is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs

  2. A generating mechanism of spiral structure in barred galaxies

    International Nuclear Information System (INIS)

    Thielheim, K.O.; Wolff, H.

    1982-01-01

    The time-dependent response of non-interacting stars to growing oval distortions in disc galaxies is calculated by following their motion numerically and Fourier-analysing their positions. Long-lived spiral density waves are found for fast-growing perturbations as well as in cases in which the perturbation evolves only slowly, compared with a characteristic internal rotation period of the disc. This mechanism of driving a spiral structure in non-self-gravitating stellar discs provides an explanation for the long-lived global spiral patterns, observed in N-body experiments showing an evolving central bar, that is not based on the self-gravitation in the disc. In conjunction with the theory of Lynden-Bell according to which angular momentum transfer in the disc leads to a slow increase of the oval distortion, this effect provides a general mechanism for the generation of spiral structure in barred galaxies. In addition to stellar discs with velocity dispersion, cold discs, with the stars initially in circular motion, which bear great similarity to gaseous discs, are investigated. The linear epicyclic approximation is used to develop an analytical description of the generating mechanism. (author)

  3. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Science.gov (United States)

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  4. Spiral phase plates with radial discontinuities for the generation of multiring orbital angular momentum beams: fabrication, characterization, and application

    Science.gov (United States)

    Ruffato, Gianluca; Massari, Michele; Carli, Marta; Romanato, Filippo

    2015-11-01

    A design of spiral phase plates for the generation of multiring beams carrying orbital angular momentum (OAM) is presented. Besides the usual helical profile, these phase plates present radial π-discontinuities in correspondence of the zeros of the associated Laguerre polynomials. Samples were fabricated by electron beam lithography over glass substrates coated with a polymethylmethacrylate resist layer. The optical response was analyzed and the purity of the generated beams was investigated in terms of Laguerre-Gaussian modes contributions. The far-field intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analysis with a Mach-Zehnder setup. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order OAM beams with nonzero radial index. An application consisting of the design of computer-generated holograms encoding information for light beams carrying phase singularities is presented and described. A numerical code based on an iterative Fourier transform algorithm has been developed for the computation of phase-only diffractive optical element for illumination under OAM beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements for anticounterfeiting applications.

  5. Nature of galaxy spiral arms

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1984-01-01

    The nature of galaxy spiral arms is discussed in a popular form. Two approaches in the theory of spiral arms are considered; they are related to the problem of differential galaxy rotation and the spiral structure wave theory. The example of Galaxy M31 is considered to compare the structural peculiarity of its spiral arms with the wave theory predictions. The situation in the central and south-eastern part of arm S4 in Galaxy M31 noted to be completely explained by the wave theory and modern concepts on the origin of massive stars

  6. Attenuation of Morphine-Induced Tolerance and Dependence by Pretreatment with Cerebrolysin in Male rats.

    Science.gov (United States)

    Ghavimi, Hamed; Darvishi, Sara; Ghanbarzadeh, Saeed

    2018-01-01

    Dependence and tolerance to morphine are major problems which limit its chronic clinical application. This study was aimed to investigate the attenuation effect of Cerebrolysin, a mixture of potent growth factors (BDNF, GDNF, NGF, CNTF etc,), on the development of Morphine-induced dependence and tolerance. Male Wistar rats were selected randomly and divided into different groups (n=8) including: a control group, groups received additive doses of morphine (5-25 mg/kg, ip, at an interval of 12 h until tolerance completion), and groups pretreated with Cerebrolysin (40, 80 and 160 mg/kg, ip, before morphine administration). Development of tolerance was assessed by tail-flick test and the attenuation effect of Cerebrolysin on morphine-induced dependence was evaluated after injection of naloxone (4 mg/kg, ip, 12 h after the morning dose of morphine). Seven distinct withdrawal signs including: jumping, rearing, genital grooming, abdominal writhing, wet dog shake and teeth grinding were recorded for 45 min and total withdrawal score (TWS) was calculated. Results showed that administration of Cerebrolysin could prolonged development (10 and 14 days in administration of 80 mg/kg and 160 mg/kg Cerebrolysin) and completion (4, 10 and 14 days in administration of 40, 80 and 160 mg/kg Cerebrolysin, respectively) of tolerance. Results also indicated that administration of Cerebrolysin (40, 80 and 160 mg/kg) could significantly decreased the TWS value (62±2, 77±4 and 85±6%, respectively). In conclusion, it was found that pretreatment with Cerebrolysin could attenuated morphine-induced tolerance and dependence. © Georg Thieme Verlag KG Stuttgart · New York.

  7. The perfect shape spiral stories

    CERN Document Server

    Hammer, Øyvind

    2016-01-01

    This book uses the spiral shape as a key to a multitude of strange and seemingly disparate stories about art, nature, science, mathematics, and the human endeavour. In a way, the book is itself organized as a spiral, with almost disconnected chapters circling around and closing in on the common theme. A particular strength of the book is its extremely cross-disciplinary nature - everything is fun, and everything is connected! At the same time, the author puts great emphasis on mathematical and scientific correctness, in contrast, perhaps, with some earlier books on spirals. Subjects include the mathematical properties of spirals, sea shells, sun flowers, Greek architecture, air ships, the history of mathematics, spiral galaxies, the anatomy of the human hand, the art of prehistoric Europe, Alfred Hitchcock, and spider webs, to name a few.

  8. Antioxidant treatment attenuates lactate production in diabetic nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Nielsen, Per Mose; Stokholm Nørlinger, Thomas

    2017-01-01

    -IDEAL spiral sequence. Untreated diabetic rats showed increased renal lactate production compared with that shown by the controls. However, chronic TEMPOL treatment significantly attenuated diabetes-induced lactate production. No significant effects of diabetes or TEMPOL were observed on [13C]alanine levels......, indicating an intact glucose-alanine cycle, or [13C]bicarbonate, indicating normal flux through the Krebs cycle. In conclusion, this study demonstrates that diabetes-induced pseudohypoxia, as indicated by an increased lactate-to-pyruvate ratio, is significantly attenuated by antioxidant treatment......The early progression of diabetic nephropathy is notoriously difficult to detect and quantify before the occurrence of substantial histological damage. Recently, hyperpolarized [1-13C]pyruvate has demonstrated increased lactate production in the kidney early after the onset of diabetes, implying...

  9. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  10. Dynamical models of spiral galaxies

    International Nuclear Information System (INIS)

    Grosbol, P.

    1990-01-01

    The effects of changing the basic parameters of rotation curve steepness, amount of bulge, and pitch angle of the imposed spiral pattern in the galactic model of Contoupolos and Grosbel (1986) are investigated. The general conclusions of the model are confirmed and shown to be insensitive to the specific choice of parameters for the galactic potential. The exact amplitude at which the nonlinear effects at the 4:1 resonance become important do, however, depend on the model

  11. Joint water-fat separation and deblurring for spiral imaging.

    Science.gov (United States)

    Wang, Dinghui; Zwart, Nicholas R; Pipe, James G

    2018-06-01

    Most previous approaches to spiral Dixon water-fat imaging perform the water-fat separation and deblurring sequentially based on the assumption that the phase accumulation and blurring as a result of off-resonance are separable. This condition can easily be violated in regions where the B 0 inhomogeneity varies rapidly. The goal of this work is to present a novel joint water-fat separation and deblurring method for spiral imaging. The proposed approach is based on a more accurate signal model that takes into account the phase accumulation and blurring simultaneously. A conjugate gradient method is used in the image domain to reconstruct the deblurred water and fat iteratively. Spatially varying convolutions with a local convergence criterion are used to reduce the computational demand. Both simulation and high-resolution brain imaging have demonstrated that the proposed joint method consistently improves the quality of reconstructed water and fat images compared with the sequential approach, especially in regions where the field inhomogeneity changes rapidly in space. The loss of signal-to-noise-ratio as a result of deblurring is minor at optimal echo times. High-quality water-fat spiral imaging can be achieved with the proposed joint approach, provided that an accurate field map of B 0 inhomogeneity is available. Magn Reson Med 79:3218-3228, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. High-Assurance Spiral

    Science.gov (United States)

    2017-11-01

    HIGH-ASSURANCE SPIRAL CARNEGIE MELLON UNIVERSITY NOVEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO...MU 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15217 8. PERFORMING ORGANIZATION...Approved for Public Release; Distribution Unlimited. Carnegie Mellon Carnegie Mellon HA SPIRAL Code Synthesis KeYmaera X Hybrid Theorem Prover

  13. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  14. TESTING THEORIES IN BARRED-SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Martínez-García, Eric E.

    2012-01-01

    According to one version of the recently proposed 'manifold' theory that explains the origin of spirals and rings in relation to chaotic orbits, galaxies with stronger bars should have a higher spiral arms pitch angle when compared to galaxies with weaker bars. A subsample of barred-spiral galaxies in the Ohio State University Bright Galaxy Survey was used to analyze the spiral arms pitch angle. These were compared with bar strengths taken from the literature. It was found that the galaxies in which the spiral arms maintain a logarithmic shape for more than 70° seem to corroborate the predicted trend.

  15. Infrared emission and tidal interactions of spiral galaxies

    International Nuclear Information System (INIS)

    Byrd, G.G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small

  16. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    International Nuclear Information System (INIS)

    Jun, Ma; Long, Huang; Chun-Ni, Wang; Zhong-Sheng, Pu

    2013-01-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and x K ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and x K ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered. (interdisciplinary physics and related areas of science and technology)

  17. Validation of in vivo 2D displacements from spiral cine DENSE at 3T.

    Science.gov (United States)

    Wehner, Gregory J; Suever, Jonathan D; Haggerty, Christopher M; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Grabau, Jonathan D; Mojsejenko, Walter Dimitri; Zhong, Xiaodong; Epstein, Frederick H; Fornwalt, Brandon K

    2015-01-30

    Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. Due to the stimulated echo, the signal is inherently low and fades through the cardiac cycle. To compensate, a spiral acquisition has been used at 1.5T. This spiral sequence has not been validated at 3T, where the increased signal would be valuable, but field inhomogeneities may result in measurement errors. We hypothesized that spiral cine DENSE is valid at 3T and tested this hypothesis by measuring displacement errors at both 1.5T and 3T in vivo. Two-dimensional spiral cine DENSE and tagged imaging of the left ventricle were performed on ten healthy subjects at 3T and six healthy subjects at 1.5T. Intersection points were identified on tagged images near end-systole. Displacements from the DENSE images were used to project those points back to their origins. The deviation from a perfect grid was used as a measure of accuracy and quantified as root-mean-squared error. This measure was compared between 3T and 1.5T with the Wilcoxon rank sum test. Inter-observer variability of strains and torsion quantified by DENSE and agreement between DENSE and harmonic phase (HARP) were assessed by Bland-Altman analyses. The signal to noise ratio (SNR) at each cardiac phase was compared between 3T and 1.5T with the Wilcoxon rank sum test. The displacement accuracy of spiral cine DENSE was not different between 3T and 1.5T (1.2 ± 0.3 mm and 1.2 ± 0.4 mm, respectively). Both values were lower than the DENSE pixel spacing of 2.8 mm. There were no substantial differences in inter-observer variability of DENSE or agreement of DENSE and HARP between 3T and 1.5T. Relative to 1.5T, the SNR at 3T was greater by a factor of 1.4 ± 0.3. The spiral cine DENSE acquisition that has been used at 1.5T to measure cardiac displacements can be applied at 3T with equivalent accuracy. The inter-observer variability and agreement of DENSE-derived peak strains and

  18. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    Science.gov (United States)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  19. Malignant focal hepatic lesions complicating underlying liver disease: dual-phase contrast-enhanced spiral CT sensitivity and specificity in orthotopic liver transplant patients

    International Nuclear Information System (INIS)

    Mortele, K.J.; De Keukeleire, K.; Praet, M.; Van Vlierberghe, H.; Hemptinne, B. de; Ros, P.R.

    2001-01-01

    The aim of this study was to determine the accuracy of contrast-enhanced biphasic spiral CT as a screening tool in the preoperative evaluation of orthotopic liver transplant (OLT) patients. Spiral-CT examinations were performed before liver transplantation in 53 patients. Scans were retrospectively reviewed and compared with pathologic findings in fresh-sectioned livers. When findings between spiral CT and pathology were discordant, formalized livers were reexamined with lesion-by lesion evaluation. Fresh pathologic evaluation revealed 23 liver lesions (16 HCC, 7 macro-regenerative nodules). Malignancy was identified in 13 of 53 patients (24.5%). Pre-transplantation spiral CT depicted 27 liver lesions (23 HCC, 4 macro-regenerative nodules). Malignancy was suspected in 14 patients (26.4%). In 10 of 53 (18.9%), spiral CT and pathologic evaluation were discordant. Subsequent retrospective pathologic evaluation showed malignancy in 4 additional patients. Spiral CT compared with the retrospective pathologic findings revealed 36 real-negative, 14 real-positive, 0 false-positive, and 3 false-negative patients with malignancy. Sensitivity and specificity of spiral CT in detection of malignancy was 82 and 100%, respectively. Contrast-enhanced biphasic spiral CT is an accurate technique in the evaluation of patients preceding OLT. Routine fresh-sectioned liver pathologic findings are not as sensitive as previously estimated. (orig.)

  20. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  1. Forming Spirals From Shadows

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left

  2. Spirals on the sea

    Directory of Open Access Journals (Sweden)

    Walter Munk

    2001-12-01

    Full Text Available Spiral eddies were first seen in the sun glitter on the Apollo Mission 30 years ago; they have since been recorded on SAR missions and in the infrared. The spirals are globally distributed, 10-25 km in size and overwhelmingly cyclonic. They have not been explained. Under light winds favorable to visualization, linear surface features with high surfactant density and low surface roughness are of common occurrence. We have proposed that frontal formations concentrate the ambient shear and prevailing surfactants. Horizontal shear instabilities ensue when the shear becomes comparable to the coriolis frequency. The resulting vortices wind the liner features into spirals. The hypothesis needs to be tested by prolonged measurements and surface truth. Spiral eddies are a manifestation of a sub-mesoscale oceanography associated with upper ocean stirring; dimensional considerations suggest a horizontal diffusivity of order 103 m2 s-1.

  3. Rapid anatomical brain imaging using spiral acquisition and an expanded signal model.

    Science.gov (United States)

    Kasper, Lars; Engel, Maria; Barmet, Christoph; Haeberlin, Maximilian; Wilm, Bertram J; Dietrich, Benjamin E; Schmid, Thomas; Gross, Simon; Brunner, David O; Stephan, Klaas E; Pruessmann, Klaas P

    2018-03-01

    We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B 0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T 2 * contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quasicrystallography on the spiral of Archimedes

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1990-01-01

    The concept of a spiral lattice is discussed. Some examples of known mineral structures, namely clino asbestos, halloysite and cylindrite, are then interpreted in terms of this structural principle. An example of a synthetic sulphide catalyst spiral structure having atomic dimensions is also described. All of these inorganic spiral structures are based on the sprial of Archimedes. The principles for a new type of crystallography, based on the Archimedian spiral, are then presented. 45 refs., 8 figs

  5. Embracing the Spiral

    Directory of Open Access Journals (Sweden)

    Li Mao

    2016-12-01

    Full Text Available Critical research demands that we interrogate our own positionality and social location. Critical reflexivity is a form of researcher critical consciousness that is constant and dynamic in a complex spiral-like process starting within our own experiences as racialized, gendered, and classed beings embedded in particular sociopolitical contexts. Across diverse critical methodologies, a group of graduate students and their supervisor explored their own conceptualization of the reflexivity spiral by reflecting on how their research motivations and methodologies emerged from their racializing, colonizing, language-learning, parenting, and identity negotiating experiences. In this article, they present a spiral model of the critical reflexivity process, review the literature on reflexivity, and conclude with a description of critical reflexivity as a social practice within a supportive and collaborative graduate school experience.

  6. Spiral 2 Week

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations.

  7. Spiral 2 Week

    International Nuclear Information System (INIS)

    2007-01-01

    The main goal of this meeting is to present and discuss the current status of the Spiral-2 project at GANIL in front of a large community of scientists and engineers. Different issues have been tackled particularly the equipment around Spiral-2 like injectors, cryo-modules or beam diagnostics, a workshop was devoted to other facilities dedicated to radioactive ion beam production. This document gathers only the slides of the presentations

  8. Diagnostic value of 64-slice spiral computed tomography imaging of the urinary tract during the excretory phase for urinary tract obstruction.

    Science.gov (United States)

    Zhao, De-Li; Jia, Guang-Sheng; Chen, Peng; Liu, Xin-Ding; Shu, Sheng-Jie; Ling, Zai-Sheng; Fan, Ting-Ting; Shen, Xiu-Fen; Zhang, Jin-Ling

    2017-11-01

    The present study aimed to assess the diagnostic value of 64-slice spiral computed tomography (CT) imaging of the urinary tract during the excretory phase for urinary tract obstruction. CT imaging of the urinary tract during the excretory phase was performed in 46 patients that had been diagnosed with urinary tract obstruction by B-mode ultrasound imaging or clinical manifestations. It was demonstrated that out of the 46 patients, 18 had pelvic and ureteral calculi, 12 cases had congenital malformations, 3 had ureteral stricture caused by urinary tract infection and 13 cases had malignant tumors of the urinary tract. The average X-ray dose planned for the standard CT scan of the urinary tract group 1 was 14.11±5.45 mSv, while the actual X-ray dose administered for the CT scan during the excretory phase group 2 was 9.01±4.56 mSv. The difference between the two groups was statistically significant (t=15.36; Purinary tract during the excretory phase has a high diagnostic value for urinary tract obstruction.

  9. Wave-particle dualism of spiral waves dynamics.

    Science.gov (United States)

    Biktasheva, I V; Biktashev, V N

    2003-02-01

    We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.

  10. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    Science.gov (United States)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  11. The Spiral Discovery Network as an Automated General-Purpose Optimization Tool

    Directory of Open Access Journals (Sweden)

    Adam B. Csapo

    2018-01-01

    Full Text Available The Spiral Discovery Method (SDM was originally proposed as a cognitive artifact for dealing with black-box models that are dependent on multiple inputs with nonlinear and/or multiplicative interaction effects. Besides directly helping to identify functional patterns in such systems, SDM also simplifies their control through its characteristic spiral structure. In this paper, a neural network-based formulation of SDM is proposed together with a set of automatic update rules that makes it suitable for both semiautomated and automated forms of optimization. The behavior of the generalized SDM model, referred to as the Spiral Discovery Network (SDN, and its applicability to nondifferentiable nonconvex optimization problems are elucidated through simulation. Based on the simulation, the case is made that its applicability would be worth investigating in all areas where the default approach of gradient-based backpropagation is used today.

  12. Spiral-wave dynamics in ionically realistic mathematical models for human ventricular tissue: the effects of periodic deformation.

    Science.gov (United States)

    Nayak, Alok R; Pandit, Rahul

    2014-01-01

    We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity θ and the wavelength λ of a plane wave; we show that PD leads to a periodic, spatial modulation of θ and a temporally periodic modulation of λ; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.

  13. Spiral-Wave Dynamics in Ionically Realistic MathematicalModels for Human Ventricular Tissue: The Effects of PeriodicDeformation

    Directory of Open Access Journals (Sweden)

    Alok Ranjan Nayak

    2014-06-01

    Full Text Available We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a ten-Tusscher and Panfilov (the TP06 model and (b ten-Tusscher, Noble, Noble, and Panfilov (theTNNP04 model. We first consider simulations in cable-type domains, in which we calculate the conduction velocity $CV$ andthe wavelength $lambda$ of a plane wave; we show that PD leads to a periodic, spatial modulation of $CV$ and a temporallyperiodic modulation of $lambda$; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety ofspatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS wave, a spiral-turbulence (ST state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses on square and rectangular control meshes. We suggest specific experiments that can test the results of our simulations.

  14. Brief Treatment for Borderline and Narcissistic Couples: Working the Reenactment Spiral.

    Science.gov (United States)

    Clark, Steven

    1997-01-01

    Develops a brief, psychoanalytically informed treatment model for borderline and narcissistic couples. Advantages and disadvantages as well as treatment principles of brief treatment for this population are explored. Phases of treatment are reviewed with an emphasis on process and interventions. Explores managing the spiraling escalation of affect…

  15. Archimedean Spiral Antenna Calibration Procedures to Increase the Downrange Resolution of a SFCW Radar

    Directory of Open Access Journals (Sweden)

    Ioan Nicolaescu

    2008-01-01

    Full Text Available This paper deals with the calibration procedures of an Archimedean spiral antenna used for a stepped frequency continuous wave radar (SFCW, which works from 400 MHz to 4845 MHz. Two procedures are investigated, one based on an error-term flow graph for the frequency signal and the second based on a reference metallic plate located at a certain distance from the ground in order to identify the phase dispersion given by the antenna. In the second case, the received signal is passed in time domain by applying an ifft, the multiple reflections are removed and the phase variation due to the time propagation is subtracted. After phase correction, the time domain response as well as the side lobes level is decreased. The antenna system made up of two Archimedean spirals is employed by SFCW radar that operates with a frequency step of 35 MHz.

  16. Interaction of multiarmed spirals in bistable media.

    Science.gov (United States)

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  17. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  18. Phase dependencies of the human baroreceptor reflex

    Science.gov (United States)

    Seidel, H.; Herzel, H.; Eckberg, D. L.

    1997-01-01

    We studied the influence of respiratory and cardiac phase on responses of the cardiac pacemaker to brief (0.35-s) increases of carotid baroreceptor afferent traffic provoked by neck suction in seven healthy young adult subjects. Cardiac responses to neck suction were measured indirectly from electrocardiographic changes of heart period. Our results show that it is possible to separate the influences of respiratory and cardiac phases at the onset of a neck suction impulse by a product of two factors: one depending only on the respiratory phase and one depending only on the cardiac phase. This result is consistent with the hypothesis that efferent vagal activity is a function of afferent baroreceptor activity, whereas respiratory neurons modulate that medullary throughput independent of the cardiac phase. Furthermore, we have shown that stimulus broadening and stimulus cropping influence the outcome of neck suction experiments in a way that makes it virtually impossible to obtain information on the phase dependency of the cardiac pacemaker's sensitivity to vagal stimulation without accurate knowledge of the functional shape of stimulus broadening.

  19. Theoretical study of temperature dependent acoustic attenuation and non-linearity parameters in alkali metal hydride and deuteride

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rishi Pal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Singh, Rajendra Kumar, E-mail: rksingh_17@rediffmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2010-11-01

    Temperature dependence of acoustic attenuation and non-linearity parameters in lithium hydride and lithium deuteride have been studied for longitudinal and shear modes along various crystallographic directions of propagation in a wide temperature range. Lattice parameter and repulsive parameters have been used as input data and interactions up to next nearest neighbours have been considered to calculate second and third order elastic constants which in turn have been used for evaluating acoustic attenuation and related parameters. The results have been discussed and compared with available data. It is hoped that the present results will serve to stimulate the determination of the acoustic attenuation of these compounds at different temperatures.

  20. Scaling effects in spiral capsule robots.

    Science.gov (United States)

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  1. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  2. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  3. Initiation and dynamics of a spiral wave around an ionic heterogeneity in a model for human cardiac tissue.

    Science.gov (United States)

    Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V

    2013-12-01

    In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.

  4. Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.

    Science.gov (United States)

    Han, Wei

    1995-11-01

    This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of

  5. The Spiral of Euroscepticism

    DEFF Research Database (Denmark)

    Galpin, Charlotte; Trenz, Hans-Jörg

    2017-01-01

    of Euroscepticism’, taking media autonomy seriously to understand how media logics and selective devices contribute to the shaping of public discourse about the EU. We review the literature on the media and EU legitimacy to show how media frames and their amplification on social media can account for the salience......Media scholars have increasingly examined the effects of a negativity bias that applies to political news. In the ‘spiral of cynicism’, journalist preferences for negative news correspond to public demands for sensational news. We argue that this spiral of cynicism in EU news results in a ‘spiral...... of Eurosceptic opinions in the public sphere that then push parties to contest the EU in predominantly negative terms....

  6. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    Science.gov (United States)

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  7. Spiral growth of few-layer MoS{sub 2} by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X.; Yan, C.; Tomer, D.; Li, L., E-mail: lianli@uwm.edu [Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Li, C. H. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-08-01

    Growth spirals exhibit appealing properties due to a preferred layer stacking and lack of inversion symmetry. Here, we report spiral growth of MoS{sub 2} during chemical vapor deposition on SiO{sub 2}/Si and epitaxial graphene/SiC substrates, and their physical and electronic properties. We determine the layer-dependence of the MoS{sub 2} bandgap, ranging from 2.4 eV for the monolayer to a constant of 1.3 eV beyond the fifth layer. We further observe that spirals predominantly initiate at the step edges of the SiC substrate, based on which we propose a growth mechanism driven by screw dislocation created by the coalescence of two growth fronts at steps.

  8. Extended maximum likelihood analysis of apparent flattenings of S0 and spiral galaxies

    International Nuclear Information System (INIS)

    Okamura, Sadanori; Takase, Bunshiro; Hamabe, Masaru; Nakada, Yoshikazu; Kodaira, Keiichi.

