Phase transformation and diffusion
Kale, G B; Dey, G K
2008-01-01
Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g
Diffuse-interface model for rapid phase transformations in nonequilibrium systems.
Galenko, Peter; Jou, David
2005-04-01
A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.
Effect of lattice mismatch-induced strains on coupled diffusive and displacive phase transformations
Bouville, Mathieu; Ahluwalia, Rajeev
2006-01-01
Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some materials systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize m...
Energy Technology Data Exchange (ETDEWEB)
Fisher, Kaitlynn; Barron, S. C.; Knepper, R.; Weihs, T. P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2689 (United States); Bonds, M. A.; Browning, N. D. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Livi, K. J. T. [High-Resolution Analytical Electron Microbeam Facility, Integrated Imaging Center, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Campbell, G. H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2013-12-28
We describe the energy and sequence of phase transformations in multilayered Al/Zr foils with atomic ratios of 3 Al:1 Zr during low temperature (<350 °C) heat treatments in a differential scanning calorimeter. The initial phase formed is an Al-rich amorphous phase that appears to grow by Zr diffusion through the amorphous phase. The subsequent nucleation and growth of tetragonal Al{sub 3}Zr along the Al/amorphous layer interface is mediated by Al diffusion through the crystalline intermetallic phase. Diffusion coefficients associated with these processes are higher than expected from reports of diffusivities measured at higher temperatures. The inferred heat of formation of the tetragonal Al{sub 3}Zr phase is 1240 ± 40 J/g (53 ± 2 kJ/mol atom). No anomalous variation in the energy or sequence of phase transformations is found with bilayer thickness for samples with bilayer thickness in the range of 17 nm to 90 nm despite anomalies in the bilayer dependence of self-propagating reaction velocities in the same foils.
A thick-interface model for diffusive and massive phase transformation in substitutional alloys
International Nuclear Information System (INIS)
Svoboda, J.; Vala, J.; Gamsjaeger, E.; Fischer, F.D.
2006-01-01
Based on the application of the thermodynamic extremal principle, a new model for the diffusive and massive phase transformation in multicomponent substitutional alloys is developed. Interfacial reactions such as the rearrangement of the lattice, solute drag and trans-interface diffusion are automatically considered by assigning a finite thickness and a finite mobility to the interface region. As an application of the steady-state solution of the derived evolution equations, the kinetics of the massive γ → α transformation in the Fe-rich Fe-Cr-Ni system is simulated. The thermodynamic properties of the interface may influence significantly the contact conditions at the interface as well as the conditions for the occurrence of the massive transformation and its kinetics. The model is also used for the simulation of the diffusion-induced grain boundary migration in the same system. By application of the model a realistic value for the Gibbs energy per unit interface area is obtained
Energy Technology Data Exchange (ETDEWEB)
Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)
2014-05-01
Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.
International Nuclear Information System (INIS)
Cao, Siwei; Zhao, Ji-Cheng
2015-01-01
A dual-anneal diffusion multiple (DADM) approach is developed for effective determination of intermediate-temperature phase diagrams that are critical to the establishment of reliable thermodynamic databases. A large amount of phase equilibrium data was obtained from DADMs to construct the Fe–Cr–Ni isothermal sections at 1200, 900, 800 and 700 °C. The DADM approach is also a systematic and effective way to study phase precipitation from wide ranges of compositions, thus generating rich atlases of microstructures induced by various transformations. The results from this study indicate that the body-centered cubic to sigma phase transformation in the Fe–Cr–Ni system took place initially through a massive transformation mechanism
Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation
Energy Technology Data Exchange (ETDEWEB)
Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)
2014-10-15
Highlights: • Diffusion bonding was employed to join 9Cr oxide dispersion strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure, and the microstructure and tensile properties of the joints were investigated. • ODS steel was successfully diffusion bonded at an austenization temperature to migrate a residual diffusion bonding interface. • The tensile properties of the joint region were comparable with that of the base metal with a ductile fracture occurred far from the bonding interface. • It is considered that diffusion bonding with a phase transformation can be a very useful joining method for fabricating components in next-generation nuclear systems using 9Cr ODS ferritic/martensitic steel. - Abstract: Diffusion bonding was employed to join oxide-dispersion-strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure using a high vacuum hot press, and the microstructure and tensile properties of the joints were investigated. 9Cr oxide dispersion strengthened (ODS) steel was successfully diffusion bonded at 1150 °C for 1 h to migrate a residual bonding interface. Following heat treatment, including normalising at 1050 °C and tempering at 800 °C for 1 h, comparable results without inclusions or micro-voids at the bonding interface, or degradation in the base metal were achieved. Transmission electron microscopy (TEM) observation revealed that the nano-oxide particles in the bonding region were uniformly distributed in the matrix. At room temperature, the joint had nearly the same tensile properties with that of the base metal. The tensile strength of the joint region at elevated temperatures was comparable with that of the base metal. The total elongation of the joint region decreased slightly, but reached 80% of the base metal at 700 °C, and a ductile fracture occurred far from the bonding interface. Therefore, it is considered that diffusion bonding with a phase transformation can be a very useful joining method for
Phase correction of MR perfusion/diffusion images
International Nuclear Information System (INIS)
Chenevert, T.L.; Pipe, J.G.; Brunberg, J.A.; Yeung, H.N.
1989-01-01
Apparent diffusion coefficient (ADC) and perfusion MR sequences are exceptionally sensitive to minute motion and, therefore, are prone to bulk motions that hamper ADC/perfusion quantification. The authors have developed a phase correction algorithm to substantially reduce this error. The algorithm uses a diffusion-insensitive data set to correct data that are diffusion sensitive but phase corrupt. An assumption of the algorithm is that bulk motion phase shifts are uniform in one dimension, although they may be arbitrarily large and variable from acquisition to acquisition. This is facilitated by orthogonal section selection. The correction is applied after one Fourier transform of a two-dimensional Fourier transform reconstruction. Imaging experiments on rat and human brain demonstrate significant artifact reduction in ADC and perfusion measurements
Color image encryption using random transforms, phase retrieval, chaotic maps, and diffusion
Annaby, M. H.; Rushdi, M. A.; Nehary, E. A.
2018-04-01
The recent tremendous proliferation of color imaging applications has been accompanied by growing research in data encryption to secure color images against adversary attacks. While recent color image encryption techniques perform reasonably well, they still exhibit vulnerabilities and deficiencies in terms of statistical security measures due to image data redundancy and inherent weaknesses. This paper proposes two encryption algorithms that largely treat these deficiencies and boost the security strength through novel integration of the random fractional Fourier transforms, phase retrieval algorithms, as well as chaotic scrambling and diffusion. We show through detailed experiments and statistical analysis that the proposed enhancements significantly improve security measures and immunity to attacks.
Phase transformations in nickel sulphide: Microstructures and mechanisms
International Nuclear Information System (INIS)
Yousfi, Oussama; Donnadieu, Patricia; Brechet, Yves; Robaut, Florence; Charlot, Frederic; Kasper, Andreas; Serruys, Francis
2010-01-01
Nickel sulphide inclusions are known to be responsible for delayed fracture in tempered glasses due to phase transformation within the inclusion. Microstructural identification of the phase transformation mechanisms in the Ni-S system close to the NiS composition were carried out on a series of partially transformed states. Observations allow to investigate the morphological evolution during transformation, the phase orientation relationships and the first stages of the transformation were investigated by optical microscopy, electron backscatter diffraction, and scanning and transmission electron microscopy. The transformation mechanisms change significantly with the change in sulphur content of the α-NiS phase. Massive transformation is observed for near-stoichiometric composition. For overstoichiometric composition, the transformation is controlled by a long-range diffusion mechanism. The influence of stoichiometry and impurities (Fe) on the microstructural evolution and transformation mechanisms has also been studied.
Effect of Phase Transformations on Seismic Velocities
Weidner, D. J.; Li, L.; Whitaker, M.; Triplett, R.
2017-12-01
The radial velocity structure of the Earth consists of smooth variations of velocities with depth punctuated by abrupt changes of velocity, which are typically due to multivariant phase transformations, where high - low pressure phases can coexist. In this mixed phase region, both the effective shear and bulk moduli will be significantly reduced by the dynamic interaction of the propagating wave and the phase transition if the period of the wave is long enough relative to the kinetic time so that some of the transition can take place. In this presentation, we will give examples from both laboratory studies of phases transitions of Earth minerals and the calculated velocity profile based on our models. We focus on understanding the time limiting factor of the phase transformation in order to extrapolate laboratory results to Earth observations. Both the olivine to ringwoodite transition and KLB-1 partial melting are explored. We find that when the transformation requires diffusion, the kinetics are often slowed down considerably and as a result the diffusivity of atoms become the limiting factor of characteristic time. Specifically Fe-Mg exchange rate in the olivine-ringwoodite phase transition becomes the limiting factor that seismic waves are likely to sample. On the other hand, partial melting is an extremely fast phase transformation at seismic wave periods. We present evidence that ultrasonic waves, with a period of a few tens of nanoseconds, are slowed by the reduction of the effective elastic moduli in this case.
Energy Technology Data Exchange (ETDEWEB)
Luo, Alan A [The Ohio State Univ., Columbus, OH (United States); Zhao, Ji-Cheng [The Ohio State Univ., Columbus, OH (United States); Riggi, Adrienne [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Joost, William [US Dept. of Energy, Washington, DC (United States)
2017-10-02
The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide large amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.
Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics
International Nuclear Information System (INIS)
Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.
2007-01-01
The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)
2010-12-15
Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.
Kinetics of phase transformations
International Nuclear Information System (INIS)
Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.
1992-01-01
This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations
Energy Technology Data Exchange (ETDEWEB)
Hsieh, Chih-Chun [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Wu, Weite, E-mail: wwu@dragon.nchu.edu.t [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China)
2010-09-17
Research highlights: This article concentrates the phase transformation in {delta} {yields} {sigma} in dissimilar stainless steels using the Vitek equation and thermodynamics simulation during the multi-pass welding. The phase transformation in {delta} {yields} {sigma} is very important to the properties of stainless steel composites. In this study, the diffusion behavior of Cr, Ni and Si in the {delta}, {sigma}, and {gamma} phases were discussed using the DSC analysis and diffusion equation calculation. This method has a novelty for discussing the phase transformation in {delta} {yields} {sigma} in the dissimilar stainless steel. We hope that we can give a scientific contribution for the phase transformation of the dissimilar stainless steels during the multi-pass welding. - Abstract: This study performed a precipitation examination of the {sigma} phase using the Vitek diffusion equation and thermodynamic simulation in dissimilar stainless steels during multi-pass welding. The results of the experiment demonstrate that the diffusion rates (D{sub Cr}{sup {delta}} and D{sub Ni}{sup {delta}}) of Cr and Ni are higher in {delta}-ferrite than (D{sub Cr}{sup {gamma}} and D{sub Ni}{sup {gamma}}) in the {gamma} phase and that they facilitate the precipitation of {sigma} phase in the third pass fusion zone. When the diffusion activation energy of Cr in {delta}-ferrite is equal to that of Ni in {delta}-ferrite (Q{sub dCr}{sup {delta}}=Q{sub dNi}{sup {delta}}), phase transformation of the {delta} {yields} {sigma} can be occurred.
Ha, Don-Hyung
2011-01-01
We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.
Phase transformations im smart materials
International Nuclear Information System (INIS)
Newnham, R.E.
1998-01-01
One of the qualities that distinguishes living systems from inanimate matter is the ability to adapt to changes in the environment. Smart materials have the ability to perform both sensing and actuating functions and are, therefore, capable of imitating this rudimentary aspect of life. Four of the most widely used smart materials are piezoelectric Pb(Zr, Ti)O 3 , electrostrictive Pb(Mg, Nb)O 3 , magnetostrictive (Tb, Dy)Fe 2 and the shape-memory alloy NiTi. All four are ferroic with active domain walls and two phase transformations, which help to tune the properties of these actuator materials. Pb(Zr, Ti)O 3 is a ferroelectric ceramic which is cubic at high temperature and becomes ferroelectric on cooling through the Curie temperature. At room temperature, it is poised on a rhombohedral-tetragonal phase boundary which enhances the piezoelectric coefficients. Terfenol, (Tb, Dy)Fe 2 , is also cubic at high temperature and then becomes magnetic on cooling through its Curie temperature. At room temperature, it too is poised on a rhombohedral-tetragonal transition which enhances its magnetostriction coefficients. Pb(Mg, Nb)O 3 and nitinol (NiTi) are also cubic at high temperatures and on annealing transform to a partially ordered state. On further cooling, Pb(Mg, Nb)O 3 passes through a diffuse phase transformation at room temperature where it exhibits very large dielectric and electrostrictive coefficients. Just below room temperature, it transforms to a ferroelectric rhombohedral phase. The partially ordered shape-memory alloy NiTi undergoes an austenitic (cubic) to martensitic (mono-clinic) phase change just above room temperature. It is easily deformed in the martensitic state but recovers its original shape when reheated to austenite
Pan, Ling
Motivated by the great potential applications of gamma titanium aluminide based alloys and the important effect of diffusion on the properties of gamma-TiAl/alpha2-Ti3Al two-phase lamellar structure, we conduct this thesis research to explore the microstructural evolution and interdiffusion behavior, and their correlations in multi-phase solid state diffusion couples made up of pure titanium and polysynthetically-twinned (PST) Ti-49.3 at.% Al "single" crystal, in the temperature range of 973--1173 K. The diffusion couples are prepared by high vacuum hot-pressing, with the diffusion direction parallel to the lamellar planes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) are employed to observe the microstructure at various interfaces/interphases. A reaction zone (RZ) of polycrystalline alpha 2-Ti3Al phase forms along the PST Ti-Al/Ti bonding interface having a wavy interface with the PST crystal and exhibits deeper penetration in alpha2 lamellae, consisting of many fine alpha2 and secondary gamma laths, than in primary gamma lamellae. Direct measurement of the RZ thickness on SEM back-scattered electron images reveals a parabolic growth of the RZ, indicating a macroscopically diffusion-controlled growth. Concentration profiles from Ti, through the RZ, into the alpha2 lamellae of the PST crystal are measured by quantitative energy-dispersive x-ray spectroscopy (EDS) in a scanning transmission electron microscope (STEM). A plateau of composition adjacent to the RZ/(mixed alpha2 lath in PST) interface forms in the deeply penetrated RZ grains, implying a diffusion barrier crossing the interface and some extent of interface control in the RZ grain growth. The interdiffusion coefficient is evaluated both independent of composition and as a function of composition. No significant concentration dependence of the interdiffusion coefficients is observed using Boltzmann-Matano analysis
Numerical simulation of heterogeneous phase transformations
International Nuclear Information System (INIS)
Combeau, H.; Lacaze, J.
1993-01-01
A numerical model is presented for the simulation of diffusion controlled phase transformations in multicomponent alloys. A closed system is considered, with simple geometric shape, either planar, cylindrical or spherical. The temperature inside this microscopic volume is homogeneous, but can vary according to any specified monoteneous law. Particular care has been given to the description of the solute profiles where the concentration gradients are the steepest, i.e. near the interface between the parent and the resultant phases. Solute redistribution at the interface is described by means of an original method which ensures that the overall solute balance is satisfied. A non linear system is obtained which includes the diffusion equations in both phases and the boundary conditions. The solution of this system makes use of a special algorithm which has been devised for a quick convergence. An example is presented which deals with microsegregation build-up during solidification of a multi-component nickel base alloy. (orig.)
Phase Transformation of Hot Dipped Aluminium during High Temperature Oxidation
International Nuclear Information System (INIS)
Zaifol Samsu; Muhammad Daud; Hishamuddin Husain; Mohd Saari Ripin; Rusni Rejab; Zaiton Selamat; Mohd Shariff Sattar
2014-01-01
Low alloy carbon steel was coated by hot-dipping into a molten aluminum bath. Isothermal oxidations were carried out at 750 degree Celsius in static air to study the oxidation behaviour of the hot-dipped aluminide steel. The phase transformation in the aluminide layer during diffusion at 750 degree Celsius in static air was analyzed by SEM-EDX and XRD. After hot-dip treatment, the coating layers consisted of three phases, where Al, thinner layer of FeAl 3 , and thicker layer of Fe 2 Al 5 were detected from external topcoat to the aluminide/ steel substrate. After oxidation, the Fe 2 Al 5 formed during the immersion process completely transformed to Fe 2 Al 5 , FeAl 2 , FeAl and Al-Fe(Al) phases because of the composition gradient and the chemical diffusion by oxidation. After oxidation, there are some voids were found at the coating/ substrate interface due to the rapid inter-diffusion of iron and aluminium during oxidation. The FeAl phase kept growing with increasing exposure time at 750 degree Celsius, while the Fe 2 Al 5 was consumed during oxidation. After 168 hrs oxidation, the Fe 2 Al 5 phase was going disappeared as the aluminum layer was consumed. (author)
A balance principle approach for modeling phase transformation kinetics
International Nuclear Information System (INIS)
Lusk, M.; Krauss, G.; Jou, H.J.
1995-01-01
A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)
Diffusionless phase transformations
International Nuclear Information System (INIS)
Vejman, K.M.
1987-01-01
Diffusionless phase transformations in metals and alloys in the process of which atomic displacements occur at the distances lower than interatomic ones and relative correspondence of neighbour atoms is preserved, are considered. Special attention is paid to the mechanism of martensitic transformations. Phenomenologic crystallographical theory of martensitic transformations are presented. Two types of martensitic transformations different from the energy viewpoint are pointed out - thermoelastic and non-thermoelastic ones - which are characterized by transformation hysteresis and ways of martensite - initial phase reverse transformation realization. Mechanical effect in the martensitic transformations have been analyzed. The problem of diffusionless formation of ω-phases and the effect of impurities and vacancies on the process are briefly discussed. The role of charge density waves in phase transformations of the second type (transition of initial phase into noncommensurate one) and of the first type (transition of noncommensurate phase into commensurate one) is considered
International Nuclear Information System (INIS)
Iwasaki, Hiroshi; Ohshima, Ken-ichi
2011-01-01
The 11th lecture about microstructures and fluctuation in solids reports on the martensitic phase transformation of alkali metals and alloys. The martensitic transformation is a diffusionless first order phase transformation. Martensitic transformations are classified into two with respect to kinetics, one is isothermal transformation and the other is athermal transformation. The former transformation depends upon both temperature and time, but the latter solely depends on temperature. The former does not have a definite transformation start temperature but occurs after some finite incubation time during isothermal holding. The isothermal martensitic transformation is changed to the athermal one under high magnetic field, and also the reverse transformation occurs under the application of hydrostatic pressure. The former phenomena were observed in Fe-Ni-Mn alloys, Fe-Ni-Cr alloys and also the reverse transformation in Fe-3.1at%Ni-0.5at%Mn alloys. The athermal transformation was observed in Li and Na metals at 73 and 36 K, respectively. A neutron diffraction study has been performed on single crystals of metallic Na. On cooling the virgin sample, the incubation time to transform from the bcc structure to the low-temperature structure (9R structure) is formed to be more than 2h at 38 K, 2 K higher than the transformation temperature of 36 K. The full width of half maximum of the Bragg reflection suddenly increased, due to some deformation introduced by the nucleation of the low-temperature structure. In relation to the deformation, strong extra-diffuse scattering (Huang scattering) was observed around the Bragg reflection in addition to thermal diffuse scattering. The kinetics of the martensitic transformation in In-Tl alloys has been studied by x-ray and neutron diffraction methods. A characteristic incubation time appeared at fixed temperature above Ms, the normal martensitic transformation start temperature. (author)
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Madsen, Henrik
the Lamperti transform. This note gives an example driven introduction to the Lamperti transform. The general applicability of the Lamperti transform is limited to univariate diffusion processes, but for a restricted class of multivariate diffusion processes Lamperti type transformations are available...
International Nuclear Information System (INIS)
Song, Shaojie; Liu, Feng
2016-01-01
Considering a spherical misfitting precipitate growing into a finite elastic-perfectly plastic supersaturated matrix, a kinetic modeling for such solid-state partitioning phase transformation is presented, where the interactions of interface migration, solute diffusion and misfit accommodation are analyzed. The linkage between interface migration and solute diffusion proceeds through interfacial composition and interface velocity; their effects on misfit accommodation are mainly manifested in an effective transformation strain, which depends on instantaneous composition field and precipitate size. Taking γ to α transformation of a binary Fe-0.5 at.% C alloy under both isothermal and continuous cooling conditions as examples, the effects of misfit accommodation on the coupling interface migration and solute diffusion are well evaluated and discussed. For the isothermal transformation, a counterbalancing influence between mechanical and chemical driving forces is found so that the mixed-mode transformation kinetics is not sensitive with respect to the elastic–plastic accommodation of the effective misfit strain. Different from the isothermal process, during the continuous cooling condition, the effects of misfit accommodation on the kinetics of solid-state partitioning phase transformation are mainly manifested in the great decrease of the transformation starting temperature and the thermodynamic equilibrium composition. The present kinetic modeling was applied to predict the experimentally measured γ/α transformation of Fe-0.47 at.% C alloy conducted with a cooling rate of 10 K min −1 and a good agreement was achieved.
Phase Transformation in Cast Superaustenitic Stainless Steels
Energy Technology Data Exchange (ETDEWEB)
Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)
2006-01-01
Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.
Coupled gamma/alpha phase transformations in low-carbon steels
Mizutani, Yasushi
Since steels have been the most prevalently utilized materials for many years, the desire for steels with low alloying components with a well-balanced combination of high strength and toughness is increasing. Low carbon steels consisting of bainitic microstructures are ideally suited to meeting such technological and economic requirements. Thus it is extremely important to fully clarify the mechanism of bainite formation in order to produce this type of engineering steel by optimized alloy and process design. This research focuses on understanding the mechanism of coupled displacive/diffusional gamma/alpha transformation in low-carbon steels including bainitic and martensitic transformation, and establishing a more comprehensive and physically rational computational model for predictive control of coupled gamma/alpha transformation phenomena. Models for coupled gamma/alpha phase transformation proposed in this study are based on a mechanistic and unified theory and the following assumptions: (1) The energy dissipation due to interface motion can be linearly combined with the energy dissipation due to carbon diffusion. (2) The carbon concentrations at the interface in both gamma and alpha phases are constrained by an interface solute trapping law. (3) Interface motion during nucleation is also governed by the carbon diffusion field velocity. (4) The response function of glissile interface motion can be expressed in the form of thermally activated dislocation glide. In contrast to the conventional semi-empirical models of the previous literature, the computational model proposed in this study is demonstrated to successfully provide a comprehensive and quantitative prediction of the effects of temperature, composition, microstructure, and the interactions among them. This includes the effects of substitutional solutes, morphology of the parent gamma phase, density of nucleation sites, temperature dependent variation of flow stress of matrix, and dynamic recovery of
Error-diffusion binarization for joint transform correlators
Inbar, Hanni; Mendlovic, David; Marom, Emanuel
1993-02-01
A normalized nonlinearly scaled binary joint transform image correlator (JTC) based on a 1D error-diffusion binarization method has been studied. The behavior of the error-diffusion method is compared with hard-clipping, the most widely used method of binarized JTC approaches, using a single spatial light modulator. Computer simulations indicate that the error-diffusion method is advantageous for the production of a binarized power spectrum interference pattern in JTC configurations, leading to better definition of the correlation location. The error-diffusion binary JTC exhibits autocorrelation characteristics which are superior to those of the high-clipping binary JTC over the whole nonlinear scaling range of the Fourier-transform interference intensity for all noise levels considered.
Kinetics of solid state phase transformation UAl3 + Al -> UAl4
International Nuclear Information System (INIS)
Cunha, C.A. da.
1986-01-01
The Kinetics of phase transformation UAl 3 + Al -> UAl 4 of two Al-U alloys, with 31.4 and 33.4 wt% U respectively, was studied by quantitative microscopy. The results have shown that this transformation is a nucleation and thermally activated growth process. The nucleation occurs heterogeneously at the UAl 3 /Al (∞) interfaces and the growth is controlled by volume diffusion. The empirical activation energy of the process was determined, which mean value is about 54.8 Kcal/mol. The growth Kinetic of UAl 4 phase is a parabolic law. The UAl 4 /UAl 3 and UAl 4 /Al (∞) interfaces migrates in opposite directions, with the UAl 4 /UAl 3 interface velocity being approximately 5 times greater than that of UAl 4 /Al (∞) interface. The chemical diffusion coefficient of Al and U in the UAl 4 phase were evaluated to be of the order of 10 -9 cm 2 /s at 600 0 C. (author) [pt
Heterophase fluctuation of omega phase and X-ray diffuse scattering from dual phase structure
International Nuclear Information System (INIS)
Farjami, Susan; Kubo, Hiroshi
2003-01-01
Heterophase fluctuation of athermal omega embryos has been analyzed by assuming a dual phase structure of omega embryos composed of omega and bcc matrix phase. The two-dimensional modulation of dual phase was suggested from the quantitative estimation of coherent free energy of omega embryos using microscopic theory of elasticity and the Landau anharmonic theory for phase transformation. The X-ray diffraction theory was developed in connection to the formation of omega embryos having the dual phase structure. The offset of the diffuse peak position from the ideal omega point in the X-ray diffraction pattern is attributed to the dual phase (incommensurate phase) of omega embryos. It was also shown that the ellipsoidal shape of the diffuse intensity tailing toward the fundamental spot of the matrix phase is originated from the equilibrium shape of the omega embryo. The quantitative estimation of elastic energy modulus (EEM) in the disordered bcc matrix and in the ordered bcc matrix indicates a difference in the deviation amount of the minimum point k(q m ) from the ideal omega point k(q ω ) and a difference in the elliptical shape of embryos
Kinetics of phase transformations in Mg2Ni-H system
Czech Academy of Sciences Publication Activity Database
Čermák, Jiří; Král, Lubomír; David, Bohumil; Stloukal, Ivo
2008-01-01
Roč. 138, - (2008), s. 71-90 ISSN 1012-0394 R&D Projects: GA ČR GA106/07/0010 Institutional research plan: CEZ:AV0Z20410507 Keywords : hydrogen storage * hydrogen diffusion * phase transformations Subject RIV: BJ - Thermodynamics http://www.scientific.net/3-908451-49-3/71/
Mathematical model of phase transformations in thermo-chemical cathodes with zirconium insertion
International Nuclear Information System (INIS)
Kavokin, A.A.; Kazmi, I.H.
2007-01-01
The mathematical model of thermo-chemical processes in the cathode of plasmatron working in the gas environment is investigated. The model describes electromagnetic, temperature and concentration fields taking into account kinetic of phase transformation and chemical reaction in accordance with a state diagram. The offered approach is simpler than the Stefan's approach of describing an analogical phase transformation. As an example the case of copper cathodes with the zirconium insertion in the environment of oxygen is considered. The influence of separate parts of process on distribution of temperature inside of the insertion is estimated. On the basis of this analysis the opportunity of use of stationary approach for electric and temperature fields is shown and analytical formulas for temperature are received. After that a numerical solution for gas concentration distribution is obtained. The calculations on the specified model show that the size of area of a phase zirconium oxides depends mainly upon coefficient of diffusion of oxygen. The calculations for various types of dependencies of gas diffusion coefficient from temperature are concluded. The results of calculations develop understanding of some features of oxidation process of a zirconium insertion. Typical example of multi phase process model is the mathematical description of a heat and mass transfer occurring in metal which is being heated by an electric arch in the gas medium (1, 2, 4). The macroscopic model of physical and chemical transformations can be described as follows (3). As a metal is heated on the surface of an electrode as a function of rising results in the border dividing solid and liquid phases moves ahead deep into the electrode. At the same time there is a diffusion of gas in electrode and formation of new chemical compounds which can noticeably differ in the physical and chemical properties from each other and metal of the electrode. Moreover we shall name a phase of substance not
Ha, Don-Hyung; Moreau, Liane M.; Bealing, Clive R.; Zhang, Haitao; Hennig, Richard G.; Robinson, Richard D.
2011-01-01
We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS
International Nuclear Information System (INIS)
Boysen, H.; Frey, F.
1991-01-01
The tetragonal (t) to monoclinic (m) transformation in pure ZrO 2 was investigated by neutron powder diffraction at temperatures between 1900 K and room temperature. The results of a Rietveld analysis are compared with a previous investigation of the m → t transformation. The t → m transformation takes place near 1200 K (implaying a hysteresis of 300 K) and in a much smaller interval (about 150 K compared with about 600 K in the m → t case). There are no indications of a two-stage process as found for the m → t transformation. The structural parameters of the m phase depend only on temperature while those of the t phase differ at the same temperatures for the forward and reverse transformation. The temperature dependence of the lattice constants suggests an orientational relationship a t parallela m * and c t parallelb m . There are no macrostrains whereas the overall microstrain behaviour is similar in both cases, viz. the large microstrains present in both phases are released within the transformation regime. An analysis of temperature factors and diffuse background suggest dynamical disorder in the t phase and static disorder in the m phase. (orig.)
Thermodynamic Modelling of Phase Transformation in a Multi-Component System
Vala, J.
2007-09-01
Diffusion in multi-component alloys can be characterized by the vacancy mechanism for substitutional components, by the existence of sources and sinks for vacancies and by the motion of atoms of interstitial components. The description of diffusive and massive phase transformation of a multi-component system is based on the thermodynamic extremal principle by Onsager; the finite thickness of the interface between both phases is respected. The resulting system of partial differential equations of evolution with integral terms for unknown mole fractions (and additional variables in case of non-ideal sources and sinks for vacancies), can be analyzed using the method of lines and the finite difference technique (or, alternatively, the finite element one) together with the semi-analytic and numerical integration formulae and with certain iteration procedure, making use of the spectral properties of linear operators. The original software code for the numerical evaluation of solutions of such systems, written in MATLAB, offers a chance to simulate various real processes of diffusional phase transformation. Some results for the (nearly) steady-state real processes in substitutional alloys have been published yet. The aim of this paper is to demonstrate that the same approach can handle both substitutional and interstitial components even in case of a general system of evolution.
High pressure phase transformations revisited
Levitas, Valery I.
2018-04-01
High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum
High pressure phase transformations revisited.
Levitas, Valery I
2018-04-25
High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum
Diffusion of Cu+ in β-phase CuI
International Nuclear Information System (INIS)
Johansson, J.X.M.Z.; Skoeld, K.; Joergensen, J.E.
1992-01-01
Measurements of ionic diffusion of Cu + in solid CuI in the β-phase is carried out with a non-destructive radioactive tracer technique, utilizing coincidence counting of the annihilation gammas from the positron decay of 64 Cu. The diffusion coefficient and the activation energy for the diffusion are evaluated. The experimental results show distinct diffusion character in the β-phase which differs from those in the γ- and α-phases. The β-phase diffusion properties together with the previous results for γ-and α-phases will provide valuable guidance for MD calculations, in which the diffusion coefficients and activation energies have been overestimated and the γ-β phase transition does not appear. The ionic conductivity of CuI estimated from tracer diffusion results and the Nernst-Einstein relation are compared with values from electro-chemical methods. In all three phases the conductivities obtained from electro-chemical methods are much lower than those calculated from the measured tracer diffusion coefficients. (author). 7 refs.; 4 figs.; 2 tabs
Fractional single-phase-lagging heat conduction model for describing anomalous diffusion
Directory of Open Access Journals (Sweden)
T.N. Mishra
2016-03-01
Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.
Basak, Anup; Levitas, Valery I.
2018-04-01
A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.
Second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass.
Cao, Q P; Li, J F; Zhang, P N; Horsewell, A; Jiang, J Z; Zhou, Y H
2007-06-20
The second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu(51)Zr(14) and Cu(2)TiZr, having an effective activation energy of the order of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled.
Transformers: the changing phases of low-dimensional vanadium oxide bronzes.
Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit
2015-03-28
In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.
Studies of matrix diffusion in gas phase
International Nuclear Information System (INIS)
Hartikainen, K.; Timonen, J.; Vaeaetaeinen, K.; Pietarila, H.
1994-03-01
The diffusion of solutes from fractures into rock matrix is an important factor in the safety analysis of disposal of radioactive waste. Laboratory measurements are needed to complement field investigations for a reliable determination of the necessary transport parameters. Measurements of diffusion coefficients in tight rock samples are usually time consuming because the diffusion processes are slow. On the other hand it is well known that diffusion coefficients in the gas phase are roughly four orders of magnitude larger than those in the liquid phase. Therefore, for samples whose structures do not change much upon drying, it is possible to estimate the diffusion properties of the liquid phase when the properties of the gas phase are known. Advantages of the gas method are quick and easy measurements. In the measurements nitrogen was used as the carrier gas and helium as the tracer gas, and standard techniques have been used for helium detection. Techniques have been developed for both channel flow and through-diffusion measurements. The breakthrough curves have been measured in every experiment and all measurements have been modelled by using appropriate analytical models. As a result matrix porosities and effective diffusion coefficients in the gas phase have been determined. (12 refs., 21 figs., 6 tabs.)
Liang, Yingjie; Chen, Wen; Magin, Richard L.
2016-07-01
Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.
Chen, H.; Van der Zwaag, S.
2010-01-01
The soft impingement effect at the later stage of partitioning phase transformations has been modeled both for the diffusion-controlled growth model and for the mixed-mode model. Instead of the linear and exponential approximations for the concentration gradient in front of the interface used in the
On Solution of a Fractional Diffusion Equation by Homotopy Transform Method
International Nuclear Information System (INIS)
Salah, A.; Hassan, S.S.A.
2012-01-01
The homotopy analysis transform method (HATM) is applied in this work in order to find the analytical solution of fractional diffusion equations (FDE). These equations are obtained from standard diffusion equations by replacing a second-order space derivative by a fractional derivative of order α and a first order time derivative by a fractional derivative. Furthermore, some examples are given. Numerical results show that the homotopy analysis transform method is easy to implement and accurate when applied to a fractional diffusion equations.
High-energy X-ray study of short range order and phase transformations in titanium-vanadium
International Nuclear Information System (INIS)
Ramsteiner, I.B.
