WorldWideScience

Sample records for phase t1-weighted images

  1. Evaluation of bone marrow by opposed phase T1-weighted images and enhanced MR imaging

    International Nuclear Information System (INIS)

    Amano, Yasuo; Tanabe, Yoshihiro; Miyashita, Tsuguhiro; Hayashi, Hiromitsu; Horiuchi, Junichi; Nomura, Takeo; Kumazaki, Tatsuo

    1994-01-01

    We investigated bone marrow in a control group, cases of aplastic anemia and post-irradiation patients by examining T1-weighted (T1W1), short T1 inversion recovery (STIR), opposed phase T1W1 (op-T1W1) and Gd-DTPA enhanced op-T1W1 images obtained by 0.5 T MRI. Bone marrow was classified into four types based on MR findings. Normal marrow showed low intensity on op-T1W1 and STIR images without enhancement (I). Fatty marrow, which showed high intensity on T1W1 and op-T1W1 images was observed in aplastic anemia and post-irradiation patients (II). Hematopoietic marrow (III) showed low intensity on op-T1W1 and enhanced, while active hematopoietic marrow (IV) revealed high intensity on both STIR and op-T1W1 images and was enhanced following Gd-DTPA infusion. Aplastic anemia of moderate grade included types II, III and IV. Enhanced MR was needed to differentiate between types I and III since both types showed low intensity on op-T1W1 images. Furthermore, type IV was considered as hyperplastic compared with type III. Enhanced MR and op-T1W1 images were useful in evaluating hematopoiesis of bone marrow. (author)

  2. Evaluation of bone marrow by opposed phase T1-weighted images and enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Tanabe, Yoshihiro; Miyashita, Tsuguhiro; Hayashi, Hiromitsu; Horiuchi, Junichi; Nomura, Takeo; Kumazaki, Tatsuo (Nippon Medical School, Tokyo (Japan))

    1994-09-01

    We investigated bone marrow in a control group, cases of aplastic anemia and post-irradiation patients by examining T1-weighted (T1W1), short T1 inversion recovery (STIR), opposed phase T1W1 (op-T1W1) and Gd-DTPA enhanced op-T1W1 images obtained by 0.5 T MRI. Bone marrow was classified into four types based on MR findings. Normal marrow showed low intensity on op-T1W1 and STIR images without enhancement (I). Fatty marrow, which showed high intensity on T1W1 and op-T1W1 images was observed in aplastic anemia and post-irradiation patients (II). Hematopoietic marrow (III) showed low intensity on op-T1W1 and enhanced, while active hematopoietic marrow (IV) revealed high intensity on both STIR and op-T1W1 images and was enhanced following Gd-DTPA infusion. Aplastic anemia of moderate grade included types II, III and IV. Enhanced MR was needed to differentiate between types I and III since both types showed low intensity on op-T1W1 images. Furthermore, type IV was considered as hyperplastic compared with type III. Enhanced MR and op-T1W1 images were useful in evaluating hematopoiesis of bone marrow. (author).

  3. Classification of hematopoietic regions in out-of-phase T1-weighted images. A quantitative comparison study with T1-weighted and STIR images

    International Nuclear Information System (INIS)

    Amano, Yasuo; Amano, Maki; Kijima, Tetsuji; Kumazaki, Tatsuo

    1995-01-01

    The hematopoietic regions were classified into two groups on the basis of out-of-phase T 1 -weighted images (op-TlWI): regions with lower intensity than that of muscle (LH) and regions with intensity equal to or higher than that of muscle (HH). We quantitatively evaluated the differences in signal intensity between LH and HH in order to examine this classification. Forty-two hematopoietic areas in aplastic anemia were classified into two groups of 23 LH and 19 HH. The signal ratios of hematopoietic areas to muscle on TlWI and STIR were calculated, and the differences between LH and HH were statistically evaluated. The signal ratios of LH were significantly higher on TlWI and lower on STIR than those of HH (unpaired t-test, p<0.05). This result indicated that LH consisted of more hypocellular marrow than HH. Op-TlWI were useful in differentiating between LH and HH and defining the degree of hematopoiesis in aplastic anemia. (author)

  4. MR imaging of hematopoietic regions in bone marrow of aplastic anemia. Diagnostic usefulness of opposed phase T1-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Tanabe, Yoshihiro; Amano, Maki; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan)

    1996-01-01

    The signal intensity of hematopoietic regions in the marrow of aplastic anemia were investigated on opposed phase T1-weighted images (op-T1WI) with a 0.5-Tesla MR unit. Hematopoietic regions were classified into two groups: low intensity hematopoietic areas (LH) isointense to normal marrow and high intensity hematopoietic regions (HH) with higher intensity than normal marrow on op-T1WI. The signal intensity of LH was significantly lower than that of HH on STIR. LH converted into HH with improvement of laboratory data after therapy, whereas HH decreased with impairment of data. HH were hyperintense to cerebrospinal fluid on op-T1WI. These results indicated that the signal intensity of hematopoietic regions on op-T1WI reflected the cellularity in these regions and that aplastic anemia included hypercellular regions relative to normal marrow. (author).

  5. Bilateral hyperintense basal ganglia on T1-weighted image

    International Nuclear Information System (INIS)

    Baik, Seung Kug; Ahn, Woo Hyun; Choi, Han Yong; Kim, Bong Gi

    1994-01-01

    Bilateral high signal intensity in basal ganglia on T1-weighted images is unusual, the purpose of this study is to describe the pattern of high signal intensity and underlying disease. During the last three years, 8 patients showed bilateral high signal intensity in basal ganglia on T1-weighted image, as compared with cerebral white matter. Authors analyzed the images and underlying causes retrospectively. Of 8 patients, 5 were male and 3 were female. The age ranged from 15 days to 79 years. All patient were examined by a 0.5T superconductive MRI. Images were obtained by spin echo multislice technique. Underlying causes were 4 cases of hepatopathy, 2 cases of calcium metabolism disorder, and one case each of neurofibromatosis and hypoxic brain injury. These process were bilateral in all cases and usually symmetric. In all cases the hyperintense areas were generally homogenous without mass effect or edema, although somewhat nodular appearance was seen in neurofibromatosis. Lesions were located in the globus pallidus and internal capsule in hepatopathy and neurofibromatosis, head of the caudate nucleus in disorder of calcum metabolism, and the globus pallidus in hypoxic brain injury. Although this study is limited by its patient population, bilateral hyperintense basal ganglia is associated with various disease entities. On analysis of hyperintense basal ganglia lesion, the knowledge of clinical information improved diagnostic accuracy

  6. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla

    International Nuclear Information System (INIS)

    Lavdas, Eleftherios; Vlychou, Marianna; Arikidis, Nikos; Kapsalaki, Eftychia; Roka, Violetta; Fezoulidis, Ioannis V.

    2010-01-01

    Background: T1-weighted fluid-attenuated inversion recovery (FLAIR) sequence has been reported to provide improved contrast between lesions and normal anatomical structures compared to T1-weighted fast spin-echo (FSE) imaging at 1.5T regarding imaging of the lumbar spine. Purpose: To compare T1-weighted FSE and fast T1-weighted FLAIR imaging in normal anatomic structures and degenerative and metastatic lesions of the lumbar spine at 3.0T. Material and Methods: Thirty-two consecutive patients (19 females, 13 males; mean age 44 years, range 30-67 years) with lesions of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted FSE and fast T1-weighted FLAIR sequences. Both qualitative and quantitative analyses measuring the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and relative contrast (ReCon) between degenerative and metastatic lesions and normal anatomic structures were conducted, comparing these sequences. Results: On quantitative evaluation, SNRs of cerebrospinal fluid (CSF), nerve root, and fat around the root of fast T1-weighted FLAIR imaging were significantly lower than those of T1-weighted FSE images (P<0.001). CNRs of normal spinal cord/CSF and disc herniation/ CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). ReCon of normal spinal cord/CSF, disc herniation/CSF, and vertebral lesions/CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). On qualitative evaluation, it was found that CSF nulling and contrast at the spinal cord (cauda equina)/CSF interface for T1-weighted FLAIR images were significantly superior compared to those for T1-weighted FSE images (P<0.001), and the disc/spinal cord (cauda equina) interface was better for T1-weighted FLAIR images (P<0.05). Conclusion: The T1-weighted FLAIR sequence may be considered as the preferred lumbar spine imaging

  7. Interactive thresholded volumetry of abdominal fat using breath-hold T1-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wittsack, H.J.; Cohnen, M.; Jung, G.; Moedder, U.; Poll, L.; Kapitza, C.; Heinemann, L.

    2006-01-01

    Purpose: development of a feasible and reliable method for determining abdominal fat using breath-hold T1-weighted magnetic resonance imaging. Materials and methods: the high image contrast of T1-weighted gradient echo MR sequences makes it possible to differentiate between abdominal fat and non-fat tissue. To obtain a high signal-to-noise ratio, the measurements are usually performed using phased array surface coils. Inhomogeneity of the coil sensitivity leads to inhomogeneity of the image intensities. Therefore, to examine the volume of abdominal fat, an automatic algorithm for intensity correction must be implemented. The analysis of the image histogram results in a threshold to separate fat from other tissue. Automatic segmentation using this threshold results directly in the fat volumes. The separation of intraabdominal and subcutaneous fat is performed by interactive selection in a last step. Results: the described correction of inhomogeneity allows for the segmentation of the images using a global threshold. The use of semiautomatic interactive volumetry makes the analysis more subjective. The variance of volumetry between observers was 4.6%. The mean time for image analysis of a T1-weighted investigation lasted less than 6 minutes. Conclusion: the described method facilitates reliable determination of abdominal fat within a reasonable period of time. Using breath-hold MR sequences, the time of examination is less than 5 minutes per patient. (orig.)

  8. Postcontrast T1-weighted brain magnetic resonance imaging in pediatric patients: comparison between postcontrast fat-suppression imaging and conventional T1-weighted or magnetization transfer imaging

    International Nuclear Information System (INIS)

    Lee, Choong Wook; Goo, Hyun Woo

    2004-01-01

    We wished to assess the merits and weaknesses of postcontrast fat-suppression (FS) brain MR imaging in children for the evaluation of various enhancing lesions as compared with postcontrast conventional T1-weighted or magnetization transfer (MT) imaging. We reviewed the records of those patients with enhancing lesions on brain MR imaging who had undergone both FS imaging and one of the conventional T1-weighted or MT imaging as a post-contrast T1-weighted brain MR imaging. Thirty-one patients (21 male, 10 female; mean age, 8.7 years) with 38 enhancing lesions (18 intra-axial, 16 extra-axial and 4 orbital locations) were included in this study. There were 27 pairs of FS and conventional imagings, and 13 pairs of FS and MT imagings available for evaluation. Two radiologists visually assessed by consensus the lesions' conspicuity, and they also looked for the presence of flow or susceptibility artifacts in a total of 40 pairs of MR imagings. For 19 measurable lesions (14 pairs of FS and conventional T1-weighted imagings, 5 pairs of FS and MT imagings), the contrast ratios between the lesion and the normal brain ([SIlesion-SIwater]/[SInormal brain-SIwater]) were calculated and compared. Compared with conventional imaging, the lesion conspicuity on FS imaging was better in 10 cases (7 extra-axial lesions, 2 orbital lesions and 1 fat-containing intra-axial lesion), equal in 16 cases, and worse in one case. Compared with MT imaging, the lesion conspicuity on FS imaging was better in 3 cases (2 extra-axial lesions and 1 intra-axial lesion), equal in 8 cases, and worse in 2 cases. Image quality of FS imaging was compromised by flow or susceptibility artifacts for 7 patients. The contrast ratios for FS imaging were not significantly different from those for conventional imaging (2.2±0.7 vs. 2.2±0.6, respectively, p=0.914) and they were significantly lower than those for MT imaging (2.4±0.8 vs. 4.5±1.5, respectively, p=0.018). Postcontrast FS brain MR imaging appears to be

  9. Fast T1-weighted imaging using GRASE sequence for the female pelvis

    International Nuclear Information System (INIS)

    Dohke, Masako; Watanabe, Yuji; Kumashiro, Masayuki; Amoh, Yoshiki; Ishimori, Takayoshi; Oda, Kazushige; Okumura, Akira; Koike, Shinji; Dodo, Yoshihiro

    1998-01-01

    GRASE sequence, a combination of TSE and gradient echo, has been developed as a fast T 2 -weighted imaging technique. We have modified the GRASE sequence to be used for fast T 1 -weighted imaging of the female pelvis. In this article, we compared image quality and incidence of artifacts between T 1 -weighted GRASE images and conventional T 1 -weighted SE images. In a phantom study, signal-to-noise ratio was inferior in the GRASE images relative to corresponding on SE images. Susceptibility and chemical shift artifacts seen in GRASE images were seen with almost equal incidence in SE and TSE images. In a clinical study, we compared GRASE images with SE images in six patients with endometrial cysts and four patients with dermoid cysts. The overall image quality obtained with GRASE sequence was satisfactory in all patients and was almost identical with that obtained with SE sequence. GRASE images demonstrated endometrial cysts and dermoid cysts as clearly as did SE images. T 1 -weighted GRASE imaging, however, has a relatively long TE (35 ms) for T 1 -weighted images, which makes the signal intensity of urine and uterine endometrium with long T 2 values higher than in SE images. In conclusion, GRASE sequence can be used for fast T 1 -weighted imaging of the female pelvis because of short imaging time. (author)

  10. Lumbosacral lipoma : gadolinium-enhanced fat saturation T1 weighted MR image is necessary?

    International Nuclear Information System (INIS)

    Yoon, Man Won; Kim, Hyun Chul; Chung, Tae Woong; Seo, Jeong Jin; Chung, Gwang Woo; Kim, Yun Hyeon; Kim, Jae Kyu; Park, Jin Gyoon; Kang, Heoung Keun

    1999-01-01

    To evaluate the usefulness of contrast-enhanced fat saturation T1-weighted imaging for the evaluation of spinal lipoma, compared with clinical symptoms and surgical findings. Ten patients with lipomyelomeningocele, confirmed by surgery, were included in this study. In all cases, conventional spin echo T1-and T2-weighted MR imaging, and contrast-enhanced fat saturation T1-weighted imaging was performed to evaluate clinical symptoms, the position of the conus medullaris, the presence of cord tethering, and associated anomalies, and to compare the relative usefulness of the techniques. All ten patients were suffering from lipomyelomeningocele without filum terminale fibrolipoma or intradural lipoma. All cases were associated with cord tethering. As associated anomalies, there were seven cases of syringomyelia without hydrocephalus or anorectal anomaly. To evaluate the position of the spinal conus and the presence of cord tethering, conventional T1-weighted imaging was more useful than the contrast-enhanced fat saturation equivalent. In patients with early-stage spinal lipoma, MRI is useful for evaluation of the causes and position of cord tethering and associated anomalies Our results suggest that contrast-enhanced fat saturation T1-weighted images do not provide additional information concerning spinal lipoma, and that for the diagnosis of this condition, conventional T1 and T2-weighted images are more useful than those obtained by contrast-enhanced fat saturation T1-weighted imaging

  11. Partial flip angle spin-echo imaging to obtain T1 weighted images with electrocardiographic gating

    International Nuclear Information System (INIS)

    Kawamitsu, Hideaki; Sugimura, Kazuro; Kasai, Toshifumi; Kimino, Katsuji

    1993-01-01

    ECG-gated spin-echo (SE) imaging can reduce physiologic motion artifact. However, it does not provide strong T 1 -weighted images, because the repetition time (TR) depends on heart rate (HR). For odd-echo SE imaging, T 1 contrast can be maximized by using a smaller flip angle (FA) of initial excitation RF pulses. We investigated the usefulness of partial FA SE imaging in order to obtain more T 1 -dependent contrast with ECG gating and determined the optimal FA at each heart rate. In computer simulation and phantom study, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each FA (0∼180deg) and each HR (55∼90 beats per minute (bpm)) were compared with those obtained with conventional T 1 -weighted SE imaging (TR=500 ms, TE=20 ms, FA=90deg). The optimal FA was decreased by reducing HR. The FA needed to obtain T 1 -dependent contrast identical to that with T 1 -weighted SE imaging was 43deg at a HR of 65 bpm, 53deg at 70 bpm, 60deg at 75 bpm. This predicted FA were in excellent agreement with that obtained with clinical evaluation. The predicted SNR was decreased by reducing FA. The SNR of partial FA SE imaging at HR of 65 bpm (FA=43deg) was 80% of that with conventional T 1 -weighted SE imaging. However, this imaging method presented no marked clinical problem. ECG-gated partial FA SE imaging provides better T 1 -dependent contrast than conventional ECG-gated SE imaging, especially for Gd-DTPA enhanced imaging. (author)

  12. An age estimation method using brain local features for T1-weighted images.

    Science.gov (United States)

    Kondo, Chihiro; Ito, Koichi; Kai Wu; Sato, Kazunori; Taki, Yasuyuki; Fukuda, Hiroshi; Aoki, Takafumi

    2015-08-01

    Previous statistical analysis studies using large-scale brain magnetic resonance (MR) image databases have examined that brain tissues have age-related morphological changes. This fact indicates that one can estimate the age of a subject from his/her brain MR image by evaluating morphological changes with healthy aging. This paper proposes an age estimation method using local features extracted from T1-weighted MR images. The brain local features are defined by volumes of brain tissues parcellated into local regions defined by the automated anatomical labeling atlas. The proposed method selects optimal local regions to improve the performance of age estimation. We evaluate performance of the proposed method using 1,146 T1-weighted images from a Japanese MR image database. We also discuss the medical implication of selected optimal local regions.

  13. Spot Sign in Acute Intracerebral Hemorrhage in Dynamic T1-Weighted Magnetic Resonance Imaging.

    Science.gov (United States)

    Schindlbeck, Katharina A; Santaella, Anna; Galinovic, Ivana; Krause, Thomas; Rocco, Andrea; Nolte, Christian H; Villringer, Kersten; Fiebach, Jochen B

    2016-02-01

    In computed tomographic imaging of acute intracerebral hemorrhage spot sign on computed tomographic angiography has been established as a marker for hematoma expansion and poor clinical outcome. Although, magnetic resonance imaging (MRI) can accurately visualize acute intracerebral hemorrhage, a corresponding MRI marker is lacking to date. We prospectively examined 50 consecutive patients with acute intracerebral hemorrhage within 24 hours of symptom onset. The MRI protocol consisted of a standard stroke protocol and dynamic contrast-enhanced T1-weighted imaging with a time resolution of 7.07 s/batch. Stroke scores were assessed at admission and at time of discharge. Volume measurements of hematoma size and spot sign were performed with MRIcron. Contrast extravasation within sites of the hemorrhage (MRI spot sign) was seen in 46% of the patients. Patients with an MRI spot sign had a significantly shorter time to imaging than those without (Pspot sign compared with those without (P≤0.001). Hematoma expansion was observed in the spot sign group compared with the nonspot sign group, although the differences were not significant. Spot sign can be detected using MRI on postcontrast T1-weighted and dynamic T1-weighted images. It is associated with worse clinical outcome. The time course of contrast extravasation in dynamic T1 images indicates that these spots represent ongoing bleeding. © 2015 American Heart Association, Inc.

  14. Assessment of Silent T1-weighted head imaging at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Costagli, Mauro; Tiberi, Gianluigi; Tosetti, Michela [Imago7 Foundation, Pisa (Italy); IRCCS Stella Maris, Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance, Pisa (Italy); Symms, Mark R. [GE Applied Science Laboratory, Pisa (Italy); Angeli, Lorenzo [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Pisa (Italy); Kelley, Douglas A.C. [GE Healthcare Technologies, San Francisco, CA (United States); Biagi, Laura [IRCCS Stella Maris, Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance, Pisa (Italy); Farnetani, Andrea [University of Ferrara, Engineering Department, Ferrara (Italy); Materiacustica s.r.l., Ferrara (Italy); Rua, Catarina [University of Pisa, Department of Physics, Pisa (Italy); Donatelli, Graziella [Azienda Ospedaliero-Universitaria Pisana (AOUP), Neuroradiology Unit, Department of Diagnostic and Interventional Radiology, Pisa (Italy); Cosottini, Mirco [Imago7 Foundation, Pisa (Italy); University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Pisa (Italy)

    2016-06-15

    This study aimed to assess the performance of a ''Silent'' zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system. The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared to conventional T1-weighted imaging (FSPGR). Adequacy for automated segmentation was evaluated in comparison with FSPGR acquired at 7 T and 1.5 T. Specific absorption rate (SAR) was also measured. Tissue contrast and homogeneity in Silent were remarkable in deep brain structures and in the occipital and temporal lobes. Mean tissue contrast was significantly (p < 0.002) higher in Silent (0.25) than in FSPGR (0.11), which favoured automated tissue segmentation. On the other hand, Silent images had lower SNR with respect to conventional imaging: average SNR of FSPGR was 2.66 times that of Silent. Silent images were affected by artefacts related to projection reconstruction, which nevertheless did not compromise the depiction of brain tissues. Silent acquisition was 35 dB(A) quieter than FSPGR and less than 2.5 dB(A) louder than ambient noise. Six-minute average SAR was <2 W/kg. The ZTE Silent sequence provides high-contrast T1-weighted imaging with low acoustic noise at 7 T. (orig.)

  15. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    International Nuclear Information System (INIS)

    Erdem, L. Oktay; Erdem, C. Zuhal; Acikgoz, Bektas; Gundogdu, Sadi

    2005-01-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times

  16. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, L. Oktay [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)]. E-mail: sunarerdem@yahoo.com; Erdem, C. Zuhal [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey); Acikgoz, Bektas [Department of Neurosurgery, Zonguldak Karaelmas University, School of Medicine, Zonguldak (Turkey); Gundogdu, Sadi [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)

    2005-08-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times.

  17. Fat suppression at three-dimensional T1-weighted MR imaging of the hands: Dixon method versus CHESS technique.

    Science.gov (United States)

    Kirchgesner, T; Perlepe, V; Michoux, N; Larbi, A; Vande Berg, B

    2018-01-01

    To compare the effectiveness of fat suppression and the image quality of the Dixon method with those of the chemical shift-selective (CHESS) technique in hands of normal subjects at non-enhanced three-dimensional (3D) T1-weighted MR imaging. Both hands of 14 healthy volunteers were imaged with 3D fast spoiled gradient echo (FSPGR) T1-weighted Dixon, 3D FSPGR T1-weighted CHESS and 3D T1-weighted fast spin echo (FSE) CHESS sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the signal-to-noise ratio (SNR) in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects (PCHESS sequence and the 3D FSE T1-weighted CHESS sequence (PCHESS sequence (PCHESS sequence in the axial plane (P=0.0028). Mean SNR was statistically significantly higher for 3D FSPGR T1-weighted Dixon sequence than for 3D FSPGR T1-weighted CHESS and 3D FSE T1-weighted CHESS sequences (PCHESS technique at 3D T1-weighted MR imaging of the hands. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  18. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    Science.gov (United States)

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  19. Hyperintense basal ganglia lesions on T1-weighted MR images in asymptomatic patients with hepatic dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Cila, A. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Dincer, F.F. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey)

    1995-12-31

    Cranial MRI findings in four patients who had hepatic dysfunction, including one with sole hepatic form of Wilson`s disease, were reported. The MR examinations revealed bilateral, symmetric hyperintensity in the globus pallidus, subthalamic nuclei and mesencephalon on T1-weighted images with no corresponding abnormality on T2-weighted sequences. The basal ganglia were normal on CT examinations in all patients. None of the patients had the clinical findings of hepatic encephalopathy. The MR findings in our patients did not correlate with the degree or duration of hepatic dysfunction. (orig.)

  20. Metastatic spinal tumor. Assessment with fat-saturation T1-weighted MR imaging

    International Nuclear Information System (INIS)

    Kasai, Toshifumi; Sugimura, Kazuro; Uchida, Nobue; Kawamitsu, Hideaki; Komatsu, Akio; Okui, Shouji; Kimino, Katsuji.

    1994-01-01

    The purpose of this study was to compare conventional T1-weighted imaging (T1-WI) and chemical shift fat-saturation T1-weighted imaging (fat-sat T1-WI) by a diagnosis of the bone metastases. Thirty-two patients (143 vertebrae) with non-neoplastic lesions (normal group) and 32 patients (82 vertebrae) with spinal metastases (metastatic group) were evaluated using both images. The signal intensity (SI) distribution of both groups regarding T1-WI provided various patterns, and the SI measurements were not significantly different between the two groups ; however, the metastases which were mixed, showed a low SI. Regarding fat-sat T1-WI, all non-neoplastic lesions had a low-intensity homogeneous appearance ; however, the metastases were mixed to a high SI. The SI measurement data of the metastatic group was significantly higher than that of the normal group. In conclusion, fat-sat T1-WI was useful for evaluating the vertebral metastases. When fat-sat T1-WI demonstrated a mixed to high SI in patients suspected of having vertebral metastasis, Gd-DTPA enhancement was thought to be the problem. (author)

  1. Developmental patterns of fetal fat and corresponding signal on T1-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Blondiaux, Eleonore; Chougar, Lydia; Ducou le Pointe, Hubert; Garel, Catherine; Gelot, Antoinette; Valence, Stephanie; Audureau, Etienne; Jouannic, Jean-Marie; Dhombres, Ferdinand

    2018-01-01

    Evaluation of subcutaneous fetal fat layer thickness on T1-weighted sequences can be used to predict birth weight. Little is known about normal MR signal patterns of subcutaneous tissue throughout pregnancy. To establish developmental patterns of subcutaneous fetal fat signal on T1-weighted sequences during the 2nd and 3rd trimesters. We retrospectively examined T1-weighted images of 110 fetal MRI scans. We measured signal intensity of subcutaneous fat on thighs, buttocks, trunk, nuchal region, chin and scalp. We then calculated the ratios of the obtained values with fetal muscle, amnios and maternal fat signal, and compared the results with those of immunohistochemical examination of adipose tissue extracted from the abdominal wall of fetuses as part of standard autopsy protocol. We included 60 MRI scans in fetuses without intra-uterine growth restriction or macrosomia of non-diabetic mothers (range 23-37 weeks of gestation). Fat T1 intensity of all anatomical regions was low in all fetuses before 26 weeks of gestation. It became more hyperintense with increasing gestational age, in the following order: chin and nuchal region, then buttocks, thighs and trunk, and eventually the scalp at 33 weeks of gestation. After 33 weeks of gestation, all fetal subcutaneous tissues demonstrated overall hyperintense signal. This progression followed the conversion at immunohistochemistry of fetal adipose tissue composition from predominant brown to white adipose cells in 19 fetuses (19-41 weeks of gestation). Between 26 weeks and 33 weeks of gestation, subcutaneous fetal fat signal changed in an orderly pattern from chin to buttocks and scalp. This may reflect the conversion from predominant brown to white adipose tissues in subcutaneous fetal fat. (orig.)

  2. Measurement of brain oxygenation changes using dynamic T1-weighted imaging

    DEFF Research Database (Denmark)

    Haddock, Bryan; Larsson, Henrik B W; Hansen, Adam E

    2013-01-01

    Magnetic resonance imaging (MRI) has proven useful in evaluating oxygenation in several types of tissue and blood. This study evaluates brain tissue oxygenation changes between normoxia and hyperoxia in healthy subjects using dynamic T1 and T2*-weighted imaging sequences. The change in FiO2 induced...... by hyperoxia caused a significant decrease in T1. A model to determine changes in tissue oxygen tension from the T1-weighted MRI signal is presented based on previous findings that T1 is sensitive to oxygen tension whereas T2* is sensitive to blood saturation. The two sequences produce results with different...... regional and temporal dynamics. These differences combined with results from simulations of the T1 signal intensities, indicate an increase in extravascular oxygen tension during hyperoxia. This study concludes that T1 and T2* responses to FiO2 serve as independent biomarkers of oxygen physiology...

  3. Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE.

    Directory of Open Access Journals (Sweden)

    Kieran R O'Brien

    Full Text Available PURPOSE: To suppress the noise, by sacrificing some of the signal homogeneity for numerical stability, in uniform T1 weighted (T1w images obtained with the magnetization prepared 2 rapid gradient echoes sequence (MP2RAGE and to compare the clinical utility of these robust T1w images against the uniform T1w images. MATERIALS AND METHODS: 8 healthy subjects (29.0 ± 4.1 years; 6 Male, who provided written consent, underwent two scan sessions within a 24 hour period on a 7T head-only scanner. The uniform and robust T1w image volumes were calculated inline on the scanner. Two experienced radiologists qualitatively rated the images for: general image quality; 7T specific artefacts; and, local structure definition. Voxel-based and volume-based morphometry packages were used to compare the segmentation quality between the uniform and robust images. Statistical differences were evaluated by using a positive sided Wilcoxon rank test. RESULTS: The robust image suppresses background noise inside and outside the skull. The inhomogeneity introduced was ranked as mild. The robust image was significantly ranked higher than the uniform image for both observers (observer 1/2, p-value = 0.0006/0.0004. In particular, an improved delineation of the pituitary gland, cerebellar lobes was observed in the robust versus uniform T1w image. The reproducibility of the segmentation results between repeat scans improved (p-value = 0.0004 from an average volumetric difference across structures of ≈ 6.6% to ≈ 2.4% for the uniform image and robust T1w image respectively. CONCLUSIONS: The robust T1w image enables MP2RAGE to produce, clinically familiar T1w images, in addition to T1 maps, which can be readily used in uniform morphometry packages.

  4. Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Timur Sh Atabaev

    2017-02-01

    Full Text Available Nanoprobes with multimodal functionality have attracted significant interest recently because of their potential applications in nanomedicine. This paper reports the successful development of lanthanide-doped Y2O3 nanoprobes for potential applications in optical and magnetic resonance (MR imaging. The morphology, structural, and optical properties of these nanoprobes were characterized by transmission electron microscope (TEM, field emission scanning electron microscope (FESEM, X-ray diffraction (XRD, energy-dispersive X-ray (EDX, and photoluminescence (PL. The cytotoxicity test showed that the prepared lanthanide-doped Y2O3 nanoprobes have good biocompatibility. The obvious contrast enhancement in the T1-weighted MR images suggested that these nanoprobes can be used as a positive contrast agent in MRI. In addition, the clear fluorescence images of the L-929 cells incubated with the nanoprobes highlight their potential for optical imaging. Overall, these results suggest that prepared lanthanide-doped Y2O3 nanoprobes can be used for simultaneous optical and MR imaging.

  5. Contrast-enhanced turbo spin-echo(TSE) T1-weighted imaging: improved contrast of enhancing lesions

    International Nuclear Information System (INIS)

    Choi, Sung Wook; Lee, Ghi Jai; Shim, Jae Chan; Lee, Young Ju; Jeong, Se Hyung; Kim, Ho kyun

    1997-01-01

    The purpose of this study was to evaluate the effect of contrast improvement of enhancing brain lesions by inherent magnetization transfer effect in turbo spin-echo(TSE)T1-weighted MR imaging. Twenty-six enhancing lesions of 19 patients were included in this study. Using a 1.0T superconductive MR unit, contrast-enhanced SE T1-weighted images(TR=3D600 msec, TE=3D12 msec, NEX=3D2, acquistition time=3D4min 27sec) and contrast-enhanced TSE T1-weighted images(TR=3D600 msec, TE=3D12, acquistition time=3D1min 44sec) were obtained. Signal intensities at enhancing lesions and adjacent white matter were measured in the same regions of both images. Signal-to-noise ratio(SNR) of enhancing lesions and adjacent white matter, and con-trast-to-noise ratio(CNR) and lesion-to-background contrast (LBC) of enhancing lesions were calculated and statistically analysed using the paired t-test. On contrast-enhanced TSE T1-weighted images, SNR of enhancing lesions and adjacent white matter decreased by 18%(p<0.01) and 32%(p<0.01), respectively, compared to contrast-enhanced SE T1-weighted images. CNR and LBC of enhancing lesions increased by 16%(p<0.05) and 66%(p<0.01), respectively. Due to the proposed inherent magnetization transfer effects in TSE imaging, con-trast-enhanced T1-weighted TSE images demonstrated a statistically significant improvement in CNR and LBC, compared to conventional contrast-enhanced T1-weighted SE images, and scan time was much shorter

  6. MR staging of pelvic endometriosis. Role of fat-suppression T1-weighted images

    International Nuclear Information System (INIS)

    Oishi-Tanaka, Yumiko; Itai, Yuji; Anno, Izumi; Matsumoto, Kunihiko; Ebihara, Reiko; Nishida, Masato

    1996-01-01

    We examined whether MR can determine the stage of endometriosis according to the scoring system established and revised by the American Fertility Society (r-AFS), a system which is widely used by gynecologists. We also studied the utility of fat suppression T 1 -weighted images in improving accuracy. Seventeen patients with endometriosis examined by conventional MR were included in this study. All the patients had surgically proved stage III or IV disease. We determined the stage by MR using the following criteria according to the r-AFS system: adnexal masses without normal ovarian tissue were considered deep ovarian lesions, while those with normal tissue were considered superficial. A lack of fat between the lesion and surrounding structures was considered a dense adhesion, and hyperintense spots were considered peritoneal implants. The MR scores of patients with and without fat suppression were correlated with the surgical scores. MR staging corresponded to surgical staging in 15 of the 17 patients. In eight patients, peritoneal implants of less than 1.5 cm were depicted only by fat-suppression images. However, these lesions did not change the score significantly. MR imaging could determine the stage in advanced endometriosis. Fat-suppression could highlight smaller implants. These tiny lesions had little clinical meaning in these advanced cases; however, the clinical value of this technique should be evaluated in milder disease. (author)

  7. Prostate cancer detection from model-free T1-weighted time series and diffusion imaging

    Science.gov (United States)

    Haq, Nandinee F.; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2015-03-01

    The combination of Dynamic Contrast Enhanced (DCE) images with diffusion MRI has shown great potential in prostate cancer detection. The parameterization of DCE images to generate cancer markers is traditionally performed based on pharmacokinetic modeling. However, pharmacokinetic models make simplistic assumptions about the tissue perfusion process, require the knowledge of contrast agent concentration in a major artery, and the modeling process is sensitive to noise and fitting instabilities. We address this issue by extracting features directly from the DCE T1-weighted time course without modeling. In this work, we employed a set of data-driven features generated by mapping the DCE T1 time course to its principal component space, along with diffusion MRI features to detect prostate cancer. The optimal set of DCE features is extracted with sparse regularized regression through a Least Absolute Shrinkage and Selection Operator (LASSO) model. We show that when our proposed features are used within the multiparametric MRI protocol to replace the pharmacokinetic parameters, the area under ROC curve is 0.91 for peripheral zone classification and 0.87 for whole gland classification. We were able to correctly classify 32 out of 35 peripheral tumor areas identified in the data when the proposed features were used with support vector machine classification. The proposed feature set was used to generate cancer likelihood maps for the prostate gland.