    1981-01-01

    Apparent flattenings of S0 and spiral galaxies compiled by Sandage et al. (1970) and van den Bergh (1977), and those listed in the Second Reference Catalogue (RC2) are analyzed by means of the extended maximum likelihood method which was recently developed in the information theory for statistical model identification. Emphasis is put on the possible difference in the distribution of intrinsic flattenings between S0's and spirals as a group, and on the apparent disagreements present in the previous results. The present analysis shows that (1) One cannot conclude on the basis of the data in the Reference Catalogue of Bright Galaxies (RCBG) that the distribution of intrinsic flattenings of spirals is almost identical to that of S0's; spirals have wider dispersion than S0's, and there are more round systems in spirals than in S0's. (2) The distribution of intrinsic flattenings of S0's and spirals derived from the data in RC2 again indicates a significant difference from each other. (3) The distribution of intrinsic flattenings of S0's exhibits different characteristics depending upon the surface-brightness level; the distribution with one component is obtained from the data at RCBG level (--23.5 mag arcsec -2 ) and that with two components at RC2 level (25 mag arcsec -2 ). (author)

  9. Attenuation of morphine tolerance and dependence by thymoquinone in mice

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinzadeh

    2016-01-01

    Full Text Available Objectives: Dependence and tolerance are major restricting factors in the clinical use of opioid analgesics. In the present study, the effects of thymoquinone, the major constituent of Nigella sativa seeds, on morphine dependence and tolerance were investigated in mice. Materials and Methods: Male adult NMRI mice were made tolerant and dependent by repeated injections of morphine (50, 50, and 75 mg/kg, i.p. on 9 a.m., 1 p.m., and 5 p.m., respectively during a 3-day administration schedule. The hot-plate test was used to assess tolerance to the analgesic effects of morphine. Naloxone (2 mg/kg, i.p. was injected to precipitate withdrawal syndrome in order to assess the morphine dependence. To evaluate the effects of thymoquinone on tolerance and dependence to morphine, different single or repeated doses of thymoquinone were administered in mice. Rotarod was used to assess the motor coordination. Results: Administration of single or repeated doses of thymoquinone (20 and 40 mg/kg, i.p. significantly decreased the number of jumps in morphine dependent animals. Repeated administration of thymoquinone (20 and 40 mg/kg, for 3 days and also single injection of thymoquinone (40 mg/kg, on the fourth day attenuated tolerance to the analgesic effect of morphine. None of the thymoquinone doses (10, 20, and 40 mg/kg produced any antinociceptive effects on their own. Motor coordination of animals was impaired by the high dose of thymoquinone (40 mg/kg. Conclusion: Based on these results, it can be concluded that thymoquinone prevents the development of tolerance and dependence to morphine.

  10. Ion source developments for RNB production at Spiral / GANIL

    International Nuclear Information System (INIS)

    Villari, A.C.C.; Barue, C.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Kandri-Rody, S.; Landre-Pellemoine, F.; Lecesne, N.; Leroy, R.; Lewitowicz, M.; Marry, C.; Maunoury, L.; Pacquet, J.Y.; Rataud, J.P.; Saint-Laurent, M.G.; Stodel, C.; Lichtenthaeler, R.; Angelique, J.C.; Orr, N.A.

    2000-01-01

    The first on-line production system for SPIRAL/GANIL (Radioactive Ion Production System with Acceleration on-Line) phase-I has been commissioned on the SIRa (Radioactive Ion Separator) test bench. Exotic multicharged noble gas ion beams have been obtained during several days. In parallel, a new ECRIS (Electron Cyclotron Resonance Ion Source) for mono-charged ions has also been developed. Preliminary, off-line results are presented. (authors)

  11. α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide.

    Science.gov (United States)

    Parvardeh, Siavash; Moghimi, Mahsa; Eslami, Pegah; Masoudi, Alireza

    2016-02-01

    Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. α-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since α-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of α-terpineol on morphine-induced dependence and tolerance in mice. The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of α-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Administration of α-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, α-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of α-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of α-terpineol on dependence and tolerance to morphine. These findings indicate that α-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production.

  12. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  13. Investigation of logarithmic spiral nanoantennas at optical frequencies

    Science.gov (United States)

    Verma, Anamika; Pandey, Awanish; Mishra, Vigyanshu; Singh, Ten; Alam, Aftab; Dinesh Kumar, V.

    2013-12-01

    The first study is reported of a logarithmic spiral antenna in the optical frequency range. Using the finite integration technique, we investigated the spectral and radiation properties of a logarithmic spiral nanoantenna and a complementary structure made of thin gold film. A comparison is made with results for an Archimedean spiral nanoantenna. Such nanoantennas can exhibit broadband behavior that is independent of polarization. Two prominent features of logarithmic spiral nanoantennas are highly directional far field emission and perfectly circularly polarized radiation when excited by a linearly polarized source. The logarithmic spiral nanoantenna promises potential advantages over Archimedean spirals and could be harnessed for several applications in nanophotonics and allied areas.

  14. On the measurement of time-dependent quantum phases

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.; Klarsfeld, S.; Maric, Z.

    1991-11-01

    We have evaluated the exact (Pancharatnam) phase differences between the final state l ψ(t) > and various initial states for a spin 1/2-particle in a rotating magnetic field B(t). For the initial states l n; B ef (0) >, which are eigenstates of the spin component along the direction of the initial effective field B ef (0), the exact phase has an energy dependent part, and an energy independent part. It is shown that these states l n; B ef (0) > are cyclic and their corresponding Aharonov-Anandan phases are evaluated. In the adiabatic limit we discuss different choices of time-dependent bases and the relationship between the exact phase, the Born-Fock-Schiff phase and Berry's phase. We propose experiments (neutron) to verify separately the exact and the adiabatic evolution laws, as well as to measure the adiabatic phases associated with different choices of time-dependent basis vectors. (author). 37 refs, 5 figs, 1 tab

  15. Validation of attenuation, beam blockage, and calibration estimation methods using two dual polarization X band weather radars

    Science.gov (United States)

    Diederich, M.; Ryzhkov, A.; Simmer, C.; Mühlbauer, K.

    2011-12-01

    The amplitude a of radar wave reflected by meteorological targets can be misjudged due to several factors. At X band wavelength, attenuation of the radar beam by hydro meteors reduces the signal strength enough to be a significant source of error for quantitative precipitation estimation. Depending on the surrounding orography, the radar beam may be partially blocked when scanning at low elevation angles, and the knowledge of the exact amount of signal loss through beam blockage becomes necessary. The phase shift between the radar signals at horizontal and vertical polarizations is affected by the hydrometeors that the beam travels through, but remains unaffected by variations in signal strength. This has allowed for several ways of compensating for the attenuation of the signal, and for consistency checks between these variables. In this study, we make use of several weather radars and gauge network measuring in the same area to examine the effectiveness of several methods of attenuation and beam blockage corrections. The methods include consistency checks of radar reflectivity and specific differential phase, calculation of beam blockage using a topography map, estimating attenuation using differential propagation phase, and the ZPHI method proposed by Testud et al. in 2000. Results show the high effectiveness of differential phase in estimating attenuation, and potential of the ZPHI method to compensate attenuation, beam blockage, and calibration errors.

  16. Origins of galactic spiral structures

    International Nuclear Information System (INIS)

    Piddington, J.H.

    1978-01-01

    Theories of galactic structure are reviewed briefly before comparing them with recent observations. Also reviewed is the evidence for an intergalactic magnetic field and its possible effects on gas concentrations and patterns of star creation, including spiral arms. It is then shown that normal spiral galaxies may be divided into the M51-type and others. The rare M51-type have H I gas arms coincident with unusually filamentary and luminous optical arms; they also have a companion galaxy. The remaining great majority of spirals have no well-defined gas arms and their optical arms are irregular, broader and less luminous; they have no companion galaxy. It appears that without exception the half-dozen or so galaxies whose structures appear to support the density-wave theory show one or more of the characteristics of the rare type of spiral, and that 'the three principal confirmations of the spiral-wave idea' (M51, M81, M101) have companions which may account for their arms. Toomre has rejected this idea on the grounds that his models do not agree with the observed structures. It is shown that these models are inadequate in two major respects, and when replaced by magneto-tidal models using non-uniform gas disks one might expect agreement. The original hydromagnetic model of spiral arms is now reserved for non-interacting galaxies, of which M33 might be taken as a prototype. The model predicts broad or 'massive' optical arms and no corresponding arms of neutral hydrogen, as observed. (Auth.)

  17. Flocculent and grand design spiral galaxies in groups: time scales for the persistence of grand design spiral structures

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1983-01-01

    Spiral arm classifications were made for 261 low-inclination galaxies in groups listed by Huchra and Geller. The fractional occurrence of grand design spiral structure in nonbarred galaxies was found to increase from approx.0.1 to approx.0.6 and then level off as the group crossing rate or galaxy collision rate in a group increases. A simple model is discussed where the random encounters between galaxies of any type and flocculent galaxies induce transient grand design spirals in the flocculent galaxies. If this grand-design stimulation occurs for binary collisions with impact parameters less than αR 25 , were R 25 is the galactic radius at 25 mag arcsec - 2 , and if the induced grand design spirals persist for an average time equal to #betta# galactic rotations, then the quantity α 2 #betta# equals approximately 3 x 10 4 . If binary collisions are responsible for grand design spirals, then this result implies either that the induced spirals last for many galactic rotations (#betta#>15), or that they can be stimulated by very remote encounters (α>45.) Alternatively, grand design spirals may be stimulated by multiple galaxy encounters, which would be the case for such large α, or by interactions with the potential well of the associated group, rather than by simple binary encounters. Weak correlations between the grand design fraction and the galaxy size, or between this fraction and the total number of galaxies in a group, were also found. Spiral structures of barred galaxies show no correlations with group environment

  18. Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media

    Science.gov (United States)

    Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.

    1998-01-01

    The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.

  19. Prevalence of ligamentum arteriosum calcification on multi-section spiral CT and digital radiography.

    Science.gov (United States)

    Hong, Gil-Sun; Goo, Hyun Woo; Song, Jae-Woo

    2012-06-01

    To investigate the prevalence of ligamentum arteriosum calcification (LAC) on multi-section spiral CT and digital radiography. Five hundred and eight children and 232 adults who performed multi-section chest CT were included in this study and were divided into nine age groups: A (0-5 years), B (6-10 years), C (11-15 years), D (16-20 years), E (21-30 years), F (31-40 years), G (41-50 years), H (51-60 years), and I (61-70 years). Two radiologists assessed the presence of LAC on axial and coronal CT images, defined as focal calcific density on both or on one plane with attenuation >100 Hounsfield unit. The prevalence of LAC on CT was compared between children and adults, and between unenhanced and enhanced CT in children. The prevalence of LAC on digital radiography was evaluated in 476 children. The prevalence of definite LAC on unenhanced multi-section CT was significantly higher in children (37.8 %) than in adults (11.2 %) (P CT were 4.5, 12.8, 8.1, 19.0, 0.0, 0.0, 0.0, 2.0, and 1.9 %. In children, the prevalence of LAC was significantly higher on unenhanced than on enhanced CT (37.8 vs. 16.4 %, P children. LAC is frequently observed in children and adults on multi-section spiral CT, more frequently than previously reported. Compared with that on multi-section spiral CT, the prevalence of LAC on digital radiography is substantially low.

  20. Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation

    International Nuclear Information System (INIS)

    Greess, H.; Lutze, J.; Noemayr, A.; Bautz, W.; Wolf, H.; Hothorn, T.; Kalender, W.A.

    2004-01-01

    The potential of online tube current modulation in subsecond multislice spiral CT (MSCT) examinations of children to reduce the dose without a loss in image quality is investigated in a controlled patient study. The dose can be reduced for oval patient sectional view without an increase in noise if the tube current is reduced where the patient diameter and, consequently, attenuation are small. We investigated a product version of an online control for tube current in a SOMATOM Sensation 4 (Siemens, Forchheim). We evaluated image quality, noise and dose reduction for examinations with online tube current modulation in 30 MSCT of thorax/abdomen and abdomen and compared mA s for tube current modulation to the mA s in standard weight-adapted children protocols. Image quality was rated as ''very good,'' ''good,'' ''diagnostic'' and ''poor'' in a consensus by three radiologists. Noise was assessed in comparison to 24 MSCT examinations without tube current modulation measured as SD in ROIs. The dose was reduced from 26 to 43% (mean 36%), depending on the patient's geometry and weight. (orig.)

  1. Global extinction in spiral galaxies

    NARCIS (Netherlands)

    Tully, RB; Pierce, MJ; Saunders, W; Verheijen, MAW; Witchalls, PL

    Magnitude-limited samples of spiral galaxies drawn from the Ursa Major and Pisces Clusters are used to determine their extinction properties as a function of inclination. Imaging photometry is available for 87 spirals in the B, R, I, and K' bands. Extinction causes systematic scatter in

  2. A study of spiral galaxies

    International Nuclear Information System (INIS)

    Wevers, B.M.H.R.

    1984-01-01

    Attempts have been made to look for possible correlations between integral properties of spiral galaxies as a function of morphological type. To investigate this problem, one needs the detailed distribution of both the gaseous and the stellar components for a well-defined sample of spiral galaxies. A sample of about 20 spiral galaxies was therefore defined; these galaxies were observed in the 21 cm neutral hydrogen line with the Westerbork Synthesis Radio Telescope and in three broad-band optical colours with the 48-inch Palomar Smidt Telescope. First, an atlas of the combined radio and optical observations of 16 nearby northern-hemisphere spiral galaxies is presented. Luminosity profiles are discussed and the scale lengths of the exponential disks and extrapolated central surface brightnesses are derived, as well as radial color distributions; azimuthal surface brightness distributions and rotation curves. Possible correlations with optical features are investigated. It is found that 20 to 50 per cent of the total mass is in the disk. (Auth.)

  3. The UV attenuation in JWST target VV 191

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    We aim to map the UV-near-IR attenuation curve along many sightlines within nearby disk galaxies to resolve a large fundamental uncertainty in galaxy evolution studies: the variance in the attenuation curve within an indivual galaxy disk on linear scales relatively blue elliptical beautifully backlights the outer disk of a foreground face-on spiral galaxy.Dither strategy:We opt for a 2-point dither in the case of the F336W observations (1 orbit) and a 3pt dither strategy for the F225W observations. The 9 orbits for the F225W observations are broken into three groupings of 3 orbits in the 3 dither pattern. This is to ensure correction of cosmics and detector artifacts. Our secondary aim is an HST/JWST image with good public outreach potential and our aim is to maximize image quality for this reason as well.

  4. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  5. CFD simulation of flow through single and multi vane spiral pump for low pressure application using moving node unsteady computation

    International Nuclear Information System (INIS)

    Banerjee, I.; Mahendra, A.K.; Chandresh, B.G.; Srikanthan, M.R.; Bera, T.K.

    2010-01-01

    A spiral pump uses two interleaved spirals (it can be involutes of a circle, involutes of a square, hybrid wraps, Archimedean spiral, logarithmic spirals and so on). Interleaved spiral orbits eccentrically without rotation around a fixed scroll, thereby trapping and compressing pockets of fluids between the spirals. Another method of providing the compression motion is by virtue of co-rotating the spirals synchronously with an offset in centers of rotation thereby providing relative motion similar to orbiting. Recently spiral pumps for low-pressure application have become popular. Since spiral pumps contain gas volumes, whose shapes and size change continuously, the flow fields inside the pumps is time dependent. The unsteadiness controls the mechanisms responsible for the behavior of the spiral pump components. To improve the spiral pump design for better performance as per our process requirement and reliability, information is required to understand the detailed physics of the unsteady flows inside the spiral pumps. The unsteady flows in a pump are studied numerically. The system simulated includes one side gap between fixed and moving spirals as the other side lies just in the reverse symmetry of the one side. Heavy molecular weight, condensable gas is used as the moving fluid. The mesh free Least Square Kinetic Upwind Method (LSKUM) for moving node is applied for numerical analysis of wobbling spiral. Nodes and boundaries change their positions, for every real time step hence at every iteration nodes take new coordinates. Our work consists of identifying various spiral dimensions and geometry, geometric modeling of suction process, identifying the eccentric orbiting motion of the moving spiral, formation of variable velocity moving nodes. Flow analysis of the spiral pump is done with a view to design and develop new pump as per our requirement. Experimental data from an existing spiral pump is used to carryout validation of the code. (author)

  6. Design of an elliptical solenoid magnet for transverse beam matching to the spiral inflector

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V.S.

    2013-01-01

    In this work, we present the design study of an elliptical solenoid magnet to be used for transverse beam matching at the input of a spiral inflector for efficient transmission. We have studied the dependence of axial field and gradients in the transverse directions of the elliptical solenoid magnet with ellipticity of the aperture. Using the beam envelope equations we have studied the feasibility of using an elliptical solenoid for transverse beam matching to the acceptance of a spiral inflector. (author)

  7. Polarization study of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, D

    1987-01-01

    Optical polarimetry results are presented for four spiral galaxies: NGC 5194 (M51), NGC 1068, NGC 4565 and NGC 4594 (M104). M51 and NGC 1068 show spiral polarization patterns interpreted as indicating a spiral magnetic field in each case. NGC 4565 and M104 show polarizations in their dust lanes which are parallel to their galactic planes, and which are interpreted in terms of a magnetic field in the plane of each. It is hypothesized that the observed magnetic fields may be linked to galactic shocks. A discussion of the origin of galactic magnetic fields concludes that there is not evidence that necessitates a primordial magnetic field.

  8. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue

    Science.gov (United States)

    Boccia, E.; Luther, S.

    2017-01-01

    In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507234

  9. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Diagnosis of pancreatic tumors by spiral angio CT

    International Nuclear Information System (INIS)

    Miura, Kohi; Nakao, Norio; Takayasu, Yukio; Okawa, Tomohisa

    1995-01-01

    Spiral angio were performed with injection of 30 ml of contrast material at a rate of 1 ml/sec with a scan delay of 6 sec through catheter into the celiac artery while the blood flow of the superior mesenteric artery (SMA) was occluded by the inflated balloon catheter. Spiral CT scans were obtained using Somatom Plus (Siemens). Parameter for spiral CT were 24-sec acquisition time, 5 mm collimation, 5 mm/sec table incrementation. Reconstructions were performed every 5 mm. Pancreatic cancers were characteristically depicted with spiral angio CT as hypodensity relative to normal enhanced pancreatic parenchyma. On dynamic angio CT studies performed in pancreatic cancers, the area of cancer and normal parenchyma had maximum level of enhancement at 10-15 sec after injection of contrast material via catheter into the celiac, and there was no difference in enhancement between tumor and normal parenchyma. On the other hand, the lesions of cancer were revealed as hypodensity with spiral angio CT. In case of chronic pancreatitis, the enhancement of the entire pancreas obtained with spiral angio CT was homogeneous. Insulinoma in the tail of pancreas was detected by spiral angio CT but was not detected by both selective angiography and conventional CT. Three-dimensional (3-D) rendering spiral angio CT data shows the extent of vascular involvement by pancreatic cancer and provides useful information for surgical planning. Spiral angio CT is the most useful procedure for diagnosis of pancreatic tumor. (author)

  11. Ultrasound fields in an attenuating medium

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.

    1993-01-01

    of the rectangles and sums all contributions to arrive at the spatial impulse response for the aperture and field point. This approach makes it possible to model all transducer apertures, and the program can readily calculate the emitted, pulse-echo and continuous wave field. Attenuation is included by splitting...... it into a frequency dependent part and frequency independent part. The latter results in an attenuation factor that is multiplied onto the responses from the individual elements, and the frequency dependent part is handled by attenuating the basic one-dimensional pulse. The influence on ultrasound fields from......Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...

  12. IMRT delivery verification using a spiral phantom

    International Nuclear Information System (INIS)

    Richardson, Susan L.; Tome, Wolfgang A.; Orton, Nigel P.; McNutt, Todd R.; Paliwal, Bhudatt R.

    2003-01-01

    In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan

  13. Borrmann type IV adenocarcinoma versus gastric lymphoma : spiral CT evaluation

    International Nuclear Information System (INIS)

    Seo, Bo Kyoung; Kim, Yun Hwan; Shin, Kue Hee; Hong, Suk Joo; Kim, Hong Weon; Park, Cheol Min; Chung, Kyoo Byung; Cho, Hyun Deuk

    1999-01-01

    To distinguish the spiral CT findings of Borrmann type IV adenocarcinoma from those of gastric lymphoma with diffuse gastric wall thickening. We retrospectively reviewed the spiral CT scans of 30 patients with Borrmann type IV adenocarcinoma and nine with gastric lymphoma with diffuse gastric wall thickening. In all patients the respective condition was pathologically confirmed by gastrectomy. CT scanning was performed after peroral administration of 500-700ml of water. A total of 120-140 ml bolus of nonionic contrast material was administered intravenously at a flow rate of 3 ml/sec and two-phase images were obtained at 35-45 sec(early phase) and 180 sec(delayed phase) after the start of bolus injection. Spiral CT was performed with 10mm collimation, 10mm/sec table feed and 10mm reconstruction. We evaluated the degree and homogeneity of enhancement of thickened entire gastric wall, and the enhancement pattern of gastric inner layer, as seen on early-phase CT scans. On early and delayed views, the thickness of gastric wall and the presence of perigastric fat infiltration were determined. The enhancement patterns of gastric inner layer were classified as either continuous or discontinuous thick enhancement, thin enhancement, or nonenhancement. The thickness of gastric wall was 1.2-3.5cm(mean 2.2cm) in cases of adenocarcinoma and 1.2-7.6cm(mean 4cm) in lymphoma. Perigastric fat infiltration was seen in 24 patients with adenocarcinoma(80%) and four with lymphoma(44%). In those with adenocarcinoma, the degree of enhancement of entire gastric wall was hyperdense in fifteen patients(50%) and isointense in eleven (37%). Seven patients with lymphoma(78%)showed hypodensity. In those with adenocarcinoma, continuous thick enhancement of gastric inner layer was seen in 18 patients(60%) and discontinuous thick enhancement in nine(30%). In lymphoma cases, no thick enhancement was observed. Thin enhancement of gastric inner layer was demonstrated in three patients with

  14. Attenuation of Morphine Physical Dependence and Blood Levels of Cortisol by Central and Systemic Administration of Ramelteon in Rat

    Directory of Open Access Journals (Sweden)

    Majid Motaghinejad

    2015-05-01

    Full Text Available Background: Chronic administration of morphine cause physical dependence but the exact mechanism of this phenomenon remains unclear. The aim of this study is the assessment of systemic and intracerebroventricular (icv administration of ramelteon (a melatonin receptor agonist on morphine physical dependence. Methods: 88 adult male rats were divided into 2 major groups, namely “systematic” and “central” administration of ramelteon. In the first category, systemic administration of ramelteon at various dosages (10, 20, and 40 mg/kg was assessed on dependent animals and withdrawal signs were compared with positive (received morphine and saline as systemic administration, negative control (saline and group under treatment by ramelteon (40 mg/kg groups. In the second category, central administration of ramelteon at various dosages (25, 50, or 100 μg, was assessed on dependent animals and withdrawal signs were compared with the positive control (received morphine and saline as icv and negative control (saline groups, and the group under treatment by ramelteon (50 μg/5 μl/rat. On the test day, all animals received naloxone (3 mg/kg and were observed for withdrawal signs. Total withdrawal score (TWS was also determined. Finally, to evaluate the stress level of dependent rats, blood cortisols were measured. Results: Central administration of ramelteon in all doses and systemic administration in high doses attenuate withdrawal syndrome in comparison with the dependent positive control group (P<0.05. Both central and systemic administrations of ramelteon can attenuate the blood cortisol level in comparison with the dependent positive control group (P<0.05. Conclusion: In conclusion, we found that central administration of ramelteon attenuated morphine withdrawal symptoms and cortisol level as a stress marker.

  15. Ferrofluid spiral formations and continuous-to-discrete phase transitions under simultaneously applied DC axial and AC in-plane rotating magnetic fields

    International Nuclear Information System (INIS)

    Rhodes, Scott; Perez, Juan; Elborai, Shihab; Lee, Se-Hee; Zahn, Markus

    2005-01-01

    New flows and instabilities are presented for a ferrofluid drop contained in glass Hele-Shaw cells with simultaneously applied in-plane clockwise rotating and DC axial uniform magnetic fields. When a ferrofluid drop is stressed by a uniform DC axial magnetic field, up to ∼250 G in 0.9-1.4 mm gap Hele-Shaw cells, the drop forms a labyrinth pattern. With subsequent application of an in-plane uniform rotating magnetic field, up to ∼100 G rms at frequency 20-40 Hz, smooth spirals form from viscous shear due to ferrofluid flow. If the rotating magnetic field is applied first, the drop is held together without a labyrinth. Gradual increase of the DC axial magnetic field, to a critical magnetic field value, results in an abrupt phase transformation from a large drop to many small discrete droplets. A preliminary minimum magnetization and surface energy analysis is presented to model the phase transformation

  16. Dual-phase CT of the liver and the pancreas

    International Nuclear Information System (INIS)

    Dragiyski, B.; Velkova, K.

    2004-01-01

    This survey covers the introduction of Spiral CT in the diagnostics of lesions of the liver and the pancreas. It describes the possibility to display separate images of the arterial and portal-venous phases of saturation of the liver and the pancreas. It also considers the indications leading to use of dual-phase Spiral CT on the liver and the pancreas. We trace the development of the dual-phase Spiral CT in visualization of the structure of blood vessels in the area of liver and pancreas. The survey puts forward the potential of the dual-phase method to improve the diagnostics and description of many primary and secondary malignant tumors of the liver and the pancreas, their differentiation from benign neoplasm, as well as the existing problems and some controversial aspects of its application

  17. Dependence of ultrasound attenuation in rare earth metals on ratio of grain size and wavelength

    International Nuclear Information System (INIS)

    Kanevskij, I.N.; Nisnevich, M.M.; Spasskaya, A.A.; Kaz'mina, V.I.