2005-01-01
This work presents a study of configurational correlations and phase transformations in the binary alloy Ti-V, using high-energy X-ray diffraction. The experiments have been performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-energy (60-100 keV) technique developed recently allows in-situ measurements on bulk material in transmission geometry. The first part of the thesis discusses multiple scattering effects which might occur with this method. These effects are experimentally verified and discussed. Special emphasis is put on the questions, whether they affect the results obtained with this method, and how they can be avoided. Understanding alloys on the most fundamental level requires knowledge about the atomic interaction potentials. Competing with entropy, these potentials determine the configurational short range order in a disordered alloy, which generates together with static and dynamic distortions the diffuse scattering. The thesis presents measurements and calculations of the diffuse scattering patterns of Ti-V. The calculations, taking into account configurational correlations, static distortions induced by atomic size mismatch and thermal diffuse scattering, agree with the experimental data. Structural transformations in Ti-V are carefully characterized using high-energy x-ray diffraction in combination with the complementary transmission electron microscopy (TEM). While the first technique allows to study the phenomena in-situ and time-resolved, TEM yields real space images and chemical information about the phases. Ti-V near the equiatomic composition is a beta-Ti-alloy. The body centered cubic beta phase is retained at room temperature by fast quenching. Aging the material below the phase transformation temperature, however, leads to the precipitation of hexagonal alpha titanium. Another transformation process confusing earlier works is identified as TiC formation from carbon impurities in the material. In addition
Thermally induced phase transformation of pearl powder
International Nuclear Information System (INIS)
Zhang, Guoqing; Guo, Yili; Ao, Ju; Yang, Jing; Lv, Guanglie; Shih, Kaimin
2013-01-01
The polymorphic phase transformation of thermally treated pearl powder was investigated by X-ray diffraction and thermoanalytical techniques. The phase transformation was based on quantification of the calcite content at various temperatures using Rietveld refinement analysis. The results show that the phase transformation of pearl aragonite occurred within a temperature range of 360–410 °C, which is 50–100 °C lower than the range for non-biomineralized aragonite. These thermoanalytical results suggest that the phase transformation of pearl aragonite may occur immediately after the thermal decomposition of the organic matrix in the pearl powder. An important finding is that decomposition of the organic matrix may greatly facilitate such transformation by releasing additional space for an easier structural reconstruction during the phase transformation process. - Highlights: ► Providing a new method to describe the polymorphic transition of pearl powder ► The phase transition sketch was exhibited by XRD phase quantitative analysis. ► There are dozens of degrees in advance comparing to natural aragonite. ► The phase transition occurs following the thermal decomposition of organism
International Nuclear Information System (INIS)
Prat Borquez, Orlando
2011-01-01
The objective of this work was to simulate diffusion-controlled transformations on engineering alloys designed by the author and his colleagues. The main challenge of the work is to adapt the existing DICTRA models to the experimental processing and working conditions investigated, as well as to find the adequate boundary conditions for the description of the diffusion-controlled transformations governing the microstructure formation and evolution, in order to obtain reliable simulation results. The simulations were compared with experimental results of the microstructure evolution by scanning electron microscopy and scanning transmission electron microscopy (STEM). Two groups of materials were investigated. The first group was 9-12% Cr heat resistant alloys. These alloys are particularly interesting because the microstructure evolves during working conditions. Different compositions were designed in order to form different kinds and amounts of precipitates. For the designed 9-12% Cr creep steels the coarsening of MX and M 23 C 6 particles was modeled by applying the coarsening model implemented in DICTRA. The cell method of DICTRA was applied to investigate the kinetics of the Laves phase growth on 9-12% Cr alloys. The particular objectives of these investigations were: a) to determine the coarsening rate of precipitates, b) to investigate the influence of alloying element on the growth rate of the Laves phase, c) to determine the influence of the M 23 C 6 formation on the growth kinetics of the Laves phase, d) to determine the growth mechanism at the interface of the Laves phase (i.e. up-hill diffusion), e) to investigate the effect of the cell size on the simulation kinetics of Laves phase. The second group of materials was cemented carbides. They are used as cutting tools or wear parts in the automotive, aircraft and mining industry among others. The wear performance of cemented carbides (hardmetals and cermets) can be largely improved by applying wear
Extended phase graphs with anisotropic diffusion
Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.
2010-08-01
The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.
Enhanced wavefront reconstruction by random phase modulation with a phase diffuser
DEFF Research Database (Denmark)
Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan
2011-01-01
propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...... of the diffusely scattered beam. The use of demagnification optics will also allow the investigations of relatively large objects. In the second setup, a transparent object is illuminated using a wavefront with random phase and constant amplitude by positioning the phase diffuser close to the object. The benefit...
Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging
Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier
2016-01-01
The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.
Phase space diffusion in turbulent plasmas
International Nuclear Information System (INIS)
Pecseli, H.L.
1990-01-01
Turbulent diffusion of charged test particles in electrostatic plasma turbulence is reviewed. Two different types of test particles can be distinguished. First passice particles which are subject to the fluctuating electric fields without themselves contributing to the local space charge. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulent. The latter ''active'' type of particles can be subjected to an effective frictional force due to radiation of plasma waves. In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions for the mean square particle displacements in phase space are discussed. More generally equations for the full probability densities are derived and these are solved analytically in special limits. (orig.)
Plasticity induced by phase transformation in steel: experiment vs modeling
International Nuclear Information System (INIS)
Tahimi, Abdeladhim
2011-01-01
The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)
Effect of Ti diffusion on the microstructure of Ge2Sb2Te5 in phase-change memory cell.
Park, Jucheol; Bae, JunSoo
2015-12-01
The dependence of the microstructure of Ge2Sb2Te5 (GST) on Ti diffusion into GST by annealing in GST/Ti/TiN phase-change random access memory stack was studied by various transmission electron microscopy (TEM) techniques. The microstructure and crystal structure of GST were identified with high-resolution TEM (HRTEM) and image simulation technique, and the Ti diffusion into GST was revealed by scanning transmission electron microscope-energy-dispersive X-ray spectroscopy analysis. It was observed that Ti atoms of Ti/TiN thin layers were incorporated into GST cell through several thermal annealing steps and they could retard the phase transition from face-centered cubic (FCC) phase into hexagonal close-packed (HCP) phase partially and restrain the increase in grain size. Thus, it is concluded that Ti diffusion can affect the microstructure of GST including the type of the crystal phase and grain size of GST. It was shown that the insertion of diffusion barrier between TiN and GST could block Ti diffusion into GST and make it possible for FCC phase to completely transform into HCP phase. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Saceleanu, Florin; Atashin, Sanam; Wen, John Z
2017-07-26
Aluminum micro and nanoparticles are key ingredients in the synthesis of nano energetic materials. Hence it is important to characterize the kinetics and the rate controlling process of their oxidation. The literature shows that the mass diffusion and phase transformation within the aluminum oxide shell are important. However, the description of physical processes regarding simultaneous oxidation and phase transformation is lacking. In this paper, the controlled thermogravimetric (TGA) oxidation of 40-60 nm and 1 µm Al powders is investigated at constant heating rates and under isothermal conditions, respectively, upon varying the partial pressure of oxygen. It is found that the core-shell model of homogenous oxidation is applicable to explain the TGA results when the shell does not undergo phase transformation, which predicts the apparent activation energy in good agreement with the literature data. On the other hand, the simultaneous oxidation and phase transformation is able to be addressed using the JMAK model which reveals key parameters of the rate controlling processes. Mass diffusion is indeed rate determining during the oxidation of Al micro and nanopowders while the kinetics of the reaction is fast. Unlike the micron powders, the particle size distribution has a significant effect on the shape of the oxidation curves of the nanopowders.
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Gamsjäger, E.
2011-01-01
Roč. 102, č. 6 (2011), s. 666-673 ISSN 1862-5282 R&D Projects: GA MŠk(CZ) OC10029 Institutional research plan: CEZ:AV0Z20410507 Keywords : modelling * phase transformation * ediffusion Subject RIV: BJ - Thermodynamics Impact factor: 0.830, year: 2011
Energy Technology Data Exchange (ETDEWEB)
Bokshtejn, S Z; Gubareva, M A; Kishkin, S T; Moroz, L M
1962-01-15
A method is developed for studying with radioisotopes the behaviour of grain boundaries in the process of plastic deformation and later recrystallization. It is shown that iron recrystallization at relatively low (15%) and high (50-70%) degrees of deformation does not lead to any essential change in the location of the basic metal atoms situated at the boundary of the initial grains. If the metal structure changes considerably after recrystallization and also after polymorphous {alpha} {r_reversible} {gamma} transformation, the boundary atoms of the initial grains are but slightly displaced. In the same way, impurity atoms (radioactive carbon) situated at the boundaries of the initial grain do not migrate across the boundaries of the new grains of recrystallized metal. Plastic deformation, however, is accompanied by considerable migration of the atoms situated at the grain boundary. The data obtained show that the migration of grain boundaries during recrystallization and subsequent grain-growth are associated with some specific mechanism differing from ordinary diffusion. It is shown that structural changes occurring in alloys at high temperatures can change the rate of self-diffusion and hetero-diffusion processes. A study of the diffusion processes in titanium and its alloys in connection with the polymorphous state shows that the rate of the process in different titanium-crystal variations varies greatly. This eliminates the previous discrepancy between the high melting-point of titanium and the relatively low activation energy of the diffusion process in titanium. (author) [French] Les auteurs ont mis au point une methode qui permet d'etudier, a l'aide des radioisotopes, le comportement des joints de grains au cours de la deformation plastique et de la recristallisation consecutive. Ils ont demontre que la recristallisation du fer, a des degres de deformation relativement faibles (15%) et relativement eleves (50-70%), n'entraine pas de modification importante
Mesoscopic non-coherence as phase diffusion
International Nuclear Information System (INIS)
Milman, Perola; Davidovich, Luiz; Castin, Yvan
1997-01-01
In this work, we approach to the question whether it is possible to describe the process of non-coherence in terms of phase diffusion ψ. We will show that this can be done, for an electromagnetic field mode in a cavity interacting with a continuum of modes outside the cavity, for any value of α, where |α> is an eigenstate of the lowering operator for the harmonic oscillator. The description in terms of phase diffusion will occurs however in context of continuous observation of the field exiting the cavity. In this sense, the non-coherence process description as a quantum phase diffusion corresponds to an realization of the evolution described by the master equation, in terms of a stochastic Schroedinger equation. We will demonstrate that the average on many realizations corresponds exactly to the result obtained from the master equation
Investigation on the phase transformation of Bi-2223/Ag superconducting tapes during heating
International Nuclear Information System (INIS)
Huang, K.-T.; Qu, T.-M.; Xie, P.; Han, Z.
2013-01-01
Highlights: • In situ resistance measurement was carried out on Bi-2223/Ag superconducting tapes. • The oxygen partial pressure of the outlet gas in the heating process was monitored continuously. • The samples quenched in the heating process were studied by XRD and T c measurements. • The heating process contains three procedures: oxygen diffusion, Pb-rich phase evolution and liquid phase formation. -- Abstract: The phase transformation of Bi-2223/Ag superconducting tapes during heating was investigated. The resistance of the ceramic core as a function of the heating temperature was measured in situ. The pO 2 of the outlet gas in the heating process was also monitored continuously. By comparing the heating process with the X-ray diffraction and T c measurements taken from samples quenched at different temperatures, we have identified that the heating process could be divided into the following regions: (1) the oxygen diffusion (OD) region, which is mainly influenced by OD; (2) the Pb-rich phase evolution (PbE) region, in which the formation and decomposition of the Pb-rich phases occur; (3) the liquid phase formation (LF) region, in which resistance increased rapidly with increasing temperature
Phase space diffusion in turbulent plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1990-01-01
. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulence. The latter "active" type of particles can be subject to an effective frictional force due to radiation of plasma waves....... In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions...
A Novel Three Phase to Seven Phase Conversion Technique Using Transformer Winding Connections
Directory of Open Access Journals (Sweden)
M. Tabrez
2017-10-01
Full Text Available This paper proposes a novel multiphase transformer connection scheme which converts three phase balanced AC input to seven phase balanced AC output. Generalized theory to convert a three phase utility supply into any number of phases is presented. Based on the proposed generalized principle, a three phase to seven phase power converting transformer design is presented with connection scheme, analysis and simulation and experimental results of the proposed three phase to seven phase conversion transformer. The proposed transformer in this paper is analyzed and compared with the connection scheme for seven phase available in the literature. The connection scheme is found to have higher power density, lower core area and lower core requirement as compared to the available connection scheme of the same rating. Impedance mismatching between different phases of the transformer is observed in the three phase to seven phase transformer available in the literature. As this mismatching introduces error in study of per phase equivalent circuit diagrams as well as imbalance in voltage and currents. The present design also addresses the impedance mismatching issue and reduces mismatching in the proposed transformer design. A prototype of the proposed system is developed and waveforms are presented. The proposed design is verified using simulation and validated using experimental approach.
Phase transformations in Higher Manganese Silicides
Energy Technology Data Exchange (ETDEWEB)
Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)
2013-02-25
Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.
Shear-driven phase transformation in silicon nanowires.
Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G
2018-03-23
We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.
Tao, Lei; Shahsavari, Rouzbeh
2017-07-19
Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.
Phase transformations in engineering materials
International Nuclear Information System (INIS)
Bourke, M.A.M.; Lawson, A.C.; Dunand, D.C.
1996-01-01
Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement
Electron-irradiation-induced phase transformation in alumina
International Nuclear Information System (INIS)
Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.
2010-01-01
In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.
International Nuclear Information System (INIS)
Li, Y.Y.; Xing, Z.S.
1989-01-01
Effect of high-pressure hydrogen charging on the microstructure, mechanical properties and phase transformations in austenitic steels has been investigated and discussed. The results show that the strength and impact toughness of the steels increase slightly and that the ductility decreases after hydrogen charging. The existence of δ-ferrite deteriorates the resistance to hydrogen embrittlement (HE) of the steels. The occurrence of carbide in the steel resulted from aging reduces the ductility of the steel and makes the steel sensitive to HE. The existence of sufficient hydrogen promotes the ε-martensitic transformation and suppresses the α'-martensitic transformation. The permeabilities and diffusivities of hydrogen in the steels have also been determined. (orig.)
International Nuclear Information System (INIS)
Muddle, B.C.; Nie, J.F.; Hugo, G.R.
1994-01-01
It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ' (Ag 2 Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1 plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites
Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran
2018-01-01
A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.
Path Dependency of High Pressure Phase Transformations
Cerreta, Ellen
2017-06-01
At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.
International Nuclear Information System (INIS)
Henggeler, W.; Boehm, M.
2003-11-01
Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)
Iterative-Transform Phase Retrieval Using Adaptive Diversity
Dean, Bruce H.
2007-01-01
A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein
International Nuclear Information System (INIS)
Martynov, V.V.
1995-01-01
Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)
Phase transformations in intermetallic phases in zirconium alloys
Energy Technology Data Exchange (ETDEWEB)
Filippov, V. P., E-mail: vpfilippov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)
2017-11-15
Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.
Analysis and simulation of phase transformation kinetics of zeolite A from amorphous phases
Marui, Y; Uchida, H; Takiyama, H
2003-01-01
Experiments on transformation rates of zeolite A from amorphous phases at different feed rates to alter the particle size of the amorphous phases were carried out to analyze the kinetics of the transformation, and were analyzed by performing simulation of the transformation. A clear dependence of the induction time for nucleation of zeolite A crystals on the surface area of the amorphous phase was recognized, indicating that the nucleation of zeolite A was heterogeneous and the nucleation rate was almost proportional to the size of the amorphous particles. From the simulation, the mechanism of the transformation was found to be heterogeneous nucleation of zeolite A crystals on the surface of amorphous particles followed by solution mediated phase transformation, and the transformation kinetics were well reproduced at different feed rates. (author)
Diffusion in porous structures containing three fluid phases
International Nuclear Information System (INIS)
Galani, A.N.; Kainourgiakis, M.E.; Stubos, A.K.; Kikkinides, E.S.
2005-01-01
In the present study, the tracer diffusion in porous media filled by three fluid phases (a non-wetting, an intermediate wetting and a wetting phase) is investigated. The disordered porous structure of porous systems like random sphere packing and the North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk matrix by a stochastic reconstruction technique. Physically sound spatial distributions of the three phases filling the pore space are determined by the use of a simulated annealing algorithm, where those phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The acceptance rule for a trial move during the annealing is modified properly improving the efficiency of the technique. The diffusivities of the resulting domains are computed by a random walk method. A parametric study with respect to the pore volume fraction occupied by each fluid phase and the ratio of the diffusivities in the fluid phases is performed. (authors)
Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2012-01-01
We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schrödinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.
Čermák, J
2008-01-01
This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n
FORTRAN program for calculating liquid-phase and gas-phase thermal diffusion column coefficients
International Nuclear Information System (INIS)
Rutherford, W.M.
1980-01-01
A computer program (COLCO) was developed for calculating thermal diffusion column coefficients from theory. The program, which is written in FORTRAN IV, can be used for both liquid-phase and gas-phase thermal diffusion columns. Column coefficients for the gas phase can be based on gas properties calculated from kinetic theory using tables of omega integrals or on tables of compiled physical properties as functions of temperature. Column coefficients for the liquid phase can be based on compiled physical property tables. Program listings, test data, sample output, and users manual are supplied for appendices
Winczek, J.; Makles, K.; Gucwa, M.; Gnatowska, R.; Hatala, M.
2017-08-01
In the paper, the model of the thermal and structural strain calculation in a steel element during single-pass SAW surfacing is presented. The temperature field is described analytically assuming a bimodal volumetric model of heat source and a semi-infinite body model of the surfaced (rebuilt) workpiece. The electric arc is treated physically as one heat source. Part of the heat is transferred by the direct impact of the electric arc, while another part of the heat is transferred to the weld by the melted material of the electrode. Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagramand JMA-K law for diffusive transformations, and K-M law for martensitic transformation. Totalstrains equal to the sum ofthermaland structuralstrainsinduced by phasetransformationsin weldingcycle.
Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform
Directory of Open Access Journals (Sweden)
Devendra Kumar
2015-01-01
Full Text Available In this paper, we propose a simple numerical algorithm for solving multi-dimensional diffusion equations of fractional order which describes density dynamics in a material undergoing diffusion by using homotopy analysis transform method. The fractional derivative is described in the Caputo sense. This homotopy analysis transform method is an innovative adjustment in Laplace transform method and makes the calculation much simpler. The technique is not limited to the small parameter, such as in the classical perturbation method. The scheme gives an analytical solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The numerical solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive.
Up-scaling, formative phases, and learning in the historical diffusion of energy technologies
International Nuclear Information System (INIS)
Wilson, Charlie
2012-01-01
The 20th century has witnessed wholesale transformation in the energy system marked by the pervasive diffusion of both energy supply and end-use technologies. Just as whole industries have grown, so too have unit sizes or capacities. Analysed in combination, these unit level and industry level growth patterns reveal some consistencies across very different energy technologies. First, the up-scaling or increase in unit size of an energy technology comes after an often prolonged period of experimentation with many smaller-scale units. Second, the peak growth phase of an industry can lag these increases in unit size by up to 20 years. Third, the rate and timing of up-scaling at the unit level is subject to countervailing influences of scale economies and heterogeneous market demand. These observed patterns have important implications for experience curve analyses based on time series data covering the up-scaling phases of energy technologies, as these are likely to conflate industry level learning effects with unit level scale effects. The historical diffusion of energy technologies also suggests that low carbon technology policies pushing for significant jumps in unit size before a ‘formative phase’ of experimentation with smaller-scale units are risky. - Highlights: ► Comparative analysis of energy technology diffusion. ► Consistent pattern of sequential formative, up-scaling, and growth phases. ► Evidence for conflation of industry level learning effects with unit level up-scaling. ► Implications for experience curve analyses and technology policy.
Design and Implementation of GSM Based Transformer Phase ...
African Journals Online (AJOL)
In this work, the design and implementation of a transformer phase monitoring system, which continuously check for blown fuses on each phases of the distribution transformer was carried out. The system promptly reports any transformer with blown J&P fuse via a preprogrammed SMS which will state the location of the ...
Corundum-to-spinel structural phase transformation in alumina
Energy Technology Data Exchange (ETDEWEB)
Adachi, Shogo [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Ishimaru, Manabu, E-mail: ishimaru@post.matsc.kyutech.ac.jp [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Sina, Younes; McHargue, Carl J.; Sickafus, Kurt E. [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2200 (United States); Alves, Eduardo [Unit of Physics and Accelerators, Ion Beam Laboratory, Instituto Superior Técnico/Instituto Tecnológico e Nuclear, EN. 10 2686-953 Sacavém (Portugal)
2015-09-01
Several polymorphs exist in alumina (Al{sub 2}O{sub 3}), and they transform to a stable α-phase with a hexagonal corundum structure on thermal annealing. This structural change is irreversible as a function of temperature, and transformation of corundum to another metastable crystalline phase has never been observed by heat treatments. In this study, we irradiated single crystals of Al{sub 2}O{sub 3} with Zr ions and obtained an irradiated microstructure consisting of a buried α-Al{sub 2}O{sub 3} layer surrounded on top and bottom by layers of a defect cubic spinel Al{sub 2}O{sub 3} phase. We examined the thermal stability of this microstructure using transmission electron microscopy and X-ray diffraction. We found that the corundum phase completely transforms to the spinel phase following annealing at 1173 K for 1 h: the thermodynamically stable phase transforms to the metastable phase by heat treatments. We discuss this unusual structural change within the context of our results as well as previous observations.
Phase transformations and systems driven far from equilibrium
International Nuclear Information System (INIS)
Ma, E.; Atzmon, M.; Bellon, P.; Trivedi, R.
1998-01-01
This volume compiles invited and contributed papers that were presented at Symposium B of the 1997 Materials Research Society Fall Meeting, Phase Transformations and Systems Driven Far From Equilibrium, which was held December 1--5, in Boston, Massachusetts. While this symposium followed the tradition of previous MRS symposia on the fundamental topic of phase transformations, this year the emphasis was on materials systems driven far from equilibrium. The central theme of the majority of the work presented is the understanding of the thermodynamics and kinetics of phase transformations, with significant coverage of metastable materials and externally forced transformations driven, for example, by energy beams or mechanical deformation. The papers are arranged in seven sections: solidification theory and experiments; nucleation; solid state transformations and microstructural evolution; beam-induced transformations; amorphous solids; interfacial and thin film transformations; and nanophases and mechanical alloying. One hundred three papers have been processed separately for inclusion on the data base
Low-temperature phase transformation in rubidium and cesium superoxides
International Nuclear Information System (INIS)
Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.
1980-01-01
Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru
Specific features of phase transformations in germanium monotelluride
International Nuclear Information System (INIS)
Bigvava, A.D.; Gabedava, A.A.; Kunchuliya, Eh.D.; Shvangiradze, R.R.
1981-01-01
Phase transformations in germanium monotelluride are studied . using DRON-0.5 and DRON-1 plants with high-temperature chamber GPVT-1500 at Cu, Ksub(α) radiation. It is shown that in the whole homogeneity range α GeTe is a metastable phase which is formed under the conditions of fast cooling of alloy from temperatures >=Tsub(cub) (temperature of transition in cubic crystal system). An equilibrium γ-phase is obtained by annealing of dispersed powders and metal-ceramic specimens of alloys with 50.3; 50.6; 50.9 at % Te. Lattice parameters of rhombic γ-phase do not depend on tellurium content in initial α- phase. α→γ transformation is observed at any temperature less than Tsub(cub) with the change of alloy composition, namely tellurium precipitation. γ-phase transforms into β at higher temperatures than α-phase [ru
Phase transformation and microstructural changes during ageing process of an Ag-Pd-Cu-Au alloy
Energy Technology Data Exchange (ETDEWEB)
Yu, Chin-Ho; Park, Mi-Gyoung; Kwon, Yong Hoon; Seol, Hyo-Joung [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)], E-mail: hilkim@pusan.ac.kr
2008-07-28
Age-hardening behaviour and the related phase transformation and microstructural changes during isothermal ageing process were studied to elucidate the age-hardening mechanism of an Ag-based dental casting alloy composed of Ag-Pd-Cu-Au-Zn, Ir and In by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and energy dispersive spectroscopic microanalysis (EDS). In the hardness test at 350 and 400 deg. C, the hardness of the solution-treated specimen began to increase and reached a maximum value with increasing ageing time, and subsequently the hardness decreased gradually. By considering XRD results and SEM observations together, the solution-treated specimen consisted of three phases, the Ag-rich {alpha}{sub 1} phase as a matrix, the Cu-Pd {alpha}{sub 2} phase and the CuPd {beta} phase with a CsCl-type as particle-like structures. By ageing the solution-treated specimen, the Ag-rich {alpha}{sub 1} and Cu-Pd {alpha}{sub 2} phases were transformed into the Ag-rich {alpha}{sup '}{sub 1} and Cu{sub 3}Pd {alpha}{sup '}{sub 2} phases, respectively. The CuPd {beta} phase with a CsCl-type was not changed apparently during the ageing process. From the results of the hardness test, XRD study, SEM observations and EDS analysis, it could be derived that the hardness increased by the diffusion and precipitation of the Cu-rich phase from the Ag-rich matrix during the early stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1} and that the progress of coarsening of the Cu-rich precipitates with an entanglement structure caused the hardness decrease during the later stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1}. The particle-like structures composed of the Cu-Pd {alpha}{sub 2} and the CuPd {beta} phase with a CsCl-type contributed little to the hardness increase which occurred in the early stage of aging process.
Study on mutual diffusion and phase diagram in the Ni-Ta system
International Nuclear Information System (INIS)
Pimenov, V.N.; Ugaste, Yu.Eh.; Akkushkarova, K.A.
1977-01-01
The mutual diffusion in the Ni-Ta system has been investigated with a view of refining the constitutional diagram. The mutual diffusion factors and their effective values in the various phases and the diffusion activation energies are calculated. Given are the dependences of the phase growth constants and the mutual diffusion factors upon the temperature. The existence of five new phases Ta 2 Ni, TaNi, TaNi 2 , TaNi 3 , TaNi 8 has been discovered in the range of temperatures between 1150 and 1300 deg C. It is established that all the phases have a small concentration range of existence. It is noted that the diffusion characteristics in the phases (mutual diffusion factor and activation energy) differ widely, but fail to correlate with their melting points
Solid-state diffusion-controlled growth of the phases in the Au-Sn system
Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke
2018-01-01
The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.
Observation of diffusion phenomena of liquid phase with multiple components
International Nuclear Information System (INIS)
Eguchi, Wataru
1979-01-01
The diffusion phenomena of liquid phase with multiple components was directly observed, and the factors contributing to complex material transfer were investigated, comparing to the former experimental results. The most excellent method of observing the diffusion behavior of liquid phase used heretofore is to trace the time history of concentration distribution for each component in unsteady diffusion process. The method of directly observing the concentration distribution is usually classified into the analysis of diffused samples, the checking of radioactive isotope tracers, and the measurement of light refraction and transmission. The most suitable method among these is to trace this time history by utilizing the spectrophotometer of position scanning type. An improved spectrophotometer was manufactured for trial. The outline of the measuring system and the detail of the optical system of this new type spectrophotometer are explained. The resolving power for position measurement is described with the numerical calculation. As for the observation examples of the diffusion phenomena of liquid phase with multiple components, the diffusion of multiple electrolytes in aqueous solution, the observation of the material transfer phenomena accompanied by heterogeneous and single phase chemical reaction, and the observation of concentration distribution in the liquid diaphragm in a reaction absorption system are described. For each experimental item, the test apparatus, the sample material, the test process, the test results and the evaluation are explained in detail, and the diffusion phenomena of liquid phase with multiple components were pretty well elucidated. (Nakai, Y.)
The β → α phase transformation in plutonium
International Nuclear Information System (INIS)
Mitchell, T.E.; Hirth, J.P.; Schwartz, D.S.; Mitchell, J.N.
2013-01-01
The β → α transformation in plutonium is discussed in terms of the crystallography of the two phases and the resulting topological modeling of the β/α interface. There has been little microscopy work on the transformation, but it is probably martensitic. β-Pu is monoclinic I2/m, while α-Pu is monoclinic P2 1 /m. α-Pu has been described as a hexagonal close-packed pseudostructure with AB stacking of the (0 2 0) α planes with pseudo-close-packing along [1 0 0] α and two other directions. β-Pu is less obvious, but X-ray diffraction suggests that the (1 0 3) β planes, which are selected as the terrace plane, have the highest structure factor and are therefore among the closest-packed planes. Other pseudo-close-packed planes, such as {222 ¯ } β and {321 ¯ } β , could also act as terrace planes for the transformation. The (1 0 3) β planes have a pseudo-hexagonal grid of Pu atoms with AB stacking and pseudo-close-packing along [301 ¯ ] β and two other directions. A selection of terrace planes as (0 2 0) α //(1 0 3) β with disconnections along [100] α //[301 ¯ ] β provides the basis for topological modeling. The model predicts a habit plane that is ∼6° from the terrace plane. The extra Pu atoms in the β structure (17 for every 16 in α) are accommodated by having 16 (1 0 3) β planes transform into 17 (0 2 0) α planes at steps in the interface. Short-range interstitial diffusion of Pu atoms from β to α is required for the transformation to proceed. Possible lattice invariant deformation systems are discussed
Topological defects in the second-class phase transformations
International Nuclear Information System (INIS)
Dobrowolski, T.
2002-06-01
The dynamics of systems during second-class phase transformations are presented.in a frame of quantum fields theory. It is shown that solutions of non-linear field equations generate some topological defects what result in symmetry breaking and field phase transformations
Behera, Madhusmita; Raju, S.; Jeyaganesh, B.; Mythili, R.; Saroja, S.
2010-12-01
Accurate measurements of enthalpy increment ( H T - H 298.15) values have been made on a Ti-5 mass% Ta-1.8 mass% Nb alloy using the inverse drop calorimetry technique in the temperature range from 463 K to 1457 K. The measured enthalpy increment values show a steady increase with temperature in both α- hcp and β- bcc solid solution regions. It is found that both the onset as well the completion of the α → β phase change are demonstrated by a marked deviation of the enthalpy increment behavior from the otherwise smooth variation encountered in the respective low-temperature α- and high-temperature β-phase domains. The transformation start ( T s) and finish ( T f) temperatures of the α → β phase change are found to be (1072±10) K and (1156±10) K, respectively. In the actual α → β phase transformation region, the variation of the enthalpy with the progress of transformation is found to follow a sigmoidal shape which is in line with the diffusive nature of the phase transformation. An estimation of the total enthalpy change associated with the α → β phase transformation (Δ° H tr) has been made by assuming a simple diffusion limited kinetic model for the phase change. The net enthalpy change for the α → β transformation is found to be 76 J · g-1. The measured temperature variation of the enthalpy increment in both α- and β-phase regimes are fitted to simple analytical functional forms to obtain temperature-dependent estimates of the specific heat, C P . The total specific heat change associated with the α → β phase transformation {Δ^{circ}{CP^{α}}^{→{β}}} is estimated to be 904 J · kg-1 · K-1.
International Nuclear Information System (INIS)
Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.
1982-01-01
The subject is covered in sections, entitled: introduction; occurrence and some systematics of omega phase (omega phase in Ti, Zr and Hf under high pressures; omega phase in Group IV transition metal alloys; omega in other systems; omega embryos at high temperatures); crystallography (omega structure; relationship of ω-structure to bcc (β) and hcp (α) structures); physical properties; kinetics of formation, synthesis and metastability of omega phase (kinetics of α-ω transformation under high pressures; kinetics of β-ω transformation; synthesis and metastability studies); electronic structure of omega phase (electronic structure models; band structure calculations; theoretical results and experimental studies); electronic basis for omega phase stability (unified phase diagram; stability of omega phase); omega phase formation under combined thermal and pressure treatment in alloys (Ti-V alloys under pressure - a prototype case study; P-X phase diagrams for alloys; transformation mechanisms and models for diffuse omega phase (is omega structure a charge density distortion of the bcc phase; nature of incommensurate ω-structure and models for diffuse scattering); conclusion. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)
2011-06-15
A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.
New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys
International Nuclear Information System (INIS)
Li, Tong; Kent, Damon; Sha, Gang; Stephenson, Leigh T.; Ceguerra, Anna V.; Ringer, Simon P.; Dargusch, Matthew S.; Cairney, Julie M.
2016-01-01
For multicomponent near-β alloys, we have investigated the mechanisms responsible for the β-to-ω and ω-to-α phase transformations upon isothermal ageing at 573 K. Experimental evidence from atom probe tomography and aberration-corrected high-resolution transmission electron microscopy indicates that the formation of isothermal ω involves a structural reconstruction assisted by nanoscale spinodal decomposition of the β matrix, prior to the specific chemistry change required to form ω, rather than a mixed-mode process with structure and chemistry changes occurring simultaneously as has been previously suggested. First, incommensurate embryonic ω evolve via a displacive mechanism within Mo-lean regions created by second-order coherent spinodal decomposition of the β matrix. The subtle spinodal decomposition in β and chemistry of embryonic ω are carefully analysed by an advanced atom probe data analysis algorithm. When the size of embryonic ω exceeds a critical value, commensurate isothermal ω forms through the exit of the other alloying solutes. O-rich regions present at the isothermal ω/β interface provide potent sites for the formation of α. The concurrent compositional partitioning of solutes in ω and α indicates the transformation from ω to α involves both a rapid lattice reconstruction at the ω/α interface and a slow Al diffusion at the α/β, therefore a mixed-mode displacive-diffusive process. This study provides novel experimental evidence to understand the much-disputed transformation processes and elucidate the mechanisms responsible for these important phase transformations.
Effects of phase transformation of steam-water relative permeabilities
Energy Technology Data Exchange (ETDEWEB)
Verma, A.K.
1986-03-01
A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.
Study of 18-Pulse Rectifier Utilizing Hexagon Connected 3-Phase to 9-Phase Transformer
Directory of Open Access Journals (Sweden)
Ahmad Saudi Samosir
2008-04-01
Full Text Available The 18-pulse converter, using Y or -connected differential autotransformer, is very interesting since it allows natural high power factor correction. The lowest input current harmonic components are the 17th and 19th. The Transformer is designed to feed three six-pulse bridge rectifiers displaced in phase by 200. This paper present a high power factor three-phase rectifier bases on 3-phase to 9-phase transformer and 18-pulse rectifier. The 9-phase polygon-connected transformer followed by 18-pulse diode rectifiers ensures the fundamental concept of natural power factor correction. Simulation results to verify the proposed concept are shown in this paper.
Application of finite Fourier transformation for the solution of the diffusion equation
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1991-01-01
The application of the finite Fourier transformation to the solution of the neutron diffusion equation in one dimension, two dimensional x-y and triangular geometries is discussed. It can be shown that the equation obtained by the Nodal Green's function method in Cartesian coordinates can be derived as a special case of the finite Fourier transformation method. (author)
Generalized phase transformations of spinor fields
International Nuclear Information System (INIS)
Mikhov, S.G.
1993-09-01
In this paper some generalized four parameter phase transformations of a Dirac spinor are considered. It is shown that a corresponding compensating transformation of the electromagnetic field which restores the invariance of the Dirac-Maxwell equation might exist, provided some consistency conditions are satisfied by the parameters of the transformations. These transformations are used further to consider the Maxwell equations under the assumption that a Bosonization takes place. Only one of the considered cases proves to have a solution (the other cases show to be trivial) which although unphysical is obtained explicitly. (author). 10 refs
Multi-channel phase-equivalent transformation and supersymmetry
Shirokov, A. M.; Sidorenko, V. N.
2000-01-01
Phase-equivalent transformation of local interaction is generalized to the multi-channel case. Generally, the transformation does not change the number of the bound states in the system and their energies. However, with a special choice of the parameters, the transformation removes one of the bound states and is equivalent to the multi-channel supersymmetry transformation recently suggested by Sparenberg and Baye. Using the transformation, it is also possible to add a bound state to the discr...
Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy
International Nuclear Information System (INIS)
Seol, Hyo-Joung; Lee, Doung-Hun; Lee, Hee-Kyung; Takada, Yukyo; Okuno, Osamu; Kwon, Yong Hoon; Kim, Hyung-Il
2006-01-01
The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich α 1 phase and the Pd-containing Cu-rich α 2 phase were transformed into four phases of the Ag-rich α 1 ' phase, the Cu-rich α 2 ' phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich α 1 matrix, Cu-rich α 2 particle-like structures of various sizes and the lamellar structure of the α 1 and α 2 phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich α 1 ' and Cu-rich α 2 ' phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich α 1 matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase
Aging effect in parent phase and martensitic transformation in Au-47.5at.%Cd alloys
International Nuclear Information System (INIS)
Ohba, T.; Komachi, K.; Watanabe, K.; Nakamura, S.
1999-01-01
Au-Cd alloy is one of the typical alloys which shows martensitic transformation. There are two martensites close to the 1:1 composition: one is γ' 2 martensite and the other is ζ' 2 martensite. When the phonon dispersion curve was measured in the composition for Au-47.5at.%Cd which produces γ' 2 martensite, phonon softening was observed at the Brillouin zone boundary and at ζ=0.35 of the [ζζ0]TA 2 branch and a peculiar behavior was observed. One is that the M s temperature determined in this experiment was lower than the ordinary value. The other is the time dependence of the 1/3 elastic reflection, which was observed prior to the martensitic transformation. Electrical resistance measurements were performed in this alloy in order to clarify this peculiar behavior. A decrease of the M s temperature was observed after aging at 393 K, in the parent phase. The lower M s observed in neutron experiments can be explained by an aging effect in the parent phase. There are two possibilities of explaining the time-dependence of the 1/3 reflection; one is the transformation with diffusion (bainite transformation above M s ) and the other is embryo growing. (orig.)