  8. T1-weighted vs. short-TE-long-TR images. Usefulness for knee MR examinations of ligament and meniscal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Hideho; Wada, Mitsuyoshi; Shiotani, Seiji [Tsukuba Medical Center Hospital, Ibaraki (Japan); Niitsu, Mamoru; Itai, Yuji

    2000-11-01

    The purpose of this study was to compare short-TE-long-TR images with T1-weighed images in knee MR examinations. Sagittal MR images of the knee were obtained in 31 patients with knee pain. T1-weighted images were obtained by the spin-echo technique (TR/TE =350/15), and short-TE-long-TR images by fast spin-echo (TR/TE =1300/15) with an echo-train length of 5. Contrast-to-noise-ratios (CNRs) of the anterior cruciate ligament and synovial space, meniscus and articular cartilage, and meniscal lesion and normal meniscus were compared between short-TE-long-TR images and T1-weighted images. On each of the three examinations, short-TE-long-TR images provided significantly higher CNRs than T1-weighted images. It was concluded that short-TE-long-TR images can be a useful alternative to T1-weighted images in evaluating the anterior cruciate ligament and meniscal lesions. (author)

  9. T1-weighted vs. short-TE-long-TR images. Usefulness for knee MR examinations of ligament and meniscal lesions

    International Nuclear Information System (INIS)

    Endo, Hideho; Wada, Mitsuyoshi; Shiotani, Seiji; Niitsu, Mamoru; Itai, Yuji

    2000-01-01

    The purpose of this study was to compare short-TE-long-TR images with T1-weighed images in knee MR examinations. Sagittal MR images of the knee were obtained in 31 patients with knee pain. T1-weighted images were obtained by the spin-echo technique (TR/TE =350/15), and short-TE-long-TR images by fast spin-echo (TR/TE =1300/15) with an echo-train length of 5. Contrast-to-noise-ratios (CNRs) of the anterior cruciate ligament and synovial space, meniscus and articular cartilage, and meniscal lesion and normal meniscus were compared between short-TE-long-TR images and T1-weighted images. On each of the three examinations, short-TE-long-TR images provided significantly higher CNRs than T1-weighted images. It was concluded that short-TE-long-TR images can be a useful alternative to T1-weighted images in evaluating the anterior cruciate ligament and meniscal lesions. (author)

  10. 3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle

    International Nuclear Information System (INIS)

    Lim, Chung Hwang; Bae, Sung Jin

    2009-01-01

    This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). T1-weighted images of the cerebrum of brain were obtained from 50 degrees to 130 degrees FA with 10 interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp (-TR/T1) and Ernst angle cos = exp ((-TR/T1). The SNR of WM at 130 degrees FA is approximately 1.6 times higher than the SNR of WM at 50 degrees. The SNR of GM at 130 degrees FA is approximately 1.9 times higher than the SNR of GM at 50 degrees. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120 degrees FA, the SNR of GM started decreasing at less than 110 degrees. The highest SNRs of WM and GM were obtained at 130 degrees FA. The highest CNRs, however, were obtained at 80 degrees FA. Although SNR increased with the change of FA values from 50 degrees to 130 degrees at 3T SE T1WI, CNR was higher at 80 degrees FA than at the usually used 90 degrees FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  11. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    Science.gov (United States)

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  12. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available Introduction. An increasing number of studies are utilizing different magnetic resonance (MR methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI, modified Dixon method (also called fat fraction MRI (FFMRI, and magnetic resonance spectroscopy (MRS. Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI. Bone marrow adipose tissue (BMAT of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  13. Post-contrast T1-weighted sequences in pediatric abdominal imaging: comparative analysis of three different sequences and imaging approach

    Energy Technology Data Exchange (ETDEWEB)

    Roque, Andreia; Ramalho, Miguel; AlObaidy, Mamdoh; Heredia, Vasco; Burke, Lauren M.; De Campos, Rafael O.P.; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States)

    2014-10-15

    Post-contrast T1-weighted imaging is an essential component of a comprehensive pediatric abdominopelvic MR examination. However, consistent good image quality is challenging, as respiratory motion in sedated children can substantially degrade the image quality. To compare the image quality of three different post-contrast T1-weighted imaging techniques - standard three-dimensional gradient-echo (3-D-GRE), magnetization-prepared gradient-recall echo (MP-GRE) and 3-D-GRE with radial data sampling (radial 3-D-GRE) - acquired in pediatric patients younger than 5 years of age. Sixty consecutive exams performed in 51 patients (23 females, 28 males; mean age 2.5 ± 1.4 years) constituted the final study population. Thirty-nine scans were performed at 3 T and 21 scans were performed at 1.5 T. Two different reviewers independently and blindly qualitatively evaluated all sequences to determine image quality and extent of artifacts. MP-GRE and radial 3-D-GRE sequences had the least respiratory motion (P < 0.0001). Standard 3-D-GRE sequences displayed the lowest average score ratings in hepatic and pancreatic edge definition, hepatic vessel clarity and overall image quality. Radial 3-D-GRE sequences showed the highest scores ratings in overall image quality. Our preliminary results support the preference of fat-suppressed radial 3-D-GRE as the best post-contrast T1-weighted imaging approach for patients under the age of 5 years, when dynamic imaging is not essential. (orig.)

  14. Flair MR imaging in the Detection of subarachnoid hemorrhage : comparison with CT and T1-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Soo Hyun; Kim, Soo Youn; Lee, Ghi Jai; Shim, Jae Chan; Oh, Tae Kyung; Kim, Ho Kyun [College of Medicine, Jnje University, Seoul (Korea, Republic of)

    2000-03-01

    To compare the findings of fluid-attenuated inversion recovery (FLAIR) MR imaging in the detection of subarachnoid hemorrhage (SAH), with those of precontrast CT and T1-weighted MR imaging. In 13 patients (14 cases) with SAH, FLAIR MR images were retrospectively analyzed and compared with CT (10 patients, 11 cases) and T1-weighted MR images (9 cases). SAH was confirmed on the basis of high density along the subarachnoid space, as seen on precontrast CT, or lumbar puncture. MR imaging was performed on a 1.0T unit. FLAIR MR and CT images were obtained during the acute stage(less than 3 days after ictus) in 10 and 9 cases, respectively, during the subacute stage (4-14 days after ictus) in two cases and one, respectively, and during the chronic stage (more than 15 days after ictus) in two cases and one, respectively. CT was performed before FLAIR MR imaging, and the interval between CT and FLAIR ranged from 24 hours (6 cases) to 2-3 (2 cases) or 4-7 days (3 cases). In each study, the conspicuity of visualization of SAH was graded as excellent, good, fair, or negative at five locations (sylvian fissure, cortical sulci, anterior basal cistern, posterior basal cistern, and perimesencephalic cistern). In all cases, subarachnoid hemorrhages were demonstrated as high signal intensity areas on FLAIR images. The detection rates for SAH on CT and T1-weighted MR images were 100% (11/11) and 89% (8/9), respectively. FLAIR was superior to T1-weighted imaging in the detection of SAH at all sites except the anterior basal cistern (p less than 0.05) and superior to CT in the detection of SAH at the cortical sulci (p less than 0.05). On FLAIR MR images, subarachnoid hemorrhages at all stages are demonstrated as high signal intensity areas; the FLAIR MR sequence is thus considered useful in the detection of SAH. In particular FLAIR is more sensitive than CT for the detection of SAH in the cortical sulci. (author)

  15. Utility decay rates of T1-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro

    2009-01-01

    The availability and applicability of the combination of paramagnetic nitroxyl contrast agent and T 1 -weighted gradient echo (GE)-based dynamic magnetic resonance imaging (MRI) measurement for redox imaging are described. The time courses of T 1 -weighted GE MRI signal intensities according to first-order paramagnetic loss of a nitroxyl contrast agent were simulated for several experimental conditions. The apparent decay rate calculated based on decreasing T 1 -weighted MRI contrast (k MRI ) can show an approximate value of the original decay rate (k true ) discretionarily given for simulation with suitable experimental parameters. The difference between k MRI and k true can be sufficiently small under T 1 -weighted spoiled gradient echo (SPGR) scan conditions (repetition time=75 ms, echo time=3 ms, and flip angle=45deg), with a conventional redox-sensitive nitroxyl contrast agent, such as 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPOL) and/or 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (carbamoyl-PROXYL), and with intravenous (i.v.) doses of below 1.5 γmol/g body weight (b.w.) for mice. The results of this simulation suggest that the k MRI of nitroxyl contrast agents can be the primary index of redox status under biological conditions. (author)

  16. The Effect of the Degree of Luminal Contrast-Enhancement on CT Measurement of Plaque Size: A Comparison with T1-weighted Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Hur, Jin; Lee, Hye Jeong; Kim, Young Jin; Choe, Kyu Ok; Kim, Tae Hoon

    2010-01-01

    We studied early and delayed contrast-enhanced CT to determine the effects of the degree of luminal enhancement on the measurement of plaque size compared to T1-weighted MRI. T1-weighted MRI and a two-phase contrast-enhanced CT was performed in 5 New Zealand white rabbits with atherosclerosis. Early-phase images were acquired during an expected peak enhancement period of the lumen; delayed-phase images were acquired 240 sec after administration of the contrast media. Anteroposterior and lateral luminal diameters (APD, LD), luminal area (LA), total vessel area (TVA), and plaque area (PA) of the aorta were measured on MRI and CT, respectively and compared to each other. A total of 78 slices of the aorta were analyzed. PA, measured on T1-weighted MR images, was significantly greater than PA for both early-phase and delayed-phase CT (p 2 (p 2 (p 2 (p = 0.159) for MRI vs. early-phase CT, MRI vs. delayed-phase CT, and early-phase CT vs. delayed-phase CT, respectively. Different luminal densities by contrast enhancement do not affect the CT measurement of plaque area for the detection of obstructive coronary artery disease

  17. Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images.

    Science.gov (United States)

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Gao, Yang; Chen, Yang; Feng, Qianjin; Chen, Wufan; Lu, Zhentai

    2014-01-01

    This study aims to develop content-based image retrieval (CBIR) system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR) images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW) model with partition learning is incorporated into the system to extract informative features for representing the image contents. Furthermore, a distance metric learning algorithm called the Rank Error-based Metric Learning (REML) is proposed to reduce the semantic gap between low-level visual features and high-level semantic concepts. The effectiveness of the proposed method is evaluated on a brain T1-weighted CE-MR dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). Using the BoVW model with partition learning, the mean average precision (mAP) of retrieval increases beyond 4.6% with the learned distance metrics compared with the spatial pyramid BoVW method. The distance metric learned by REML significantly outperforms three other existing distance metric learning methods in terms of mAP. The mAP of the CBIR system is as high as 91.8% using the proposed method, and the precision can reach 93.1% when the top 10 images are returned by the system. These preliminary results demonstrate that the proposed method is effective and feasible for the retrieval of brain tumors in T1-weighted CE-MR Images.

  18. Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images.

    Directory of Open Access Journals (Sweden)

    Meiyan Huang

    Full Text Available This study aims to develop content-based image retrieval (CBIR system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW model with partition learning is incorporated into the system to extract informative features for representing the image contents. Furthermore, a distance metric learning algorithm called the Rank Error-based Metric Learning (REML is proposed to reduce the semantic gap between low-level visual features and high-level semantic concepts. The effectiveness of the proposed method is evaluated on a brain T1-weighted CE-MR dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor. Using the BoVW model with partition learning, the mean average precision (mAP of retrieval increases beyond 4.6% with the learned distance metrics compared with the spatial pyramid BoVW method. The distance metric learned by REML significantly outperforms three other existing distance metric learning methods in terms of mAP. The mAP of the CBIR system is as high as 91.8% using the proposed method, and the precision can reach 93.1% when the top 10 images are returned by the system. These preliminary results demonstrate that the proposed method is effective and feasible for the retrieval of brain tumors in T1-weighted CE-MR Images.

  19. New MRI findings in Creutzfeldt-Jakob disease: high signal in the globus pallidus on T 1-weighted images

    International Nuclear Information System (INIS)

    Priester, J.A. de; Wilmink, J.T.; Jansen, G.H.; Kruijk, J.R. de

    1999-01-01

    We report a 49-year-old woman with Creutzfeldt-Jakob disease (CJD). In addition to typical high-signal lesions on proton-density and T 2-weighted images there was high signal in the globus pallidus bilaterally on T 1-weighted images. The latter feature has not been described previously and probably due to deposition of prion protein, as found at autopsy. (orig.)

  20. New MRI findings in Creutzfeldt-Jakob disease: high signal in the globus pallidus on T 1-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Priester, J.A. de; Wilmink, J.T. [Dept. of Radiology, University Hospital Maastricht (Netherlands); Jansen, G.H. [Department of Neuropathology, University Hospital Utrecht (Netherlands); Kruijk, J.R. de [Department of Neurology, University Hospital Maastricht (Netherlands)

    1999-04-01

    We report a 49-year-old woman with Creutzfeldt-Jakob disease (CJD). In addition to typical high-signal lesions on proton-density and T 2-weighted images there was high signal in the globus pallidus bilaterally on T 1-weighted images. The latter feature has not been described previously and probably due to deposition of prion protein, as found at autopsy. (orig.) With 3 figs., 11 refs.

  1. Abdominal MRI at 3.0 T: LAVA-Flex compared with conventional fat suppression T1-weighted images.

    Science.gov (United States)

    Li, Xing Hui; Zhu, Jiang; Zhang, Xiao Ming; Ji, Yi Fan; Chen, Tian Wu; Huang, Xiao Hua; Yang, Lin; Zeng, Nan Lin

    2014-07-01

    To study liver imaging with volume acceleration-flexible (LAVA-Flex) for abdominal magnetic resonance imaging (MRI) at 3.0 T and compare the image quality of abdominal organs between LAVA-Flex and fast spoiled gradient-recalled (FSPGR) T1-weighted imaging. Our Institutional Review Board approval was obtained in this retrospective study. Sixty-nine subjects had both FSPGR and LAVA-Flex sequences. Two radiologists independently scored the acquisitions for image quality, fat suppression quality, and artifacts and the values obtained were compared with the Wilcoxon signed rank test. According to the signal intensity (SI) measurements, the uniformity of fat suppression, the contrast between muscle and fat and normal liver and liver lesions were compared by the paired t-test. The liver and spleen SI on the fat-only phase were analyzed in the fatty liver patients. Compared with FSPGR imaging, LAVA-Flex images had better and more homogenous fat suppression and lower susceptibility artifact (qualitative scores: 4.70 vs. 4.00, 4.86% vs. 7.14%, 4.60 and 4.10, respectively). The contrast between muscle and fat and between the liver and pathologic lesions was significantly improved on the LAVA-Flex sequence. The contrast value of the fatty liver and spleen was higher than that of the liver and spleen. The LAVA-Flex sequence offers superior and more homogenous fat suppression of the abdomen than does the FSPGR sequence. The fat-only phase can be a simple and effective method of assessing fatty liver. © 2013 Wiley Periodicals, Inc.

  2. T1-weighted fluid-attenuated inversion recovery and T1-weighted fast spin-echo contrast-enhanced imaging: a comparison in 20 patients with brain lesions

    International Nuclear Information System (INIS)

    Al-Saeed, O.; Athyal, R. P.; Ismail, M.; Rudwan, M.; Khafajee, S.

    2009-01-01

    Full text: Tl-weighted fluid-attenuated inversion recovery (FLAIR) sequence is a relatively new pulse sequence for intracranial MR imaging. This study was performed to compare the image quality of Tl-weighted FLAIR with the Tl-weighted FSE sequence. Twenty patients with brain lesions underwent Tl-weighted fast spin-echo (FSE) and Tl-weighted FLAIR during the same imaging session. Four quantitative and three qualitative criteria were used to compare the two sequences after contrast. Two of four quantitative criteria pertained to lesion characteristics: lesion to white matter (WM) contrast-to-noise ratio (CNR) and lesion to cerebrospinal fluid (CSF) CNR, and two related to signals from normal tissue: grey matter to WM CNR and WM to CSF CNR. The three qualitative criteria were conspicuousness of the lesion, the presence of image artefacts and the overall image contrast. Both Tl-weighted FSE and FLAIR images were effective in demonstrating lesions. Image contrast was superior in Tl-weighted FLAIR images with significantly improved grey matter-WM CNRs and CSF-WM CNRs. The overall image contrast was judged to be superior on Tl-weighted FLAIR images compared with Tl-weighted FSE images by all neuroradiologists. Two of three reviewers considered that the FLAIR images had slightly increased imaging artefacts that, however, did not interfere with image interpretation. Tl-weighted FLAIR imaging provides improved lesion-to-background and grey to WM contrast-to-noise ratios. Superior conspicuity of lesions and overall image contrast is obtained in comparable acquisition times. These indicate an important role for Tl-weighted FLAIR in intracranial imaging and highlight its advantage over the more widely practiced Tl-weighted FSE sequence

  3. The value of T1-weighted images in the differentiation between MS, white matter lesions, and subcortical arteriosclerotic encephalopathy (SAE)

    Energy Technology Data Exchange (ETDEWEB)

    Uhlenbrock, D.; Sehlen, S.

    1989-07-01

    The aim of the study was to define reliable criteria for the differentiation of MR imaging between patients with MS and with 'vascular' white matter lesions/SAE. We examined 35 patients with proven MS according to the Poser criteria and 35 patients with other white matter lesions and/or SAE. The result is that with MR a differentiation can be achieved provided that T1-weighted spin-echo sequences are included and the different pattern of distribution is considered. MS plaques are predominantly located in the subependymal region, vascular white matter lesions are mainly located in the water-shed of the superficial middle cerebral branches and the deep perforating long medullary vessels in the centrum semiovale. Infratentorial lesions are more often seen in MS. Confluence at the lateral ventricles is frequently accompanied by confluent abnormalities around the third ventricle, Sylvian aqueduct, and fourth ventricle, which is uncommon in SAE. In MS many lesions visible on T2-weighted images have a cellular or intracellular composition that renders them visible also on T1-weighted ones as regions with low signal intensity and more or less distinct boundary. 'Vascular' white matter lesions and SAE mainly represent demyelination and can therefore be seen on T2-weighted images, but corresponding low signal intensity lesions on T1-weighted images are uncommon. In some exceptions there are such lesions with low signal representing lacunar infarcts or widened Virchow-Robin-spaces. (orig.).

  4. Quantitative analysis of hyperintensity rim sign surrounding MS plaque on T1 weighted images. Comparison with lacunar infarction

    International Nuclear Information System (INIS)

    Komura, Shinji; Ozaki, Yutaka

    2008-01-01

    This study evaluated the incidence of MR findings showing a hyperintensity rim surrounding multiple sclerosis (MS) plaque on T1-weighted images using image analysis software. We also evaluate the efficacy of this MR finding for differentiating between MS and lacunar infarction. We reviewed T1-weighted images in clinically diagnosed MS patients who underwent MR imaging between February 2006 and July 2007. Two hundred and thirty-nine nodular low signal intensities over 5 mm in minimal diameter were observed in 39 MS patients. To compare the incidence of MR findings, we also reviewed T1-weighted images in randomly selected lacunar infarction patients who underwent MR imaging during the same period. There were 51 nodular low signal intensities over 5 mm in shortest diameter in 34 lacunar infarction patients. After standardization of MR images, we calculated each signal intensity at the plaque margin (M.I.) and surrounding white matter (Wh.I.) using plot-profile analysis. We judged that hyperintensity rim sign was positive when the M.I/Wh.I. ratio was over 1.05. Among 239 T1 low intensity plaques in 39 MS patients, hyperintensity rim sign was positive for 81 (33.9%) plaques in 21 (53.8%) patients. Among 51 T1 low intensity lesions in 34 lacunar infarction patients, hyperintensity rim sign was positive for only one lesion in one patient. There were significant differences in the incidence of hyperintensity rim sign between the two patients groups (p<0.0001). On quantitative analysis using imaging standardization and plot-profile analysis, hyperintensity rim sign was observed in one-third of T1 low intensity MS plaques. This finding seems to be useful to differentiate multiple sclerosis from lacunar infarction. (author)

  5. Hyperintense globus pallidus on T1-weighted MR imaging in acute kernicterus: is it common or rare?

    Energy Technology Data Exchange (ETDEWEB)

    Coskun, Abdulhakim; Yikilmaz, Ali; Karahan, Okkes Ibrahim; Manav, Ali [Erciyes University Medical School, Department of Radiology, Kayseri (Turkey); Kumandas, Sefer [Erciyes University Medical School, Department of Neuropediatry, Kayseri (Turkey); Akcakus, Mustafa [Erciyes University Medical School, Department of Neonatalogy, Kayseri (Turkey)

    2005-06-01

    Globus pallidus involvement is a well-known magnetic resonance (MR) imaging finding of acute kernicterus. However, it is not clear how early the involvement of globus pallidus occurs and whether or not it is seen in every case. Therefore, we aimed to investigate the globus pallidus involvement in 13 neonates with acute kernicterus by MR imaging. Thirteen neonates who were admitted with jaundice, encephalopathy and indirect hyperbilirubinemia (mean, 37.0 mg/dl) were prospectively evaluated with cranial MR imaging. Pathological signal changes were noted concerning the globus pallidus. Eight of the 13 patients demonstrated bilateral, symmetric increased signal intensity in the globus pallidus on T1-weighted MR imaging. These lesions were not apparent on T2-weighted images. Multiple parenchymal punctuate T1 hyperintense lesions were detected in one patient without globus pallidus involvement. This appearance was consistent with hemorrhage. The MR imaging findings of the other four patients showed no evidence of abnormality. The symmetric involvement of globus pallidus seen as hyperintense on T1-weighted MR imaging is a common and characteristic finding of acute kernicterus. (orig.)

  6. Hyperintense globus pallidus on T1-weighted MR imaging in acute kernicterus: is it common or rare?

    International Nuclear Information System (INIS)

    Coskun, Abdulhakim; Yikilmaz, Ali; Karahan, Okkes Ibrahim; Manav, Ali; Kumandas, Sefer; Akcakus, Mustafa

    2005-01-01

    Globus pallidus involvement is a well-known magnetic resonance (MR) imaging finding of acute kernicterus. However, it is not clear how early the involvement of globus pallidus occurs and whether or not it is seen in every case. Therefore, we aimed to investigate the globus pallidus involvement in 13 neonates with acute kernicterus by MR imaging. Thirteen neonates who were admitted with jaundice, encephalopathy and indirect hyperbilirubinemia (mean, 37.0 mg/dl) were prospectively evaluated with cranial MR imaging. Pathological signal changes were noted concerning the globus pallidus. Eight of the 13 patients demonstrated bilateral, symmetric increased signal intensity in the globus pallidus on T1-weighted MR imaging. These lesions were not apparent on T2-weighted images. Multiple parenchymal punctuate T1 hyperintense lesions were detected in one patient without globus pallidus involvement. This appearance was consistent with hemorrhage. The MR imaging findings of the other four patients showed no evidence of abnormality. The symmetric involvement of globus pallidus seen as hyperintense on T1-weighted MR imaging is a common and characteristic finding of acute kernicterus. (orig.)

  7. Cerebral and meningeal manifestations of AIDS: comparison of plain T2-weighted images and Gd-DTPA enhanced T1-weighted images in 105 patients

    International Nuclear Information System (INIS)

    Jochens, R.; Henkes, H.; Steinkamp, H.J.; Terstegge, K.; Hosten, N.; Ruf, B.; Schoerner, W.

    1994-01-01

    The purpose of the present study was to evaluate the potential of T1-weighted Gd-DTPA enhanced MR imaging in the diagnosis of cerebral manifestations of AIDS. 105 patients with AIDS were imaged with plain T2-weighted images as well as with Gd-DTPA enhanced T1-weighted pulse sequences. Our study revealed comparable sensitivities in the detection of morphological changes as shown on plain T2-weighted images and Gd-DTPA enhanced T1-weighted images in 55% of patients (normal and pathologic findings). Plain T2-weighted images were superior in 28.5% and provided significantly better results in 8.5% of patients. Gd-DTPA enhanced T1-weighted images were superior in only 5% cases and revealed significantly better results in 3%. As a result, T2-weighted plain images were superior in approximately 40% of patients concerning detection of morphologic changes. In almost 10% of patients with parechymal and meningeal lesions, Gd-DTPA enhanced T1-weighted images, however, were superior or even significantly better compared to T2-weighted plain images. The detection of morphologic changes in MR imaging can be further increased with Gd-DTPA. With regard to differential diagnosis and diesease activity, plain T2-weighted images and Gd-DTPA enhanced T1-weighted images revealed comparable results in 42% of patients (normal and pathologic findings). T2-weighted plain images were superior in 2% of cases whereas Gd-DTPA enhanced T1-weighted images were superior in as much as 56% of patient. MR imaging enhanced with Gd-DTPA yielded additional information on disease activity in 73% of patients with pathologic findings in the cerebral parechyma and the meninges. The surplus of information also refers to the etiology of cerebral pathology and differential diagnosis. Because of the frequency of cerebral manifestations in AIDS, early diagnosis for initiation of therapy and follow-up studies to monitor therapy are crucial. (orig./MG) [de

  8. High signal intensity of anterior pituitary gland on T1-weighted MR imaging in normal postpartum women

    International Nuclear Information System (INIS)

    Kim, Myung Soon; Yang, Hak Seok; Chung, In Bai

    1995-01-01

    The purpose of this study is to evaluate the signal intensity and size of anterior pituitary gland in postpartum women, and to compare with those of control group. In 34 postpartum women (18-43 years, mean: 27 years) and another 35 control nonpregnant women (20-29 years, mean: 24 years), midsagittal T1-weighted MR images were obtained. The signal intensity and height of the anterior pituitary gland were compared between the post-partum and normal control groups. In postpartum women, the signal intensity of the anterior pituitary gland relative to the pons was higher than that of the control group. Pituitary gland height of postpartum women was higher (5-11. 8mm, mean 8.18 ± 1.8mm) than that of control group (2-9mm, mean: 6.2 ± 1.7mm). It is concluded that the hyperintensity of the anterior pituitary gland on T1-weighted image is a normal finding in postpartum women, which is useful in differentiation from pituitary abnormality

  9. High signal intensity of anterior pituitary gland on T1-weighted MR imaging in normal postpartum women

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soon; Yang, Hak Seok; Chung, In Bai [Wonju College of Medicine, Yonsei University, Wonju (Korea, Republic of)

    1995-01-15

    The purpose of this study is to evaluate the signal intensity and size of anterior pituitary gland in postpartum women, and to compare with those of control group. In 34 postpartum women (18-43 years, mean: 27 years) and another 35 control nonpregnant women (20-29 years, mean: 24 years), midsagittal T1-weighted MR images were obtained. The signal intensity and height of the anterior pituitary gland were compared between the post-partum and normal control groups. In postpartum women, the signal intensity of the anterior pituitary gland relative to the pons was higher than that of the control group. Pituitary gland height of postpartum women was higher (5-11. 8mm, mean 8.18 {+-} 1.8mm) than that of control group (2-9mm, mean: 6.2 {+-} 1.7mm). It is concluded that the hyperintensity of the anterior pituitary gland on T1-weighted image is a normal finding in postpartum women, which is useful in differentiation from pituitary abnormality.

  10. Fat-suppressed MRI of musculoskeletal infection: fast T2-weighted techniques versus gadolinium-enhanced T1-weighted images

    International Nuclear Information System (INIS)

    Miller, T.T.; Randolph, D.A. Jr.; Staron, R.B.; Feldman, F.; Cushin, S.

    1997-01-01

    Purpose. To investigate gadolinium's role in imaging musculoskeletal infection by comparing the conspicuity and extent of inflammatory changes demonstrated on gadolinium-enhanced fat-suppressed T1-weighted images versus fat-suppressed fast T2-weighted sequences. Design. Eighteen patients with infection were imaged in a 1.5-T unit, using frequency-selective and/or inversion recovery fat-suppressed fast T2-weighted images (T2WI) and gadolinium-enhanced frequency-selective fat-suppressed T1-weighted images (T1WI). Thirty-four imaging planes with both a fat-suppressed gadolinium-enhanced T1-weighted sequence and a fat-suppressed T2-weighted sequence were obtained. Comparison of the extent and conspicuity of signal intensity changes was made for both bone and soft tissue in each plane. Results. In bone, inflammatory change was equal in extent and conspicuity on fat-suppressed T2WI and fat-suppressed T1WI with gadolinium in 19 planes, more extensive or conspicuous on T2WI in three planes, and less so on T2WI in two planes. Marrow was normal on all three sequences in 10 cases. In soft tissue, inflammatory change was seen equally well in 20 instances, more extensively or conspicuously on the T2WI in 11 instances, and less so on T2WI in 2 instances. One case had no soft tissue involvement on any of the sequences. Five abscesses and three joint effusions were present, all more conspicuously delineated from surrounding inflammatory change on the fat-saturated T1WI with gadolinium. The average imaging time for the fat-saturated T1WI with gadolinium was 6.75 min, while that of the T2-weighted sequences was 5.75 min. Conclusion. Routine use of gadolinium is not warranted. Instead, gadolinium should be reserved for clinically suspected infection in or around a joint, and in cases refractory to medical or surgical treatment due to possible abscess formation. (orig.)

  11. MRI findings of sacroiliitis in ankylosing spondylitis: roles of MPGR and delayed post-contrast T1-weighted images

    International Nuclear Information System (INIS)

    Jeon, Eui Yong; Joo, Kyung Bin; Koo, Ja Hong; Moon, Won Jin; Hahm, Chang Kok; Kim, Tae Hwan; Kim, Seong Yoon

    1997-01-01

    For early diagnosis of sacroiliitis in spondyloarthropathy, the MRI findings of sacroiliitis, roles of MPGR(multiplanar Gradient Recalled Acquisition in Steady State), and delayed post-contrast T1-weighted images were evaluated. Twenty six patients with seronegative spondyloarthropathy(Probable clinical diagnosis of ankylosing spondylitis) were grouped as either less than radiographic grade 1(group A) or more than grade 2(group B). The MRI findings of both sacroiliac joints were evaluated in every patient, and predominant sites were determined. The two groups were then compared. In 17 patients, the number of enhancing panni seen on early and delayed post-contrast T1-weighted images was counted and compared between the two groups. Panni were found in all cases, and in both groups, predominant patterns of involvement were the lower and iliac aspects of the sacroiliac joints in both groups; in group A, the synovial joints and punctate pannus were predominantly involved, and in group B, the ligamentous joints as well as the synovial joints and linear pannus. In group B, More periarticular fat accumulation than periarticular osteitis was found. For the evaluation of changes in joint space, MPGR images were superior to spin echo images. For the delineation of enhancing pannus less than radiographic grade I, delayed post-contrast images were statistically superior to those which were early post-contrast. MRI can detect early sacroiliitic change according to the predominant sites of involvement, and deslyed post-contrast images play a role in the diagnosis of early sacroiliitis. MPGR imaging is good for the evaluation of joint space change

  12. MRI findings of sacroiliitis in ankylosing spondylitis: roles of MPGR and delayed post-contrast T1-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Eui Yong; Joo, Kyung Bin; Koo, Ja Hong; Moon, Won Jin; Hahm, Chang Kok; Kim, Tae Hwan; Kim, Seong Yoon [Hanyang Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    For early diagnosis of sacroiliitis in spondyloarthropathy, the MRI findings of sacroiliitis, roles of MPGR(multiplanar Gradient Recalled Acquisition in Steady State), and delayed post-contrast T1-weighted images were evaluated. Twenty six patients with seronegative spondyloarthropathy(Probable clinical diagnosis of ankylosing spondylitis) were grouped as either less than radiographic grade 1(group A) or more than grade 2(group B). The MRI findings of both sacroiliac joints were evaluated in every patient, and predominant sites were determined. The two groups were then compared. In 17 patients, the number of enhancing panni seen on early and delayed post-contrast T1-weighted images was counted and compared between the two groups. Panni were found in all cases, and in both groups, predominant patterns of involvement were the lower and iliac aspects of the sacroiliac joints in both groups; in group A, the synovial joints and punctate pannus were predominantly involved, and in group B, the ligamentous joints as well as the synovial joints and linear pannus. In group B, More periarticular fat accumulation than periarticular osteitis was found. For the evaluation of changes in joint space, MPGR images were superior to spin echo images. For the delineation of enhancing pannus less than radiographic grade I, delayed post-contrast images were statistically superior to those which were early post-contrast. MRI can detect early sacroiliitic change according to the predominant sites of involvement, and deslyed post-contrast images play a role in the diagnosis of early sacroiliitis. MPGR imaging is good for the evaluation of joint space change.