    1978-01-01

    Results of investigation of dependences of ultrasound attenuation coefficient α on the ratio of grain average size D and wavelength lambda are presented. The investigations were carried out on rare earth metal samples produced by arc remelting in a vacuum furnace. It is shown that the way of α dependence curves of D/lambda for each of the rare earth metal is determined only by the D. This fact permits to use ultrasound measurement for control average diameter of the rare earth metal grain

  18. Cochlea and other spiral forms in nature and art.

    Science.gov (United States)

    Marinković, Slobodan; Stanković, Predrag; Štrbac, Mile; Tomić, Irina; Ćetković, Mila

    2012-01-01

    The original appearance of the cochlea and the specific shape of a spiral are interesting for both the scientists and artists. Yet, a correlation between the cochlea and the spiral forms in nature and art has been very rarely mentioned. The aim of this study was to investigate the possible correlation between the cochlea and the other spiral objects in nature, as well as the artistic presentation of the spiral forms. We explored data related to many natural objects and examined 13,625 artworks created by 2049 artists. We also dissected 2 human cochleas and prepared histologic slices of a rat cochlea. The cochlea is a spiral, cone-shaped osseous structure that resembles certain other spiral forms in nature. It was noticed that parts of some plants are arranged in a spiral manner, often according to Fibonacci numbers. Certain animals, their parts, or their products also represent various types of spirals. Many of them, including the cochlea, belong to the logarithmic type. Nature created spiral forms in the living world to pack a larger number of structures in a limited space and also to improve their function. Because the cochlea and other spiral forms have a certain aesthetic value, many artists presented them in their works of art. There is a mathematical and geometric correlation between the cochlea and natural spiral objects, and the same functional reason for their formation. The artists' imagery added a new aspect to those domains. Obviously, the creativity of nature and Homo sapiens has no limits--like the infinite distal part of the spiral. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Early clinical phase of patient's management after polytrauma using 1- and 4-slice helical CT; Fruehes klinisches Management nach Polytrauma mit 1- und 4-Schicht-Spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Kloeppel, R.; Kahn, T. [Klinik und Poliklinik fuer Diagnostische Radiologie, Universitaetsklinikum Leipzig (Germany); Schreiter, D. [Chirurgische Intensivtherapieabteilung, Zentrum fuer Chirurgie, Universitaetsklinikum Leipzig (Germany); Dietrich, J. [Abt. Neuroradiologie der Klinik und Poliklinik fuer Diagnostische Radiologie, Universitaetsklinikum Leipzig (Germany); Josten, C. [Klinik und Poliklinik fuer Unfall- und Wiederherstellungschirurgie, Zentrum fuer Chirurgie, Universitaetsklinikum Leipzig (Germany)

    2002-07-01

    In the early clinical phase the comprehensive imaging of patients with multiple trauma using helical CT is already established. Aim of this study was to assess whether MSCT may improve the patient management and the diagnostic results.The procedure is designed as follows: after life-thretening treatment x-ray of chest and ultrasound are carried out in the emergency room. Then the patient is moved to CT. From 1998 to december 2000 241 patients were examined using a single slice helical CT (Somatom plus 4), in 2001 79 patients using a 4-slice helical CT (Somatom VZ, Siemens Med.Sol.). After CT selected radiograms of the extremities were taken.359 of 360 procedures were carried out successfully. Excluding 1 case (death during 1-sl. h CT) all relevant lesions of head, neck, and body were diagnosed. Although the patients had an injury severity score of {approx}30. The change from 1slice-helical CT to 4 slice-helical CT allowed us to reduce the stay in the CT room from 28 to 16 min. The total lethality decreased by {approx}4%.Advantages for the patient arose from the standardized examination protocol using multislice CT. If integrated in an interdisciplinary management concept, it is a good compromise between examination time, comprehensive diagnostic imaging, life-saving therapeutic procedures, and therapy planning. (orig.) [German] Die klinische Erstversorgung Polytraumatisierter schliesst inzwischen in vielen Unfallkliniken den fruehzeitigen Einsatz der Spiral-CT ein. Kann die neuerlich eingefuehrte Mehrschicht-Spiral-CT Ergebnisse und Patientenmanagement weiter verbessern?Nach lebensrettenden Sofortmassnahmen, Thoraxroentgen und Notsonographie im Schockraum erfolgte die CT: Von 1998-2000 wurden 241 Patienten mit einem 1-Schicht-Spiral-CT (Somatom plus 4) und in 2001 79 Patienten mit einem 4-Schicht-Spiral-CT (Somatom VZ, beide Siemens Med. Sol.) untersucht. Klinisch ausgewaehlte Extremitaetenaufnahmen wurden ergaenzt.359 von 360 Untersuchungen verliefen erfolgreich

  20. Stacking the Equiangular Spiral

    OpenAIRE

    Agrawal, A.; Azabi, Y. O.; Rahman, B. M.

    2013-01-01

    We present an algorithm that adapts the mature Stack and Draw (SaD) methodology for fabricating the exotic Equiangular Spiral Photonic Crystal Fiber. (ES-PCF) The principle of Steiner chains and circle packing is exploited to obtain a non-hexagonal design using a stacking procedure based on Hexagonal Close Packing. The optical properties of the proposed structure are promising for SuperContinuum Generation. This approach could make accessible not only the equiangular spiral but also other qua...

  1. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  2. Six Decades of Spiral Density Wave Theory

    Science.gov (United States)

    Shu, Frank H.

    2016-09-01

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular

  3. Spiral CT and optimization of the modalities of the iodinated intravenous contrast material: Experimental studies in human pathology

    International Nuclear Information System (INIS)

    Bonaldi, V.

    1998-01-01

    Spiral (or helical) CT represents the most recent improvement in the field of computed assisted tomography (CAT scan). The capabilities of this new imaging modality are much superior to these of conventional CT scanning; then result from the rapid acquisition and from the volumetric nature of the derived data set. The short time of data acquisition had made mandatory the revision of protocols for intravenous administration of iodinated contrast material. By the means of several studies, carried out on pathologic and healthy patients, we have attempted to improve knowledge in factors influencing CT attenuation values after injection of contrast material, in the aim of improving contrast administration performed during spiral CT scanning. Anatomical landmarks that we have studied till now have been liver, the pancreas, the kidney and the cervical spine. In addition, a paired based methodology has been used. The volumetric set of data derived from spiral CT scanning leads to optimal post-processing tasks, the most interesting being related to cine-display and multiplanar reformatting; both modalities have been evaluated, about the pancreas and the musculo-skeletal system respectively. Conversely, this new modality, as for other imaging modalities, is responsible for additional costs derived from restless increase in the number of images to be dealt with and from the occurrence of new tasks (in post-processing particularly). The place of spiral CT in diagnostic strategies among other modern imaging modalities should be assessed, especially with respect to Magnetic Resonance Imaging (MRI). (author)

  4. THE CONTRIBUTION OF SPIRAL ARMS TO THE THICK DISK ALONG THE HUBBLE SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico); Pichardo, B.; Moreno, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México D.F. (Mexico); Pérez-Villegas, A., E-mail: lmedina@fis.cinvestav.mx, E-mail: barbara@astro.unam.mx, E-mail: mperez@astro.unam.mx [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2015-04-01

    The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy was the spiral arms. Up-to-date work summons several other possibilities that together seem to better explain this component of our Galaxy. All these processes must affect distinct types of galaxies differently, but the contribution of each one has not been straightforward to quantify. In this work, we present the first comprehensive study of the effect of the spiral arms on the formation of thick disks, looking at early- to late-type disk galaxies in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose, we perform test particle numerical simulations in a three-dimensional spiral galactic potential (for early- to late-types spiral galaxies). By varying the parameters of the spiral arms we found that the vertical heating of the stellar disk becomes very important in some cases and strongly depends on the galactic morphology, pitch angle, arm mass, and the arm pattern speed. The later the galaxy type, the larger is the effect on the disk heating. This study shows that the physical mechanism causing the vertical heating is different from simple resonant excitation. The spiral pattern induces chaotic behavior not linked necessarily to resonances but to direct scattering of disk stars, which leads to an increase of the velocity dispersion. We applied this study to the specific example of the Milky Way Galaxy, for which we have also added an experiment that includes the Galactic bar. From this study we deduce that the effect of spiral arms of a Milky-Way-like potential on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.

  5. Chiralities of spiral waves and their transitions.

    Science.gov (United States)

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  6. Mechanism of spiral formation in heterogeneous discretized excitable media.

    Science.gov (United States)

    Kinoshita, Shu-ichi; Iwamoto, Mayuko; Tateishi, Keita; Suematsu, Nobuhiko J; Ueyama, Daishin

    2013-06-01

    Spiral waves on excitable media strongly influence the functions of living systems in both a positive and negative way. The spiral formation mechanism has thus been one of the major themes in the field of reaction-diffusion systems. Although the widely believed origin of spiral waves is the interaction of traveling waves, the heterogeneity of an excitable medium has recently been suggested as a probable cause. We suggest one possible origin of spiral waves using a Belousov-Zhabotinsky reaction and a discretized FitzHugh-Nagumo model. The heterogeneity of the reaction field is shown to stochastically generate unidirectional sites, which can induce spiral waves. Furthermore, we found that the spiral wave vanished with only a small reduction in the excitability of the reaction field. These results reveal a gentle approach for controlling the appearance of a spiral wave on an excitable medium.

  7. Spiral blood flow in aorta-renal bifurcation models.

    Science.gov (United States)

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  8. Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay).

    Science.gov (United States)

    Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P

    2017-06-01

    A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.

  9. In-vitro studies to determine the degree of stenosis using spiral-CT angiography

    International Nuclear Information System (INIS)

    Wittenberg, G.; Lenk, G.; Jenett, M.; Elsner, H.; Kaiser, W.A.; Kellner, M.; Schultz, G.; Trusen, A.; Hahn, D.

    1998-01-01

    Purpose: Aim of the study was to evaluate the influence of different spiral-CT parameters for the visualisation of vascular stenoses, especially of the renal arteries. Material and methods: Models with a density equivalent to that of fat, filled with diluted contrast agent, and an inner lumen of 4, 6, 8 mm were scanned in x-, y- and z-direction. Data were acquired in up to 24 second long spiral-CT scans using different spiral-CT parameters (collimation, table speed, reconstruction algorithm, tube current). Detection of the degree of stenosis was achieved by assessment of the axial images and 3D reconstructions. Results: The best correlation between real and measured degree of stenosis was seen by using a small collimation, a low table increment and assessment of the axial images reconstructed in standard algorithm. The stenosis degrees of models directed in x- and y-direction were overestimated and those in z-direction were underestimated depending on the spiral-CT parameters. Conclusion: For optimal imaging of renal artery stenoses, collimation of 2 mm (pitch=1-2) and a reconstruction interval of 1 mm is recommended. (orig.) [de

  10. Model for the local spiral structure of the galaxy

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1976-01-01

    The spatial distribution of the most luminous stars, associations, clusters, and H II regions in the region l = 270 0 to 30 0 reveal a major spiral arm, Sagittarius-Carina, which can be observed to 9 or 10 kpc from the sun in the direction l = 290 0 to 305 0 . Evidence is also presented for a spur at l = 305 0 to 310 0 on the inner side of the Saggitarius-Carina arm. The noncircular motions observed in the Carina and Sagittarius spiral features agree in both magnitude and direction and support the suggestion that Sagittarius-Carina is a major spiral arm. A model is presented for the local spiral structure with wide, massive, spiral arms which show fragmentation in our region of the Galaxy. On the basis of the optical spiral structure, the Milky Way is an Sc type spiral galaxy, perhaps of the M 101 type

  11. Dose-dependent effects of ouabain on spiral ganglion neurons and Schwann cells in mouse cochlea.

    Science.gov (United States)

    Zhang, Zhi-Jian; Guan, Hong-Xia; Yang, Kun; Xiao, Bo-Kui; Liao, Hua; Jiang, Yang; Zhou, Tao; Hua, Qing-Quan

    2017-10-01

    This study aimed in fully investigating the toxicities of ouabain to mouse cochlea and the related cellular environment, and providing an optimal animal model system for cell transplantation in the treatment of auditory neuropathy (AN) and sensorineural hearing loss (SNHL). Different dosages of ouabain were applied to mouse round window. The auditory brainstem responses and distortion product otoacoustic emissions were used to evaluate the cochlear function. The immunohistochemical staining and cochlea surface preparation were performed to detect the spiral ganglion neurons (SGNs), Schwann cells and hair cells. Ouabain at the dosages of 0.5 mM, 1 mM and 3 mM selectively and permanently destroyed SGNs and their functions, while leaving the hair cells relatively intact. Ouabain at 3 mM resulted in the most severe SGNs loss and induced significant loss of Schwann cells started as early as 7 days and with further damages at 14 and 30 days after ouabain exposure. The application of ouabain to mouse round window induces damages of SGNs and Schwann cells in a dose- and time-dependent manner, this study established a reliable and accurate animal model system of AN and SNHL.

  12. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  13. Are Elias 2-27's Spiral Arms Driven by Self-gravity, or by a Companion? A Comparative Spiral Morphology Study

    Science.gov (United States)

    Forgan, Duncan H.; Ilee, John D.; Meru, Farzana

    2018-06-01

    The spiral waves detected in the protostellar disk surrounding Elias 2-27 have been suggested as evidence of the disk being gravitationally unstable. However, previous work has shown that a massive, stable disk undergoing an encounter with a massive companion are also consistent with the observations. We compare the spiral morphology of smoothed particle hydrodynamic simulations modeling both cases. The gravitationally unstable disk produces symmetric, tightly wound spiral arms with constant pitch angle, as predicted by the literature. The companion disk’s arms are asymmetric, with pitch angles that increase with radius. However, these arms are not well-fitted by standard analytic expressions, due to the high disk mass and relatively low companion mass. We note that differences (or indeed similarities) in morphology between pairs of spirals is a crucial discriminant between scenarios for Elias 2-27, and hence future studies must fit spiral arms individually. If Elias 2-27 continues to show symmetric tightly wound spiral arms in future observations, then we posit that it is the first observed example of a gravitationally unstable protostellar disk.

  14. Improved reconstruction for IDEAL spiral CSI

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Mariager, Christian; Laustsen, Christoffer

    2017-01-01

    In this study we demonstrate how reconstruction for IDEAL spiral CSI (spectroscopic imaging scheme developed for hyperpolarized dynamic metabolic MR imaging) can be improved by using regularization with a sparsity constraint. By exploiting sparsity of the spectral domain, IDEAL spiral CSI can...

  15. Ultrasonic attenuation in the superconducting and intermediate states of pure and doped type I superconductors

    International Nuclear Information System (INIS)

    Chaudhuri, K.D.; Singh, R.

    1982-01-01

    The attenuation of longitudinal ultrasonic waves has been measured in single crystals of indium (99.999%), indium doped with 0.003 at % of tin, and indium doped with 0.002 at % of bismuth in the intermediate and superconducting states over the frequency range 10--30 MHz. For the bismuth-doped indium specimen, measurements were taken for three different physical states, i.e., for three different dislocation densities, and for the indium and the tin-doped indium specimens, measurements were for one-physical state. For a particular measurement, the same physical state was maintained both in the intermediate and superconducting states. A temperature-dependent oscillatory behavior of the ultrasonic attenuation was observed in the intermediate state in all the three specimens, but in the superconducting state the oscillatory behavior was observed only in the bismuth-doped specimen. Two phases have been identified in the superconducting layers of the intermediate state and there is only one phase in the superconducting state of the bismuth-doped sample. The origin of the two phases in the intermediate state and that of the single phase in the superconducting state of the bismuth-doped sample are discussed. A qualitative explanation is presented for the occurrence of oscillatory attenuation in the intermediate state irrespective of the nature of the dopant and the selective occurrence of oscillatory attenuation in the superconducting state due to the nature of the dopant

  16. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  17. Different contrast injection protocols for 64-slice spiral CT coronary angiography

    International Nuclear Information System (INIS)

    Lu Jinguo; Lv Bing; Bai Hua; Tang Xiang; Yang Xinling; Jiang Shiliang; Dai Ruiping; Qiu Jinhai; Chen Tao

    2008-01-01

    Objective: To determine the optimal contrast protocols for 64-slice spiral CT coronary angiography in order to reduce the volume of contrast injection. Methods: One hundred fifty patients scheduled to undergo 64-slice spiral CT coronary angiography were prospectively randomized into the following five groups with different injection protocols: group 1: uniphasic injection without a flush; group 2: biphasic injection with a flush; group 3, group 4 and group 5 : triphasic injection with a diluted contrast material with 3:7, 5:5, 7:3 contrast/saline ratio respectively. Attenuation was measured in the right atrium, right ventricle, left atrium, left ventricle, ascending aorta, right coronary artery and left coronary artery and analyzed with single factor variance test (ANOVA). The quality of the coronary artery images was evaluated and compared using person Chi-Square. Results: The total contrast material volume were (67.0±5.3) ml, (59.9±4.9) ml, (62.9±3.2) ml, (69.2±5.7) ml and (70.9±4.6) ml in five groups respectively (F=27.43, P 2 =18.81, P 2 =31.44, P<0.01). The artifacts in the superior vena cava in group 1 was the most, and in group 2 was the least. The mean enhancement values of right and left coronary arteries in group 2 were significantly greater than those in other groups (F=2.47 and 4.10, P<0.05). The visualization of both left ventricle and right ventricle cavities was the best in group 3. Conclusion: Biphasic injection and triphasic injection are better than uniphasic injection for 64-slice spiral CT coronary angiography and triphasic injection is better than biphasic injection for the visualization of both left ventricle and right ventricle cavities. (authors)

  18. High-displacement spiral piezoelectric actuators

    Science.gov (United States)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  19. Interaction between an Eco-Spiral Bolt and Crushed Rock in a Borehole Evaluated by Pull-Out Testing

    Directory of Open Access Journals (Sweden)

    Seong-Seung Kang

    2017-01-01

    Full Text Available The interactions between an eco-spiral bolt and crushed rocks in a borehole were evaluated by pull-out testing in a laboratory and numerical analysis. The porosity of the crushed rock surrounding the bolt depended on the size of the eco-spiral bolt and affected the eco-spiral bolt’s axial resistance force. The axial resistance force and the porosity of the crushed rocks in the borehole showed an inverse relationship. The porosity was also related to the size of the eco-spiral bolt. The maximum principal stress between the bolt and the rock was related to the porosity of the crushed rock and the size difference between the eco-spiral bolt and the borehole. At low porosity the experimental and numerical analyses show similar relationships between the axial resistance force and the displacement. However, at high porosity, the numerical results deviated greatly from the experimental observation. The initial agreement is attributed to the state of residual resistance after the maximum axial resistance force, and the latter divergence was due to the decreasing axial resistance force owing to slippage.

  20. Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation

    Science.gov (United States)

    Deng, Wubing; Morozov, Igor B.

    2017-10-01

    The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the

  1. SPIRAL2 at GANIL: At the Dawn of a New Era

    International Nuclear Information System (INIS)

    Gales, S.

    2010-01-01

    The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of ''Rad ioactive Beam Facilities'' with high luminosity and the development of associated new experimental tools.GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 10 13 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n.In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials.Under the 7FP program of European Union called 'Preparatory phase', the SPIRAL2 project has been granted a budget of about 4 MEuro to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been

  2. SPIRAL2 at GANIL: At the Dawn of a New Era

    Science.gov (United States)

    Gales, S.

    2010-04-01

    The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of "Rad ioactive Beam Facilities" with high luminosity and the development of associated new experimental tools. GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capability even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials. Under the 7FP program of European Union called*Preparatory phase*, the SPIRAL2 project has been granted a budget of about 4 M€ to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been

  3. Dual-phase helical CT using bolus triggering technique: optimization of transition time

    International Nuclear Information System (INIS)

    Choi, Young Ho; Kim, Tae Kyoung; Park, Byung Kwan; Koh, Young Hwan; Han, Joon Koo; Choi, Byung Ihn

    1999-01-01

    To optimize the transition time between the triggering point in monitoring scanning and the initiation of diagnostic hepatic arterial phase (HAP) scanning in hepatic spiral CT, using a bolus triggering technique. One hundred consecutive patients with focal hepatic lesion were included in this study. Patients were randomized into two groups. Transition times of 7 and 11 seconds were used in group 1 and 2, respectively. In all patients, bolus triggered HAP spiral CT was obtained using a semi-automatic bolus tracking program after the injection of 120mL of non-ionic contrast media at a rate of 3mL/sec. When aortic enhancement reached 90 HU, diagnostic HAP scanning began after a given transition time. From images of group 1 and group 2, the degree of parenchymal enhancement of the liver and tumor-to-liver attenuation difference were measured. Also, for qualitative analysis, conspicuity of the hepatic artery and hypervascular tumor was scored and analyzed. Hepatic parenchymal enhancement on HAP was 12.07 + /-6.44 HU in group 1 and 16.03 + /-5.80 HU in group 2 (p .05). In the evaluation of conspicuity of hepatic artery, there was no statistically significant difference between the two groups (p > .05). The conspicuity of hypervascular tumors in group 2 was higher than in group 1 (p < .05). HAP spiral CT using a bolus triggering technique with a transition time of 11 seconds provides better HAP images than when the transition time is 7 seconds

  4. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  5. The dynamics of the spiral galaxy M81

    International Nuclear Information System (INIS)

    Visser, H.C.D.

    1978-01-01

    A detailed comparison of the observations of the spiral galaxy M81 with the density-wave theory for tightly-wound spirals is presented. In particular, hydrogen-line observations are compared with the nonlinear density-wave theory for the gas with the aim of constructing a density-wave model for the spiral galaxy M81

  6. Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thin-film solar cells

    KAUST Repository

    Hou, Jin; Hong, Wei; Li, Xiaohang; Yang, Chunyong; Chen, Shaoping

    2017-01-01

    By emulating the phyllotaxis structure of natural plants, which has an efficient and stable light capture capability, a two-dimensional spiral grating is introduced on the surface of crystalline silicon solar cells to obtain both efficient and stable light absorption. Using the rigorous coupled wave analysis method, the absorption performance on structural parameter variations of spiral gratings is investigated firstly. Owing to diffraction resonance and excellent superficies antireflection, the integrated absorption of the optimal spiral grating cell is raised by about 77 percent compared with the conventional slab cell. Moreover, though a 15 percent deviation of structural parameters from the optimal spiral grating is applied, only a 5 percent decrease of the absorption is observed. This reveals that the performance of the proposed grating would tolerate large structural variations. Furthermore, the angular and polarization dependence on the absorption of the optimized cell is studied. For average polarizations, a small decrease of only 11 percent from the maximum absorption is observed within an incident angle ranging from −70 to 70 degrees. The results show promising application potentials of the biomimetic spiral grating in the solar cell.

  7. Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thin-film solar cells

    KAUST Repository

    Hou, Jin

    2017-09-12

    By emulating the phyllotaxis structure of natural plants, which has an efficient and stable light capture capability, a two-dimensional spiral grating is introduced on the surface of crystalline silicon solar cells to obtain both efficient and stable light absorption. Using the rigorous coupled wave analysis method, the absorption performance on structural parameter variations of spiral gratings is investigated firstly. Owing to diffraction resonance and excellent superficies antireflection, the integrated absorption of the optimal spiral grating cell is raised by about 77 percent compared with the conventional slab cell. Moreover, though a 15 percent deviation of structural parameters from the optimal spiral grating is applied, only a 5 percent decrease of the absorption is observed. This reveals that the performance of the proposed grating would tolerate large structural variations. Furthermore, the angular and polarization dependence on the absorption of the optimized cell is studied. For average polarizations, a small decrease of only 11 percent from the maximum absorption is observed within an incident angle ranging from −70 to 70 degrees. The results show promising application potentials of the biomimetic spiral grating in the solar cell.

  8. Bars and spirals in tidal interactions with an ensemble of galaxy mass models

    Science.gov (United States)

    Pettitt, Alex R.; Wadsley, J. W.

    2018-03-01

    We present simulations of the gaseous and stellar material in several different galaxy mass models under the influence of different tidal fly-bys to assess the changes in their bar and spiral morphology. Five different mass models are chosen to represent the variety of rotation curves seen in nature. We find a multitude of different spiral and bar structures can be created, with their properties dependent on the strength of the interaction. We calculate pattern speeds, spiral wind-up rates, bar lengths, and angular momentum exchange to quantify the changes in disc morphology in each scenario. The wind-up rates of the tidal spirals follow the 2:1 resonance very closely for the flat and dark matter-dominated rotation curves, whereas the more baryon-dominated curves tend to wind-up faster, influenced by their inner bars. Clear spurs are seen in most of the tidal spirals, most noticeable in the flat rotation curve models. Bars formed both in isolation and interactions agree well with those seen in real galaxies, with a mixture of `fast' and `slow' rotators. We find no strong correlation between bar length or pattern speed and the interaction strength. Bar formation is, however, accelerated/induced in four out of five of our models. We close by briefly comparing the morphology of our models to real galaxies, easily finding analogues for nearly all simulations presenter here, showing passages of small companions can easily reproduce an ensemble of observed morphologies.

  9. Geometrical properties of systems with spiral trajectories in R^3

    Directory of Open Access Journals (Sweden)

    Luka Korkut

    2015-10-01

    Full Text Available We study a class of second-order nonautonomous differential equations, and the corresponding planar and spatial systems, from the geometrical point of view. The oscillatory behavior of solutions at infinity is measured by oscillatory and phase dimensions, The oscillatory dimension is defined as the box dimension of the reflected solution near the origin, while the phase dimension is defined as the box dimension of a trajectory of the planar system in the phase plane. Using the phase dimension of the second-order equation we compute the box dimension of a spiral trajectory of the spatial system. This phase dimension of the second-order equation is connected to the asymptotic of the associated Poincare map. Also, the box dimension of a trajectory of the reduced normal form with one eigenvalue equals zero, and a pair of pure imaginary eigenvalues is computed when limit cycles bifurcate from the origin.

  10. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  11. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  12. Safe Control for Spiral Recovery of Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chang-Jian Ru

    2014-01-01

    Full Text Available With unmanned aerial vehicles (UAVs widely used in both military and civilian fields, many events affecting their safe flying have emerged. That UAV’s entering into the spiral is such a typical safety issue. To solve this safety problem, a novel recovery control approach is proposed. First, the factors of spiral are analyzed. Then, based on control scheduling of state variables and nonlinear dynamic inversion control laws, the spiral recovery controller is designed to accomplish guidance and control of spiral recovery. Finally, the simulation results have illustrated that the proposed control method can ensure the UAV autonomous recovery from spiral effectively.

  13. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  14. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  15. Galaxy Zoo: constraining the origin of spiral arms

    Science.gov (United States)

    Hart, Ross E.; Bamford, Steven P.; Keel, William C.; Kruk, Sandor J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2018-05-01

    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z ≲ 0.1 and M* ≳ 1010M⊙ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.