Single beam Fourier transform digital holographic quantitative phase microscopy
Energy Technology Data Exchange (ETDEWEB)
Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)
2014-03-10
Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.
International Nuclear Information System (INIS)
Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.
2007-01-01
A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured
Deformation-induced phase transformation in 4H–SiC nanopillars
International Nuclear Information System (INIS)
Chen, Bin; Wang, Jun; Zhu, Yiwei; Liao, Xiaozhou; Lu, Chunsheng; Mai, Yiu-Wing; Ringer, Simon P.; Ke, Fujiu; Shen, Yaogen
2014-01-01
The deformation behaviour of single-crystal SiC nanopillars was studied by a combination of in situ deformation transmission electron microscopy and molecular dynamics simulations. An unexpected deformation-induced phase transformation from the 4H hexagonal structure to the 3C face-centred cubic structure was observed in these nanopillars at room temperature. Atomistic simulations revealed that the 4H to 3C phase transformation follows a stick–slip process with initiation and end stresses of 12.1–14.0 and 7.9–9.0 GPa, respectively. The experimentally measured stress of 9–10 GPa for the phase transformation falls within the range of these theoretical upper and lower stresses. The reasons for the phase transformation are discussed. The finding sheds light on the understanding of phase transformation in polytypic materials at low temperature
International Nuclear Information System (INIS)
Singer, H.M.; Singer, I.; Jacot, A.
2009-01-01
A phase-field model for the solid-solid α → γ transition of Ti-Al binary alloys is presented based on analytical Gibbs free energies and couplings to the thermodynamical database ThermoCalc. The equilibrium values recover the α + γ phase boundaries. Morphological transitions from diffusive to massive (partitionless) growth are observed on increasing the initial mole fraction of aluminum. Temporal evolution of the interface shows a √(t) behavior for diffusive and a linear behavior for massive growth, which is in accordance with theoretical predictions. An estimate of the interfacial mobility of Ti-Al based on the Burke-Turnbull equation is calculated. The expression of the mobility follows an Arrhenius law. Using the derived interfacial mobility, the calculated interfacial velocities of the massive transformation are in quantitative agreement with those observed in experiments
Phase transformations in TiAl based alloys
International Nuclear Information System (INIS)
Zghal, Slim; Thomas, Marc; Naka, Shigehisa; Finel, Alphonse; Couret, Alain
2005-01-01
Microstructural characteristics of a fully lamellar Ti 49 Al 47 Cr 2 Nb 2 alloy have been investigated in different annealed conditions by quantitative transmission electron microscopy. Statistical analyses have yielded clear information about the γ-γ interfaces, the respective orientation groups of the γ phase, and the distribution of orientational variants. From the results, three sequences of lamellar transformation have been identified with decreasing temperature: (1) a high-temperature heterogeneous transformation characterized by the nucleation of isolated primary γ lamellae mostly belonging to the same orientation group and having locally the same order; (2) a low-temperature homogeneous transformation in the ordered α 2 phase characterized by the formation of a fine lamellar structure with an even distribution of the orientation groups and a random ordering of γ lamellae; and (3) a coherent interfacial transformation at the α 2 /γ interfaces characterized by the nucleation of ultra-fine twin related lamellae. Finally, the driving forces for these various transformations as well as the nucleation mechanisms of γ lamellae involved in these transformations are discussed
On diffusion in the β-NiAl phase
Paul, A.; Kodentsov, A.; Loo, van F.J.J.
2005-01-01
Interdiffusion coefficients in the ß-NiAl phase over the homogeneity range are determined by the diffusion couple technique in the temperature range of 1000–1200 °C. Intrinsic diffusivities of the species at 1000 °C at different compositions are measured by Kirkendall marker experiments. The
Mechanisms of diffusional phase transformations in metals and alloys
Aaronson, Hubert I; Lee, Jong K
2010-01-01
Developed by the late metallurgy professor and master experimentalist Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based. Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-solid phase transformations in which elementary atomic processes are diffusional jumps, and these processes occur in a series of so-called nucleation and growth through interface migration. Instead of relying strictly on a pedagogical approach, it doc
A TECHNIQUE OF IDENTIFICATION OF THE PHASE-DISPLACEMENT GROUP OF THREE-PHASE TRANSFORMER
International Nuclear Information System (INIS)
Aburjania, A.; Begiashvili, V.; Rezan Turan
2007-01-01
It is demonstrated that the arbitrary choice of arbitrarily pisitive direction of induced currents and voltages contradicts the energy conservation law and leads to equilibrium equations and standards making no sense from the physical standpoint. Of 12 recognized standard phase-displacement groups of three-phase transformer, only three have real physical bases. The rest are based on a wrong assumption about mutual biasing of primary and secondary currents. They does not rule out the occurrence of emergency situations and, thus, must be eliminated from use. A new method of identification of the phase-displacement of three-phase transformer is proposed. The method is based on well-known physical laws with consideration for the dual character of the inertia of mutual inductance and exhausts for all possible versions of connection of transformer windings. (author)
Recent advances in computational-analytical integral transforms for convection-diffusion problems
Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.
2017-10-01
An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.
International Nuclear Information System (INIS)
Willaime, F.
1991-09-01
We have developed an N-body interatomic potential, based on the second moment approximation of the tight-binding scheme, by fitting its four adjustable parameters to the cohesive energy, atomic volume, and elastic constants of hcp-Zr. We then showed that various properties of this potential compare favorably with those of zirconium in both the low temperatures hcp phase and the high temperature bcc phase. Such is the case in particular for the elastic constants, the phonon dispersion curves, the thermal expansion, and the melting temperature. We reproduced by molecular dynamics (MD) simulations on this potential the hcp/bcc phase transformation in both ways. It indeed occurs following the mechanism predicted by Burgers. We find a vibrational entropy of transformation equal to 0.13 k B . Our calculations suggest that in real zirconium the electronic contribution to the transformation entropy is important. We show that some interatomic potential lead to a higher value of the vibrational entropy in the hcp phase than in the bcc phase. We specified the dynamics of the vacancy migration in the bcc phase. The atomic jumps are almost exclusively nearest neighbour ones. The walk of the vacancy becomes strongly correlated at high temperatures. The vacancy jump frequency is very large and has a perfectly arrhenian behaviour. There is no evicence of a dynamical lowering of the vacancy migration barrier: the static and dynamic values of the vacancy migration energy are almost equal, both being unusually small (0.3 eV). The self diffusion coefficent of our model for the vacancy mechanism reproduces an anomalous fast diffusion close to that measured experimentally in bcc-Zr. In our model at high temperatures the time interval between successive jumps is almost equal to the time of flight. The migration events will therefore influence the formation of the vacancies [fr
Energy Technology Data Exchange (ETDEWEB)
Kim, Ga Eon; Choi, Jung-Sun; Noh, Sanghoon; Kang, Suk Hoon; Choi, Byoung Kwon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Kim, Young Do [Hanyang University, Seoul (Korea, Republic of)
2017-05-15
The phase transformation behavior of the oxides formed in mechanically alloyed Fe-5Y{sub 2}O{sub 3} powder is investigated. Non-stoichiometric Y-rich and Fe-rich oxides with sizes of less than 300 nm are observed in the mechanically alloyed powder. The diffusion and redistribution reactions of the elements in these oxides during heating of the powder above 800 ℃ were observed, and these reactions result in the formation of a Y{sub 3}Fe{sub 5}O{sub 12} phase after heating at 1050 ℃. Thus, it is considered that the Y{sub 2}O{sub 3} powder and some Fe powder are formed from the non-stoichiometric Y-rich and Fe-rich oxides after the mechanical alloying process, and a considerable energy accumulated during the mechanical alloying process leads to a phase transformation of the Y-rich and Fe-rich oxides to Y{sub α}Fe{sub β}O{sub γ}-type phase during heating.
Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand
Institute of Scientific and Technical Information of China (English)
Yi-ran Liu; Jian-liang Zhang; Zheng-jian Liu; Xiang-dong Xing
2016-01-01
The reduction of titanomagnetite (TTM) ironsand, which contains 11.41wt% TiO2 and 55.63wt% total Fe, by graphite was per-formed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: FeO + FeTiO3→ Fe2TiO4→ FeTiO3→ FeTi2O5→ TiO2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 kJ·mol−1.
Phase Transformations During Cooling of Automotive Steels
Padgett, Matthew C.
This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).
An optical Fourier transform coprocessor with direct phase determination.
Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D
2017-10-20
The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.
International Nuclear Information System (INIS)
Holzweissig, M.J.; Canadinc, D.; Maier, H.J.
2012-01-01
This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: ► Local variations of strain were observed by DIC throughout the phase transformation. ► The study clearly established the role of the stress-induced variant selection. ► Variant selection is a key parameter that governs distortion.
Spatiotemporal Signal Analysis via the Phase Velocity Transform
International Nuclear Information System (INIS)
Mattor, Nathan
2000-01-01
The phase velocity transform (PVT) is an integral transform that divides a function of space and time into components that propagate at uniform phase velocities without distortion. This paper examines the PVT as a method to analyze spatiotemporal fluctuation data. The transform is extended to systems with discretely sampled data on a periodic domain, and applied to data from eight azimuthally distributed probes on the Sustained Spheromak Physics Experiment (SSPX). This reveals features not shown by Fourier analysis, particularly regarding nonsinusoidal mode structure. (c) 2000 The American Physical Society
Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.
Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J
2013-10-01
A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.
Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy
Energy Technology Data Exchange (ETDEWEB)
Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Doung-Hun [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Hee-Kyung [Department of Dental Technology, Daegu Health College, San 7 Taejeon-dong, Buk-gu, Daegu 702-722 (Korea, Republic of); Takada, Yukyo [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Okuno, Osamu [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr
2006-01-05
The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich {alpha}{sub 1} phase and the Pd-containing Cu-rich {alpha}{sub 2} phase were transformed into four phases of the Ag-rich {alpha}{sub 1}{sup '} phase, the Cu-rich {alpha}{sub 2}{sup '} phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich {alpha}{sub 1} matrix, Cu-rich {alpha}{sub 2} particle-like structures of various sizes and the lamellar structure of the {alpha}{sub 1} and {alpha}{sub 2} phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich {alpha}{sub 1}{sup '} and Cu-rich {alpha}{sub 2}{sup '} phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich {alpha}{sub 1} matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase.
Diffuse scattering as an indicator for martensitic variant selection
International Nuclear Information System (INIS)
Gao, Lei; Ding, Xiangdong; Zong, Hongxiang; Lookman, Turab; Sun, Jun; Ren, Xiaobing; Saxena, Avadh
2014-01-01
Diffuse scattering is an important precursor phenomenon prior to the martensitic transformation (MT). It is related to the correlated atomic position fluctuations prior to the MT and can provide important hints of the transformation mechanism. However, the role of this precursor phenomenon in the MT is not clear so far. Here we study the evolution of diffraction patterns prior to temperature- and stress-induced MTs and consider the evolution of atomic configurations during the whole MT process, using molecular dynamics simulations on a generic body-centered cubic–hexagonal close-packed transformation as an example. Our results show that, although the diffuse scattering changes with external fields, there exists a general relationship between the transformation pathways, the diffuse scattering streaks and the martensitic products. Two preferred transformation pathways with opposite shuffle directions lead to a single specific diffuse scattering streak prior to the MT and form one pair of anti-variants after the MT. Thus the distribution of diffuse scattering acts as an indicator of the selection of martensitic variants. In addition, we find that the applied stress can change the shear order parameter of the phase transformation, and subsequently determines the preferred transformation pathways and the distribution of diffuse scattering streaks. This work establishes a relationship between the transformation mechanism, the precursor phenomenon and the products after the MT under the influence of external fields
Nonlinear diffuse scattering of the random-phased wave
International Nuclear Information System (INIS)
Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.
1983-01-01
First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)
Energy Technology Data Exchange (ETDEWEB)
Lima, Joao Cardoso de; Ferreira, Ailton da Silva, E-mail: joao.cardoso.lima@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil); Rovani, Pablo Roberto; Pereira, Altair Soria [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)
2016-07-01
Full text: Alloys based on titanium and nickel with shape memory effect (SME) have been widely investigated due to potential use in different areas of science and technology, such as electronics, medicine, and space.1 Among them, the superalloys Ti-Ni-Fe show high corrosion resistance and good mechanical properties even at high temperatures that make them suitable for use in applications such as power plant components that work under aggressive conditions. At room temperature, the TiNi alloy has a monoclinic (B19'), known as the martensitic phase. With increasing temperature, the B19' phase transforms into a trigonal/hexagonal (B19) phase, known as the R- or pre martensitic phase, which, in its turn, transforms into a cubic (B2) structure, known as the austenitic phase. On cooling to room temperature, the reverse B2→B19→B19' phase transformations are observed. Since the B19↔B19' transformation occurs at a temperature low enough to inhibit diffusion-controlled processes, it belongs to a class of diffusionless phase transformations known as martensitic transformations. For this study, a Ti{sub 50}Ni{sub 25}Fe{sub 25} (B2) alloy was prepared by mechanical alloying, and the effects of high pressures up to 18 GPa will be presented. The structural changes with increasing pressure were followed by recording in situ angle-dispersive X-ray diffraction (ADXRD) diffractograms, in transmission geometry, using a long fine focus Mo X-ray tube and an imaging plate detector. The obtained results were already reported in Ref [1]. (1) A. S. Ferreira, P. R. Rovani, J. C. de Lima, A. S. Pereira, J. Appl. Phys. 117 (2015). (author)
Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn
International Nuclear Information System (INIS)
Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.
2001-01-01
The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics
International Nuclear Information System (INIS)
Kobayashi, Keisuke; Ishibashi, Hideo
1978-01-01
A two-dimensional neutron diffusion equation for a triangular region is shown to be solved by the finite Fourier transformation. An application of the Fourier transformation to the diffusion equation for triangular region yields equations whose unknowns are the expansion coefficients of the neutron flux and current in Fourier series or Legendre polynomials expansions only at the region boundary. Some numerical calculations have revealed that the present technique gives accurate results. It is shown also that the solution using the expansion in Legendre polynomials converges with relatively few terms even if the solution in Fourier series exhibits the Gibbs' phenomenon. (auth.)
Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.
Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi
2017-08-09
The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.
Phase difference estimation method based on data extension and Hilbert transform
International Nuclear Information System (INIS)
Shen, Yan-lin; Tu, Ya-qing; Chen, Lin-jun; Shen, Ting-ao
2015-01-01
To improve the precision and anti-interference performance of phase difference estimation for non-integer periods of sampling signals, a phase difference estimation method based on data extension and Hilbert transform is proposed. Estimated phase difference is obtained by means of data extension, Hilbert transform, cross-correlation, auto-correlation, and weighted phase average. Theoretical analysis shows that the proposed method suppresses the end effects of Hilbert transform effectively. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of phase difference estimation and has better performance of phase difference estimation than the correlation, Hilbert transform, and data extension-based correlation methods, which contribute to improving the measurement precision of the Coriolis mass flowmeter. (paper)
Phase Transformations in Cast Duplex Stainless Steels
Energy Technology Data Exchange (ETDEWEB)
Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)
2004-01-01
Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by
Z-transform Zeros in Mixed Phase Deconvolution of Speech
DEFF Research Database (Denmark)
Pedersen, Christian Fischer
2013-01-01
The present thesis addresses mixed phase deconvolution of speech by z-transform zeros. This includes investigations into stability, accuracy, and time complexity of a numerical bijection between time domain and the domain of z-transform zeros. Z-transform factorization is by no means esoteric......, but employing zeros of the z-transform (ZZT) as a signal representation, analysis, and processing domain per se, is only scarcely researched. A notable property of this domain is the translation of time domain convolution into union of sets; thus, the ZZT domain is appropriate for convolving and deconvolving...... discrimination achieves mixed phase deconvolution and equivalates complex cepstrum based deconvolution by causality, which has lower time and space complexities as demonstrated. However, deconvolution by ZZT prevents phase wrapping. Existence and persistence of ZZT domain immiscibility of the opening and closing...
Energy Technology Data Exchange (ETDEWEB)
Holzweissig, M.J., E-mail: martinh@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Canadinc, D., E-mail: dcanadinc@ku.edu.tr [Koc University, Advanced Materials Group, Department of Mechanical Engineering, 34450 Istanbul (Turkey); Maier, H.J., E-mail: hmaier@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany)
2012-03-15
This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.
International Nuclear Information System (INIS)
Knyazev, E.V.; Voshedchenko, B.M.; Voskresenskij, Yu.A.
1985-01-01
A study was made on the effect of elevated temperatures UU and long holdings at heat on structure, phase composition and properties of chromium diffusion layer on austenitic chromium-nickel stainless steels 10Kh18N10TVD, 10Kh15N30M4B, 10Kh11N23T3MR, 10Kh21N28V6M3. The following mechanism of processes taking place in diffusion chromium layer is presented. The steady drop of chromium concentrations is observed after diffusion saturation. Chromium redistribution related with system transformation to more equilibrium state and simultaneous decarburization of steel surfaces takes place in diffusion layers of 10Kh15N30M4B and 10Kh21N28V6M3 steels after annealing at different temperatures and holdings at heat. Decarburization of steel surface layers is practically excluded in diffusion layers of 10Kh18N10T-VD and 10Kh11N23T3MR steels. Diffusion chromium-saturated layer stays effective only on 10Kh18N10T-VD and 10Kh11N23T3MR steels on heating up to 1000 deq C with holding up to 250 h
Energy Technology Data Exchange (ETDEWEB)
Adda, Y; Philibert, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)
1959-07-01
After chemical diffusion between two metals, at temperatures where, according to the equilibrium diagram, several phases exist, parallel bands corresponding to these various phases can be seen in a section which is perpendicular to the diffusion front. It is known that in this case there are discontinuities in the concentration-penetration curve, corresponding to the interfaces. The concentrations at the point where the discontinuities occur give the limits of solubility in each of the present phases. During our experiments on the system uranium-zirconium, we verified that these concentrations do not vary with the diffusion time and therefore that the conditions of thermodynamical equilibrium are obeyed. It follows that an interesting method is available for determining the equilibrium diagram for the solid state. We have applied this method to the U-Zr system. Kinetic studies of poly-phase diffusion are as yet relatively scarce as a result of difficulty of experimentation. Various methods based on purely micro-graphical studies (measurement of the thickness of intermediate phases) are also proposed for evaluating the coefficient of diffusion. Our experimental results show that the hypotheses on which these methods are based are rarely valid. We have established concentration-penetration curves for the systems U-Zr (between 590 deg. C and 950 deg. C) and U-Mo (between 800 deg. C and 1050 deg. C). These curves have very often a very accentuated curvature, thus indicating variations in the diffusion coefficient, which cannot be expressed by simple relationships. Finally, we have observed certain anomalies in the neighbourhood of the interfaces between adjacent phases. Further we have studied the Kirkendall effect in poly-phase system by marking the plane of welding with tungsten wires, and compared these results to those from a previous study in the homogeneous phase. We have found that the presence of phase boundaries accentuates this effect. The interpretation of
Constitutive modeling of multiphase materials including phase transformations
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B
2011-01-01
A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP
Neutron scattering studies of pretransitional phenomena in structural phase transformations
International Nuclear Information System (INIS)
Shapiro, S.M.
1979-03-01
Materials exhibiting structural phase transformations are well known to possess pretransitional phenomena. Below the transition temperature, T/sub c/, an order parameter appears and the pretransitional effects are associated with the fluctuations of the order parameter. Neutron scattering techniques have proved invaluable in studying the temporal and spatial dependence of these fluctuations. SrTiO 3 is the prototypical example of a structural phase transformation exhibiting features observable in other transformations such as martensitic and order-disorder. The experimental evolution of the understanding of the phase transformation in SrTiO 3 will be reviewed and the features observed will be shown to typify other systems
Measurement of turbulent diffusivity of both gas and liquid phases in quasi-2D two-phase flow
International Nuclear Information System (INIS)
Sato, Yoshifusa; Sadatomi, Michio; Kawahara, Akimaro
1993-01-01
The turbulent diffusion process has been studied experimentally by observing a tracer plume emitted continuously from a line source in a uniform, quasi-2D two-phase flow. The test section was a vertical, relatively narrow, concentric annular channel consisting of two large pipes. Air and water were used as the working fluids, and methane and acid organge II were used as tracers for the respective phases. Measurements of local, time-averaged tracer concentrations were made by means of a sampling method and image processing for bubbly flows and churn flows, and the turbulent diffusivity, the coefficient of turbulent diffusion, was determined from the concentration distributions measured. The diffusivities for the gas and liquid phases, ε DG and ε DL respectively, are presented and compared with each other in this paper. When a flow is bubbly, ε DG is close to or slightly smaller than ε DL . In a churn flow, on the contrary, ε DG is much greater than ε DL . Regarding bubbly flow, a plausible model on turbulent diffusivity of the liquid phase is presented and examined by the present data. (orig.)
High-pressure phase transformations of fluorite-type dioxides
International Nuclear Information System (INIS)
Lin-Gun Liu
1980-01-01
Phase transformations in six fluorite-type dioxides ('TbO 2 ', PbO 2 , 'PrO 2 ', CeO 2 , UO 2 and ThO 2 in the order of increasing cation size, where the quotation marks indicate non-stoichiometric materials) have been investigated in the diamond-anvil press coupled with laser heating. Together with earlier work, the results show that the post-fluorite phase transformations of these dioxides fall into two groups. The smaller cation group (HfO 2 , ZrO 2 and 'TbO 2 ') transforms to a cotunnite or a distorted cotunnite-type structure at pressures in the vicinity of 100 kbar and at about 1000 0 C. The larger cation group (from PbO 2 to ThO 2 ) is believed to transform to a different type of orthorhombic modification at high pressures. It is plausible that this high-pressure phase may possess a Ni 2 Si-related structure, as was observed in ThO 2 and 'PrO 2 ' at pressures greater than 150 and 200 kbar, respectively. (orig./ME)
Temperature induced reversible polymorphic phase transformations in a bis-hydrazone compound
Jayant, Vikrant; Das, Dinabandhu
2018-03-01
Two reversible polymorphic phase transformation of 2,3-butanedione, 2,3- bis[4,4‧-bis(diethylamino)benzophenone hydrazone] (DEBH) have been identified in DSC experiment. Topotactic phase transformation of three polymorphs has been observed in variable temperature Single Crystal X-ray Diffraction experiment. The reversible phase transformation of bulk material has been confirmed by Powder X-ray diffraction study.
Dynamic strain-induced transformation: An atomic scale investigation
International Nuclear Information System (INIS)
Zhang, H.; Pradeep, K.G.; Mandal, S.; Ponge, D.; Springer, H.; Raabe, D.
2015-01-01
Phase transformations provide the most versatile access to the design of complex nanostructured alloys in terms of grain size, morphology, local chemical constitution etc. Here we study a special case of deformation induced phase transformation. More specifically, we investigate the atomistic mechanisms associated with dynamic strain-induced transformation (DSIT) in a dual-phased multicomponent iron-based alloy at high temperatures. DSIT phenomena and the associated secondary phase nucleation were observed at atomic scale using atom probe tomography. The obtained local chemical composition was used for simulating the nucleation process which revealed that DSIT, occurring during load exertion, proceeds by a diffusion-controlled nucleation process
Binary joint transform correlation using error-diffusion techniques
Inbar, Hanni; Marom, Emanuel; Konforti, Naim
1993-08-01
Optical pattern recognition techniques based on the optical joint transform correlator (JTC) scheme are attractive due to their simplicity. Recent improvements in spatial light modulators (SLM) increased the popularity of the JTC, providing means for real time operation. Using a binary SLM for the display of the Fourier spectrum, first requires binarization of the joint power spectrum distribution. Although hard-clipping is the simplest and most common binarization method used, we suggest to apply error-diffusion as an improved binarization technique. The performance of a binary JTC, whose input image is considered to contain additive zero-mean white Gaussian noise, is investigated. Various ways for nonlinearly modifying the joint power spectrum prior to the binarization step, which is based on either error-diffusion or hard-clipping techniques, are discussed. These nonlinear modifications aim at increasing the contrast of the interference fringes at the joint power spectrum plane, leading to better definition of the correlation signal. Mathematical analysis, computer simulations and experimental results are presented.
Transformation plasticity and hot pressing
International Nuclear Information System (INIS)
Chaklader, A.C.D.
1975-01-01
The transformation plasticity during the phase transition of quartz to cristobalite, monoclinic reversible tetragonal of zirconia, metakaolin to a spinel phase, and brucite to periclase was investigated by studying their compaction characteristics. Viscous flow was found to be the predominant mechanism of mass transport (after an initial particle rearrangement stage) in the case of quartz to cristobalite phase change where the transformation was associated with the formation of an intermediate amorphous silica phase. The results on the monoclinic reversible tetragonal transformation of zirconia indicated that it is most likely controlled by internal strain induced by the stress associated with the volume change (ΔV/V) and the flow stress of the weaker phase. Particle movement and deformation of the weaker phase (possibly tetragonal) may be the manifestation of this plasticity. The plasticity in the case of metakaolin to a spinel phase appeared to start before the exothermic reaction (generally encountered in a dta plot) and may be diffusion controlled. The plasticity encountered during brucite to periclase transformation may be the combined effect of disintegration of precursor particles, vapor-phase lubrication and some deformability of freshly formed very fine MgO particles
Phase transformations of nanostructured Zr-Y-O coatings under loading
Fedorischeva, M. V.; Kalashnikov, M. P.; Bozhko, I. A.; Mironov, Yu. P.; Sergeev, V. P.
2017-12-01
The deposition of nanostructured Zr-Y-O/Si-Al-N-based coatings was implemented by the pulse magnetron methods. The structural-phase state of the nanostructured coatings was studied with TEM and X-ray analysis. The phase transformation in Zr-Y-O layer was observed with the X-ray diffraction analysis in the "in-situ" mode under loading in conditions of free and constrained volumes. It was found, that there were martensitic phase transformations at certain deformation levels under the conditions of the free volume and martensitic phase transformations in the local regions of the coating layer with the structure fining in constrained volume.
Effect of different factors on phase transformations in Fe-Mn alloys
International Nuclear Information System (INIS)
Balychev, Yu.M.; Tkachenko, F.K.
1983-01-01
Phase transformations proceeding under Fe-Mn alloy heating are studied and the effect of previous working conditions, particularly, cooling rate on these transformations is investigated. Investigations have been conducted on pure Fe-Mn alloys with 2-15% Mn. Phase transformations are shown to proceed according to α → #betta# and epsilon → #betta# reaction in Fe-Mn alloys containing 2-15% Mn under heating. Cooling rate in the range of approximately 5-1000 deg/min in preliminary working essentially affects phase transformations under subsequent heating
Directory of Open Access Journals (Sweden)
Mihaela Poienar
2014-09-01
Full Text Available The clock hour figure mathematical model of a threephase transformer can be expressed, in the most plain form, through a 3X3 square matrix, called code matrix. The lines position reflect the modification in the high voltage windings terminal and the columns position reflect the modification in the low voltage winding terminal. The main changes on the transformer winding terminal are: the circular permutation of connection between windings; terminal supply reversal; reverse direction for the phase winding wrapping; reversal the beginning with the end for a phase winding; the connection conversion from N in Z between phase winding or inverse. The analytical form of these changes actually affect the configuration of the mathematical model expressed through a transformations diagram proposed and analyzed in two ways: bipolar version and unipolar version (fanwise. In the end of the paper are presented about the practical exploitation of the transformations diagram.
QR code-based non-linear image encryption using Shearlet transform and spiral phase transform
Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan
2018-02-01
In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.
On Inclusion-Matrix Interfacial Stresses in Composites Containing Phase-Transforming Phases
International Nuclear Information System (INIS)
Wang, Y.-C.; Ko, C.-C.
2010-01-01
Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded. Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the two-dimensional plane stress elasticity problem of a square plate containing a circular inclusion, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of applied stress to averaged strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The rationale for this nonuniform stress distributions is due to nonlocal effects induced from negative stiffness.
Diffusive phenomena and pseudoelasticity in Cu-Al-Be single crystals
Energy Technology Data Exchange (ETDEWEB)
Sade, M., E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Pelegrina, J.L., E-mail: jlp201@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Yawny, A., E-mail: yawny@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Lovey, F.C., E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina)
2015-02-15
Highlights: • Diffusive phenomena occurring under load were analyzed in Cu-Al-Be single crystals. • Stabilization of stress induced martensite was detected in a range of temperatures. • Ageing the austenite under load shifts the austenite/martensite stability field. • A free energy model is proposed considering interchanges between Cu and Be atoms. • Different kinetics for the recovery of the austenite are rationalized. - Abstract: Cu-Al-Be single crystals show pseudoelasticity and the shape memory effect in a well-defined composition range. The β{sub 3}-18R martensitic transition is the origin of these phenomena. The transformation temperatures and the critical stresses to induce the martensitic transition are affected by diffusive phenomena taking place both in the parent phase and in martensite. Pseudoelastic cycles were used to obtain quantitative data concerning the effect of diffusive phenomena like stabilization of martensite, ordering of the parent phase under load and recovery of this phase on the critical stresses to transform. Information was then obtained on changes in the relative phase stability. A model is presented to explain those changes taking place in the parent phase aged under load and in the martensitic 18R structure. Experimental data on the kinetics of diffusive phenomena is also presented and analyzed.
Directory of Open Access Journals (Sweden)
Marek Danielewski
2015-01-01
Full Text Available The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the parabolic transformation method, we calculate the solute field, the Kirkendall marker velocity, and displacement fields. The velocity field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features observed experimentally and reported in the literature are also studied: (i multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two locations due to composition dependent mobilities, and (iii a Kirkendall plane that coincides with the interphase interface. The details of the deformation (material trajectories in these special situations are given using both methods and are discussed in terms of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.
Atomistic modelling of diffusional phase transformations with elastic strain
International Nuclear Information System (INIS)
Mason, D R; Rudd, R E; Sutton, A P
2004-01-01
Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Atomic interactions are modelled by Finnis-Sinclair potentials constructed for these simulations. Vacancy diffusion is modelled by comparing the energies of trial states, where the system is partially relaxed for each trial state. No special requirements are made about the description of atomic interactions, making our approach suitable for more fundamentally based models such as tight binding if sufficient computational resources are available. Only a limited precision is required for the energy of each trial state, determined by the value of k B T. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r 3 , it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centred on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice
Pelleg, Joshua
2016-01-01
This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...
Atomic disorder, phase transformation, and phase restoration in Co3Sn2
di, L. M.; Zhou, G. F.; Bakker, H.
1993-03-01
The behavior of the intermetallic compound Co3Sn2 upon ball milling was studied by x-ray diffraction, high-field-magnetization measurements, and subsequently by differential scanning calorimetry. It turns out that starting from the stoichiometric-ordered compound, mechanical attrition of Co3Sn2 generates atomic disorder in the early stage of milling. The nonequilibrium phase transformation from the low-temperature phase with orthorhombic structure to the high-temperature phase with a hexagonal structure was observed in the intermediate stage of milling. It was accompanied by the creation of increasing atomic disorder. After long milling periods, the phase transformation was completed and the atomic disordering became saturated. All the physical parameters measured in the present work remained constant during this period. The above outcome was confirmed by comparison with the high-temperature phase thermally induced by quenching. The good agreement of the results obtained by different techniques proves that the ball milling generates well-defined metastable states in Co3Sn2.
Energy Technology Data Exchange (ETDEWEB)
Adda, Y.; Philibert, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)
1959-07-01
After chemical diffusion between two metals, at temperatures where, according to the equilibrium diagram, several phases exist, parallel bands corresponding to these various phases can be seen in a section which is perpendicular to the diffusion front. It is known that in this case there are discontinuities in the concentration-penetration curve, corresponding to the interfaces. The concentrations at the point where the discontinuities occur give the limits of solubility in each of the present phases. During our experiments on the system uranium-zirconium, we verified that these concentrations do not vary with the diffusion time and therefore that the conditions of thermodynamical equilibrium are obeyed. It follows that an interesting method is available for determining the equilibrium diagram for the solid state. We have applied this method to the U-Zr system. Kinetic studies of poly-phase diffusion are as yet relatively scarce as a result of difficulty of experimentation. Various methods based on purely micro-graphical studies (measurement of the thickness of intermediate phases) are also proposed for evaluating the coefficient of diffusion. Our experimental results show that the hypotheses on which these methods are based are rarely valid. We have established concentration-penetration curves for the systems U-Zr (between 590 deg. C and 950 deg. C) and U-Mo (between 800 deg. C and 1050 deg. C). These curves have very often a very accentuated curvature, thus indicating variations in the diffusion coefficient, which cannot be expressed by simple relationships. Finally, we have observed certain anomalies in the neighbourhood of the interfaces between adjacent phases. Further we have studied the Kirkendall effect in poly-phase system by marking the plane of welding with tungsten wires, and compared these results to those from a previous study in the homogeneous phase. We have found that the presence of phase boundaries accentuates this effect. The interpretation of
Two-dimensional simulation of reactive diffusion in binary systems
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Stopka, J.; Fischer, F. D.
2014-01-01
Roč. 95, DEC (2014), s. 309-315 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Phase transformation * Diffusion-controlled interface migration * Reactive diffusion * Multiphase system * Intermetallic compounds Subject RIV: BJ - Thermodynamics Impact factor: 2.131, year: 2014
Elimination of numerical diffusion in 1 - phase and 2 - phase flows
Energy Technology Data Exchange (ETDEWEB)
Rajamaeki, M. [VTT Energy (Finland)
1997-07-01
The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods.
Elimination of numerical diffusion in 1 - phase and 2 - phase flows
International Nuclear Information System (INIS)
Rajamaeki, M.
1997-01-01
The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods
Stainless austenitic steels strengthened due to reversible phase transformations and by ageing
International Nuclear Information System (INIS)
Sagaradze, V.V.; Kositsyna, I.I.; Ozhiganov, A.V.
1981-01-01
The effect of the reversible phase transformations, consisting in the conduction of the direct and reverse martensite transformations and aging, during which the intermetallide γ'-phase of the composition Ni 3 Ti is formed, on the streng-thening of alloys in the Fe-Cr-Ni-Ti system is considered. Stainless austenitic steels Kh12N12T3 and Kh12N14T3, which acquire high mechanical properties: σsub(0.2)=685-785 MPa, σsub(B)=1275 MPa, delta >= 20%, as a result of reversible phase transformations and aging, are suggested. After the reversible phase transformations and ageing the steels possess a high resistance to γ-α-transformation during cold treatment [ru
Cervantes, Barbara; Van, Anh T; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J; Gersing, Alexandra; Kirschke, Jan S; Karampinos, Dimitrios C
2018-08-01
To perform in vivo isotropic-resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase-navigated diffusion-prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase-error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Phase-navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy-current effects on the signal magnitude. Phase navigation of motion-induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single-shot echo planar imaging (ss-EPI) in 13 subjects. Diffusion data were phase-corrected per k z plane with respect to T 2 -weighted data. The effects of motion-induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss-EPI. Non-phase-corrected 3D TSE resulted in artifacts in diffusion-weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss-EPI DTI parameters (MD = 1.62 ± 0.21). DP 3D TSE with phase correction allows distortion-free isotropic diffusion imaging of lower back nerves with robustness to motion-induced artifacts and DTI quantification errors. Magn Reson Med 80:609-618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2018 The Authors Magnetic Resonance
Restrictive liquid-phase diffusion and reaction in bidispersed catalysts
International Nuclear Information System (INIS)
Lee, S.Y.; Seader, J.D.; Tsai, C.H.; Massoth, F.E.