  13. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    Science.gov (United States)

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  14. Diagnostic Utility of Contrast-enhanced 3D T1-weighted Imaging in Acute Cerebral Infarction Associated with Graves Disease.

    Science.gov (United States)

    Gon, Yasufumi; Sakaguchi, Manabu; Oyama, Naoki; Mochizuki, Hideki

    2017-02-01

    Graves disease is rarely complicated with cerebrovascular steno-occlusive diseases. Previous studies have suggested several hypotheses for this occurrence, including excess thyroid hormone, which stimulates the sympathetic nervous system, which in turn causes an abnormal hemodynamic response with consequent atherosclerotic changes, and antithyroid antibodies cause local vascular inflammation in patients with Graves disease. However, radiological findings of vasculitis in patients with Graves disease and cerebral infarction remain less known. We report the case of a 30-year-old Japanese woman with acute cerebral infarction due to vasculitis associated with Graves disease. She was admitted to our hospital with a 4-day history of intermittent transient dysarthria and limb shaking of the left leg when standing. Three weeks before admission, she went to a local hospital because of general malaise and was diagnosed with Graves disease. Neurological examination revealed paralytic dysarthria, left central facial nerve palsy, and left hemiparesis (manual muscle testing, 4 of 5). Blood examinations showed hyperthyroidism (thyroid-stimulating hormone ≤.010 µU/mL; free T3 ≥25.0 pg/mL; free T4 ≥8.0 ng/dL) and elevation of antithyroid antibody levels (thyroid peroxidase antibody, 87 IU/mL). The vessel wall of the right internal carotid artery was markedly enhanced on contrast-enhanced three-dimensional T1-weighted magnetic resonance imaging, suggesting vasculitis. Magnetic resonance angiography revealed right internal carotid artery occlusion after the branching ophthalmic artery. Arterial stenosis due to vasculitis was considered the cause of hemodynamic ischemic stroke. Vessel wall imaging such as high-resolution contrast-enhanced T1-weighted imaging seems useful for assessing the underlying mechanism of stroke in patients with Graves disease. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Normalization of white matter intensity on T1-weighted images of patients with acquired central nervous system demyelination.

    Science.gov (United States)

    Ghassemi, Rezwan; Brown, Robert; Narayanan, Sridar; Banwell, Brenda; Nakamura, Kunio; Arnold, Douglas L

    2015-01-01

    Intensity variation between magnetic resonance images (MRI) hinders comparison of tissue intensity distributions in multicenter MRI studies of brain diseases. The available intensity normalization techniques generally work well in healthy subjects but not in the presence of pathologies that affect tissue intensity. One such disease is multiple sclerosis (MS), which is associated with lesions that prominently affect white matter (WM). To develop a T1-weighted (T1w) image intensity normalization method that is independent of WM intensity, and to quantitatively evaluate its performance. We calculated median intensity of grey matter and intraconal orbital fat on T1w images. Using these two reference tissue intensities we calculated a linear normalization function and applied this to the T1w images to produce normalized T1w (NT1) images. We assessed performance of our normalization method for interscanner, interprotocol, and longitudinal normalization variability, and calculated the utility of the normalization method for lesion analyses in clinical trials. Statistical modeling showed marked decreases in T1w intensity differences after normalization (P < .0001). We developed a WM-independent T1w MRI normalization method and tested its performance. This method is suitable for longitudinal multicenter clinical studies for the assessment of the recovery or progression of disease affecting WM. Copyright © 2014 by the American Society of Neuroimaging.

  16. Role of MR imaging in the differentiation of benign and nonbenign intracranial meningiomas. The utility of contrast-enhanced T1-weighted images

    International Nuclear Information System (INIS)

    Tanaka, Yasunori; Matsuo, Michimasa

    1996-01-01

    The purpose of this study was to develop useful criteria for distinguishing nonbenign (atypical and malignant) primary intracranial meningiomas from their benign counterparts by using magnetic resonance imaging (MRI). To determine useful MRI findings for this purpose, 12 benign and five nonbenign meningiomas were retrospectively evaluated according to the following items: tumor signal intensity on plain T1-, T2- and proton density-weighted images, degree of perifocal edema on T2-weighted images, morphology of the tumor margin on contrast-enhanced T1-weighted images, presence of irregular nodule and/or mushrooming pattern on contrast-enhanced T1-weighted images, homogeneity of the tumor on contrast-enhanced T1-weighted images, and presence of marked skull destruction. Markedly irregular tumor margin, presence of irregular nodule and/or mushrooming pattern and markedly inhomogeneous enhancing pattern were significantly more frequent in nonbenign meningiomas. We defined these three MRI findings as nonbenign findings, and tried to categorize meningiomas by the number of nonbenign findings. It was found that 10 meningiomas with no or one nonbenign finding were benign lesions, of four meningiomas with two nonbenign findings two were benign lesions and two were nonbenign lesions, and three meningiomas with three nonbenign findings were nonbenign lesions. The two benign meningiomas with two nonbenign findings were accompanied by increased mitotic activity or brain invasion. Contrast-enhanced T1-weighted images were considered very useful in distinguishing benign and nonbenign meningiomas. (author)

  17. Carotid plaque signal differences among four kinds of T1-weighted magnetic resonance imaging techniques: A histopathological correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Ayumi; Narumi, Shinsuke; Ohba, Hideki; Yamaguchi, Mao; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Institute for Biomedical Sciences, Morioka (Japan); Ogasawara, Kuniaki; Kobayashi, Masakazu [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2012-11-15

    Several magnetic resonance (MR) imaging techniques are used to examine atherosclerotic plaque of carotid arteries; however, the best technique for visualizing intraplaque characteristics has yet to be determined. Here, we directly compared four kinds of T1-weighted (T1W) imaging techniques with pathological findings in patients with carotid stenosis. A total of 31 patients who were candidates for carotid endarterectomy were prospectively examined using a 1.5-T MRI scanner, which produced four kinds of T1W images, including non-gated spin echo (SE), cardiac-gated black-blood (BB) fast-SE (FSE), magnetization-prepared rapid acquisition with gradient echo (MPRAGE), and source image of three-dimensional time-of-flight MR angiography (SI-MRA). The signal intensity of the carotid plaque was manually measured, and the contrast ratio (CR) against the adjacent muscle was calculated. CRs from the four imaging techniques were compared to each other and correlated with histopathological specimens. CRs of the carotid plaques mainly containing fibrous tissue, lipid/necrosis, and hemorrhage were significantly different with little overlaps (range: 0.92-1.15, 1.22-1.52, and 1.55-2.30, respectively) on non-gated SE. However, BB-FSE showed remarkable overlaps among the three groups (0.89-1.10, 1.07-1.23, and 1.01-1.42, respectively). MPRAGE could discriminate fibrous plaques from hemorrhagic plaques but not from lipid/necrosis-rich plaques: (0.77-1.07, 1.45-2.43, and 0.85-1.42, respectively). SI-MRA showed the same tendencies (1.01-1.39, 1.45-2.57, and 1.12-1.39, respectively). Among T1W MR imaging techniques, non-gated SE images can more accurately characterize intraplaque components in patients who underwent CEA when compared with cardiac-gated BB-FSE, MPRAGE, and SI-MRA images. (orig.)

  18. Bone marrow response in treated patients with Gaucher disease: evaluation by T1-weighted magnetic resonance images and correlation with reduction in liver and spleen volume

    International Nuclear Information System (INIS)

    Terk, M.R.; Dardashti, S.; Liebman, H.A.

    2000-01-01

    Purpose. To determine whether T1-weighted magnetic resonance (MR) images can demonstrate response in the marrow of patients with type 1 Gaucher disease treated with enzyme replacement therapy (ERT) and to determine whether a relationship exists between liver and spleen volume reductions and visible marrow changes.Patients. Forty-two patients with type 1 Gaucher disease were evaluated on at least two occasions. Thirty-two patients received ERT. Of these patients, 15 had a baseline examination prior to the initiation of ERT. The remaining 10 patients did not receive ERT.Design. T1-weighted and gradient recalled echo (GRE) coronal images of the femurs and hips were obtained. Concurrently, liver and spleen volumes were determined using contiguous breath-hold axial gradient-echo images. T1-weighted images of the hips and femurs were evaluated to determine change or lack of change in the yellow marrow.Results. Of the 32 patients receiving ERT, 14 (44%) demonstrated increased signal on T1-weighted images suggesting an increase in the amount of yellow marrow. If only the 15 patients with a baseline examination were considered, the response rate to ERT was 67%. Using Student's t-test a highly significant correlation (P<0.005) was found between marrow response and reduction in liver and spleen volume.Conclusions. Marrow changes in patients receiving ERT can be detected by T1-weighted images. This response correlated with reductions in visceral volumes (P<0.0005). (orig.)

  19. Brain MR imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain

    International Nuclear Information System (INIS)

    Maeda, H.; Sato, M.; Yoshikawa, A.; Kimura, M.; Sonomura, T.; Terada, M.; Kishi, K.

    1997-01-01

    In patients with hepatic cirrhosis, the globus pallidus and putamen show high intensity on T1-weighted MRI. While the causes of this high signal have been thought to include paramagnetic substances, especially manganese, no evidence for this has been presented. Autopsy in four cases of hepatic cirrhosis permitted measurement of metal concentrations in brain and histopathological examination. In three cases the globus pallidus showed high intensity on T1-weighted images. Mean manganese concentrations in globus pallidus, putamen and frontal white matter were 3.03 ± 0.38, 2.12 ± 0.37, and 1.38 ± 0.24 (μg/g wet weight), respectively, being approximately four- to almost ten-fold the normal values. Copper concentrations in globus pallidus and putamen were also high, 50 % more than normal. Calcium, iron, zinc and magnesium concentrations were all normal. The fourth case showed no abnormal intensity in the basal ganglia and brain metal concentrations were all normal. Histopathologically, cases with showing high signal remarkable atrophy, necrosis, and deciduation of nerve cells and proliferation of glial cells and microglia in globus pallidus. These findings were similar to those in chronic manganese poisoning. On T1-weighted images, copper deposition shows no abnormal intensity. It is therefore inferred that deposition of highly concentrations of manganese may caused high signal on T1-weighted images and nerve cell death in the globus pallidus. (orig.). With 2 figs., 2 tabs

  20. Temporal and spatial characteristics of the area at risk investigated using computed tomography and T1-weighted magnetic resonance imaging

    DEFF Research Database (Denmark)

    van der Pals, Jesper; Hammer-Hansen, Sophia; Nielles-Vallespin, Sonia

    2015-01-01

    AIMS: Cardiovascular magnetic resonance (CMR) imaging can measure the myocardial area at risk (AAR), but the technique has received criticism for inadequate validation. CMR commonly depicts an AAR that is wider than the infarct, which in turn would require a lateral perfusion gradient within...... and fluorescent microparticle pathology were used to investigate the AAR in a canine model (n = 10) of ischaemia and reperfusion. AAR size by CMR correlated well with CT (R(2) = 0.80), microsphere blood flow (R(2) = 0.80), and pathology (R(2) = 0.74) with good limits of agreement [-0.79 ± 4.02% of the left.......05 ± 0.02 mL/g/min, lateral vs. core, P = 0.001). The transmural extent of MI was lower in the lateral portion of the AAR than the core (28.2 ± 10.2 vs. 17.4 ± 8.4% of the wall, P = 0.001). CONCLUSION: T1-weighted CMR accurately quantifies size of the AAR with excellent agreement compared with three...

  1. Diagnostic value of brain chronic black holes on T1-weighted MR images in clinically isolated syndromes.

    Science.gov (United States)

    Mitjana, Raquel; Tintoré, Mar; Rocca, Maria A; Auger, Cristina; Barkhof, Frederik; Filippi, Massimo; Polman, Chris; Fazekas, Franz; Huerga, Elena; Montalban, Xavier; Rovira, Alex

    2014-10-01

    Non-enhancing black holes (neBHs) are more common in multiple sclerosis (MS) patients with longer disease durations and progressive disease subtypes. Our aim was to analyse the added value of neBHs in patients with clinically isolated syndromes (CISs) for predicting conversion to clinically definite MS (CDMS). Patients were classified based on the presence or absence of neBHs and on the number of Barkhof-Tintoré (B-T) criteria fulfilled. Dissemination in space (DIS) was defined as the presence of at least three of the four B-T criteria. Dissemination in time (DIT)1 was defined by simultaneous presence of enhancing and non-enhancing lesions. DIT2 was defined by simultaneous presence of neBHs and T2 lesions not apparent on T1-weighted images. Focal T2-hyperintense brain lesions were identified in 87.7% of the 520 CIS patients, and 41.4% of them presented at least one neBH. Patients meeting DIS, DIT1, and DIT2 had a significantly higher rate of conversion to CDMS. After adjusting for DIS, only patients who fulfilled DIT1 preserved a significant increase in CDMS conversion. Non-enhancing black holes in CIS patients are associated with a higher risk of conversion to CDMS. However, the predictive value of this finding is lost when added to the DIS criteria. © The Author(s) 2014.

  2. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    Energy Technology Data Exchange (ETDEWEB)

    Radlbauer, Rudolf, E-mail: rudolf.radlbauer@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Lomoschitz, Friedrich, E-mail: friedrich.lomoschitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Salomonowitz, Erich, E-mail: erich.salomonowitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Eberhardt, Knut E., E-mail: info@mrt-kompetenzzentrum.d [MRT Competence Center Schloss Werneck, Balthasar-Neumann-Platz 2, 97440 Werneck (Germany); Stadlbauer, Andreas, E-mail: andi@nmr.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany)

    2010-08-15

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  3. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    International Nuclear Information System (INIS)

    Radlbauer, Rudolf; Lomoschitz, Friedrich; Salomonowitz, Erich; Eberhardt, Knut E.; Stadlbauer, Andreas

    2010-01-01

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  4. High signal in the adenohypophysis on T1-weighted images presumably due to manganese deposits in patients on long-term parenteral nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Dietemann, J.L.; Diniz, R.L.F.C.; Reis, M. Jr.; Neugroschl, C.; Soehsten, S. von [Department of Radiology 2, University Hospital of Strasbourg (France); Reimund, J.M.; Baumann, R. [Department of Hepatogastroenterology, University Hospital of Strasbourg (France); Warter, J.M. [Department of Neurology, University Hospital of Strasbourg (France)

    1998-12-01

    Hypermanganesaemia is reported in patients on long-term parenteral nutrition. Deposition of manganese, giving high signal on T1-weighted images, may involve the basal ganglia. MRI in nine patients (mean age 51 years, range 31-75 years) on long-term parenteral nutrition (mean duration 30 months, range 6-126 months), demonstrated high signal in the anterior pituitary gland on T1-weighted sagittal and coronal images. The gland appeared normal on T2-weighted images. Signal intensity in the basal ganglia on T1-weighted images was increased in all patients. Endocrine assessment showed no significant abnormality. Neurological examination showed a mild parkinsonian movement disorder in one patient. Hypermanganaesemia was present in all nine (1.3-2.8 {mu}mol/l, mean 1.87 {mu}mol/l). The high signal in the anterior pituitary gland was probably related to deposition of paramagnetic substances, especially manganese. (orig.) With 2 figs., 1 tab., 17 refs.

  5. High signal in the adenohypophysis on T1-weighted images presumably due to manganese deposits in patients on long-term parenteral nutrition

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Diniz, R.L.F.C.; Reis, M. Jr.; Neugroschl, C.; Soehsten, S. von; Reimund, J.M.; Baumann, R.; Warter, J.M.

    1998-01-01

    Hypermanganesaemia is reported in patients on long-term parenteral nutrition. Deposition of manganese, giving high signal on T1-weighted images, may involve the basal ganglia. MRI in nine patients (mean age 51 years, range 31-75 years) on long-term parenteral nutrition (mean duration 30 months, range 6-126 months), demonstrated high signal in the anterior pituitary gland on T1-weighted sagittal and coronal images. The gland appeared normal on T2-weighted images. Signal intensity in the basal ganglia on T1-weighted images was increased in all patients. Endocrine assessment showed no significant abnormality. Neurological examination showed a mild parkinsonian movement disorder in one patient. Hypermanganaesemia was present in all nine (1.3-2.8 μmol/l, mean 1.87 μmol/l). The high signal in the anterior pituitary gland was probably related to deposition of paramagnetic substances, especially manganese. (orig.)

  6. Aberrant resting-state corticostriatal functional connectivity in cirrhotic patients with hyperintense globus pallidus on T1-weighted MR imaging.

    Directory of Open Access Journals (Sweden)

    Xi-Qi Zhu

    Full Text Available Neurobiological and neuroimaging studies have emphasized the structural and functional alterations in the striatum of cirrhotic patients, but alterations in the functional connections between the striatum and other brain regions have not yet been explored. Of note, manganese accumulation in the nervous system, frequently reflected by hyperintensity at the bilateral globus pallidus (GP on T1-weighted imaging, has been considered a factor affecting the striatal and cortical functions in hepatic decompensation. We employed resting-state functional magnetic resonance imaging to analyze the temporal correlation between the striatum and the remaining brain regions using seed-based correlation analyses. The two-sample t-test was conducted to detect the differences in corticostriatal connectivity between 44 cirrhotic patients with hyperintensity at the bilateral GP and 20 healthy controls. Decreased connectivity of the caudate was detected in the anterior/middle cingulate gyrus, and increased connectivity of the caudate was found in the left motor cortex. A reduction in functional connectivity was found between the putamen and several regions, including the anterior cingulate gyrus, right insular lobe, inferior frontal gyrus, left parahippocampal gyrus, and anterior lobe of the right cerebellum; increased connectivity was detected between the putamen and right middle temporal gyrus. There were significant correlations between the corticostriatal connectivity and neuropsychological performances in the patient group, but not between the striatal connectivity and GP signal intensity. These alterations in the corticostriatal functional connectivity suggested the abnormalities in the intrinsic brain functional organiztion among the cirrhotic patients with manganese deposition, and may be associated with development of metabolic encephalopathy. The manganese deposition in nervous system, however, can not be an independent factor predicting the resting

  7. Intracranial arterial wall enhancement using gadolinium-enhanced 3D black-blood T1-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Koichi, E-mail: k-takano@fukuoka-u.ac.jp; Hida, Kosuke; Kuwabara, Yasuo; Yoshimitsu, Kengo

    2017-01-15

    Purpose: We investigated the enhancement of the intracranial arterial walls with gadolinium-enhanced, black-blood three-dimensional T1-weighted imaging (Gd-3DBB) by using an improved motion-sensitized driven-equilibrium (iMSDE)—prepared volumetric isotropic turbo spin-echo acquisition (VISTA). Methods: A total of 115 patients underwent FLAIR, 3D-TOF-MRA and Gd-3DBB with a 1.5-T scanner. The degree and distribution of the arterial wall enhancement on Gd-3DBB was assessed. The association of the degree of wall enhancement with brain infarction/ischemic lesions on FLAIR, luminal changes on 3D-TOF-MRA, and cardiovascular risk factors (CVRFs) was investigated by univariate and multiple logistic regression analyses. Results: Strong enhancement of the arterial walls was observed in 77 vertebral arteries (33.5%), 4 basilar arteries (3.5%), 31 supraclinoid internal carotid arteries (ICAs) (13.5%) and 8 middle cerebral arteries (3.5%). In addition, 221 intrapetrous ICAs (96.1%) showed strong enhancement. After adjusting for confounding factors, multivariate analyses showed that the patient age was independently associated with the strong wall enhancement of the arteries for both the posterior (OR, 1.088; 95% CI, 1.034–1.146) and the anterior circulation (OR, 1.098, 95% CI 1.029–1.172). In addition, the presence of the supratentorial brain infarctions was independently associated with the strong wall enhancement in the anterior circulation excluding the intrapetrous ICAs (OR, 4.097; 95% CI, 1.483–11.319). Conclusions: Although the arterial wall enhancement on the Gd-3DBB probably reflects normal aging, the enhancement in the anterior circulation might be related to brain infarctions. On the other hand, the intrapetrous ICA enhancement is considered a nonspecific finding and should not be mistaken for arterial pathologies such as atherosclerosis or arteritis.

  8. Intracranial arterial wall enhancement using gadolinium-enhanced 3D black-blood T1-weighted imaging

    International Nuclear Information System (INIS)

    Takano, Koichi; Hida, Kosuke; Kuwabara, Yasuo; Yoshimitsu, Kengo

    2017-01-01

    Purpose: We investigated the enhancement of the intracranial arterial walls with gadolinium-enhanced, black-blood three-dimensional T1-weighted imaging (Gd-3DBB) by using an improved motion-sensitized driven-equilibrium (iMSDE)—prepared volumetric isotropic turbo spin-echo acquisition (VISTA). Methods: A total of 115 patients underwent FLAIR, 3D-TOF-MRA and Gd-3DBB with a 1.5-T scanner. The degree and distribution of the arterial wall enhancement on Gd-3DBB was assessed. The association of the degree of wall enhancement with brain infarction/ischemic lesions on FLAIR, luminal changes on 3D-TOF-MRA, and cardiovascular risk factors (CVRFs) was investigated by univariate and multiple logistic regression analyses. Results: Strong enhancement of the arterial walls was observed in 77 vertebral arteries (33.5%), 4 basilar arteries (3.5%), 31 supraclinoid internal carotid arteries (ICAs) (13.5%) and 8 middle cerebral arteries (3.5%). In addition, 221 intrapetrous ICAs (96.1%) showed strong enhancement. After adjusting for confounding factors, multivariate analyses showed that the patient age was independently associated with the strong wall enhancement of the arteries for both the posterior (OR, 1.088; 95% CI, 1.034–1.146) and the anterior circulation (OR, 1.098, 95% CI 1.029–1.172). In addition, the presence of the supratentorial brain infarctions was independently associated with the strong wall enhancement in the anterior circulation excluding the intrapetrous ICAs (OR, 4.097; 95% CI, 1.483–11.319). Conclusions: Although the arterial wall enhancement on the Gd-3DBB probably reflects normal aging, the enhancement in the anterior circulation might be related to brain infarctions. On the other hand, the intrapetrous ICA enhancement is considered a nonspecific finding and should not be mistaken for arterial pathologies such as atherosclerosis or arteritis.

  9. Gadolinium-enhanced MR imaging of normal renal transplants. An evaluation of a T1-weighted dynamic echo-planar sequence

    International Nuclear Information System (INIS)

    Dupas, B.; Blancho, G.; Havet, T.; Leaute, F.

    1999-01-01

    Purpose: To evaluate the potential usefulness of dynamic MR with echoplanar imaging (EPI) in assessing the renal function in patients with renal allografts. Material and methods: Using a T1-weighted sequence, EPI was performed after injection of a Gd-chelate in 17 patients with normally functioning renal allografts. Time-intensity curves were plotted from the signal intensity (SI) measurements of the cortex and the medulla. Results: The pattern of corticomedullar differentiation (CMD) observed after constrast enhancement was divided into four phases using the T1-EPI. After a rapid decrease in the SI of cortical structures, and a subsequent return to precontrast levels, a gradual fall in the SI of the medulla was observed. The average time between the two periods of signal loss was 60 s. Conclusion: This study illustrated the potential use of dynamic T1-EPI to demonstrate contrast-induced CMD in renal allografts. (orig.)

  10. Magnetization transfer imaging identifies basal ganglia abnormalities in adult ADHD that are invisible to conventional T1 weighted voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Arjun Sethi

    2017-01-01

    Full Text Available In childhood, Attention Deficit Hyperactivity Disorder (ADHD is reliably associated with reduced volume of the striatum. In contrast, striatal abnormalities are infrequently detected in voxel-based morphometry (VBM neuroimaging studies of adults with ADHD. This discrepancy has been suggested to reflect normalisation of striatal morphology with age and prolonged treatment of symptoms. If so, this would indicate that while striatal abnormalities are linked to symptom expression in childhood, they cannot explain the persistence of these symptoms in adulthood. However, this may not be case. Instead, we hypothesized that the lack of evidence for striatal abnormalities in adult ADHD may reflect poor sensitivity of typical (T1-weighted neuroimaging to detect subcortical differences. To address this, we acquired both magnetisation transfer (MT saturation maps optimised for subcortical contrast, and conventional T1-weighted images in 30 adults with ADHD and 30 age, IQ, gender and handedness-matched controls. Using VBM of both datasets, we demonstrate volumetric reductions within the left ventral striatum on MT that are not observed on identically pre-processed T1-weighted images from the same participants. Nevertheless, both techniques reported similar sensitivity to cortical abnormalities in the right inferior parietal lobe. Additionally, we show that differences in striatal iron may potentially explain this reduced sensitivity of T1-weighted images in adults. Together, these findings indicate that prior VBM studies reporting no abnormalities in striatal volume in adult ADHD might have been compromised by the methodological insensitivity of T1-weighted VBM to subcortical differences, and that structural abnormalities of the striatum in ADHD do indeed persist into adulthood.

  11. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.

    Science.gov (United States)

    Fan, Zhaoyang; Yang, Qi; Deng, Zixin; Li, Yuxia; Bi, Xiaoming; Song, Shlee; Li, Debiao

    2017-03-01

    Although three-dimensional (3D) turbo spin echo (TSE) with variable flip angles has proven to be useful for intracranial vessel wall imaging, it is associated with inadequate suppression of cerebrospinal fluid (CSF) signals and limited spatial coverage at 3 Tesla (T). This work aimed to modify the sequence and develop a protocol to achieve whole-brain, CSF-attenuated T 1 -weighted vessel wall imaging. Nonselective excitation and a flip-down radiofrequency pulse module were incorporated into a commercial 3D TSE sequence. A protocol based on the sequence was designed to achieve T 1 -weighted vessel wall imaging with whole-brain spatial coverage, enhanced CSF-signal suppression, and isotropic 0.5-mm resolution. Human volunteer and pilot patient studies were performed to qualitatively and quantitatively demonstrate the advantages of the sequence. Compared with the original sequence, the modified sequence significantly improved the T 1 -weighted image contrast score (2.07 ± 0.19 versus 3.00 ± 0.00, P = 0.011), vessel wall-to-CSF contrast ratio (0.14 ± 0.16 versus 0.52 ± 0.30, P = 0.007) and contrast-to-noise ratio (1.69 ± 2.18 versus 4.26 ± 2.30, P = 0.022). Significant improvement in vessel wall outer boundary sharpness was observed in several major arterial segments. The new 3D TSE sequence allows for high-quality T 1 -weighted intracranial vessel wall imaging at 3 T. It may potentially aid in depicting small arteries and revealing T 1 -mediated high-signal wall abnormalities. Magn Reson Med 77:1142-1150, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Accuracy of magnetic resonance imaging in planning the osseous resection margins of bony tumours in the proximal femur: based on coronal T1-weighted versus STIR images

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Sarfraz; Stevenson, Jonathan; Mangham, Charles; Cribb, Gillian; Cool, Paul [Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Musculoskeletal Oncology, Oswestry, Shropshire (United Kingdom)

    2014-12-15

    Assessment of the extent of tumours using magnetic resonance imaging (MRI) is the basis for bone resection in limb-salvage surgery. We aimed to compare the accuracy of T1-weighted MRI and STIR sequences in measuring the extent of proximal femoral tumours, using the macroscopic specimens as the gold standard for comparison. We compared single coronal T1-weighted with STIR sequences in 34 proximal femoral tumours, using bivalved resected macroscopic tumours for comparison. After randomisation, four observers measured longitudinal osseous tumour extent using MRI and specimen photographs on two separate occasions, 3 weeks apart. There were 25 metastatic tumours, 8 chondrosarcomas and 1 myeloma. Eight patients presented with pathological fractures. The Pearson's correlation coefficient for comparison of T1 with macroscopic tumours was 0.91 (95 % confidence interval [CI]: 0.83 to 0.96) for all observers and 0.90 (95 % CI: 0.81 to 0.95) for STIR images. This difference was not statistically significant, and T1 and STIR sequence measurements had similar precision and accuracy. Bland-Altman plots showed T1-weighted imaging to be unbiased, whereas STIR sequences were biased and had systematic error. Moreover, STIR measurements overestimated tumour size by 6.4 mm (95 % CI: -26.9 to 39.7 mm) and 2 patients were outliers. T1 measurements were closer to the macroscopic measurements with a mean difference of 1.3 mm (95 % CI: -28.9 mm to 31.5 mm), with 3 patients falling outside of this. The variance was greater for STIR measurements. This difference between T1 and STIR measurements was statistically significant (p = 0.000003). The intra-observer reliability between separate measurements for MRI and specimen photographs achieved interclass correlation coefficients of 0.97, 0.96 and 0.95 (T1, STIR and macroscopic tumour respectively). T1 had greater interobserver correlation than for STIR and macroscopic tumour measurements (0.88 vs 0.85 and 0.85 respectively). These

  13. Comparison of contrast-enhanced T1-weighted and 3D constructive interference in steady state images for predicting outcome after hearing-preservation surgery for vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Kocaoglu, M.; Bulakbasi, N.; Ucoz, T.; Ustunsoz, B.; Tayfun, C.; Somuncu, I. [GATA Department of Radiology, 06018, Etlik, Ankara (Turkey); Pabuscu, Y. [Department of Radiology, Celal Bayar University, Manisa (Turkey)

    2003-07-01

    We compared contrast-enhanced T1-weighted and 3D constructive interference in steady state (CISS) sequences for demonstrating possible prognostic factors in hearing-preservation surgery for vestibular schwannoma. We studied 22 patients with vestibular schwannomas having hearing-preservation surgery. Postoperatively six (27%) had a facial palsy and eight (36%) had hearing loss. There was a significant correlation between the size of the tumour and facial palsy (r=-0.72). Both techniques adequately demonstrated all tumours. Involvement of the fundus of the internal auditory canal (IAC) and a small distance between the lateral border of the tumour and the fundus were correlated significantly with hearing loss (r=-0.81 and -0.75, respectively). The 3D-CISS sequence, by virtue of its high contrast resolution was superior to T1-weighted images (P<0.05) for detection of the fundal involvement. The direction of displacement of the facial nerve did not correlate with facial palsy or hearing loss. We think that 3D-CISS images better show the features influencing surgical outcome, but that contrast-enhanced T1-weighted images are required for diagnosis. (orig.)

  14. Comparison of contrast-enhanced T1-weighted and 3D constructive interference in steady state images for predicting outcome after hearing-preservation surgery for vestibular schwannoma

    International Nuclear Information System (INIS)

    Kocaoglu, M.; Bulakbasi, N.; Ucoz, T.; Ustunsoz, B.; Tayfun, C.; Somuncu, I.; Pabuscu, Y.

    2003-01-01

    We compared contrast-enhanced T1-weighted and 3D constructive interference in steady state (CISS) sequences for demonstrating possible prognostic factors in hearing-preservation surgery for vestibular schwannoma. We studied 22 patients with vestibular schwannomas having hearing-preservation surgery. Postoperatively six (27%) had a facial palsy and eight (36%) had hearing loss. There was a significant correlation between the size of the tumour and facial palsy (r=-0.72). Both techniques adequately demonstrated all tumours. Involvement of the fundus of the internal auditory canal (IAC) and a small distance between the lateral border of the tumour and the fundus were correlated significantly with hearing loss (r=-0.81 and -0.75, respectively). The 3D-CISS sequence, by virtue of its high contrast resolution was superior to T1-weighted images (P<0.05) for detection of the fundal involvement. The direction of displacement of the facial nerve did not correlate with facial palsy or hearing loss. We think that 3D-CISS images better show the features influencing surgical outcome, but that contrast-enhanced T1-weighted images are required for diagnosis. (orig.)

  15. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    Science.gov (United States)

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  16. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    International Nuclear Information System (INIS)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B; Wang, K; Bayram, E

    2016-01-01

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  17. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B [UT MD Anderson Cancer Center, Houston, TX (United States); Wang, K; Bayram, E [GE Healthcare Technologies, Waukesha, Wisconsin (United States)

    2016-06-15

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  18. Magnetic Resonance Cholangiopancreatography: Image Quality, Ductal Morphology, and Value of Additional T2- and T1-weighted Sequences for the Assessment of Suspected Pancreatic Cancer

    International Nuclear Information System (INIS)

    Lopez Haenninen, E.; Ricke, H.; Amthauer, H.; Roettgen, R.; Boehmig, M.; Langrehr, J.; Pech, M.; Denecke, T.; Rosewicz, S.; Felix, R.