  16. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    Science.gov (United States)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than

  17. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    Science.gov (United States)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  18. The Study of Nebular Emission on Nearby Spiral Galaxies in the IFU Era

    Directory of Open Access Journals (Sweden)

    Fernando Fabián Rosales-Ortega

    2013-01-01

    Full Text Available A new generation of wide-field emission-line surveys based on integral field units (IFU is allowing us to obtain spatially resolved information of the gas-phase emission in nearby late-type galaxies, based on large samples of HII regions and full two-dimensional coverage. These observations are allowing us to discover and characterise abundance differentials between galactic substructures and new scaling relations with global physical properties. Here I review some highlights of our current studies employing this technique: (1 the case study of NGC 628, the largest galaxy ever sampled with an IFU; (2 a statistical approach to the abundance gradients of spiral galaxies, which indicates a universal radial gradient for oxygen abundance; and (3 the discovery of a new scaling relation of HII regions in spiral galaxies, the local mass-metallicity relation of star-forming galaxies. The observational properties and constrains found in local galaxies using this new technique will allow us to interpret the gas-phase abundance of analogue high-z systems.

  19. Variation in GMC Association Properties across the Bars, Spiral Arms, Inter-arms, and Circumnuclear Region of M100 (NGC 4321) Extracted from ALMA Observations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hsi-An [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China); Kuno, Nario, E-mail: hapan@asiaa.sinica.edu.tw [Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 350-8577 (Japan)

    2017-04-20

    We study the physical properties of giant molecular cloud associations (GMAs) in M100 (NGC 4321) using the ALMA Science Verification feathered (12 m+ACA) data in {sup 12}CO (1–0). To examine the environmental dependence of their properties, GMAs are classified based on their locations in various environments as circumnuclear ring (CNR), bar, spiral, and inter-arm GMAs. The CNR GMAs are massive and compact, while the inter-arm GMAs are diffuse, with low surface density. GMA mass and size are strongly correlated, as suggested by Larson. However, the diverse power-law index of the relation implies that the GMA properties are not uniform among the environments. The CNR and bar GMAs show higher velocity dispersion than those in other environments. We find little evidence for a correlation between GMA velocity dispersion and size, which indicates that the GMAs are in diverse dynamical states. Indeed, the virial parameter of the GMAs spans nearly two orders of magnitude. Only the spiral GMAs are generally self-gravitating. Star formation activity decreases in order over the CNR, spiral, bar, and inter-arm GMAs. The diverse GMA and star formation properties in different environments lead to variations in the Kennicutt–Schmidt relation. A combination of multiple mechanisms or gas phase change is necessary to explain the observed slopes. Comparisons of GMA properties acquired with the use of the 12 m array observations with those from the feathered data are also presented. The results show that the missing flux and extended emission cannot be neglected for the study of environmental dependence.

  20. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model.

    Science.gov (United States)

    Krogh-Madsen, Trine; Christini, David J

    2017-09-01

    Accumulation of intracellular Na + is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na + concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na + concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na + ] i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na + ] i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na + ] i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na + ] i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na + ] i may play complex roles in cellular and tissue-level cardiac dynamics.

  1. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    Science.gov (United States)

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  2. Distributed predictive control of spiral wave in cardiac excitable media

    International Nuclear Information System (INIS)

    Zheng-Ning, Gan; Xin-Ming, Cheng

    2010-01-01

    In this paper, we propose the distributed predictive control strategies of spiral wave in cardiac excitable media. The modified FitzHugh–Nagumo model was used to express the cardiac excitable media approximately. Based on the control-Lyapunov theory, we obtained the distributed control equation, which consists of a positive control-Lyapunov function and a positive cost function. Using the equation, we investigate two kinds of robust control strategies: the time-dependent distributed control strategy and the space-time dependent distributed control strategy. The feasibility of the strategies was demonstrated via an illustrative example, in which the spiral wave was prevented to occur, and the possibility for inducing ventricular fibrillation was eliminated. The strategies are helpful in designing various cardiac devices. Since the second strategy is more efficient and robust than the first one, and the response time in the second strategy is far less than that in the first one, the former is suitable for the quick-response control systems. In addition, our spatiotemporal control strategies, especially the second strategy, can be applied to other cardiac models, even to other reaction-diffusion systems. (general)

  3. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  4. Suppression of Spiral Wave in Modified Orengonator Model

    International Nuclear Information System (INIS)

    Ma Jun; Wang Chunni; Jin Wuyin; Yi Ming

    2008-01-01

    In this paper, a spatial perturbation scheme is proposed to suppress the spiral wave in the modified Orengonator model, which is used to describe the chemical reaction in the light-sensitive media. The controllable external illumination Φ is perturbed with a spatial linear function. In our numerical simulation, the scheme is investigated by imposing the external controllable illumination on the space continuously and/or intermittently. The numerical simulation results confirm that the stable rotating spiral wave still can be removed with the scheme proposed in this paper even if the controllable Φ changed vs. time and space synchronously. Then the scheme is also used to control the spiral wave and turbulence in the modified Fitzhugh-Nagumo model. It is found that the scheme is effective to remove the sable rotating and meandering spiral wave but it costs long transient period and intensity of the gradient parameter to eliminate the spiral turbulence

  5. The spinning ball spiral

    International Nuclear Information System (INIS)

    Dupeux, Guillaume; Le Goff, Anne; Quere, David; Clanet, Christophe

    2010-01-01

    We discuss the trajectory of a fast revolving solid ball moving in a fluid of comparable density. As the ball slows down owing to drag, its trajectory follows an exponential spiral as long as the rotation speed remains constant: at the characteristic distance L where the ball speed is significantly affected by the drag, the bending of the trajectory increases, surprisingly. Later, the rotation speed decreases, which makes the ball follow a second kind of spiral, also described in the paper. Finally, the use of these highly curved trajectories is shown to be relevant to sports.

  6. The handedness of historiated spiral columns.

    Science.gov (United States)

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  7. Analysis of spiral components in 16 galaxies

    International Nuclear Information System (INIS)

    Considere, S.; Athanassoula, E.

    1988-01-01

    A Fourier analysis of the intensity distributions in the plane of 16 spiral galaxies of morphological types from 1 to 7 is performed. The galaxies processed are NGC 300,598,628,2403,2841,3031,3198,3344,5033,5055,5194,5247,6946,7096,7217, and 7331. The method, mathematically based upon a decomposition of a distribution into a superposition of individual logarithmic spiral components, is first used to determine for each galaxy the position angle PA and the inclination ω of the galaxy plane onto the sky plane. Our results, in good agreement with those issued from different usual methods in the literature, are discussed. The decomposition of the deprojected galaxies into individual spiral components reveals that the two-armed component is everywhere dominant. Our pitch angles are then compared to the previously published ones and their quality is checked by drawing each individual logarithmic spiral on the actual deprojected galaxy images. Finally, the surface intensities for angular periodicities of interest are calculated. A choice of a few of the most important ones is used to elaborate a composite image well representing the main spiral features observed in the deprojected galaxies

  8. Spiral CT during pharmacoangiography with angiotensin II in patients with pancreatic disease. Technique and diagnostic efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, C.; Mihara, N.; Hosomi, N.; Inoue, E.; Fujita, M. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Diagnostic Radiology; Ohigashi, H.; Ishikawa, O. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Surgery; Nakaizumi, A. [Osaka Medical Center for Cancer and Cardiovascular Deseases (Japan). Dept. of Internal Medicine; Ishiguro, S. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Pathology

    1998-03-01

    Purpose: To compare the diagnostic efficacy of pancreatic pharmacoangiographic CT using angiotensin II with conventional angiographic CT. Material and Methods: Eighteen patients with space-occupying pancreatic disease were examined in this study. Pharmacoangiographic CT was performed with a 1-3-{mu}/6-ml solution of angiotensin II injected through a catheter into the celiac artery during spiral CT. Results: In 17 of the 18 (94%) patients, the area of pancreatic parenchymal enhancement was the same or larger at pharmacoangiographic CT than at conventional angiographic CT. The attenuation value of the pancreatic parenchyma was significantly increased at pharmacoangiographic CT (p=0.0010). Although the attenuation value of tumors was also increased on images obtained after the injection of angiotensin II, the tumor-to-pancreas contrast was significantly greater at pharmacoangiographic CT (p=0.0479). The mean differences in attenuation between tumor and pancreas at angiographic CT with and without angiotensin II were respectively 182 HU and 115 HU. Conclusion: Pharmacoangiographic CT with angiotensin II proved superior to conventional angiographic CT in the diagnosis of pancreatic disease. We therefore recommend it as a supplementary technique at the angiographic examination of patients with suspected pancreatic tumor. (orig.).

  9. Single-shot spiral imaging at 7 T.

    Science.gov (United States)

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  11. Colours and morphology of spiral galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.

    1981-01-01

    Tinsley has proposed that late-type spirals have relatively more non-luminous material than early-type spirals. A re-examination of the data indicates that this proposal is equally consistent with dark matter being more dominant in barred galaxies than in unbarred galaxies. Neither conclusion can be firm, since the dataset is far from ideal. (author)

  12. Optical and theoretical studies of giant clouds in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1980-01-01

    An optical study of four spiral galaxies, combined with radiative transfer models for transmitted and scattered light, has led to a determination of the opacities and masses of numerous dark patches and dust lanes that outline spiral structure. The observed compression factors for the spiral-like dust lanes are in accord with expectations from the theory of gas flow in spiral density waves. Several low density (10 2 cm -3 ) clouds containing 10 6 to 10 7 solar masses were also studied. These results are discussed in terms of recent theoretical models of cloud and star formation in spiral galaxies. The long-term evolution of giant molecular clouds is shown to have important consequences for the positions and ages of star formation sites in spiral arms. (Auth.)

  13. Neutral hydrogen and spiral structure in M33

    International Nuclear Information System (INIS)

    Newton, K.

    1980-01-01

    Observations of neutral hydrogen (H I) in the galaxy M33 are presented which have sufficient angular resolution (47 x 93 arcsec) to distinguish detailed H I spiral structure for the first time. H I spiral features extend over the entire disc; the pattern is broken and multi-armed with the best-defined arms lying at radii outside the brightest optical features. Several very narrow spiral 'filaments' are unresolved by the beam, implying true widths -1 , is perturbed near the inner spiral arms. These perturbations agree with the predictions of density-wave theory but may simply arise from the self-gravity of massive arms whether or not they are a quasi-stationary wave phenomenon. If the outer spiral features form a rigidly rotating density-wave pattern, the absence of large radial streaming motions along the features implies a small pattern speed ( -1 kpc -1 ), with corotation in the outer parts of the disc. (author)

  14. The effect of pitch in multislice spiral/helical CT

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    2000-01-01

    The purpose of this study is to understand the effect of pitch on raw data interpolation in multislice spiral/helical computed tomography (CT) and provide guidelines for scanner design and protocol optimization. Multislice spiral CT is mainly characterized by the three parameters: the number of detector arrays, the detector collimation, and the table increment per x-ray source rotation. The pitch in multislice spiral CT is defined as the ratio of the table increment over the detector collimation in this study. In parallel to the current framework for studying longitudinal image resolution, the central fan-beam rays of direct and opposite directions are considered, assuming a narrow cone-beam angle. Generally speaking, sampling in the Radon domain by the direct and opposite central rays is nonuniform along the longitudinal axis. Using a recently developed methodology for quantifying the sensibility of signal reconstruction from non-uniformly sampled finite points, the effect of pitch on raw data interpolation is analyzed in multislice spiral CT. Unlike single-slice spiral CT, in which image quality decreases monotonically as the pitch increases, the sensibility of raw data interpolation in multislice spiral CT increases, suggesting that image quality does not decrease monotonically in this case. The most favorable pitch can be found from the sensitivity-slice spiral CT is provided. The study on the effect of pitch using the sensitivity analysis approach reveals the fundamental characteristics of raw data interpolation in multislice spiral CT, and gives insights into interaction between pitch and image quality. These results may be valuable for design of multislice spiral CT scanners and imaging protocol optimization in clinical applications. (authors)

  15. Coronary artery stent imaging with 128-slice dual-source CT using high-pitch spiral acquisition in a cardiac phantom: comparison with the sequential and low-pitch spiral mode

    International Nuclear Information System (INIS)

    Wolf, Florian; Loewe, Christian; Plank, Christina; Schernthaner, Ruediger; Bercaczy, Dominik; Lammer, Johannes; Leschka, Sebastian; Goetti, Robert; Marincek, Borut; Alkadhi, Hatem; Homolka, Peter; Friedrich, Guy; Feuchtner, Gudrun

    2010-01-01

    To evaluate coronary stents in vitro using 128-slice-dual-source computed tomography (CT). Twelve different coronary stents placed in a non-moving cardiac/chest phantom were examined by 128-slice dual-source CT using three CT protocols [high-pitch spiral (HPS), sequential (SEQ) and conventional spiral (SPIR)]. Artificial in-stent lumen narrowing (ALN), visible inner stent area (VIA), artificial in-stent lumen attenuation (ALA) in percent, image noise inside/outside the stent and CTDIvol were measured. Mean ALN was 46% for HPS, 44% for SEQ and 47% for SPIR without significant difference. Mean VIA was similar with 31% for HPS, 30% for SEQ and 33% for SPIR. Mean ALA was, at 5% for HPS, significantly lower compared with -11% for SPIR (p = 0.024), but not different from SEQ with -1%. Mean image noise was significantly higher for HPS compared with SEQ and SPIR inside and outside the stent (p < 0.001). CTDIvol was lower for HPS (5.17 mGy), compared with SEQ (9.02 mGy) and SPIR (55.97 mGy), respectively. The HPS mode of 128-slice dual-source CT yields fewer artefacts inside the stent lumen compared with SPIR and SEQ, but image noise is higher. ALN is still too high for routine stent evaluation in clinical practice. Radiation dose of the HPS mode is markedly (less than about tenfold) reduced. (orig.)

  16. Influence of excitability on unpinning and termination of spiral waves.

    Science.gov (United States)

    Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2014-11-01

    Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.

  17. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  18. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Honig, Z. N.; Reid, M. J.

    2015-01-01

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others

  19. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  20. Investigation of spiral blood flow in a model of arterial stenosis.

    Science.gov (United States)

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  1. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1984-02-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

  2. Spiral CT manifestations of spherical pneumonia

    International Nuclear Information System (INIS)

    Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu

    2008-01-01

    Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)

  3. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  4. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Bazzigaluppi, Paolo; Beckett, Tina L; Koletar, Margaret M; Lai, Aaron Y; Joo, Illsung L; Brown, Mary E; Carlen, Peter L; McLaurin, JoAnne; Stefanovic, Bojana

    2018-03-01

    Alzheimer's disease (AD) is pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aβ-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABA A ) receptor subunits α1 , α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aβ and tau pathologies. This article is part of the Special Issue "Vascular Dementia". © 2017 Her Majesty the Queen in Right of Canada Journal of Neurochemistry © 2017 International Society for Neurochemistry.

  5. A FUNDAMENTAL PLANE OF SPIRAL STRUCTURE IN DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Shields, Douglas W. [Arkansas Center for Space and Planetary Sciences, University of Arkansas, 346 1/2 North Arkansas Avenue, Fayetteville, AR 72701 (United States); Westfall, Kyle B. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Flatman, Russell [School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States); Hartley, Matthew T. [Department of Physics, University of Arkansas, 226 Physics Building, 835 West Dickson Street, Fayetteville, AR 72701 (United States); Berrier, Joel C. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Martinsson, Thomas P. K. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Swaters, Rob A., E-mail: bld002@email.uark.edu [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-03-20

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We present evidence that the tangent of the pitch angle of logarithmic spiral arms in disk galaxies correlates strongly with the density of neutral atomic hydrogen in the disk and with the central stellar bulge mass of the galaxy. These three quantities, when plotted against each other, form a planar relationship that we argue should be fundamental to our understanding of spiral structure in disk galaxies. We further argue that any successful theory of spiral structure must be able to explain this relationship.

  6. Interfacial area measurement in two-phase bubbly flows - 3. Part - comparison between the light attenuation technique and a local method

    International Nuclear Information System (INIS)

    Veteau, Jean-Michel; Charlot, Roland.

    1981-09-01

    Initially designed for rectangular test sections the light attenuation technique is reconsidered for an application in circular tubes. Principles of a two-head local probe method are discussed, including the problems related to the measurement of interface velocities. The two techniques are compared experimentally and results lead to the conclusion that, in view of its global nature, the light attenuation method is more suitable for homogeneous two-phase flows. A new experimental set up is proposed to overcome this limitation in order to obtain local values as in the probe technique [fr

  7. Preliminary evaluation of the apparent diffusion coefficient of the kidney with a spiral IVIM sequence

    International Nuclear Information System (INIS)

    Tsuda, Kyo; Murakami, Takamichi; Sakurai, Kousuke

    1997-01-01

    We examined the usefulness of the spiral intravoxel incoherent motion (IVIM) sequence in measuring the apparent diffusion coefficient (ADC) of the kidneys. Five volunteers and five patients with chronic renal failure underwent diffusion-sensitive magnetic resonance imaging of the kidneys with the spiral IVIM sequence. The ADC values in patients with chronic renal failure were significantly lower than those in the renal cortex of volunteers. The mean value of ADC in patients with chronic renal failure was lower than that in volunteers, although there was no statistically significant difference. In volunteers, the ADC of the renal cortex was significantly higher than that of the renal medulla. The phantom study indicated that the accuracy of ADC depended on the signal to noise ratio. A spiral IVIM sequence with a high enough signal to noise ratio may be useful in evaluating renal function, especially that of the cortex. (author)

  8. A model of the formation of spiral galaxies

    International Nuclear Information System (INIS)

    Brown, W.K.; Gritzo, L.A.

    1980-01-01

    It has been verified that the analytical results in a previous article for elliptical galaxies may also be used to describe spiral galaxies. Exploration of the model for small values of the principal parameter THETA yields surface mass density distributions as functions of radius which, while always displaying the exponential disk, describe both of the subcategories of spiral galaxies. Within the constraints of the model, the two main questions concerning spirals posed some years ago by Freeman appear to be successfully addressed. An intrinsic model mechanism has been identified that could account for the extended state of elliptical galaxies, as opposed to the flat disks of spirals. In general, the model correctly describes the relative sizes of the various types of galaxies. (orig.)

  9. Spiral: a new equipment for exotic nuclei; Spiral: un nouvel equipement pour les noyaux exotiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    This document presents the GANIL activities and more specially the SPIRAL project. The missions of the GANIL are to allow scientists fundamental researches in Nuclear Physics and to develop applications for heavy ions in other domains. Spiral is an european project, decided by NuPECC (NUclear Physics European Collaboration Committee). It is a first generation equipment allowing the production and the acceleration of light and moderately heavy nuclei at energy range of 2 to 25 MeV/nucleus. (A.L.B.)

  10. In Vitro Validation of an Artefact Suppression Algorithm in X-Ray Phase-Contrast Computed Tomography.

    Science.gov (United States)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hirano, Shin-Ichi; Gupta, Rajiv; Ando, Masami

    2015-01-01

    X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate this condition. There are extensive beam deflection artefacts in the vicinity of such structures because they result in large distortion of wave front due to the large difference of refractive index; for such large changes in beam direction, the transmittance of the silicon analyzer crystal saturates and is no longer linearly dependent on the angle of refraction. This paper describes a method by which these effects can be overcome and excellent soft-tissue contrast of phase tomography can be preserved in the vicinity of such artefact-producing structures.

  11. QS Spiral: Visualizing Periodic Quantified Self Data

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Cuttone, Andrea; Jørgensen, Sune Lehmann

    2013-01-01

    In this paper we propose an interactive visualization technique QS Spiral that aims to capture the periodic properties of quantified self data and let the user explore those recurring patterns. The approach is based on time-series data visualized as a spiral structure. The interactivity includes ...

  12. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    International Nuclear Information System (INIS)

    Wang, Q; Chen, H L; Liu, T; Liu, Y H; Liu, Z B; Liu, D H

    2012-01-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  13. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    Science.gov (United States)

    Wang, Q.; Chen, H. L.; Liu, T.; Liu, Y. H.; Liu, Z. B.; Liu, D. H.

    2012-11-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  14. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue.

    Science.gov (United States)

    Kuklik, Pawel; Sanders, Prashanthan; Szumowski, Lukasz; Żebrowski, Jan J

    2013-01-01

    Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.

  15. The potentials of spiral CT for detection of focal liver lesions; Moeglichkeiten der Spiral-CT zur Diagnostik fokaler Leberlaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Helmberger, H. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Kersting-Sommerhoff, B. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Lenz, M. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Kirsten, R. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Bautz, W. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany)

    1996-03-01

    Spiral CT currently is the modality of choice for all aspects of diagnostic evaluation of the liver. Optimal selection of treatment should be based inter alia on the findings obtained by spiral CT with arterial application of contrast medium, as for example S-CTA (primary liver tumors), or S-CTAP (secondary liver tumors). Ultrasonography is the major supplementing modality. In the near future, MR imaging applying liver-specific contrast-enhancing agents is expected to become an important competing technique, and further developments of interest in diagnostic imaging of the liver are in the offing: it is not yet known which technique will be the modality of choice at the onset of the 21st century. (orig.) [Deutsch] Die Spiral-CT ist zur Zeit das empfehlenswerte Verfahren fuer alle Fragen der Leberdiagnostik. Zur optimalen praetherapeutischen Beurteilung der Leber sollte die Spiral-CT mit arterieller Kontrastmittelapplikation als S-CTA (primaere Lebertumoren) bzw. S-CTAP (sekundaere Lebertumoren) durchgefuehrt werden. Der US kommt ein Stellenwert als ergaenzende Methode zu. In Zukunft wird die MRT mit leberspezifischen Kontrastmitteln ein konkurrierendes Verfahren zur Spiral-CT darstellen, wobei eine weitere interessante Entwicklung auf dem Gebiet der hepatischen Bildgebung zu erwarten ist: Das diagnostische Verfahren der Wahl fuer die Leber zu Beginn des 21. Jahrhunderts ist noch nicht definiert. (orig.)

  16. Spiral groove seal. [for rotating shaft

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  17. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  18. Smooth-arm spiral galaxies: their properties and significance to cluster-galaxy evolution

    International Nuclear Information System (INIS)

    Wilkerson, M.S.

    1979-01-01

    In this dissertation a number of galaxies with optical appearances between those of normal, actively-star-forming spirals and SO galaxies have been examined. These so-called smooth-arm spiral galaxies exhibit spiral arms without any of the spiral tracers - H II regions, O-B star associations, dust - indicative of current star formation. Tests were made to find if, perhaps, these smooth-arm spirals could have, at one time, been normal, actively-star-forming spirals whose gas had been somehow removed; and that are currently transforming into SO galaxies. This scenario proceeds as (1) removal of gas, (2) gradual dying of disk density wave, (3) emergence of SO galaxy. If the dominant method of gas removal is ram-pressure stripping by a hot, intracluster medium, then smooth-arm spirals should occur primarily in x-ray clusters. Some major findings of this dissertation are as follows: (1) Smooth-arm spirals are redder than normal spirals of the same morphological type. Most smooth-arm spirals cannot be distinguished by color from SO galaxies. (2) A weak trend exists for smooth-arm spirals with stronger arms to be bluer than those with weaker arms; thus implying that the interval since gas removal has been shorter for the galaxies with stronger arms. (3) Smooth-arm spirals are deficient in neutral hydrogen - sometimes by an order of magnitude or, possibly, more

  19. Radial distributions of arm-gas offsets as an observational test of spiral theories

    OpenAIRE

    Baba, Junichi; Morokuma-Matsui, Kana; Egusa, Fumi

    2015-01-01

    Theories of stellar spiral arms in disk galaxies can be grouped into two classes based on the longevity of a spiral arm. Although the quasi-stationary density wave theory supposes that spirals are rigidly-rotating, long-lived patterns, the dynamic spiral theory predicts that spirals are differentially-rotating, transient, recurrent patterns. In order to distinguish between the two spiral models from observations, we performed hydrodynamic simulations with steady and dynamic spiral models. Hyd...

  20. Measurement of Phase Dependent Impedance for 3-phase Diode Rectifier

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2016-01-01

    This paper presents a new method to measure the phase dependent impedance from an experimental set up. Though most of power electronics based system is gradually migrating to IGBT based voltage source converter due to their controllability, the rectifier composed of diode or thyristor components...

  1. Nonuniqueness of self-propagating spiral galaxy models

    International Nuclear Information System (INIS)

    Freedman, W.L.; Madore, B.F.

    1984-01-01

    We demonstrate the nonuniqueness of the basic assumptions leading to spiral structure in self-propagating star formation models. Even in the case where star formation occurs purely spontaneously and does not propagate, we have generated spiral structure by adopting the radically different assumption where star formation is systematically inhibited

  2. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

    Directory of Open Access Journals (Sweden)

    E. Nazemi

    2016-02-01

    Full Text Available Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas–liquid two-phase flows by using γ-ray attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam γ-ray attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

  3. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1985-01-01

    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  4. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  5. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.

    1990-01-01

    The Tully-Fisher relation is used to probe dark matter (DM) in the optical regions of spiral galaxies. By establishing it at several different isophotal radii in an appropriate sample of 58 galaxies with good B-band photometry and rotation curves, it is shown that some of its attributes (such as scatter, residuals, nonlinearity, and bias) dramatically decrease moving from the disk edge inward. This behavior challenges any mass model which assumes no DM or a luminosity-independent DM mass fraction interior to the optical radius of spiral galaxies. 58 refs

  6. Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2006-01-01

    We study the effects of frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency (EIT) on gravitational-wave (GW) interferometers. We propose the use of low-pass, bandpass, and high-pass EIT filters, an S-shaped EIT filter, and an intracavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous filter designs with regard to optical losses, compactness, and the tunability of the filter linewidth

  7. Attenuation of Vrancea events revisited

    International Nuclear Information System (INIS)

    Radulian, M.; Popa, M.; Grecu, B.; Panza, G.F.