1991-01-01
In this paper, the effect of bidispersed pore-size distribution on liquid-phase diffusion and reaction in NiMo/Al 2 O 3 catalysts is investigated by applying two bidispersed-pore-structure models, the random-pore model and a globular-structure model, to extensive experimental data, which were obtained from sorptive diffusion measurements at ambient conditions and catalytic reaction rate measurements on nitrogen-containing compounds. Transport of the molecules in the catalysts was found to be controlled by micropore diffusion, in accordance with the random-pore model, rather than macropore diffusion as predicted by the globular-structure model. A qualitative criterion for micropore-diffusion control is proposed: relatively small macroporosity and high catalyst pellet density. Since most hydrotreating catalysts have high density, diffusion in these types of catalysts may be controlled by micropore diffusion. Accordingly, it is believed in this case that increasing the size of micropores may be more effective to reduce intraparticle diffusion resistance than incorporating macropores alone
Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase
International Nuclear Information System (INIS)
Dupuy, M.
1967-07-01
A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in α uranium (15 per cent at 565 C) and the uranium one in ζ phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10 12 cm 2 s -1 , and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and α autoradiography. Self-diffusion of plutonium in ε phase (bcc) obeys Arrhenius law: D = 2. 10 -2 exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals (βZr, βTi, βHf, U γ ). (author) [fr
Chemically Induced Phase Transformation in Austenite by Focused Ion Beam
Basa, Adina; Thaulow, Christian; Barnoush, Afrooz
2014-03-01
A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.
Directory of Open Access Journals (Sweden)
Koji Kosai
2017-11-01
Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.
Dynamics of a quantum two-level system under the action of phase-diffusion field
Energy Technology Data Exchange (ETDEWEB)
Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)
2012-01-09
We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.
Zirconium metal-water oxidation kinetics. III. Oxygen diffusion in oxide and alpha Zircaloy phases
International Nuclear Information System (INIS)
Pawel, R.E.
1976-10-01
The reaction of Zircaloy in steam at elevated temperature involves the growth of discrete layers of oxide and oxygen-rich alpha Zircaloy from the parent beta phase. The multiphase, moving boundary diffusion problem involved is encountered in a number of important reaction schemes in addition to that of Zircaloy-oxygen and can be completely (albeitly ideally) characterized through an appropriate model in terms of oxygen diffusion coefficients and equilibrium concentrations for the various phases. Conversely, kinetic data for phase growth and total oxygen consumption rates can be used to compute diffusion coefficients. Equations are developed that express the oxygen diffusion coefficients in the oxide and alpha phases in terms of the reaction rate constants and equilibrium solubility values. These equations were applied to recent experimental kinetic data on the steam oxidation of Zircaloy-4 to determine the effective oxygen diffusion coefficients in these phases over the temperature range 1000--1500 0 C
Solution of 3-dimensional diffusion equation by finite Fourier transformation
International Nuclear Information System (INIS)
Krishnani, P.D.
1978-01-01
Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)
The lattice correspondence and diffusional-displacive phase transformations
International Nuclear Information System (INIS)
Nie, J.F.; Muddle, B.C.
1999-01-01
When a coherent interface is maintained between parent and product phases in a solid state phase transformation, then it is always possible to define a lattice correspondence across this interface and describe the structural change by a homogeneous lattice deformation, S T . For certain transformations, this strain is an invariant plane strain, with the invariant plane defining the planar, coherent interface between parent and product. This group includes the familiar martensitic face-centred cubic to close-packed hexagonal transformation in, for example, cobalt-based alloys, but it is demonstrated here that it also contains transformations giving rise to a broad range of plate-shaped, diffusional precipitation products. For many such transformation products, the transformation strain has a significant shear component and the accommodation of shear strain energy is potentially an important, and often overlooked, factor in both the nucleation and growth of such products. More commonly S T is not an invariant plane strain and, if a planar interface is to be preserved between parent and product, it is necessary to combine S T with a lattice invariant strain to allow a partially-coherent interface that is macroscopically invariant. It is demonstrated that there are diffusional transformation products which also have the geometric and crystallographic features of both of the common forms of partially-coherent martensitic products
Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing
Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan
2015-03-01
We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.
Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process
International Nuclear Information System (INIS)
Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang
2009-01-01
Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze
Energy Technology Data Exchange (ETDEWEB)
Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory
2014-03-27
The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.
Phase transformations, stability, and materials interactions
International Nuclear Information System (INIS)
Morris, J.W. Jr.; Brewer, L.; Cost, J.R.; Shewmon, P.
1977-07-01
The proceedings of the Materials Sciences Workshop on Phase Transformations, Stability, and Materials Interactions are divided into sections according to the following topics: (I) workshop scope and priorities; (II) study group reports--ERDA mission needs; (III) study group reports--technical area research priorities
International Nuclear Information System (INIS)
Gaboriaud, R.J.; Paumier, F.; Lacroix, B.
2016-01-01
This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y_2O_3. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability
Energy Technology Data Exchange (ETDEWEB)
Gaboriaud, R.J.; Paumier, F. [Institut Pprime, Department of Material Sciences, CNRS-University of Poitiers SP2MI-BP 30179, 86962 Futuroscope-Chasseneuil cedex (France); Lacroix, B. [CSIC, Institut de Ciencia de Materiales, University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)
2016-02-29
This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y{sub 2}O{sub 3}. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability.
SIMULATION OF CHARACTERISTICS OF DUAL-CORE PHASE SHIFTING TRANSFORMER
Directory of Open Access Journals (Sweden)
Kalinin L.P.
2014-04-01
Full Text Available The role and importance of phase shifting transformers are increased as a result of the further development of integrated power systems. This gives the rise to new technical solutions which entails the necessity of comparison of new developments with existing. The article consider the technical characteristics of dual-core phase shifting transformer which later will be used as a basis for comparison with other competing options and assess of their technical efficiency.
Modelling of stresses generated in steels by phase transformations
International Nuclear Information System (INIS)
Dudek, K.; Glowacki, M.; Pietrzyk, M.
1999-01-01
Numerical model describing stresses arising during phase transformations in steels products is presented. The full model consists of three components. The first component uses finite element solution of Fourier equation for an evaluation of the temperature field inside the sample. The second component predicts kinetics of phase transformation occurring during cooling of steel products. Coupling of these two components allows prediction of structure and properties of final products at room temperature. The third component uses elastic-plastic finite element model for prediction of stresses caused by non-uniform temperatures and by changes of volume during transformations. Typical results of simulations performed for cooling of rails after hot rolling are presented. (author)
Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia
International Nuclear Information System (INIS)
Clarke, D.R.; Arora, A.
1983-01-01
The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission
Diffusion and phase growth in heterophase systems. 1
International Nuclear Information System (INIS)
Mchedlov-Petrosyan, P.O.
1989-01-01
The present paper gives the view of theoretical study of diffusion processes in ternary and more component solid-state systems, caused by chemical reactions and phase growth. Internal oxidation of alloys, nitridation, borating etc. are the well-known and widely investigated processes of such type. Self-consistent theoretical model of such processes must take into account both the effect of concentration macroscopic districutions on new phase precipitation growth and precipitation reaction on concentration distribution; heterophase must be explicitly allowed for. As for binary system, diffusion theory, running into the phase growth, is well developed and completely presented in monographs, the carried out theoretical investigations of ternary systems are explicitly deficient. The first part of the review presents analysis of available theoretical studies approximately up to 1980. Ratios between various analytically solved models are discussed in detail. It is shown that they don't satisfy to full extent the above-given requirements. More consistent, both numerically and analytically solvable models developed for the last years, are considered in the review second part. 119 refs
Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys
Balakrishna, Ananya Renuka; Carter, W. Craig
2018-04-01
Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
Phase-transformation and subgrain-deformation characteristics in a cobalt-based superalloy
International Nuclear Information System (INIS)
Benson, M.L.; Reetz, B.; Liaw, P.K.; Reimers, W.; Choo, H.; Brown, D.W.; Saleh, T.A.; Klarstrom, D.L.
2011-01-01
Research highlights: → The mechanical behavior of a cobalt-based superalloy was investigated. → Two diffraction techniques were used to study deformation mechanisms of materials. → In-situ neutron diffraction provides the volume-averaged information. → The peak-profile analysis reveals the information on a subgrain level. → The material exhibited a transformation texture for the HCP phase under loading. - Abstract: A complimentary set of experiments, in situ neutron diffraction and ex situ synchrotron X-ray diffraction, were used to study the phase-transformation and subgrain-deformation characteristics of a cobalt-based superalloy. The neutron diffraction indicated a strain-induced phase transformation in the cobalt-based superalloy under uniaxial tension and compression. The synchrotron X-ray diffraction revealed stacking-fault accumulation and twinning under the same loading conditions. The extent of transformation was found to be greater under tension than under compression. Tensile plastic strains below 2% were accommodated by the stacking-fault creation, while those greater than 2% were accommodated by the phase transformation. Twinning was found to be more active under compressive loading than under tensile loading.
Diffusion-stress coupling in liquid phase during rapid solidification of binary mixtures
International Nuclear Information System (INIS)
Sobolev, S.L.
2014-01-01
An analytical model has been developed to describe the diffusion-viscous stress coupling in the liquid phase during rapid solidification of binary mixtures. The model starts with a set of evolution equations for diffusion flux and viscous pressure tensor, based on extended irreversible thermodynamics. It has been demonstrated that the diffusion-stress coupling leads to non-Fickian diffusion effects in the liquid phase. With only diffusive dynamics, the model results in the nonlocal diffusion equations of parabolic type, which imply the transition to complete solute trapping only asymptotically at an infinite interface velocity. With the wavelike dynamics, the model leads to the nonlocal diffusion equations of hyperbolic type and describes the transition to complete solute trapping and diffusionless solidification at a finite interface velocity in accordance with experimental data and molecular dynamic simulation. -- Highlights: •We propose the diffusion-stress coupling model for binary solidification. •The coupling arises at deep undercooling. •With diffusive dynamics, the models result in parabolic transfer equations. •With the wavelike dynamics, the models lead to hyperbolic transfer equations. •The coupling strongly affects the solute partition coefficient
Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong
2017-12-01
A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.
Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn
2010-01-01
The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.
Formation, transformation and dissolution of phases formed on surfaces
International Nuclear Information System (INIS)
Shoesmith, D.W.
1983-03-01
The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed
Study of the phase transformations in Ni2MnGa by capacitance dilatometry
International Nuclear Information System (INIS)
Wu, X D; Finlayson, T R
2007-01-01
High precision capacitance dilatometry has been used to study the phase transformations in a Ni 2 MnGa single crystal. The results show that capacitance dilatometry is an effective method to study the phase transformations. The thermal strain accompanying the martensitic transformation was not reproducible, but became more reproducible with the application of external stress. The first-order character of the martensitic transformation was enhanced by external stress. The intermediate transformation temperature decreased with increasing external stress with a temperature coefficient of -2.40 K MPa -1 . The coefficient of thermal expansion was 1.7 x 10 -5 K -1 for the parent phase and 1.4 x 10 -5 K -1 for the intermediate phase
Directory of Open Access Journals (Sweden)
I. V. Novash
2015-01-01
Full Text Available This article describes the parameters calculation for the three-phase two-winding power transformer model taken from the SimPowerSystems library, which is the part of the MatLab- Simulink environment. Presented methodology is based on the power transformer nameplate data usage. Particular attention is paid to the power transformer magnetization curve para- meters calculation. The methodology of the three-phase two-winding power transformer model parameters calculation considering the magnetization curve nonlinearity isn’t presented in Russian-and English-language sources. Power transformers demo models described in the SimPowerSystems user’s guide have already calculated parameters, but without reference to the sources of their determination. A power transformer is a nonlinear element of the power system, that’s why for its performance analysis in different modes of operation is necessary to have the magnetization curve parameters.The process analysis during no-load energizing of the power transformer is of special interest. This regime is accompanied by the inrush current on the supply side of the power transformer, which is several times larger than the transformer rated current. Sharp rising of the magnetizing current is explained by the magnetic core saturation. Therefore, magnetiza- tion characteristic accounting during transformer no-load energizing modeling is a mandatory requirement. Article authors attempt to put all calculating formulas in a more convenient form and validate the power transformer nonlinear magnetization characteristics parameters calcu- lation. Inrush current oscillograms obtained during the simulation experiment confirmed the adequacy of the calculated model parameters.
Orbital momentum and topological phase transformation
Czech Academy of Sciences Publication Activity Database
Středa, Pavel; Kučera, Jan
2015-01-01
Roč. 92, č. 23 (2015), "235152-1"-"235152-6" ISSN 1098-0121 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : orbital momentum * anomalous Hall effect * topological phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Atomic resolution investigations of phase transformation from TaN to CrTaN in a steel matrix
DEFF Research Database (Denmark)
Danielsen, Hilmar Kjartansson; Hald, John
2012-01-01
strength of the steel. The Cr content promotes Z-phase precipitation, making MN strengthening of these materials unfeasible, since 12%Cr is necessary for oxidation resistance. The authors have suggested an acceleration of Z-phase precipitation to obtain a fine and stable distribution of CrMN instead of MN...... atoms diffuse from the steel matrix into TaN precipitates and physically transform them into CrTaN. The crystal structure of the precipitates changes from that of a typical MN NaCl type crystal structure to a Z-phase crystal structure with alternating double layers of Cr and TaN. Since there is a large......In development of 12%Cr high temperature steels used for fossil fired power plants, the precipitation of large Z-phase particles, CrMN, has been identified as a major problem since they replace small and finely distributed MN particles. This causes a premature breakdown in the longterm creep...
The Pegg–Barnett phase operator and the discrete Fourier transform
International Nuclear Information System (INIS)
Perez-Leija, Armando; Szameit, Alexander; Andrade-Morales, Luis A; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M
2016-01-01
In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg–Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London–Susskind–Glogower phase operator, whose natural logarithm gives rise to the Pegg–Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties. (invited comment)
International Nuclear Information System (INIS)
Hensl, Th.; Mühlich, U.; Budnitzki, M.; Kuna, M.
2015-01-01
Highlights: • Analytical model to predict phase transformation in PSZ is developed. • Analytical model to predict number of twins in monoclinic inclusions in PSZ. • Models consider inclusions size, shape, temperature, remote loading and surface energy. - Abstract: This work focuses on micromechanical modeling of the tetragonal to monoclinic phase transformation (t–m transformation) in partially stabilized zirconia (PSZ). Tetragonal particles dispersed in a cubic matrix may transform into the monoclinic phase under sufficiently high mechanical loading or if the material is cooled down below a critical temperature. This phase transformation is supposed to be responsible for the so called transformation toughening effect of PSZ. The transformation is usually accompanied by a self-accommodation process, which reduces the occurring eigenstresses in the surrounding matrix. The influences of particle size and geometry, chemical driving force, temperature, surface energy and remote loading on the t–m transformation are estimated by a thermostatic approach. We assume, that transformations occur, once the Gibbs free energy of the transformed equilibrium state is lower than that of the untransformed reference state. To obtain an analytical solution, the microstructure is modeled as an inclusion of rectangular cross section, restrained by an infinite elastic matrix, under plane strain conditions. The developed model for phase transformation captures the well-known size and temperature dependencies. Furthermore, it indicates a significant influence of the particle geometry, that large aspect ratios of the inclusion’s cross section lower the trigger stress for phase transformation
Maxwell's Law Based Models for Liquid and Gas Phase Diffusivities in Variably-Saturated Soil
DEFF Research Database (Denmark)
Mamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken
2012-01-01
-s,D-l). Different percolation threshold terms adopted from recent studies for gas (D-s,D-g) and solute (D-s,D-l) diffusion were applied. For gas diffusion, epsilon(th) was a function of bulk density (total porosity), while for solute diffusion theta(th) was best described by volumetric content of finer soil...... particles (clay and organic matter), FINESvol. The resulting LIquid and GAs diffusivity and tortuosity (LIGA) models were tested against D-s,D-g and D-s,D-l data for differently-textured soils and performed well against the measured data across soil types. A sensitivity analysis using the new Maxwell's Law...... based LIGA models implied that the liquid phase but not the gaseous-phase tortuosity was controlled by soil type. The analyses also suggested very different pathways and fluid-phase connectivity for gas and solute diffusion in unsaturated soil...
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
Chemical consequences of nuclear transformations
International Nuclear Information System (INIS)
Collins, C.H.; Lancas, F.M.; Andrade, J.C. de; Collins, K.E.
1979-01-01
The recombination processes of chemical bonds in liquid phase, after being split by nuclear transformations, include hot and diffuse reactions. Both processes probably occur by different mechanisms. The direct substitution process as well as processes which involve atoms, ions or other fragments retained in 'cages' formed by surrounding molecules, are processes not sensitive to the presence of a sequestering agent. The diffuse reactions whose fragments escaped from the 'cage' involve reactions with any reactive species found in the medium. (Author) [pt
Phase transformation changes in thermocycled nickel-titanium orthodontic wires.
Berzins, David W; Roberts, Howard W
2010-07-01
In the oral environment, orthodontic wires will be subject to thermal fluctuations. The purpose of this study was to investigate the effect of thermocycling on nickel-titanium (NiTi) wire phase transformations. Straight segments from single 27 and 35 degrees C copper NiTi (Ormco), Sentalloy (GAC), and Nitinol Heat Activated (3M Unitek) archwires were sectioned into 5mm segments (n=20). A control group consisted of five randomly selected non-thermocycled segments. The remaining segments were thermocycled between 5 and 55 degrees C with five randomly selected segments analyzed with differential scanning calorimetry (DSC; -100150 degrees C at 10 degrees C/min) after 1000, 5000, and 10,000 cycles. Thermal peaks were evaluated with results analyzed via ANOVA (alpha=0.05). Nitinol HA and Sentalloy did not demonstrate qualitative or quantitative phase transformation behavior differences. Significant differences were observed in some of the copper NiTi transformation temperatures, as well as the heating enthalpy with the 27 degrees C copper NiTi wires (p<0.05). Qualitatively, with increased thermocycling the extent of R-phase in the heating peaks decreased in the 35 degrees C copper NiTi, and an austenite to martensite peak shoulder developed during cooling in the 27 degrees C copper NiTi. Repeated temperature fluctuations may contribute to qualitative and quantitative phase transformation changes in some NiTi wires. Copyright 2010 Academy of Dental Materials. All rights reserved.
Diffusion of aluminium during the transformation UAl3 - UAl4 in the solid state
International Nuclear Information System (INIS)
Boucher, R.
1959-01-01
The alloys studied which contain 40 % uranium, are quenched from the region liquid + UAl 3 so as to obtain pure crystals of UAl 3 . These samples are then heat treated at 600 deg. C (at which point Al and UAl 4 are in equilibrium) for varying durations in order to permit the transformation of UAl 3 to UA 4 . This transformation presumably takes place by the diffusion of aluminium through the UAl 4 . The evolution of the transformation UAl 3 → UAl 4 is followed micro-graphically. The compounds are distinguished by: - colour; - examination under polarised light; - microhardness measurements. The kinetics of the transformation are strongly influenced by the presence of elements such as silicon in relatively small quantities. In the absence of silicon UAl 3 , crystals are transformed to UAl 4 in approximately one hour. For low silicon contents (0,1% by weight) the transformation takes ten times longer. Silicon concentrations of 0,6 practically stop the transformation. After a hundred hours a slight transformation is observed, but this transformation is no further advanced even after 1000 hours. (author) [fr
International Nuclear Information System (INIS)
Yamada, Yoshifumi; Liu, Na; Ito, Satoshi
2006-01-01
The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)
Acoustic emission during low temperature phase transformations in plutonium
International Nuclear Information System (INIS)
Khejpl, K.; Karpenter, S.
1988-01-01
To study the nature of phase transformations in plutonium and plutonium-gallium alloys (0.3 and 0.57% Ga) the measurement of acoustic emission is conducted. The presence of acoustic emission testifies to martensitic character of transformation, related to sharp local changes in the volume, which cause elastic waves. It is detected that during α reversible β transformations in non-alloyed plutonium acoustic emission is absent, and that testifies to nonmartensitic nature of the transformations. σ reversible α transformation in plutonium-gallium alloys is accompanied by the appearance of acoustic emission, i.e. it is of martensitic origin
Total energy calculations for structural phase transformations
International Nuclear Information System (INIS)
Ye, Y.Y.; Chan, C.T.; Ho, K.M.; Harmon, B.N.
1990-01-01
The structural integrity and physical properties of crystalline solids are frequently limited or enhanced by the occurrence of phase transformations. Martensitic transformations involve the collective displacement of atoms from one ordered state to another. Modern methods to determine the microscopic electronic changes as the atoms move are now accurate enough to evaluate the very small energy differences involved. Extensive first principles calculations for the prototypical martensitic transformation from body-centered cubic (bcc) to closepacked 9R structure in sodium metal are described. The minimum energy coordinate or configuration path between the bcc and 9R structures is determined as well as paths to other competing close-packed structures. The energy barriers and important anharmonic interactions are identified and general conclusions drawn. The calculational methods used to solve the Schrodinger equation include pseudopotentials, fast Fourier transforms, efficient matrix diagnonalization, and supercells with many atoms
Microstructures and phase transformations in interstitial alloys of tantalum
International Nuclear Information System (INIS)
Dahmen, U.
1979-01-01
The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H
Moving boundary - Oxygen diffusion. Two algorithms using Landau transformation
International Nuclear Information System (INIS)
Moyano, E.A.
1991-01-01
A description is made of two algorithms which solve a mathematical model destinated for the study of one-dimensional problems with moving boundaries and implicit boundary conditions. The Landau transformation is used in both methods for each temporal level so as to work all through with the same amount of nodes. Thus, it is necessary to deal with a partial differential equation whose diffusive and convective terms are accompanied by variable coefficients. The partial differential equation is made discrete implicitly, using the Laasonen scheme -which is always stable- instead of the Crank-Nicholson scheme, as performed by Ferris and Hill (5), in the fixed time passing method. The second method employs the tridiagonal algorithm. The first algorithm uses fixed time passing and iterates with variable interface positions, that is to say, it varies δs until it satisfies the boundary condition. The mathematical model describes oxygen diffusion in live tissues. Its numerical solution is obtained by finite differences. An important application of this method could be the estimation of the radiation dose in cancerous tumor treatment. (Author) [es
Effect of isochronal annealing on phase transformation studies of ...
Indian Academy of Sciences (India)
The mixed phase sample shows higher value of magnetization because of the presence of ferromagnetic γ-Fe2O3 ... 1. Introduction. The study of particle size, phase transformation and micros- ..... The results are in qualitative agreement with ...
International Nuclear Information System (INIS)
Hu, Z.; Jorgensen, J.D.; Teslic, S.; Short, S.; Argyriou, D.N.
1997-01-01
In situ neutron powder diffraction has been used to show that the application of hydrostatic pressure at room temperature produces a transformation of ZrW 2 O 8 from the cubic to an orthorhombic phase beginning at 2.1 kbar and completed by 3.1 kbar, with a 5% reduction in volume. After release of pressure, the orthorhombic phase is retained at room temperature. Its thermal expansion is negative below room temperature, but is positive above room temperature with a transformation back to the cubic phase at about 390 K. The WO 4 groups are found to play the dominant role in both phase transformations. The volume compressibilities of the cubic and orthorhombic phases are 1.38 x 10 -3 and 1.53 x 10 -3 kbar -1 , respectively. (orig.)
Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt
Energy Technology Data Exchange (ETDEWEB)
Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)
2016-10-15
A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.
Synthesis and phase transformation mechanism of Nb{sub 2}C carbide phases
Energy Technology Data Exchange (ETDEWEB)
Vishwanadh, B., E-mail: visubathula@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Murthy, T.S.R.Ch. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Arya, A.; Tewari, R.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India)
2016-06-25
In the present work, Niobium carbide samples were prepared through powder metallurgy route using spark plasma sintering technique. Some of these samples were heat treated at 900 °C up to 7 days. In order to investigate the phase transformation in Nb{sub 2}C carbide, the as-prepared and heat treated samples were characterized by X-ray diffraction, scanning electron microscopy and electron back scattered diffraction (EBSD) and transmission electron microscopy techniques. EBSD could index the same area of the sample in terms of any of the three allotropes of Nb{sub 2}C carbide phases (γ-Nb{sub 2}C, β-Nb{sub 2}C and α-Nb{sub 2}C) with good confidence index. From the EBSD patterns orientation relationships (OR) among γ, β and α-Nb{sub 2}C have been determined. Based on this OR when crystals of the three allotropes were superimposed, it has revealed that the basic Nb metal atom lattice (hcp lattice) in all the Nb{sub 2}C phases is same. The only difference exists in the carbides is the ordering of carbon atoms and vacancies in the octahedral positions of the hcp Nb metal atom lattice. Crystallographic analysis showed that for the transformation of γ-Nb{sub 2}C → β-Nb{sub 2}C → α-Nb{sub 2}C, large movement of Nb atoms is not required; but only by ordering of carbon atoms ensues the phase transformation. Literature shows that in the Nb–C system formation of the α-Nb{sub 2}C is not well established. Therefore, first principle calculations were carried out on these carbides. It revealed that the formation energy for α-Nb{sub 2}C is lower than the β and γ-Nb{sub 2}C carbides which indicate that the formation of α-Nb{sub 2}C is thermodynamically feasible. - Highlights: • Nb{sub 2}C carbide was produced by Spark Plasma Sintering in a single process. • Phase transformation mechanism of different Nb{sub 2}C carbide phases is studied. • In all the three Nb{sub 2}C carbides (γ, β, α), the base Nb lattice remains same. • Among γ, β and α-Nb{sub 2}C
Energy Technology Data Exchange (ETDEWEB)
Mars, J; Spftiet, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1965-07-01
A hot stage microscope designed for the examination of plutonium and its alloys is described. This apparatus was used to study the {alpha} {r_reversible} {beta} and {delta} {r_reversible} {epsilon} allotropic transformations of pure or {beta} and {delta} stabilised plutonium. The {alpha} {yields} {beta} transformation is typically a nucleation and growth process. Some particularities caused by the internal stresses due to the volume change during this transformation are examined. The kinetics has been studied as a function of these stresses and a temperature dependent activation energy for nucleation has been deduced. The {beta} {yields} {alpha} transformation presents a memory effect which implies an orientation relationship between the two phases. This fact is probably caused by the stresses created during the {beta} {yields} {alpha} transition. The {beta} {r_reversible} {gamma} and {delta} {r_reversible} {epsilon} transformations are also diffusion governed processes. (authors) [French] On decrit un microscope a platine chauffante permettant l'examen du plutonium et de ses alliages. Cet appareil a servi a l'etude des transformations {alpha} {r_reversible} {gamma} et {delta} {r_reversible} {epsilon} du plutonium pur ou stabilise en phase {beta} et {delta}. La transformation {alpha} {yields} {beta} est une transformation typique par germination et croissance; elle presente des caracteristiques bien particulieres qui sont dues aux contraintes internes qui prennent naissance au changement de volume a la transformation; la cinetique a ete etudiee en fonction de ces contraintes, et on en a deduit une energie d'activation pour la germination variable avec la temperature. La transformation {beta} {yields} {alpha} presente un effet de memoire qui suppose une relation d'orientation entre les deux phases; ce phenomene semble lie comme auparavant aux contraintes creees par le passage {beta} {yields} {alpha}. Les transformations {beta} {r_reversible} {gamma} et {delta} {r
In situ measurement of solvent-mediated phase transformations during dissolution testing
DEFF Research Database (Denmark)
Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena
2006-01-01
In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...
Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium
Energy Technology Data Exchange (ETDEWEB)
Lagerberg, G
1961-04-15
The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.
Pfrang, C.; Shiraiwa, M.; Pöschl, U.
2011-07-01
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Directory of Open Access Journals (Sweden)
C. Pfrang
2011-07-01
Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
International Nuclear Information System (INIS)
Sikka, S.K.; Vohra, Y.K.; Chidambaram, R.
1982-01-01
The subject is reviewed under the headings: introduction; occurrence and some systematics of omega phase; crystallography; physical properties; kinetics of formation, synthesis and metastability of omega phase; electronic structure of omega phase; electronic basis for omega phase stability; omega phase formation under combined thermal and pressure treatment in alloys; transformation mechanisms and models for diffuse omega phase; conclusion. The following elements of nuclear interest (or their alloys) are included: Zr, Hf, Nb, V, Mo. (U.K.)
Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao
2014-12-01
Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.
Phase stability and oxygen diffusion in RBa2Cu3O6+x (R=Y, Nd)
International Nuclear Information System (INIS)
Mozhaev, A.P.; Mazo, G.N.; Galkin, A.A.; Khromova, N.V.
1996-01-01
Phase stability boundaries of RBa 2 Cu 3 O 6 + x (R=Y, Nd) compounds for oxygen partial pressure wide range were determined by means of Coulomb titration. Phase decomposition is shown to occur without formation of liquid phase. Principial differences in the chemical composition of decomposition product of Y- and Nd-containing phases were detected. Dependences of oxygen non-stoichiometry of the compounds on temperature were determined. Fragments of P o 2 -T-x-diagrams were plotted. Oxygen diffusion coefficients within wide range of temperatures and partial pressures of oxygen were determined. Dependence of diffusion parameters on oxygen non-stoichiometry and P o 2 was determined. Oxygen diffusion was determined to occur more rapidly in orthorhombic phase than in tetragonal one. Diffusion coefficients were shown to increase at transition from Y-to Nd-containing phase. 13 refs., 6 figs., 2 tabs
Phase transformations in the B2 phase of Co-rich Co-Al binary alloys
International Nuclear Information System (INIS)
Niitsu, K.; Omori, T.; Nagasako, M.; Oikawa, K.; Kainuma, R.; Ishida, K.
2011-01-01
Research highlights: → Bainitic transformation and a martensite-like structure from B2-CoAl were observed depending on quenching rate. → The phase separation into the metastable A2 + B2 structure was found in the as-quenched B2-CoAl. → The two-phase structure of A2 and B2 was found to show some coercive force after aging under a magnetic field. - Abstract: Phase transformations in the β (B2) phase of Co-21 and -23 at.% Al alloys were examined using transmission electron microscopy, energy dispersive X-ray spectroscopy and differential scanning calorimetry. The microstructures obtained from as-quenched specimens were found to be strongly affected by the quenching condition. While relatively thick sheet-specimens with a lower quenching rate showed bainitic plate precipitates with a fcc structure, a martensite-like structure was observed by optical microscopy in relatively thin specimens with a higher quenching rate. Regardless of the quenching condition, a spinodal-like microstructure composed of A2 and B2 phases was also detected and the A2 phase changed to a metastable hcp phase during further aging.
Energy Technology Data Exchange (ETDEWEB)
Boucher, R [Commissariat a l' Energie Atomique, Fontenay aux Roses (France).Centre d' Etudes Nucleaires
1959-07-01
The alloys studied which contain 40 % uranium, are quenched from the region liquid + UAl{sub 3} so as to obtain pure crystals of UAl{sub 3}. These samples are then heat treated at 600 deg. C (at which point Al and UAl{sub 4} are in equilibrium) for varying durations in order to permit the transformation of UAl{sub 3} to UA{sub 4}. This transformation presumably takes place by the diffusion of aluminium through the UAl{sub 4}. The evolution of the transformation UAl{sub 3} {yields} UAl{sub 4} is followed micro-graphically. The compounds are distinguished by: - colour; - examination under polarised light; - microhardness measurements. The kinetics of the transformation are strongly influenced by the presence of elements such as silicon in relatively small quantities. In the absence of silicon UAl{sub 3}, crystals are transformed to UAl{sub 4} in approximately one hour. For low silicon contents (0,1% by weight) the transformation takes ten times longer. Silicon concentrations of 0,6 practically stop the transformation. After a hundred hours a slight transformation is observed, but this transformation is no further advanced even after 1000 hours. (author) [French] Les alliages etudies, de teneur en uranium egale a 40 % en poids, sont trempes a partir du domaine 'liquide + UAl{sub 3}'; pour obtenir des cristaux UAl{sub 3} purs. Ces echantillons sont ensuite traites a 500 deg. C dans le domaine 'AI + UAl{sub 4}' pendant des temps varies pour transformer UAl{sub 3} en UAl{sub 4}. Cette transformation se fait vraisemblablement par diffusion de l'aluminium a travers UAl{sub 4}. On suit l'evolution UAl{sub 3} {yields} UAl{sub 4} principalement par methode micrographique. L'identification et la distinction des composes se font a l'aide: - de colorations; - d'examens en lumiere polarisee; - de mesures de microduretes. La cinetique de la transformation est fortement influencee par la presence d'elements tels que le silicium - en quantite relativement faible. Sans silicium, les
Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy
International Nuclear Information System (INIS)
Hasani, S.; Shamanian, M.; Shafyei, A.; Behjati, P.; Szpunar, J.A.
2014-01-01
Highlights: • We investigated, occurrence of different phase transformations in a FeCo- 7.15%wt V alloy upon heating to 1200 °C. • We investigated, the determination of the activation energy for these phase transformations by using five isoconversional methods. • We investigated, the calculation of the empirical kinetic triplets by using the invariant kinetic parameters method and fitting model. - Abstract: In this study, occurrence of different phase transformations was investigated in a FeCo-7 wt% V alloy upon heating to 1200 °C by the dilatometry method at different heating rates (5, 10, and 15 °C min −1 ). It was found that four phase transformations (including B2-type atomic ordering in α phase, first stage of polymorphic transformation (α → α r + γ), ordering to disordering, and second stage of polymorphic transformation (α r → γ) occur in this alloy up to 1200 °C. Two isoconversional methods, as Starink and Friedman, were used to determine variation of the activation energy with temperature, E(T). Moreover, the empirical kinetic triplets (E, A, and g(α)) were calculated by the invariant kinetic parameters (IKP) method and fitting model
Pressure Induced Phase Transformations in Ceramics
Energy Technology Data Exchange (ETDEWEB)
Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)
2017-10-15
The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO_{4}), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to
International Nuclear Information System (INIS)
Cheng, Wei-Chun; Cheng, Chih-Yao; Hsu, Chia-Wei; Laughlin, David E.
2015-01-01
Fe–C–Mn–Al steels have the potential to substitute for commercial Ni–Cr stainless steels. For the development of Fe–C–Mn–Al stainless steels, phase transformations play an important role. Our methods of studying the phase transformations of the steel include heating, cooling, and/or annealing. The results of our study show that spinodal decomposition, an atomic ordering reaction and the transformation of the L1 2 phase to kappa-carbide occur in the Fe–C–Mn–Al steel. After cooling, the austenite decomposes by the spinodal mechanism into solute-lean and solute-rich austenite phases. The solute-rich austenite phase also transforms into the L1 2 phase via the ordering reaction upon cooling to lower temperatures. After quenching and prolonged annealing, the L1 2 phase grows in the austenite and finally transforms into kappa-carbide. This L1 2 phase to kappa-carbide transformation has not been observed previously
Completion of a high efficiency ultralarge capacity three-phase transformer
International Nuclear Information System (INIS)
Maejima, Masaaki; Maruyama, Katsuya; Fukuda, Teruo.
1986-01-01
As for the boosting transformers for thermal and nuclear power stations, at present the ultralarge capacity transformers of 1000 - 1200 MVA class are the main, and particularly in nuclear power, accompanying the development of improved type BWRs and the rise of system stability, there is the tendency toward further large capacity and large size. Consequently, reflecting the recent rise of energy cost, the demand of energy conservation and the reduction of required sites heightened largely as well as the high reliability. In order to meet these demands, Hitachi Ltd. has established the technology of changing to iron machines such as ultralarge iron cores and ultralarge capacity undivided disk windings using the latest design and manufacture techniques were applied to the 525 kV, 1200 MVA transformer for No.4 plant in Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc., thus a three-phase transformer of the highest level, high efficiency and ultralarge capacity was completed. In this paper, the outline of this transformer and the test for verifying its reliability are described. The technical change of large capacity three-phase transformers, the specifications, construction, manufacture, reliability test and the effect of modification of this transformer, and the expansion of application to the next generation ultralarge capacity transformers are reported. (Kako, I.)