    2005-01-01

    Purpose: To assess image quality and duct morphology on magnetic resonance cholangiopancreatography (MRCP) and also the value of additional T2- and T1-weighted sequences for differentiation of benignity and malignancy in patients with suspected pancreatic tumors. Material and Methods: One-hundred-and-fourteen patients received MRCP and unenhanced and contrast material-enhanced MR imaging. MR results were analyzed independently by two blinded readers, and subsequently correlated with the results from surgery, biopsy, and follow-up. Assessment included the evaluation of image quality, duct visualization and morphology, and the differentiation of pancreatic lesion status (benign versus malignant).Results: Overall, 49 patients had benign final diagnoses, while 65 had a malignant diagnosis. Image quality of single-shot thick-slab MRCP was rated significantly better than the MIP images of multisection MRCP. With MRCP alone, the two readers' accuracy in the assessment of pancreatic lesion status was 72% (95% CI, 64% to 83%) and 69% (95% CI, 56% to 77%), respectively; with the addition of T2- and T1-weighted images the accuracy significantly improved to 89% (95% CI, 82% to 95%) and 84% (95% CI, 77% to 92%) for readers 1 and 2, respectively. Conclusion: Single-shot thick-slab MRCP and multisection MRCP provide complementary results; however, single-shot MRCP had superior image quality. Moreover, assessment of ductal morphology with MRCP alone facilitated the diagnosis of different pathologic conditions of the pancreatobiliary system in the majority of patients. However, with the addition of T2- and T1-weighted sequences the overall diagnostic accuracy was significantly improved and thus we consider that a comprehensive MR approach should comprise both MRCP techniques and parenchymal sequences

  19. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)

  20. Optimal MR pulse sequences for hepatic hemangiomas : comparison of T2-weighted turbo-spin-echo, T2-weighted breath-hold turbo-spin-echo, and T1-weighted FLASH dynamic imaging

    International Nuclear Information System (INIS)

    Wang, Wen Chao; Choi, Byung Ihn; Han, Joon Koo; Kim, Tae Kyoung; Cho, Soon Gu

    1997-01-01

    To optimize MR imaging pulse sequences in the imaging of hepatic hemangioma and to evaluate on dynamic MR imaging the enhancing characteristics of the lesions. Twenty patients with 35 hemangiomas were studied by using Turbo-spin-echo (TSE) sequence (T2-weighted, T2- and heavily T2-weighted breath-hold) and T1-weighted FLASH imaging acquired before, immediately on, and 1, 3 and 5 minutes after injection of a bolus of Gd-DTPA (0.1mmol/kg). Phased-array multicoil was employed. Images were quantitatively analyzed for lesion-to-liver signal difference to noise ratios (SD/Ns), and lesion-to-liver signal ratios (H/Ls), and qualitatively analyzed for lesion conspicuity. The enhancing characteristics of the hemangiomas were described by measuring the change of signal intensity as a curve in T1-weighted FLASH dynamic imaging. For T2-weighted images, breath-hold T2-weighted TSE had a slightly higher SD/N than other pulse sequences, but there was no statistical difference in three fast pulse sequences (p=0.211). For lesion conspicuity, heavily T2-weighted breath-hold TSE images was superior to T2-weighted breath-hold or non-breath-hold TSE (H/L, 5.75, 3.81, 2.87, respectively, p<0.05). T2-weighted breath-hold TSE imaging was more effective than T2-weighted TSE imaging in removing lesion blurring or lack of sharpness, and there was a 12-fold decrease in acquisition time (20sec versus 245 sec). T1-weighted FLASH dynamic images of normal liver showed peak enhancement at less than 1 minute, and of hemangioma at more than 3 minutes;the degree of enhancement for hemangioma decreased after a 3 minute delay. T2-weighed breath-hold TSE imaging and Gd-DTPA enhanced FLASH dynamic imaging with 5 minutes delay are sufficient for imaging hepatic hemangiomas

  1. Preoperative 3D FSE T1-Weighted MR Plaque Imaging for Severely Stenotic Cervical ICA: Accuracy of Predicting Emboli during Carotid Endarterectomy

    Directory of Open Access Journals (Sweden)

    Yasushi Ogasawara

    2016-10-01

    Full Text Available The aim of the present study was to determine whether preoperative three-dimensional (3D fast spin-echo (FSE T1-weighted magnetic resonance (MR plaque imaging for severely stenotic cervical carotid arteries could accurately predict the development of artery-to-artery emboli during exposure of the carotid arteries in carotid endarterectomy (CEA. Seventy-five patients underwent preoperative MR plaque imaging and CEA under transcranial Doppler ultrasonography of the ipsilateral middle cerebral artery. On reformatted axial MR image slices showing the maximum plaque occupation rate (POR and maximum plaque intensity for each patient, the contrast ratio (CR was calculated by dividing the internal carotid artery plaque signal intensity by the sternocleidomastoid muscle signal intensity. For all patients, the area under the receiver operating characteristic curve (AUC—used to discriminate between the presence and absence of microembolic signals—was significantly greater for the CR on the axial image with maximum plaque intensity (CRmax intensity (0.941 than for that with the maximum POR (0.885 (p < 0.05. For 32 patients in whom both the maximum POR and the maximum plaque density were identified, the AUCs for the CR were 1.000. Preoperative 3D FSE T1-weighted MR plaque imaging accurately predicts the development of artery-to-artery emboli during exposure of the carotid arteries in CEA.

  2. Diagnosing lung nodules on oncologic MR/PET imaging: Comparison of fast T1-weighted sequences and influence of image acquisition in inspiration and expiration breath-hold

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios; Brendle, Cornelia; Schmidt, Holger; Pfannenberg, Christina A; LaFougère, Christian; Nikolaou, Konstantin; Schraml, Christina [University Hospital of Tuebingen, Tuebingen (Germany)

    2016-09-15

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  3. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Brendle, Cornelia [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Department of Diagnostic and Interventional Neuroradiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Schmidt, Holger; Pfannenberg, Christina A. [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Fougère, Christian la [Department of Nuclear Medicine, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Nikolaou, Konstantin; Schraml, Christina [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany)

    2016-11-01

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  4. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, 466-8550, Nagoya (Japan); Aoki, Ikuo [Medical System Company, Toshiba Corporation, Tokyo (Japan)

    2003-12-01

    The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 ) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm{sup 3}. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in

  5. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla.

    Science.gov (United States)

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2013-11-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.

  6. Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images - a voxel-based whole brain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Langner, Soenke; Kromrey, Marie-Luise [University Medicine Greifswald, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany); Kuehn, Jens-Peter [University Medicine Greifswald, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany); University Hospital, Carl Gustav Carus University Dresden, Institute for Radiology, Dresden (Germany); Grothe, Matthias [University Medicine Greifswald, Department of Neurology, Greifswald (Germany); Domin, Martin [University Medicine Greifswald, Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany)

    2017-09-15

    To identify a possible association between repeated intravenous administration of gadobutrol and increased signal intensity in the grey and white matter using voxel-based whole-brain analysis. In this retrospective single-centre study, 217 patients with a clinically isolated syndrome underwent baseline brain magnetic resonance imaging and at least one annual follow-up examination with intravenous administration of 0.1 mmol/kg body weight of gadobutrol. Using the ''Diffeomorphic Anatomical Registration using Exponentiated Lie algebra'' (DARTEL) normalisation process, tissue templates for grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) were calculated, as were GM-CSF and WM-CSF ratios. Voxel-based whole-brain analysis was used to calculate the signal intensity for each voxel in each data set. Paired t-test was applied to test differences to baseline MRI for significance. Voxel-based whole-brain analysis demonstrated no significant changes in signal intensity of grey and white matter after up to five gadobutrol administrations. There was no significant change in GM-CSF and grey WM-CSF ratios. Voxel-based whole-brain analysis did not demonstrate increased signal intensity of GM and WM on unenhanced T1-weighted images after repeated gadobutrol administration. The molecular structure of gadolinium-based contrast agent preparations may be an essential factor causing SI increase on unenhanced T1-weighted images. (orig.)

  7. Correlation between neurohypophyseal vasopressin content and signal intensity on T1-weighted magnetic resonance images. An experimental study of vasopressin depletion model using dehydrated rabbits

    International Nuclear Information System (INIS)

    Kurokawa, Hiroaki; Nakano, Yoshihisa; Ikeda, Koshi; Tanaka, Yoshimasa; Fujisawa, Ichiro

    1998-01-01

    We investigated the correlation between the signal intensity on T 1 -weighted MR images and vasopressin (VP) content in the posterior pituitary lobe. Fourteen rabbits were studied. There were 12 water-deprived rabbits (48, 72, 96, 120, 144 and 168 hours: 2 each) and 2 controls. Sagittal T 1 -weighted SE (spin-echo) MR images were obtained before and after dehydration. The signal intensity ratio of the posterior pituitary lobe to the pons was correlated with the VP content in the posterior lobe as measured by radioimmunoassay. Before water deprivation, high signal intensity in the posterior lobe was demonstrated clearly in all 14 rabbits. After water deprivation, the hyperintense signal gradually decreased and became indistinguishable from anterior lobe in four animals. The mean signal intensity ratio before water deprivation was 1.55±0.12 (mean±SD) and after water deprivation, gradually decreased over time and reached to 1.19 after 168 hours of water deprivation. Pituitary VP content and concentration decreased in parallel with the signal intensity ratio of the posterior pituitary. Significantly correlation was observed between the signal intensity ratio and VP concentration of posterior pituitary (r=0.809, p 1 -weighted image may reflect a indicator of pituitary VP content and thus may enable evaluation of disorders of water metabolism. (author)

  8. Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Giorgio; Minotti, Marta; De Piano, Francesca [Universita degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan (Italy); Preda, Lorenzo [Universita degli Studi di Pavia, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, Pavia (Italy); National Center of Oncological Hadrontherapy (CNAO Foundation), Division of Radiology, Pavia (Italy); Cocorocchio, Emilia; Ferrucci, Pier Francesco [European Institute of Oncology, Melanoma and Sarcoma Medical Oncology Division, Milan (Italy); Raimondi, Sara [European Institute of Oncology, Division of Epidemiology and Biostatistics, Milan (Italy); Giannitto, Caterina; Petralia, Giuseppe [European Institute of Oncology, Division of Radiology, Milan (Italy); Bellomi, Massimo [European Institute of Oncology, Division of Radiology, Milan (Italy); Universita degli Studi di Milano, Oncology and Haematology/Oncology Department, Milan (Italy)

    2017-10-15

    To investigate whether there is an increased signal intensity (SI) of dentate nucleus (DN) and globus pallidus (GP) on unenhanced T1-weighted magnetic resonance imaging (MRI), in patients who had undergone multiple administrations of gadoxetate disodium. We retrospectively included stage III melanoma patients, who had been previously enrolled in a trial of adjuvant therapy and who had undergone whole-body contrast-enhanced MRIs with gadoxetate disodium every three months for their follow-up. The SI ratios of DN-to-pons and GP-to-thalamus on unenhanced T1-weighted images were calculated. The difference in SI ratios between the first and the last MRI examinations was assessed and a linear mixed model was performed to detect how SI ratios varied with the number of administrations. Eighteen patients were included in our study. The number of gadoxetate disodium administrations ranged from 2 to 18. Paired t-test did not show any significant difference in DN-to-pons (p=0.21) and GP-to-thalamus (p=0.09) SI ratios by the end of the study. DN-to-pons SI ratio and GP-to-thalamus SI ratio did not significantly increase with increasing the number of administrations (p=0.14 and p=0.06, respectively). Multiple administrations of gadoxetate disodium are not associated with increased SI in DN and GP in the brain. (orig.)

  9. Altered carotid plaque signal among different repetition times on T1-weighted magnetic resonance plaque imaging with self-navigated radial-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Narumi, Shinsuke; Ohba, Hideki; Mori, Kiyofumi; Ohura, Kazumasa; Ono, Ayumi; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2010-04-15

    Magnetic resonance (MR) plaque imaging for carotid arteries is usually performed by using an electrocardiograph (ECG)-gating technique to eliminate pulsation-related artifacts, which can affect the plaque signals because of varied repetition time (TR) among patients. Hence, we investigated whether differences in TR causes signal alterations of the carotid plaque by using a non-gated plaque imaging technique. We prospectively examined 19 patients with carotid stenosis by using a T1-weighted self-navigated radial-scan technique with TRs of 500, 700, and 900 ms. The signal intensity of the carotid plaque was measured, and the contrast ratio (CR) relative to the adjacent muscle was calculated. CRs of the carotid plaques were 1.39 {+-} 0.39, 1.29 {+-} 0.29, and 1.23 {+-} 0.24 with TRs of 500, 700, and 900 ms, respectively, and were significantly different. Among the plaques, those with a hyperintensity signal (CR > 1.5) and moderate-intensity signal (CR 1.2-1.5) at 500 ms showed a TR-dependent signal decrease (hyperintensity plaques, 1.82 {+-} 0.26; 1.61 {+-} 0.19; and 1.48 {+-} 0.17; moderate-intensity plaques, 1.33 {+-} 0.08; 1.26 {+-} 0.08; and 1.19 {+-} 0.07), while those with an isointensity signal (CR < 1.2) remained unchanged regardless of TR (0.96 {+-} 0.12, 0.96 {+-} 0.11, and 0.97 {+-} 0.13). The signal intensity of the carotid plaque on T1-weighted imaging significantly varies among different TRs and tends to decrease with longer TR. MR plaque imaging with short and constant TR settings that the ECG-gating method cannot realize would be preferable for evaluating plaque characteristics. (orig.)

  10. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    International Nuclear Information System (INIS)

    Brown, Ryan; Storey, Pippa; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda; Geppert, Christian

    2013-01-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 x 1.1 x 1.1-1.6 mm 3 ), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. (orig.)

  11. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ryan; Storey, Pippa; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda [New York University Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York, NY (United States); Geppert, Christian [Siemens Medical Solutions USA Inc., New York, NY (United States)

    2013-11-15

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 x 1.1 x 1.1-1.6 mm{sup 3}), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P {<=} 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. (orig.)

  12. The value of 3D T1-weighted gradient-echo MR imaging for evaluation of the appendix during pregnancy: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyung Mi; Kim, Seong Hyun; Choi, Dongil; Lee, Soon Jin; Rhim, Hyunchul; Park, Min Jung (Depts. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)), email: kshyun@skku.edu

    2011-10-15

    Background The use of oral contrast has been essential for the identification of a normal appendix on MR imaging during pregnancy. However, stool could be used as a positive oral contrast as it is characterized by a relatively high signal on T1-weighted imaging, and 3D T1-weighted gradient-echo (T1W-GRE) MR imaging has been used to evaluate 3 mm diameter intestines in fetuses. Purpose To evaluate the added value of 3D T1W-GRE MR imaging in combination with T2-weighted imaging (T2WI) compared to T2WI alone for evaluating the appendix during pregnancy. Material and Methods Eighteen consecutive pregnant patients who were clinically suspected of having acute appendicitis underwent appendix MR imaging which included T2WI with or without spectral presaturation attenuated inversion-recovery (SPAIR) fat suppression, and 3D T1W-GRE with SPAIR fat suppression. Two radiologists reviewed the two image sets (the T2WI set and the combined set of T2WI and 3D T1W-GRE images). Pathologic and clinical results served as the reference standard. The differences in the degree of visibility of the appendix and confidence scale for diagnosing acute appendicitis between two image sets were compared by using the paired Wilcoxon signed rank test. Results For both reviewers, the degree of visibility of the appendix using the combined T2WI and 3D T1W-GRE images was significantly higher than using T2WI alone (P < 0.01), and the confidence levels for acute appendicitis using combined T2WI and 3D T1W-GRE images were significantly different from those using T2WI alone (P < 0.01). In the 13 patients with a normal appendix, both reviewers showed improved confidence levels for appendicitis using combined T2WI and 3D T1W-GRE images than T2WI alone. Conclusion Adding 3D T1W-GRE images to T2WI is helpful for identification of the appendix, as compared to T2WI alone in pregnant women without ingestion of oral contrast material. This may improve diagnostic confidence for acute appendicitis in pregnant

  13. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.

    Science.gov (United States)

    Boehm-Sturm, Philipp; Haeckel, Akvile; Hauptmann, Ralf; Mueller, Susanne; Kuhl, Christiane K; Schellenberger, Eyk A

    2018-02-01

    Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol -1 · sec -1 , r2 = 2.5 mmol -1 · sec -1 ) and Fe-DTPA (r1 = 0.9 mmol -1 · sec -1 , r2 = 0.9 mmol -1 · sec -1 ) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol -1 · sec -1 , r2 = 4.8 mmol -1 · sec -1 ). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P

  14. Magnetic resonance imaging of pelvic entheses - a systematic comparison between short tau inversion recovery (STIR) and T1-weighted, contrast-enhanced, fat-saturated sequences

    International Nuclear Information System (INIS)

    Klang, Eyal; Aharoni, Dvora; Rimon, Uri; Eshed, Iris; Hermann, Kay-Geert; Herman, Amir; Shazar, Nachshon

    2014-01-01

    To assess the contribution of contrast material in detecting and evaluating enthesitis of pelvic entheses by MRI. Sixty-seven hip or pelvic 1.5-T MRIs (30:37 male:female, mean age: 53 years) were retrospectively evaluated for the presence of hamstring and gluteus medius (GM) enthesitis by two readers (a resident and an experienced radiologist). Short tau inversion recovery (STIR) and T1-weighted pre- and post-contrast (T1+Gd) images were evaluated by each reader at two sessions. A consensus reading of two senior radiologists was regarded as the gold standard. Clinical data was retrieved from patients' referral form and medical files. Cohen's kappa was used for intra- and inter-observer agreement calculation. Diagnostic properties were calculated against the gold standard reading. A total of 228 entheses were evaluated. Gold standard analysis diagnosed 83 (36 %) enthesitis lesions. Intra-reader reliability for the experienced reader was significantly (p = 0.0001) higher in the T1+Gd images compared to the STIR images (hamstring: k = 0.84/0.45, GM: k = 0.84/0.47). Sensitivity and specificity increased from 0.74/0.8 to 0.87/0.9 in the STIR images and T1+Gd sequences. Intra-reader reliability for the inexperienced reader was lower (p > 0.05). Evidence showing that contrast material improves the reliability, sensitivity, and specificity of detecting enthesitis supports its use in this setting. (orig.)

  15. MR mammography for diagnosis of breast cancer. Evaluation of usefulness of contrast-enhanced fat-suppressed T1 weight image

    International Nuclear Information System (INIS)

    Kusama, Ritsu; Takayama, Fumiyoshi; Tsuchiya, Shin-ichi

    2005-01-01

    We assessed the value of contrast-enhanced fat-suppressed T1 weight images (CFT1) in diagnosing breast cancers showing mass-like lesions in MR imaging. MR imaging demonstrated 41 carcinoma and 15 fibroadenoma cases. We classified these into 3 groups based on the status of the border and the adjacent zone in CFT1: a well-defined border, an ill-defined border, and linear high signal intensity in the adjacent zone. In carcinoma cases, 23 showed well-defined borders and 18 showed linear high signal intensity in adjacent zone. In fibroadenoma cases, 14 cases revealed well-defined borders and one case an ill-defined border. We compared the borders and adjacent zones of tumors in CFT1 with the pathological findings. Cases of fibroadenoma with well-defined borders in CFT1 showed well-circumscribed nodules with no infiltration of surrounding lymphocytes and fibroblast Cases of carcinoma with ill-defined borders showed infiltration by tumor cells to adjacent tissue without lymphocytes. Cases of carcinoma with linear high signal intensity in the adjacent zone revealed infiltration of the lymph cells and fibroblasts cells in the adjacent zone. The linear high signal intensity was distinguishable from the peripheral enhancement in dynamic MR images. We conclude that the borders and adjacent zones of tumors in CFT1 are useful for diagnosis. (authors)

  16. Hyperintensity of basal ganglia on T1-weighted images in patients with liver cirrhosis. Correlation with hepatic encephalopathy and liver function

    International Nuclear Information System (INIS)

    Maeda, Hiroko; Kita, Keisuke; Mizobata, Toshiharu; Kimura, Masashi; Sonomura, Tetsuo; Kishi, Kazushi; Tanaka, Kayo; Sato, Morio; Yamada, Ryosaku

    1995-01-01

    Brain MR imaging was performed in 38 liver cirrhosis (LC) patients and 9 normal volunteers. On T 1 -weighted images, the signal intensity of globus pallidus (S1) and frontal white matter (S2) was measured and S1/S2 ratio was explored. We examined the relationship between S1/S2 ratio and liver function parameters. High signal intensity in bilateral globus pallidus was noted on T 1 W1 in 28 of 38 LC patients. The S1/S2 ratio of 1.186±0.097 in the 38 LC patients was significantly higher than 0.987±0.062 in the 9 normal volunteers (p 2 -weighted images showed no abnormal intensity. Compared with the LC patients with hepatic encephalopathy (HE) (n=7) and without HE (n=31), the former S1/S2 ratio (1.239±0.057) was significantly higher than the latter (1.174±0.097) (p 15 (r=0.501, p 1 -WI and the degree of liver dysfunction. (author)

  17. Association between duration of coronary occlusion and high-intensity signal on T1-weighted magnetic resonance imaging among patients with angiographic total occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kenji; Ehara, Shoichi; Hasegawa, Takao; Sakaguchi, Mikumo; Shimada, Kenei [Osaka City University Graduate School of Medicine, Department of Cardiovascular Medicine, Abeno-ku, Osaka (Japan)

    2017-09-15

    To evaluate the association between duration of the coronary occlusion and high-intensity signal (HIS) on noncontrast T1-weighted imaging using a 1.5-T magnetic resonance imager among patients with angiographic coronary total occlusion. The signal intensity of the coronary target area divided by the signal intensity of the left ventricular muscle near the target area at each site (TMR) was measured. Areas with a TMR >1.0 were defined as HIS. Thirty five lesions from 33 patients were divided into the following three groups: subacute occlusion (up to 3 months; n = 7), short-duration chronic total occlusion (SD-CTO: 3-6 months; n = 9) and long-duration CTO (LD-CTO: ≥6 months; n = 19). All subacute occlusion lesions showed a HIS within the occlusion site. Among patients with CTO, the frequency of a HIS within the occlusion site was significantly higher in SD-CTO than in LD-CTO lesions (p = 0.013). In multivariate analyses, only an occlusion duration of less than 6 months was an independent factor associated with the presence of HIS (odds ratio 7.6, 95% CI 1.1-54.5; p = 0.044). The presence of a HIS in the occlusion site was associated more with SD-CTO than with LD-CTO among patients with CTO. (orig.)

  18. Association between duration of coronary occlusion and high-intensity signal on T1-weighted magnetic resonance imaging among patients with angiographic total occlusion

    International Nuclear Information System (INIS)

    Matsumoto, Kenji; Ehara, Shoichi; Hasegawa, Takao; Sakaguchi, Mikumo; Shimada, Kenei

    2017-01-01

    To evaluate the association between duration of the coronary occlusion and high-intensity signal (HIS) on noncontrast T1-weighted imaging using a 1.5-T magnetic resonance imager among patients with angiographic coronary total occlusion. The signal intensity of the coronary target area divided by the signal intensity of the left ventricular muscle near the target area at each site (TMR) was measured. Areas with a TMR >1.0 were defined as HIS. Thirty five lesions from 33 patients were divided into the following three groups: subacute occlusion (up to 3 months; n = 7), short-duration chronic total occlusion (SD-CTO: 3-6 months; n = 9) and long-duration CTO (LD-CTO: ≥6 months; n = 19). All subacute occlusion lesions showed a HIS within the occlusion site. Among patients with CTO, the frequency of a HIS within the occlusion site was significantly higher in SD-CTO than in LD-CTO lesions (p = 0.013). In multivariate analyses, only an occlusion duration of less than 6 months was an independent factor associated with the presence of HIS (odds ratio 7.6, 95% CI 1.1-54.5; p = 0.044). The presence of a HIS in the occlusion site was associated more with SD-CTO than with LD-CTO among patients with CTO. (orig.)

  19. T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.

    Science.gov (United States)

    Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-06-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition

  20. T1 weighted Brain Images at 7 Tesla Unbiased for Proton Density, T2* contrast and RF Coil Receive B1 Sensitivity with Simultaneous Vessel Visualization

    Science.gov (United States)

    Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-01-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique

  1. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio [Iwate Medical University, Department of Neuropsychiatry, Morioka (Japan)

    2010-02-15

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  2. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke; Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio

    2010-01-01

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  3. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted MR Images: Comparison between Gadobutrol and Linear Gadolinium-Based Contrast Agents.

    Science.gov (United States)

    Moser, F G; Watterson, C T; Weiss, S; Austin, M; Mirocha, J; Prasad, R; Wang, J

    2018-02-01

    In view of the recent observations that gadolinium deposits in brain tissue after intravenous injection, our aim of this study was to compare signal changes in the globus pallidus and dentate nucleus on unenhanced T1-weighted MR images in patients receiving serial doses of gadobutrol, a macrocyclic gadolinium-based contrast agent, with those seen in patients receiving linear gadolinium-based contrast agents. This was a retrospective analysis of on-site patients with brain tumors. Fifty-nine patients received only gadobutrol, and 60 patients received only linear gadolinium-based contrast agents. Linear gadolinium-based contrast agents included gadoversetamide, gadobenate dimeglumine, and gadodiamide. T1 signal intensity in the globus pallidus, dentate nucleus, and pons was measured on the precontrast portions of patients' first and seventh brain MRIs. Ratios of signal intensity comparing the globus pallidus with the pons (globus pallidus/pons) and dentate nucleus with the pons (dentate nucleus/pons) were calculated. Changes in the above signal intensity ratios were compared within the gadobutrol and linear agent groups, as well as between groups. The dentate nucleus/pons signal ratio increased in the linear gadolinium-based contrast agent group ( t = 4.215, P linear gadolinium-based contrast agent group ( t = 2.931, P linear gadolinium-based contrast agents. © 2018 by American Journal of Neuroradiology.

  4. Comparison of spin-echo and gradient recalled echo T1 weighted MR images for quantitative voxel-based clinical brain research

    International Nuclear Information System (INIS)

    Barnden, L.R.; Crouch, B.

    2010-01-01

    Full text: New methods to normalise inter-subject global variations in T 1 -weighted MR (T I w) signal levels have permitted their use in voxel based population studies of brain dysfunction. Here we address the question of whether a spin-echo (SE) or a gradient recalled echo (GRE) T I w sequence is better for this purpose. GRE images are commonly referred to as 3D MRL SE has superior signal/noise properties to GRE but is slower to acquire so that typical slice thicknesses are 3-5 mm compared to 1-2 mm for GRE. GRE has better grey/white matter contrast which should permit better spatial normalization. However, unlike SE, GRE is affected by subject-specific magnetic field inhomogeneities that distort the images. We acquired T I brain images for 25 chronic fatigue syndrome (CFS) patients and 25 normal controls (NC) with TRITE/flip-angle of 600 ms/l5 ms/90 deg for SE and 5.76 ms/1.9 ms/9 deg for GRE. For GRE, the magnetic field inhomogeneity related signal level distortions could be corrected, but not the spatial distortions. After spatial normalization we subjected them to voxel-based statistical analysis with adjustment for global signal level using the SPM5 package. Initially, the same spatial normalization deformations were applied to both SE and GRE after coregistering them. Although the SPM regressions of SE and GRE yielded similar spatial distributions of significance, the SE regressions were consistently statistically stronger. For example, in one strong regression, the corrected cluster P value was twenty times stronger (I.Oe-5 versus I.Oe-3). T I w SE have proved better than T I GRE images in quantitative analysis in a clinical research study. (author)

  5. Radiation necrosis of the optic chiasm, optic tract, hypothalamus, and upper pons after radiotherapy for pituitary adenoma, detected by gadolinium-enhanced, T1-weighted magnetic resonance imaging: Case report

    International Nuclear Information System (INIS)

    Tachibana, O.; Yamaguchi, N.; Yamashima, T.; Yamashita, J.

    1990-01-01

    A 26-year-old woman was treated for a prolactin secreting pituitary adenoma by surgery and radiotherapy (5860 rads). Fourteen months later, she developed right hemiparesis and dysarthria. A T1-weighted magnetic resonance imaging scan using gadolinium contrast showed a small, enhanced lesion in the upper pons. Seven months later, she had a sudden onset of loss of vision, and radiation optic neuropathy was diagnosed. A T1-weighted magnetic resonance imaging scan showed widespread gadolinium-enhanced lesions in the optic chiasm, optic tract, and hypothalamus. Magnetic resonance imaging is indispensable for the early diagnosis of radiation necrosis, which is not visualized by radiography or computed tomography

  6. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    Science.gov (United States)

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T1WI for liver MRI in patients at high risk of breath-holding failure.

  7. Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Houchun H.; Pokorney, Amber; Towbin, Richard B.; Miller, Jeffrey H. [Phoenix Children' s Hospital, Department of Medical Imaging and Radiology, Phoenix, AZ (United States)

    2016-10-15

    Recent reports have suggested residual gadolinium deposition in the brain in subjects undergoing multiple contrast-enhanced MRI exams. These findings have raised some concerns regarding gadolinium-based contrast agent (GBCA) usage and retention in brain tissues. To summarize findings of hyperintense brain structures on precontrast T1-weighted images in 21 children undergoing multiple GBCA MRI exams. This retrospective study involved 21 patients, each of whom received multiple MRI examinations (range: 5-37 exams) with GBCA over the course of their medical treatment (duration from first to most recent exam: 1.2-12.9 years). The patients were between 0.9 and 14.4 years of age at the time of their first GBCA exam. Regions of interest were drawn in the dentate nucleus and the globus pallidus on 2-D fast spin echo images acquired at 1.5 T. The signal intensities of these two structures were normalized by that of the corpus callosum genu. Signal intensity ratios from these patients were compared to control patients of similar ages who have never received GBCA. Signal intensity ratios increased between the first and the most recent MRI exam in all 21 patients receiving GBCA, with an increase of 18.6%±12.7% (range: 0.5% to 47.5%) for the dentate nucleus and 12.4%±7.4% (range: -1.2% to 33.7%) for the globus pallidus (P<0.0001). Signal intensity ratios were also higher in GBCA patients than in controls (P<0.01). The degree of signal intensity enhancement did not correlate with statistical significance to the cumulative number or volume of GBCA administrations each patient received, the patient's age or the elapsed time between the first and most recent GBCA MRI exams. These results in children are consistent with recent findings in adults, suggesting possible gadolinium deposition in the brain. (orig.)

  8. Localization of Coronary High-Intensity Signals on T1-Weighted MR Imaging: Relation to Plaque Morphology and Clinical Severity of Angina Pectoris.

    Science.gov (United States)

    Matsumoto, Kenji; Ehara, Shoichi; Hasegawa, Takao; Sakaguchi, Mikumo; Otsuka, Kenichiro; Yoshikawa, Junichi; Shimada, Kenei

    2015-10-01

    This study sought to investigate the relationship between localization of high-intensity signals (HISs) on T1-weighted imaging (T1WI) with the noncontrast magnetic resonance technique and plaque morphology detected on optical coherence tomography, and the clinical severity of angina pectoris. Since the introduction of the T1WI noncontrast magnetic resonance technique for plaque imaging, some groups have reported that HISs in the coronary artery on T1WI are associated with a vulnerable morphology and future cardiac events. However, the association between the localization of HISs, such as coronary intrawall or intraluminal, and plaque morphology has not been investigated. One hundred lesions with either stable or unstable angina were included and divided into 3 groups according to the following criteria using T1WI. First, the plaques with the ratio between the signal intensities of coronary plaque and cardiac muscle ≤1.0 were classified as non-HISs (n = 39). Then, HISs with the ratio between the signal intensities of coronary plaque and cardiac muscle >1.0 were classified into 2 types by using cross-sectional T1WI. Those localized within the coronary wall when the lumen was identified were defined as intrawall HISs (n = 37), whereas those occupying the lumen when the lumen was not, or even if only partly, identified, were defined as intraluminal HISs (n = 24). Multivariate analysis revealed that intrawall HISs were associated with macrophage accumulation and the absence of calcification assessed by using optical coherence tomography. In contrast, thrombus and intimal vasculature were independent factors associated with intraluminal HISs. Furthermore, 50% of patients with intraluminal HISs experienced rest angina, such as Braunwald class II or III. This study shows that intrawall and intraluminal HISs on T1WI in patients with angina are related to the different types of vulnerable plaque morphology and the clinical severity. Copyright © 2015 American College of

  9. Comparison of a T1-weighted inversion-recovery-, gradient-echo- and spin-echo sequence for imaging of the brain at 3.0 Tesla

    International Nuclear Information System (INIS)

    Stehling, C.; Niederstadt, T.; Kraemer, S.; Kugel, H.; Schwindt, W.; Heindel, W.; Bachmann, R.