    2003-11-01

    New aspects of the frequency-dependent attenuation of the seismic waves traveling from Vrancea subcrustal sources toward NW (Transylvanian Basin) and SE (Romanian Plain) are evidenced by the recent experimental data made available by the CALIXTO'99 tomography experiment. The observations validate the previous theoretical computations performed for the assessment, by means of a deterministic approach, of the seismic hazard in Romania. They reveal an essential aspect of the seismic ground motion attenuation, that has important implications on the probabilistic assessment of seismic hazard from Vrancea intermediate-depth earthquakes. The attenuation toward NW is shown to be a much stronger frequency-dependent effect than the attenuation toward SE and the seismic hazard computed by the deterministic approach fits satisfactorily well the observed ground motion distribution in the low-frequency band (< 1 Hz). The apparent contradiction with the historically-based intensity maps arises mainly from a systematic difference in the vulnerability (buildings eigenperiod) of the buildings in the intra- and extra-Carpathians regions. (author)

  8. When and Why Mimicry is Facilitated and Attenuated

    NARCIS (Netherlands)

    Stel, Mariëlle; van Dijk, Eric; van Baaren, Rick B.

    2016-01-01

    Although people tend to mimic others automatically, mimicry is facilitated or attenuated depending on the specific context. In the current paper, the authors discuss when mimicry is facilitated and attenuated depending on characteristics of situations, targets, and observers. On the basis of the

  9. Floating venous thrombi: diagnosis with spiral-CT-venography; Diagnose flottierender venoeser Thromben mittels Phlebo-Spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Gartenschlaeger, M. [Mainz Univ. (Germany). Klinik fuer Radiologie; Klose, K.J. [Univ. Marburg, Medizinisches Zentrum fuer Innere Medizin, Abt. Poliklinik (Germany); Schmidt, J.A. [Univ. Marburg, Medizinisches Zentrum fuer Radiologie, Abt. fuer Strahlendiagnostik (Germany)

    1996-05-01

    Local application of contrast agent into an ipsilateral dorsal foot vein and spiral CT were used to examine 16 consecutive cases with deep venous thrombosis proven at conventional venography; in addition, colour Doppler flow imaging was performed. At conventional venography, 8/16 thrombi appeared to be floating and the remaining 8/16 were adherent to the vessel wall. Spiral-CT showed 15/16 thrombi to be adherent to the vessel wall; the floating thrombus correlated with findings in conventional venography. At colour Doppler flow imaging 3/16 thrombi were considered floating, one of them was discordant to conventional venography. The comparison of conventional venography to spiral-CT demonstrates complete agreement for adherence to vessel wall seen in conventional venography (p=1,0) and significant discordance in cases with free-floating appearance in conventional venography. Adherence of thrombi to the wall of the vessel at conventional venography is in agreement with computed tomography. Conventional venography probably overestimates the prevalence of free floating thrombi. (orig./MG) [Deutsch] Mittels lokaler Kontrastmittelapplikation in eine ipsilaterale Fussrueckenvene und Spiral-CT wurden 16 konsekutive Faelle konventionell phlebographisch gesicherter Phlebothrombose untersucht, zusaetzlich wurde die farbkodierte Doppler-Ultraschalluntersuchung durchgefuehrt. In der konventionellen Phlebographie waren 8/16 Thromben flottierend, die uebrigen 8/16 wandadhaerent. In der Spiral-CT zeigten sich Wandadhaerenzen in 15/16 Faellen; der nachgewiesene flottierende Thrombus stimmte mit der konventionellen Phlebographie ueberein. Im farbkodierten Doppler-Ultraschall erschienen die Thromben in 3/16 Faellen flottierend, darunter ein von der konventionellen Phlebographie abweichender Befund. Der Vergleich von konventioneller und CT-Phlebographie ergab eine komplette Uebereinstimmung fuer konventionell phlebographisch nachgewiesene Wandadhaerenz und eine signifikante Abweichung

  10. Time-dependent phase error correction using digital waveform synthesis

    Science.gov (United States)

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  11. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Porto da Silva, Edson; Zibar, Darko

    2017-01-01

    We demonstrate wavelength conversion of quadrature amplitude modulation (QAM) signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient...... to achieve a BER performance below the hard decision forward error correction threshold BER performance (...

  12. Constant resolution of time-dependent Hartree--Fock phase ambiguity

    International Nuclear Information System (INIS)

    Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.

    1978-01-01

    The customary time-dependent Hartree--Fock problem is shown to be ambiguous up to an arbitrary function of time additive to H/sub HF/, and, consequently, up to an arbitrary time-dependent phase for the solution, PHI(t). The ''constant'' (H)'' phase is proposed as the best resolution of this ambiguity. It leads to the following attractive features: (a) the time-dependent Hartree--Fock (TDHF) Hamiltonian, H/sub HF/, becomes a quantity whose expectation value is equal to the average energy and, hence, constant in time; (b) eigenstates described exactly by determinants, have time-dependent Hartree--Fock solutions identical with the exact time-dependent solutions; (c) among all possible TDHF solutions this choice minimizes the norm of the quantity (H--i dirac constant delta/delta t) operating on the ket PHI, and guarantees optimal time evolution over an infinitesimal period; (d) this choice corresponds both to the stationary value of the absolute difference between (H) and (i dirac constant delta/delta t) and simultaneously to its absolute minimal value with respect to choice of the time-dependent phase. The source of the ambiguity is discussed. It lies in the time-dependent generalization of the freedom to transform unitarily among the single-particle states of a determinant at the (physically irrelevant for stationary states) cost of altering only a factor of unit magnitude

  13. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  14. A 38 to 44GHz sub-harmonic balanced HBT mixer with integrated miniature spiral type marchand balun

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    This work presents an active balanced sub-harmonic mixer (SHM) using InP double heterojunction bipolar transistor technology (DHBT) for Q-band applications. A miniature spiral type Marchand balun with five added capacitances for improved control of amplitude and phase balance is integrated with t...

  15. Efficacy of spiral CT in the evaluation of peritoneal seeding of gastric cancer

    International Nuclear Information System (INIS)

    Choi, Hyuck Jae; Han, Joon Koo; Kim, Tae Kyoung; Kim, Ah Young; Lee, Joon Woo; Moon, Min Hoan; Yang, Han Kwang; Choi, Byung Ihn

    2001-01-01

    To determine usefulness of spiral CT in the preoperative evaluation of peritoneal seeding from a gastric carcinoma. From a database of 411 consecutive patients with surgically proven advanced gastric cancinoma obtained over a six-month period, 17 with peritoneal seeding and a control group of 24 without peritoneal seeding underwent spiral CT scanning with 7-8 mm scan thickness and interval during the portal phase. Preoperative CT images were analyzed by two readers who reached a consensus with regard to the presence and location of the ascites, thickening of the parietal peritoneum, and changes in the omentum and mesentery. Ascites was present in 47% (8/17) of patients with peritoneal seeding the right subhepatic space (n=6, 35%) and right paracolic gutter (n=5, 29%)-but not the cul-de-sac (n=2, 12%)-were common sites of fluid collection. Permeative changes in the omentum and mesentery were seen in 18% (3/17) and 12% (2/17) of patients, respectively. Among five controls with false positive results, ascites in the cul-de-sac was present in three (two males and one female, 12%) while omental nodules and a thickened peritoneum were found in two (8%) and one (4%), respectively. In nine controls with false negative results, small disseminated nodules were seen in the mesentery and omentum at surgical field. The sensitivity and specificity of spiral CT were 47% (8/17) and 79% (19/24), respectively. In terms of sensitivity and specificity, spiral CT is not especially accurate in distinguishing peritoneal seeding from gastric carcinoma

  16. SPIRAL CHAMBERS OF COMBINED PUMP-TURBINE UNITS AND CENTRIFUGAL PUMPS

    Directory of Open Access Journals (Sweden)

    Mihajlov Ivan Evgrafovich

    2012-10-01

    The loss of energy (pressure in spiral chambers and trail races of the above machines can be reduced, if the output section of the spiral has the shape of a torus with a central angle φ= 45….55o, taken in-between the output section of the spiral and its tooth, while the cross sectional area is equal to the section area calculated as Vu ∙ r = const or Vср ∙ r = const (this section of the spiral is the initial section of the torus.

  17. Neutrons for science (NFS) at spiral-2

    International Nuclear Information System (INIS)

    Ridikas, D.

    2005-01-01

    Both cross section measurements and various applications could be realised successfully using the high energy neutrons that will be produced at SPIRAL-2. Two particular cases were examined in more detail, namely: (a) neutron time-of-flight (nToF) measurements with pulsed neutron beams, and (b) material activation-irradiation with high-energy high-intensity neutron fluxes. Thanks to the high energy and high intensity neutron flux available, SPIRAL-2 offers a unique opportunity for material irradiations both for fission and fusion related research, tests of various detection systems and of resistance of electronics components to irradiations, etc. SPIRAL-2 also could be considered as an intermediate step towards new generation dedicated irradiation facilities as IFMIF previewed only beyond 2015. Equally, the interval from 0.1 MeV to 40 MeV for neutron cross section measurements is an energy range that is of particular importance for energy applications, notably accelerator driven systems (ADS) and Gen-IV fast reactors, as well as for fusion related devices. It is also the region where pre-equilibrium approaches are often used to link the low (evaporation) and high energy (intra-nuclear cascade) reaction models. With very intense neutron beams of SPIRAL-2 measurements of very low mass (often radioactive) targets and small cross sections become feasible in short experimental campaigns. Production of radioactive targets for dedicated physics experiments is also an attractive feature of SPIRAL-2. In brief, it was shown that SPIRAL-2 has got a remarkable potential for neutron based research both for fundamental physics and various applications. In addition, in the neutron energy range from a few MeV to, say, 35 MeV this research would have a leading position for the next 10-15 years if compared to other neutron facilities in operation or under construction worldwide. (author)

  18. Spiral scan long object reconstruction through PI line reconstruction

    International Nuclear Information System (INIS)

    Tam, K C; Hu, J; Sourbelle, K

    2004-01-01

    The response of a point object in a cone beam (CB) spiral scan is analysed. Based on the result, a reconstruction algorithm for long object imaging in spiral scan cone beam CT is developed. A region-of-interest (ROI) of the long object is scanned with a detector smaller than the ROI, and a portion of it can be reconstructed without contamination from overlaying materials. The top and bottom surfaces of the ROI are defined by two sets of PI lines near the two ends of the spiral path. With this novel definition of the top and bottom ROI surfaces and through the use of projective geometry, it is straightforward to partition the cone beam image into regions corresponding to projections of the ROI, the overlaying objects or both. This also simplifies computation at source positions near the spiral ends, and makes it possible to reduce radiation exposure near the spiral ends substantially through simple hardware collimation. Simulation results to validate the algorithm are presented

  19. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    Science.gov (United States)

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  20. Multiphasic helical CT of hepatocellular carcinoma. Evaluation after chemoembolization; Tomografia Computerizzata spirale multifasica dell'epatocarcinoma. Valutazione dopo chemioembolizzazione

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O.; Esposito, M.; Sandomenico, F.; Siani, A. [Ospedale S. Maria delle Grazie, Pozzuoli, NA (Italy). Servizio di Radiologia; Nunziata, A. [Ospedale S. Maria delle Grazie, Naples (Italy). Area di Diagnostica per Immagini

    2000-06-01

    The main purpose of this work is to report the personal experience with addition of contrast-enhanced multiphase helical CT to unenhanced CT (Lipiodol CT) in the evaluation of patients with hepatocellular carcinoma treated with chemoembolization and to analyze the present role of oily agent CT. It has been retrospectively reviewed the examinations of 42 consecutive patients submitted to global chemoembolization over a 2-year period. CT was performed 18-30 days after the treatment. The Lipiodol CT study was carried out with volume acquisitions. It has been considered as nodules all well-defined areas with dense oily agent uptake; uptake itself was classified as: 0=absent, I=lower than 10% of the tumor volume; II=lower than 50%, III=50%, IV=homogeneous. Contrast-enhanced helical CT was performed with the 2-phase technique in 28 patients and with the 3-phase technique in 14; it has been considered as nodules all well-defined and relatively homogeneous areas with hyper attenuation in the arterial phase and hypo-iso attenuation in the portal and/or delayed phase, or with hypo-iso attenuation in the arterial phase and in the portal and/or delayed phase. Lipiodol CT permitted to recognize 65 nodules (1-5/patient, mean 1.5), namely 15 grade I, 21 grade II, 20 grade III and 9 grade IV. Multiphase CT identified 6 additional nodules in 5 patients, 5 hyper vascular and 1 hypo vascular, and better assessed the correct morphology and volume of grade I nodules. Only 4 of 6 nodules missed on Lipiodol CT showed oily agent uptake after a new chemo embolization session. Moreover after retreatment, carried out in 6 of 9 patients with grade I uptake (11 nodules in all), it has been found persistence of the grade I pattern in 5 nodules, grade II in 5, and grade III in 1. Lipiodol CT may miss liver nodules and underestimate the volume of nodules with poor uptake. Though Lipiodol CT should still be considered slightly more sensitive than multiphase CT, in the general opinion this

  1. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  2. Simple theory of how spiral galaxies acquire their principal global properties

    International Nuclear Information System (INIS)

    Burstein, D.; Sarazin, C.L.

    1983-01-01

    The strongest correlations among the global properties of spiral galaxies are the power law correlations between luminosity and rotation velocity (the Tully-Fisher relation) and between luminosity and luminous radius. Both of these relations are derived from a single density-radius power-law relation for spiral galaxies, assuming that the total mass-to-luminosity ratio is fixed by the Hubble type of the spiral, and that spirals gain their angular momentum through tidal interactions. The predictions of this simple theory are consistent with the observed luminosity and mass properties of the Hubble type-restricted samples of spiral galaxies studied by Rubin et al. This model suggests that many of the physical properties of spiral galaxies, and of the Hubble sequence, originate before or during the formation of galaxies

  3. The scientific objectives of the SPIRAL 2 Project

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, D.; Adoui, L.; Angelis, G. de [GANIL, Grand Accelerateur National d' Ions Lourds, BP 55027, 14076 Caen cedex 5 (France)] (and others)

    2006-06-15

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  4. The scientific objectives of the SPIRAL 2 Project

    International Nuclear Information System (INIS)

    Ackermann, D.; Adoui, L.; Angelis, G. de

    2006-06-01

    The construction of SPIRAL 2 at GANIL will open completely new possibilities for parallel beam operation of the whole facility. The whole GANIL/SPIRAL/SPIRAL2 accelerator complex will allow for the simultaneous use of up to 5 different radioactive and stable beams. Several combinations of different beams delivered in parallel for experiments at low (keV/u), medium (few MeV/u) and high (up to 100 MeV/u) energies will be possible. Presently the GANIL/SPIRAL facility delivers about 60 weeks per year of stable and radioactive beams (up to 3 simultaneous beams). Thanks to SPIRAL 2 and the construction of a new beam line connecting the CIME cyclotron and the G1 and G2 experimental rooms the available beam time for experiments may be extended up to about 120 (up to 5 simultaneous beams) weeks per year. The chapters which follow a general introduction deal with the detailed questions to be addressed by experiments with the beams from SPIRAL2. In chapter 2 the many unanswered questions related to the structure of exotic nuclei are posed and the role of SPIRAL2 in answering them outlined. Chapter 3 deals with the dynamics and thermodynamics of asymmetric nuclear systems. Chapter 4 is concerned with questions of nuclear astrophysics which are intimately related to the properties of exotic nuclei. Chapter 5 indicates how the atomic nucleus can act as a laboratory for tests of the Standard model of Particle Physics and Chapter 6 shows how the production of intense fluxes of neutrons at SPIRAL2 make it an excellent tool to address both questions related to damage in materials of importance in nuclear installations and to the s- and r-processes of nucleosynthesis. In chapter 7 we turn to the application, of the radioactive beams from SPIRAL2 and the radionuclides produced by it, to study condensed matter and radiobiology. Finally in the eight and last chapter the reader can find an account of the historical development of the SPIRAL2 facility and this is followed by an outline of

  5. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Science.gov (United States)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  6. Unusual spiral wave dynamics in the Kessler-Levine model of an excitable medium.

    Science.gov (United States)

    Oikawa, N; Bodenschatz, E; Zykov, V S

    2015-05-01

    The Kessler-Levine model is a two-component reaction-diffusion system that describes spatiotemporal dynamics of the messenger molecules in a cell-to-cell signaling process during the aggregation of social amoeba cells. An excitation wave arising in the model has a phase wave at the wave back, which simply follows the wave front after a fixed time interval with the same propagation velocity. Generally speaking, the medium excitability and the refractoriness are two important factors which determine the spiral wave dynamics in any excitable media. The model allows us to separate these two factors relatively easily since the medium refractoriness can be changed independently of the medium excitability. For rigidly rotating waves, the universal relationship has been established by using a modified free-boundary approach, which assumes that the front and the back of a propagating wave are thin in comparison to the wave plateau. By taking a finite thickness of the domain boundary into consideration, the validity of the proposed excitability measure has been essentially improved. A novel method of numerical simulation to suppress the spiral wave instabilities is introduced. The trajectories of the spiral tip observed for a long refractory period have been investigated under a systematic variation of the medium refractoriness.

  7. Recovering the observed b/c ratio in a dynamic spiral-armed cosmic ray model

    International Nuclear Information System (INIS)

    Benyamin, David; Piran, Tsvi; Shaviv, Nir J.; Nakar, Ehud

    2014-01-01

    We develop a fully three-dimensional numerical code describing the diffusion of cosmic rays (CRs) in the Milky Way. It includes the nuclear spallation chain up to oxygen, and allows the study of various CR properties, such as the CR age, grammage traversed, and the ratio between secondary and primary particles. This code enables us to explore a model in which a large fraction of the CR acceleration takes place in the vicinity of galactic spiral arms that are dynamic. We show that the effect of having dynamic spiral arms is to limit the age of CRs at low energies. This is because at low energies the time since the last spiral arm passage governs the CR age, and not diffusion. Using the model, the observed spectral dependence of the secondary to primary ratio is recovered without requiring any further assumptions such as a galactic wind, re-acceleration or various assumptions on the diffusivity. In particular, we obtain a secondary to primary ratio which increases with energy below about 1 GeV.

  8. Safety and immunogenicity of a live attenuated mumps vaccine: a phase I clinical trial.

    Science.gov (United States)

    Liang, Yan; Ma, Jingchen; Li, Changgui; Chen, Yuguo; Liu, Longding; Liao, Yun; Zhang, Ying; Jiang, Li; Wang, Xuan-Yi; Che, Yanchun; Deng, Wei; Li, Hong; Cui, Xiaoyu; Ma, Na; Ding, Dong; Xie, Zhongping; Cui, Pingfang; Ji, Qiuyan; Wang, JingJing; Zhao, Yuliang; Wang, Junzhi; Li, Qihan

    2014-01-01

    Mumps, a communicable, acute and previously well-controlled disease, has had recent and occasional resurgences in some areas. A randomized, double-blind, controlled and multistep phase I study of an F-genotype attenuated mumps vaccine produced in human diploid cells was conducted. A total of 300 subjects were enrolled and divided into 4 age groups: 16-60 years, 5-16 years, 2-5 years and 8-24 months. The groups were immunized with one injection per subject. Three different doses of the F-genotype attenuated mumps vaccine, A (3.5 ± 0.25 logCCID50), B (4.25 ± 0.25 logCCID50) and C (5.0 ± 0.25 logCCID50), as well as a placebo control and a positive control of a licensed A-genotype vaccine (S79 strain) were used. The safety and immunogenicity of this vaccine were compared with those of the controls. The safety evaluation suggested that mild adverse reactions were observed in all groups. No serious adverse event (SAE) was reported throughout the trial. The immunogenicity test showed a similar seroconversion rate of the neutralizing and ELISA antibody in the 2- to 5-year-old and 8- to 24-month-old groups compared with the seroconversion rate in the positive control. The GMT of the neutralizing anti-F-genotype virus antibodies in the vaccine groups was slightly higher than that in the positive control group. The F-genotype attenuated mumps vaccine evaluated in this clinical trial was demonstrated to be safe and have effective immunogenicity vs. control.

  9. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve

  10. Galactic models with variable spiral structure

    International Nuclear Information System (INIS)

    James, R.A.; Sellwood, J.A.

    1978-01-01

    A series of three-dimensional computer simulations of disc galaxies has been run in which the self-consistent potential of the disc stars is supplemented by that arising from a small uniform Population II sphere. The models show variable spiral structure, which is more pronounced for thin discs. In addition, the thin discs form weak bars. In one case variable spiral structure associated with this bar has been seen. The relaxed discs are cool outside resonance regions. (author)

  11. Spiral arms, comets and terrestrial catastrophism

    International Nuclear Information System (INIS)

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  12. Attenuated Neural Processing of Risk in Young Adults at Risk for Stimulant Dependence.

    Directory of Open Access Journals (Sweden)

    Martina Reske

    Full Text Available Approximately 10% of young adults report non-medical use of stimulants (cocaine, amphetamine, methylphenidate, which puts them at risk for the development of dependence. This fMRI study investigates whether subjects at early stages of stimulant use show altered decision making processing.158 occasional stimulants users (OSU and 50 comparison subjects (CS performed a "risky gains" decision making task during which they could select safe options (cash in 20 cents or gamble them for double or nothing in two consecutive gambles (win or lose 40 or 80 cents, "risky decisions". The primary analysis focused on risky versus safe decisions. Three secondary analyses were conducted: First, a robust regression examined the effect of lifetime exposure to stimulants and marijuana; second, subgroups of OSU with >1000 (n = 42, or <50 lifetime marijuana uses (n = 32, were compared to CS with <50 lifetime uses (n = 46 to examine potential marijuana effects; third, brain activation associated with behavioral adjustment following monetary losses was probed.There were no behavioral differences between groups. OSU showed attenuated activation across risky and safe decisions in prefrontal cortex, insula, and dorsal striatum, exhibited lower anterior cingulate cortex (ACC and dorsal striatum activation for risky decisions and greater inferior frontal gyrus activation for safe decisions. Those OSU with relatively more stimulant use showed greater dorsal ACC and posterior insula attenuation. In comparison, greater lifetime marijuana use was associated with less neural differentiation between risky and safe decisions. OSU who chose more safe responses after losses exhibited similarities with CS relative to those preferring risky options.Individuals at risk for the development of stimulant use disorders presented less differentiated neural processing of risky and safe options. Specifically, OSU show attenuated brain response in regions critical for performance monitoring

  13. Linear and mass attenuation coefficient for CdTe compound of X-rays from 10 to 100 keV energy range in different phases

    Energy Technology Data Exchange (ETDEWEB)

    Saim, A., E-mail: saim1989asma@gmail.com; Tebboune, A.; Berkok, H.; Belameiri, N.; Belbachir, A.H.

    2014-07-25

    The Full Potential Linear Muffin Tin Orbitals method within the density functional theory has been utilized to calculate structural and electronic properties of the CdTe compound. We have checked that the CdTe has two phase-transitions from zinc-blend to cinnabar and from cinnabar to rocksalt. We have found that the rigidity, the energy and the nature of the gap change according to the phase change, so we can predict that a CdTe detector may have different behaviors in different phase conditions. In order to investigate this behavior change, the linear and the mass attenuation coefficients of X-ray in rocksalt, zinc-blend and cinnabar structures are calculated from 10 keV to100 keV, using the XCOM data. We have found that when CdTe undergoes a phase transition from zinc-blend to cinnabar, its linear attenuation coefficient decreases down to a value of about 100 times smaller than its initial one, and when it undergoes a transition from cinnabar to rocksalt it increases up to a value about 90 times larger than its initial one.

  14. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  15. A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.

    Science.gov (United States)

    Heo, Seo Weon; Kim, Hyungsuk

    2010-05-01

    An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.

  16. The effect of cellular aging on the dynamics of spiral waves

    International Nuclear Information System (INIS)

    Deng Min-Yi; Chen Xi-Qiong; Tang Guo-Ning

    2014-01-01

    Cellular aging can result in deterioration of electrical coupling, the extension of the action potential duration, and lower excitability of the cell. Those factors are introduced into the Greenberg—Hastings cellular automaton model and the effects of the cellular aging on the dynamics of spiral waves are studied. The numerical results show that a 50% reduction of the coupling strength of aging cells has a little influence on spiral waves. If the coupling strength of aging cells equals zero, the ability for the medium to maintain spiral waves will be reduced by approximately 50% when the aging cell ratio increases from 0 to 0.5, where the reduction of cell excitability plays a major role in inducing disappearance of spiral waves. When the relevant parameters are properly chosen, the cellular aging can lead to the meandering of spiral waves, the emergence of the binary spiral waves, and even the disappearance of spiral waves via the stopping rotation or shrinkage of wave. Physical mechanisms of the above phenomena are analyzed briefly. (general)

  17. Molecular gas and star formation in the centers of Virgo spirals

    International Nuclear Information System (INIS)

    Canzian, B.

    1990-01-01

    The CO and H alpha flux distributions for a sample of Virgo spirals were mapped out in an attempt to understand the coupling between gas dynamics and star formation in spiral galaxies. A broad range of morphological types were observed (types Sab through Scd) under the hypothesis that the gas dynamics is most influential in determining the overall appearance of a spiral galaxy. Only non-barred spirals were considered so that the well-studied but complicated properties of bars and their role in inducing star formation would not be a factor. All galaxies were chosen from the Virgo cluster to eliminate uncertainties due to distance errors. Since the dynamical seat of a spiral is at its center, it was expected that the dynamics of the central region would influence global properties of the rest of the disk. This could happen through the existence or absence of an inner Lindblad resonance (according to the degree of central concentration of mass) to modulate swing amplification of spiral waves, or the persistence of an oval distortion to initiate an instability which leads to spiral structure

  18. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  19. Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview

    Directory of Open Access Journals (Sweden)

    Hojun Song

    2011-01-01

    Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.

  20. Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson's Disease.

    Science.gov (United States)

    San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B; Lipton, Richard B; Pullman, Seth; Saunders-Pullman, Rachel

    2016-01-01

    Pre-clinical markers of Parkinson's Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD.

  1. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Junping; Valmikinathan, Chandra M; Liu, Wei; Laurencin, Cato T; Yu, Xiaojun

    2010-05-01

    Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications. Copyright 2009 Wiley Periodicals, Inc.

  2. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  3. Spiral CT for evaluation of chest trauma

    International Nuclear Information System (INIS)

    Roehnert, W.; Weise, R.