Energy Technology Data Exchange (ETDEWEB)
Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)
2016-01-01
The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.
Multi-stage phase retrieval algorithm based upon the gyrator transform.
Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev
2010-01-18
The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.
Multi-stage phase retrieval algorithm based upon the gyrator transform
Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev
2010-01-01
The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...
International Nuclear Information System (INIS)
Sutrakar, Vijay Kumar; Roy Mahapatra, D.
2011-01-01
A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions 20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Neutron guide geometries for homogeneous phase space volume transformation
Energy Technology Data Exchange (ETDEWEB)
Stüßer, N., E-mail: stuesser@helmholtz-berlin.de; Bartkowiak, M.; Hofmann, T.
2014-06-01
We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender.
Neutron guide geometries for homogeneous phase space volume transformation
International Nuclear Information System (INIS)
Stüßer, N.; Bartkowiak, M.; Hofmann, T.
2014-01-01
We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender
International Nuclear Information System (INIS)
Zhang Ruijie; Jing Tao; Jie Wanqi; Liu Baicheng
2006-01-01
To simulate quantitatively the microstructural evolution in the solidification process of multicomponent alloys, we extend the phase-field model for binary alloys to multicomponent alloys with consideration of the solute interactions between different species. These interactions have a great influence not only on the phase equilibria but also on the solute diffusion behaviors. In the model, the interface region is assumed to be a mixture of solid and liquid with the same chemical potential, but with different compositions. The simulation presented is coupled with thermodynamic and diffusion mobility databases, which can accurately predict the phase equilibria and the solute diffusion transportation in the whole system. The phase equilibria in the interface and other thermodynamic quantities are obtained using Thermo-Calc through the TQ interface. As an example, two-dimensional computations for the dendritic growth in Al-Cu-Mg ternary alloy are performed. The quantitative solute distributions and diffusion matrix are obtained in both solid and liquid phases
International Nuclear Information System (INIS)
Zuzjaková, Š.; Zeman, P.; Kos, Š.
2013-01-01
Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes
Phase diagrams and phase transformations in 'Zirlo': Zr-1% Sn-1% Nb (0,1% Fe)
International Nuclear Information System (INIS)
Canay, Marcelo G.
1996-01-01
The transformation temperatures and the phases present in Zr-base alloys with 1% at. Nb, (0,1 and 0,8) % at. Sn, (0,2 and 0,7) % at. Fe and 600 and 6000 ppmat O were studied it the present work. α ↔ α + β and α + β ↔ β transformation temperatures were determined by means of electrical resistivity variation v. temperature measurements. Scanning Electronic Microscopy (SEM) and quantitative microanalysis techniques were used in order to study the microstructures and chemical composition of the phases appearing at three different annealing temperatures (600, 800 and 850 C degrees). Samples annealed at 600 C degrees were also analyzed by X-ray diffraction methods. Oxygen influence turned out to increase the α + β ↔ β transformation temperature, while iron produced a decrease in the α ↔ α + β one. Comparing with literature data we concluded that tin increases the α + β ↔ β and decreases the α ↔ α + β temperatures while niobium decreases both. The samples annealed at 800 and 850 C degrees, showed two different microstructures of α-phases: α-plates which correspond to the α-phases portion at the annealing temperature and α-Widmanstaetten like structure formed from the β-phase when quenching the sample. A Widmanstaetten like structure consisting in α phase plates with a supersaturated (in Nb and Fe) α phase (α s ) in between was observed at 600 C degrees. It is in this α s phase the different intermetallic phases could precipitate. We were only able to identify Zr 3 Fe in two alloys with low tin and oxygen content. (author)
On mechanism of substructure formation in SmS during isomorphic phase transformations
International Nuclear Information System (INIS)
Aptekar', I.L.; Ivanov, V.I.; Tonkov, E.Yu.; Shmyt'ko, I.M.
1986-01-01
X-ray diffraction study of substructure characteristics of SmS samples subjected to treatment at different temrerature and pressure in media with different viscosity ( graphite, silicon oil) for realization of P-M-P transformations ( p-semiconductor phase, M - high pressure phase) is performed. It is assumed that with M - phase formation P - matrix volume relaxation delays, therefore the new phase particles occupy smaller volume than the initial matrix which causes the M - phase disorientation. The difference between the phase transformation rate and deformation rate under the pressure in media with various viscosity results in arising different substructural characteristics
Chen, Tai-Yen; Jung, Won; Santiago, Ace George; Yang, Feng; Krzemiński, Łukasz; Chen, Peng
2015-11-12
Single-molecule tracking (SMT) of fluorescently tagged cytoplasmic proteins can provide valuable information on the underlying biological processes in living cells via subsequent analysis of the displacement distributions; however, the confinement effect originated from the small size of a bacterial cell skews the protein's displacement distribution and complicates the quantification of the intrinsic diffusive behaviors. Using the inverse transformation method, we convert the skewed displacement distribution (for both 2D and 3D imaging conditions) back to that in free space for systems containing one or multiple (non)interconverting Brownian diffusion states, from which we can reliably extract the number of diffusion states as well as their intrinsic diffusion coefficients and respective fractional populations. We further demonstrate a successful application to experimental SMT data of a transcription factor in living E. coli cells. This work allows a direct quantitative connection between cytoplasmic SMT data with diffusion theory for analyzing molecular diffusive behavior in live bacteria.
Raman studies of pressure and temperature induced phase transformations in calcite
International Nuclear Information System (INIS)
Exarhos, G.J.; Hess, N.J.
1992-01-01
This patent describes phase stability in the calcium carbonate system investigated as a simultaneous function of pressure and temperature up to 40 kbar and several hundred degrees Kelvin. Micro-Raman techniques were used to interrogate samples constrained within a resistively heated diamond anvil cell. Measured spectra allow unequivocal identification of crystalline phases and are used to refine the P,T phase diagram. Calcium carbonate was found to exhibit both reversible and irreversible transformation phenomena among the four known phases which exist under these conditions. Time-dependent Raman intensity variations as the material is perturbed from its equilibrium state allow real-time kinetics measurements to be performed. Evidence suggests that the order of certain observed transformations may be pressure dependent. The utility of Raman spectroscopy to follow transformation phenomena and to estimate fundamental thermophysical properties from the stress dependence of vibrational mode frequencies is demonstrated
Phase transformations in an ascending adiabatic mixed-phase cloud volume
Pinsky, M.; Khain, A.; Korolev, A.
2015-04-01
Regimes of liquid-ice coexistence that may form in an adiabatic parcel ascending at constant velocity at freezing temperatures are investigated. Four zones with different microphysical structures succeeding one another along the vertical direction have been established. On the basis of a novel balance equation, analytical expressions are derived to determine the conditions specific for each of these zones. In particular, the necessary and sufficient conditions for formation of liquid water phase within an ascending parcel containing only ice particles are determined. The results are compared to findings reported in earlier studies. The role of the Wegener-Bergeron-Findeisen mechanism in the phase transformation is analyzed. The dependence of the phase relaxation time on height in the four zones is investigated on the basis of a novel analytical expression. The results obtained in the study can be instrumental for analysis and interpretation of observed mixed-phase clouds.
Phase transformations in Mo-doped FINEMETs
Energy Technology Data Exchange (ETDEWEB)
Silveyra, Josefina M., E-mail: jsilveyra@fi.uba.a [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina); Illekova, Emilia; Svec, Peter; Janickovic, Dusan [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Rosales-Rivera, Andres [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Cremaschi, Victoria J. [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina)
2010-06-15
In this paper, the phase transformations occurring during the crystallization process of FINEMETs in which Nb has been gradually replaced by Mo have been studied by a variety of techniques including DSC, DTA, TGA, XRD and TEM. The thermal stability of the alloy was deteriorated as a consequence of Mo's smaller atomic size. The gradual replacement of Nb by Mo reduced the onset temperature of Fe-Si and of the borides. The Curie temperature of the amorphous phase slightly decreased from 594 K for x=0 to 587 K for x=3. The borides compounds Fe{sub 2}B and Fe{sub 23}B{sub 6} as well as the (Nb,Mo){sub 5}Si{sub 3} phase were found to precipitate in the second and third crystallization.
International Nuclear Information System (INIS)
Gao, Lei; Ding, Xiangdong; Sun, Jun; Lookman, Turab; Salje, E. K. H.
2016-01-01
The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.
Energy Technology Data Exchange (ETDEWEB)
Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Salje, E. K. H., E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)
2016-07-18
The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.
High-temperature phase transformation in Cr added TiAl base alloy
Energy Technology Data Exchange (ETDEWEB)
Abe, E.; Niinobe, K.; Nobuki, M.; Nakamura, M.; Tsujimoto, T.
1999-07-01
The authors have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures ({gt} 1,473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the {alpha} + {gamma} two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5--10{micro}m) which are crystallographically tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the {gamma} phase with few {alpha}{sub 2} phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the {alpha} {r{underscore}arrow} {alpha} + {gamma} transformation above 1,573 K. Instead, the feathery structure formation should be attributed to the non-equilibrium {alpha} {r{underscore}arrow} {gamma} transformation which occurs at high-temperatures with a small degree of supercooling. The authors discuss this interesting phase transformation in terms of the {alpha} {r{underscore}arrow} {gamma} massive transformation, based on the continuous-cooling-transformation (CCT) diagram constructed for the present alloy.
Zhou, Junhe; Wu, Jianjie; Hu, Qinsong
2018-02-05
In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.
Directory of Open Access Journals (Sweden)
Claude Rodrigue Bambe Moutsinga
2018-01-01
Full Text Available Most existing multivariate models in finance are based on diffusion models. These models typically lead to the need of solving systems of Riccati differential equations. In this paper, we introduce an efficient method for solving systems of stiff Riccati differential equations. In this technique, a combination of Laplace transform and homotopy perturbation methods is considered as an algorithm to the exact solution of the nonlinear Riccati equations. The resulting technique is applied to solving stiff diffusion model problems that include interest rates models as well as two and three-factor stochastic volatility models. We show that the present approach is relatively easy, efficient and highly accurate.
Phase transformations in the Cu.6 Pd.4 alloy
International Nuclear Information System (INIS)
Imakuma, K.
1977-01-01
Order-disorder and structural transformations in the Cu-Pd 60-40% (Cu. 6 Pd. 4 ) alloy by means of a temperature and time dependent treatment are studied. The structural transformations by x-rays diffraction are also studied, where the bcc, fcc and tetragonal phases were observed. A qualitative analyze of the resistivity kinetics are made [pt
Kinetic boundaries and phase transformations of ice i at high pressure
Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.
2018-01-01
Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.
Directory of Open Access Journals (Sweden)
Gao Lin
2017-01-01
Full Text Available Recently, a new integral transform similar to Sumudu transform has been proposed by Yang [1]. Some of the properties of the integral transform are expanded in the present article. Meanwhile, new applications to the linear wave and diffusion equations in semi-infinite domains are discussed in detail. The proposed method provides an alternative approach to solve the partial differential equations in mathematical physics.
Diffusion of Hydrogen in the beta-Phase of Pd-H Studied by Small Energy Transfer Neutron Scattering
Energy Technology Data Exchange (ETDEWEB)
Nelin, G; Skoeld, K
1974-07-01
The diffusion of hydrogen in beta-PdH has been studied by quasielastic neutron scattering. It is shown that the diffusion occurs through jumps between adjacent octahedral interstitial sites. The observed integrated quasielastic intensities cannot be described by a simple Debye-Waller factor. The phase transition from the beta-phase to the alpha-phase has also been studied. No dramatic changes in the scattering patterns were observed. It is concluded that the diffusion mechanism is remarkably similar between the low concentration alpha-phase and the high concentration beta-phase
A quaternary lead based perovskite structured materials with diffuse phase transition behavior
International Nuclear Information System (INIS)
Puli, Venkata Sreenivas; Martínez, R.; Kumar, Ashok; Scott, J.F.; Katiyar, Ram S.
2011-01-01
Graphical abstract: (a) Curie–Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/ε − 1/ε m ) as function of log (T − T m ) for ceramics at 1 kHz. Highlights: ► Retaining phase pure structure with quaternary complex stoichiometric compositions. ► P–E loops with good saturation polarization (P s ∼ 30.7 μC/cm 2 ). ► Diffused relaxor phase transition behavior with γ estimated is ∼1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr 0.52 Ti 0.48 O 3 ) + 0.25(PbFe 0.5 Ta 0.5 O 3 ) + 0.25 (PbF 0.67 W 0.33 O 3 ) + 0.25(PbFe 0.5 Nb 0.5 O 3 ) – (PZT–PFT–PFW–PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm–3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P s ∼ 30.68 μC/cm 2 ) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT–PFT–PFW–PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/ε versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.
A quaternary lead based perovskite structured materials with diffuse phase transition behavior
Energy Technology Data Exchange (ETDEWEB)
Puli, Venkata Sreenivas, E-mail: pvsri123@gmail.com [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Martinez, R.; Kumar, Ashok [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Scott, J.F. [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Cavendish Laboratory, Dept. Physics, University of Cambridge, Cambridge CB0 3HE (United Kingdom); Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States)
2011-12-15
Graphical abstract: (a) Curie-Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/{epsilon} - 1/{epsilon}{sub m}) as function of log (T - T{sub m}) for ceramics at 1 kHz. Highlights: Black-Right-Pointing-Pointer Retaining phase pure structure with quaternary complex stoichiometric compositions. Black-Right-Pointing-Pointer P-E loops with good saturation polarization (P{sub s} {approx} 30.7 {mu}C/cm{sup 2}). Black-Right-Pointing-Pointer Diffused relaxor phase transition behavior with {gamma} estimated is {approx}1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) + 0.25(PbFe{sub 0.5}Ta{sub 0.5}O{sub 3}) + 0.25 (PbF{sub 0.67}W{sub 0.33}O{sub 3}) + 0.25(PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature {approx}261 K and other above {approx}410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 {mu}m. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P{sub s} {approx} 30.68 {mu}C/cm{sup 2}) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/{epsilon} versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The
Energy landscape for martensitic phase transformation in shape memory NiTi
International Nuclear Information System (INIS)
Kibey, S.; Sehitoglu, H.; Johnson, D.D.
2009-01-01
First-principles calculations are presented for parent B2 phase and martensitic B19 and B19' phases in NiTi. The results indicate that both B19 and B19' are energetically more stable than the parent B2 phase. By means of ab initio density functional theory, the complete distortion-shuffle energy landscape associated with B2 → B19 transformation in NiTi is then determined. In addition to accounting for the Bain-type deformation through the Cauchy-Born rule, the study explicitly accounts for the shuffle displacements experienced by the internal ions in NiTi. The energy landscape allows the energy barrier associated with the B2 → B19 transformation pathway to be identified. The results indicate that a barrier of 0.48 mRyd atom -1 (relative to the B2 phase) must be overcome to transform the parent B2 NiTi to orthorhombic B19 martensite
Investigation of phase transformations in ductile cast iron of differential scanning calorimetry
International Nuclear Information System (INIS)
Przeliorz, R; Piatkowski, J
2011-01-01
The effect of heating rate on phase transformations to austenite range in ductile cast iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC) was used. Micro structure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15 deg. C min -1 , local extrema have been observed to occur: for pearlite→austenite transformation at 784 deg. C and 795 deg. C, respectively, and for ferrite+ graphite →austenite transformation at 805 deg. C and 821 deg. C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740 deg. C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.
Phase Transformation of Adefovir Dipivoxil/Succinic Acid Cocrystals Regulated by Polymeric Additives
Directory of Open Access Journals (Sweden)
Sungyup Jung
2013-12-01
Full Text Available The polymorphic phase transformation in the cocrystallization of adefovir dipivoxil (AD and succinic acid (SUC was investigated. Inspired by biological and biomimetic crystallization, polymeric additives were utilized to control the phase transformation. With addition of poly(acrylic acid, the metastable phase newly identified through the analysis of X-ray diffraction was clearly isolated from the previously reported stable form. Without additives, mixed phases were obtained even at the early stage of cocrystallization. Also, infrared spectroscopy analysis verified the alteration of the hydrogen bonding that was mainly responsible for the cocrystal formation between AD and SUC. The hydrogen bonding in the metastable phase was relatively stronger than that in the stable form, which indicated the locally strong AD/SUC coupling in the initial stage of cocrystallization followed by the overall stabilization during the phase transformation. The stronger hydrogen bonding could be responsible for the faster nucleation of the initially observed metastable phase. The present study demonstrated that the polymeric additives could function as effective regulators for the polymorph-selective cocrystallization.
New transformation mechanism for a zinc-blende to rocksalt phase transformation in MgS
International Nuclear Information System (INIS)
Durandurdu, Murat
2009-01-01
The stability of the zinc-blende structured MgS is studied using a constant pressure ab initio molecular dynamics technique. A phase transition into a rocksalt structure is observed through the simulation. The zinc-blende to rocksalt phase transformation proceeds via two rhombohedral intermediate phases within R3m (No:160) and R3-barm (No:166) symmetries and does not involve any bond breaking. This mechanism is different from the previously observed mechanism in molecular dynamics simulations. (fast track communication)
Energy Technology Data Exchange (ETDEWEB)
Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center
2016-02-15
This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.
Effect of grinding and polishing on near-surface phase transformations in zirconia
International Nuclear Information System (INIS)
Reed, J.S.; Lejus, A.M.
1977-01-01
The transformation of near-surface material on grinding and polishing has been investigated in sintered zirconia of 1 μm grain size and 99 percent density containing 4.5 and 7.0 mole percent Y 2 O 3 . Rough wet and dry grinding transformed about 20 percent cubic phase into 18 percent tetragonal and 2 percent monoclinic in material initially 47 percent cubic and 53 percent tetragonal (4.5 mole percent Y 2 O 3 ) but no change of phase in material that was fully cubic (7.0 mole percent Y 2 O 3 ). Annealing and polishing reduced lattice strain but only polishing reduced the concentration of monoclinic and tetragonal phases. Microhardness studies indicated that lattice strain and the phase transformations increased the penetration hardness to a depth of about 4 μm
Field theory of absorbing phase transitions with a non-diffusive conserved field
International Nuclear Information System (INIS)
Pastor-Satorras, R.; Vespignani, A.
2000-04-01
We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a non-diffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive microscopically the field theory representing this universality class. (author)
Phase transformation order-disorder in nonstoichiometric titanium carbide
International Nuclear Information System (INIS)
Vlasov, V.A.; Karmo, Yu.S.; Kustova, L.V.
1986-01-01
Titanium carbide delta-phase is studied using the methods of electric conductivity and differential thermal analysis (DTA). It is shown on the Ti-C system phase diagram that two regions of TiCsub(0.46-0.60) and TiCsub(0.65-1.00) compositions, different in their properties, correspond to delta-phase. Both ordered and disordered phases exist within the TiCsub(0.046-0.60) concentration range, and in equilibrium heating or cooling one phase converts to another at 590 deg C (the first order phase transformation). Samples of the TiCsub(0.65-1.00) composition are characterized by low electric conductivity stability, that is explained by strong titanium carbide electric conductivity sensitivity to defects and impurities
Metallographic Study of the Isothermal Transformation of Beta Phase in Zircaloy-2
Energy Technology Data Exchange (ETDEWEB)
Oestberg, G
1960-06-15
Observations of the structure of commercial zircaloy-2 have been made in the microscope showing that the high temperature beta phase is transformed isothermally at lower temperatures into alpha plus secondary precipitate. The alpha occurs mainly as Widmanstaetten plates developed by a shear mechanism. The secondary precipitate is formed from the beta - alpha structure at the phase boundary between these phases. This precipitation of particles of secondary phase occurs on account of a eutectoid reaction, alpha also being formed. A time-temperature transformation diagram has been constructed from the observations.
The correlation of local deformation and stress-assisted local phase transformations in MMC foams
Energy Technology Data Exchange (ETDEWEB)
Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Ballaschk, U.; Aneziris, C.G. [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Losch, K.; Schladitz, K. [Fraunhofer ITWM, Fraunhoferplatz 1, D-67663 Kaiserslautern (Germany)
2015-09-15
Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.
The correlation of local deformation and stress-assisted local phase transformations in MMC foams
International Nuclear Information System (INIS)
Berek, H.; Ballaschk, U.; Aneziris, C.G.; Losch, K.; Schladitz, K.
2015-01-01
Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated
Diffusion Concept in Phase Stability of High Temperature Composites
National Research Council Canada - National Science Library
Zhao, Ji-Cheng
2003-01-01
A high-efficiency "diffusion multiple" approach was employed to determine the phase diagrams of nine ternary systems Nb-Ti-Si, Nb-Cr- Si, Nb-Cr-Ti, Ti-Cr-Si, Nb-Si-Al, Nb-Cr-Al, Nb-Ti-Al, Ti-Si-Al, and Ti-Cr-Al...
In-situ studies on phase transformations under electron irradiation in ...
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
under 1 MeV electron irradiation at 300 K has been recorded in HVEM experiments. The similarity of the diffuse intensity distribution in these two cases brings out the importance of the lattice collapse mechanism in both the cases. 2. Crystallography of the ordered phases in Ni–Mo system. The equilibrium phase diagram of ...
Gas phase decontamination of gaseous diffusion process equipment
International Nuclear Information System (INIS)
Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.
1994-01-01
D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly
Roubíček, Tomáš; Tomassetti, Giuseppe
2018-06-01
A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.
Surface modification-induced phase transformation of hexagonal close-packed gold square sheets
Fan, Zhanxi
2015-03-13
Conventionally, the phase transformation of inorganic nanocrystals is realized under extreme conditions (for example, high temperature or high pressure). Here we report the complete phase transformation of Au square sheets (AuSSs) from hexagonal close-packed (hcp) to face-centered cubic (fcc) structures at ambient conditions via surface ligand exchange, resulting in the formation of (100)f-oriented fcc AuSSs. Importantly, the phase transformation can also be realized through the coating of a thin metal film (for example, Ag) on hcp AuSSs. Depending on the surfactants used during the metal coating process, two transformation pathways are observed, leading to the formation of (100)f-oriented fcc Au@Ag core-shell square sheets and (110)h/(101)f-oriented hcp/fcc mixed Au@Ag nanosheets. Furthermore, monochromated electron energy loss spectroscopy reveals the strong surface plasmon resonance absorption of fcc AuSS and Au@Ag square sheet in the infrared region. Our findings may offer a new route for the crystal-phase and shape-controlled synthesis of inorganic nanocrystals. © 2015 Macmillan Publishers Limited. All rights reserved.
Surface modification-induced phase transformation of hexagonal close-packed gold square sheets
Fan, Zhanxi; Huang, Xiao; Han, Yu; Bosman, Michel; Wang, Qingxiao; Zhu, Yihan; Liu, Qing; Li, Bing; Zeng, Zhiyuan; Wu, Jumiati; Shi, Wenxiong; Li, Shuzhou; Gan, Chee Lip; Zhang, Hua
2015-01-01
Conventionally, the phase transformation of inorganic nanocrystals is realized under extreme conditions (for example, high temperature or high pressure). Here we report the complete phase transformation of Au square sheets (AuSSs) from hexagonal close-packed (hcp) to face-centered cubic (fcc) structures at ambient conditions via surface ligand exchange, resulting in the formation of (100)f-oriented fcc AuSSs. Importantly, the phase transformation can also be realized through the coating of a thin metal film (for example, Ag) on hcp AuSSs. Depending on the surfactants used during the metal coating process, two transformation pathways are observed, leading to the formation of (100)f-oriented fcc Au@Ag core-shell square sheets and (110)h/(101)f-oriented hcp/fcc mixed Au@Ag nanosheets. Furthermore, monochromated electron energy loss spectroscopy reveals the strong surface plasmon resonance absorption of fcc AuSS and Au@Ag square sheet in the infrared region. Our findings may offer a new route for the crystal-phase and shape-controlled synthesis of inorganic nanocrystals. © 2015 Macmillan Publishers Limited. All rights reserved.
Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects
International Nuclear Information System (INIS)
Miao, J.; Sayre, D.; Chapman, H.N.
1998-01-01
It is suggested that, given the magnitude of Fourier transforms sampled at the Bragg density, the phase problem is underdetermined by a factor of 2 for 1D, 2D, and 3D objects. It is therefore unnecessary to oversample the magnitude of Fourier transforms by 2x in each dimension (i.e., oversampling by 4x for 2D and 8x for 3D) in retrieving the phase of 2D and 3D objects. Our computer phasing experiments accurately retrieved the phase from the magnitude of the Fourier transforms of 2D and 3D complex-valued objects by using positivity constraints on the imaginary part of the objects and loose supports, with the oversampling factor much less than 4 for 2D and 8 for 3D objects. Under the same conditions we also obtained reasonably good reconstructions of 2D and 3D complex-valued objects from the magnitude of their Fourier transforms with added noise and a central stop. copyright 1998 Optical Society of America
Thermodynamics, diffusion and the Kirkendall effect in solids
Paul, Aloke; Vuorinen, Vesa; Divinski, Sergiy V
2014-01-01
Covering both basic and advanced thermodynamic and phase principles, as well as providing stability diagrams relevant for diffusion studies, Thermodynamics, Diffusion and the Kirkendall Effect in Solids maximizes reader insights into Fick’s laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect. Recent advances in the area of interdiffusion will be introduced, while the many practical examples and large number of illustrations given will serve to aid researches working in this area in learning the practical evaluation of various diffusion parameters from experimental results. With a unique approach to the two main focal points in solid state transformations, energetics (thermodynamics) and kinetics (interdiffusion) are extensively studied and their combined use in practise is discussed. Recent developments in the area of Kirkendall effect, grain boundary diffusion and multicomponent diffusion are also covered extensively. This book will appe...
Elementary excitations and phase transformations in solids
International Nuclear Information System (INIS)
Cowley, R.A.
1985-01-01
Neutron scattering is and will continue to be a uniquely powerful tool for the study of elementary excitations and phase transformations in solids. The paper examines a few recent experiments on molecular crystals, superionic materials, paramagnetic scattering and phase transitions to see what experimental features made these experiments possible, and hence to make suggestions about future needs. It is concluded that new instruments will extend the scope of neutron scattering studies to new excitations, that there is a need for higher resolution, particularly for phase transition studies, and that it will be important to use intensity information, discrimination against unwanted inelastic processes and polarization analysis to reliably measure the excitations in new materials. (author)
Phase characterization of Re-based diffusion barrier layer on Nb substrate
International Nuclear Information System (INIS)
Sugiarti, Eni; Wang, Youngmin; Hashimoto, Naoyuki; Ohnuki, Somei; Narita, Toshio
2011-01-01
An electron microscopy phase characterization was carried out for a Re-based diffusion barrier layer, which was deposited on the Nb substrate used as an ultra high temperature material. The coating process produced three layers; an outer Cr(Re) layer, an intermediate Cr-Nb-Re layer, and an inner Nb(Re) layer. The Cr-Nb-Re layer is considered to act as a diffusion barrier layer between the substrate and the outer Cr(Re) reservoir layer. The Cr(Re) and Nb(Re) layers are in single phase with a similar bcc structures, but they are different in structure from the intermediate layer, which is composed of a dual phase of Re 63 Cr 20 Nb 17 with a cubic structure and Nb 42 Re 33 Cr 25 with a hexagonal structure determined by transmission electron microscopy (TEM) in this study. (author)
Phase transformations in metallic glasses
DEFF Research Database (Denmark)
Jiang, Jianzhong
2003-01-01
Recent development of grain-size effect on phase transformations induced by pressure is reported. A thermodynamic theory is presented and three components: the ratio of volume collapses, the surface energy differences, and the internal energy differences, governing the change of transition pressure...... in nanocrystals were uncovered. They can be used to explain the results reported in the literature and to identify the main factor to the change of the transition pressure in nanocrystals. We demonstrated that the grain-size effect on the structural stability in nanocrystals with respect to transition pressure...
Misfit dislocations and phase transformations in high-T sub c superconducting films
Gutkin, M Y
2002-01-01
A theoretical model is suggested that describes the effects of misfit stresses on defect structures, phase content and critical transition temperature T sub c in high-T sub c superconducting films. The focus is placed on the exemplary case of YBaCuO films deposited onto LaSrAlO sub 4 substrates. It is theoretically revealed here that misfit stresses are capable of inducing phase transformations controlled by the generation of misfit dislocations in growing cuprate films. These transformations, in the framework of the suggested model, account for experimental data on the influence of the film thickness on phase content and critical temperature T sub c of superconducting cuprate films, reported in the literature. The potential role of stress-assisted phase transformations in suppression of critical current density across grain boundaries in high-T sub c superconductors is briefly discussed.
Numerical model of phase transformation of steel C80U during hardening
Directory of Open Access Journals (Sweden)
T. Domański
2007-12-01
Full Text Available The article concerns numerical modelling of the phase transformations in solid state hardening of tool steel C80U. The transformations were assumed: initial structure – austenite, austenite – perlite, bainite and austenite – martensite. Model for evaluation of fractions of phases and their kinetics based on continuous heating diagram (CHT and continuous cooling diagram (CCT. The dilatometric tests on the simulator of thermal cycles were performed. The results of dilatometric tests were compared with the results of the test numerical simulations. In this way the derived models for evaluating phase content and kinetics of transformations in heating and cooling processes were verified. The results of numerical simulations confirm correctness of the algorithm that were worked out. In the numerical example the simulated estimation of the phase fraction in the hardened axisimmetrical element was performed.
Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.
Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R
2015-08-01
Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.
Diffusion in the special theory of relativity.
Herrmann, Joachim
2009-11-01
The Markovian diffusion theory is generalized within the framework of the special theory of relativity. Since the velocity space in relativity is a hyperboloid, the mathematical stochastic calculus on Riemanian manifolds can be applied but adopted here to the velocity space. A generalized Langevin equation in the fiber space of position, velocity, and orthonormal velocity frames is defined from which the generalized relativistic Kramers equation in the phase space in external force fields is derived. The obtained diffusion equation is invariant under Lorentz transformations and its stationary solution is given by the Jüttner distribution. Besides, a nonstationary analytical solution is derived for the example of force-free relativistic diffusion.
Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fischer, F. D.; Abart, R.
2010-01-01
Roč. 58, č. 8 (2010), s. 2905-2911 ISSN 1359-6454 R&D Projects: GA MŠk(CZ) OC10029 Institutional research plan: CEZ:AV0Z20410507 Keywords : Interdiffusion * Intermetallics * Phase transformation kinetics Subject RIV: BJ - Thermodynamics Impact factor: 3.781, year: 2010
Han, Jin Kyu; Choi, Yong Chan; Jeon, Do Hyen; Lee, Min Ku; Bu, Sang Don
2014-11-01
We report the phase evolution of Pb(Zr0.52Ti0.48)O3 nanotubes (PZT-NTs), from the pyrochlore to perovskite phase, with an outer diameter of about 420 nm and a wall thickness of about 10 nm. The PZT-NTs were fabricated in pores of porous anodic alumina membrane (PAM) using a spin coating of PZT sol-gel solution and subsequent annealing at 500-700 degrees C in oxygen gas. The pyrochlore phase was found to be formed at 500 degrees C, and also found not to be transformed into the perovskite phase, even though annealing was performed at higher temperatures to 700 degrees C. Elementary distribution analysis of PZT-NTs embedded in PAM reveal that Pb diffusion from nanotubes into pore walls of PAM is one of the main reasons. By employing firstly an additional PbO coating on the pyrochlore nanotubes and then subsequent annealing at 700 degrees C, we have successfully achieved an almost pure perovskite phase in nanotubes. These results suggest that PbO acts as a Pb-compensation agent in the Pb- deficient PZT-NTs. Moreover, our method can be used in the synthesis of all metal-oxide materials, including volatile elements.
Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang
2018-06-01
This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.
Effect of phase transformations on laser forming of Ti-6Al-4V alloy
International Nuclear Information System (INIS)
Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.
2005-01-01
In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results
Energy Technology Data Exchange (ETDEWEB)
Cheng, Wei-Chun, E-mail: weicheng@mail.ntust.edu.tw [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Cheng, Chih-Yao; Hsu, Chia-Wei [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Laughlin, David E. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA (United States)
2015-08-26
Fe–C–Mn–Al steels have the potential to substitute for commercial Ni–Cr stainless steels. For the development of Fe–C–Mn–Al stainless steels, phase transformations play an important role. Our methods of studying the phase transformations of the steel include heating, cooling, and/or annealing. The results of our study show that spinodal decomposition, an atomic ordering reaction and the transformation of the L1{sub 2} phase to kappa-carbide occur in the Fe–C–Mn–Al steel. After cooling, the austenite decomposes by the spinodal mechanism into solute-lean and solute-rich austenite phases. The solute-rich austenite phase also transforms into the L1{sub 2} phase via the ordering reaction upon cooling to lower temperatures. After quenching and prolonged annealing, the L1{sub 2} phase grows in the austenite and finally transforms into kappa-carbide. This L1{sub 2} phase to kappa-carbide transformation has not been observed previously.
Diffusion in the plutonium zirconium system; Diffusion dans le systeme plutonium zirconium
Energy Technology Data Exchange (ETDEWEB)
Lauthier, J C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1967-01-15
Research on the compound PuZr{sub 2}: It cannot be obtained by a direct synthesis. We suppose that its formation is due to an oxygen amount which enhances diffusion processes by a contribution of bound extrinsic vacancies. This investigation which concerned a great range of alloys (from 15 to 50 at per cent Pu) has led us to point out the nature of the isothermal transformation. It takes place at 615 deg. + 5 deg. C and is of the peritectoid type. Pu {epsilon} (bcc) + Zr {alpha} (hex) {r_reversible} Pu {delta} (f. cc) Diffusion in hexagonal phase: Diffusion coefficients have been determined from couples made of Pu Zr dilute alloys (1.15 and 0.115 at per cent Pu) and of pure zirconium; these couples have been annealed between 700 and 840 deg. C from 1000 to 3000 hours. The curves C = f(x) were plotted by X ray microanalysis and a autoradiography. They have been analysed assuming that the diffusion coefficient was constant. Our results are the following: D Zr Pu (1.15 % = 11.1 exp (-65000/RT) and D Zr Pu (0.115 %) 0.1 exp (-54000/RT). (author) [French] Recherche du compose PuZr2: II ne peut etre obtenu par synthese directe. Nous pensons que sa formation est liee a la presence d'oxygene, qui, par son apport de lacunes extrinseques accelere les processus de diffusion. Cette etude qui a porte sur toute une serie d'alliages (de 15 a 50 pour cent atomique de Pu), nous a permis de preciser la nafure de la transformation isotherme. Elle situe a 615 deg. + 5 deg. C et est du type peritectoide. Pu {epsilon} (c.c.) + Zr {alpha} (h.c.) {r_reversible} Pu {delta} (c.f.c.) Diffusion en phase {alpha} hexagonale: Les coefficients de diffusion chimique ont ete determines a partir de couples constitues d'alliages PuZr dilues (1,15 pour cent et 0,115 pour cent atomique de Pu) et de zirconium pur. Ces couples ont ete recuits entre 700 et 840 deg. C durant des temps de 1000 a 3000 heures. Les courbes C = f(x) ont ete tracees par microanalyse X et autoradiographie {alpha}. Elles ont ete
Solution of the diffusion equation in the GPT theory by the Laplace transform technique
International Nuclear Information System (INIS)
Lemos, R.S.M.; Vilhena, M.T.; Segatto, C.F.; Silva, M.T.
2003-01-01
In this work we present a analytical solution to the auxiliary and importance functions attained from the solution of a multigroup diffusion problem in a multilayered slab by the Laplace Transform technique. We also obtain the the transcendental equation for the effective multiplication factor, resulting from the application of the boundary and interface conditions. (author)
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1975-01-01
A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de
The influence of peak shock stress on the high pressure phase transformation in Zr
International Nuclear Information System (INIS)
Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P
2014-01-01
At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.