    2005-01-01

    Purpose: The increased T1 relaxation times at 3.0 Tesla lead to a reduced T1 contrast, requiring adaptation of imaging protocols for high magnetic fields. This prospective study assesses the performance of three techniques for T1-weighted imaging (T1w) at 3.0 T with regard to gray-white differentiation and contrast-to-noise-ratio (CNR). Materials and Methods: Thirty-one patients were examined at a 3.0 T system with axial T1 w inversion recovery (IR), spin-echo (SE) and gradient echo (GE) sequences and after contrast enhancement (CE) with CE-SE and CE-GE sequences. For qualitative analysis, the images were ranked with regard to artifacts, gray-white differentiation, image noise and overall diagnostic quality. For quantitative analysis, the CNR was calculated, and cortex and basal ganglia were compared with the white matter. Results: In the qualitative analysis, IR was judged superior to SE and GE for gray-white differentiation, image noise and overall diagnostic quality, but inferior to the GE sequence with regard to artifacts. CE-GE proved superior to CE-SE in all categories. In the quantitative analysis, CNR of the based ganglia was highest for IR, followed by GE and SE. For the CNR of the cortex, no significant difference was found between IR (16.9) and GE (15.4) but both were superior to the SE (9.4). The CNR of the cortex was significantly higher for CE-GE compared to CE-SE (12.7 vs. 7.6, p<0.001), but the CNR of the basal ganglia was not significantly different. Conclusion: For unenhanced T1w imaging at 3.0 T, the IR technique is, despite increased artifacts, the method of choice due to its superior gray-white differentiation and best overall image quality. For CE-studies, GE sequences are recommended. For cerebral imaging, SE sequences give unsatisfactory results at 3.0 T. (orig.)

  10. Repeatability of Brain Volume Measurements Made with the Atlas-based Method from T1-weighted Images Acquired Using a 0.4 Tesla Low Field MR Scanner.

    Science.gov (United States)

    Goto, Masami; Suzuki, Makoto; Mizukami, Shinya; Abe, Osamu; Aoki, Shigeki; Miyati, Tosiaki; Fukuda, Michinari; Gomi, Tsutomu; Takeda, Tohoru

    2016-10-11

    An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T 1 -weighted images (3D-T 1 WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.

  11. Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability.

    Science.gov (United States)

    Fedorenko, Svetlana V; Grechkina, Svetlana L; Mustafina, Asiya R; Kholin, Kirill V; Stepanov, Alexey S; Nizameev, Irek R; Ismaev, Ildus E; Kadirov, Marsil K; Zairov, Rustem R; Fattakhova, Alfia N; Amirov, Rustem R; Soloveva, Svetlana E

    2017-01-01

    The present work introduces deliberate synthesis of Gd(III)-doped silica nanoparticles with high relaxivity at magnetic field strengths below 1.5T. Modified microemulsion water-in-oil procedure was used in order to achieve superficial localization of Gd(III) complexes within 40-55nm sized silica spheres. The relaxivities of the prepared nanoparticles were measured at 0.47, 1.41 and 1.5T with the use of both NMR analyzer and whole body NMR scanner. Longitudinal relaxivities of the obtained silica nanoparticles reveal significant dependence on the confinement mode, changing from 4.1 to 49.6mM -1 s -1 at 0.47T when the localization of Gd(III) complexes changes from core to superficial zones of the silica spheres. The results highlight predominant contribution of the complexes located close to silica/water interface to the relaxivity of the nanoparticles. Low effect of blood proteins on the relaxivity in the aqueous colloids of the nanoparticles was exemplified by serum bovine albumin. T 1 - weighted MRI data indicate that the nanoparticles provide strong positive contrast at 1.5T, which along with low cytotoxicity effect make a good basis for their application as contrast agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.

    Science.gov (United States)

    Kaltenbach, Benjamin; Bucher, Andreas M; Wichmann, Julian L; Nickel, Dominik; Polkowski, Christoph; Hammerstingl, Renate; Vogl, Thomas J; Bodelle, Boris

    2017-11-01

    The aim of this study was to assess the feasibility of a free-breathing dynamic liver imaging technique using a prototype Cartesian T1-weighted volumetric interpolated breathhold examination (VIBE) sequence with compressed sensing and simultaneous acquisition of a navigation signal for hard-gated and motion state-resolved reconstruction. A total of 43 consecutive oncologic patients (mean age, 66 ± 11 years; 44% female) underwent free-breathing dynamic liver imaging for the evaluation of liver metastases from colorectal cancer using a prototype Cartesian VIBE sequence (field of view, 380 × 345 mm; image matrix, 320 × 218; echo time/repetition time, 1.8/3.76 milliseconds; flip angle, 10 degrees; slice thickness, 3.0 mm; acquisition time, 188 seconds) with continuous data sampling and additionally acquired self-navigation signal. Data were iteratively reconstructed using 2 different approaches: first, a hard-gated reconstruction only using data associated to the dominating motion state (CS VIBE, Compressed Sensing VIBE), and second, a motion-resolved reconstruction with 6 different motion states as additional image dimension (XD VIBE, eXtended dimension VIBE). Continuous acquired data were grouped in 16 subsequent time increments with 11.57 seconds each to resolve arterial and venous contrast phases. For image quality assessment, both CS VIBE and XD VIBE were compared with the patient's last staging dynamic liver magnetic resonance imaging including a breathhold (BH) VIBE as reference standard 4.5 ± 1.2 months before. Representative quality parameters including respiratory artifacts were evaluated for arterial and venous phase images independently, retrospectively and blindly by 3 experienced radiologists, with higher scores indicating better examination quality. To assess diagnostic accuracy, same readers evaluated the presence of metastatic lesions for XD VIBE and CS VIBE compared with reference BH examination in a second session. Compared with CS VIBE, XD VIBE

  13. Breast MRI at very short TE (minTE). Image analysis of minTE sequences on non-fat-saturated, subtracted T1-weighted images

    International Nuclear Information System (INIS)

    Wenkel, Evelyn; Janka, Rolf; Kaemmerer, Nadine; Uder, Michael; Hammon, Matthias; Brand, Michael; Hartmann, Arndt

    2017-01-01

    The aim was to evaluate a minimum echo time (minTE) protocol for breast magnetic resonance imaging (MRI) in patients with breast lesions compared to a standard TE (nTE) time protocol. Breasts of 144 women were examined with a 1.5 Tesla MRI scanner. Additionally to the standard gradient-echo sequence with nTE (4.8 ms), a variant with minimum TE (1.2 ms) was used in an interleaved fashion which leads to a better temporal resolution and should reduce the scan time by approximately 50%. Lesion sizes were measured and the signal-to-noise ratio (SNR) as well as the contrast-to-noise ratio (CNR) were calculated. Subjective confidence was evaluated using a 3-point scale before looking at the nTE sequences (1 = very sure that I can identify a lesion and classify it, 2 = quite sure that I can identify a lesion and classify it, 3 = definitely want to see nTE for final assessment) and the subjective image quality of all examinations was evaluated using a four-grade scale (1 = sharp, 2 = slight blur, 3 = moderate blur and 4 = severe blur/not evaluable) for lesion and skin sharpness. Lesion morphology and contrast enhancement were also evaluated. With minTE sequences, no lesion was rated with ''definitely want to see nTE sequences for final assessment''. The difference of the longitudinal and transverse diameter did not differ significantly (p>0.05). With minTE, lesions and skin were rated to be significantly more blurry (p<0.01 for lesions and p<0.05 for skin). There was no difference between both sequences with respect to SNR, CNR, lesion morphology, contrast enhancement and detection of multifocal disease. Dynamic breast MRI with a minTE protocol is feasible without a major loss of information (SNR, CNR, lesion morphology, contrast enhancement and lesion sizes) and the temporal resolution can be increased by a factor of 2 using minTE sequences.

  14. Breast MRI at very short TE (minTE). Image analysis of minTE sequences on non-fat-saturated, subtracted T1-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Wenkel, Evelyn; Janka, Rolf; Kaemmerer, Nadine; Uder, Michael; Hammon, Matthias; Brand, Michael [Univ. Hospital Erlangen (Germany). Dept. of Radiology; Geppert, Christian [Siemens Healthcare GmbH, Erlangen (Germany); Hartmann, Arndt [Univ. Hospital Erlangen (Germany). Dept. of Pathology

    2017-02-15

    The aim was to evaluate a minimum echo time (minTE) protocol for breast magnetic resonance imaging (MRI) in patients with breast lesions compared to a standard TE (nTE) time protocol. Breasts of 144 women were examined with a 1.5 Tesla MRI scanner. Additionally to the standard gradient-echo sequence with nTE (4.8 ms), a variant with minimum TE (1.2 ms) was used in an interleaved fashion which leads to a better temporal resolution and should reduce the scan time by approximately 50%. Lesion sizes were measured and the signal-to-noise ratio (SNR) as well as the contrast-to-noise ratio (CNR) were calculated. Subjective confidence was evaluated using a 3-point scale before looking at the nTE sequences (1 = very sure that I can identify a lesion and classify it, 2 = quite sure that I can identify a lesion and classify it, 3 = definitely want to see nTE for final assessment) and the subjective image quality of all examinations was evaluated using a four-grade scale (1 = sharp, 2 = slight blur, 3 = moderate blur and 4 = severe blur/not evaluable) for lesion and skin sharpness. Lesion morphology and contrast enhancement were also evaluated. With minTE sequences, no lesion was rated with ''definitely want to see nTE sequences for final assessment''. The difference of the longitudinal and transverse diameter did not differ significantly (p>0.05). With minTE, lesions and skin were rated to be significantly more blurry (p<0.01 for lesions and p<0.05 for skin). There was no difference between both sequences with respect to SNR, CNR, lesion morphology, contrast enhancement and detection of multifocal disease. Dynamic breast MRI with a minTE protocol is feasible without a major loss of information (SNR, CNR, lesion morphology, contrast enhancement and lesion sizes) and the temporal resolution can be increased by a factor of 2 using minTE sequences.

  15. Contrast-enhanced MR imaging of metastatic brain tumor at 3 Tesla. Utility of T1-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence

    International Nuclear Information System (INIS)

    Komada, Tomohiro; Naganawa, Shinji; Ogawa, Hiroshi

    2008-01-01

    We evaluated the newly developed whole-brain, isotropic, 3-dimensional turbo spin-echo imaging with variable flip angle echo train (SPACE) for contrast-enhanced T 1 -weighted imaging in detecting brain metastases at 3 tesla (T). Twenty-two patients with suspected brain metastases underwent postcontrast study with SPACE, magnetization-prepared rapid gradient-echo (MP-RAGE), and 2-dimensional T 1 -weighted spin echo (2D-SE) imaging at 3 T. We quantitatively compared SPACE, MP-RAGE, and 2D-SE images by using signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM) and contrast-to-noise ratios (CNRs) for GM-to-WM, lesion-to-GM, and lesion-to-WM. Two blinded radiologists evaluated the detection of brain metastases by segment-by-segment analysis and continuously-distributed test. The CNR between GM and WM was significantly higher on MP-RAGE images than on SPACE images (P 1 -weighted imaging. (author)

  16. Phase sensitive reconstruction of T1-weighted inversion recovery in the evaluation of the cervical cord lesions in multiple Sclerosis; is it similarly eligible in 1.5 T magnet fields?

    Science.gov (United States)

    Shayganfar, A; Sarrami, A H; Fathi, S; Shaygannejad, V; Shamsian, S

    2018-04-22

    In primary studies with 3 T Magnets, phase sensitive reconstruction of T1-weighted inversion recovery (PSIR) have showed ability to depict the cervical multiple sclerosis (MS) lesions some of which may not be detected by short tau inversion recovery (STIR). Regarding to more availability of 1.5 T MRI, this study was designed to evaluate the eligibility of PSIR in 1.5 T for detection of spinal cord MS lesions. In a study between September 2016 till March 2017 the patients with proven diagnosis of MS enrolled to the study. The standard protocol (sagittal STIR and T2W FSE and axial T2W FSE) as well as sagittal PSIR sequences were performed using a 1.5 T magnet. The images were studied and the lesions were localized and recorded as sharp or faint on each sequence. Of 25 patients (22 females and 3 males, with mean age of 33.5 ± 9.8 years and mean disease duration of 5.4 ± 3.9 years) 69 lesions in STIR, 53 lesions in T2W FSE, 47 lesions in Magnitude reconstruction of PSIR (Magnitude), and 30 lesions in phase sensitive (real) reconstruction PSIR were detected. A Wilcoxon signed-rank test showed STIR has a statistically significant higher detection rate of the plaques rather than other three sequences. (STIR and T2W FSE, Z = -4.000, p definition of the plaques rather than other three sequences. This study shows that in the setting of a 1.5 T magnet field, STIR significantly has a superiority over both of the PSIR reconstructions (i.e. real and magnitude) for the detection as well as the boundary definition of the cervical cord lesions of MS. These results have a good relevance to clinical practice by using MRI scanners and sequences routinely available, however, it is discrepant with other reports performed by 3 T Magnet fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Estimating volumes of the pituitary gland from T1-weighted magnetic-resonance images: effects of age, puberty, testosterone, and estradiol.

    Science.gov (United States)

    Wong, Angelita Pui-Yee; Pipitone, Jon; Park, Min Tae M; Dickie, Erin W; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Chakravarty, M Mallar; Pausova, Zdenka; Paus, Tomáš

    2014-07-01

    The pituitary gland is a key structure in the hypothalamic-pituitary-gonadal (HPG) axis--it plays an important role in sexual maturation during puberty. Despite its small size, its volume can be quantified using magnetic resonance imaging (MRI). Here, we study a cohort of 962 typically developing adolescents from the Saguenay Youth Study and estimate pituitary volumes using a newly developed multi-atlas segmentation method known as the MAGeT Brain algorithm. We found that age and puberty stage (controlled for age) each predicts adjusted pituitary volumes (controlled for total brain volume) in both males and females. Controlling for the effects of age and puberty stage, total testosterone and estradiol levels also predict adjusted pituitary volumes in males and pre-menarche females, respectively. These findings demonstrate that the pituitary gland grows during adolescence, and its volume relates to circulating plasma-levels of sex steroids in both males and females. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Reduction of vascular artifact on T1-weighted images of the brain by using three-dimensional double IR fast spoiled gradient echo recalled acquisition in the steady state (FSPGR) at 3.0 Tesla

    International Nuclear Information System (INIS)

    Fujiwara, Yasuhiro; Yamaguchi, Isao; Ookoshi, Yusuke; Ootani, Yuriko; Matsuda, Tsuyoshi; Ishimori, Yoshiyuki; Hayashi, Hiroyuki; Miyati, Tosiaki; Kimura, Hirohiko

    2007-01-01

    The purpose of this study was to decrease vascular artifacts caused by the in-flow effect in three-dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady state (3D IR FSPGR) at 3.0 Tesla. We developed 3D double IR FSPGR and investigated the signal characteristics of the new sequence. The 3D double IR FSPGR sequence uses two inversion pulses, the first for obtaining tissue contrast and the second for nulling vascular signal, which is applied at the time of the first IR period at the neck region. We have optimized scan parameters based on both phantom and in-vivo study. As a result, optimized parameters (1st TI=700 ms, 2nd TI=400 ms) successfully have produced much less vessel signal at reduction than conventional 3D IR FSPGR over a wide imaging range, while preserving the signal-to-noise ratio (SNR) and gray/white matter contrast. Moreover, the decreased artifact was also confirmed by visual inspection of the images obtained in vivo using those parameters. Thus, 3D double IR FSPGR was a useful sequence for the acquisition of T1-weighted images at 3.0 Tesla. (author)

  19. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Ramanathan, Subramaniyan; Ryan, John; Khanna, Maneesh; Virmani, Vivek; Avruch, Leonard [The University of Ottawa, The Ottawa Hospital, Ottawa, Ontario (Canada)

    2014-07-15

    Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. The sensitivity of visual detection of iron ranged from 48 to 55 %. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100 % with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. (orig.)

  20. Assessment of arterial wall enhancement for differentiation of parent artery disease from small artery disease: Comparison between histogram analysis and visual analysis on 3 dimensional contrast-enhanced T1-weighted turbo spin echo MR images at 3T

    International Nuclear Information System (INIS)

    Jang, Jin Hee; Kim, Tae Won; Hwang, Eo Jin; Choi, Hyun Seok; Koo, Ja Seung; Shin, Yong Sam; Jung, So Lyung; Ahn, Kook Jin; Kim, Bum Soo

    2017-01-01

    The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD (p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory

  1. Utility of real-time prospective motion correction (PROMO) for segmentation of cerebral cortex on 3D T1-weighted imaging: Voxel-based morphometry analysis for uncooperative patients

    International Nuclear Information System (INIS)

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Narimatsu, Hidekuni; Ide, Satoru; Korogi, Yukunori; Nozaki, Atsushi; Rettmann, Dan; Abe, Osamu

    2017-01-01

    To assess the utility of the motion correction method with prospective motion correction (PROMO) in a voxel-based morphometry (VBM) analysis for 'uncooperative' patient populations. High-resolution 3D T1-weighted imaging both with and without PROMO were performed in 33 uncooperative patients with Parkinson's disease (n = 11) or dementia (n = 22). We compared the grey matter (GM) volumes and cortical thickness between the scans with and without PROMO. For the mean total GM volume with the VBM analysis, the scan without PROMO showed a significantly smaller volume than that with PROMO (p < 0.05), which was caused by segmentation problems due to motion during acquisition. The whole-brain VBM analysis showed significant GM volume reductions in some regions in the scans without PROMO (familywise error corrected p < 0.05). In the cortical thickness analysis, the scans without PROMO also showed decreased cortical thickness compared to the scan with PROMO (p < 0.05). Our results with the uncooperative patients indicate that the use of PROMO can reduce misclassification during segmentation of the VBM analyses, although it may not prevent GM volume reduction. (orig.)

  2. Assessment of arterial wall enhancement for differentiation of parent artery disease from small artery disease: Comparison between histogram analysis and visual analysis on 3 dimensional contrast-enhanced T1-weighted turbo spin echo MR images at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Hee; Kim, Tae Won; Hwang, Eo Jin; Choi, Hyun Seok; Koo, Ja Seung; Shin, Yong Sam; Jung, So Lyung; Ahn, Kook Jin; Kim, Bum Soo [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2017-04-15

    The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD (p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.

  3. Utility of real-time prospective motion correction (PROMO) for segmentation of cerebral cortex on 3D T1-weighted imaging: Voxel-based morphometry analysis for uncooperative patients

    Energy Technology Data Exchange (ETDEWEB)

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Narimatsu, Hidekuni; Ide, Satoru; Korogi, Yukunori [University of Occupational and Environmental Health School of Medicine, Department of Radiology, Kitakyushu (Japan); Nozaki, Atsushi [MR Applications and Workflow Asia Pacific GE Healthcare Japan, Tokyo (Japan); Rettmann, Dan [MR Applications and Workflow GE Healthcare, Rochester, MN (United States); Abe, Osamu [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2017-08-15

    To assess the utility of the motion correction method with prospective motion correction (PROMO) in a voxel-based morphometry (VBM) analysis for 'uncooperative' patient populations. High-resolution 3D T1-weighted imaging both with and without PROMO were performed in 33 uncooperative patients with Parkinson's disease (n = 11) or dementia (n = 22). We compared the grey matter (GM) volumes and cortical thickness between the scans with and without PROMO. For the mean total GM volume with the VBM analysis, the scan without PROMO showed a significantly smaller volume than that with PROMO (p < 0.05), which was caused by segmentation problems due to motion during acquisition. The whole-brain VBM analysis showed significant GM volume reductions in some regions in the scans without PROMO (familywise error corrected p < 0.05). In the cortical thickness analysis, the scans without PROMO also showed decreased cortical thickness compared to the scan with PROMO (p < 0.05). Our results with the uncooperative patients indicate that the use of PROMO can reduce misclassification during segmentation of the VBM analyses, although it may not prevent GM volume reduction. (orig.)

  4. Effect of eicosapentaenoic acid/docosahexaenoic acid on coronary high-intensity plaques detected with non-contrast T1-weighted imaging (the AQUAMARINE EPA/DHA study): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Nakao, Kazuhiro; Noguchi, Teruo; Asaumi, Yasuhide; Morita, Yoshiaki; Kanaya, Tomoaki; Fujino, Masashi; Hosoda, Hayato; Yoneda, Shuichi; Kawakami, Shoji; Nagai, Toshiyuki; Nishihira, Kensaku; Nakashima, Takahiro; Kumasaka, Reon; Arakawa, Tetsuo; Otsuka, Fumiyuki; Nakanishi, Michio; Kataoka, Yu; Tahara, Yoshio; Goto, Yoichi; Yamamoto, Haruko; Hamasaki, Toshimitsu; Yasuda, Satoshi

    2018-01-08

    Despite the success of HMG-CoA reductase inhibitor (statin) therapy in reducing atherosclerotic cardiovascular events, a residual risk for cardiovascular events in patients with coronary artery disease (CAD) remains. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are promising anti-atherosclerosis agents that might reduce the residual CAD risk. Non-contrast T1-weighted imaging (T1WI) with cardiac magnetic resonance (CMR) less invasively identifies high-risk coronary plaques as high-intensity signals. These high-intensity plaques (HIPs) are quantitatively assessed using the plaque-to-myocardium signal intensity ratio (PMR). Our goal is to assess the effect of EPA/DHA on coronary HIPs detected with T1WI in patients with CAD on statin treatment. This prospective, controlled, randomized, open-label study examines the effect of 12 months of EPA/DHA therapy and statin treatment on PMR of HIPs detected with CMR and computed tomography angiography (CTA) in patients with CAD. The primary endpoint is the change in PMR after EPA/DHA treatment. Secondary endpoints include changes in Hounsfield units, plaque volume, vessel area, and plaque area measured using CTA. Subjects are randomly assigned to either of three groups: the 2 g/day EPA/DHA group, the 4 g/day EPA/DHA group, or the no-treatment group. This trial will help assess whether EPA/DHA has an anti-atherosclerotic effect using PMR of HIPs detected by CMR. The trial outcomes will provide novel insights into the effect of EPA/DHA on high-risk coronary plaques and may provide new strategies for lowering the residual risk in patients with CAD on statin therapy. The University Hospital Medical Information Network (UMIN) Clinical Trials Registry, ID: UMIN000015316 . Registered on 2 October 2014.

  5. Signal alteration of the cochlear perilymph on 3 different sequences after intratympanic Gd-DTPA administration at 3 tesla. Comparison of 3D-FLAIR, 3D-T1-weighted imaging, and 3D-CISS

    International Nuclear Information System (INIS)

    Yamazaki, Masahiro; Naganawa, Shinji; Kawai, Hisashi; Nihashi, Takashi; Nakashima, Tsutomu

    2010-01-01

    Three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) imaging after intratympanic gadolinium injection is useful for pathophysiologic and morphologic analysis of the inner ear. However, statistical analysis of differences in inner ear signal intensity among 3D-FLAIR and other sequences has not been reported. We evaluated the signal intensity of cochlear fluid on each of 3D-FLAIR, 3D-T 1 -weighted imaging (T 1 WI), and 3D-constructive interference in the steady state (CISS) to clarify the differences in contrast effect among these 3 sequences using intratympanic gadolinium injection. Twenty-one patients underwent 3D-FLAIR, 3D-T 1 WI, and 3D-CISS imaging at 3 tesla 24 hours after intratympanic injection of gadolinium. We determined regions of interest of the cochleae (C) and medulla oblongata (M) on each image, evaluated the signal intensity ratio between C and M (CM ratio), and determined the ratio of cochlear signal intensity of the injected side to that of the non-injected side (contrast value). The CM ratio of the injected side (3.00±1.31, range, 0.53 to 4.88, on 3D-FLAIR; 0.83±0.30, range, 0.36 to 1.58 on 3D-T 1 WI) was significantly higher than that of the non-injected side (0.52±0.14, range, 0.30 to 0.76 on 3D-FLAIR; 0.49±0.11, range, 0.30 to 0.71 on 3D-T 1 WI) on 3D-FLAIR and 3D-T 1 WI (P 1 WI (1.73±0.60 range, 0.98 to 3.09) (P<0.001). The 3D-FLAIR sequence is the most sensitive for observing alteration in inner ear fluid signal after intratympanic gadolinium injection. Our results warrant use of 3D-FLAIR as a sensitive imaging technique to clarify the pathological and morphological mechanisms of disorders of the inner ear. (author)

  6. Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.

    Science.gov (United States)

    Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W

    2018-04-01

    Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.

  7. Extrahepatic portal vein obstruction with parkinsonism and symmetric hyperintense basal ganglia on T1 weighted MRI

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Sita

    2006-01-01

    Full Text Available Abnormal high signal in the globus pallidus on T1 weighted magnetic resonance imaging (MRI of the brain has been well described in patients with chronic liver disease. It may be related to liver dysfunction or portal-systemic shunting. We report a case of extra hepatic portal vein obstruction with portal hypertension and esophageal varices that presented with extra pyramidal features. T1 weighted MRI brain scans showed increased symmetrical signal intensities in the basal ganglia. Normal hepatic function in this patient emphasizes the role of portal- systemic communications in the development of these hyperintensities, which may be due to deposition of paramagnetic substances like manganese in the basal ganglia.

  8. MRI of the cervical spine with T1-weighted multislice flash sequences

    International Nuclear Information System (INIS)

    Schubeus, P.; Sander, B.; Schoerner, W.; Tosch, U.; Lanksch, W.R.; Felix, R.; Klinikum Rudolf Virchow, Berlin

    1990-01-01

    A study has been carried out to evaluate contrast and image quality of cervical structures using multislice 2D-flash sequences with long repetition times (TR = 400 ms.) and short echo delay times (TE = 5.8 ms.). The examinations were carried out using ten normals with an MRI of 1.5 Tesla and flip angles of 10, 20, 30, 50, 70 and 90deg. The best contrast between intervertebral disc and surrounding tissue was obtained between 50 and 70deg, best contrast between compact bone and CSF with 10deg. In order to demonstrate degenerative changes of the cervical spine, it appears sensible to use a combination of these angles. The described sequences produce good images of the cervical structures with little image degradation. Compared to T 1 -weighted spin-echo sequences, the method has a number of significant advantages, such as variations in image contrast, higher maximal number of slices, continuous imaging and less imaging time. (orig.) [de

  9. T1-weighted MRI as a substitute to CT for refocusing planning in MR-guided focused ultrasound

    International Nuclear Information System (INIS)

    Wintermark, Max; Sumer, Suna; Lau, Benison; Cupino, Alan; Tustison, Nicholas J; Demartini, Nicholas; Elias, William J; Kassell, Neal; Patrie, James T; Xin, Wenjun; Eames, Matt; Snell, John; Hananel, Arik; Aubry, Jean-Francois

    2014-01-01

    Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called ‘virtual CT’ to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland–Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (−0.22–0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the

  10. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  11. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols

    DEFF Research Database (Denmark)

    Tofts, P.S.; Brix, G; Buckley, D.L.

    1999-01-01

    We describe a standard set of quantity names and symbols related to the estimation of kinetic parameters from dynamic contrast-enhanced T(1)-weighted magnetic resonance imaging data, using diffusable agents such as gadopentetate dimeglumine (Gd-DTPA). These include a) the volume transfer constant K......-limited conditions K(trans) equals the blood plasma flow per unit volume of tissue; under permeability-limited conditions K(trans) equals the permeability surface area product per unit volume of tissue. We relate these quantities to previously published work from our groups; our future publications will refer...

  12. Comparison of vertebral morphometry in the lumbar vertebrae by T1-weighted sagittal MRI and radiograph

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Purpose: In this study, we investigated the usefulness of T1-weighted sagittal MR images at the lumbar vertebrae in the vertebral morphometry, in comparison with lateral radiographs. Subjects and methods: The subjects were 42 men (mean age: 53.0 years) and 41 women (mean age: 57.9 years). Both MRI and radiography of the lumbar spine were performed within 1 month. The vertebral body heights and their ratios were measured by the semi-automatic measuring system. The frequency of a vertebral fracture and the absolute value of vertebral body height in both morphometry were compared. Results: Based on the criteria for prevalent vertebral fracture using vertebral height ratios, the vertebrae were classified into four groups. Group 1 was defined as the vertebrae without fracture (n = 347 vertebrae). Groups 2-4 were defined as the vertebrae with fracture; Group 2 by both MRI and X-ray morphometry (n = 17), Group 3 by MRI morphometry alone (n = 17), and Group 4 by X-ray morphometry alone (n = 4). The rate of prevalent vertebral fracture diagnosed by MRI morphometry (8.8%) was higher than that by X-ray morphometry (5.5%). In Group 1, the values of anterior and posterior vertebral height obtained by MRI morphometry were greater than those obtained by X-ray morphometry. On the other hand, the values of central vertebral height obtained by MRI morphometry were smaller than those obtained by X-ray morphometry. Conclusion: Severe biconcave deformity of vertebra can be detected by both MRI and X-ray morphometry, although mild biconcave deformity can be detected only by MRI morphometry

  13. Closed-form expressions for flip angle variation that maximize total signal in T1-weighted rapid gradient echo MRI.

    Science.gov (United States)

    Drobnitzky, Matthias; Klose, Uwe

    2017-03-01

    Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing

  14. T1-weighted MRI for the detection of coronary artery plaque haemorrhage

    International Nuclear Information System (INIS)

    Oei, May Lin; Ozgun, Murat; Seifarth, Harald; Bunck, Alexander; Fischbach, Roman; Heindel, Walter; Maintz, David; Orwat, Stefan; Botnar, Rene

    2010-01-01

    Hyperintense areas in atherosclerotic plaques on pre-contrast T1-weighted MRI have been shown to correlate with intraplaque haemorrhage. We evaluated the presence of T1 hyperintensity in coronary artery plaques in coronary artery disease (CAD) patients and correlated results with multi-detector computed tomography (MDCT) findings. Fifteen patients with CAD were included. Plaques detected by MDCT were categorised based on their Hounsfield number. T1-weighted inversion recovery (IR) MRI prepared coronary MRI for the detection of plaque and steady-state free-precession coronary MR-angiography for anatomical correlation was performed. After registration of MDCT and MRI, regions of interest were defined on MDCT-visible plaques and in corresponding vessel segments acquired with MRI. MDCT density and MR signal measurement were performed in each plaque. Forty-three plaques were identified with MDCT. With IR-MRI 5/43 (12%) plaques were hyperintense, 2 of which were non-calcified and 3 mixed. Average signal-to-noise and contrast-to-noise ratios of hyperintense plaques were 15.7 and 9.1, compared with 5.6 and 1.2 for hypointense plaques. Hyperintense plaques exhibited a significantly lower CT density than hypointense plaques (63.6 vs. 140.8). There was no correlation of plaque signal intensity with degree of stenosis. T1-weighted IR-MRI may be useful for non-invasive detection and characterisation of intraplaque haemorrhage in coronary artery plaques. (orig.)

  15. Histogram Profiling of Postcontrast T1-Weighted MRI Gives Valuable Insights into Tumor Biology and Enables Prediction of Growth Kinetics and Prognosis in Meningiomas.

    Science.gov (United States)

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-06-14

    Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering

    International Nuclear Information System (INIS)

    Biederer, J.; Reuter, M.; Both, M.; Grimm, J.; Heller, M.; Muhle, C.; Graessner, J.

    2002-01-01

    The aim of this study was to evaluate feasibility and limitations of two MR sequences for imaging of the lung using a semi-quantitative rating scale. Ten healthy volunteers were assessed with a breath-hold T1-weighted gradient-recalled-echo (TR/TE=129/2.2 ms, matrix 173 x 256) and a T2-weighted turbo spin-echo (TSE) sequence with respiratory triggering (TR/TE=3000-5000/120 ms, matrix 270 x 512) in axial 6-mm slices. The T1-weighted GRE protocol included a pre-saturation pulse over the mediastinal structures. Artefacts and resolution of vessel/airway structures in each lung segment were evaluated by two observers (10 volunteers, 180 segments). Cardiac and vessel pulsation artefacts predominated on T1-weighted GRE, respiration artefacts on T2-weighted TSE (lingula and middle lobe). Pre-saturation of the mediastinum reduced pulsation artefacts on T1-weighted GRE. T1-weighted GRE images were improved by bright flow signal of vessels, whereas image quality of T2-weighted TSE was reduced by black-blood effects in central parts of the lung. Delineation of lung periphery and the mediastinum was superior with T2-weighted TSE. Segmental/sub-segmental vessels (up to fourth/fifth order) and bronchi (up to third order) were identified. All 180 lung segments were imaged in diagnostic quality with at least one of the two sequences (T1-weighted GRE not diagnostic in 9 of 180, T2-weighted TSE in 4 of 180). Both sequences were found to be complementary: superior identification of gross lung anatomy with T1-weighted GRE and higher detail resolution in the periphery and the mediastinum with T2-weighted TSE. (orig.)