    1997-01-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [de

  4. Generation of spiral waves pinned to obstacles in a simulated excitable system

    Science.gov (United States)

    Phantu, Metinee; Kumchaiseemak, Nakorn; Porjai, Porramain; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn

    2017-09-01

    Pinning phenomena emerge in many dynamical systems. They are found to stabilize extreme conditions such as superconductivity and super fluidity. The dynamics of pinned spiral waves, whose tips trace the boundary of obstacles, also play an important role in the human health. In heart, such pinned waves cause longer tachycardia. In this article, we present two methods for generating pinned spiral waves in a simulated excitable system. In method A, an obstacle is set in the system prior to an ignition of a spiral wave. This method may be suitable only for the case of large obstacles since it often fails when used for small obstacles. In method B, a spiral wave is generated before an obstacle is placed at the spiral tip. With this method, a pinned spiral wave is always obtained, regardless the obstacle size. We demonstrate that after a transient interval the dynamics of the pinned spiral waves generated by the methods A and B are identical. The initiation of pinned spiral waves in both two- and three-dimensional systems is illustrated.

  5. A spiral, bi-planar gradient coil design for open magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Peng; Shi, Yikai; Wang, Wendong; Wang, Yaohui

    2018-01-01

    To design planar gradient coil for MRI applications without discretization of continuous current density and loop-loop connection errors. In the new design method, the coil current is represented using a spiral curve function described by just a few control parameters. Using a proper parametric equation set, an ensemble of spiral contours is reshaped to satisfy the coil design requirements, such as gradient linearity, inductance and shielding. In the given case study, by using the spiral coil design, the magnetic field errors in the imaging area were reduced from 5.19% (non-spiral design) to 4.47% (spiral design) for the transverse gradient coils, and for the longitudinal gradient coil design, the magnetic field errors were reduced to 5.02% (spiral design). The numerical evaluation shows that when compared with conventional wire loop, the inductance and resistance of spiral coil was reduced by 11.55% and 8.12% for x gradient coil, respectively. A novel spiral gradient coil design for biplanar MRI systems, the new design offers better magnetic field gradients, smooth contours than the conventional connected counterpart, which improves manufacturability.

  6. Propagating star formation and irregular structure in spiral galaxies

    International Nuclear Information System (INIS)

    Mueller, M.W.; Arnett, W.D.

    1976-01-01

    A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves

  7. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    International Nuclear Information System (INIS)

    Mao Yewei; Kong Xu; Kennicutt, Robert C. Jr.; Hao, Cai-Na; Zhou Xu

    2012-01-01

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-β) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in

  8. Phase Singularities and Termination of Spiral Wave Reentry

    National Research Council Canada - National Science Library

    Eason, James

    2001-01-01

    In order to elucidate the mechanisms by which a strong shock terminates reentrant wavefronts, we employed phase analysis techniques to study phase singularity dynamics in a finite element model of cardiac tissue...

  9. A comment on spiral motions in projective relativity

    International Nuclear Information System (INIS)

    Muzzio, J.C.; Lousto, C.O.; Instituto de Astronomia y Fisica del Espacio de la Republica Argentina)

    1985-01-01

    Astronomical evidence has been inadequately invoked to support projective relativity. The spiral structure cannot be explained just by the existence of spiral orbits, and the use of Oort's constant to support the theory is also a misunderstanding. Besides, some mathematical inaccuracies make the application invalid. (author)

  10. Design and evaluation of a high sensitivity spiral TDR scour sensor

    Science.gov (United States)

    Gao, Quan; (Bill Yu, Xiong

    2015-08-01

    Bridge scour accounts for more than half of the reported bridge failures in the United States. Scour monitoring technology based on time domain reflectometry (TDR) features the advantages of being automatic and inexpensive. The senior author’s team has developed a few generations of a TDR bridge scour monitoring system, which have succeeded in both laboratory and field evaluations. In this study, an innovative spiral TDR sensor is proposed to further improve the sensitivity of the TDR sensor in scour detection. The spiral TDR sensor is made of a parallel copper wire waveguide wrapped around a mounting rod. By using a spiral path for the waveguide, the TDR sensor achieves higher sensitivity than the traditional straight TDR probes due to longer travel distance of the electromagnetic (EM) wave per unit length in the spiral probe versus traditional probe. The performance of the new TDR spiral scour sensor is validated by calibration with liquids with known dielectric constant and wet soils. Laboratory simulated scour-refilling experiments are performed to evaluate the performance of the new spiral probe in detecting the sediment-water interface and therefore the scour-refill process. The tests results indicate that scour depth variation of less than 2 cm can be easily detected by this new spiral sensor. A theory is developed based on the dielectric mixing model to simplify the TDR signal analyses for scour depth detection. The sediment layer thickness (directly related to scour depth) varies linearly with the square root of the bulk dielectric constant of the water-sediment mixture measured by the spiral TDR probe, which matches the results of theoretical prediction. The estimated sediment layer thickness and therefore scour depth from the spiral TDR sensor agrees very well with that by direct physical measurement. The spiral TDR sensor is four times more sensitive than a traditional straight TDR probe.

  11. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  12. Using Static Percentiles of AE9/AP9 to Approximate Dynamic Monte Carlo Runs for Radiation Analysis of Spiral Transfer Orbits

    Science.gov (United States)

    Kwan, Betty P.; O'Brien, T. Paul

    2015-06-01

    The Aerospace Corporation performed a study to determine whether static percentiles of AE9/AP9 can be used to approximate dynamic Monte Carlo runs for radiation analysis of spiral transfer orbits. Solar panel degradation is a major concern for solar-electric propulsion because solar-electric propulsion depends on the power output of the solar panel. Different spiral trajectories have different radiation environments that could lead to solar panel degradation. Because the spiral transfer orbits only last weeks to months, an average environment does not adequately address the possible transient enhancements of the radiation environment that must be accounted for in optimizing the transfer orbit trajectory. Therefore, to optimize the trajectory, an ensemble of Monte Carlo simulations of AE9/AP9 would normally be run for every spiral trajectory to determine the 95th percentile radiation environment. To avoid performing lengthy Monte Carlo dynamic simulations for every candidate spiral trajectory in the optimization, we found a static percentile that would be an accurate representation of the full Monte Carlo simulation for a representative set of spiral trajectories. For 3 LEO to GEO and 1 LEO to MEO trajectories, a static 90th percentile AP9 is a good approximation of the 95th percentile fluence with dynamics for 4-10 MeV protons, and a static 80th percentile AE9 is a good approximation of the 95th percentile fluence with dynamics for 0.5-2 MeV electrons. While the specific percentiles chosen cannot necessarily be used in general for other orbit trade studies, the concept of determining a static percentile as a quick approximation to a full Monte Carlo ensemble of simulations can likely be applied to other orbit trade studies. We expect the static percentile to depend on the region of space traversed, the mission duration, and the radiation effect considered.

  13. Adaptation of the control system in view of SPIRAL integration

    International Nuclear Information System (INIS)

    Lecorche, E.

    1998-01-01

    As soon as the collaboration between the SPIRAL project and the Control Group has been defined, the first implementation of the SPIRAL control system started following various directions. Both the global hardware and software architectures has been specified and some practical works have been undertaken such as the Ethernet network installation or the first SPIRAL oriented software design and coding. (authors)

  14. Model for Simulating a Spiral Software-Development Process

    Science.gov (United States)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code

  15. Packing of equal discs on a parabolic spiral lattice

    International Nuclear Information System (INIS)

    Xudong, F.; Bursill, L.A.; Julin, P.

    1989-01-01

    A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures

  16. Computerized spiral analysis using the iPad.

    Science.gov (United States)

    Sisti, Jonathan A; Christophe, Brandon; Seville, Audrey Rakovich; Garton, Andrew L A; Gupta, Vivek P; Bandin, Alexander J; Yu, Qiping; Pullman, Seth L

    2017-01-01

    Digital analysis of writing and drawing has become a valuable research and clinical tool for the study of upper limb motor dysfunction in patients with essential tremor, Parkinson's disease, dystonia, and related disorders. We developed a validated method of computerized spiral analysis of hand-drawn Archimedean spirals that provides insight into movement dynamics beyond subjective visual assessment using a Wacom graphics tablet. While the Wacom tablet method provides robust data, more widely available mobile technology platforms exist. We introduce a novel adaptation of the Wacom-based method for the collection of hand-drawn kinematic data using an Apple iPad. This iPad-based system is stand-alone, easy-to-use, can capture drawing data with either a finger or capacitive stylus, is precise, and potentially ubiquitous. The iPad-based system acquires position and time data that is fully compatible with our original spiral analysis program. All of the important indices including degree of severity, speed, presence of tremor, tremor amplitude, tremor frequency, variability of pressure, and tightness are calculated from the digital spiral data, which the application is able to transmit. While the iPad method is limited by current touch screen technology, it does collect data with acceptable congruence compared to the current Wacom-based method while providing the advantages of accessibility and ease of use. The iPad is capable of capturing precise digital spiral data for analysis of motor dysfunction while also providing a convenient, easy-to-use modality in clinics and potentially at home. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Competing failure analysis in phased-mission systems with functional dependence in one of phases

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable phased-mission systems (PMS) subject to competing failure propagation and isolation effects. A failure originating from a system component which causes extensive damage to other system components is a propagated failure. When the propagated failure affects all the system components, causing the entire system failure, a propagated failure with global effect (PFGE) is said to occur. However, the failure propagation can be isolated in systems subject to functional dependence (FDEP) behavior, where the failure of a component (referred to as trigger component) causes some other components (referred to as dependent components) to become inaccessible or unusable (isolated from the system), and thus further failures from these dependent components have no effect on the system failure behavior. On the other hand, if any PFGE from dependent components occurs before the trigger failure, the failure propagation effect takes place, causing the overall system failure. In summary, there are two distinct consequences of a PFGE due to the competition between the failure isolation and failure propagation effects in the time domain. Existing works on such competing failures focus only on single-phase systems. However, many real-world systems are phased-mission systems (PMS), which involve multiple, consecutive and non-overlapping phases of operations or tasks. Consideration of competing failures for PMS is a challenging and difficult task because PMS exhibit dynamics in the system configuration and component behavior as well as statistical dependencies across phases for a given component. This paper proposes a combinatorial method to address the competing failure effects in the reliability analysis of binary non-repairable PMS. The proposed method is verified using a Markov-based method through a numerical example. Different from the Markov-based approach that is limited to exponential distribution, the

  18. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    Science.gov (United States)

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  19. New variant of gravitational theory of Galactic spiral structure

    International Nuclear Information System (INIS)

    Polyachenko, V.L.

    1989-01-01

    Classification of galaxies with a regular spiral structure (grand design) is considered based on the properties of their central regions where a bar (bar-like mode) may grow. It is shown that along the usual mechanism of bar mode exitation connected with a rapid rotation, another possibility of bar formation occurs which depends on the presence of a sufficient percent of stars with radially-elongated orbits. Roughly speaking, these two mechanisms are additional one to another: the new bar modes exited in disks which are rotating in average slower than disks with usual bar instability

  20. Compression of interstellar clouds in spiral density-wave shocks

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1979-01-01

    A mechanism of triggering star formation by galactic shocks is discussed. The possibilty that shocks may form along spiral arms in the gaseous component of a galactic disk is by now a familiar feature of spiral wave theory. It was suggested by Roberts (1969) that these shocks could trigger star formation in narrow bands forming a coherent spiral pattern over most of the disk of a galaxy. Some results of computer simulations of such a triggering process for star formation are reported. (Auth.)

  1. Radial modal dependence of the azimuthal spectrum after parametric down-conversion

    CSIR Research Space (South Africa)

    Zhang, Y

    2014-01-01

    Full Text Available .e., the spiral bandwidth [10–14]. Hence, a large spiral bandwidth indicates that an OAM entangled quantum state contains more OAM degrees of freedom that can be used to encode quantum information. The Laguerre-Gaussian (LG) modes are OAM eigenstates and are a... number of a quantum state produced bySPDC. A number of techniques have been investigated to increase the spiral bandwidth of LG modes, including increasing the pump beam size and manipulating the SPDC phase matching conditions [13,16–18]. Nevertheless...

  2. HI-deficient spiral galaxies in the Coma cluster and Abell 1367

    International Nuclear Information System (INIS)

    Sullivan, W.T. III; Johnson, P.E.

    1978-01-01

    A sample of 11 spiral galaxies in each of the clusters Abell 1367 and Coma (Abell 1656) was observed in the 21-cm H I line with the Arecibo 305-m radio telescope. Nine galaxies are detected in Al367 and three in Coma. Comparison of the quantity log M/sub H/L/sub pg/ for each galaxy with the mean value for its Hubble type from the standard samples of nearby spirals compiled by Balkowski and by Roberts indicates that the A1367 and Coma spirals have lower values of log M/sub H/L/sub pg/ than field spirals by a factor of at least 4, with the Coma values probably more extreme. It is argued that little of this effect (perhaps a factor approx. 1.5) can be attributed to the bias toward high luminosities in the sample, and thus that these spirals are deficient in H I by factors of at least 3 to 5 in comparison with the standard samples. For the present limited sample, several mechanisms seem adequate to account qualitatively for stripping of H I from the Coma cluster spirals, but the case of the A1367 spirals is puzzling. 2 figures

  3. Elimination of spiral chaos by periodic force for the Aliev-Panfilov model

    OpenAIRE

    Sakaguchi, Hidetsugu; Fujimoto, Takefumi

    2003-01-01

    Spiral chaos appears in the two dimensional Aliev-Panfilov model. The generation mechanism of the spiral chaos is related to the breathing instability of pulse trains. The spiral chaos can be eliminated by applying periodic force uniformly. The elimination of spiral chaos is most effective, when the frequency of the periodic force is close to that of the breathing motion.

  4. Generation of fractional acoustic vortex with a discrete Archimedean spiral structure plate

    Science.gov (United States)

    Jia, Yu-Rou; Wei, Qi; Wu, Da-Jian; Xu, Zheng; Liu, Xiao-Jun

    2018-04-01

    Artificial structure plates engraved with discrete Archimedean spiral slits have been well designed to achieve fractional acoustic vortices (FAVs). The phase and pressure field distributions of FAVs are investigated theoretically and demonstrated numerically. It is found that the phase singularities relating to the integer and fractional parts of the topological charge (TC) result in dark spots in the upper half of the pressure field profile and a low-intensity stripe in the lower half of the pressure field profile, respectively. The dynamic progress of the FAV is also discussed in detail as TC increases from 1 to 2. With increasing TC from 1 to 1.5, the splitting of the phase singularity leads to the deviation of the phase of the FAV from the integer case and hence a new phase singularity occurs. As TC m increases from 1.5 to 2, two phase singularities of the FAV approach together and finally merge as a new central phase singularity. We further perform an experiment based on the Schlieren method to demonstrate the generation of the FAV.

  5. On the nature of the ramified spiral structure of galaxies

    International Nuclear Information System (INIS)

    Mishurov, Yu.N.; Suchkov, A.A.

    1976-01-01

    The nature of large-scale branching of spiral arms observed in a number of galaxies has been explained in the framework of the density wave theory. The solutions of the dispersion equation of spiral waves of density relative to the wave number k(r) in the models of galaxies in the form of two discs rotating with different angular velocities have been shown to be branching functions of the parameter r (r is the galacto-centric distance) under definite conditions; it corresponds to the branching of spiral arms. Hydrodynamic and kinetic considerations are also presented. The last one makes possible the understanding several other structural properties of spiral galaxies

  6. Principles of spiral CT: III. Quality assurance

    International Nuclear Information System (INIS)

    Suess, C.; Kalender, W.A.

    1998-01-01

    Since its introduction in 1989 spiral CT has gained wide clinical acceptance and meanwhile it covers a large range of CT applications. This new technology, however, has not yet been recognized and acknowledged in the national or international regulations on scanner quality assurance (QA) programs. The conventional QA procedures should be extended to check the distribution of resolution and noise within the image plane. Imaging performance in the axial direction constitutes one of the major advantages of spiral scanning. Therefore, the slice sensitivity profiles and the spatial and low-contrast resolution along the z-axis have to be assessed. The high demands on table feed accuracy require additional tests. We suggest phantoms and procedures to check and quantify these parameters. Thereby, we hope to support the ongoing discussion about spiral CT quality assurance. (orig.) [de

  7. Influence of strong single-ion anisotropy on phase states of 3D and 2D frustrated magnets

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Matunin, D.A.; Gorelikov, G.A.; Klevets, Ph.N.

    2010-01-01

    We investigated the influence of strong single-ion anisotropy, exceeding exchange interaction, and frustrated exchange interaction on spin-wave excitation spectra and phase states using the Hubbard operators' technique, allowing the exact account of single-ion anisotropy. The results show that both the homogeneous phases (ferromagnetic and quadrupolar) and the spatially inhomogeneous phase (spiral structure) are possible in the 3D magnetic crystal. The region of existence of the spiral structure is considerably smaller than that in the analogues system, but with weak single-ion anisotropy. The situation is more complex in the 2D system; another spatially inhomogeneous state (the domain structure) can be realized in addition to the spiral magnetic structure. The phase diagrams for both the 3D and 2D systems were plotted.

  8. Continuous form-dependent focusing of non-spherical microparticles in a highly diluted suspension with the help of microfluidic spirals

    Science.gov (United States)

    Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.

    2018-04-01

    Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.

  9. Photostimulated attenuation of hypersound in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.; Adjepong, S.K.

    1992-10-01

    Photostimulated attenuation of hypersound in semiconductor superlattice has been investigated. It is shown that the attenuation coefficient depends on the phonon wave vector q in an oscillatory manner and that from this oscillation the band width Δ of superlattice can be found. (author). 14 refs, 1 fig

  10. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    Science.gov (United States)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  11. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  12. Problems raised by radioactive ion acceleration in the SPIRAL project. Accelerator tuning and stabilisation; Problemes poses par l`acceleration d`ions radioactifs dans le project SPIRAL. Reglage et stabilisation de l`accelerateur

    Energy Technology Data Exchange (ETDEWEB)

    Boy, L. [Paris-6 Univ., 75 (France)

    1997-12-31

    This study is related to the SPIRAL project. This facility uses a cyclotron to accelerate radioactive ion beams produced in a thick target by the Grant Accelerateur National d`Ions Lourds primary beam. The low intensity of radioactive beams and the mixing of several species imply special tuning methods and associated diagnostics. Also, a cyclotron and the beam line will be used to switch from this tuning beam to the radioactive one. We present a theoretical study and a numerical simulation of the tuning of five radioactive beams using three different methods. the beam dynamic is performed through the injection beam line and the cyclotron up to the electrostatic deflector. Within the frame of these methods we have described all the SPIRAL beam diagnostics. Construction and test of a new low intensity diagnosis based on a plastic scintillator for phase measurement inside the cyclotron is described in details. (author). 63 refs.

  13. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current

    Science.gov (United States)

    Yang, De-Zhou; Huang, Rui Xin; Yin, Bao-shu; Feng, Xing-Ru; Chen, Hai-ying; Qi, Ji-Feng; Xu, Ling-jing; Shi, Yun-long; Cui, Xuan; Gao, Guan-Dong; Benthuysen, Jessica A.

    2018-01-01

    The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.

  14. A spiral-based volumetric acquisition for MR temperature imaging.

    Science.gov (United States)

    Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H

    2018-06-01

    To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Luo-Luo, E-mail: jiangluoluo@gmail.com [College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035 (China); College of Physics and Technology, Guangxi Normal University, Guilin, Guangxi 541004 (China); Wang, Wen-Xu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Beijing Normal University, Beijing 100875 (China); Lai, Ying-Cheng [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Ni, Xuan [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States)

    2012-07-09

    We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games with mobile individuals. We discover a set of seed distributions of species, which is able to produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on partial differential equations associated with specific initial conditions. The spatial entropy of patterns is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility, the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In addition, comparing to large amount of previous work, we employ the no flux boundary conditions which enables quantitative studies of pattern formation and stability in the system of stochastic interactions in the absence of excitable media. -- Highlights: ► Multi-armed spirals and multi-pairs antispirals are observed. ► Patterns are predicted by computer simulations and partial differential equations. ► The spatial entropy of patterns is introduced. ► Patterns are relatively stable for intermediate mobility. ► The joint spirals with lower numbers of arms and pairs are relatively more stable.

  16. Multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games

    International Nuclear Information System (INIS)

    Jiang, Luo-Luo; Wang, Wen-Xu; Lai, Ying-Cheng; Ni, Xuan

    2012-01-01

    We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games with mobile individuals. We discover a set of seed distributions of species, which is able to produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on partial differential equations associated with specific initial conditions. The spatial entropy of patterns is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility, the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In addition, comparing to large amount of previous work, we employ the no flux boundary conditions which enables quantitative studies of pattern formation and stability in the system of stochastic interactions in the absence of excitable media. -- Highlights: ► Multi-armed spirals and multi-pairs antispirals are observed. ► Patterns are predicted by computer simulations and partial differential equations. ► The spatial entropy of patterns is introduced. ► Patterns are relatively stable for intermediate mobility. ► The joint spirals with lower numbers of arms and pairs are relatively more stable.

  17. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  18. Spiral wave drift and complex-oscillatory spiral waves caused by heterogeneities in two-dimensional in vitro cardiac tissues

    International Nuclear Information System (INIS)

    Woo, Sung-Jae; Hong, Jin Hee; Kim, Tae Yun; Bae, Byung Wook; Lee, Kyoung J

    2008-01-01

    Understanding spiral reentry wave dynamics in cardiac systems is important since it underlies various cardiac arrhythmia including cardiac fibrillation. Primary cultures of dissociated cardiac cells have been a convenient and useful system for studying cardiac wave dynamics, since one can carry out systematic and quantitative studies with them under well-controlled environments. One key drawback of the dissociated cell culture is that, inevitably, some spatial inhomogeneities in terms of cell types and density, and/or the degree of gap junction connectivity, are introduced to the system during the preparation. These unintentional spatial inhomogeneities can cause some non-trivial wave dynamics, for example, the entrainment dynamics among different spiral waves and the generation of complex-oscillatory spiral waves. The aim of this paper is to quantify these general phenomena in an in vitro cardiac system and provide explanations for them with a simple physiological model having some realistic spatial inhomogeneities incorporated

  19. The instability of the spiral wave induced by the deformation of elastic excitable media

    International Nuclear Information System (INIS)

    Ma Jun; Jia Ya; Wang Chunni; Li Shirong

    2008-01-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with L x x L y = N x ΔxN x Δy = L' x L' y = N x Δx'N x Δy'. In our studies, elastic media are decentralized into N x N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients D x and D y with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ε and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  20. The instability of the spiral wave induced by the deformation of elastic excitable media

    Science.gov (United States)

    Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong

    2008-09-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  1. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, NorEddine; Ait-Djoudi, Fariza; Naceur, Wahib Mohamed; Soukane, Sofiane

    2015-01-01

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body

  2. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  3. A Spiral Task as a Model for In-Service Teacher Education

    Science.gov (United States)

    Fried, Michael N.; Amit, Miriam

    2005-01-01

    The spiral approach has long been used by curriculum designers to deepen students' knowledge of scientific and mathematical concepts and to bring students to higher levels of abstraction. The benefits of a spiral approach, however, can also be extended to teacher education. This paper describes a spiral activity employed by the "Kidumatica"…

  4. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  5. Measurement of lung volumes : usefulness of spiral CT

    International Nuclear Information System (INIS)

    Kang, Ho Yeong; Kwak, Byung Kook; Lee, Sang Yoon; Kim, Soo Ran; Lee, Shin Hyung; Lee, Chang Joon; Park, In Won

    1996-01-01

    To evaluate the usefulness of spiral CT in the measurement of lung volumes. Fifteen healthy volunteers were studied by both spirometer and spiral CT at full inspiration and expiration in order to correlated their results, including total lung capacity (TLC), vital capacity (VC) and residual volume (RV). 3-D images were reconstructed from spiral CT, and we measured lung volumes at a corresponding CT window range ; their volumes were compared with the pulmonary function test (paired t-test). The window range corresponding to TLC was from -1000HU to -150HU (p=0.279, r=0.986), and for VC from -910HU to -800HU (p=0.366, r=0.954) in full-inspiratory CT. The optimal window range for RV in full-expiratory CT was from -1000HU to -450HU (p=0.757, r=0.777), and TLC-VC in full-inspiratory CT was also calculated (p=0.843, r=0.847). Spiral CT at full inspiration can used to lung volumes such as TLC, VC and RV

  6. Advanced Manufacture of Spiral Bevel and Hypoid Gears

    Directory of Open Access Journals (Sweden)

    Vilmos Simon

    2016-11-01

    Full Text Available In this study, an advanced method for the manufacture of spiral bevel and hypoid gears on CNC hypoid generators is proposed. The optmal head-cutter geometry and machine tool settings are determined to introduce the optimal tooth surface modifications into the teeth of spiral bevel and hypoid gears. The aim of these tooth surface modifications is to simultaneously reduce the tooth contact pressure and the transmission errors, to maximize the EHD load carrying capacity of the oil film, and to minimize power losses in the oil film. The proposed advanced method for the manufacture of spiral bevel and hypoid gears is based on machine tool setting variation on the cradle-type generator conducted by optimal polynomial functions and on the use of a CNC hypoid generator. An algorithm is developed for the execution of motions on the CNC hypoid generator using the optimal relations on the cradle-type machine. Effectiveness of the method was demonstrated by using spiral bevel and hypoid gear examples. Significant improvements in the operating characteristics of the gear pairs are achieved.

  7. Spiral spin state in high-temperature copper-oxide superconductors: Evidence from neutron scattering measurements

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2005-01-01

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45...... model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state....

  8. Drift of Spiral Waves in Complex Ginzburg-Landau Equation

    International Nuclear Information System (INIS)

    Yang Junzhong; Zhang Mei

    2006-01-01

    The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.