Energy Technology Data Exchange (ETDEWEB)
Englander, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Service de Technologie, Departement de Metallurgie et de Chimie Appliquee, Saclay (France)
1960-07-01
The technological conditions of the problem of α/β allotropic transformation of uranium are presented first. Then, the author explains the qualitative reasons why in non-allied uranium: 1) the new phase germination follows a consistent process; 2) the new phase growth, at the expense of the mother phase, proceeds either by martensitic-type shear or by thermal diffusion if the temperature and impurities amount are high enough. Reprint of a paper published in La Mettalurgia Italiana, vol. LI, no. 11, p. 497-504, 1959 [French] Il est montre d'abord dans quelles conditions se pose technologiquement le probleme de la transformation allotropique α/β de l'uranium. L'auteur expose ensuite les raisons qualitatives selon lesquelles il y a lieu d'admettre que dans l'uranium non allie: 1) la germination de la nouvelle phase s'effectue par un processus coherent; 2) la croissance de la nouvelle phase au detriment de la phase mere s'opere soit par cisaillement de type martensitique, soit par diffusion thermique si la temperature et le taux d'impuretes sont suffisants. Reproduction d'un article publie dans La Mettalurgia Italiana, vol. LI, no. 11, p. 497-504, 1959.
Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer
Guo Zhi Xiong; Komiya, A
1999-01-01
The technique of using a phase-shifting interferometer is applied to the study of diffusion in transparent liquid mixtures. A quick method is proposed for determining the diffusion coefficient from the measurements of the location of fringes on a grey level picture. The measurement time is very short (within 100 s) and a very small transient diffusion field can be observed and recorded accurately with a rate of 30 frames per second. The measurement can be completed using less than 0.12 cc of solutions. The influence of gravity on the measurement of the diffusion coefficient is eliminated in the present method. Results on NaCl-water diffusion systems are presented and compared with the reference data. (author)
International Nuclear Information System (INIS)
Jorge, M.P.P.
1992-01-01
This study consists of the determination of thermal diffusivity int he temperature range from 77 K to 300 K by the two-beam phase-lag photoacoustic method. Room temperature measurements of NTD (neutron transmutation doping) silicon suggest that the doping process does not affect its thermal properties. For the superconductor Y Ba 2 Cu 3 O 7 - x it has been verified that the sample density affects its thermal diffusivity. The validity of the experimental method on the Li K SO 4 crystal has been examined by using the thermal diffusivity of a Li F crystal and an Y 2 O 3 ceramic, at room temperature. The behavior of the thermal diffusivity as a function of the temperature for the Li K SO 4 crystal shows two anomalies which correspond at phase-transitions of this crystal in the studied temperature range. (author)
Solution of multi-group diffusion equation in x-y-z geometry by finite Fourier transformation
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1975-01-01
The multi-group diffusion equation in three-dimensional x-y-z geometry is solved by finite Fourier transformation. Applying the Fourier transformation to a finite region with constant nuclear cross sections, the fluxes and currents at the material boundaries are obtained in terms of the Fourier series. Truncating the series after the first term, and assuming that the source term is piecewise linear within each mesh box, a set of coupled equations is obtained in the form of three-point equations for each coordinate. These equations can be easily solved by the alternative direction implicit method. Thus a practical procedure is established that could be applied to replace the currently used difference equation. This equation is used to solve the multi-group diffusion equation by means of the source iteration method; and sample calculations for thermal and fast reactors show that the present method yields accurate results with a smaller number of mesh points than the usual finite difference equations. (auth.)
Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring
Directory of Open Access Journals (Sweden)
V.A. Izhevskyi
2000-10-01
Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.
A Phase Transformation with no Change in Space Group Symmetry: Octafluoronaphtalene
DEFF Research Database (Denmark)
Pawley, G. S.; Dietrich, O. W.
1975-01-01
A solid-state phase transformation in octafluoronaphthalene has been discovered at 266.5K on cooling, and at 15K higher on heating. The symmetry of both phases is found to be the same, namely monoclinic with space group P21/c. The unit cell parameters change by up to 10%, but the integrity...... of a single crystal, which shatters on cooling, is good enough for a single-crystal structure determination. This has been done in both phases to a sufficient accuracy that a mechanism for the transformation can be proposed. Molecules which lie parallel to one another shear to a new parallel position...
Frame transforms, star products and quantum mechanics on phase space
International Nuclear Information System (INIS)
Aniello, P; Marmo, G; Man'ko, V I
2008-01-01
Using the notions of frame transform and of square integrable projective representation of a locally compact group G, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert space of the representation into the space of square integrable functions on the direct product group G x G. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable 'star product' which mimics, at the level of functions, the original product of operators. A 'phase space formulation' of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed
Energy Technology Data Exchange (ETDEWEB)
Mikailoff, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1959-06-15
By annealing at different temperatures, we have studied the transformations of the body centred cubic {gamma} phase for two alloys containing 6 and 10 per cent molybdenum by weight respectively. There is a return to the equilibrium state by formation of the stable {alpha} orthorhombic and {epsilon} ordered tetragonal phases, following two types of reaction: - pearlite transformation by nucleation and growth from the grain boundaries, preponderant when the annealing takes place at temperature above 400 deg. C, and identical for the two types of alloys. This reaction has already been studied by numerous authors, who have constructed the corresponding TTT curves, - transformation inside the grains of the quenched solid solution when annealing takes place at 400 deg. C or below: 6 per cent alloy - precipitation of fine a phase particles, followed by progressive ordering of the solid solution enriched in molybdenum, 10 per cent alloy - formation of small ordered regions and then a fine a phase precipitate. In the course of this work we have paid particular attention to the study of intragranular reactions after low-temperature annealing, the reactions involved in this case not having been explained up to the present. The {gamma} phase transformation has been studied by means of three techniques: micrography - microhardness tests - X-ray diffraction. (author) [French] Nous avons etudie les transformations par revenu a differentes temperatures, de la phase {gamma} cubique centree des alliages U-Mo trempes, pour deux alliages a 6 et a 10 pour cent de molybdene en poids. Il y a retour a l'etat d'equilibre par formation des phases stables {alpha} orthorhombique et quadratique ordonnee, suivant deux types de reactions: - transformation perlitique par germination et croissance a partir des joints de grains, preponderante lorsque le recuit a lieu a temperature superieure a 400 deg. C, et identique pour les deux types d'alliages. Cette reaction a deja ete etudiee par de nombreux
Critical indices for reversible gamma-alpha phase transformation in metallic cerium
Soldatova, E. D.; Tkachenko, T. B.
1980-08-01
Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.
Phase transformation induced by swift heavy ion irradiation of pure metals
International Nuclear Information System (INIS)
Dammak, H.; Dunlop, A.; Lesueur, D.
1996-01-01
It is now unambiguously established that high electronic energy deposition (HEED), obtained by swift heavy ion irradiation, plays an important role in the damage processes of pure metallic targets: (i) annealing of the defects created by elastic collisions in Fe, Nb, Ni and Pt, and (ii) creation of additional defects in Co, Fe, Ti and Zr. For Ti, we have recently evidenced by transmission electron microscopy observations that the damage creation by HEED is very important and leads to a phase transformation. Titanium evolves from the equilibrium hcp alpha-phase to the high pressure omega-phase. We studied the influence of three parameters on this phase transformation: ion fluence, electronic stopping power and irradiation temperature. The study of Ti and the results concerning other metals (Fe, Zr, etc.) and the semi-metal Bi allow us to propose criteria to predict in which metals HEED could induce damage: those which undergo a phase transformation under high pressure. As a matter of fact, beryllium is strongly damaged when submitted to HEED and seems to behave very similarly to titanium. The fact that such phase changes from a crystalline form to another form were only observed in those metals in which high pressure phases exist in the pressure-temperature diagram, strongly supports the Coulomb explosion model in which the generation of (i) a shock wave and (ii) collective atomic movements are invoked to account for the observed damage creation. (orig.)
Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding
International Nuclear Information System (INIS)
Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.
2006-01-01
We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.
DEFF Research Database (Denmark)
Israelsen, Niels Møller; Maria, Michael; Feuchter, Thomas
2018-01-01
-linearities lead together to an unknown chirp of the detected interferogram. One method to compensate for the chirp is to perform a pixel-wavenumber calibration versus phase that requires numerical extraction of the phase. Typically a Hilbert transform algorithm is employed to extract the optical phase versus...... wavenumber for calibration and dispersion compensation. In this work we demonstrate UHR-OCT at 1300 nm using a Super continuum source and highlight the resolution constraints in using the Hilbert transform algorithm when extracting the optical phase for calibration and dispersion compensation. We demonstrate...... that the constraints cannot be explained purely by the numerical errors in the data processing module utilizing the Hilbert transform but must be dictated by broadening mechanisms originating from the experimentally obtained interferograms....
Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects
DEFF Research Database (Denmark)
Chen, Ming; Alimadadi, Hossein; Molin, Sebastian
2017-01-01
Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell and electrolysis cell stacks. During stack production and operation, nickel from the Ni/yttria stabilized zirconia fuel electrode or from the Ni contact component layer diffuses into the interconnect plate......, causing transformation of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume, and in mechanical and corrosion properties of the interconnect plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic...
Haldar, Justin P; Leahy, Richard M
2013-05-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.
The use of Fourier reverse transforms in crystallographic phase refinement
Energy Technology Data Exchange (ETDEWEB)
Ringrose, Sharon [Iowa State Univ., Ames, IA (United States)
1997-10-08
Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.
Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit
2018-05-01
In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.
Diffusion of substitutional elements in Ti in its h.c.p. phase
International Nuclear Information System (INIS)
Perez, R.A.; Dyment, F.
1993-01-01
Heavy Ions Rutherford Backscattering Spectrometry (HIRBS) was used to analyze diffusion profiles. Penetrations of about a micron were measured; in this form it was possible to complete the range of temperature of diffusion studies in the hop phase of Ti extending it until the overlap with even lower temperatures measured previously with RBS. The ion-material interaction along the trajectory of the heavy ion beam was considered in the method developed to convert HIRBS spectra in diffusion profiles. The results obtained for Zr and Hf diffusion in Ti in the range [1133 - 823] K for Zr and [1145 - 823] K for Hf are discussed in this paper. (Author)
Phase unwrapping in digital holography based on non-subsampled contourlet transform
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-01-01
In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.
Energy Technology Data Exchange (ETDEWEB)
Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)
2015-06-28
Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.
Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory
International Nuclear Information System (INIS)
Shchyglo, Oleg; Salman, Umut; Finel, Alphonse
2012-01-01
We present a simple Landau free energy functional for cubic-to-orthorhombic and cubic-to-monoclinic martensitic phase transformations. The functional is derived following group–subgroup relations between different martensitic phases – tetragonal, trigonal, orthorhombic and monoclinic – in order to fully capture the symmetry properties of the free energy of the austenite and martensite phases. The derived free energy functional is fitted to the elastic and thermodynamic properties of NiTi and NiTiCu shape memory alloys which exhibit cubic-to-monoclinic and cubic-to-orthorhombic martensitic phase transformations, respectively.
Phase transformations in nickel-aluminum alloys during ion beam mixing
International Nuclear Information System (INIS)
Eridon, J.; Rehn, L.; Was, G.
1986-01-01
The effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by alternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 0 K using the 2MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope (HVEM) at Argonne, and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5 x 10 14 cm -2 and continue to develop as the irradiation progresses up to 2 x 10 16 cm -2 . Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl phase and the amorphous structure of mixed Ni-50% Al layers
International Nuclear Information System (INIS)
Rudolph, G.
1983-01-01
With the aid of quantitative microprobe tests, diffusion phenomena and phase formation in the ternary CuNiAl system at 600 - 900 0 C were investigated taking as an example the diffusion couple CuNi5Al5-nickel. The diffusion paths in the ternary system are dependent on temperature and assume an S-form in the copper corner of the phase diagram. In the copper corner, the curves swing away from the more rapid component aluminium towards the copper. Due to this non-linear course of the curves, the intermetallic theta-phase of the type (Ni,Cu) 3 Al can be observed as a layer at all temperatures in the boundary zone. At 800 0 C and to a lesser extend at 900 0 C the solubility of α-CuNi40 for aluminium, at around 5 mass-%, is higher than the value given by W.O. Alexander (1938). As far as it is possible with the diffusion couple under analysis, the microprobe measurements taken otherwise conform at 700 and 600 0 C the position of the phase boundary α-(Cu,Ni)/(α+theta)-miscibility gap indicated in W.O. Alexander (1938). (Author)
Pressure-induced phase transformation of HfO2
International Nuclear Information System (INIS)
Arashi, H.
1992-01-01
This paper reports on the pressure dependence of the Raman spectra of HfO 2 that was measured by a micro-Raman technique using a single-crystal specimen in the pressure range from 0 to 10 GPa at room temperature. The symmetry assignment of Raman bands of the monoclinic phase was experimentally accomplished from the polarization measurements for the single crystal. With increased pressure, a phase transformation for the monoclinic phase took place at 4.3 ± 0.3 GPa. Nineteen Raman bands were observed for the high-pressure phase. The spectral structure of the Raman bands for the high-pressure phase was similar with those reported previously for ZrO 2 . The space group for the high pressure phase of HfO 2 was determined as Pbcm, which was the same as that of the high-pressure phase for ZrO 2 on the basis of the number and the spectral structure of the Raman bands
On the study of the solid-solid phase transformation of TlBiTe2
International Nuclear Information System (INIS)
Chrissafis, K.; Vinga, E.S.; Paraskevopoulos, K.M.; Polychroniadis, E.K.
2003-01-01
The narrow gap semiconductor TlBiTe 2 undergoes a solid-solid phase transformation from the rhombohedral (D 3d ) to the cubic (O h ) phase. The present paper deals with the study of this phase transformation combining the results of Differential Scanning Calorimetry (DSC) and Transmission Electron Microscopy (TEM). It has been found that during heating the transformation is an athermal activated process, which can be described only by a combination of more than one processes while during cooling it exhibits an expectable thermal hysteresis due to the volume difference. The results of the kinetic analysis combined with the electron microscopy findings, supported also by the Fourier Transform Infrared (FTIR) spectroscopy ones, lead to the conclusion that TlBiTe 2 undergoes a multiple-step, displacive, martensitic type transformation. (Abstract Copyright [2003], Wiley Periodicals, Inc.)
Hysteresis phenomena at metal-semiconductor phase transformation in vanadium oxides
International Nuclear Information System (INIS)
Lanskaya, T.G.; Merkulov, I.A.; Chudnovski , F.A.
1978-01-01
The hysteresis phenomena during the metal-semiconductor phase transformation (MSPT) in vanadium oxides are investigated. It is shown experimentally that the hysteresis effects during MSPT in vanadium oxides are associated not only with the martensite nature of the transformation, but also with activation processes. It is shown that the hysteresis phenomena during MSPT may be described by the distribution function of microregions of the crystal in the phase transformation temperature T 0 and the coercive temperature Tsub(c). An experimental method for constructing this distribution function was worked out. An analysis of the experimental data shows that finely dispersed films are characterized by a wide range of values of T 0 and Tsub(c) (55 deg C 0 <65 deg C, 6 deg C< Tsub(c)<12 deg C). The peculiarities of the optical recording of information on monocrystal and finely dispersed films are considered
Directory of Open Access Journals (Sweden)
Simone Techert
2009-09-01
Full Text Available Photo-induced phase transitions are characterized by the transformation from phase A to phase B through the absorption of photons. We have investigated the mechanism of the photo-induced phase transitions of four different ternary systems CiE4/alkane (i with n = 8, 10, 12, 14; cyclohexane/H2O. We were interested in understanding the effect of chain length increase on the dynamics of transformation from the microemulsion phase to the liquid crystal phase. Applying light pump (pulse/x-ray probe (pulse techniques, we could demonstrate that entropy and diffusion control are the driving forces for the kind of phase transition investigated.
International Nuclear Information System (INIS)
Jung, V.
1982-07-01
Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.) [de
Bhattacharya, T
2002-01-01
Our high-pressure Raman scattering experiments on pentaerythritol (C(CH sub 2 OH) sub 4) show that this compound undergoes at least three phase transformations up to 25 GPa. Splitting of various modes at approx 6.3, approx 8.2 and 10 GPa suggests that these phase transformations result in lowering of crystalline symmetry. A very small discontinuous change in slope of most of the Raman-active modes is observed at 0.3 GPa. However, no other signature of a phase transition was observed at this pressure. The observed correlation of the pressures for the onset of the two phase transformations with the limiting values of the distances between various non-bonded atoms in the parent phase suggests that the molecular rearrangements across the phase transformations are not very drastic. In addition, our earlier Fourier transform infrared and present Raman investigations indicate that high-pressure compression leads to increase in strength of the hydrogen bond present in this compound.
Isometric and unitary phase operators: explaining the Villain transform
International Nuclear Information System (INIS)
Hemmen, J L van; Wreszinski, Walter F
2007-01-01
The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable
Phase retrieval from a single fringe pattern by using empirical wavelet transform
International Nuclear Information System (INIS)
Guo, Xiaopeng; Zhao, Hong; Wang, Xin
2015-01-01
Phase retrieval from a single fringe pattern is one of the key tasks in optical metrology. In this paper, we present a new method for phase retrieval from a single fringe pattern based on empirical wavelet transform. In the proposed method, a fringe pattern can be effectively divided into three components: nonuniform background, fringes and random noise, which are described in different sub-pass. So the phase distribution information can be robustly extracted from fringes representing a fundamental frequency component. In simulation and a practical projection fringes test, the performance of the present method is successfully verified by comparing with the conventional wavelet transform method in terms of both image quality and phase estimation errors. (paper)
Moessbauer study of the magnetic phase transformations in SnMn3N
International Nuclear Information System (INIS)
Nagy, D.L.; Zimmer, G.J.; Lohner, T.; Senateur, J.P.
1975-01-01
Moessbauer measurements were performed on SnMn 3 N with the aim of verifying the magnetic phase transformations at 175 and 230 K and the Neel transition at 475 K as well as of seeking an explanation for the anomalous peak in magnetic susceptibility about 380 K. Moessbauer spectra were taken at several temperatures between 83 and 475 K and evaluated by a least square fitting program. Abrupt changes in the hyperfine field were found at 175, 230 and 350 K indicating first-order magnetic phase transformations at these temperatures; the 350 K transformation is certainly related to the anomaly in susceptibility. About 475 only a smooth change in the hyperfine field was found suggesting the Neel transition to be of the second order. An attempt is made to explain the relatively high hyperfine field in the cubic antiferromagnetic phase. (A.K.)
Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi
International Nuclear Information System (INIS)
Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.
2017-01-01
Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.
Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi
Energy Technology Data Exchange (ETDEWEB)
Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)
2017-03-14
Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.
Stability of a laser cavity with non-parabolic phase transformation elements
CSIR Research Space (South Africa)
Litvin, IA
2013-05-01
Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...
Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films
Energy Technology Data Exchange (ETDEWEB)
Merakeb, Noureddine [Laboratory of Physical Metallurgy and Property of Materials (LM2PM), Metallurgy and Materials Engineering Department, Badji Mokhtar University, P.O. Box 12, Annaba 23000 (Algeria); Messai, Amel [Laboratoire d' Ingénierie et Sciences des Matériaux Avancés (ISMA), Institut des Sciences et Technologie, Abbès Laghrour University, Khenchela 40000 (Algeria); Ayesh, Ahmad I., E-mail: ayesh@qu.edu.qa [Department of Mathematics, Statistics and Physics, Qatar University, Doha (Qatar)
2016-05-01
In this work we report on phase transformation of 304 stainless steel thin films due to heat treatment. Ex-situ annealing was applied for evaporated 304 stainless steel thin films inside an ultra-high vacuum chamber with a pressure of 3 × 10{sup −7} Pa at temperatures of 500 °C and 600 °C. The structure of thin films was studied by X-ray diffraction (XRD) and conversion electron Mössbauer spectroscopy (CEMS) techniques. The results revealed a transformation from α-phase that exhibits a body-centered cubic structure (BCC) to γ-phase that exhibits a face-centered cubic (FCC) due to annealing. In addition, the percentage of γ-phase structure increased with the increase of annealing temperature. Annealing thin films increased the crystal size of both phases (α and γ), however, the increase was nonlinear. The results also showed that phase transformation was produced by recrystallization of α and γ crystals with a temporal evolution at each annealing temperature. The texture degree of thin films was investigated by XRD rocking curve method, while residual stress was evaluated using curvature method. - Highlights: • Stainless steel thin films were fabricated by thermal evaporation on quartz. • Alpha to gamma phase transformation of thin films was investigated. • Annealing of thin films reduces disruption in crystal lattice. • The stress of as-grown thin films was independent on the thin film thickness. • The stress of the thin films was reduced due to annealing.
Hydrogen diffusion in Mg2NiH4 intermetallic compound
Czech Academy of Sciences Publication Activity Database
Čermák, Jiří; Král, Lubomír; David, Bohumil
2008-01-01
Roč. 16, č. 4 (2008), s. 508-517 ISSN 0966-9795 R&D Projects: GA ČR GA106/07/0010 Institutional research plan: CEZ:AV0Z20410507 Keywords : diffusion * hydrogen storage * phase transformations Subject RIV: BJ - Thermodynamics Impact factor: 2.034, year: 2008
Energy Technology Data Exchange (ETDEWEB)
Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)
2015-09-01
L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.
Effect of grain structure on phase transformation events in Inconel 718
International Nuclear Information System (INIS)
Dahotre, N.B.; McCay, M.H.; McCay, T.D.; Hubbard, C.R.; Porter, W.D.; Cavin, O.B.
1993-01-01
Nickel base superalloys generally obtain their maximum strength from γ'[Ni 3 (Al,Ti)] and γ double-prime[Ni 3 (Al,Ti,Nb)] age hardening precipitates. During welding the γ' precipitation is very rapid and can lead to strain age cracking, which limits weldability. Thus, the weldable superalloys are limited in their Al and Ti content and hence in their ultimate strength. One method of increasing the ultimate strength of a superalloy, while avoiding strain age cracking, is the addition of Nb. This produces Ni 3 Nb(δ), and when used in conjunction with a limited amount of γ', results in an increase in strength without strain age cracking problems. The γ double-prime does not lead to strain age cracking because its transformation kinetics are too slow for formation during ordinary welding practice. This combination of γ' and γ double-prime strengthening is incorporated into the Inconel 718 alloys. The research reported herein was undertaken to determine the time-temperature response of Inconel 718 in the as-cast, wrought and wrought-grain-grown states, using differential thermal analysis (DTA). It is essential to locate the temperature regime of each phase transformation event and to study the transformation sequence in order to tailor sound laser welding techniques for Inconel 718. In the present research, a DTA technique was employed to study both the phase transformation events and the phase transformation sequence as a function of the pre-existing condition of the alloy
Effect of grain boundaries on shock-induced phase transformation in iron bicrystals
Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu
2018-01-01
Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.
International Nuclear Information System (INIS)
Chakraborty, Tanmoy; Rogal, Jutta; Drautz, Ralf
2015-01-01
A combined density functional theory and solid-state nudged elastic band study is presented to investigate the martensitic transformation between β → (α″, ω) phases in the Ti–Ta system. The minimum energy paths along the transformation are calculated and the transformation mechanisms as well as relative stabilities of the different phases are discussed for various compositions. The analysis of the transformation paths is complemented by calculations of phonon spectra to determine the dynamical stability of the β, α″, and ω phase. Our theoretical results confirm the experimental findings that with increasing Ta concentration there is a competition between the destabilisation of the α″ and ω phase and the stabilisation of the high-temperature β phase. (paper)
A kinetic Monte Carlo method for the simulation of massive phase transformations
International Nuclear Information System (INIS)
Bos, C.; Sommer, F.; Mittemeijer, E.J.
2004-01-01
A multi-lattice kinetic Monte Carlo method has been developed for the atomistic simulation of massive phase transformations. Beside sites on the crystal lattices of the parent and product phase, randomly placed sites are incorporated as possible positions. These random sites allow the atoms to take favourable intermediate positions, essential for a realistic description of transformation interfaces. The transformation from fcc to bcc starting from a flat interface with the fcc(1 1 1)//bcc(1 1 0) and fcc[1 1 1-bar]//bcc[0 0 1-bar] orientation in a single component system has been simulated. Growth occurs in two different modes depending on the chosen values of the bond energies. For larger fcc-bcc energy differences, continuous growth is observed with a rough transformation front. For smaller energy differences, plane-by-plane growth is observed. In this growth mode two-dimensional nucleation is required in the next fcc plane after completion of the transformation of the previous fcc plane
A study of phase transformation in a TiAlNb alloy and the effect of Cr addition
Energy Technology Data Exchange (ETDEWEB)
Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Cupid, Damian M. [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Seifert, Hans J. [Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Ebrahimi, Fereshteh, E-mail: febra@mse.ufl.edu [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States)
2010-05-15
The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.
A study of phase transformation in a TiAlNb alloy and the effect of Cr addition
Energy Technology Data Exchange (ETDEWEB)
Kesler, Michael [University of Florida, Gainesville; Goyel, Sonalika [University of Florida, Gainesville; Rios, Orlando [ORNL; Cupid, Damian M [Freiberg University of Mining and Technology; Seifert, Hans J [Freiberg University of Mining and Technology; Ebrahimi, Fereshteh [University of Florida, Gainesville
2010-01-01
The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 C to 1600 C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.
A study of phase transformation in a TiAlNb alloy and the effect of Cr addition
International Nuclear Information System (INIS)
Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando; Cupid, Damian M.; Seifert, Hans J.; Ebrahimi, Fereshteh
2010-01-01
The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single β-phase and transformed to γ + σ phases upon slow cooling. The addition of Cr did not affect the β → γ transformation temperature upon slow cooling. In contrast, the temperature, at which the σ-phase formed, was reduced noticeably. Upon heating, the temperature at which the β-phase evolves from the γ + σ microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the γ-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the β-phase to room temperature. These results are explained by the partitioning of Cr into the β-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.
International Nuclear Information System (INIS)
Ageev, N.V.; Babarehko, A.A.
1983-01-01
Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it
Lectures notes on phase transformations in nuclear matter
López, Jorge A
2000-01-01
The atomic nucleus, despite of being one of the smallest objects found in nature, appears to be large enough to experience phase transitions. The book deals with the liquid and gaseous phases of nuclear matter, as well as with the experimental routes to achieve transformation between them.Theoretical models are introduced from the ground up and with increasing complexity to describe nuclear matter from a statistical and thermodynamical point of view. Modern critical phenomena, heavy ion collisions and computational techniques are presented while establishing a linkage to experimental data.The
Pressure-induced phase transformations in L-alanine crystals
DEFF Research Database (Denmark)
Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.
2008-01-01
Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...... phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5 +/- 1.4) GPa and 4.4 +/- 0.4, respectively....
Specific features of kinetics of He3-He4 solid solution transformations at superlow temperatures
International Nuclear Information System (INIS)
Mikheev, V.A.; Majdanov, V.A.; Mikhin, N.P.
1986-01-01
The NMR data on the phase transition kinetics of 3 He- 4 He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm 2 /mol with a 3 He content of 0.54 %. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of 3 He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid
Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite
Energy Technology Data Exchange (ETDEWEB)
Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet
2016-09-07
Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.
Directory of Open Access Journals (Sweden)
Tajudeen Oladele AHMED
2013-06-01
Full Text Available Stabilized zirconia produced via wet chemistry has chemically higher uniformity and purity. However, the grain size, particle shape, agglomerate size and specific surface area can be modified within certain degree by controlling the precipitation and sintering conditions. Generally, any physical or chemical difference between phases or effect occurring on the appearance or disappearance of a phase can be determined via thermal analysis and X-ray Diffractometry coupled with electron microscopy. In the last few decades, these materials have received tremendous attention globally in the field of defect solid-state devices. However, the challenge in this field of research has been to study thermal behaviour of these electrolytes during phase transformations and develop improved electrolytes with low activation temperature in the range of 600°C-800°C. In this paper, we report the wet chemistry of bismuth oxide stabilized zirconia having high experimental yield and low transformation temperature. Thus, the phase transformation from amorphous Zirconia to monoclinic is reported to begin above 600oC to an optimum temperature of 700oC. After calcination at 800oC for 4h, the powder have narrow particle size distribution in the range of 63-101µm. The average crystallite sizes of the synthesized powders range from 8-33nm.
Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited
DEFF Research Database (Denmark)
Pécseli, H.L.; Trulsen, J.
1991-01-01
Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...
Tovbin, Yu. K.
2017-08-01
The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).
Wang, Yuhui; Liao, Bo; Liu, Jianhua; Chen, Shuqing; Feng, Yu; Zhang, Yanyan; Zhang, Ruijun
2012-07-01
The solid-state phase transformation temperature and duration of deep cryogenic treated and untreated Cu-Al alloys in cooling process were measured by differential scanning calorimetry measurement. The solid-state phase transformation activation energy and Avrami exponent were calculated according to these measurements. The effects of deep cryogenic treatment on the solid-state phase transformation were investigated based on the measurement and calculation as well as the observation of alloy's microstructure. The results show that deep cryogenic treatment can increase the solid-phase transformation activation energy and shorten the phase transformation duration, which is helpful to the formation of fine grains in Cu-Al alloy.
Grain nucleation and growth during phase transformations
DEFF Research Database (Denmark)
Offerman, S.E.; Dijk, N.H. van; Sietsma, J.
2002-01-01
of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....
Plasticity induced phase transformation in molecular crystals
Koslowski, Marisol
2014-01-01
Solid state amorphization (SSA) can be achieved in crystalline materials including metal alloys, intermetallics, semiconductors, minerals and molecular crystals. Even though the mechanisms may differ in different materials, the crystalline to amorphous transformation occurs when the crystal reaches a metastable state in which its free energy is higher than that of the amorphous phase. SSA is observed in metal alloys because of interdiffusion of the crystalline elements during mechanical milli...
Theory of phase transformation and reorientation in single crystalline shape memory alloys
International Nuclear Information System (INIS)
Zhu, J J; Liang, N G; Cai, M; Liew, K M; Huang, W M
2008-01-01
A constitutive model, based on an (n+1)-phase mixture of the Mori–Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place
Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects
DEFF Research Database (Denmark)
Chen, Ming; Molin, Sebastian; Zhang, L.
2015-01-01
Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell (SOFC) or electrolysis cell (SOEC) stacks. During stack production and operation, nickel from the Ni/YSZ fuel electrode or from the Ni contact component diffuses into the IC plate, causing transformation...... of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume and in mechanical and corrosion properties of the IC plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic stainless steel was conducted, using the CALPHAD...
Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds
Baumgartner, Manuel; Spichtinger, Peter
2017-04-01
Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.
Directory of Open Access Journals (Sweden)
R. Przeliorz
2010-04-01
Full Text Available The effect of heating rate on phase transformations to austenite range in ductile iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC was used. Microstructure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15°C/min, local extrema have been observed to occur: for pearlite→austenite transformation at 784°C and 795°C, respectively, and for ferrite→austenite transformation at 805°C and 821°C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740°C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.
Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling
Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.
2017-02-01
Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.
Dynamic phase transition in diffusion-limited reactions
International Nuclear Information System (INIS)
Tauber, U.C.
2002-01-01
Many non-equilibrium systems display dynamic phase transitions from active to absorbing states, where fluctuations cease entirely. Based on a field theory representation of the master equation, the critical behavior can be analyzed by means of the renormalization group. The resulting universality classes for single-species systems are reviewed here. Generically, the critical exponents are those of directed percolation (Reggeon field theory), with critical dimension d c = 4. Yet local particle number parity conservation in even-offspring branching and annihilating random walks implies an inactive phase (emerging below d c = 4/3) that is characterized by the power laws of the pair annihilation reaction, and leads to different critical exponents at the transition. For local processes without memory, the pair contact process with diffusion represents the only other non-trivial universality class. The consistent treatment of restricted site occupations and quenched random reaction rates are important open issues (Author)
Energy Technology Data Exchange (ETDEWEB)
Dupuy, M [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires
1967-07-01
A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in {alpha} uranium (15 per cent at 565 C) and the uranium one in {zeta} phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10{sup 12} cm{sup 2} s{sup -1}, and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and {alpha} autoradiography. Self-diffusion of plutonium in {epsilon} phase (bcc) obeys Arrhenius law: D = 2. 10{sup -2} exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals ({beta}Zr, {beta}Ti, {beta}Hf, U{sub {gamma}}). (author) [French] Une etude du diagramme d'equilibre uranium-plutonium conduit a confirmer les resultats anglo-saxons relatifs a la solubilite du plutonium dans l'uranium {alpha} (15 pour cent a 565 C) et de l'uranium dans la phase {zeta} (74 pour cent a 565 C). Les coefficients de diffusion chimique, pour des concentrations inferieures a 15 pour cent ont ete determines a des temperatures comprises entre 410 et 640 C. Ils se situent entre 0.2 et 6. 10{sup 12} cm{sup 2} s{sup -1}. L'energie d'activation varie entre 13 et 20 kcal/mole. La diffusion intergranulaire du plutonium dans l'uranium a a ete mise en evidence par micrographie, microanalyse X et autoradiographie {alpha}. L' autodiffusion du plutonium {beta} cubique centree obeit a la loi d'Arrhenius D = 2. 10{sup -2} exp - (18500)/RT. Son energie d'activation n'obeit pas aux lois empiriques generalement admises pour les autres metaux. Elle possede des analogies avec les cubiques centres ''anormaux'' (Zr{beta}, Ti{beta}, Hf{beta}, U{gamma}). (auteur)
Thermal diffusion (1963); Diffusion thermique (1963)
Energy Technology Data Exchange (ETDEWEB)
Lemarechal, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1963-07-01
This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [French] Ce rapport rassemble les principes essentiels de la diffusion thermique en phase liquide et en phase gazeuse. Les aspects macroscopique et moleculaire de la constante de diffusion thermique sont passes en revue ainsi que ses differentes methodes de mesure; mais les developpements les plus importants concernent le fonctionnement de ls colonne thermogravitationnelle de CLUSIUS et DICKEL et ses applications. (auteur)
DEFF Research Database (Denmark)
Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian
2015-01-01
We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....
Grain alignment in bulk YBa2Cu3Ox superconductor by a low temperature phase transformation method
International Nuclear Information System (INIS)
Selvamanickam, V.; Goyal, A.; Kroeger, D.M.
1994-01-01
A quench and directional phase transformation process has been developed to achieve grain alignment in bulk YBa 2 Cu 3 O x superconductors at temperatures about 100 degree C below the peritectic temperature. Isothermal phase transformation of quenched precursors at 890 degree C for 3 min is found to result in the formation of more than 75% of YBa 2 Cu 3 O x phase without any formation of Y 2 BaCuO 5 . Phase transformation at higher temperatures leads to rapid formation of Y 2 BaCuO 5 in addition to YBa 2 Cu 3 O x . A well-aligned microstructure is achieved by directional phase transformation of the quenched compacts as a rate of 10 mm/h. The magnetic field dependence of the critical current density at 77 K of the directionally phase transformed material compares well with that of melt-textured YBCO and is superior to that of magnetically aligned and sintered YBCO
International Nuclear Information System (INIS)
Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.; Solofoarisina, W.C.
2015-04-01
We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions.Then we introduce the concept of isodispersion linear canonical transformation.
Charge density wave instabilities and incommensurate structural phase transformations
International Nuclear Information System (INIS)
Axe, J.D.