  17. Mn-DPDP enhanced T1-weighted magnetic resonance cholangiography: usefulness in the diagnosis and roadmap for the treatment of intrahepatic choIedochoIithiasis

    International Nuclear Information System (INIS)

    Park, Mi Suk; Kim, Ki Whang; Yu, Jeong Sik; Kim, Myeong Jin; Lee, Jong Tae; Yoo, Hyung Sik; Kim, Kyoung Won; Kim, Tae Kyoung; Ha, Hyun Kwon

    2004-01-01

    To assess the preliminary findings of Mn-enhanced T1-weighted MR cholangiography for the evaluation of intrahepatic choledocholithiasis. Seven patients with recurrent pyogenic cholangitis underwent conventional heavily T2-weighted and manganese-enhanced T1-weighted MR cholangiography. For the former, the two reviewers focused on intrahepatic ductal dilatation, calculi, and stricture; and for the latter, ductal enhancement. In seven patients, 13 diseased segments were depicted and intrahepatic bile ductal dilatation was present in all 13 of these in all seven patients. Calculi were present in eight segments in six patients, and stricture in four segments in three patients. Of the 13 diseased segmental ducts, six were seen at manganese-enhanced imaging to be filled with contrast material, suggesting a functioning bile duct. Combined T2-weighted and mangafodipir trisodium-enhanced T1-weighted MR cholangiography provides both anatomic detail and functional detail of the biliary system. Combined MR cholangiography is useful for the evaluation of intrahepatic choledocholithiasis, demonstrating the stricture and function of the segmental ducts involved

  18. T1-weighted MR images in radiographic stage of fragmentation of Legg-Calve-Perthes disease

    Energy Technology Data Exchange (ETDEWEB)

    Kumasaka, Yukiko; Watanabe, Hitoshi; Kishimoto, Harumasa; Higashihara, Tokuro (Kansai Rosai Hospital, Amagasaki, Hyogo (Japan)); Harada, Koshi; Kozuka, Takahiro

    1991-04-01

    Seven femoral heads of Legg-Calve-Perthes disease (LCPD) in radiographic stage of fragmentation were examined in 6 boys by MRI. Characteristic appearances of capital epiphysis and the surrounding cartilaginous structures can be seen. These were proved by four indices for measurement of cartilaginous contour. Cartilaginous contour of epiphysis is enlarged with crescent like deformity resulting from deformity of growth plate. Characteristic layers or honeycomb pattern of extremely low and intermediate signal intensity can be seen. (author).

  19. T1-weighted MR images in radiographic stage of fragmentation of Legg-Calve-Perthes disease

    International Nuclear Information System (INIS)

    Kumasaka, Yukiko; Watanabe, Hitoshi; Kishimoto, Harumasa; Higashihara, Tokuro; Harada, Koshi; Kozuka, Takahiro.

    1991-01-01

    Seven femoral heads of Legg-Calve-Perthes disease (LCPD) in radiographic stage of fragmentation were examined in 6 boys by MRI. Characteristic appearances of capital epiphysis and the surrounding cartilaginous structures can be seen. These were proved by four indices for measurement of cartilaginous contour. Cartilaginous contour of epiphysis is enlarged with crescent like deformity resulting from deformity of growth plate. Characteristic layers or honeycomb pattern of extremely low and intermediate signal intensity can be seen. (author)

  20. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbach, Benjamin, E-mail: benjamin.kaltenbach@kgu.de [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany); Roman, Andrei; Polkowski, Christoph; Gruber-Rouh, Tatjana [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany); Divison of Radiology and Nuclear Medicine, Kantonsspital, St. Gallen (Switzerland); Hammerstingl, Renate; Vogl, Thomas J.; Zangos, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany)

    2017-01-15

    Highlights: • Respiratory artifacts are a frequent problem in abdominal MR imaging. • Non-diagnostic examinations could be reduced using free-breathing us-radial-VIBE for dynamic liver examination in challenging patients. • Streak artifacts are characteristic for an undersampled radial acquisition but do not affect diagnostic validity. - Abstract: Purpose: To compare free-breathing radial VIBE with moderate undersampling (us-radial-VIBE) with a standard breathhold T1-weighted volumetric interpolated sequence (3D GRE VIBE) in patients unable to suspend respiration during dynamic liver examination. Material and methods: 23 consecutive patients underwent dynamic liver MR examination using the free-breathing us-radial-VIBE sequence as part of their oncologic follow-up. All patients were eligible for the free-breathing protocol due to severe respiratory artifacts at the planning or precontrast sequences. The us-radial-VIBE acquisitions were compared to the patientś last staging liver MRI including a standard breathhold 3D GRE VIBE. For an objective image evaluation, signal intensity (SI), image noise (IN), signal-to-noise ratio (SNR) and contrast-enhancement ratio (CER) were compared. Representative image quality parameters, including typical artifacts were independently, retrospectively and blindly scored by four readers. Results: Us-radial-VIBE had significant lower SNR (p < 0.0001) and higher IN (p < 0.0001), whereas SI did not differ (p = 0.62). Temporal resolution assessed with CER in the arterial phase showed higher values for us-radial-VIBE (p = 0.028). Subjective image quality parameters received generally slightly higher scores for 3D GRE VIBE. In a smaller subgroup comprising patients with severe respiratory artifacts also at reference breathhold 3D GRE VIBE examination, us-radial-VIBE showed significantly higher image quality scores. Furthermore, there were generally more severe respiratory artifacts in 3D GRE VIBE, whereas streaking was characteristic

  1. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI.

    Science.gov (United States)

    Clavijo Jordan, M Veronica; Beeman, Scott C; Baldelomar, Edwin J; Bennett, Kevin M

    2014-01-01

    Inorganic doping was used to create flexible, paramagnetic nanoparticle contrast agents for in vivo molecular magnetic resonance imaging (MRI) with low transverse relaxivity (r2). Most nanoparticle contrast agents formed from superparamagnetic metal oxides are developed with high r2. While sensitive, they can have limited in vivo detection due to a number of constraints with T2 or T2*-weighted imaging. T1-weighted imaging is often preferred for molecular MRI, but most T1-shortening agents are small chelates with low metal payload or are nanoparticles that also shorten T2 and limit the range of concentrations detectable with T1-weighting. Here we used tungsten and iron deposition to form doped iron oxide crystals inside the apoferritin cavity to form a WFe nanoparticle with a disordered crystal and un-coupled atomic magnetic moments. The atomic magnetic moments were thus localized, resulting in a principally paramagnetic nanoparticle. The WFe nanoparticles had no coercivity or saturation magnetization at 5 K and sweeping up to ± 20,000 Oe, while native ferritin had a coercivity of 3000 Oe and saturation at ± 20,000 Oe. This tungsten-iron crystal paramagnetism resulted in an increased WFe particle longitudinal relaxivity (r1) of 4870 mm(-1) s(-1) and a reduced transverse relaxivity (r2) of 9076 mm(-1) s(-1) compared with native ferritin. The accumulation of the particles was detected with T1-weighted MRI in concentrations from 20 to 400 nm in vivo, both injected in the rat brain and targeted to the rat kidney glomerulus. The WFe apoferritin nanoparticles were not cytotoxic up to 700 nm particle concentrations, making them potentially important for targeted molecular MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    Science.gov (United States)

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  3. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  4. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aymerich, F.X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Universitat Politecnica de Catalunya - Barcelona Tech (UPC), Department of Automatic Control (ESAII), Barcelona (Spain); Auger, C.; Alcaide-Leon, P.; Pareto, D.; Huerga, E.; Corral, J.F.; Mitjana, R.; Rovira, A. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Sastre-Garriga, J.; Montalban, X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Centre d' Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Barcelona (Spain)

    2017-04-15

    To compare the sensitivity of enhancing multiple sclerosis (MS) lesions in gadolinium-enhanced 2D T1-weighted gradient-echo (GRE) and spin-echo (SE) sequences, and to assess the influence of visual conspicuity and laterality on detection of these lesions. One hundred MS patients underwent 3.0T brain MRI including gadolinium-enhanced 2D T1-weighted GRE and SE sequences. The two sets of contrast-enhanced scans were evaluated in random fashion by three experienced readers. Lesion conspicuity was assessed by the image contrast ratio (CR) and contrast-to-noise ratio (CNR). The intracranial region was divided into four quadrants and the impact of lesion location on detection was assessed in each slice. Six hundred and seven gadolinium-enhancing MS lesions were identified. GRE images were more sensitive for lesion detection (0.828) than SE images (0.767). Lesions showed a higher CR in SE than in GRE images, whereas the CNR was higher in GRE than SE. Most misclassifications occurred in the right posterior quadrant. The gadolinium-enhanced 2D T1-weighted GRE sequence at 3.0T MRI enables detection of enhancing MS lesions with higher sensitivity and better lesion conspicuity than 2D T1-weighted SE. Hence, we propose the use of gadolinium-enhanced GRE sequences rather than SE sequences for routine scanning of MS patients at 3.0T. (orig.)

  5. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  6. Opposed-phase MR imaging of lipid storage myopathy in a case of Chanarin-Dorfman disease

    International Nuclear Information System (INIS)

    Gaeta, Michele; Celona, Antonio; Racchiusa, Sergio; Mazziotti, Silvio; Minutoli, Fabio; Toscano, Antonio; Musumeci, Olimpia

    2008-01-01

    Chanarin-Dorfman disease (CDD) is a rare genetic disorder characterized by ichthyosis, myopathy, central nervous system disturbances, and intracellular lipid storage in muscle fibers, hepatocytes, and granulocytes. We describe skeletal muscle magnetic resonance imaging findings in a case of CDD, outlining the potential role of GE T1-weighted opposed-phase sequence (chemical shift imaging) in the evaluation of lipid storage myopathies. (orig.)

  7. Opposed-phase MR imaging of lipid storage myopathy in a case of Chanarin-Dorfman disease

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, Michele; Celona, Antonio; Racchiusa, Sergio; Mazziotti, Silvio [University of Messina, Department of Radiological Sciences, Messina (Italy); Minutoli, Fabio [University of Messina, Department of Radiological Sciences, Messina (Italy); A.O.U. ' ' Policlinico G. Martino' ' , Dipartimento di Scienze Radiologiche, Messina (Italy); Toscano, Antonio; Musumeci, Olimpia [University of Messina, Department of Neurosciences, Psychiatry and Anaesthesiology, Messina (Italy)

    2008-11-15

    Chanarin-Dorfman disease (CDD) is a rare genetic disorder characterized by ichthyosis, myopathy, central nervous system disturbances, and intracellular lipid storage in muscle fibers, hepatocytes, and granulocytes. We describe skeletal muscle magnetic resonance imaging findings in a case of CDD, outlining the potential role of GE T1-weighted opposed-phase sequence (chemical shift imaging) in the evaluation of lipid storage myopathies. (orig.)

  8. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  9. Assessment of T2- and T1-weighted MRI brain lesion load in patients with subcortical vascular encephalopathy

    International Nuclear Information System (INIS)

    Gass, A.; Oster, M.; Cohen, S.; Daffertshofer, M.; Schwartz, A.; Hennerici, M.G.

    1998-01-01

    Previous cross-sectional studies in patients with subcortical vascular encephalopathy (SVE) have shown little or no correlation between brain lesion load and clinical disability, which could be due to the low specificity of T2-weighted MRI. Recent studies have indicated that T1-weighted MRI may be more specific than T2-weighted MRI for severe tissue destruction. We studied 37 patients with a diagnosis of SVE and 11 normal controls with standardised T1- and T2-weighted MRI. All patients underwent detailed clinical assessment including a neuropsychological test battery and computerised gait analysis. Both the T2- and T1-weighted total MRI lesion loads different between patients and controls different, particularly T1. The ratio of T2-/T1-weighted lesion load was lower in controls than in patients. There was no overall correlation of T1- or T2-weighted lesion load with clinical disability, but group comparison of patients with severe and mild clinical deficits showed different lesion loads. We suggest that T1- and T2-weighted MRI lesion loads demonstrate relevant structural abnormality in patients with SVE. (orig.)

  10. Hyperintense brain lesions on T1-weighted MRI after parenteral nutrition

    International Nuclear Information System (INIS)

    Saitoh, Yoshiaki; Kimura, Seiji; Nezu, Atsuo; Ohtsuki, Noriyuki; Kobayashi, Takuya; Osaka, Hitoshi; Uehara, Saori

    1996-01-01

    We experienced five children having T 1 -shortening lesions in basal ganglia or thalami on magnetic resonance imaging (MRI), which were supposed to be caused by manganese (Mn) overdoses. Instead of the presence of above-mentioned lesions, no neurological manifestations corresponding to them had developed in all patients. This observation suggests that MRI is useful for detecting side effects caused by overdoses of Mn in patients having parenteral nutrition. (author)

  11. Flip-flop method: A new T1-weighted flow-MRI for plants studies.

    Science.gov (United States)

    Buy, Simon; Le Floch, Simon; Tang, Ning; Sidiboulenouar, Rahima; Zanca, Michel; Canadas, Patrick; Nativel, Eric; Cardoso, Maida; Alibert, Eric; Dupont, Guillaume; Ambard, Dominique; Maurel, Christophe; Verdeil, Jean-Luc; Bertin, Nadia; Goze-Bac, Christophe; Coillot, Christophe

    2018-01-01

    The climate warming implies an increase of stress of plants (drought and torrential rainfall). The understanding of plant behavior, in this context, takes a major importance and sap flow measurement in plants remains a key issue for plant understanding. Magnetic Resonance Imaging (MRI) which is well known to be a powerful tool to access water quantity can be used to measure moving water. We describe a novel flow-MRI method which takes advantage of inflow slice sensitivity. The method involves the slice selectivity in the context of multi slice spin echo sequence. Two sequences such as a given slice is consecutively inflow and outflow sensitive are performed, offering the possiblility to perform slow flow sensitive imaging in a quite straigthforward way. The method potential is demonstrated by imaging both a slow flow measurement on a test bench (as low as 10 μm.s-1) and the Poiseuille's profile of xylemian sap flow velocity in the xylematic tissues of a tomato plant stem.

  12. T1-weighted dual-echo MRI for fat quantification in pediatric nonalcoholic fatty liver disease.

    Science.gov (United States)

    Pacifico, Lucia; Martino, Michele Di; Catalano, Carlo; Panebianco, Valeria; Bezzi, Mario; Anania, Caterina; Chiesa, Claudio

    2011-07-07

    To determine in obese children with nonalcoholic fatty liver disease (NAFLD) the accuracy of magnetic resonance imaging (MRI) in assessing liver fat concentration. A case-control study was performed. Cases were 25 obese children with biopsy-proven NAFLD. Controls were 25 obese children matched for age and gender, without NAFLD at ultrasonography and with normal levels of aminotransferases and insulin. Hepatic fat fraction (HFF) by MRI was obtained using a modification of the Dixon method. HFF ranged from 2% to 44% [mean, 19.0% (95% CI, 15.1-27.4)] in children with NAFLD, while in the controls this value ranged from 0.08% to 4.69% [2.0% (1.3-2.5), P steatosis (r = 0.883, P steatosis, the mean HFF was 8.7% (95% CI, 6.0-11.6) for mild, 21.6% (15.3-27.0) for moderate, and 39.7% (34.4-45.0) for severe fatty liver infiltration. With a cutoff of 4.85%, HFF had a sensitivity of 95.8% for the diagnosis of histological steatosis ≥ 5%. All control children had HFF lower than 4.85%; thus, the specificity was 100%. After 12 mo, children with weight loss displayed a significant decrease in HFF. MRI is an accurate methodology for liver fat quantification in pediatric NAFLD.

  13. Gadoxate-enhanced T1-weighted MR cholangiography: comparison of 1.5 T and 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Koelblinger, C.; Schima, W.; Weber, M.; Mang, T.; Nemec, S.; Kulinna-Cosentini, C.; Bastati, N.; Ba-Ssalamah, A. [Universitaetsklinik fuer Radiodiagnostik, Medizinische Univ. Wien (Austria)

    2009-06-15

    Purpose: to qualitatively and quantitatively compare gadoxate-enhanced T1-weighted MR cholangiography at magnetic field strengths of 1.5 T and 3.0 T. Materials and methods: a total of 40 patients with a non-dilated biliary system were retrospectively included in the study. T1-weighted MR cholangiography 20 min after IV administration of 0.025 mmol/kg gadoxate (Primovist trademark) was performed in 20 patients at 1.5 T and in another 20 patients at 3.0 T. Contrast-to-noise ratios (CNR) of the biliary system (common bile duct - CBD, right hepatic duct - RHD, left hepatic duct - LHD) compared to the periductal tissue were measured. Two radiologists also qualitatively assessed the visibility of the intrahepatic and extrahepatic biliary system using a six-point rating scale. The Mann-Whitney U-test and Pearson's correlation coefficient were used for statistical analysis. Results: the CNRs of the intrahepatic and extrahepatic hepatic bile ducts were significantly higher at 3.0 T. Qualitative analysis showed a significant superiority for 3.0 T in the delineation of the intrahepatic biliary system (RHD, LHD, segmental ducts). (orig.)

  14. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...... phasors attain predetermined values for predetermined spatial frequencies, and the phasor value of the specific resolution element of the spatial phase mask corresponds to a distinct intensity level of the image of the resolution element in the intensity pattern, and a spatial phase filter for phase...... shifting of a part of the electromagntic radiation, in combination with an imaging system for generation of the intensity pattern by interference in the image plane of the imaging system between the part of the electromagnetic raidation that has been phase shifted by the phase filter and the remaining part...

  15. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  16. Diagnostic accuracy of automatic normalization of CBV in glioma grading using T1- weighted DCE-MRI.

    Science.gov (United States)

    Sahoo, Prativa; Gupta, Rakesh K; Gupta, Pradeep K; Awasthi, Ashish; Pandey, Chandra M; Gupta, Mudit; Patir, Rana; Vaishya, Sandeep; Ahlawat, Sunita; Saha, Indrajit

    2017-12-01

    Aim of this retrospective study was to compare diagnostic accuracy of proposed automatic normalization method to quantify the relative cerebral blood volume (rCBV) with existing contra-lateral region of interest (ROI) based CBV normalization method for glioma grading using T1-weighted dynamic contrast enhanced MRI (DCE-MRI). Sixty patients with histologically confirmed gliomas were included in this study retrospectively. CBV maps were generated using T1-weighted DCE-MRI and are normalized by contralateral ROI based method (rCBV_contra), unaffected white matter (rCBV_WM) and unaffected gray matter (rCBV_GM), the latter two of these were generated automatically. An expert radiologist with >10years of experience in DCE-MRI and a non-expert with one year experience were used independently to measure rCBVs. Cutoff values for glioma grading were decided from ROC analysis. Agreement of histology with rCBV_WM, rCBV_GM and rCBV_contra respectively was studied using Kappa statistics and intra-class correlation coefficient (ICC). The diagnostic accuracy of glioma grading using the measured rCBV_contra by expert radiologist was found to be high (sensitivity=1.00, specificity=0.96, pnormalization method showed same percentage of agreement for both expert and non-expert user. rCBV_WM showed an agreement of 88.33% (kappa=0.76,pnormalization of CBV using the proposed method could provide better diagnostic accuracy compared to the manual contralateral based approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Fatemi, A [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy. The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.

  18. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation.

    Science.gov (United States)

    Malinsky, Milos; Peter, Roman; Hodneland, Erlend; Lundervold, Astri J; Lundervold, Arvid; Jan, Jiri

    2013-08-01

    In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

  19. Quantitative evaluation of hyperintensity on T1-weighted MRI in liver cirrhosis : correlation with child-pugh classification and hepatic encephalopathy

    International Nuclear Information System (INIS)

    Eun, Hyo Won; Choi, Hye Young; Lee, Sun Wha; Yi, Sun Young

    1999-01-01

    To investigate the differences in signal changes in the globus pallidus and white matter, as seen on T1-weighted MR brain images, and to determine whether these differences can be used as an indicator of subclinical hepatic encephalopathy. A total of 25 cases of liver cirrhosis were evaluated and as a control group, 20 subjects were also studied. Using a 1.5T MRI scannet, brain MR images were obtained, and the differences in signal intensity in both the globus pallidus and thalamus and in both white and gray matter were then quantified using the contrast to noise ratio(CNR). On the basis of the Child-Pugh classification, 25patients with liver cirrhosis were divided into three groups, with eight in group A, eight in B, and nine in C. Using clinical criteria, hepatic encephalopathy was diagnosed in seven of the 25 patients. There after, CNRs(CNR1 and CNR2) were conpared between the control and cirrhotic groups and between cirrhotic groups with or without hepatic encephalopathy. In the control group, mean values were 3.2±5.9 for CNR1 and 8.4±8.0 for CNR2. In the cirrhotic group, these values were 10.6±9.0 for CNR1 and 9.8±6.4 for CNR2. A statistically significant difference was noted between normal and cirrhotic groups only for CNR1(p<0.05). CNR values in patients with liver cirrhosis were 8.5±11.5 for CNR1 and 11.7±8.7 for CNR2 in the Child A group, 10.4±5.1 for CNR1 and 9.3±3.2 for CNR2 in the B group, and 12.8±9.7 for CNR1 and 8.7±6.5 for CNR2 in the C group. There was no significant difference in mean CNRI values between patients with or without hepatic encephalopathy. Differences in signal intensities in the globus pallidus and white matter, as seen on T1-weighted MR brain images, cannot be used as an indicator of hepatic encephalopathy in patients with liver cirrhosis

  20. Quantitative evaluation of hyperintensity on T1-weighted MRI in liver cirrhosis : correlation with child-pugh classification and hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Eun, Hyo Won; Choi, Hye Young; Lee, Sun Wha; Yi, Sun Young [Ewha Womans Univ. College of Medicine, Seoul (Korea, Republic of)

    1999-11-01

    To investigate the differences in signal changes in the globus pallidus and white matter, as seen on T1-weighted MR brain images, and to determine whether these differences can be used as an indicator of subclinical hepatic encephalopathy. A total of 25 cases of liver cirrhosis were evaluated and as a control group, 20 subjects were also studied. Using a 1.5T MRI scannet, brain MR images were obtained, and the differences in signal intensity in both the globus pallidus and thalamus and in both white and gray matter were then quantified using the contrast to noise ratio(CNR). On the basis of the Child-Pugh classification, 25patients with liver cirrhosis were divided into three groups, with eight in group A, eight in B, and nine in C. Using clinical criteria, hepatic encephalopathy was diagnosed in seven of the 25 patients. There after, CNRs(CNR1 and CNR2) were conpared between the control and cirrhotic groups and between cirrhotic groups with or without hepatic encephalopathy. In the control group, mean values were 3.2{+-}5.9 for CNR1 and 8.4{+-}8.0 for CNR2. In the cirrhotic group, these values were 10.6{+-}9.0 for CNR1 and 9.8{+-}6.4 for CNR2. A statistically significant difference was noted between normal and cirrhotic groups only for CNR1(p<0.05). CNR values in patients with liver cirrhosis were 8.5{+-}11.5 for CNR1 and 11.7{+-}8.7 for CNR2 in the Child A group, 10.4{+-}5.1 for CNR1 and 9.3{+-}3.2 for CNR2 in the B group, and 12.8{+-}9.7 for CNR1 and 8.7{+-}6.5 for CNR2 in the C group. There was no significant difference in mean CNRI values between patients with or without hepatic encephalopathy. Differences in signal intensities in the globus pallidus and white matter, as seen on T1-weighted MR brain images, cannot be used as an indicator of hepatic encephalopathy in patients with liver cirrhosis.

  1. Pediatric Patients Demonstrate Progressive T1-Weighted Hyperintensity in the Dentate Nucleus following Multiple Doses of Gadolinium-Based Contrast Agent.

    Science.gov (United States)

    Roberts, D R; Chatterjee, A R; Yazdani, M; Marebwa, B; Brown, T; Collins, H; Bolles, G; Jenrette, J M; Nietert, P J; Zhu, X

    2016-12-01

    While there have been recent reports of brain retention of gadolinium following gadolinium-based contrast agent administration in adults, a retrospective series of pediatric patients has not previously been reported, to our knowledge. We investigated the relationship between the number of prior gadolinium-based contrast agent doses and increasing T1 signal in the dentate nucleus on unenhanced T1-weighted MR imaging. We hypothesized that despite differences in pediatric physiology and the smaller gadolinium-based contrast agent doses that pediatric patients are typically administered based on weighted-adjusted dosing, the pediatric brain would also demonstrate dose-dependent increasing T1 signal in the dentate nucleus. We included children with multiple gadolinium-based contrast agent administrations at our institution. A blinded reader placed ROIs within the dentate nucleus and adjacent cerebellar white matter. To eliminate reader bias, we also performed automated ROI delineation of the dentate nucleus, cerebellar white matter, and pons. Dentate-to-cerebellar white matter and dentate-to pons ratios were compared with the number of gadolinium-based contrast agent administrations. During 20 years at our institution, 280 patients received at least 5 gadolinium-based contrast agent doses, with 1 patient receiving 38 doses. Sixteen patients met the inclusion/exclusion criteria for ROI analysis. Blinded reader dentate-to-cerebellar white matter ratios were significantly associated with gadolinium-based contrast agent doses (r s = 0.77, P = .001). The dentate-to-pons ratio and dentate-to-cerebellar white matter ratios based on automated ROI placement were also significantly correlated with gadolinium-based contrast agent doses (t = 4.98, P contrast agent doses is significantly correlated with progressive T1-weighted dentate hyperintensity. Definitive confirmation of gadolinium deposition requires tissue analysis. Any potential clinical sequelae of gadolinium retention in

  2. Detection of prostate carcinomas with T1-weighted dynamic contrast-enhanced MRI. Value of two-compartment model

    International Nuclear Information System (INIS)

    Kiessling, F.; Lichy, M.; Farhan, N.; Delorme, S.; Kauczor, H.U.; Grobholz, R.; Heilmann, M.; Michel, M.S.; Trojan, L.; Werner, A.; Rabe, J.; Schlemmer, H.P.

    2003-01-01

    Aim The suitability of dynamic parameters of the two-compartment model for detecting prostate carcinomas and its correlation with tumor microvascular density were evaluated. The study included 43 patients with biopsy-proven prostate carcinoma: 28 were examined by 1.0-T MRI (Turbo-FLASH) and 15 by 1.5-T MRI (FLASH) with infusion of 0.1 mmol/kg Gd-DTPA. Signal time curves were parametrized with an open two-compartment model in amplitude and exchange rate constants (k ep ).The microvascular density of resected prostate carcinomas was determined. The microvascular density in the tumors was significantly higher than in the adjacent healthy prostate tissue and correlated in both sequences with k ep . Prostate carcinomas of the peripheral zone were demarcated by amplitude and k ep . In the Turbo-FLASH sequence there was a significant difference between the tumor tissue and healthy peripheral zone in terms of k ep and in the FLASH sequence in terms of amplitude. Prostate carcinomas can be visualized with dynamic T1-weighted MR sequences using a two-compartment model. Moreover, the parameter k ep reveals the microvascular density in the tumor and can thus provide valuable clinical information for characterizing the tumors. (orig.) [de

  3. A 3D T1-weighted gradient-echo sequence for routine use in 3D radiosurgical treatment planning of brain metastases: first clinical results

    International Nuclear Information System (INIS)

    Hawighorst, H.; Schad, L.R.; Gademann, G.; Knopp, M.V.; Wenz, F.; Kaick, G. van

    1995-01-01

    The authors report on a 3D sequence for MRI of the brain and its application in radiosurgical treatment planning of 35 brain metastases. The measuring sequence, called magnetization - prepared rapid gradient echo (MPRAGE), was compared with 2D T1-weighted spin-echo (SE) sequences following intravenous contrast-medium application in 19 patients with brain metastases. The average diameter of all lesions was similar in both sequences, with 16.8 and 17.0 mm for SE and MPRAGE, respectively. Target point definition was equal in 29 metastases, and in 6 cases superior on MPRAGE, due to better gray-white matter contrast and increased contrast enhancement. In cases of bleeding metastases there was improved depiction of internal structures in 3D MRI. Postprocessing of 3D MPRAGE data created multiplanar reconstruction along any chosen plane with isotropic spatial resolution, which helped to improve radiosurgical isodose distribution in 4 cases when compared to 2D SE. However, sensitivity of 3D MPRAGE to detect small lesions (< 3 mm) was decreased in one patient with more than 50 metastases. We conclude that 3D gradient-echo (GE) imaging might be of great value for radiosurgical treatment planning, but does not replace 2D SE with its current parameters. (orig.)

  4. Comparison of different magnetic resonance cholangiography techniques in living liver donors including Gd-EOB-DTPA enhanced T1-weighted sequences.

    Directory of Open Access Journals (Sweden)

    Sonja Kinner

    Full Text Available Preoperative evaluation of potential living liver donors (PLLDs includes the assessment of the biliary anatomy to avoid postoperative complications. Aim of this study was to compare T2-weighted (T2w and Gd-EOB-DTPA enhanced T1-weighted (T1w magnetic resonance cholangiography (MRC techniques in the evaluation of PLLDs.30 PLLDs underwent MRC on a 1.5 T Magnetom Avanto (Siemens, Erlangen, Germany using (A 2D T2w HASTE (Half Fourier Acquisition Single Shot Turbo Spin Echo fat saturated (fs in axial plane, (B 2D T2w HASTE fs thick slices in coronal plane, (C free breathing 3D T2w TSE (turbo spin echo RESTORE (high-resolution navigator corrected plus (D maximum intensity projections (MIPs, (E T2w SPACE (sampling perfection with application optimized contrasts using different flip angle evolutions plus (F MIPs and (G T2w TSE BLADE as well as Gd-EOB-DTPA T1w images without (G and with (H inversion recovery. Contrast enhanced CT cholangiography served as reference imaging modality. Two independent reviewers evaluated the biliary tract anatomy on a 5-point scale subjectively and objectively. Data sets were compared using a Mann-Whitney-U-test. Kappa values were also calculated.Source images and maximum intensity projections of 3D T2w TSE sequences (RESTORE and SPACE proved to be best for subjective and objective evaluation directly followed by 2D HASTE sequences. Interobserver variabilities were good to excellent (k = 0.622-0.804.3D T2w sequences are essential for preoperative biliary tract evaluation in potential living liver donors. Furthermore, our results underline the value of different MRCP sequence types for the evaluation of the biliary anatomy in PLLDs including Gd-EOB-DTPA enhanced T1w MRC.

  5. Studies on the clinical significance of pallidal high intensity of T1-weighted MR imaging in patients with liver cirrhosis

    International Nuclear Information System (INIS)

    Morino, Koutaro

    1997-01-01

    We investigated the clinical significances of signals in cirrhotic patients with special relation to subclinical hepatic encephalopathy. MRI was carried out in 30 patients with liver cirrhosis in the abscence of hepatic encephalopathy greater than grade II, and in 20 healthy subjects. Signal intensity of the globus pallidus was standardized to GP index. GP index=100 x (signal intensity of the globus pallidus - signal intensity of the putamen)/(signal intensity of the globus pallidus + signal intensity of the putamen). Normal value of GP index obtained in healthy subjects was -0.66∼4.70. Twenty seven of 30 cirrhotic patients showed GP index higher than the normal range. GP index correlated significantly with the blood manganese concentration. This observation suggested that the pallidal high intensity signals were brought about by the deposition of Mn in the globus pallidus. GP index correlated significantly with the central conduction time (CCT) measured by somatosensory evoked potentials. GP index and CCT may reflect the similar pathophysiological changes of the brain in patients with liver cirrhosis. Multivariate analysis revealed that GP index was explained well by the presence of portal systemic shunts and by preceding histories of hepatic encephalopathy but not by the present grade of the liver parenchymal damage. For the earlier diagnosis of subclinical hepatic encephalopathy, GP index showed an excellent parameter similar to those of somatosensory evoked potentials and psychometric tests. GP index is favorable than electrophysiological methods in terms of its non-invasiveness to the patients and simplicity of the examination technique. (K.H.)

  6. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation T1-weighted sequences in infectious meningitis

    International Nuclear Information System (INIS)

    Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar

    2017-01-01

    To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol

  7. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation T1-weighted sequences in infectious meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar [SGRR Institute of Medical and Health Sciences, Patel Nagar, Dehradun (India)

    2017-11-15

    To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol.

  8. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    Science.gov (United States)

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children

    Energy Technology Data Exchange (ETDEWEB)

    Rossi Espagnet, Maria Camilla; Bernardi, Bruno; Figa-Talamanca, Lorenzo [Ospedale Pediatrico Bambino Gesu, IRCCS, Neuroradiology Unit, Imaging Department, Rome (Italy); Pasquini, Luca [Ospedale Pediatrico Bambino Gesu, IRCCS, Neuroradiology Unit, Imaging Department, Rome (Italy); University Sapienza, Neuroradiology Unit, Azienda Ospedaliera Sant' Andrea, Rome (Italy); Toma, Paolo [Ospedale Pediatrico Bambino Gesu, IRCCS, Department of Imaging, Rome (Italy); Napolitano, Antonio [Ospedale Pediatrico Bambino Gesu, IRCCS, Enterprise Risk Management, Medical Physics Department, Rome (Italy)

    2017-09-15

    Few studies have been conducted on the relations between T1-weighted signal intensity changes in the pediatric brain following gadolinium-based contrast agent (GBCA) exposure. The purpose of this study is to investigate the effect of multiple administrations of a macrocyclic GBCA on signal intensity in the globus pallidus and dentate nucleus of the pediatric brain on unenhanced T1-weighted MR images. This retrospective study included 50 patients, mean age: 8 years (standard deviation: 4.8 years), with normal renal function exposed to ≥6 administrations of the same macrocyclic GBCA (gadoterate meglumine) and a control group of 59 age-matched GBCA-naive patients. The globus pallidus-to-thalamus signal intensity ratio and dentate nucleus-to-pons signal intensity ratio were calculated from unenhanced T1-weighted images for both patients and controls. A mixed linear model was used to evaluate the effects on signal intensity ratios of the number of GBCA administrations, the time interval between administrations, age, radiotherapy and chemotherapy. T-test analyses were performed to compare signal intensity ratio differences between successive administrations and baseline MR signal intensity ratios in patients compared to controls. P-values were considered significant if <0.05. A significant effect of the number of GBCA administrations on relative signal intensities globus pallidus-to-thalamus (F[8]=3.09; P=0.002) and dentate nucleus-to-pons (F[8]=2.36; P=0.021) was found. The relative signal intensities were higher at last MR examination than at baseline (P<0.001). Quantitative analysis evaluation of globus pallidus:thalamus and dentate nucleus:pons of the pediatric brain demonstrated an increase after serial administrations of macrocyclic GBCA. Further research is necessary to fully understand GBCA pharmacokinetic in children. (orig.)