  9. Pulmonary embolism: spiral CT evaluation; Embolie pulmonaire: apport de la tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Senac, J.P.; Vernhet, H.; Bousquet, C.; Giron, J.; Pieuchot, P.; Durand, G.; Benezet, O.; Aubas, P. [Centre Hospitalier Universitaire, 34 - Montpellier (France)

    1995-06-01

    Purpose: Spiral computed tomography was compared retrospectively with digital substraction pulmonary angiography (PA) in 45 patients suspected of having acute or chronic pulmonary embolism. Materials and method : 45 patients in whom the presence of acute or chronic pulmonary embolism was suspected underwent examination by spiral CT and PA. Diagnosis of pulmonary embolism was based on the direct visualization of intraluminal clots. The study of the agreement between the two methods was based on the Kappa test. In 35 cases, pulmonary emboli were proved. Acute pulmonary emboli were present in 28 cases and chronic in 7 cases. Results: Spiral computed tomography represents an excellent way to detect acute pulmonary embolism. In the chronic form, spiral CT is better than PA to detect intraluminal clots. However, Spiral CT can fail to detect small emboli in the peripheral arterial bed. In the 10 patients without pulmonary embolism, the spiral CT proved diagnosis pulmonary oedema (n=3), lymphangi-carcinoma (n=4), pleural effusion (n=3). Conclusion: This study suggest that the spiral CT examination is accurate for diagnosis of pulmonary embolism specifically in case of suspected important embolism. The advantages of spiral CT are multiple (non invasive, wide diagnosis spectrum). However, may be a limitation to is use is insufficient distal thrombi detection. This eventuality (5 to 10% in the Pioped study) justify the practice of pulmonary angiography. Spiral CT improvements should reduce this insufficiency in the next future. (Authors). 16 refs., 4 figs., 3 tabs.

  10. Regularization dependence on phase diagram in Nambu–Jona-Lasinio model

    International Nuclear Information System (INIS)

    Kohyama, H.; Kimura, D.; Inagaki, T.

    2015-01-01

    We study the regularization dependence on meson properties and the phase diagram of quark matter by using the two flavor Nambu–Jona-Lasinio model. The model also has the parameter dependence in each regularization, so we explicitly give the model parameters for some sets of the input observables, then investigate its effect on the phase diagram. We find that the location or the existence of the critical end point highly depends on the regularization methods and the model parameters. Then we think that regularization and parameters are carefully considered when one investigates the QCD critical end point in the effective model studies

  11. Improvement of quantitation in SPECT: Attenuation and scatter correction using non-uniform attenuation data

    International Nuclear Information System (INIS)

    Mukai, T.; Torizuka, K.; Douglass, K.H.; Wagner, H.N.

    1985-01-01

    Quantitative assessment of tracer distribution with single photon emission computed tomography (SPECT) is difficult because of attenuation and scattering of gamma rays within the object. A method considering the source geometry was developed, and effects of attenuation and scatter on SPECT quantitation were studied using phantoms with non-uniform attenuation. The distribution of attenuation coefficients (μ) within the source were obtained by transmission CT. The attenuation correction was performed by an iterative reprojection technique. The scatter correction was done by convolution of the attenuation corrected image and an appropriate filter made by line source studies. The filter characteristics depended on μ and SPEC measurement at each pixel. The SPECT obtained by this method showed the most reasonable results than the images reconstructed by other methods. The scatter correction could compensate completely for a 28% scatter components from a long line source, and a 61% component for thick and extended source. Consideration of source geometries was necessary for effective corrections. The present method is expected to be valuable for the quantitative assessment of regional tracer activity

  12. Shunt impedance of spiral loaded resonant rf cavities

    International Nuclear Information System (INIS)

    Peebles, P.Z. Jr.; Parvarandeh, M.

    1975-01-01

    Based upon a treatment of the spiral loaded resonant radio frequency cavity as a shorted quarter-wave transmission line, a model for shunt impedance is developed. The model is applicable to loosely wound spirals in large diameter containers. Theoretical shunt impedance is given for spirals wound from tubing of circular or rectangular cross section. The former produces higher shunt impedance. Measurements made at Oak Ridge National Laboratory on 17 copper cavities are described which support the theoretical results. Theoretical results are also compared to data from twenty-three additional cavities measured at Los Alamos Scientific Laboratory. It is shown that the theoretical function forms a useful means of interpreting the quality of constructed cavities. (author)

  13. Statistical analysis of metallicity in spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Galeotti, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-04-01

    A principal component analysis of metallicity and other integral properties of 33 spiral galaxies is presented; the involved parameters are: morphological type, diameter, luminosity and metallicity. From the statistical analysis it is concluded that the sample has only two significant dimensions and additonal tests, involving different parameters, show similar results. Thus it seems that only type and luminosity are independent variables, being the other integral properties of spiral galaxies correlated with them.

  14. Research and development for EXOGAM: A future γ multidetector for SPIRAL

    International Nuclear Information System (INIS)

    Duprat, J.; Azaiez, F.; Bouneau, S.; Bourgeois, C.; Pouthas, J.; Richard, A.; Stanoiu, M.; Porquet, M.G.

    1999-01-01

    We have carried out numerical simulation using GEANT code (CERN) in order to define the design of EXOGAM, a future γ-spectrometer for SPIRAL. The effective photopeak efficiency dependence on both the γ energy and multiplicity has been simulated. A choice on the clover segmentation orientation is proposed. Finally, research and development is carried out to study the possibility to localize the radial position of the γ-impact in the crystal using pulse-shape analysis. (authors)

  15. Spiral patterns of gold nanoclusters in silicon (100) produced by metal vapour vacuum arc implantation of gold ions

    International Nuclear Information System (INIS)

    Venkatachalam, Dinesh Kumar; Sood, Dinesh Kumar; Bhargava, Suresh Kumar

    2008-01-01

    Self-assembled gold nanoclusters are attractive building blocks for future nanoscale sensors and optical devices due to their exciting catalytic properties. In this work, we report direct bottom-up synthesis of spiral patterns of gold nanoclusters in silicon (100) substrates by Au ion implantation followed by thermal annealing. This unique phenomenon is observed only above a critical threshold implantation dose and annealing temperature. Systematic study by electron microscopy, analytical x-ray diffraction and atomic force microscopy shows the temperature- and time-dependent nucleation, growth of Au nanoclusters and evolution of the spiral patterns. The observed patterns of gold nanoclusters bear a resemblance to the spiral growth prevalent in some directionally solidified eutectic alloys. Based on this systematic study of the growth and morphology of nanoclusters, a tentative model has been proposed for the formation mechanism of this unusual self-assembled pattern in an amorphous Si/Au system. This model shows that melting of the implanted layer is essential and without which no spiral patterns are observed. A better understanding of this self-assembly process will open up new ways to fabricate ordered arrays of gold nanoclusters in silicon substrates for seeding selective growth of one-dimensional nanostructures

  16. Attenuation coefficients of soils

    International Nuclear Information System (INIS)

    Martini, E.; Naziry, M.J.

    1989-01-01

    As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)

  17. Seismic wave attenuation and velocity dispersion in UAE carbonates

    Science.gov (United States)

    Ogunsami, Abdulwaheed Remi

    Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact

  18. Spiral magnetic order, non-uniform states and electron correlations in the conducting transition metal systems

    Science.gov (United States)

    Igoshev, P. A.; Timirgazin, M. A.; Arzhnikov, A. K.; Antipin, T. V.; Irkhin, V. Yu.

    2017-10-01

    The ground-state magnetic phase diagram is calculated within the Hubbard and s-d exchange (Kondo) models for square and simple cubic lattices vs. band filling and interaction parameter. The difference of the results owing to the presence of localized moments in the latter model is discussed. We employ a generalized Hartree-Fock approximation (HFA) to treat commensurate ferromagnetic (FM), antiferromagnetic (AFM), and incommensurate (spiral) magnetic phases. The electron correlations are taken into account within the Hubbard model by using the Kotliar-Ruckenstein slave boson approximation (SBA). The main advantage of this approach is a correct qualitative description of the paramagnetic phase: its energy becomes considerably lower as compared with HFA, and the gain in the energy of magnetic phases is substantially reduced.

  19. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    Science.gov (United States)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  20. Density wave theory and the classification of spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.

    1975-01-01

    Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type

  1. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  2. Can cluster environment modify the dynamical evolution of spiral galaxies?

    Science.gov (United States)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  3. Spiral nonimaging optical designs

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan

    2011-10-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.

  4. Theory of spiral structure

    International Nuclear Information System (INIS)

    Lin, C.C.

    1977-01-01

    The density wave theory of galactic spirals has now developed into a form suitable for consideration by experts in Applied Mechanics. On the one hand, comparison of theoretical deductions with observational data has convinced astrophysicists of the validity of the basic physical picture and the calculated results. On the other hand, the dynamical problems of a stellar system, such as those concerning the origin of spiral structure in galaxies, have not been completely solved. This paper reviews the current status of such developments, including a brief summary of comparison with observations. A particularly important mechanism, currently called the mechanism of energy exchange, is described in some detail. The mathematical problems and the physical processes involved are similar to those occurring in certain instability mechanisms in the 'magnetic bottle' designed for plasma containment. Speculations are given on the future developments of the theory and on observational programs. (Auth.)

  5. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    Science.gov (United States)

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  6. A Software Development Simulation Model of a Spiral Process

    Science.gov (United States)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.

  7. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  8. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  9. Utilization of the ion traps by SPIRAL

    International Nuclear Information System (INIS)

    Le Brun, C.; Lienard, E.; Mauger, F.; Tamain, B.

    1997-01-01

    An ion trap is a device capable of confine particles, ions or atoms in a well-controlled environment isolated from any exterior perturbations. There are different traps. They are utilized to collect or stock ions, to cool them after in order to subject them to high precision measurement of masses, magnetic moments, hyperfine properties, beta decay properties, etc. Some dozen of traps are currently used all over the world to study stable or radioactive ions.. SPIRAL has been designed and built to produce radioactive ions starting from various heavy ion beams. SPIRAL has the advantage that the projectile parameters, the target and the energy can be chosen to optimize the production in various regions of the nuclear chart. Also, in SPIRAL it is possible to extract more rapidly the radioactive ions formed in the targets. In addition, in SPIRAL the multicharged ion production in a ECR source is possible. The utilization of multicharged ions is indeed very useful for fast mass measurements or for the study of the interaction between the nucleus and the electronic cloud. Finally, utilization of a ion trap on SPIRAL can be designed first at the level of production target by installing a low energy output line. Than, the trap system could be up-graded and brought to its full utilization behind of the recoil spectrometer. It must be capable of selecting and slowing down the ions produced in the reactions (fusion transfer, very inelastic collisions, etc.) induced by the radioactive ions accelerated in CIME. At present, the collaboration is debating on the most favored subject to study and the most suited experimental setups. The following subjects were selected: ion capture, purification and manipulation; isomers (separation and utilization); mass measurements; hyperfine interactions; lifetimes, nuclear electric cloud; β decays; study of the N = Z nuclei close to the proton drip line; physical and chemical properties of transuranium systems

  10. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  11. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Ceccatto, H.A.; Gazza, C.J.; Trumper, A.E.

    1992-07-01

    The Schwinger boson approach to quantum helimagnets is discussed. It is shown that in order to get quantitative agreement with exact results on finite lattices, parity-breaking pairing of bosons must be allowed. The so-called J 1 - J 2 - J 3 model is studied, particularly on the special line J 2 = 2J 3 . A quantum disordered phase is found between the Neel and spiral phases, though notably only in the strong quantum limit S = 1/2, and for the third-neighbor coupling J 3 ≥ 0.038 J 1 . For spins S≥1 the spiral phase goes continuously to an antiferromagnetic order. (author). 19 refs, 3 figs

  12. Strained spiral vortex model for turbulent fine structure

    Science.gov (United States)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  13. Anomalous behavior of soft mode attenuation in the incommensurate phase in Cd2Nb2O7, K2SeO4 and Rb2ZnBr4

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Kolpakova, N.N.; Sher, E.S.; Brzhezina, B.

    1986-01-01

    Moderation of soft mode attenuation in the incommensurate phase in Cd 2 Nb 2 O 7 , K 2 SeO 4 and Rb 2 ZnBr 4 is observed at temperature drop and anomalous jump-like decrease of integral intensity of the soft mode under transition to the low-temperature commensurate phase. Anomalous behaviour of the soft mode is explained by wave amplitudon contribution (q=0) in Raman spectrum of the first order and composite tone (wave amplitudon (q=0) +- wave phase (q=K i )) in Raman spectrum of the second order. Relative contribution of the phase wave (q=K i ) to soft mode attenuation can be estimated supposing that wave amplitudon attenuation is G A ∼ (T i -T) -1 . ΔG f max makes up approximately 6 cm -1 in Cd 2 Nb 2 O 7 and approximately 3 cm -1 in K 2 SeO 4 and Rb 2 ZnBr 4 at temperatures above T c . In the low-temperature phase the soft mode corresponds to the wave amplitudon (q=0) in the Raman spectrum of the first order at T c - 26 K) in Cd 2 Nb 2 O 7 , T c - 13 K) in K 2 SeO 4 and T c - 163 K) in Rb 2 ZnBr 4

  14. Kinematical and dynamical models for barred spiral galaxies

    International Nuclear Information System (INIS)

    Davoust, E.

    1983-01-01

    This is a review of published works on the kinematics and dynamics of stellar bars and barred spiral galaxies. The periodic orbits of stars are elongated along the bar and enhance it out to a certain distance from the center. The important role of the interstellar gas is pointed out by the models of gas clouds and flows: the trajectories are also along the bar, but shock waves arise in front of the bar and transient spiral structures appear at its ends. These models reproduce the observed velocity fields fairly well. The investigations of the stability of axisymmetric galactic disks show that they are very unstable with respect to bar shaped perturbations and might explain why two thirds of the known spiral galaxies are barred [fr

  15. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Perets, Hagai B., E-mail: hamers@ias.edu [Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-09-10

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  16. High-Tc Superconducting Thick-Film Spiral Magnet: Development and Characterization of a Single Spiral Module

    National Research Council Canada - National Science Library

    McGinnis, W

    1997-01-01

    The objective of this project was to make characterized and numerically model prototype modules of a new type of superconducting electromagnet based on stacked spirals of superconducting thick films...

  17. Stabilization of spiral wave and turbulence in the excitable media using parameter perturbation scheme

    International Nuclear Information System (INIS)

    Ma Jun; Wang Chunni; Li Yanlong; Pu Zhongsheng; Jin Wuyin

    2008-01-01

    This paper proposes a scheme of parameter perturbation to suppress the stable rotating spiral wave, meandering spiral wave and turbulence in the excitable media, which is described by the modified Fitzhugh–Nagumo (MFHN) model. The controllable parameter in the MFHN model is perturbed with a weak pulse and the pulse period is decided by the rotating period of the spiral wave approximatively. It is confirmed that the spiral wave and spiral turbulence can be suppressed greatly. Drift and instability of spiral wave can be observed in the numerical simulation tests before the whole media become homogeneous finally. (general)

  18. Characteristics on the heat storage and recovery by the underground spiral heat exchange pipe; Chichu maisetsu spiral kan ni yoru chikunetsu shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, I [Kure National College of Technology, Hiroshima (Japan); Taga, M [Kinki University, Osaka (Japan)

    1996-10-27

    The consistency between the experimental value of a soil temperature and the calculation value of a soil temperature given by a non-steady heat conduction equation was confirmed. The experimental value is obtained by laying a spiral heat exchange pipe in the heat-insulated soil box and circulating hot water forcibly in the pipe. The temperature conductivity in soil significantly influences the heat transfer in soil. The storage performance is improved when the temperature conductivity increases because of the contained moisture. As the difference between the initial soil temperature and circulating water temperature becomes greater, the heat storage and recovery values increase. A thermal core heat transfer is done in the spiral pipe. Therefore, the diameter of the pipe little influences the heat storage performance, and the pitch influences largely. About 50 hours after heat is stored, the storage performance is almost the same as for a straight pipe that uses the spiral diameter as a pipe diameter. To obtain the same heat storage value, the spiral pipe is made of fewer materials than the straight pipe and low in price. The spiral pipe is more advantageous than the straight pipe in the necessary motive power and supply heat of a pump. 1 ref., 11 figs., 1 tab.

  19. Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization.

    Science.gov (United States)

    Alagoz, Celal; Cohen, Andrew R; Frisch, Daniel R; Tunç, Birkan; Phatharodom, Saran; Guez, Allon

    2018-07-01

    Spiral waves are phenomena observed in cardiac tissue especially during fibrillatory activities. Spiral waves are revealed through in-vivo and in-vitro studies using high density mapping that requires special experimental setup. Also, in-silico spiral wave analysis and classification is performed using membrane potentials from entire tissue. In this study, we report a characterization approach that identifies spiral wave behaviors using intracardiac electrogram (EGM) readings obtained with commonly used multipolar diagnostic catheters that perform localized but high-resolution readings. Specifically, the algorithm is designed to distinguish between stationary, meandering, and break-up rotors. The clustering and classification algorithms are tested on simulated data produced using a phenomenological 2D model of cardiac propagation. For EGM measurements, unipolar-bipolar EGM readings from various locations on tissue using two catheter types are modeled. The distance measure between spiral behaviors are assessed using normalized compression distance (NCD), an information theoretical distance. NCD is a universal metric in the sense it is solely based on compressibility of dataset and not requiring feature extraction. We also introduce normalized FFT distance (NFFTD) where compressibility is replaced with a FFT parameter. Overall, outstanding clustering performance was achieved across varying EGM reading configurations. We found that effectiveness in distinguishing was superior in case of NCD than NFFTD. We demonstrated that distinct spiral activity identification on a behaviorally heterogeneous tissue is also possible. This report demonstrates a theoretical validation of clustering and classification approaches that provide an automated mapping from EGM signals to assessment of spiral wave behaviors and hence offers a potential mapping and analysis framework for cardiac tissue wavefront propagation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Software trends for both the GANIL and spiral control

    International Nuclear Information System (INIS)

    David, L.; Lecorche, E.

    1999-01-01

    The Ganil facility has been running with a new control system since 1993. Many improvements have been done since that time to bring new capabilities to the system. So, in February 1996, when the Spiral control system was designed, it was mainly considered as an extension of the Ganil control system. This paper briefly recalls the basic architecture of the whole control system and the main choices upon which it relies. Then it presents the new software trends, to show how the Spiral control system has been integrated alongside the existing one. The last part describe the new developments and the most significant functionalities it brings as seen from the operator point of view, with some emphasis about the application programs for beam tuning. Indeed, these new programs have to be provided both for the spiral tuning with exotic ions beams and for the coupling of the Spiral and older Ganil facilities. (authors)

  1. Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson’s Disease

    Science.gov (United States)

    San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A.; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B.; Lipton, Richard B.; Pullman, Seth; Saunders-Pullman, Rachel

    2016-01-01

    Introduction Pre-clinical markers of Parkinson’s Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. Methods 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. Results All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Conclusion Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD. PMID:27732597

  2. Time-dependent weak values and their intrinsic phases of evolution

    International Nuclear Information System (INIS)

    Parks, A D

    2008-01-01

    The equation of motion for a time-dependent weak value of a quantum-mechanical observable is known to contain a complex valued energy factor (the weak energy of evolution) that is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. In this paper, the mechanism responsible for the creation of this energy is identified and it is shown that the cumulative effect over time of this energy is manifested as dynamical phases and pure geometric phases (the intrinsic phases of evolution) which govern the evolution of the weak value during its measurement process. These phases are simply related to a Pancharatnam phase and Fubini-Study metric distance defined by the Hilbert space evolution of the associated pre-selected and post-selected states. A characterization of time-dependent weak value evolution as Pancharatnam phase angle rotations and Fubini-Study distance scalings of a vector in the Argand plane is discussed as an application of this relationship. The theory of weak values is also reviewed and simple 'gedanken experiments' are used to illustrate both the time-independent and the time-dependent versions of the theory. It is noted that the direct experimental observation of the weak energy of evolution would strongly support the time-symmetric paradigm of quantum mechanics and it is suggested that weak value equations of motion represent a new category of nonlocal equations of motion

  3. Origin choice and petal loss in the flower garden of spiral wave tip trajectories

    OpenAIRE

    Gray, Richard A.; Wikswo, John P.; Otani, Niels F.

    2009-01-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two...

  4. Origin choice and petal loss in the flower garden of spiral wave tip trajectories.

    Science.gov (United States)

    Gray, Richard A; Wikswo, John P; Otani, Niels F

    2009-09-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.

  5. Exact cone beam CT with a spiral scan

    International Nuclear Information System (INIS)

    Tam, K.C.; Samarasekera, S.; Sauer, F.

    1998-01-01

    A method is developed which makes it possible to scan and reconstruct an object with cone beam x-rays in a spiral scan path with area detectors much shorter than the length of the object. The method is mathematically exact. If only a region of interest of the object is to be imaged, a top circle scan at the top level of the region of interest and a bottom circle scan at the bottom level of the region of interest are added. The height of the detector is required to cover only the distance between adjacent turns in the spiral projected at the detector. To reconstruct the object, the Radon transform for each plane intersecting the object is computed from the totality of the cone beam data. This is achieved by suitably combining the cone beam data taken at different source positions on the scan path; the angular range of the cone beam data required at each source position can be determined easily with a mask which is the spiral scan path projected on the detector from the current source position. The spiral scan algorithm has been successfully validated with simulated cone beam data. (author)

  6. Solar Cycle Phase Dependence of Supergranular Fractal Dimension

    Indian Academy of Sciences (India)

    Solar Cycle Phase Dependence of Supergranular Fractal Dimension ... NIE Institute of Technology, Mysore, India. ... This means that each accepted article is being published immediately online with DOI and article citation ID with starting page ...

  7. Electron vortex beams prepared by a spiral aperture with the goal to measure EMCD on ferromagnetic films via STEM

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Darius, E-mail: d.pohl@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, d-01171 Dresden (Germany); Schneider, Sebastian [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, d-01171 Dresden (Germany); TU Dresden, Institute for Solid State Physics, d-01069 Dresden (Germany); Rusz, Jan [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, SE-75120 Uppsala (Sweden); Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, d-01171 Dresden (Germany)

    2015-03-15

    X-ray magnetic circular dichroism is a well established method to study element specific magnetic properties of a material, while electron magnetic circular dichroism (EMCD), which is the electron wave analogue to XMCD, is scarcely used today. Recently discovered electron vortex beams, that carry a discrete orbital angular momentum (OAM) L, are also predicted to reveal dichroic signals. Since electron beams can be easily focused down to sub-nanometer diameters, this novel technique promises the possibility to quantitatively determine local magnetic properties with unrivalled lateral resolution. As the spiralling wave front of the electron vortex beam has an azimutally growing phase shift of up to 2π and a phase singularity in its axial center, specially designed apertures are needed to generate such non-planar electron waves. We report on the preparation and successful implementation of spiral apertures into the condenser lens system of an aberration-corrected FEI Titan{sup 3} 80-300 transmission electron microscope (TEM). This setup allows to perform scanning TEM (STEM) with vortex beams carrying user-selected OAM. First experiments on the interaction of the vortex beam with a poly-crystalline sample are presented. Within the achieved signal to noise ratio no EMCD signal has been detected. This finding is supported by simulations of inelastic scattering of a beam generated by spiral aperture. - Highlights: • We show the implementation of a spiral aperture into a FEI Titan{sup 3} 80-300. • Experiments and simulations on the interaction of the vortex beam with a Ni sample are presented. • Both, simulations and experiments show no (or a not detectable small) EMCD signal. • The absence of an EMCD signal is explained by the superposition of different vortex states.

  8. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  9. Up the Down Spiral with English: Guidelines, Project Insight.

    Science.gov (United States)

    Catholic Board of Education, Diocese of Cleveland, OH.

    This curriculum guide presents the philosophy, objectives, and processes which unify a student-centered English program based on Jerome Bruner's concept of the spiral curriculum. To illustrate the spiraling of the learning process (i.e., engagement, perception, interpretation, evaluation, and personal integration), the theme of "hero" is traced…

  10. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    Science.gov (United States)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  11. Continuing research on the classical spiraling photon model

    Science.gov (United States)

    Li, Hongrui

    2014-11-01

    Based no the classical spiraling photon model proposed by Hongrui Li, the laws of reflection, refraction of a single photon can be derived. Moreover, the polarization, total reflection, evanescent wave and Goos-Hanchen shift of a single photon can be elucidated. However, this photon model is still unfinished. Especially, the spiraling diameter of a photon is not definite. In this paper, the continuous research works on this new theory are reported. According to the facts that the diffraction limit of light and the smallest diameter of the focal spot of lenses are all equal to the wavelength λ of the light, we can get that the spiraling diameter of a photon equals to the wavelength λ, so we gain that the angle between the linear velocity of the spiraling photon υ and the component of the linear velocity in the forward direction υb is 45°, and the energy of a classical spiraling photon E = (1/2)mυ2 = (1/2)m2c2 = mc2. This coincides with Einstein's mass-energy relation. While it is obtained that the velocity of the evanescent wave in the vacuum is slower than the velocity of light in glass in straight line. In such a way, the optical fiber can slow the light down. In addition, the force analysis of a single photon in optical tweezers system is discussed. And the reason that the laser beam can capture the particle slightly downstream from the focal point can be explained.

  12. Attenuation of shock waves in copper and stainless steel

    International Nuclear Information System (INIS)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  13. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  14. Sharp corners as sources of spiral pairs

    International Nuclear Information System (INIS)

    Biton, Y.; Rabinovitch, A.; Braunstein, D.; Friedman, M.; Aviram, I.

    2010-01-01

    It is demonstrated that using the FitzHugh-Nagumo model, stimulation of excitable media inside a region possessing sharp corners, can lead to the appearance of sources of spiral-pairs of sustained activity. The two conditions for such source creation are: The corners should be less than 120 deg. and the range of stimulating amplitudes should be small, occurring just above the threshold value and decreasing with the corner angle. The basic mechanisms driving the phenomenon are discussed. These include: A. If the corner angle is below 120 deg., the wave generated inside cannot emerge at the corner tip, resulting in the creation of two free edges which start spiraling towards each other. B. Spiraling must be strong enough; otherwise annihilation of the rotating arms would occur too soon to create a viable source. C. The intricacies of the different radii involved are elucidated. Possible applications in heart stimulation and in chemical reactions are considered.