1977-10-01
Incommensurate structural phase transformations involve the appearance of modulated atomic displacements with spatial periodicity unrelated to the fundamental periodicity of the basic lattice. In the case of some quasi one- or two-dimensional metals such transformations are the result of Fermi-surface instabilities that also produce electronic charge density waves (CDW's) and soft phonon modes due to metallic electron screening singularities. Incommensurate soft mode instabilities have been found in insulators as well. Recent neutron scattering studies of both the statics and dynamics of incommensurate structural instabilities will be reviewed
Mechanically induced atomic disorder and phase transformations. Doctoral thesis
Energy Technology Data Exchange (ETDEWEB)
Limei, D
1992-11-30
The study shows the possibilities of preparing alloys in various metastable configurations by the simple technique of ball milling. Firstly, chapter 2 gives the description of experimental techniques. In chapter 3, evidence of atomic anti-site disordering in A15-structure superconducting compounds Nb3Sn and Nb3Au during an early stage of milling is demonstrated. Chapter 4 represents the experimental results on the B2-structure magnetic compounds CoGa and CoAl upon mechanical impact. These compounds are well known for their particular type of atomic disorder, namely triple-defect disorder. Various examples of experimental evidence of phase transformations induced by mechanical grinding are presented in chapter 5. Section 5.2 gives an example of amorphization induced by mechanical attrition in the intermetallic compound Ni3Sn. Section 5.3 shows the milling experiment of the intermetallic compound V3 Ga. In section 5.4, for the first time, the observation of a phase transformation to a high-temperature phase with a complex structure will be demonstrated for the intermetallic compound Co3Sn2. In the last chapter, detailed studies on the intermetallic Nb-Au binary compounds for a variety of compositions are presented.
Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo
2018-01-01
An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Anh-Tuan; Kang, Jeong-Ki; Kim, Woo-Sik [Department of Chemical Engineering, Kyung Hee University, Seocheon-Dong, Giheung-Gu, 446-701 Yongin-Si (Korea, Republic of); Choi, Guang Jin [Department of Pharmaceutical Engineering, Inje University, 607 Uhbang-Dong, Gimhae, 621-746 Kyungnam (Korea, Republic of)
2011-01-15
The phase transformation of Guanosine 5{sup '}-Monophousphate (GMP) in drowning-out crystallization using a batch system was experimentally monitored and mathematically modeled. The solid (amorphous and crystalline GMP hydrate) and liquid phases of the GMP products were simultaneously monitored using a video microscope, FT-IR, and UV/Vis spectroscopy during the phase transformation. For the modeling, the phase transformation was assumed to occur via the simultaneous dissolution of amorphous GMP and growth of crystalline GMP hydrate in the solution. Based on a comparison of the experimental results and model predictions, both the dissolution and growth of the GMP solids were found to contribute competitively to the phase transformation. When varying the crystallization conditions, in this case the agitation speed and feed concentration, the phase transformation was significantly promoted when increasing the agitation speed, yet independent of the feed concentration. The simple mathematical model used for the GMP phase transformation was quite successful in describing the experimental results. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Numerical modelling of tools steel hardening. A thermal phenomena and phase transformations
Directory of Open Access Journals (Sweden)
T. Domański
2010-01-01
Full Text Available This paper the model hardening of tool steel takes into considerations of thermal phenomena and phase transformations in the solid state are presented. In the modelling of thermal phenomena the heat equations transfer has been solved by Finite Elements Method. The graph of continuous heating (CHT and continuous cooling (CCT considered steel are used in the model of phase transformations. Phase altered fractions during the continuous heating austenite and continuous cooling pearlite or bainite are marked in the model by formula Johnson-Mehl and Avrami. For rate of heating >100 K/s the modified equation Koistinen and Marburger is used. Modified equation Koistinen and Marburger identify the forming fraction of martensite.
Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...
Finite size effects in phase transformation kinetics in thin films and surface layers
International Nuclear Information System (INIS)
Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il
2004-01-01
In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively
Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti
2016-09-14
Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.
Phase transformation of metastable cubic γ-phase in U-Mo alloys
International Nuclear Information System (INIS)
Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.
2010-01-01
Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.
Directory of Open Access Journals (Sweden)
Carter Hamilton
2018-05-01
Full Text Available Sheets of aluminum 2017A-T451 and 7075-T651 were friction stir-welded in a butt-weld configuration. An existing computational model of the welding process for temperature distribution and material flow was adapted to estimate the phase transformations that occur across the weld zone. Near the weld center, process temperatures are sufficient to fully dissolve the equilibrium η phase in 7075 and partially dissolve the equilibrium S phase in 2017A. Upon cooling, Guinier–Preston (GP and Guinier–Preston–Bagaryatsky (GPB zones re-precipitate, and hardness recovers. Due to the more complete dissolution of the equilibrium phase in 7075, the hardness recovery skews toward whichever side of the weld, i.e., the advancing or retreating side, represents the 7075 workpiece. Phase transformation maps generated by the numerical simulation align not only with the hardness profiles taken across the weld zone, but also with positron lifetimes obtained through positron annihilation lifetime spectroscopy (PALS. Boundaries between the aluminum matrix and the secondary phases provide open volumes to trap positrons; therefore, positron lifetimes across the weld correspond with the phase transformations that occur in 7075 and 2017A during processing.
Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.
2018-05-01
The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.
Garion, Cedric
2003-01-01
Ductile materials (like stainless steel or copper) show at cryogenic temperatures three principal phenomena: serrated yielding (discontinuous in terms of dsigma/depsilon), plastic strain-induced phase transformations and evolution of ductile damage. The present paper deals exclusively with the two latter cases. Thus, it is assumed that the plastic flow is perfectly smooth. Both in the case of damage evolution and for the gamma-alpha prime phase transformation, the principal mechanism is related to the formation of plastic strain fields. In the constitutive modeling of both phenomena, a crucial role is played by the accumulated plastic strain, expressed by the Odqvist parameter p. Following the general trends, both in the literature concerning the phase transformation and the ductile damage, it is assumed that the rate of transformation and the rate of damage are proportional to the accumulated plastic strain rate. The gamma-alpha prime phase transformation converts the initially homogenous material to a two-p...
Phase transformation kinetics and microstructure of NiTi shape
Indian Academy of Sciences (India)
Phase transformation kinetics and microstructure of NiTi shape memory alloy: ... by 1.4687 J. In addition, entropy of the alloys decreases by 0.2335 J (g ∘ C) − 1 ... is an obvious difference in the grain sizes of the unpressured sample and the ...
A Transformer-less Single Phase Inverter For photovoltaic Systems
DEFF Research Database (Denmark)
Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying
2017-01-01
A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer comp...
International Nuclear Information System (INIS)
Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.
2014-01-01
An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO 3 at temperatures above the Curie point (T C ) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T C . The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T C , while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm −1 ) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.
International Nuclear Information System (INIS)
Terasaki, Hidenori; Komizo, Yu-ichi; Nishino, Fumihiro; Ikeda, Masahiko
2007-01-01
Understanding and controlling solidification and phase transformation process of weld metal is essential for forming the microstructure with superior mechanical property. Recent evolution of analysis technique makes for solidification and phase transformation process to be in-situ analyzed, in direct and reciprocal lattice space. In the present work, unidirectional-solidification and phase transformation in the weld metal of commercial pure-titanium in Gas Tungsten Arc welding was in-situ observed by using Time-Resolved X-Ray Diffraction system with two-dimensional pixel detector. An undulator beam was used as a probe. Larger diffraction area could be detected in the time-resolution of 0.05 seconds, in unidirectional solidification and subsequent phase transformation process of pure-titanium weld metal. Furthermore, the microstructure formation during β-α phase transformation was in situ observed with High temperature Laser Scanning Confocal Microscopy. The crystal configurations in unidirectional solidification of weld metal and rapid change of phase ratio in reconstructive phase transformation were clearly analyzed. (author)
Diffuse scattering from an Al72Ni20Co8 decagonal quasicrystal on an order-disorder transformation
International Nuclear Information System (INIS)
Abe, H; Saitoh, H; Ueno, T; Nakao, H; Matsuo, Y; Ohshima, K; Matsumoto, H
2003-01-01
Non-uniform distortion induced by superstructure domains has been observed during the ordering process of an order-disorder transformation in a single decagonal quasicrystal of Al 72 Ni 20 Co 8 . The full width at half maximum (FWHM) of the fundamental reflections increased below the transformation temperature, T c . At the same time, the integrated intensity of the fundamental reflections varied drastically at T c . A small hysteresis was also observed in the temperature dependences of both the FWHM and the integrated intensity of the fundamental reflections. Peak broadening of the fundamental reflections is predominantly dependent on |G par | below T c . In addition, the weak dependence of the peak broadening with |G perp | is extracted from the observed FWHM of the fundamental reflections. After deconvolution, the FWHM of the fundamental reflections appears to be a linear combination of |G par | and |G perp |. Coexistence of the non-uniform distortion and of the random phason strain contributes to the ordering process below T c . The diffuse scattering from atomic short-range order (SRO) was distributed around the ideal positions of the superstructure reflections. The SRO diffuse scattering disappeared completely above T c + 10 K. In addition, a small hysteresis of the SRO diffuse scattering was found in the temperature cycle
Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification
Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello
2013-08-01
A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.
Directory of Open Access Journals (Sweden)
J. Dias Coelho
2010-01-01
Full Text Available Primary cutaneous follicle center lymphoma (PCFCL is characterized by a proliferation of follicle center cells in the skin. A definitive diagnosis is frequently delayed because of difficulties in interpretation of the histopathologic findings. It has an excellent prognosis with a 5-year survival over 95% and its risk of transformation has not been established. We describe a case report of man with a gastric diffuse large B-cell lymphoma (DLBCL referred to our clinic because of nodules in the back that had gradually developed over a period of 10 years. A biopsy performed 3 years before was interpreted as reactive follicular hyperplasia. A new skin biopsy revealed a diffuse large B-cell lymphoma and immunoglobulin heavy chain gene rearrangements from the initial skin biopsy (PCBCL and the DLBCL gastric biopsy were studied by polymerase chain reaction and an identical clonal rearrangement was detected which was highly suggestive of a transformation lymphoma.
Phase transformations at continuous cooling in VT6ch and VT23 alloys
International Nuclear Information System (INIS)
Lyasotskaya, V.S.; Lyasotskij, I.V.; Meshcheryakov, V.N.; Ravdonikas, N.Yu.; Nadtochij, S.I.; Faustov, N.N.
1986-01-01
Phase transformations at continuous cooling at β-region temperatures in VT6ch and VT23 alloys are studied. Nonequilibrium phases: α', α'', (ω), βsub(e), αsub(e), are shown to be formed in these alloys depending on cooling composition and rate. It is established that at cooling at temperatures below Ar 3 in alloys studied high-temperature α-phase is formed, and at temperatures below 650 deg C - more dispersed low-temperature α-phase precipitating from β-solution volumes mostly enriched by alloying elements according to the intermediate mechanism. Diagrams of anisothermal β-phase decomposition for VT6ch and VT23 alloys are plotted in coincidence with the results of thermal, thermodifferential, metallographic and X-ray diffraction analyses; lines of martensite transformation, lines of high- and low-temperature α-phase formation are pointed on the diagrams. Besides, for VT23 alloy a line for (ω)-phase formation is pointed
Phase holographic material with diffusion enhancement based on 1,2-naphthoquinone
International Nuclear Information System (INIS)
Gritsai, Y; Goldenberg, L M; Stumpe, J
2010-01-01
A new material based on 1,2-naphthoquinone in polymethylmethacrylate is proposed for phase holograms showing diffusion enhancement. The spectral sensitivity of this material allows forming holograms using 488–530 nm wavelengths, while the hologram reconstruction can be implemented at 633 nm. The amplitude of the refractive index modulation achieved makes it possible to reach diffraction efficiencies close to 100% at a thickness of several hundreds of µm. It was found by means of UV–visible and NMR spectroscopy that the diffusion of 1,2-naphthoquinone caused by photoproduct attachment to macromolecules of a polymer matrix is the main reason for the hologram enhancement. A relatively high diffusion coefficient (4.8 × 10 −17 m 2 s −1 at 50 °C) was measured, leading to fast enhancement at moderate temperature
Energy Technology Data Exchange (ETDEWEB)
Kubiak, Marcin, E-mail: kubiak@imipkm.pcz.pl; Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew [Institute of Mechanics and Machine Design Foundations, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa (Poland); Stano, Sebastian [Welding Technologies Department, Welding Institute, Błogosławionego Czesława 16-18, 44-100 Gliwice (Poland)
2015-03-10
This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.
Neutron scattering study of the phase transformation of LaNi3 induced by hydriding
International Nuclear Information System (INIS)
Ruan Jinghui; Zeng Xiangxin; Niu Shiwen
1994-01-01
The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system
The kinetics of the β→α transformation in unalloyed plutonium after partial formation of the β phase
International Nuclear Information System (INIS)
Robinson, A.C.; Stacey, R.J.
1976-01-01
The kinetics of the isothermal β→α transformation after complete and only partial formation of the β phase in unalloyed plutonium containing about 900 ppm of impurity are reported and compared with previously published and conventionally accepted β→α transformation kinetics after complete formation of the β phase in this material. In these experiments the heating was provided by constant temperature oil baths and the transformations were monitored by electrical resistance measurements on 0.63 mm diameter wire samples at temperatures ranging from -65 0 C to +75 0 C. After complete formation of the β phase in the plutonium used in these experiments the kinetics of the β→α transformation were in general agreement with previously published data, although the present transformations were slower than reported by previous workers. After only partial formation of the β phase the subsequent β→α transformations were found to be very fast and to be characterised by zero or very short incubation periods, rapid rates of transformation and a final equilibrium consisting of more than 90% β phase. (Auth.)
Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling
El-Eskandarany, M. Sherif
2017-05-01
Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.
International Nuclear Information System (INIS)
Knepper, Robert; Stevens, Blake; Baker, Shefford P.
2006-01-01
Tantalum thin films were prepared in the metastable β phase, and their thermomechanical behaviors were investigated in situ in an ultrahigh vacuum environment. Controlled levels of oxygen were incorporated into the films either during deposition, by surface oxidation after deposition, or during thermomechanical testing. The transformation from the β phase to the stable α phase takes place in conjunction with a distinct increase in tensile stress. The thermomechanical behavior is strongly affected by the amount of oxygen to which the film is exposed and the method of exposure. Increasing oxygen content inhibits the phase transformation, requiring higher temperatures to reach completion. It is shown that the phase transformation takes place by a nucleation and growth process that is limited by growth. Changes in the activation energy for the phase transformation due to solute drag are estimated as a function of oxygen content and the mechanisms behind the stress evolution are elucidated
International Nuclear Information System (INIS)
Kwiotek, A.; Grzywna, Z.J.
2005-01-01
Diffusion in a bounded region (or diffusive mass transport) can be seen from at least three platforms: - chemistry of he Fick's equation; - chemical engineering. To pose a particular problem we have to provide some additional conditions (initial conditions, boundary conditions and further). As we understood it in all cases diffusion is considered in an open region (in other words in one phase). Chemical engineering however brings an idea of 'diffusion' between phases. We claim that there isn't diffusion between phases. One can only consider mass transport between phases. Mass transport (or transfer in chemical engineering jargon) from one phase to another composes of: diffusion in first phase partition at an interface diffusion in second phase. (author)
Rate-independent dissipation in phase-field modelling of displacive transformations
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2018-05-01
In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.
Phase transformations of siderite ore by the thermomagnetic analysis data
Energy Technology Data Exchange (ETDEWEB)
Ponomar, V.P., E-mail: vitaliyponomar.vp@gmail.com; Dudchenko, N.O.; Brik, A.B.
2017-02-01
Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was ~320 °C. Saturation magnetization of obtained samples increases up to 20 Am{sup 2}/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite. - Highlights: • Mg-siderite decomposition was investigated by thermomagnetic analysis. • Magnetization and Curie temperature change with each next cycle of heating/cooling. • Magnesioferrite is the final phase of Mg-siderite thermal decomposition. • Transformation exclude the hematite formation.
Critical behavior in reaction-diffusion systems exhibiting absorbing phase transition
Ódor, G
2003-01-01
Phase transitions of reaction-diffusion systems with site occupation restriction and with particle creation that requires n>1 parents and where explicit diffusion of single particles (A) exists are reviewed. Arguments based on mean-field approximation and simulations are given which support novel kind of non-equilibrium criticality. These are in contradiction with the implications of a suggested phenomenological, multiplicative noise Langevin equation approach and with some of recent numerical analysis. Simulation results for the one and two dimensional binary spreading 2A -> 4A, 4A -> 2A model display a new type of mean-field criticality characterized by alpha=1/3 and beta=1/2 critical exponents suggested in cond-mat/0210615.
Phase transformation in a Ni-Mo-Cr alloy
International Nuclear Information System (INIS)
Dymek, S.; Wrobel, M.; Blicharski, M.; Dollar, M.
2001-01-01
The paper gives a characteristic of a nickel-based superalloy containing 25 wt.% Mo and 8 wt.% Cr with particular attention to the influence of a thermochemical and heat treatment on phase transformations. The applied heat treatments are comprised of soaking temperature 1100 o C followed by aging at 650 o C at three conditions: conventional aging for 72 hours, prolonged aging for 4000 hours and prolonged aging for 4000 hours followed by cold working and subsequent aging for 1000 hours. The conventional aging led to the formation of lenticular precipitates of the dispersed metastable Ni 2 (Mo,Cr) phase. The aging for 4000 hours brought about coarsening of the ordered domains without changing their crystallographic and ordering characteristics. The plastic deformation preceded the further aging for 1000 hours accelerated the decomposition of the Ni 2 (Mo,Cr) phase on the mixture of the Ni 3 Mo and Ni 4 Mo-based phases. (author)
Ju, Minhua; Li, Yupeng; Yu, Liang; Wang, Chongqing; Zhang, Lixiong
2018-02-06
Honeycombed hierarchical ultramacroporous/mesoporous silica microspheres were prepared via the hydrolysis of TEOS in the oil-water interface, with subsequent diffusion and gelation in the acidic water-phase microdroplets with the assistance of a simple homemade microdevice. The diffusion of furfuryl alcohol (FA) also happened at a relatively high rate during the hydrolysis and diffusion of TEOS. Therefore, plenty of FA will be inside of the water microdroplets and form a decent number of polyfurfuryl alcohol (PFA) microparticles, thereby obtaining honeycombed hierarchical porosity silica microspheres with abundant ultramacroporous cavities and mesopores after calcination. It was found that the concentration of FA, residence time, and reaction temperature have significant effects on the porosity and pore size due to the influence on the diffusion rate and amount of FA in water-phase microdroplets. The honeycombed silica microspheres have obvious microscopic visible ultramacroporous cavities with the submicrometer cavity diameter as high as 85% porosity based on the rough overall volume of microsphere. N 2 adsorption-desorption isotherms show that the honeycombed hierarchical porosity silica microspheres have a high surface area of 602 m 2 g -1 , a mesopore volume of 0.77 cm 3 /g, and a mesopore porosity of 99.6% based on the total pore volume of N 2 adsorption-desorption. On the basis of the experiment results, a rational formation process of the honeycombed hierarchical porosity silica microspheres was deduced.
Electric-field control of tri-state phase transformation with a selective dual-ion switch
Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu
2017-06-01
Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.
Phase transformations in the titanium-niobium binary alloy system
International Nuclear Information System (INIS)
Moffat, D.L.
1985-01-01
A fundamental study of the phase transformations in the Ti-Nb binary alloy system was completed. Eight alloys in the range 20 to 70 at% Nb were investigated using transmission electron microscopy, light metallography, and x-ray diffraction. Measurements of electric resistivity and Vicker's microhardness also were performed. Emphasis was placed on the minimization of interstitial contamination in all steps of alloy fabrication and specimen preparation. In order to eliminate the effects of prior cold working, the alloys studied were recrystallized at 1000 0 C. Phase transformations were studied in alloys quenched to room temperature after recrystallization and then isothermally aged, and in those isothermally aged without a prior room temperature quench. It was found that the microstructures of the quenched 20 and 25% Nb alloys were extremely sensitive to quench rate - with a fast quench producing martensite, a slow quench, the omega phase. Microstructures of the higher niobium content alloys were much less sensitive to quench rate. The microstructures of the isothermally aged 20 and 25% Nb alloys were found to be sensitive to prior thermal history. Alloys quenched to room temperature and then aged at 400 0 C contained large omega precipitates, while those aged without an intermediate room temperature quench contained alpha precipitates
Kinetics of the polymorphic phase transformation of Cu6Sn5
International Nuclear Information System (INIS)
Zeng, Guang; McDonald, Stuart D.; Read, Jonathan J.; Gu, Qinfen; Nogita, Kazuhiro
2014-01-01
Cu 6 Sn 5 is a critical intermetallic compound in soldering and three-dimensional integrated circuit packaging technology and exists in at least five different crystal structures in the solid state, with a polymorphic phase transformation from hexagonal to monoclinic structures occurring on cooling. The kinetics of polymorphic transformations in Sn-rich Cu 6 Sn 5 and Cu-rich Cu 6 Sn 5 is systematically investigated in this study. This includes the generation of continuous cooling transformation diagrams as well as time–temperature transformation diagrams. Techniques used include variable temperature synchrotron powder X-ray diffraction and differential scanning calorimetry. The findings have important implications for the manufacture of solder joints and their in-service performance
International Nuclear Information System (INIS)
Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan
2010-01-01
Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.
Exact and approximate interior corner problem in neutron diffusion by integral transform methods
International Nuclear Information System (INIS)
Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.
1976-09-01
The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem
Energy Technology Data Exchange (ETDEWEB)
Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M.; Howells, R. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)
2014-11-15
Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.
Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.
2014-11-01
Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.
International Nuclear Information System (INIS)
Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.
2014-01-01
Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations
Numerical methods for calculating thermal residual stresses and hydrogen diffusion
International Nuclear Information System (INIS)
Leblond, J.B.; Devaux, J.; Dubois, D.
1983-01-01
Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)
Acoustic emission during R-phase and martensitic transformations in a Ti50.2Ni48.3Fe1.5 alloy
International Nuclear Information System (INIS)
Takashima, K.; Nishida, M.
1995-01-01
Acoustic emission (AE) signals generated during phase transformations in a Ti 50.2 Ni 48.3 Fe 1.5 shape memory alloy have been measured, and the AE parameters have been correlated with the phase transformation events. The AE count rate curve during cooling of the specimen was found to have two distinct peaks at temperatures of approximately 8 and -30 C. These peaks were confirmed by both optical microscopy and differential scanning calorimetry to correspond to the B2 to R phase transformation (at 8 C) and the R to B19' transformation (at -30 C) respectively. This is the first detection of the AE events associated with the R-phase transformation in Ti-Ni shape memory alloys. Although the amplitude distributions during both transformations were almost identical, both the duration and the rise time of AE events during the B2 to R phase transformation were larger than those during the R to B19' transformation. These observations suggest that the transformation velocity of the R-phase transformation is slower than that of the martensitic transformation, and are consistent with the nature of both these transformations. It is concluded that the AE technique can be applied to the determination of transformation temperatures of Ti-Ni alloys on cooling as well as DSC and electrical resistivity measurement. (orig.)
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.
Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W
2014-01-27
We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.
Numerical simulation of compressible two-phase flow using a diffuse interface method
International Nuclear Information System (INIS)
Ansari, M.R.; Daramizadeh, A.
2013-01-01
Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
Phase transformation and conductivity in nanocrystal PbS under pressure
DEFF Research Database (Denmark)
Jiang, Jianzhong; Gerward, Leif; Secco, R.
2000-01-01
The grain-size effect on the phase transition induced by pressure in PbS was studied by in situ high-pressure electrical resistance and synchrotron radiation x-ray powder diffraction measurements. The mean transition pressure of the B1-to-B16 phase transformation was found to be 6.3±1.3 GPa in 8...... in terms of a decrease of energy band gap with increasing pressure. ©2000 American Institute of Physics....
A level set approach for shock-induced α-γ phase transition of RDX
Josyula, Kartik; Rahul; De, Suvranu
2018-02-01
We present a thermodynamically consistent level sets approach based on regularization energy functional which can be directly incorporated into a Galerkin finite element framework to model interface motion. The regularization energy leads to a diffusive form of flux that is embedded within the level sets evolution equation which maintains the signed distance property of the level set function. The scheme is shown to compare well with the velocity extension method in capturing the interface position. The proposed level sets approach is employed to study the α-γphase transformation in RDX single crystal shocked along the (100) plane. Example problems in one and three dimensions are presented. We observe smooth evolution of the phase interface along the shock direction in both models. There is no diffusion of the interface during the zero level set evolution in the three dimensional model. The level sets approach is shown to capture the characteristics of the shock-induced α-γ phase transformation such as stress relaxation behind the phase interface and the finite time required for the phase transformation to complete. The regularization energy based level sets approach is efficient, robust, and easy to implement.
Directory of Open Access Journals (Sweden)
Hsin-Hung Ou
2010-01-01
Full Text Available Based on the determination of X-ray powder diffraction, this study aims to investigate the thermal effect on the phase transformation of microwave-assisted titanate nanotubes (MTNTs. The phase transformation is highly dependent on the intercalating amount of Na(I within MTNTs and on the heating atmosphere. In other words, the presence of Na(I favors the transformation of TNTs phase into Na2Ti6O13 whereas anatase phase selectively formed in the case of MTNTs with less Na(I amount. Furthermore, H2 versus O2 is able to form anatase phase and establish a newly transformation pathway. The photocatalytic ability of the calcined MTNTs was also evaluated based on the observed rate constant of trichloroethylene degradation. In addition to anatase phase, the newly phase including Na2Ti6O13 and Ti2O3 with calcined MTNTs is able to photocatalyze trichloroethylene. MTNTs calcined with the presence of H2 also exhibit a superior photocatalytic performance to P25 TiO2.
Gyrator transform of Gaussian beams with phase difference and generation of hollow beam
Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke
2018-03-01
The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.
Hilbert transform and optical tomography for anisotropic edge enhancement of phase objects
International Nuclear Information System (INIS)
Montes-Perez, Areli; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo
2011-01-01
In phase object tomography a slice reconstruction is related to distribution of refractive index. Typically, this is obtained by applying the filtered back-projection algorithm to the set of projections (sinogram) obtained experimentally, which are sequentially obtained by calculating the phase of the wave emerging from the slice of the object at different angles. In this paper, based on optical implementation of the Hilbert-transform in a 4f Fourier operator, the Hilbert transform of the projections leaving of the object are obtained numerically. When these projection data are captured for a set of viewing angles an unconventional sinogram is eventually obtained, we have called it as an Hilbert-sinogram. The reconstruction obtained by applying the filtered back-projection algorithm is proportional to the Hilbert transform of the distribution of refractive index of the slice and the obtained image shows a typical isotropic edge enhancement. In this manuscript, the theoretical analysis and the numerical implementation of the Hilbert-transform, mathematical model of the edge enhancement reconstructed are extensively detailed.
Short- and long- term ageing effects on the phase transformation in Au-49.5 at % Cd
International Nuclear Information System (INIS)
Kelly, G.L.; Finlayson, T.R.; Ersez, T.; Smith, T.F.
1999-01-01
Full text: Gold-Cadmium alloys of approximately equiatomic composition are widely studied as model systems for the shape-memory effect and 'rubber-elasticity'. Rubber-elasticity occurs after ageing for a time in the low-temperature martensite phase. This ageing is accompanied by an increase in the martensite → austenite phase transformation temperature (A s ). The ageing dependence of the transformation is a critical problem when finding applications for the shape-memory effect in these materials. The origin of the ageing effect is controversial with proposed mechanisms including stabilisation of the martensite by a change in short range order or pinning of the martensite by defects. In the present study, a Au-49.5at%Cd alloy has been subjected to a series of ageing times and the phase transformation temperatures monitored using a push-rod dilatometer. One test series comprising a range of ageing times was completed and then the sample was aged in the martensite phase for several months before re-testing. Both test series show that ageing in the martensite phase increases the temperature of the reverse transformation (A s ) as expected. Previous work had suggested that all effects of any previous ageing treatments were obliterated by a single cycle through the martensite-austenite-martensite transformations. The present study shows that this is not the case. The A f and A s temperatures for each ageing time in the test series had increased by several degrees after a year of ageing and this increase was maintained despite repeated cycling through the phase transformations
The kinetics of phase transformations of undercooled austenite of the Mn-Ni iron based model alloy
E. Rożniata; R. Dziurka; J. Pacyna
2011-01-01
Purpose: Present work corresponds to the research on the kinetics of phase transformations of undercooled austenite of Mn-Ni iron based model alloy. The kinetics of phase transformations of undercooled austenite of investigated alloy was presented on CCT diagram (continuous cooling transformation). Also the methodology of a dilatometric samples preparation and the method of the critical points determination were described.Design/methodology/approach: The austenitising temperature was defined ...
Second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass
DEFF Research Database (Denmark)
Cao, Q.P.; Li, J.F.; Zhang, P.N.
2007-01-01
The second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation...
Electronic structure, phase transitions and diffusive properties of elemental plutonium
Setty, Arun; Cooper, B. R.
2003-03-01
We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.
International Nuclear Information System (INIS)
Svoboda, J.; Fischer, F.D.; Schillinger, W.
2013-01-01
The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.
AC system stabilization via phase shift transformer with thyristor commutation
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)
1994-12-31
This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.
Sun, Binhan; Fazeli, Fateh; Scott, Colin; Yue, Stephen
2016-10-01
Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement
Energy Technology Data Exchange (ETDEWEB)
Mikheev, V A; Majdanov, V A; Mikhin, N P
1986-06-01
The NMR data on the phase transition kinetics of /sup 3/He-/sup 4/He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm/sup 2//mol with a /sup 3/He content of 0.54%. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of /sup 3/He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid.
International Nuclear Information System (INIS)
Kwok, Sau Fa
2012-01-01
A Langevin equation with multiplicative white noise and its corresponding Fokker–Planck equation are considered in this work. From the Fokker–Planck equation a transformation into the Wiener process is provided for different orders of prescription in discretization rule for the stochastic integrals. A few applications are also discussed. - Highlights: ► Fokker–Planck equation corresponding to the Langevin equation with mul- tiplicative white noise is presented. ► Transformation of diffusion processes into the Wiener process in different prescriptions is provided. ► The prescription parameter is associated with the growth rate for a Gompertz-type model.
Phase transformations in neutron-irradiated Zircaloys
International Nuclear Information System (INIS)
Chung, H.M.
1986-04-01
Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs
Effect of extrapolation length on the phase transformation of epitaxial ferroelectric thin films
International Nuclear Information System (INIS)
Hu, Z.S.; Tang, M.H.; Wang, J.B.; Zheng, X.J.; Zhou, Y.C.
2008-01-01
Effects of extrapolation length on the phase transformation of epitaxial ferroelectric thin films on dissimilar cubic substrates have been studied on the basis of the mean-field Landau-Ginzburg-Devonshire (LGD) thermodynamic theory by taking an uneven distribution of the interior stress with thickness into account. It was found that the polarization of epitaxial ferroelectric thin films is strongly dependent on the extrapolation length of films. The physical origin of the extrapolation length during the phase transformation from paraelectric to ferroelectric was revealed in the case of ferroelectric thin films
The Phase Transformations in Hypoeutectoid Steels Mn-Cr-Ni
Directory of Open Access Journals (Sweden)
RoŻniata E.
2015-04-01
Full Text Available The results of a microstructure and hardness investigations of the hypoeutectoid steels Mn-Cr-Ni, imitating by its chemical composition toughening steels, are presented in the paper. The analysis of the kinetics of phase transformations of undercooled austenite of steels containing different amounts of alloying elements in their chemical composition, constitutes the aim of investigations.
Liu, Yancong; Zhan, Xianghua; Yi, Peng; Liu, Tuo; Liu, Benliang; Wu, Qiong
2018-03-01
A double-track lap cladding experiment involving gray cast iron was established to investigate the transformation mechanism of graphite phase and microstructure in a laser cladding heated region. The graphite phase and microstructure in different heated regions were observed under a microscope, and the distribution of elements in various heated regions was analyzed using an electron probe. Results show that no graphite existed in the cladding layer and in the middle and upper parts of the binding region. Only some of the undissolved small graphite were observed at the bottom of the binding region. Except the refined graphite size, the morphological characteristics of substrate graphite and graphite in the heat-affected zone were similar. Some eutectic clusters, which grew along the direction of heat flux, were observed in the heat-affected zone whose microstructure was transformed into a mixture of austenite, needle-like martensite, and flake graphite. Needle-like martensite around graphite was fine, but this martensite became sparse and coarse when it was away from graphite. Some martensite clusters appeared in the local area near the binding region, and the carbon atoms in the substrate did not diffuse into the cladding layer through laser cladding, which only affected the bonding area and the bottom of the cladding layer.
The transformation behaviour of the beta phase in Zr-2.5 wt% Nb pressure tubes
International Nuclear Information System (INIS)
Griffiths, M.; Winegar, J.E.
1994-12-01
A temperature-time-transformation (TTT) diagram has been developed for the β-phase in Zr-2.5 wt% Nb pressure tubes. The results show that the morphology and/or physical state of the β-phase in pressure tubes has a significant effect on the transformation behaviour compared with a bulk Zr-19 wt%Nb alloy. (author). 14 refs., 1 tab., 15 figs
2017-07-31
naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...prior to this research project, a fundamental understanding of the phase transformation behavior under the high heating and cooling rates associated...HAZ mechanical properties. Such a treatment is expensive, time consuming , and cannot be practically applied to large structures. However, the absence
Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys
Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki
2017-12-01
To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was training effect was also investigated.
Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides
International Nuclear Information System (INIS)
Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V.
2014-01-01
Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb 2 Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure
Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides
Energy Technology Data Exchange (ETDEWEB)
Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu
2014-11-15
Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb{sub 2}Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure.
International Nuclear Information System (INIS)
Chowdhury, Sanjeeda; Sumita, Ushio; Islam, Ashraful; Bedja, Idriss
2014-01-01
Photovoltaic (PV) has the highest cost reduction potential among all renewable energy sources (RES). To overcome institutional barriers, developing the technology, and creating an initial market, policies are needed. Comparative case studies of Japan and German PV sector from 1990 to 2011 were developed. Japan dominated the PV industry during 1994–2004, PV market increased to 290 MW in 2005. After 2005 Japan's PV market decreased. German PV market increased from 44 MW in 2000 to 7.5 GW in 2011. The reason behind Japanese PV market decline was the unaligned energy policy and termination of incentives. This paper discusses about successful policy implementation and the impact of policy for the diffusion of PV technology. The analysis section of this paper shows how much the PV technology has been diffused during the period of 1990–2011 and finally what will make the transformation process successful. - Highlights: • We studied PV diffusion of Japan and German considering public energy policy, environmental policy and cost reduction. • This study determined that policy and incentives are responsible for cost reduction. • Japans concentration on nuclear energy more than renewables, made the PV diffusion slow. • Successful implementation of FIT helped Germany reduce PV electricity price more than grid electricity
[Study of the phase transformation of TiO2 with in-situ XRD in different gas].
Ma, Li-Jing; Guo, Lie-Jin
2011-04-01
TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.
DEFF Research Database (Denmark)
Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads
2016-01-01
We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...
Disorder trapping by rapidly moving phase interface in an undercooled liquid
Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus
2017-08-01
Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.
Diffusive Phenomena and the Austenite/Martensite Relative Stability in Cu-Based Shape-Memory Alloys
Pelegrina, J. L.; Yawny, A.; Sade, M.
2018-02-01
The main characteristic of martensitic phase transitions is the coordinate movement of the atoms which takes place athermally, without the contribution of diffusion during its occurrence. However, the impacts of diffusive phenomena on the relative stability between the phases involved and, consequently, on the associated transformation temperatures and functional properties can be significant. This is particularly evident in the case of Cu-based shape-memory alloys where atomic diffusion in both austenite and martensite metastable phases might occur even at room-temperature levels, giving rise to a variety of intensively studied phenomena. In the present study, the progresses made in the understanding of three selected diffusion-related effects of importance in Cu-Zn-Al and Cu-Al-Be alloys are reviewed. They are the after-quench retained disorder in the austenitic structure and its subsequent reordering, the stabilization of the martensite, and the effect of applied stress on the austenitic order. It is shown how the experimental results obtained from tests performed on single crystal material can be rationalized under the shed of a model developed to evaluate the variation of the relative stability between the phases in terms of atom pairs interchanges.
Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.
Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong
2018-02-13
Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.
Phase transformations and thermodynamics of aluminum-based metallic glasses
Gao, Changhua (Michael)
This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al
International Nuclear Information System (INIS)
Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M.
2014-01-01
Highlights: • Phase transformations during RSW of AISI430 are detailed. • Grain growth, martensite formation and carbide precipitation are dominant phase transformations. • Failure mode of AISI430 resistance spot welded joints are analyzed. • Larger FZ size provided improved load bearing capacity and energy absorption capability. - Abstract: The paper aims at investigating the process–microstructure–performance relationship in resistance spot welding of AISI 430 ferritic stainless steel. The phase transformations which occur during weld thermal cycle were analyzed in details, based on the physical metallurgy of welding of the ferritic stainless steels. It was found that the microstructure of the fusion zone and the heat affected zone is influenced by different phenomena including grain growth, martensite formation and carbide precipitation. The effects of welding cycle on the mechanical properties of the spot welds in terms of peak load, energy absorption and failure mode are discussed
A theoretical study of the omega-phase transformation in metals
Sanati, Mahdi
I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.
International Nuclear Information System (INIS)
Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.
2009-01-01
The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.
Gusev, Aleksandr I.
2000-01-01
Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.
International Nuclear Information System (INIS)
Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.
2015-01-01
Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced
Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel
International Nuclear Information System (INIS)
Babu, R. Prasath; Irukuvarghula, S.; Harte, A.; Preuss, M.
2016-01-01
The microstructural evolution and chemistry of the ferrite phase (α), which transforms from the parent austenite phase (γ) of 316L stainless steel during gallium (Ga) ion beam implantation in Focused Ion Beam (FIB) instrument was systematically studied as a function of Ga"+ ion dose and γ grain orientations. The propensity for initiation of γ → α phase transformation was observed to be strongly dependent on the orientation of the γ grain with respect to the ion beam direction and correlates well with the ion channelling differences in the γ orientations studied. Several α variants formed within a single γ orientation and the sputtering rate of the material, after the γ → α transformation, is governed by the orientation of α variants. With increased ion dose, there is an evolution of orientation of the α variants towards a variant of higher Ga"+ channelling. Unique topographical features were observed within each specific γ orientation that can be attributed to the orientation of defects formed during the ion implantation. In most cases, γ and α were related by either Kurdjumov-Sachs (KS) or Nishiyama-Wassermann (NW) orientation relationship (OR) while in few, no known OR's were identified. While our results are consistent with gallium enrichment being the cause for the γ → α phase transformation, some observations also suggest that the strain associated with the presence of gallium atoms in the lattice has a far field stress effect that promotes the phase transformation ahead of gallium penetration.
A model for electrochemical insertion limited by a phase transition process - eilpt
Directory of Open Access Journals (Sweden)
Adhoum N.
2003-01-01
Full Text Available This paper deals with electrochemical insertion into a cathodic material. New results on modeling of the influence of a solid phase transformation on the shape of voltamograms are presented. The original experiments concern the insertion of sodium into carbon during the cathodic reduction of molten NaF at 1020 °C, but in the present manuscript emphasis on the theoretical aspects of the work is put. Phase transformations during electrochemical insertion are taken into account, with various values for parameters such as the thermodynamic biphase equilibrium potential, the compared diffusion and phase transformation kinetics, and the electrode thickness. The voltamograms calculated present very specific features; some of them have already been observed experimentally in literature.
Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris
2013-11-04
In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.
Weighted least squares phase unwrapping based on the wavelet transform
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Modelling a single phase voltage controlled rectifier using Laplace transforms
Kraft, L. Alan; Kankam, M. David
1992-01-01
The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.
Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei
2018-03-01
In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.
Degenerate four-wave mixing with the phase diffusion field
International Nuclear Information System (INIS)
Anderson, M.H.; Chen, CE.; Elliott, D.S.; Cooper, J.; Smith, S.J.
1993-01-01
We report measurements of the effect of laser fluctuations on a strong-field degenerate four-wave mixing interaction, carried out in a nearly Doppler-free, two-level system using a single laser with statistically well-defined phase fluctuations. The counterpropagating pump beams and the probe beam, each split from this phase-noise-modulated source, were fully correlated. The nonlinear medium was an optically-pumped diffuse beam of atomic sodium. By time-delaying the probe with respect to the pump beams, the composite field becomes non-Markovian. Four-wave mixing results in the generation of a phase-conjugate beam anti-parallel to the probe beam. With the laser field spectrum nearly Lorentzian in shape, and with a field linewidth greater (and, for comparison, much narrower) than the natural linewidth of the sodium, we measured the intensity of the phase-conjugate beam as the pump and probe beams were tuned through the D2 resonance, as a function of intensity of die pump beam (up to intensities several times the saturation intensity), and for varying delay between the pump and probe fields. This experiment provides a cleaner measurement of this interaction than any previously available
Institute of Scientific and Technical Information of China (English)
Liu Li; Zhang Liang-Ying; Cao Li
2009-01-01
The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ_3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Orustein-Uhlenbeck (O-U) noises. 2) Changing the value of τ3, the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3)Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model.
International Nuclear Information System (INIS)
Li, Liu; Li, Cao; Liang-Ying, Zhang
2009-01-01
The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ 3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Ornstein–Uhlenbeck (O-U) noises. 2) Changing the value of τ 3 , the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3) Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model. (general)
Lensless digital holography with diffuse illumination through a pseudo-random phase mask.
Bernet, Stefan; Harm, Walter; Jesacher, Alexander; Ritsch-Marte, Monika
2011-12-05
Microscopic imaging with a setup consisting of a pseudo-random phase mask, and an open CMOS camera, without an imaging objective, is demonstrated. The pseudo random phase mask acts as a diffuser for an incoming laser beam, scattering a speckle pattern to a CMOS chip, which is recorded once as a reference. A sample which is afterwards inserted somewhere in the optical beam path changes the speckle pattern. A single (non-iterative) image processing step, comparing the modified speckle pattern with the previously recorded one, generates a sharp image of the sample. After a first calibration the method works in real-time and allows quantitative imaging of complex (amplitude and phase) samples in an extended three-dimensional volume. Since no lenses are used, the method is free from lens abberations. Compared to standard inline holography the diffuse sample illumination improves the axial sectioning capability by increasing the effective numerical aperture in the illumination path, and it suppresses the undesired so-called twin images. For demonstration, a high resolution spatial light modulator (SLM) is programmed to act as the pseudo-random phase mask. We show experimental results, imaging microscopic biological samples, e.g. insects, within an extended volume at a distance of 15 cm with a transverse and longitudinal resolution of about 60 μm and 400 μm, respectively.
International Nuclear Information System (INIS)
Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.
2009-01-01
In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)
International Nuclear Information System (INIS)
Angelini, P.; Adair, H.L.
1976-07-01
The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415
International Nuclear Information System (INIS)
Leung Shingyu; Qian Jianliang
2010-01-01
We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.
Hydrogen diffusion in the Laves-phase compound TiCr1.78
International Nuclear Information System (INIS)
Mazzolai, G.; Coluzzi, B.; Biscarini, A.; Mazzolai, F.M.; Tuissi, A.; Agresti, F.; Principi, G.; Lo Russo, S.
2009-01-01
The temperature dependence of the Young's modulus and of the internal friction (IF) has been investigated between 80 and 300 K at acoustical frequencies in the hexagonal (C14) Laves-phase TiCr 1.78 charged with hydrogen. In this compound H occupies tetrahedral interstitial sites which are grouped in interlinked hexagons. A mechanical relaxation has been found at around 120 K (f = 5.4 kHz), which appears to be due to tunnelling transitions of delocalized H from one hexagon to the other. The rate of H absorption has been investigated at high temperature (660-1200 K) and the H diffusion coefficient has been derived from the pressure measurement as a function of time. A cumulative Arrhenius plot of IF and absorption diffusion data exhibits a non-exponential behaviour, which is due to a change in the diffusion mechanism from over-barrier hopping at high temperature to phonon-assisted tunnelling at low temperature.
Li, S. H.; Chen, Y. H.
2016-12-01
The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.
Energy Barriers and Hysteresis in Martensitic Phase Transformations
2008-08-01
glacial acetic acid (CH3COOH) and 10-15% perchloric acid (HCLO4) by volume, the cathode was stainless steel , the anode was stainless steel or Ti, the...Submitted to Acta Materialia Energy barriers and hysteresis in martensitic phase transformations Zhiyong Zhang, Richard D. James and Stefan Müller...hysteresis based on the growth from a small scale of fully developed austenite martensite needles. In this theory the energy of the transition layer plays a
In situ Raman spectroscopy of phase transformation in CrOx-Y2O3 system at elevated temperatures
International Nuclear Information System (INIS)
Xing Liqiong; Lu Jiqing; Bi Qingyuan; Pu Zhiying; Guo Ming; Wang Yuejuan; Luo Mengfei
2010-01-01
A CrO x -Y 2 O 3 sample was prepared by a deposition-precipitation method and phase transformation of the sample under N 2 and air atmospheres was characterized by in situ Raman spectroscopy and X-ray diffraction (XRD) techniques. It was found that when the CrO x -Y 2 O 3 sample was heated, CrO 3 transformed to YCrO 4 and then to YCrO 3 and Cr 2 O 3 . Also, the transformation started from the surface region of the sample and then extended to the bulk, due to the fact that the phase transformation was detected by Raman spectroscopy at lower temperature compared to that by XRD. In addition, both atmosphere and temperature had influence on the phase transformation in the surface region, while the phase transformation in the bulk was merely dependent on the temperature. It was also found that low oxidation state Cr(III) species on the surface could be re-oxidized to high oxidation state Cr(V) or Cr(VI) species when the thermal treated sample was exposed to ambient air.
Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks
Directory of Open Access Journals (Sweden)
Wencai Zhou
2015-06-01
Full Text Available The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs, is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM, the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1, whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.
Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks
Zhou, Wencai; Wöll, Christof; Heinke, Lars
2015-01-01
The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
Phase transformations in titanium oxycarbide TiC0.545O0.08
International Nuclear Information System (INIS)
Tashmetov, M.Yu.; Em, V.T.; Savenko, B.N.; Batdemberel, G.
2003-01-01
Phase transformations in titanium oxycarbide TiC 0.545 O 0.08 have been studied by the methods of neutron diffraction and X-ray structure analysis. It was established that the ordered cubic structure δ ' (sp. gr. Fd3m) of the oxycarbide sample is the low-temperature ordered phase existing up to 990 K. The order-disorder phase transition (990 K) results in the formation of an ordered trigonal structure (sp. gr. R3-barm or P3 1 21). The α-Ti-phase is separated at the temperature 1020 K. The order-disorder phase transition was found at T = 1040 K
Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.
2017-01-01
A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750?cm-1 to unravel the
Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou
2017-09-01
The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.
Present day state of knowledge of α/β allotropic transformation of uranium
International Nuclear Information System (INIS)
Englander, M.
1960-01-01
The technological conditions of the problem of α/β allotropic transformation of uranium are presented first. Then, the author explains the qualitative reasons why in non-allied uranium: 1) the new phase germination follows a consistent process; 2) the new phase growth, at the expense of the mother phase, proceeds either by martensitic-type shear or by thermal diffusion if the temperature and impurities amount are high enough. Reprint of a paper published in La Mettalurgia Italiana, vol. LI, no. 11, p. 497-504, 1959 [fr
Emoto, Akira; Fukuda, Takashi
2013-02-20
For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.
Current diffusion and flux consumption in Tore Supra
International Nuclear Information System (INIS)
Van Houtte, D.; Talvard, M.; Agostini, E.; Gil, C.; Hoang, G.T.; Lecoustey, P.; Parlange, F.; Rodriguez, L.; Vallet, J.C.
1991-01-01
TORE SUPRA has been designed to study long pulse plasmas (t > 30 s) at high plasma current (Ip < 2 MA) associated with high additional power (20 MW). Current diffusion studies are essentially based on the analysis of the plasma discharge paths. The current diffusion rate during the current rise phase is analysed with a numerical code using plasma resistivity profiles from Te profiles measured by the ECE diagnostic. Owing to the fact that the quantity of magnetic flux available in a tokamak is limited, perfect knowledge is required of the various components of the flux consumed in order to minimize consumption and to be able to define a suitable transformer size for future high current tokamak projects
Influence of processing-induced phase transformations on the dissolution of theophylline tablets
Debnath, Smita; Suryanarayanan, Raj
2004-01-01
The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the per-formance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate »hydrate»anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolut...
Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark
2002-07-01
The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.
International Nuclear Information System (INIS)
Takeshi, Y.; Keisuke, K.
1983-01-01
The multigroup neutron diffusion equation for two-dimensional triangular geometry is solved by the finite Fourier transformation method. Using the zero-th-order equation of the integral equation derived by this method, simple algebraic expressions for the flux are derived and solved by the alternating direction implicit method. In sample calculations for a benchmark problem of a fast breeder reactor, it is shown that the present method gives good results with fewer mesh points than the usual finite difference method
Directory of Open Access Journals (Sweden)
Michal Jambor
2017-06-01
Full Text Available Nickel base superalloys are hi-tech materials intended for high temperature applications. This property owns a complex microstructure formed by matrix of Ni and variety of precipitates. The type, form and the amount of these phases significantly affect the resulting properties of these alloys. At sufficiently long exposure to high temperatures, the transformation phase can occur, which can lead to degradation of properties of these alloys. A cyclic plastic deformation can accelerate these changes, and they could occur at significantly lower temperatures or in shorter time of exposure. The aim of this study is to describe phase transformation, which can occur by a cyclic plastic deformation at high temperatures in nickel base superalloy Inconel 718.
Energy Technology Data Exchange (ETDEWEB)
He, Hongxing; Fang, Hengrui [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States); Miller, Mitchell D. [Department of BioSciences, Rice University, Houston, Texas 77005 (United States); Phillips, George N. Jr [Department of BioSciences, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Su, Wu-Pei, E-mail: wpsu@uh.edu [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States)
2016-07-15
An iterative transform algorithm is proposed to improve the conventional molecular-replacement method for solving the phase problem in X-ray crystallography. Several examples of successful trial calculations carried out with real diffraction data are presented. An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationship of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed.
Improved modeling of new three-phase high voltage transformer with magnetic shunts
Directory of Open Access Journals (Sweden)
Chraygane M.
2015-03-01
Full Text Available This original paper deals with a new approach for the study of behavior in nonlinear regime of a new three-phase high voltage power supply for magnetrons, used for the microwave generators in industrial applications. The design of this system is composed of a new three-phase leakage flux transformer supplying by phase a cell, composed of a capacitor and a diode, which multiplies the voltage and stabilizes the current. Each cell. in turn, supplies a single magnetron. An equivalent model of this transformer is developed taking into account the saturation phenomenon and the stabilization process of each magnetron. Each inductance of the model is characterized by a non linear relation between flux and current. This model was tested by EMTP software near the nominal state. The theoretical results were compared to experimental measurements with a good agreement. Relative to the current device, the new systemprovides gains of size, volume, cost of implementation and maintenance which make it more economical.
The quantum state vector in phase space and Gabor's windowed Fourier transform
International Nuclear Information System (INIS)
Bracken, A J; Watson, P
2010-01-01
Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.
Cao, Siwei
describe the phase equilibria of this system. For the Fe-Cr-Mo system, the current study clearly defined the 1200 °C isothermal section with results in general agreement with the majority of prior experimental results, but deviating significantly from results computed using the TCFE5 thermodynamic database; indicating that significant improvement of the thermodynamic assessment for this system is required. Large amounts of phase equilibrium data were obtained from DADMs at 900 °C, 800 °C, and 700 °C for the Fe-rich (> 50 at.% Fe) corner of the Fe-Cr-Mo system, but results of Cr and Mo rich compositions at these temperatures may be questionable due to the slow diffusion kinetics in those high-melting regions. The results from the 600 °C -- 4500 hr annealed DADM was not reported due to the complexity and immature nature of the analysis at the time of this dissertation defense. In addition to the phase equilibrium information for both ternary systems, an amazing diversity of precipitation microstructures was observed in DADMs, showing rich information on phase transformations. For instance, the bcc to sigma massive transformation region for the Fe-Cr-Ni ternary system can be well defined from DADMs.
Phase transitions, melting dynamics, and solid-state diffusion in a nano test tube.
Holmberg, Vincent C; Panthani, Matthew G; Korgel, Brian A
2009-10-16
Confined nanoscale geometry greatly influences physical transformations in materials. The electron microscope enables direct visualization of these changes. We examined the evolution of a germanium (Ge) nanowire attached to a gold (Au) nanocrystal as it was heated to 900 degrees C. The application of a carbon shell prevented changes in volume and interfacial area during the heating cycle. Au/Ge eutectic formation was visualized, occurring 15 degrees C below the bulk eutectic temperature. Capillary pressure pushed the melt into the cylindrical neck of the nanowire, and Ge crystallized in the spherical tip of the carbon shell. Solid-state diffusion down the length of the confined Ge nanowire was observed at temperatures above 700 degrees C; Au diffusion was several orders of magnitude slower than in a bulk Ge crystal.
Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K
DEFF Research Database (Denmark)
Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.
2001-01-01
The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...
Phase transformations in cerium and thorium metals at ultra high pressures
International Nuclear Information System (INIS)
Vohra, Y.K.
1991-01-01
This paper reports on the role of pressure variable in phase transformation which has not been fully exploited in metallic elements and their alloys. The static compression of over 50% in volume can readily be obtained in most metals and this tremendous change in inter-atomic distances can lead to the formation of new exotic crystal structures. The pressure-induced electron transfer amongst existing electronic energy bands and the occupation of new bands are the driving forces in a rich variety of phase transformations. The modern high pressure diamond anvil cell techniques can produce calibrated static pressures of over 300 to 400 GPa range and this technology, when interfaced with the synchrotron radiation sources, can yield rapid structural information (1-3). These capabilities have given new impetus for investigation of phase transformations in metallic systems at extreme conditions of temperatures and pressures and in establishing phase boundaries at high pressures and high temperatures. Cerium (Ce) and thorium (Th) metals occupy special positions in the periodic table at the beginning of the 4-f lanthanide and 5-f, actinide series, respectively. Ce has one electron in the localized 4-f shell, apart from the three valence electrons. Th metal, on the other hand, has four valence electrons and an unoccupied 5-f band above the Fermi-energy at ambient conditions. In view of the unoccupied 5-f band, Th metal is normally regarded as a tetravalent transition metal like Ti, Zr, and Hf and its bonding and other electronic properties can be explained within the tetravalent transition metal framework. However, the application of ultra-high pressures causes the delocalization of the 4-f shell in Ce and it is believed that Ce above 0.8 GPa pressure is a 4-f band metal
International Nuclear Information System (INIS)
Kobe, D.H.
1989-01-01
The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe_{2}
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaonan; Lin, Kun; Gao, Qilong; Zhu, He; Li, Qiang; Cao, Yili; Liu, Zhanning; You, Li; Chen, Jun; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Huang, Rongjin [Key Laboratory; Lapidus, Saul H. [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Xing, Xianran
2017-10-13
As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe_{2}, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe_{2} has been identified as a cubic Fd$ \\overline{3}\\ $m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111]_{cubic} direction. Here we studied the crystal structure of SmFe_{2} by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe_{2} is found to adopt a centrosymmetric trigonal R$ \\overline{3}\\ $m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]_{cubic} to [110]_{cubic} direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe_{2} could be useful to understand the magnetostriction and related physical properties of other RM_{2}-type pseudo-cubic Laves-phase intermetallic compounds.
Two-phase transformation of lepidocrocite to maghemite
Dekkers, M. J.; Gapeev, A. K.; Gendler, T. S.; Gribov, S. K.; Shcherbakov, V. P.
2003-04-01
A detailed investigation of CRM acquired at different stages of the transformation lepidocrocite -> maghemite -> hematite is carried out. Apparently, at least two-stage lepidocrocite maghemite transformation was revealed from: a) the two-peak Ms(T) curve; b) the observation of constricted hysteresis loops appearing after annealing fresh lepidocrocite samples at elevated temperatures; c) continuous monitoring (for 500 hrs) of CRM acquisition at elevated temperatures. For the latter two sets of CRM acquisition experiments at 12 temperatures from 175C to 550C in the presence of 0.1 mT magnetic field were performed: 1) with fine dispersed natural lepidocrocite grains in a kaolin matrix (about 1 volume % of lepidocrocite), 2) for lepidocrocite peaces 3x3x3 mm in size. In both cases the CRM was detected already at 175C after 1 day of annealing. Note that this temperature is lower than the temperature of the TGA peak of the lepidocrocite -> maghemite transformation. Mossbauer spectra obtained from the peaces after annealing at 225C during 6 and 14 hours, respectively, revealed significantly different patterns. Unexpectadly, fine dispersed maghemite grains formed due the lepidocrocite dehydration in the first peace (6 hrs of annealing) occurred to be more ordered than those of from the second peace. The samples are subjected to the X-ray analysis in an attempt to clarify the observed difference. The observed phenomena can be explained by the two-phase conception of the transformation lepidocrocite -> maghemite. First the precipitation of small superparamagnetic particles of maghemite takes place growing with time. Second, these grains coalesce with each other resulting in appearance of the antiphase boundaries decreasing the susceptibility, slowing down the process of CRM acquisition and generating the constricted hysteresis loops. The work is supported by INTAS 99-1273.
International Nuclear Information System (INIS)
Gorthi, Sai Siva; Rastogi, Pramod
2009-01-01
A noisy wrapped phase map is the end-output of commonly employed phase estimation methods in digital holographic interferometry. Hence filtering and unwrapping are necessary to obtain continuous phase distributions. This paper introduces a new approach for phase estimation in digital holographic interferometry using the polynomial phase transform. The proposed approach directly provides an accurate estimation of the unwrapped phase distribution from a noisy reconstructed interference field, thereby bypassing cumbersome and error-prone filtering and 2D phase unwrapping procedures
Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet
Ozawa, K.; Koyama, S.; shohji, I.
2017-05-01
Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.
International Nuclear Information System (INIS)
Ortigosa, Nuria; Fernández, Carmen; Galbis, Antonio; Cano, Óscar
2015-01-01
Patients suffering from atrial fibrillation can be classified into different subtypes, according to the temporal pattern of the arrhythmia and its recurrence. Nowadays, clinicians cannot differentiate a priori between the different subtypes, and patient classification is done afterwards, when its clinical course is available. In this paper we present a comparison of classification performances when differentiating paroxysmal and persistent atrial fibrillation episodes by means of support vector machines. We analyze short surface electrocardiogram recordings by extracting modulus and phase features from several time-frequency transforms: short-time Fourier transform, Wigner–Ville, Choi–Williams, Stockwell transform, and general Fourier-family transform. Overall, accuracy higher than 81% is obtained when classifying phase information features of real test ECGs from a heterogeneous cohort of patients (in terms of progression of the arrhythmia and antiarrhythmic treatment) recorded in a tertiary center. Therefore, phase features can facilitate the clinicians’ choice of the most appropriate treatment for each patient by means of a non-invasive technique (the surface ECG). (paper)
Honorio, Tulio
2017-11-01
Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.
Directory of Open Access Journals (Sweden)
Hani Albetran
2018-02-01
Full Text Available The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10 kJ/mol for the titanium-to-anatase transformation, and 207 (17 kJ/mol for the anatase-to-rutile transformation were estimated.
Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng
2018-02-23
The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.
DEFF Research Database (Denmark)
Traulsen, Marie Lund; Härelind Ingelsten, H.; Kammer Hansen, Kent
2012-01-01
In the present work Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is applied to study the adsorption of NOx at 300-500 °C in different atmospheres on gadolinium doped ceria (CGO), an important material in electrodes investigated for electrochemical NOx removal. Furthermore...
Phase transformation in {delta} Pu alloys at low temperature: In situ dilatometric study
Energy Technology Data Exchange (ETDEWEB)
Texier, G; Oudot, B; Platteau, C; Ravat, B; Delaunay, F, E-mail: gwenael.texier@cea.fr, E-mail: benoit.oudot@cea.fr [CEA, DAM, Valduc, Is sur Tille 21120 (France)
2010-03-15
The purpose of this work is to precisely study the martensitic transformation in a plutonium-gallium alloy. Thus, the thermodynamics and kinetics of the {delta}{yields}{alpha}'+{delta} phase transformation in a Pu-Ga alloy were studied under isochronal and isothermal conditions. The activation energy of the {delta}{yields}{alpha}'+{delta} phase transformation at a constant cooling rate (0.5 K.min{sup -1}) was determined by using Kissinger and Ozawa models. The average value of the activation energy was found to be at -56 kJ.mol{sup -1}. Dilatometry measurement was also used to trace 'in situ' the entire transformation for several temperatures. The kinetics of the {delta}{yields}{alpha}'+{delta} transformation were modelled under isothermal conditions in the theoretical frame of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. It is proposed that the transformation consists of three stages. The {alpha}' transformation begins with a nucleation of pre-existing embryos. Then, both nucleation and rapid growth of {alpha}' occurs simultaneously and finally, the plates width expend. Apparent activation energies for nucleation and growth transformation were determined from the temperature dependence of the constant K at respectively -34 kJ.mol{sup -1} and -60 kJ.mol{sup -1}. Adler et al. [1] investigated also the thermodynamics and the kinetics of the martensitic transformation in Pu alloys. These nucleation energies were found by modelling of heterogeneous martensitic nucleation via strain interaction with observed superdislocation-like nucleation sites in PuGa alloys. The values obtain by this model was very close to those we find. Investigations in steels alloys indicate that these energies are of the same order for nucleation near dislocation. Then, it could be indicating a strong relationship between these dislocations and martensitic nucleation sites.
International Nuclear Information System (INIS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
Highlight: ► Comparison of quench and fault-current-limiting behavior of SFCLs by Tr type. -- Abstract: The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1–5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle
Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering
Czech Academy of Sciences Publication Activity Database
Pokorný, P.; Cinert, Jakub; Pala, Zdeněk
2016-01-01
Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016
Phase transformation of 316L stainless steel from wire to fiber
International Nuclear Information System (INIS)
Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing
2010-01-01
In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.
Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy
International Nuclear Information System (INIS)
Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing
2007-01-01
Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates
Mixed-order phase transition in a minimal, diffusion-based spin model.
Fronczak, Agata; Fronczak, Piotr
2016-07-01
In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.
Phase stability of TiO2 polymorphs from diffusion Quantum Monte Carlo
International Nuclear Information System (INIS)
Luo, Ye; Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T; Heinonen, Olle; Kent, Paul R C
2016-01-01
Titanium dioxide, TiO 2 , has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of these applications utilize the naturally existing phases: rutile, anatase and brookite. Despite the simple form of TiO 2 and its wide uses, there is long-standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We also include the effects of temperature by calculating the Helmholtz free energy including both internal energy and vibrational contributions from density functional perturbation theory based quasi harmonic phonon calculations. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean-field calculations. However, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase. (paper)
International Nuclear Information System (INIS)
Cardon, Clement
2016-01-01
This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)
2016-07-15
Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.
Transmission Network Expansion Planning Considering Phase-Shifter Transformers
Directory of Open Access Journals (Sweden)
Celso T. Miasaki
2012-01-01
Full Text Available This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process.
Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2
Energy Technology Data Exchange (ETDEWEB)
Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie
2015-05-16
MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.
Phase-correcting non-local means filtering for diffusion-weighted imaging of the spinal cord.
Kafali, Sevgi Gokce; Çukur, Tolga; Saritas, Emine Ulku
2018-02-09
DWI suffers from low SNR when compared to anatomical MRI. To maintain reasonable SNR at relatively high spatial resolution, multiple acquisitions must be averaged. However, subject motion or involuntary physiological motion during diffusion-sensitizing gradients cause phase offsets among acquisitions. When the motion is localized to a small region, these phase offsets become particularly problematic. Complex averaging of acquisitions lead to cancellations from these phase offsets, whereas magnitude averaging results in noise amplification. Here, we propose an improved reconstruction for multi-acquisition DWI that effectively corrects for phase offsets while reducing noise. Each acquisition is processed with a refocusing reconstruction for global phase correction and a partial k-space reconstruction via projection-onto-convex-sets (POCS). The proposed reconstruction then embodies a new phase-correcting non-local means (PC-NLM) filter. PC-NLM is performed on the complex-valued outputs of the POCS algorithm aggregated across acquisitions. The PC-NLM filter leverages the shared structure among multiple acquisitions to simultaneously alleviate nuisance factors including phase offsets and noise. Extensive simulations and in vivo DWI experiments of the cervical spinal cord are presented. The results demonstrate that the proposed reconstruction improves image quality by mitigating signal loss because of phase offsets and reducing noise. Importantly, these improvements are achieved while preserving the accuracy of apparent diffusion coefficient maps. An improved reconstruction incorporating a PC-NLM filter for multi-acquisition DWI is presented. This reconstruction can be particularly beneficial for high-resolution or high-b-value DWI acquisitions that suffer from low SNR and phase offsets from local motion. © 2018 International Society for Magnetic Resonance in Medicine.
A new method to determinate phase transformation in shape memory alloys: infrared thermography
International Nuclear Information System (INIS)
Bubulinca, C.; Balandraud, X.; Grediac, M.; Plaiasu, G. A.; Abrudeanu, M.; Stanciu, S.
2013-01-01
In this article it is presented a shape memory alloy case, based on copper, namely Cu-Zn-Al, which is subjected to periodic mechanical traction. Traction is performed in conditions of normal temperature and pressure. The purpose of this article it is to study stress induced phase transformation. All tests are performed in same conditions. Transformation on which is based this effect occurs in two ways: by applying a stress or temperature variation. In this article it is studied stress induced phase transformation. The method to analyze the microstructure of an shape memory alloy (SMA) is relatively new and it is based on tracking the evolution of temperature. After thermal analysis we can decide in which state is one alloy without any other supplier measures (differential scanning calorimetric or electrical resistivity). If our specimen will producing thermal energy when specimen is tensile he is austenitic. If absorbing heat during the first deformation is in martensitic state. (authors)
Mesoscale martensitic transformation in single crystals of topological defects
Energy Technology Data Exchange (ETDEWEB)
Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.
2017-09-05
Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.
Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions
Komar Varela, C. L.; Gribaudo, L. M.; González, R. O.; Aricó, S. F.
2014-10-01
The selected alloy for designing a high-density monolithic-type nuclear fuel with U-Zr-Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2-66.9 at.% Zr and 0-13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.
Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang
2015-08-03
The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Ferro, P
2012-01-01
In this work, the residual stress distribution induced by the solidification and cooling of a fusion zone in the vicinity of a sharp V-notch tip is investigated. The intensity of the residual asymptotic stress fields, quantified by the notch stress intensity factors, was studied for two different V-notch specimen geometries under generalized plane-strain conditions. In order to analyze the influence of phase transformations on the obtained results, simulations with and without the effects of phase transformation were carried out on ASTM SA 516 steel plates. Thanks to the possibilities of numerical modelling, additional analyses were performed without taking into account the transformation plasticity phenomenon. It was found that phase transformation effects (both volume change and transformation plasticity) have a great influence on the intensity and sign of the asymptotic stress fields at the sharp V-notch tips. This result is believed to be very important for the correct numerical determination (and future applications) of notch stress intensity factors resulting from asymptotic residual stress distributions induced by transient thermal loads. The analyses were performed with the finite element code SYSWELD. (paper)
Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations
International Nuclear Information System (INIS)
Gondor, G.; Lexcellent, Ch.
2007-01-01
In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)
Phase transformation in nanocrystalline α-quartz GeO2 up to 51.5 GPa
International Nuclear Information System (INIS)
Wang, H; Liu, J F; Wu, H P; He, Y; Chen, W; Wang, Y; Zeng, Y W; Wang, Y W; Luo, C J; Liu, J; Hu, T D; Stahl, K; Jiang, J Z
2006-01-01
The high-pressure behaviour of nanocrystalline α-quartz GeO 2 (q-GeO 2 ) with average crystallite sizes of 40 and 260 nm has been studied by in situ high-pressure synchrotron radiation x-ray diffraction measurements up to about 51.5 GPa at ambient temperature. Two phase transformations, q-GeO 2 to amorphous GeO 2 and amorphous GeO 2 to monoclinic GeO 2 , are detected. The onset and end of the transition pressures for the q-GeO 2 -to-amorphous GeO 2 phase transition are found to be approximately 10.8 and 14.9 GPa for the 40 nm q-GeO 2 sample, and 9.5 and 12.4 GPa for the 260 nm q-GeO 2 sample, respectively. The mixture of amorphous and monoclinic GeO 2 phases remains up to 51.5 GPa during compression and even after pressure release. This result strongly suggests that the difference of free energy between the amorphous phase and the monoclinic phase might be small. Consequently, defects in the starting material, which alter the free energies of the amorphous phase and the monoclinic phase, may play a key role for the phase transformation of q-GeO 2
To the theory of the first-type phase transformations for many variables
International Nuclear Information System (INIS)
Fateev, M.P.
2002-01-01
The multidimensional theory on the first-type phase transitions near the one-dimensional saddle point is considered. The transformations of the variables, describing the new phase nucleation, making it possible to achieve their complex separation in the Fokker-Planck equation, and thus to reduce the problem to the one-dimensional one, are proposed. The distribution function and nucleation velocity are determined both for the stationary and nonstationary nucleation stages. The problem on volatile liquid boiling is considered as an example for the case when there are two parameters, characterizing the new phase nucleation [ru
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
Hydrogen diffusion in the Laves-phase compound TiCr{sub 1.78}
Energy Technology Data Exchange (ETDEWEB)
Mazzolai, G. [University of Perugia, Department of Physics, Via A. Pascoli 5, 06100 Perugia (Italy); Universita Telematica e-Campus, Via Isimbardi 10, Novedrate (Colombia) (Italy); Coluzzi, B.; Biscarini, A. [University of Perugia, Department of Physics, Via A. Pascoli 5, 06100 Perugia (Italy); Mazzolai, F.M., E-mail: fabio.mazzolai@fisica.unipg.it [University of Perugia, Department of Physics, Via A. Pascoli 5, 06100 Perugia (Italy); Tuissi, A. [Institute for Energy and Interphases, CNR-IENI, C.so Promessi Sposi, 29, Lecco (Italy); Agresti, F.; Principi, G. [University of Padua, Dept. of Mech. Eng., via Marzolo 8, 35131 Padua (Italy); Lo Russo, S. [University of Padua, Physics Dept., via Marzolo 8, 35131 Padua (Italy)
2009-09-15
The temperature dependence of the Young's modulus and of the internal friction (IF) has been investigated between 80 and 300 K at acoustical frequencies in the hexagonal (C14) Laves-phase TiCr{sub 1.78} charged with hydrogen. In this compound H occupies tetrahedral interstitial sites which are grouped in interlinked hexagons. A mechanical relaxation has been found at around 120 K (f = 5.4 kHz), which appears to be due to tunnelling transitions of delocalized H from one hexagon to the other. The rate of H absorption has been investigated at high temperature (660-1200 K) and the H diffusion coefficient has been derived from the pressure measurement as a function of time. A cumulative Arrhenius plot of IF and absorption diffusion data exhibits a non-exponential behaviour, which is due to a change in the diffusion mechanism from over-barrier hopping at high temperature to phonon-assisted tunnelling at low temperature.
Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC
Energy Technology Data Exchange (ETDEWEB)
Agnes, P.; et al.
2018-02-05
We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics $^{39}$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $\\pm$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $\\pm$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.
Determining the magnetically nonlinear characteristics of a three phase core-type power transformer
International Nuclear Information System (INIS)
Dolinar, Matjaz; Stumberger, Gorazd; Polajzer, Bostjan; Dolinar, Drago
2006-01-01
This paper presents nonlinear iron core model of a three-phase, three-limb power transformer which is given by the current-dependant characteristics of flux linkages. The magnetically nonlinear characteristics are determined by controll