  10. Cerebral staging of lung cancer: is one single contrast-enhanced T1-weighted three-dimensional gradient-echo sequence sufficient?

    Energy Technology Data Exchange (ETDEWEB)

    Ohana, Mickael; Jeung, Mi-Young; Roy, Catherine [Nouvel Hopital Civil-Hopitaux Universitaires de Strasbourg, Service de Radiologie B/Radiology Department, Strasbourg (France); Bazille, Gauthier [Clinique Saint Anne-Groupe Radiologique MIM, Strasbourg (France)

    2014-08-15

    Gadolinium-enhanced magnetic resonance imaging (MRI) is the gold standard for cerebral staging in thoracic oncology. We hypothesize that a minimalist examination, consisting of a single contrast-enhanced T1-weighted three-dimensional gradient-echo sequence (CE 3D-GRE), would be sufficient for the cerebral staging of nonsymptomatic lung cancer patients. Seventy nonsymptomatic patients (50 % men; 62 years ± 10.2) referred for cerebral staging of a lung cancer were retrospectively included. All underwent a standard 3 T MRI examination with T1, FLAIR, T2* GRE, diffusion, and CE 3D-GRE sequences, for a total examination time of 20 min. The sole CE 3D-GRE (acquisition time: 6 min) was extracted and blindly interpreted by two radiologists in search of brain metastases. Hemorrhagic features of potential lesions and relevant incidental findings were also noted. Discrepant cases were reviewed by a third reader. The full MRI examination and follow-up studies were used as a reference to calculate sensitivity and specificity of the sole CE 3D-GRE. Thirty-eight point six percent (27 out of 70) of the patients had brain metastases. Performances and reader's agreement with the sole CE 3D-GRE sequence were excellent for the diagnosis of brain metastases (sensitivity = 96.3 %, specificity = 100 %, κ = 0.91) and incidental findings (sensitivity = 85.7 %, specificity = 100 %, κ = 0.62) but insufficient for the identification of hemorrhages within the metastases (sensitivity = 33.3 %, specificity = 85.7 %, κ = 0.47). In the specific case of lung cancer, cerebral staging in nonsymptomatic patients can be efficiently achieved with a minimalistic protocol consisting of a single CE 3D-GRE sequence, completed if positive with a T2* sequence for hemorrhagic assessment, thus halving appointment delays. (orig.)

  11. Added value of gadoxetic acid-enhanced T1-weighted magnetic resonance cholangiography for the diagnosis of post-transplant biliary complications

    Energy Technology Data Exchange (ETDEWEB)

    Kinner, Sonja [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schubert, Tilman B. [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); Basel University Hospital, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Said, Adnan [University of Wisconsin-Madison, Department of Medicine, Madison, WI (United States); Mezrich, Joshua D. [University of Wisconsin-Madison, Department of Surgery, Madison, WI (United States); Reeder, Scott B. [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Emergency Medicine, Madison, WI (United States)

    2017-10-15

    Biliary complications after liver transplantation (LT) are common. This study aimed to ascertain the value of gadoxetic acid-enhanced T1-weighted (T1w) magnetic resonance cholangiography (MRC) to evaluate anastomotic strictures (AS), non-anastomotic strictures (NAS) and biliary casts (BC). Sixty liver-transplanted patients with suspicion of biliary complications and T2w-MRCP and T1w-MRC followed by endoscopic retrograde cholangiopancreatography (ERCP) or percutaneous transhepatic cholangiography (PTC) were analysed. Two readers reviewed the MRCs and rated image quality (IQ) and likelihood for AS/NAS/BC on Likert scales. Sensitivity, specificity and predictive values were calculated, ROC curve analysis performed, and inter-reader variability assessed. The subjective added value of T1w-MRC was rated. IQ was high for all sequences without significant differences (2.83-2.88). In 39 patients ERCP/PTC detected a complication. Sensitivity and specificity for AS were 64-96 using T2w-MRCP, increasing to 79-100 using all sequences. Use of all sequences increased the sensitivity of detecting NAS/BC from 72-92% to 88-100% and 67-89% to 72-94%, respectively. Kappa values were substantial (0.45-0.62). T1w-MRC was found to be helpful in 75-83.3%. Combining T1w-MRC and T2w-MRCP increased sensitivity and specificity and diagnostic confidence in patients after LT with suspected biliary complications. T1w-MRC is a valuable tool for evaluating post-transplant biliary complications. (orig.)

  12. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  13. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  14. A prospective comparison study of fast T1 weighted fluid attenuation inversion recovery and T1 weighted turbo spin echo sequence at 3 T in degenerative disease of the cervical spine.

    Science.gov (United States)

    Ganesan, K; Bydder, G M

    2014-09-01

    This study compared T1 fluid attenuation inversion recovery (FLAIR) and T1 turbo spin echo (TSE) sequences for evaluation of cervical spine degenerative disease at 3 T. 72 patients (44 males and 28 females; mean age of 39 years; age range, 27-75 years) with suspected cervical spine degenerative disease were prospectively evaluated. Sagittal images of the spine were obtained using T1 FLAIR and T1 TSE sequences. Two experienced neuroradiologists compared the sequences qualitatively and quantitatively. On qualitative evaluation, cerebrospinal fluid (CSF) nulling and contrast at cord-CSF, disc-CSF and disc-cord interfaces were significantly higher on fast T1 FLAIR images than on T1 TSE images (p degenerative disease, owing to higher cord-CSF, disc-cord and disc-CSF contrast. However, intrinsic cord contrast is low on T1 FLAIR images. T1 FLAIR is more promising and sensitive than T1 TSE for evaluation of degenerative spondyloarthropathy and may provide a foundation for development of MR protocols for early detection of degenerative and neoplastic diseases.

  15. Accurate determination of blood–brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI

    DEFF Research Database (Denmark)

    Cramer, Stig P; Larsson, Henrik B W

    2014-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used to estimate permeability in situations with subtle blood-brain barrier (BBB) leakage. However, the method's ability to differentiate such low values from zero is unknown, and no consensus exists on optimal selection...

  16. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis

    DEFF Research Database (Denmark)

    Larsen, Anne Vibeke Andrée; Simonsen, Helle J; Law, Ian

    2013-01-01

    INTRODUCTION: To investigate if perfusion measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to differentiate radiation necrosis from tumor recurrence in patients with high-grade glioma. METHODS: The study was approved by the institutional review board...... to measure cerebral blood volume (CBV), blood-brain barrier (BBB) permeability and cerebral blood flow (CBF). Subjects also underwent FDG-PET and lesions were classified as either metabolically active or inactive. Follow-up clinical MRI and lesion histology in case of additional tissue resection was used...... to determine whether lesions were regressing or progressing. RESULTS: Fourteen enhancing lesions could be classified as progressing (11) or regressing (three). An empirical threshold of 2.0 ml/100 g for CBV allowed detection of regressing lesions with a sensitivity of 100 % and specificity of 100 %. FDG-PET...

  17. Evaluation of the Subscapularis Tendon Tears on 3T Magnetic Resonance Arthrography: Comparison of Diagnostic Performance of T1-Weighted Spectral Presaturation with Inversion-Recovery and T2-Weighted Turbo Spin-Echo Sequences.

    Science.gov (United States)

    Lee, Hoseok; Ahn, Joong Mo; Kang, Yusuhn; Oh, Joo Han; Lee, Eugene; Lee, Joon Woo; Kang, Heung Sik

    2018-01-01

    To compare the T1-weighted spectral presaturation with inversion-recovery sequences (T1 SPIR) with T2-weighted turbo spin-echo sequences (T2 TSE) on 3T magnetic resonance arthrography (MRA) in the evaluation of the subscapularis (SSC) tendon tear with arthroscopic findings as the reference standard. This retrospective study included 120 consecutive patients who had undergone MRA within 3 months between April and December 2015. Two musculoskeletal radiologists blinded to the arthroscopic results evaluated T1 SPIR and T2 TSE images in separate sessions for the integrity of the SSC tendon, examining normal/articular-surface partial-thickness tear (PTTa)/full-thickness tear (FTT). Diagnostic performance of T1 SPIR and T2 TSE was calculated with arthroscopic results as the reference standard, and sensitivity, specificity, and accuracy were compared using the McNemar test. Interobserver agreement was measured with kappa (κ) statistics. There were 74 SSC tendon tears (36 PTTa and 38 FTT) confirmed by arthroscopy. Significant differences were found in the sensitivity and accuracy between T1 SPIR and T2 TSE using the McNemar test, with respective rates of 95.9-94.6% vs. 71.6-75.7% and 90.8-91.7% vs. 79.2-83.3% for detecting tear; 55.3% vs. 31.6-34.2% and 85.8% vs. 78.3-79.2%, respectively, for FTT; and 91.7-97.2% vs. 58.3-61.1% and 89% vs. 78-79.3%, respectively, for PTTa. Interobserver agreement for T1 SPIR was almost perfect for T1 SPIR (κ = 0.839) and substantial for T2 TSE (κ = 0.769). T1-weighted spectral presaturation with inversion-recovery sequences is more sensitive and accurate compared to T2 TSE in detecting SSC tendon tear on 3T MRA.

  18. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla.

    Science.gov (United States)

    Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin

    2017-04-01

    To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m 2 (30.02 ± 6.63 kg/m 2 ) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.

  19. Detection of Local Tumor Recurrence After Definitive Treatment of Head and Neck Squamous Cell Carcinoma: Histogram Analysis of Dynamic Contrast-Enhanced T1-Weighted Perfusion MRI.

    Science.gov (United States)

    Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan

    2017-01-01

    This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.

  20. Parallel imaging with phase scrambling.

    Science.gov (United States)

    Zaitsev, Maxim; Schultz, Gerrit; Hennig, Juergen; Gruetter, Rolf; Gallichan, Daniel

    2015-04-01

    Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. © 2014 Wiley Periodicals, Inc.

  1. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  2. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    International Nuclear Information System (INIS)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C.; Dale, Brian M.

    2012-01-01

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 ± 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  3. In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C. (Dept. of Radiology, Univ. of North Carolina at Chapel Hill (United States)); Dale, Brian M. (Siemens Medical Systems, Morrisville (United States)), email: richsem@med.unc.edu

    2012-05-15

    Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 +- 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing

  4. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  5. Endometrial cancer: magnetic resonance imaging.

    Science.gov (United States)

    Manfredi, R; Gui, B; Maresca, G; Fanfani, F; Bonomo, L

    2005-01-01

    Carcinoma of the endometrium is the most common invasive gynecologic malignancy of the female genital tract. Clinically, patients with endometrial carcinoma present with abnormal uterine bleeding. The role of magnetic resonance imaging (MRI) in endometrial carcinoma is disease staging and treatment planning. MRI has been shown to be the most valuable imaging mod-ality in this task, compared with endovaginal ultrasound and computed tomography, because of its intrinsic contrast resolution and multiplanar capability. MRI protocol includes axial T1-weighted images; axial, sagittal, and coronal T2-weighted images; and dynamic gadolinium-enhanced T1-weighted imaging. MR examination is usually performed in the supine position with a phased array multicoil using a four-coil configuration. Endometrial carcinoma is isointense with the normal endometrium and myometrium on noncontrast T1-weighted images and has a variable appearance on T2-weighted images demonstrating heterogeneous signal intensity. The appearance of noninvasive endometrial carcinoma on MRI is characterized by a normal or thickened endometrium, with an intact junctional zone and a sharp tumor-myometrium interface. Invasive endometrial carcinoma is characterized disruption or irregularity of the junctional zone by intermediate signal intensity mass on T2-weighted images. Invasion of the cervical stroma is diagnosed when the low signal intensity cervical stroma is disrupted by the higher signal intensity endometrial carcinoma. MRI in endometrial carcinoma performs better than other imaging modalities in disease staging and treatment planning. Further, the accuracy and the cost of MRI are equivalent to those of surgical staging.

  6. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    Science.gov (United States)

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  7. Gadobenate dimeglumine-enhanced MR of VX2 carcinoma in rabbit liver: usefulness of the delayed phase imaging and optimal pulse sequence

    International Nuclear Information System (INIS)

    Cho, Seung Il; Lee, Jeong Min; Kim, Young Kon; Kim, Chong Soo

    2002-01-01

    To assess the diagnostic value of delayed imaging using gadobenate dimeglumine (MultiHance) and to determine the optimal pulse sequence for the detection of VX2 carcinoma lesions in the rabbit. Twelve VX2 carcinomas implanted in the livers of eleven New Zealand rabbits were studied. All patients underwent an MR protocal consisting of precontrast T2-and T1-weighted sequences, followed by repetition of the T1-weighted sequence at 0 to 30 (arterial phase). 31-60 (portal phase), and 40 minutes (delayed phase) after the intravenous administration of 0.1 mmol/kg of gadobenate dimeglumine. The signal-to-noise ratio (SNR) of the liver and VX2 tumor, and the lesion-to-liver contrast-to-noise ratio (CNR) of precontrast and postcontrast MR images were quantitatively analyzed, and two experienced radiologists evaluated image quality in terms of lesion conspicuity, artifact, mass delineation, and vascular anatomy. Liver SNR was significantly higher at delayed imaging than at precontrast, arterial, and portal imaging (p<0.05), while lesion SNR was significantly higher at delayed imaging than at precontrast imaging (p<0.05). Lesion CNR was higher at delayed imaging than at precontrast and portal phase imaging (p<0.05), but there was no difference between arterial and delayed imaging. The latter provided better mass delineation than precontrast, arterial and portal phase imaging (p<0.05). While in terms of lesion conspicuity and vascular anatomy, the delayed phase was better than the arterial phase (p<0.05) but similar to the precontrast and portal phase. During the delayed phase, the gradient-echo sequence showed better results than the spin-echo in terms of liver SNR, and lesion SNR and CNR (p<0.05). Because it provides better lesion conspicuity and mass delineation by improving liver SNR and lesion-to-liver CNR, the addition of the delayed phase to a dynamic MRI sequence after gadobenate dimeglumine adminstration facilitates lesion detection. For delayed-phase imaging, the

  8. Gadobenate dimeglumine-enhanced MR of VX2 carcinoma in rabbit liver: usefulness of the delayed phase imaging and optimal pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Il; Lee, Jeong Min; Kim, Young Kon; Kim, Chong Soo [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2002-07-01

    To assess the diagnostic value of delayed imaging using gadobenate dimeglumine (MultiHance) and to determine the optimal pulse sequence for the detection of VX2 carcinoma lesions in the rabbit. Twelve VX2 carcinomas implanted in the livers of eleven New Zealand rabbits were studied. All patients underwent an MR protocal consisting of precontrast T2-and T1-weighted sequences, followed by repetition of the T1-weighted sequence at 0 to 30 (arterial phase). 31-60 (portal phase), and 40 minutes (delayed phase) after the intravenous administration of 0.1 mmol/kg of gadobenate dimeglumine. The signal-to-noise ratio (SNR) of the liver and VX2 tumor, and the lesion-to-liver contrast-to-noise ratio (CNR) of precontrast and postcontrast MR images were quantitatively analyzed, and two experienced radiologists evaluated image quality in terms of lesion conspicuity, artifact, mass delineation, and vascular anatomy. Liver SNR was significantly higher at delayed imaging than at precontrast, arterial, and portal imaging (p<0.05), while lesion SNR was significantly higher at delayed imaging than at precontrast imaging (p<0.05). Lesion CNR was higher at delayed imaging than at precontrast and portal phase imaging (p<0.05), but there was no difference between arterial and delayed imaging. The latter provided better mass delineation than precontrast, arterial and portal phase imaging (p<0.05). While in terms of lesion conspicuity and vascular anatomy, the delayed phase was better than the arterial phase (p<0.05) but similar to the precontrast and portal phase. During the delayed phase, the gradient-echo sequence showed better results than the spin-echo in terms of liver SNR, and lesion SNR and CNR (p<0.05). Because it provides better lesion conspicuity and mass delineation by improving liver SNR and lesion-to-liver CNR, the addition of the delayed phase to a dynamic MRI sequence after gadobenate dimeglumine adminstration facilitates lesion detection. For delayed-phase imaging, the

  9. Partial volume effect (PVE) on the arterial input function (AIF) in T1-weighted perfusion imaging and limitations of the multiplicative rescaling approach

    DEFF Research Database (Denmark)

    Hansen, Adam Espe; Pedersen, Henrik; Rostrup, Egill

    2009-01-01

    The partial volume effect (PVE) on the arterial input function (AIF) remains a major obstacle to absolute quantification of cerebral blood flow (CBF) using MRI. This study evaluates the validity and performance of a commonly used multiplicative rescaling of the AIF to correct for the PVE. In a gr...

  10. Signal intensity change on unenhanced T1-weighted images in dentate nucleus following gadobenate dimeglumine in patients with and without previous multiple administrations of gadodiamide

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Joana [University of North Carolina Hospital, Chapel Hill, NC (United States); Centro Hospitalar de Lisboa Central, Lisbon (Portugal); Semelka, Richard C.; Castillo, Mauricio [University of North Carolina Hospital, Chapel Hill, NC (United States); AlObaidy, Mamdoh [University of North Carolina Hospital, Chapel Hill, NC (United States); King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Ramalho, Miguel [University of North Carolina Hospital, Chapel Hill, NC (United States); Hospital Garcia de Orta, Almada (Portugal); Nunes, Renato H. [University of North Carolina Hospital, Chapel Hill, NC (United States); Santa Casa de Misericordia de Sao Paulo, Sao Paulo (Brazil)

    2016-11-15

    To evaluate the impact of previous administration of gadodiamide and neural tissue gadolinium deposition in patients who received gadobenate dimeglumine. Our population included 62 patients who underwent at least three administrations of gadobenate dimeglumine, plus an additional contrast-enhanced last MRI for reference, divided into two groups: group 1, patients who in addition to gadobenate dimeglumine administrations had prior exposure to multiple doses of gadodiamide; group 2, patients without previous exposure to other gadolinium-based contrast agent (GBCAs). Quantitative analysis was performed on the first and last gadobenate dimeglumine MRIs in both groups. Dentate nucleus-to-middle cerebellar peduncle signal intensity ratios (DN/MCP) and relative change (RC) in signal over time were calculated and compared between groups using generalized additive model. Group 1 showed significant increase in baseline and follow-up DN/MCP compared to group 2 (p < 0.0001). The RC DN/MCP showed a non-statistically significant trend towards an increase in patients who underwent previous gadodiamide (p = 0.0735). There is increased T1 signal change over time in patients who underwent gadobenate dimeglumine and had received prior gadodiamide compared to those without known exposure to previous gadodiamide. A potentiating effect from prior gadodiamide on subsequent administered gadobenate dimeglumine may occur. (orig.)

  11. Application of phase contrast imaging to mammography

    International Nuclear Information System (INIS)

    Tohyama, Keiko; Yamada, Katsuhiko; Katafuchi, Tetsuro; Matsuo, Satoru; Morishita, Junji

    2005-01-01

    Phase contrast images were obtained experimentally by using a customized mammography unit with a nominal focal spot size of 100 μm and variable source-to-image distances of up to 1.5 m. The purpose of this study was to examine the applicability and potential usefulness of phase contrast imaging for mammography. A mammography phantom (ACR156 RMI phantom) was imaged, and its visibility was examined. The optical density of the phantom images was adjusted to approximately 1.3 for both the contact and phase contrast images. Forty-one observers (18 medical doctors and 23 radiological technologists) participated in visual evaluation of the images. Results showed that, in comparison with the images of contact mammography, the phantom images of phase contrast imaging demonstrated statistically significantly superior visibility for fibers, clustered micro-calcifications, and masses. Therefore, phase contrast imaging obtained by using the customized mammography unit would be useful for improving diagnostic accuracy in mammography. (author)

  12. Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.

    Science.gov (United States)

    Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko

    2007-01-01

    To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.

  13. SU-E-J-231: Comparison of Delineation Variability of Soft Tissue Volume and Position in Head-And-Neck Between Two T1-Weighted Pulse Sequences Using An MR-Simulator with Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Wong, O; Lo, G; Yuan, J; Law, M; Ding, A; Cheng, K; Chan, K; Cheung, K; Yu, S [Hong Kong Sanatorium & Hospital, Hong Kong (Hong Kong)

    2015-06-15

    Purpose: There is growing interests in applying MR-simulator(MR-sim) in radiotherapy but MR images subject to hardware, patient and pulse sequence dependent geometric distortion that may potentially influence target definition. This study aimed to evaluate the influence on head-and-neck tissue delineation, in terms of positional and volumetric variability, of two T1-weighted(T1w) MR sequences on a 1.5T MR-sim Methods: Four healthy volunteers were scanned (4 scans for each on different days) using both spin-echo (3DCUBE, TR/TE=500/14ms, TA=183s) and gradient-echo sequences (3DFSPGR, TE/TR=7/4ms, TA=173s) with identical coverage, voxel-size(0.8×0.8×1.0mm3), receiver-bandwidth(62.5kHz/pix) and geometric correction on a 1.5T MR-sim immobilized with personalized thermoplastic cast and head-rest. Under this setting, similar T1w contrast and signal-to-noise ratio were obtained, and factors other than sequence that might bias image distortion and tissue delineation were minimized. VOIs of parotid gland(PGR, PGL), pituitary gland(PIT) and eyeballs(EyeL, EyeR) were carefully drawn, and inter-scan coefficient-of-variation(CV) of VOI centroid position and volume were calculated for each subject. Mean and standard deviation(SD) of the CVs for four subjects were compared between sequences using Wilcoxon ranksum test. Results: The mean positional(<4%) and volumetric(<7%) CVs varied between tissues, majorly dependent on tissue inherent properties like volume, location, mobility and deformability. Smaller mean volumetric CV was found in 3DCUBE, probably due to its less proneness to tissue susceptibility, but only PGL showed significant difference(P<0.05). Positional CVs had no significant differences for all VOIs(P>0.05) between sequences, suggesting volumetric variation might be more sensitive to sequence-dependent delineation difference. Conclusion: Although 3DCUBE is considered less prone to tissue susceptibility-induced artifact and distortion, our preliminary data showed

  14. MR urography (MRU) of non-dilated ureter with diuretic administration: Static fluid 2D FSE T2-weighted versus 3D gadolinium T1-weighted GE excretory MR

    International Nuclear Information System (INIS)

    Roy, C.; Ohana, M.; Host, Ph.; Alemann, G.; Labani, A.; Wattiez, A.; Lang, H.

    2014-01-01

    •T2w-MRU with multiple orientations and diuretic is sufficient to identify non-dilated ureter.•T2w-MRU offers information on ureteral contractions and could be proposed to detect initial obstruction before hydronephrosis occurs (for instance in cases of endometriosis).•T2w-MRU could also be used to evaluate potential renal donors or in patients unable to receive gadolinium.•CE-MRU rapidly produces an overdistended bladder with a risk of false positive diagnosis of mild obstruction.•CE-MRU is less convenient for patients. T2w-MRU with multiple orientations and diuretic is sufficient to identify non-dilated ureter. T2w-MRU offers information on ureteral contractions and could be proposed to detect initial obstruction before hydronephrosis occurs (for instance in cases of endometriosis). T2w-MRU could also be used to evaluate potential renal donors or in patients unable to receive gadolinium. CE-MRU rapidly produces an overdistended bladder with a risk of false positive diagnosis of mild obstruction. CE-MRU is less convenient for patients. The goal of this prospective study was to compare the efficiency of two types of MRU after diuretic administration to identify the non-dilated ureter. MR pelvic examinations were performed in 126 patients after receiving furosemide. Each patient underwent in addition to their protocol for context, two types of MRU: 2D T2-weighted FSE (T2w-MRU) and 3D Gd T1-weighted GE (CE-MRU). Four segments were checked for each ureter. For the first part of the analysis, readers evaluated the whole image quality using a four points subjective scale and for the second part, they were asked to score separately each ureteral segment as present or absent. 1008 ureteral segments were checked. For the image quality, readers did not find any significant difference (3.8 ± 0.5 vs 3.6 ± 0.7, p value: 0.13) between MRU methods. The interobserver agreement was excellent with a κ correlation coefficient as high as 0.89 for T2w-MRU and 0.92 for CE

  15. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Quantitative T1 and T2* carotid atherosclerotic plaque imaging using a three-dimensional multi-echo phase-sensitive inversion recovery sequence: a feasibility study.

    Science.gov (United States)

    Fujiwara, Yasuhiro; Maruyama, Hirotoshi; Toyomaru, Kanako; Nishizaka, Yuri; Fukamatsu, Masahiro

    2018-06-01

    Magnetic resonance imaging (MRI) is widely used to detect carotid atherosclerotic plaques. Although it is important to evaluate vulnerable carotid plaques containing lipids and intra-plaque hemorrhages (IPHs) using T 1 -weighted images, the image contrast changes depending on the imaging settings. Moreover, to distinguish between a thrombus and a hemorrhage, it is useful to evaluate the iron content of the plaque using both T 1 -weighted and T 2 *-weighted images. Therefore, a quantitative evaluation of carotid atherosclerotic plaques using T 1 and T 2 * values may be necessary for the accurate evaluation of plaque components. The purpose of this study was to determine whether the multi-echo phase-sensitive inversion recovery (mPSIR) sequence can improve T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of an IPH. T 1 and T 2 * values measured using mPSIR were compared to values from conventional methods in phantom and in vivo studies. In the phantom study, the T 1 and T 2 * values estimated using mPSIR were linearly correlated with those of conventional methods. In the in vivo study, mPSIR demonstrated higher T 1 contrast between the IPH phantom and sternocleidomastoid muscle than the conventional method. Moreover, the T 1 and T 2 * values of the blood vessel wall and sternocleidomastoid muscle estimated using mPSIR were correlated with values measured by conventional methods and with values reported previously. The mPSIR sequence improved T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of the neck region. Although further study is required to evaluate the clinical utility, mPSIR may improve carotid atherosclerotic plaque detection and provide detailed information about plaque components.

  17. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  18. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease -- can it differentiate bone infarcts from acute osteomyelitis?

    Science.gov (United States)

    Delgado, Jorge; Bedoya, Maria A; Green, Abby M; Jaramillo, Diego; Ho-Fung, Victor

    2015-12-01

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children.

  19. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease - can it differentiate bone infarcts from acute osteomyelitis?

    International Nuclear Information System (INIS)

    Delgado, Jorge; Bedoya, Maria A.; Green, Abby M.; Jaramillo, Diego; Ho-Fung, Victor

    2015-01-01

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children. (orig.)

  20. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease - can it differentiate bone infarcts from acute osteomyelitis?

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jorge; Bedoya, Maria A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Green, Abby M. [The Children' s Hospital of Philadelphia, Division of Oncology, Philadelphia, PA (United States); Jaramillo, Diego; Ho-Fung, Victor [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States)

    2015-12-15

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children. (orig.)

  1. MR imaging of eosinophilic granuloma: report of 11 cases

    Energy Technology Data Exchange (ETDEWEB)

    Schepper, A M.A. de [Department of Medical Imaging, Univ. Hospital, Antwerp, (Belgium)1; Ramon, F [Department of Medical Imaging, Univ. Hospital, Antwerp, (Belgium)1; Marck, E van [Department of Pathology, University Hospital, Antwerp (Belgium)2

    1993-04-01

    The findings in 11 patients with histologically proven eosinophilic granuloma (EG) examined by magnetic resonance imaging (MRI) are described. In contrast with the variable appearance of EG on conventional radiography and computed tomography (CT), relatively constant features - intermediate to high signal intensity on T1-weighting, high signal intensity of T2-weighting, marked enhancement - were found on MRI. MRI was superior to other imaging methods in demonstrating bone marrow involvement and any accompanying soft tissue mass or inflammation. Intermediate to high signal intensity on T1-weighting and marked contrast enhancement could not be 'explained' by histological findings. Prediction of the evolutionary phase of EG by MRI remains questionable because of the phase I (proliferative) histology of all 11 lesions. (orig.)

  2. Hepatocellular carcinoma on MR diffusion weighted imaging and dynamic contrast-enhanced imaging

    International Nuclear Information System (INIS)

    Dong Aisheng; Zuo Changjing; Tian Jianming; Lu Jianping; Wang Jian; Wang Li; Wang Fei

    2009-01-01

    Objective: To evaluate the findings of hepatocellular carcinoma (HCC) on DWI and dynamic Gd-DTPA-enhanced MR imaging. Methods: Eighty one patients with chronic hepatitis or liver cirrhosis underwent both DWI and dynamic Gd-DTPA-enhanced MRI studies of the liver for HCC detection. MR data of were retrospectively analyzed. Two observers determined in consensus the location and the number of focal lesions. The signal manifestation of the lesions on DWI and dynamic Gd-DTPA-enhanced MR imaging were analyzed. Results: DWI and Gd-DTPA-enhanced MR images detected 122 HCCs and 14 benign lesions. One hundred and sixteen HCCs (95.1%) showed hyperintensity on DWI and 6 HCCs in patients with severe cirrhosis showed isointensity. One hundred and five HCCs (86.1%) revealed hypointensity, 11 HCCs (9.0%) showed isointensity and 6 HCCs (4.9%) exhibited hyperintensity on T 1 weighted images. On Gd-DTPA-enhanced MR images, 101 HCCs(82.8%) were significantly enhanced on arterial phase and 99 HCCs showed hypointensity on portal and equilibrium phases. Twenty HCCs (16.4%), 18 of 20 less than 20 mm in diameter, showed isointensity on arterial phase and hyperintensity on DWI. Eight of 14 benign lesions showed hyperintensity and 6 isointensity on DWI. Five benign lesions with hypointensity on T 1 weighted images without contrast and hyperintensity on DWI showed no enhancement on Gd-DTPA-enhanced MR images; 6 benign lesions with isointensity on both T 1 weighted imaging without contrast and DWI exhibited avid enhancement on arterial phase and isointensty on portal and equilibrium phases; one of the two benign lesions, with isointensity before and after contrast images and hyperintentiy on DWI, was a regenerative nodule; another regenerative nodule with hyperintensity on both T 1 weighted images without contrast and DWI was greatly enhanced on arterial phase and showed isointensity on portal and equilibrium phases. Conclusions: Most of the HCCs were greatly enhanced on arterial phase on Gd

  3. Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Pieter C; Hambrock, Thomas; Barenstz, Jelle O; Huisman, Henkjan J [Department of Radiology, Radboud University Medical Centre, Nijmegen, 6525GA (Netherlands)], E-mail: p.vos@rad.umcn.nl

    2010-03-21

    In this study, computer-assisted analysis of prostate lesions was researched by combining information from two different magnetic resonance (MR) modalities: T2-weighted (T2-w) and dynamic contrast-enhanced (DCE) T1-w images. Two issues arise when incorporating T2-w images in a computer-aided diagnosis (CADx) system: T2-w values are position as well as sequence dependent and images can be misaligned due to patient movement during the acquisition. A method was developed that computes T2 estimates from a T2-w and proton density value and a known sequence model. A mutual information registration strategy was implemented to correct for patient movement. Global motion is modelled by an affine transformation, while local motion is described by a volume preserving non-rigid deformation based on B-splines. The additional value to the discriminating performance of a DCE T1-w-based CADx system was evaluated using bootstrapped ROC analysis. T2 estimates were successfully computed in 29 patients. T2 values were extracted and added to the CADx system from 39 malignant, 19 benign and 29 normal annotated regions. T2 values alone achieved a diagnostic accuracy of 0.85 (0.77-0.92) and showed a significantly improved discriminating performance of 0.89 (0.81-0.95), when combined with DCE T1-w features. In conclusion, the study demonstrated a simple T2 estimation method that has a diagnostic performance such that it complements a DCE T1-w-based CADx system in discriminating malignant lesions from normal and benign regions. Additionally, the T2 estimate is beneficial to visual inspection due to the removed coil profile and fixed window and level settings.