  15. The spiral arms of the Milky Way: The relative location of each different arm tracer within a typical spiral arm width

    Energy Technology Data Exchange (ETDEWEB)

    Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca [National Research Council Canada, National Science Infrastructure portfolio, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, B.C., V9E 2E7 (Canada)

    2014-07-01

    From the Sun's location in the Galactic disk, different arm tracers (CO, H I, hot dust, etc.) have been employed to locate a tangent to each spiral arm. Using all various and different observed spiral arm tracers (as published elsewhere), we embark on a new goal, namely the statistical analysis of these published data (data mining) to statistically compute the mean location of each spiral arm tracer. We show for a typical arm cross-cut, a separation of 400 pc between the mid-arm and the dust lane (at the inner edge of the arm, toward the Galactic center). Are some arms major and others minor? Separating arms into two sets, as suggested by some, we find the same arm widths between the two sets. Our interpretation is that we live in a multiple (four-arm) spiral (logarithmic) pattern (around a pitch angle of 12°) for the stars and gas in the Milky Way, with a sizable interarm separation (around 3 kpc) at the Sun's location and the same arm width for each arm (near 400 pc from mid-arm to dust lane).

  16. The spiral arms of the Milky Way: The relative location of each different arm tracer within a typical spiral arm width

    International Nuclear Information System (INIS)

    Vallée, Jacques P.

    2014-01-01

    From the Sun's location in the Galactic disk, different arm tracers (CO, H I, hot dust, etc.) have been employed to locate a tangent to each spiral arm. Using all various and different observed spiral arm tracers (as published elsewhere), we embark on a new goal, namely the statistical analysis of these published data (data mining) to statistically compute the mean location of each spiral arm tracer. We show for a typical arm cross-cut, a separation of 400 pc between the mid-arm and the dust lane (at the inner edge of the arm, toward the Galactic center). Are some arms major and others minor? Separating arms into two sets, as suggested by some, we find the same arm widths between the two sets. Our interpretation is that we live in a multiple (four-arm) spiral (logarithmic) pattern (around a pitch angle of 12°) for the stars and gas in the Milky Way, with a sizable interarm separation (around 3 kpc) at the Sun's location and the same arm width for each arm (near 400 pc from mid-arm to dust lane).

  17. Competing failure analysis in phased-mission systems with multiple functional dependence groups

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Peng, Rui; Pan, Zhusheng

    2017-01-01

    A phased-mission system (PMS) involves multiple, consecutive, non-overlapping phases of operation. The system structure function and component failure behavior in a PMS can change from phase to phase, posing big challenges to the system reliability analysis. Further complicating the problem is the functional dependence (FDEP) behavior where the failure of certain component(s) causes other component(s) to become unusable or inaccessible or isolated. Previous studies have shown that FDEP can cause competitions between failure propagation and failure isolation in the time domain. While such competing failure effects have been well addressed in single-phase systems, only little work has focused on PMSs with a restrictive assumption that a single FDEP group exists in one phase of the mission. Many practical systems (e.g., computer systems and networks), however may involve multiple FDEP groups during the mission. Moreover, different FDEP groups can be dependent due to sharing some common components; they may appear in a single phase or multiple phases. This paper makes new contributions by modeling and analyzing reliability of PMSs subject to multiple FDEP groups through a Markov chain-based methodology. Propagated failures with both global and selective effects are considered. Four case studies are presented to demonstrate application of the proposed method. - Highlights: • Reliability of phased-mission systems subject to competing failure propagation and isolation effects is modeled. • Multiple independent or dependent functional dependence groups are considered. • Propagated failures with global effects and selective effects are studied. • Four case studies demonstrate generality and application of the proposed Markov-based method.

  18. A Fundamental Plane of Spiral Structure in Disk Galaxies

    NARCIS (Netherlands)

    Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia; Westfall, Kyle B.; Shields, Douglas W.; Flatman, Russell; Hartley, Matthew T.; Berrier, Joel C.; Martinsson, Thomas P. K.; Swaters, Rob A.

    Spiral structure is the most distinctive feature of disk galaxies and yet debate persists about which theory of spiral structure is correct. Many versions of the density wave theory demand that the pitch angle be uniquely determined by the distribution of mass in the bulge and disk of the galaxy. We

  19. Numerical study of IP3-induced Ca2+ spiral pattern evolution

    International Nuclear Information System (INIS)

    Tang Jun; Ma Jun; Yi Ming; Jia Ya

    2008-01-01

    The effect of change in concentration of messenger molecule inositol 1,4,5-trisphosphate (IP 3 ) on intracellular Ca 2+ spiral pattern evolution is studied numerically. The results indicate that when the IP 3 concentration decreases from 0.27 μM, a physiologically reasonable value, to different values, the spiral centre drifts to the edge of the medium and disappears for a small enough IP 3 concentration. The instability of spiral pattern can be understood in terms of excitability-change controlled by the IP 3 concentration. On the other hand, when the IP 3 concentration increases from 0.27 μM, a homogeneous area with a high Ca 2+ concentration emerges and competes with the spiral pattern. A high enough IP 3 concentration can lead the homogeneous area to occupy the whole medium. The instability of spiral pattern is ascribed to the change in stability of a stationary state with a high Ca 2+ concentration. (general)

  20. Spiral wave chimera states in large populations of coupled chemical oscillators

    Science.gov (United States)

    Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald

    2018-03-01

    The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.

  1. Experimental Investigation of the Spiral Structure of a Magnetic Capsule Endoscope

    Directory of Open Access Journals (Sweden)

    Wanan Yang

    2016-06-01

    Full Text Available Fitting a wireless capsule endoscope (WCE with a navigation feature can maximize its functional benefits. The rotation of a spiral-type capsule can be converted to translational motion. The study investigated how the spiral structure and rotational speed affected the capsule's translation speed. A hand-held instrument, including two permanent magnets, a stepper motor, a controller and a power supplier, were designed to generate rotational magnetic fields. The surfaces of custom-built permanent magnet rings magnetized radially were mounted in spiral lines with different lead angles and diameters, acting as mock-up capsules. The experimental results demonstrate that the rotational speed of the magnetic field and the spiral have significant effects on the translational speed of a capsule. The spiral line with a larger lead angle and the rotating magnetic field with a higher speed can change the capsule's rotation into a translational motion more efficiently in the intestine.

  2. Leukocyte Overexpression of Intracellular NAMPT Attenuates Atherosclerosis by Regulating PPARγ-Dependent Monocyte Differentiation and Function.

    Science.gov (United States)

    Bermudez, Beatriz; Dahl, Tuva Borresdatter; Medina, Indira; Groeneweg, Mathijs; Holm, Sverre; Montserrat-de la Paz, Sergio; Rousch, Mat; Otten, Jeroen; Herias, Veronica; Varela, Lourdes M; Ranheim, Trine; Yndestad, Arne; Ortega-Gomez, Almudena; Abia, Rocio; Nagy, Laszlo; Aukrust, Pal; Muriana, Francisco J G; Halvorsen, Bente; Biessen, Erik Anna Leonardus

    2017-06-01

    Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) mediates inflammatory and potentially proatherogenic effects, whereas the role of intracellular NAMPT (iNAMPT), the rate limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD) + generation, in atherogenesis is largely unknown. Here we investigated the effects of iNAMPT overexpression in leukocytes on inflammation and atherosclerosis. Low-density lipoprotein receptor-deficient mice with hematopoietic overexpression of human iNAMPT (iNAMPT hi ), on a western type diet, showed attenuated plaque burden with features of lesion stabilization. This anti-atherogenic effect was caused by improved resistance of macrophages to apoptosis by attenuated chemokine (C-C motif) receptor 2-dependent monocyte chemotaxis and by skewing macrophage polarization toward an anti-inflammatory M2 phenotype. The iNAMPT hi phenotype was almost fully reversed by treatment with the NAMPT inhibitor FK866, indicating that iNAMPT catalytic activity is instrumental in the atheroprotection. Importantly, iNAMPT overexpression did not induce any increase in eNAMPT, and eNAMPT had no effect on chemokine (C-C motif) receptor 2 expression and promoted an inflammatory M1 phenotype in macrophages. The iNAMPT-mediated effects at least partly involved sirtuin 1-dependent molecular crosstalk of NAMPT and peroxisome proliferator-activated receptor γ. Finally, iNAMPT and peroxisome proliferator-activated receptor γ showed a strong correlation in human atherosclerotic, but not healthy arteries, hinting to a relevance of iNAMPT/peroxisome proliferator-activated receptor γ pathway also in human carotid atherosclerosis. This study highlights the functional dichotomy of intracellular versus extracellular NAMPT, and unveils a critical role for the iNAMPT-peroxisome proliferator-activated receptor γ axis in atherosclerosis. © 2017 American Heart Association, Inc.

  3. A low frequency piezoelectric power harvester using a spiral-shaped bimorph

    Institute of Scientific and Technical Information of China (English)

    HU; Yuantai; HU; Hongping; YANG; Jiashi

    2006-01-01

    We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.

  4. Graphite target for the spiral project

    International Nuclear Information System (INIS)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J.; Loiselet, M.

    1996-01-01

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author)

  5. Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study.

    Science.gov (United States)

    Gani, M Osman; Ogawa, Toshiyuki

    2014-01-01

    The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced.

  6. Instability and Death of Spiral Wave in a Two-Dimensional Array of Hindmarsh-Rose Neurons

    International Nuclear Information System (INIS)

    Wang Chunni; Ma Jun; Li Yanlong; Tang Jun

    2010-01-01

    Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used. (interdisciplinary physics and related areas of science and technology)

  7. Comments on H. Arp 'The persistent problem of spiral galaxies'

    International Nuclear Information System (INIS)

    Alfven, H.

    1987-04-01

    In his paper 'The persistent problem of Spiral Galaxies' H. Arp criticises the standard theory of spiral galaxies and demonstrates that introduction of plasma theory is necessary in order to understand the structure of spiral galaxies. In the present paper arguments are given in support of Arp's theory and suggestions are made how Arp's ideas should be developed. An important result of Arp's new approach is that there is no convincing argument for the belief that there is a 'missing mass'. This is important from a cosmological point of view. (author)

  8. Dynamics of toroidal spiral strings around five-dimensional black holes

    International Nuclear Information System (INIS)

    Igata, Takahisa; Ishihara, Hideki

    2010-01-01

    We examine the separability of the Nambu-Goto equation for test strings in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a 'Hopf loop' string which is a special class of the toroidal spiral strings, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black hole and for the general toroidal spiral in Minkowski background.

  9. Spiral waves in driven dusty plasma medium: Generalized hydrodynamic fluid description

    Science.gov (United States)

    Kumar, Sandeep; Patel, Bhavesh; Das, Amita

    2018-04-01

    Spiral waves are observed in many natural phenomena. They have been extensively represented by the mathematical FitzHugh-Nagumo model [Barkley et al., Phys. Rev. A 42, 2489 (1990)] of excitable media. Also, in incompressible fluid simulations, the excitation of thermal spiral waves has been reported by Li et al. [Phys. of Fluids 22, 011701 (2010)]. In the present paper, the spatiotemporal development of spiral waves in the context of weak and strong coupling limits has been shown. While the weakly coupled medium has been represented by a simple fluid description, for strong coupling, a generalized visco-elastic fluid description has been employed. The medium has been driven by an external force in the form of a rotating electric field. It is shown that when the amplitude of force is small, the density perturbations in the medium are also small. In this case, the excitations do not develop as a spiral wave. Only when the amplitude of force is high so as to drive the density perturbations to nonlinear amplitudes does the spiral density wave formation occurs. The role of the forcing frequency and the effect of strong coupling and the sound velocity of medium in the formation and evolution of spiral waves have been investigated in detail.

  10. THE DYNAMICAL RELATIONSHIP BETWEEN THE BAR AND SPIRAL PATTERNS OF NGC 1365

    International Nuclear Information System (INIS)

    Speights, Jason C.; Rooke, Paul C.

    2016-01-01

    Theories that attempt to explain the dynamical relationship between bar and spiral patterns in galactic disks make different predictions about the radial profile of the pattern speed. These are tested for the H-alpha bar and spiral patterns of NGC 1365. The radial profile of the pattern speed is measured by fitting mathematical models that are based on the Tremaine–Weinberg method. The results show convincing evidence for the bar rotating at a faster rate than the spiral pattern, inconsistent with a global wave mode or a manifold. There is evidence for mode coupling of the bar and spiral patterns at the overlap of corotation and inner Lindblad resonances (ILRs), but the evidence is unreliable and inconsistent. The results are the most consistent with the bar and spiral patterns being dynamically distinct features. The pattern speed of the bar begins near an ILR and ends near the corotation resonance (CR). The radial profile of the pattern speed beyond the bar most closely resembles what is expected for coupled spiral modes and tidal interactions.

  11. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    Science.gov (United States)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  12. Death Spiral or Euthanasia? The Demise of Generous Group Health Insurance Coverage

    OpenAIRE

    Mark V. Pauly; Olivia Mitchell; Yuhui Zeng

    2004-01-01

    Employers must determine which sorts of healthcare insurance plans to offer employees and also set employee premiums for each plan provided. Depending on how they structure the premiums that employees pay across different healthcare insurance plans, plan sponsors alter the incentives to choose one plan over another. If employees know they differ by risk level but premiums do not fully reflect these risk differences, this can give rise to a so-called "death spiral" due to adverse selection. In...

  13. Thermal performance of a spirally coiled finned tube heat exchanger under wet-surface conditions

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Naphon, Paisarn

    2006-01-01

    This paper is a continuation of the author's previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data

  14. The Galactic Centre Mini-Spiral with CARMA

    Science.gov (United States)

    Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, K.; Schodel. R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.; hide

    2012-01-01

    The Galactic centre mini-spiral region is a mixture of gas and dust with temperatures ranging from a few hundred K to 10(exp 4) K. We report results from 1.3 and 3mm radio interferometric observations of this region with CARMA, and present a spectral index map of this region. We find a range of emission mechanisms in the region, including the inverted synchrotron spectrum of Sgr A*, free-free emission from the mini-spiral arms, and a possible dust emission contribution indicated by a positive spectral index.

  15. Lateral variation of seismic attenuation in Sikkim Himalaya

    Science.gov (United States)

    Thirunavukarasu, Ajaay; Kumar, Ajay; Mitra, Supriyo

    2017-01-01

    We use data from local earthquakes (mb ≥ 3.0) recorded by the Sikkim broad-band seismograph network to study the frequency-dependent attenuation of the crust and uppermost mantle. These events have been relocated using body wave phase data from local and regional seismograms. The decay of coda amplitudes at a range of central frequencies (1 to 12 Hz) has been measured for 74 earthquake-receiver pairs. These measurements are combined to estimate the frequency-dependent coda Q of the form Q( f) = Q0 f η. The estimated Q0 values range from 80 to 200, with an average of 123 ± 29; and η ranges from 0.92 to 1.04, with an average of 0.98 ± 0.04. To study the lateral variation of Q0 and η, we regionalized the measured Q values by combining all the earthquake-receiver path measurements through a back projection algorithm. We consider a single back-scatter model for the coda waves with elliptical sampling and parametrize the sampled area using 0.2° square grids. A nine-point spatial smoothening (similar to spatial Gaussian filter) is applied to stabilize the inversion. This is done at every frequency to observe the spatial variation of Q( f) and subsequently combined to obtain η variations. Results of our study reveal that the Sikkim Himalaya is characterized by low Q0 (80-100) compared to the foreland basin to its south (150-200) and the Nepal Himalaya to its west (140-160). The low Q and high η in Sikkim Himalaya is attributed to extrinsic scattering attenuation from structural heterogeneity and active faults within the crust, and intrinsic attenuation due to anelasticity in the hotter lithosphere beneath the actively deforming mountain belt. Similar low Q and high η values had also been observed in northwest and Garhwal-Kumaun Himalaya.

  16. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  17. Anomalies of ultrasound attenuation in metals under hydrostatic pressure

    International Nuclear Information System (INIS)

    Galkin, A.A.; Datsko, O.I.; Varyukhin, V.N.; Pilipenko, N.P.

    1978-01-01

    Ultrasonic attenuation was measured in polycrystal specimens of molybdenum, chromium and zinc under hydrostatic pressure up to 6 kbar. On the plot of ultrasound attenuation dependence on the pressure in molybdenum the maxima are observed under the pressure of 2 kbar. The anomaly of ultrasound attenuation is shown to connect only with brittle-ductile transtion

  18. New developments in the theory of spiral galaxies

    International Nuclear Information System (INIS)

    Thielheim, K.O.

    1982-01-01

    About 30% of all galaxies exhibit spiral forms, 60% are elliptical and 10% irregular. It is the objective of galactic dynamics to explain these structural features. A first generation of self-consistent N-body simulations indicates that ellipticals are equilibrium configurations of gravitationally interacting multi-particle systems for which unfortunately a theory does not yet exist. Recent progress has been made on the modal analysis of Freeman disks. In a second generation of N-body simulations spiral density waves have been reproduced in disk configurations. As an alternative to the Lin-Shu conjecture based on the QSSS-hypothesis the author considers a mechanism by which spiral density waves are produced in the surrounding disk as a consequence of the slow increase of the quadrupole moment of a central oval shaped equilibrium configuration immersed in the disk. (Auth.)

  19. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    International Nuclear Information System (INIS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  20. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  1. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  2. Influence of heart rate on image quality of 64-slice spiral computed coronary angiography and optimization on reconstruction of phase window

    International Nuclear Information System (INIS)

    Luo Xuemao; Lan Yong; Li Wei; Long Wansheng; Zhang Chaotong; Zhong Xiangyang; Yi Lan

    2009-01-01

    Objective: To evaluate the influence of heart rate on the image quality of 64-slice spiral computed coronary angiography (MSCTCA) and optimize the image reconstruction window. Methods: According to the heart rate, 86 patients were classified into 5 groups: group A, the heart rate ≤60 beat per minute(BMP); group B,61-70BMP, group C,71-80BMP, and group D>80BMP. The image quality of MSCTCA was scored 5 grades from 1-5 according to heart motion artifact. The influences of heart rate and reconstruction phase on the image quality of MSCTCA were evaluated. Results: Average heart rate was 64.4 ±10.1BMP. Diagnostic image quality (score>3) was attained in 277 of 344 segments at the best reconstruction interval. There was a significant corxelation between average heart rate and image quality, but there was no difference between relative delay (%) reconstruction and absolute delay (ms) reconstruction on the image quality. Conclusion: Reducing average heart rate is beneficial for improving the image quality. (authors)

  3. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.

    Science.gov (United States)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R; Kemperman, Antoine J B; Ederth, Thomas; Nijmeijer, Kitty

    2015-03-15

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  5. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion.

    Science.gov (United States)

    Ball, E; Robson, S C; Ayis, S; Lyall, F; Bulmer, J N

    2006-03-01

    Invasion by extravillous trophoblast of uterine decidua and myometrium and the associated spiral artery 'transformation' are essential for the development of normal pregnancy. Small pilot studies of placental bed and basal plate tissues from miscarriages have suggested that impaired interstitial and endovascular trophoblast invasion may play a role in the pathogenesis of miscarriage. The hypothesis that early miscarriage is associated with reduced extravillous trophoblast invasion and spiral artery transformation was tested in a large series of placental bed biopsies containing decidua and myometrium and at least one spiral artery from early, karyotyped embryonic miscarriages (spiral artery medial smooth muscle (desmin), and endothelium (von Willebrand factor). Trophoblast invasion and individual features of spiral artery transformation were assessed histologically in spiral arteries of miscarriages (n = 176) and controls (n = 246) and analysed statistically using a logistic regression model. Trophoblast invasion of uterine tissues and spiral artery transformation did not differ between euploid and aneuploid early miscarriage and also did not differ significantly from normal pregnancy. These findings suggest that failed trophoblast invasion and spiral artery transformation do not have a pivotal role in the pathogenesis of early miscarriage.

  6. Velocity dispersions in the bulges of spiral and SO galaxies. II. Further observations and a simple three-component model for spiral galaxies

    International Nuclear Information System (INIS)

    Whitmore, B.C.; Kirshner, R.P.

    1981-01-01

    We have obtained velocity dispersions for 24 galaxies in the Virgo cluster to supplement our earlier results. A 2000 channel intensified Reticon scanner has again been used on the 1.3 m telescope of McGraw-Hill Observatory, and a Fourier quotient technique has been employed to yield dispersions. We have confirmed our earlier result that spiral bulges exhibit a relation between total luminosity and velocity dispersion with the form L proportional sigma 4 , but with velocity dispersions that are 17 +- 8% smaller than elliptical galaxies at the same absolute magnitude. However, possible systematic errors may still affect the reality of this gap. The scatter in the L proportional sigma 4 relationship is substantially larger for the spiral bulges than for the elliptical galaxies. This larger scatter probably indicates that spiral bulges comprise a more heterogeneous sample than do elliptical galaxies. we also find that the bulge components of SO galaxies follow a L proportional sigma 4 relation with no gap with the ellipticals. The similarity in this relation for the spheroidal components of spiral, SO, and elliptical galaxies indicates that the systems are dynamically similar

  7. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Rafikov, Roman R., E-mail: rrr@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  8. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2016-01-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  9. Evolutionary Acquisition and Spiral Development Tutorial

    National Research Council Canada - National Science Library

    Hantos, P

    2005-01-01

    .... NSS Acquisition Policy 03-01 provided some space-oriented customization and, similarly to the original DOD directives, also positioned Evolutionary Acquisition and Spiral Development as preferred...

  10. Fluid flow in a spiral microfluidic duct

    Science.gov (United States)

    Harding, Brendan; Stokes, Yvonne

    2018-04-01

    We consider the steady, pressure driven flow of a viscous fluid through a microfluidic device having the geometry of a planar spiral duct with a slowly varying curvature and height smaller than width. For this problem, it is convenient to express the Navier-Stokes equations in terms of a non-orthogonal coordinate system. Then, after applying appropriate scalings, the leading order equations admit a relatively simple solution in the central region of the duct cross section. First-order corrections with respect to the duct curvature and aspect ratio parameters are also obtained for this region. Additional correction terms are needed to ensure that no slip and no penetration conditions are satisfied on the side walls. Our solutions allow for a top wall shape that varies with respect to the radial coordinate which allows us to study the flow in a variety of cross-sectional shapes, including trapezoidal-shaped ducts that have been studied experimentally. At leading order, the flow is found to depend on the local height and slope of the top wall within the central region. The solutions are compared with numerical approximations of a classical Dean flow and are found to be in good agreement for a small duct aspect ratio and a slowly varying and small curvature. We conclude that the slowly varying curvature typical of spiral microfluidic devices has a negligible impact on the flow in the sense that locally the flow does not differ significantly from the classical Dean flow through a duct having the same curvature.

  11. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    Science.gov (United States)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  12. Crystalline phase-dependent eco-toxicity of titania nanoparticles to freshwater biofilms

    International Nuclear Information System (INIS)

    Li, Kun; Qian, Jin; Wang, Peifang; Wang, Chao; Liu, Jingjing; Tian, Xin; Lu, Bianhe; Shen, Mengmeng

    2017-01-01

    The potential toxic impacts of different crystal phases of titania nanoparticles (TNPs) on freshwater biofilms, especially under ultraviolet C irradiation (UVC), are unknown. Here, adverse impacts of three phases (anatase, rutile, and P25, 50 mg L −1 respectively) with UVC irradiation (An-UV, Ru-UV, and P25-UV) on freshwater biofilms were conducted. Characterization experiments revealed that rutile TNPs had a higher water environment stability than anatase and P25 TNPs, possessing a stronger photocatalytic activity under UVC irradiation. Phase-dependent inhibition of cell viability and significant decreases of four- and five-fold in algal biomass at 12 h of exposure were observed compared with unexposed biofilms. Moreover, phase-dependent oxidative stress resulted in remarkably significant reductions (P < 0.01) of the photosynthetic yields of the biofilms, to 40.32% (P25-UV), 48.39% (An-UV), and 46.77% (Ru-UV) of the plateau value obtained in the unexposed biofilms. A shift in community composition that manifested as a strong reduction in diatoms, indicating cyanobacteria and green algae were more tolerant than diatoms when exposed to TNPs. In terms of the toxic mechanisms, rutile TNPs resulted in apoptosis by inducing excessive intracellular reactive oxygen species (ROS) production, whereas P25 and anatase TNPs tended to catalyze enormous acellular ROS lead to cell necrosis under UVC irradiation. - Highlights: • Phase-dependent response of freshwater biofilms to three TNPs was studied with UVC. • Rutile is more stable yet P25 and anatase own better photooxidation level in water. • Decrease in Chl-a and φM and a shift in algae bio-cenosis were phase-dependent. • Phase-dependent stress induced cellular or acellular ROS to reduce cells viability. • Rutile tend to induced apoptosis yet P25 and anatase prefer to cause cell necrosis. - Crystalline-dependent eco-toxicity of TNPs to freshwater biofilms show allotrope of nanoparticles must be considered

  13. Three-dimensional spiral CT for neurosurgical planning.

    Science.gov (United States)

    Klein, H M; Bertalanffy, H; Mayfrank, L; Thron, A; Günther, R W; Gilsbach, J M

    1994-08-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important.

  14. Rarefied, rotational gas flows in spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Hausman, M.A.

    1983-01-01

    We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure

  15. Three-dimensional spiral CT for neurosurgical planning

    International Nuclear Information System (INIS)

    Klein, H.M.; Bertalanffy, H.; Mayfrank, L.; Thron, A.; Guenther, R.W.; Gilsbach, J.M.

    1994-01-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important. (orig.)

  16. Spiral versus J-shaped coils for neurovascular embolisation - an in-vitro study

    International Nuclear Information System (INIS)

    Sugiu, K.; Tokunaga, K.; Mandai, S.; Martin, J.B.; Jean, B.; Ruefenacht, D.A.

    2003-01-01

    Our purpose was to compare the characteristics of J-shaped detachable platinum coils with those of spiral coils in in-vitro vascular models. J-shaped coils consist of distal semicircular and proximal straight segments, the latter extending for most of the length of the coil. Spiral coils have a helical shape memory and are thus