  4. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  5. Phase Image Analysis in Conduction Disturbance Patients

    International Nuclear Information System (INIS)

    Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun

    1994-01-01

    It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 ± 13.9% vs 69.9 ± 4.2%, 2.48 ± 0.98 vs 3.51 ± 0,62, 1.76 ± 0.71 vs 3.38 ± 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle

  6. Phase Image Analysis in Conduction Disturbance Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun [Chung Nam University Hospital, Daejeon (Korea, Republic of)

    1994-03-15

    It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 +- 13.9% vs 69.9 +- 4.2%, 2.48 +- 0.98 vs 3.51 +- 0,62, 1.76 +- 0.71 vs 3.38 +- 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle

  7. Computational Phase Imaging for Biomedical Applications

    Science.gov (United States)

    Nguyen, Tan Huu

    When a sample is illuminated by an imaging field, its fingerprints are left on the amplitude and the phase of the emerging wave. Capturing the information of the wavefront grants us a deeper understanding of the optical properties of the sample, and of the light-matter interaction. While the amplitude information has been intensively studied, the use of the phase information has been less common. Because all detectors are sensitive to intensity, not phase, wavefront measurements are significantly more challenging. Deploying optical interferometry to measure phase through phase-intensity conversion, quantitative phase imaging (QPI) has recently gained tremendous success in material and life sciences. The first topic of this dissertation describes our effort to develop a new QPI setup, named transmission Spatial Light Interference Microscopy (tSLIM), that uses the twisted nematic liquid-crystal (TNLC) modulators. Compared to the established SLIM technique, tSLIM is much less expensive to build than its predecessor (SLIM) while maintaining significant performance. The tSLIM system uses parallel aligned liquid-crystal (PANLC) modulators, has a slightly smaller signal-to-noise Ratio (SNR), and a more complicated model for the image formation. However, such complexity is well addressed by computing. Most importantly, tSLIM uses TNLC modulators that are popular in display LCDs. Therefore, the total cost of the system is significantly reduced. Alongside developing new imaging modalities, we also improved current QPI imaging systems. In practice, an incident field to the sample is rarely perfectly spatially coherent, i.e., plane wave. It is generally partially coherent; i.e., it comprises of many incoherent plane waves coming from multiple directions. This illumination yields artifacts in the phase measurement results, e.g., halo and phase-underestimation. One solution is using a very bright source, e.g., a laser, which can be spatially filtered very well. However, the

  8. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    Science.gov (United States)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  9. Fat suppression MR imaging of sellar and parasellar lesions. The usefulness of the fat-saturation (FATSAT) technique

    International Nuclear Information System (INIS)

    Isoda, Haruo; Masui, Takayuki; Mochizuki, Takao; Ushimi, Takashi; Takahashi, Motoichiro; Kaneko, Masao; Ohta, Atsuko; Shirakawa, Toyomi; Takizawa, Osamu.

    1994-01-01

    The purpose of this study was to investigate the utility of fat suppression T 1 -weighted MR images using a frequency-selective presaturation pulse when evaluating the pituitary gland and parasellar lesions. Conventional spin echo T 1 weighted images and fat suppression spin echo T 1 -weighted images were obtained in twenty-three patients with clinically suspected pituitary gland diseases or parasellar lesions using a 1.5T superconductive MR imager with a head coil. Both conventional T 1 -weighted images and fat suppression T 1 -weighted images of the pituitary anterior lobe, posterior lobe, pituitary stalk and pituitary tumors were compared by two radiologists. The visibility of the anterior lobe, posterior lobe, pituitary stalk and pituitary tumors on fat suppression T 1 -weighted images was equal to or better than that on conventional T 1 -weighted images. After the intravenous administration of Gd-DTPA, both imaging methods showed little difference in the visibility of the posterior lobe and pituitary stalk. In conclusion, fat suppression T 1 -weighted images using a frequency-selective presaturation pulse can be useful in evaluating the pituitary gland and parasellar lesions. (author)

  10. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  11. Acute interstitial edematous pancreatitis: Findings on non-enhanced MR imaging

    Science.gov (United States)

    Zhang, Xiao-Ming; Feng, Zhi-Song; Zhao, Qiong-Hui; Xiao, Chun-Ming; Mitchell, Donald G; Shu, Jian; Zeng, Nan-Lin; Xu, Xiao-Xue; Lei, Jun-Yang; Tian, Xiao-Bing

    2006-01-01

    AIM: To study the appearances of acute interstitial edematous pancreatitis (IEP) on non-enhanced MR imaging. METHODS: A total of 53 patients with IEP diagnosed by clinical features and laboratory findings were underwent MR imaging. MR imaging sequences included fast spoiled gradient echo (FSPGR) fat saturation axial T1-weighted imaging, gradient echo T1-weighted (in phase), single shot fast spin echo (SSFSE) T2-weighted, respiratory triggered (R-T) T2-weighted with fat saturation, and MR cholangiopancreatography. Using the MR severity score index, pancreatitis was graded as mild (0-2 points), moderate (3-6 points) and severe (7-10 points). RESULTS: Among the 53 patients, IEP was graded as mild in 37 patients and as moderate in 16 patients. Forty-seven of 53 (89%) patients had at least one abnormality on MR images. Pancreas was hypointense relative to liver on FSPGR T1-weighted images in 18.9% of patients, and hyperintense in 25% and 30% on SSFSE T2-weighted and R-T T2-weighted images, respectively. The prevalences of the findings of IEP on R-T T2-weighted images were, respectively, 85% for pancreatic fascial plane, 77% for left renal fascial plane, 55% for peripancreatic fat stranding, 42% for right renal fascial plane, 45% for perivascular fluid, 40% for thickened pancreatic lobular septum and 25% for peripancreatic fluid, which were markedly higher than those on in-phase or SSFSE T2-weighted images (P fluid. R-T T2-weighted imaging is more sensitive than in-phase and SSFSE T2-weighted imaging for depicting IEP. PMID:17007053

  12. Are T2-weighted images necessary in renal mass characterization?

    International Nuclear Information System (INIS)

    Dann, Phoebe; Thakur, Ravi; Chin, Deanne; Krinsky, Glenn; Israel, Gary M.

    2006-01-01

    Objective: To determine what role T2-weighted images play in characterizing renal masses. Methods: Forty-four pathologically proven renal masses (34 renal cell carcinomas, 8 oncocytomas, 1 metanephric adenoma, 1 angiomyolipoma without macroscopic fat) and 38 simple renal cysts were evaluated with T1- and T2-weighted images at 1.5 T. Two independent and blinded readers initially characterized all masses using only the T1-weighed images (in- and opposed-phase chemical shift, unenhanced frequency-selective fat-suppressed, gadolinium-enhanced frequency-selective fat-suppressed and subtraction images) and placed each mass into one of three categories: nonsurgical, in need of follow-up, or surgical. The masses were then re-evaluated with the addition of the T2-weighted images. It was determined if the T2-weighted images changed the initial classification. Results: Forty-three of the 44 (98%) pathologically proven renal masses were characterized as a surgical mass using only the T1-weighted images. The remaining renal mass (a renal cell carcinoma) was characterized as a mass in which follow-up exams would be suggested. Thirty-eight of 38 (100%) simple renal cysts were correctly characterized using only the T1-weighted images. The T2-weighted images did not change the initial interpretation of the T1-weighted images in any of the cases. Conclusion: The results of this study suggest that T2-weighted images are not necessary in the evaluation of all renal masses and are specifically not necessary in the differentiation of solid and cystic renal neoplasms from simple renal cysts

  13. Phase Imaging: A Compressive Sensing Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.; Pohl, Darius; Nielsch, Kornelius; Rellinghaus, Bernd

    2017-07-01

    Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a high stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn

  14. PHASED ARRAY FEED CALIBRATION, BEAMFORMING, AND IMAGING

    International Nuclear Information System (INIS)

    Landon, Jonathan; Elmer, Michael; Waldron, Jacob; Jones, David; Stemmons, Alan; Jeffs, Brian D.; Warnick, Karl F.; Richard Fisher, J.; Norrod, Roger D.

    2010-01-01

    Phased array feeds (PAFs) for reflector antennas offer the potential for increased reflector field of view and faster survey speeds. To address some of the development challenges that remain for scientifically useful PAFs, including calibration and beamforming algorithms, sensitivity optimization, and demonstration of wide field of view imaging, we report experimental results from a 19 element room temperature L-band PAF mounted on the Green Bank 20 Meter Telescope. Formed beams achieved an aperture efficiency of 69% and a system noise temperature of 66 K. Radio camera images of several sky regions are presented. We investigate the noise performance and sensitivity of the system as a function of elevation angle with statistically optimal beamforming and demonstrate cancelation of radio frequency interference sources with adaptive spatial filtering.

  15. Off-site evaluation of liver lesion detection by Gd-BOPTA-enhanced MR imaging

    International Nuclear Information System (INIS)

    Gehl, H.B.; Bourne, M.; Grazioli, L.; Moeller, A.; Lodemann, K.P.

    2001-01-01

    The aim of this study was to determine the efficacy of Gd-BOPTA-enhanced MRI in liver lesion detection in comparison with unenhanced MRI and dynamic CT. The image sets of 148 of 151 patients enrolled in a multicenter German phase-III trial were evaluated by two independent radiologists unaffiliated with the investigating centers. Patients underwent a routine MRI protocol comprising T2- and T1-weighted spin-echo and T1-weighted gradient-echo (GE) sequences pre and 1 h post 0.1 mmol/kg Gd-BOPTA (Bracco-Byk Gulden, Konstanz, Germany). Additionally, a serial T1-weighted GE scan was performed after administration of the first half of the dose. All patients underwent dynamic contrast-enhanced CT. The evaluation was performed with regard to the number and size of lesions detected per patient by each modality or sequence. Furthermore, all pre CM and pre + post CM image sets were analyzed for number of lesions per patient. Both readers detected significantly more lesions in the contrast-enhanced image set compared with the unenhanced image set (32 and 39 %, respectively; p < 0.0001). While contrast-enhanced CT detected a similar number of lesions to unenhanced MRI, it was clearly inferior to contrast-enhanced MRI (reader 1: p = 0.0117; reader 2: p = 0.0225). Of the T1-weighted scans performed, the dynamic and late T1-weighted GE exams contributed most to the increased lesion detection rate (reader 1: p = 0.0007; reader 2: p = 0.0037). The size of the smallest lesion detected by means of MRI was significantly larger in the pre-CM image sets than in the pre + post CM image sets (reader 1: p = 0.001; reader 2: p < 0.0001). Gd-BOPTA-enhanced MRI detected significantly smaller lesions than contrast-enhanced CT (reader 1: p = 0.0117; reader 2: p = 0.0925). Gd-BOPTA-enhanced MR imaging improves liver lesion detection significantly over unenhanced MRI and dynamic CT. (orig.)

  16. Off-site evaluation of liver lesion detection by Gd-BOPTA-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, H.B. [Inst. of Diagnostic Radiology, Medical Univ. of Luebeck (Germany); Bourne, M. [Dept. of Radiology, Univ. Hospital of Wales, Cardiff (United Kingdom); Grazioli, L. [Dept. of Radiology, Univ. of Brescia (Italy); Moeller, A. [MEDIDATA GmbH, Konstanz (Germany); Lodemann, K.P. [BRACCO-BYK GULDEN GmbH, Konstanz (Germany)

    2001-02-01

    The aim of this study was to determine the efficacy of Gd-BOPTA-enhanced MRI in liver lesion detection in comparison with unenhanced MRI and dynamic CT. The image sets of 148 of 151 patients enrolled in a multicenter German phase-III trial were evaluated by two independent radiologists unaffiliated with the investigating centers. Patients underwent a routine MRI protocol comprising T2- and T1-weighted spin-echo and T1-weighted gradient-echo (GE) sequences pre and 1 h post 0.1 mmol/kg Gd-BOPTA (Bracco-Byk Gulden, Konstanz, Germany). Additionally, a serial T1-weighted GE scan was performed after administration of the first half of the dose. All patients underwent dynamic contrast-enhanced CT. The evaluation was performed with regard to the number and size of lesions detected per patient by each modality or sequence. Furthermore, all pre CM and pre + post CM image sets were analyzed for number of lesions per patient. Both readers detected significantly more lesions in the contrast-enhanced image set compared with the unenhanced image set (32 and 39 %, respectively; p < 0.0001). While contrast-enhanced CT detected a similar number of lesions to unenhanced MRI, it was clearly inferior to contrast-enhanced MRI (reader 1: p = 0.0117; reader 2: p = 0.0225). Of the T1-weighted scans performed, the dynamic and late T1-weighted GE exams contributed most to the increased lesion detection rate (reader 1: p = 0.0007; reader 2: p = 0.0037). The size of the smallest lesion detected by means of MRI was significantly larger in the pre-CM image sets than in the pre + post CM image sets (reader 1: p = 0.001; reader 2: p < 0.0001). Gd-BOPTA-enhanced MRI detected significantly smaller lesions than contrast-enhanced CT (reader 1: p = 0.0117; reader 2: p = 0.0925). Gd-BOPTA-enhanced MR imaging improves liver lesion detection significantly over unenhanced MRI and dynamic CT. (orig.)

  17. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    Science.gov (United States)

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  18. Detection of prostate carcinomas with T1-weighted dynamic contrast-enhanced MRI. Value of two-compartment model; Detektion von Prostatakarzinomen mit T1-gewichteter Kontrastmittel-unterstuetzter dynamischer MRT. Wertigkeit des Zweikompartimentemodells

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, F.; Lichy, M.; Farhan, N.; Delorme, S.; Kauczor, H.U. [Abteilung fuer Radiologie, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg (Germany); Grobholz, R. [Abteilung fuer Pathologie, Universitaetsklinikum Mannheim (Germany); Heilmann, M. [Abteilung fuer Physik in der Radiologie, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg (Germany); Michel, M.S.; Trojan, L. [Abteilung fuer Urologie, Universitaetsklinikum Mannheim (Germany); Werner, A.; Rabe, J. [Institut fuer Klinische Radiologie, Universitaetsklinikum Mannheim (Germany); Schlemmer, H.P. [Abteilung fuer Diagnostische Radiologie, Universitaetsklinikum Tuebingen (Germany)

    2003-06-01

    Aim The suitability of dynamic parameters of the two-compartment model for detecting prostate carcinomas and its correlation with tumor microvascular density were evaluated. The study included 43 patients with biopsy-proven prostate carcinoma: 28 were examined by 1.0-T MRI (Turbo-FLASH) and 15 by 1.5-T MRI (FLASH) with infusion of 0.1 mmol/kg Gd-DTPA. Signal time curves were parametrized with an open two-compartment model in amplitude and exchange rate constants (k{sub ep}).The microvascular density of resected prostate carcinomas was determined. The microvascular density in the tumors was significantly higher than in the adjacent healthy prostate tissue and correlated in both sequences with k{sub ep}. Prostate carcinomas of the peripheral zone were demarcated by amplitude and k{sub ep}. In the Turbo-FLASH sequence there was a significant difference between the tumor tissue and healthy peripheral zone in terms of k{sub ep} and in the FLASH sequence in terms of amplitude. Prostate carcinomas can be visualized with dynamic T1-weighted MR sequences using a two-compartment model. Moreover, the parameter k{sub ep} reveals the microvascular density in the tumor and can thus provide valuable clinical information for characterizing the tumors. (orig.) [German] Die Eignung dynamischer Parameter des Zweikompartimentemodells zur Erkennung von Prostatakarzinomen und deren Korrelation mit der Tumormikrogefaessdichte wurden evaluiert. 43 Patienten mit bioptisch gesichertem Prostatakarzinom wurden untersucht, 28 mit 1,0 T- (Turbo-FLASH-) und 15 bei 1,5-T-MRT (FLASH) unter Infusion von 0,1 mmol/kg Gd-DTPA. Signal-Zeit-Kurven wurden nach einem offenen Zweikompartimentemodell in Amplitude sowie Austauschratenkonstante (k{sub ep}) parametrisiert. An resezierten Prostatakarzinomen wurde die Mikrogefaessdichte bestimmt.Ergebnisse Die Mikrogefaessdichte in den Tumoren war signifikant hoeher als im angrenzenden gesunden Prostatagewebe und korrelierte bei beiden Sequenzen mit k{sub ep

  19. Imaging of a large collection of human embryo using a super-parallel MR microscope

    International Nuclear Information System (INIS)

    Matsuda, Yoshimasa; Ono, Shinya; Otake, Yosuke; Handa, Shinya; Kose, Katsumi; Haishi, Tomoyuki; Yamada, Shigeto; Uwabe, Chikako; Shiota, Kohei

    2007-01-01

    Using 4 and 8-channel super-parallel magnetic resonance (MR) microscopes with a horizontal bore 2.34T superconducting magnet developed for 3-dimensional MR microscopy of the large Kyoto Collection of Human Embryos, we acquired T 1 -weighted 3D images of 1204 embryos at a spatial resolution of (40 μm) 3 to (150 μm) 3 in about 2 years. Similarity of image contrast between the T 1 -weighted images and stained anatomical sections indicated that T 1 -weighted 3D images could be used for an anatomical 3D image database for human embryology. (author)

  20. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  1. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  2. Magnetic Imaging with a Novel Hole-Free Phase Plate

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2014-01-01

    One of the main interests in phase plate imaging is motivated by a decrease in irradiation dose needed to obtain desired signal to noise ratio, a result of improved contrast transfer [1]. The decrease in irradiation improves the imaging of biological materials [2]. Here we demonstrate that phase...... most phase objects, including magnetic and electrostatic fields in vacuum. The requirement for phase plate imaging, including that by HFPP, is that the object spectrum in the back focal plane of the objective lens must not be broadened via the effect of chromatic aberration. In other words, the imaged...

  3. Usefulness of dynamic MR imaging for the evaluation of transcatheter arterial embolization for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kyomasu, Yoshinori; Nakayama, Masafumi; Kawakami, Mutsumi; Mashima, Yasuoki; Ichinose, Akira; Endou, Kazuo; Chiba, Kazuo; Tanno, Munehiko; Yamada, Hideo

    1992-01-01

    Thirteen patients with hepatocellular carcinoma (HCC) were studied with dynamic MR imaging in addition to conventional T 1 - and T 2 -weighted and enhanced T 1 -weighted images before and after the treatment of HCC by transcatheter arterial embolization (TAE). Dynamic MR imaging was performed using GRASS (gradient recalled acquisition in the steady state) sequences. The imaging was started at 10 seconds after rapid injection of Gd-diethylenetriaminepentaacetic acid (Gd-DTPA) with 6s breath hold. Thereafter about 12 images were obtained during 6s breath-holding with 20 seconds intervals. On T 1 - and T 2 -weighted images, signal intensity at the tumor tended to increase during the early period after TAE and to decrease later. Intensities of the HCC, however, were heterogeneous. Differentiation among embolic area, necrosis, viable cells and recurrent area, was often difficult only by conventional images. Dynamic GRASS images could clearly demonstrate an embolic area as a region without contrast enhancement. While recurrent tumor could be diagnosed as an area with early enhancement at the arterial phase. Development of the collateral circulation and dominancy of tumor feeding vessels after TAE could also be deduced on dynamic MR images together with enhanced T 1 -weighted images. The dynamic MR imaging was concluded to be a potentially useful procedure for the clinical evaluation of HCC after TAE. (author)

  4. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J. [Department of Radiology, ' ' Aretaieion' ' Hospital,University of Athens Medical School, Athens (Greece); Voumvourakis, C.; Sfagos, C. [Department of Neurology, ' ' Eginiteion' ' Hospital, University of Athens Medical School, Athens (Greece)

    2004-03-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  5. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    International Nuclear Information System (INIS)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J.; Voumvourakis, C.; Sfagos, C.

    2004-01-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  6. Multispectral Panoramic Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  7. Age-related changes in normal adult pancreas: MR imaging evaluation

    International Nuclear Information System (INIS)

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Sone, Teruki; Noda, Yasufumi; Higaki, Atsushi; Kanki, Akihiko; Tanimoto, Daigo; Higashi, Hiroki

    2012-01-01

    Objective: To investigate age-related changes in normal adult pancreas as identified by magnetic resonance imaging (MRI). Materials and methods: We examined 115 patients without pancreatic diseases (21–90 years) who underwent upper abdominal MRI to evaluate the normal pancreatic MRI findings related to aging. The parameters examined were the pancreatic anteroposterior (AP) diameter, pancreatic lobulation, pancreatic signal intensity (SI), depiction of the main pancreatic duct (MPD), grade of the visual SI decrease on the opposed-phase T1-weighted images compared with in-phase images, and enhancement effect of the pancreas in the arterial phase of dynamic imaging. Results: The pancreatic AP diameter significantly reduced (head, p = 0.0172; body, p = 0.0007; tail, p < 0.0001), and lobulation (p < 0.0001) and parenchymal fatty change (p < 0.0001) became more evident with aging. No significant correlation was observed between aging and pancreatic SI, however the SI on the in-phase T1-weighted images tended to decrease with aging. No significant correlation was observed between aging and the depiction of the MPD as well as aging and contrast enhancement. Conclusion: MRI findings of pancreatic atrophy, lobulation, and fatty degeneration are characteristic changes related to aging, and it is necessary to recognize these changes in the interpretation of abdominal MRI in patients with and without pancreatic disease

  8. Monitoring stem cells in phase contrast imaging

    Science.gov (United States)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  9. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  10. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  11. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  12. Multichannel far-infrared phase imaging for fusion plasmas

    International Nuclear Information System (INIS)

    Young, P.E.; Neikirk, D.P.; Tong, P.P.; Rutledge, D.B.; Luhmann, N.C. Jr.

    1985-01-01

    A 20-channel far-infrared imaging interferometer system has been used to obtain single-shot density profiles in the UCLA Microtor tokamak. This system differs from conventional multichannel interferometers in that the phase distribution produced by the plasma is imaged onto a single, monolithic, integrated microbolometer linear detector array and provides significantly more channels than previous far-infrared interferometers. The system has been demonstrated to provide diffraction-limited phase images of dielectric targets

  13. Magnetic resonance imaging of the fetal gallbladder and bile

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Weber, Michael; Prayer, Daniela

    2010-01-01

    To study the magnetic resonance imaging (MRI) appearance of the fetal gallbladder with special reference to fetal gallbladder sludge. In a retrospective study of 512 fetuses without gastrointestinal abnormalities, we classified the gallbladder MR appearances into patterns based on the signal intensity (SI) of bile on T1-weighted and T2-weighted sequences. We analysed the ratio of T1-weighted SI of bile. Maximum gallbladder width was correlated with gestational weeks (GW) using non-linear regression analysis and compared between various imaging patterns with one-way ANOVA. Five age-dependent patterns of the MRI appearance were found: (1) SI of bile was T2-weighted hyperintense and T1-weighted hypointense (78.5%); (2) presented with T2-weighted hyperintensity and T1-weighted signal isointense to liver (10.4%); (3) moderate hyperintense T2-weighted SI, T1-weighted SI hyperintense to liver (4.9%); (4) SI was T2-weighted isointense and T1-weighted hyperintense to liver (3.7%); (5) pronounced T2-weighted hypointensity and marked T1-weighted hyperintensity (2.5%). Pattern 1 was exclusively found before 27 GW, while patterns 2-5 increased in frequency after 30 GW. The MRI appearance of the fetal gallbladder is variable; fetal bile shows age-dependent SI changes that may cause non-visualisation of the gallbladder. This may be due to sludge and/or accumulation of paramagnetic substances suspended within gallbladder mucus. (orig.)

  14. Magnetic resonance imaging of the fetal gallbladder and bile

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Weber, Michael [Medical University of Vienna, Department of Radiology, Vienna (Austria); Prayer, Daniela [Medical University of Vienna, Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria)

    2010-12-15

    To study the magnetic resonance imaging (MRI) appearance of the fetal gallbladder with special reference to fetal gallbladder sludge. In a retrospective study of 512 fetuses without gastrointestinal abnormalities, we classified the gallbladder MR appearances into patterns based on the signal intensity (SI) of bile on T1-weighted and T2-weighted sequences. We analysed the ratio of T1-weighted SI of bile. Maximum gallbladder width was correlated with gestational weeks (GW) using non-linear regression analysis and compared between various imaging patterns with one-way ANOVA. Five age-dependent patterns of the MRI appearance were found: (1) SI of bile was T2-weighted hyperintense and T1-weighted hypointense (78.5%); (2) presented with T2-weighted hyperintensity and T1-weighted signal isointense to liver (10.4%); (3) moderate hyperintense T2-weighted SI, T1-weighted SI hyperintense to liver (4.9%); (4) SI was T2-weighted isointense and T1-weighted hyperintense to liver (3.7%); (5) pronounced T2-weighted hypointensity and marked T1-weighted hyperintensity (2.5%). Pattern 1 was exclusively found before 27 GW, while patterns 2-5 increased in frequency after 30 GW. The MRI appearance of the fetal gallbladder is variable; fetal bile shows age-dependent SI changes that may cause non-visualisation of the gallbladder. This may be due to sludge and/or accumulation of paramagnetic substances suspended within gallbladder mucus. (orig.)

  15. Castleman disease of the neck: CT and MR imaging findings

    International Nuclear Information System (INIS)

    Jiang, Xin-hua; Song, Hao-ming; Liu, Qing-yu; Cao, Yun; Li, Guo-hong; Zhang, Wei-dong

    2014-01-01

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases

  16. Castleman disease of the neck: CT and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-hua [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Song, Hao-ming [Department of Cardiology, Shanghai Tongji Hospital, Shanghai 200065 (China); Liu, Qing-yu [Department of Radiology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120 (China); Cao, Yun [Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Li, Guo-hong [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Zhang, Wei-dong, E-mail: dongw.z@163.com [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China)

    2014-11-15

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases.

  17. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  18. Ultrahigh Resolution 3-Dimensional Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  19. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  20. Dynamic MR imaging of pancreatic cancer

    International Nuclear Information System (INIS)

    Akaki, Shiro; Kohno, Yoshihiro; Gohbara, Hideo

    1994-01-01

    Dynamic MRI was performed on 21 patients with pancreatic duct cell carcinoma. Turbo-FLASH or FLASH3D was performed immediately following rapid bolus injection of gadopentetate dimeglumine, and these FLASH images and conventional spin echo images were evaluated about detectability of the lesion. All images were classified into three groups of detectability of the lesion ; good, fair, and poor. On T 1 weighted image, 23% of cases were 'good' and 48% were evaluated as 'fair'. On the other hand, on dynamic MRI, 62% of cases were 'good' and 33% of cases were evaluated as 'fair'. Both T 2 weighted image and enhanced T 1 weighted image were not useful for depiction of the lesion. Direct comparison between T 1 weighted image and dynamic MRI was also done. In 55% of cases, dynamic MRI was superior to T 1 weighted image and in 40% of cases, dynamic MRI was equal to T 1 weighted image. Thus, dynamic MRI was superior to conventional spin echo images for detection of duct cell carcinoma. In 17 patients of duct cell carcinoma who underwent FLASH3D, contrast/noise ratio (CNR) was calculated before and after injection of gadopentetate dimeglumine. The absolute value of CNR became significantly larger by injection of contrast material. In nine resectable pancreatic carcinomas, two cases of INF α and two cases of medullary type were well depicted. It was concluded that dynamic MRI was useful for evaluation of pancreatic carcinoma. (author)

  1. Longwave Imaging for Astronomical Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  2. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  3. Imaging of Phase Objects using Partially Coherent Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ravizza, F. L. [Univ. of Arizona, Tucson, AZ (United States)

    2013-01-01

    Screening high-power laser optics for light intensifying phase objects that cause laserinduced damage on downstream optics is critical to sustaining laser operation. Identifying such flaws on large-apertures is quite challenging since they are relatively small and invisible to conventional inspection methods. A Linescan Phase Differential Imaging (LPDI) system was developed to rapidly identify these flaws on large-aperture optics within a single full-aperture dark-field image. We describe a two-step production phase object screening process consisting of LPDI mapping and image analysis, followed by high-resolution interferometry and propagation based evaluation of the downstream damage potential of identified flaws. An image simulation code capable of modeling the LPDI partially coherent illumination was used to optimize its phase object sensitivity.

  4. High Temperature Fiberoptic Thermal Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  5. Phase contrast image segmentation using a Laue analyser crystal

    International Nuclear Information System (INIS)

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  6. Classified study and clinical value of the phase imaging features

    International Nuclear Information System (INIS)

    Dang Yaping; Ma Aiqun; Zheng Xiaopu; Yang Aimin; Xiao Jiang; Gao Xinyao

    2000-01-01

    445 patients with various heart diseases were examined by the gated cardiac blood pool imaging, and the phase was classified. The relationship between the seven types with left ventricular function index, clinical heart function, different heart diseases as well as electrocardiograph was studied. The results showed that the phase image classification could match with the clinical heart function. It can visually, directly and accurately indicate clinical heart function and can be used to identify diagnosis of heart disease

  7. Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference?

    Science.gov (United States)

    Toth, Arnold; Kovacs, Noemi; Perlaki, Gabor; Orsi, Gergely; Aradi, Mihaly; Komaromy, Hedvig; Ezer, Erzsebet; Bukovics, Peter; Farkas, Orsolya; Janszky, Jozsef; Doczi, Tamas; Buki, Andras; Schwarcz, Attila

    2013-01-01

    Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected ptime points when performing MRI studies on patients with mTBI.

  8. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  9. Transverse Oscillations for Phased Array Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2010-01-01

    of superficial blood vessels. To broaden the usability of the method, it should be expanded to a phased array geometry enabling vector velocity imaging of the heart. Therefore, the scan depth has to be increased to 10-15 cm. This paper presents suitable pulse echo fields (PEF). Two lines are beamformed...... (correlation coefficient, R: -0.76), and therefore predict estimator performance. CV is correlated with the standard deviation (R=0.74). The results demonstrate the potential for using a phased array for vector velocity imaging at larger depths, and potentially for imaging the heart....

  10. Triple-phase bone image abnormalities in Lyme arthritis

    International Nuclear Information System (INIS)

    Brown, S.J.; Dadparvar, S.; Slizofski, W.J.; Glab, L.B.; Burger, M.

    1989-01-01

    Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities

  11. Dynamic MR imaging of pituitary adenoma

    International Nuclear Information System (INIS)

    Miki, Yukio; Nishizawa, Sadahiko; Kuroda, Yasumasa; Keyaki, Atsushi; Nabeshima, Sachio; Kawamura, Junichiro; Matsuo, Michimasa

    1990-01-01

    The authors performed serial dynamic MR imaging in patients with 10 normal pituitary and 21 pituitary adenoma utilizing spin-echo sequence with a very short repetition time (SE 100/15) every minute immediately after a bolus injection of Gd-DTPA. Usual T 1 -weighted images (SE 600/15) were also obtained before and after the dynamic study. Pituitary adenomas included 10 adenomas confirmed by surgery, 4 adenomas confirmed by biologic data, and 7 postoperative adenomas. Out of 10 patients who underwent surgery after dynamic MRI, 9 patients underwent postoperative dynamic MRI. In normal patients, the pituitary gland was markedly enhanced on the early-phase images of the dynamic study, followed by gradual decrease of intensity throughout the dynamic study. In cases of microadenomas, the contrast between the normal pituitary gland and adenoma is better than that on the usual T 1 -weighted images by marked enhancement of the normal pituitary gland. Dynamic images clearly showed the residual normal pituitary glands in all cases of macroadenoma larger than 15 mm in diameter, whereas usual contrast-enhanced images showed the normal pituitary gland only in one case. In all patients who underwent both preoperative and postoperative dynamic MRI, postoperative dynamic MRI showed the normal pituitary glands which are markedly enhanced on the early-phase images in the sites which correspond to the preoperative dynamic study. The normal residual anterior gland was also visualized in four out of 7 patients who received only postoperative dynamic MRI. Dynamic MRI is a strong diagnostic modality for visualizing microadenoma and for visualizing the normal pituitary gland in cases of preoperative and postoperative macroadenoma. (author)

  12. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  13. Imaging in early phase childhood cancer trials

    International Nuclear Information System (INIS)

    Adamson, Peter C.

    2009-01-01

    Advances made in the treatment of childhood malignancies during the last four decades have resulted in overall cure rates of approximately 80%, but progress has slowed significantly during the last 10 years, underscoring the need for more effective and less toxic agents. Current research is focused on development of molecularly targeted agents, an era ushered in with the discovery of imatinib mesylate for the treatment of chronic myelogenous leukemia. Since imatinib's introduction into the clinic, an increasing number of tyrosine kinase inhibitors have been developed and entered into clinical trials and practice. Parallel to the initial advances made in molecularly targeted agents has been the development of a spectrum of novel imaging modalities. Future goals for imaging in childhood cancer research thus include (1) patient identification based on target identification or other biologic characteristics of the tumor, (2) assessing pharmacokinetic-pharmacodynamic (PK-PD) effects, and (3) predictive value with an early indication of patient benefit. Development and application of novel imaging modalities for children with cancer can serve to streamline development of molecularly targeted agents. (orig.)

  14. Phase image characterization of ventricular contraction in left anterior hemiblock

    International Nuclear Information System (INIS)

    Ono, Akifumi; Mizuno, Haruyoshi; Tahara, Yorio; Ishikawa, Kyozo

    1991-01-01

    We investigated whether or not left anterior hemiblock is present in patients with left axis deviation using first-harmonic Fourier analysis of gated blood-pool images. Gated blood-pool images were taken in 50 patients without contraction abnormality. They included 14 normal subjects, 8 patients with right bundle branch block (RBBB), 20 with left axis deviation (LAD) and 8 with both RBBB and LAD (RBBB+LAD). ECG gated blood-pool scans were acquired in the anterior and 'best septal' left anterior oblique projections. First, the phase images were displayed cinematically as a continuous-loop movie. Next, for quantitative analysis of the phase image, the whole left ventricular and left ventricular high lateral regions of interest were drawn. The 'regional phase shift' (RPS) was then defined as {RPS=A-a} where 'A' is the mean value of the whole left ventricular phase angles and 'a' is that of phase angles in the high lateral region. The left ventricular phase changes and the RPSs in the RBBB and LAD groups were similar to those in the normal group. In the RBBB+LAD group, the latest phase changes occurred in the high anterolateral region. The RPSs of this group were significantly lower than those in the other 3 groups (p<0.01). These data suggest that left anterior hemiblock might coexist with RBBB in patients with RBBB+LAD, whereas left anterior hemiblock might not exist in the majority of patients with LAD alone. (author)

  15. Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2011-01-01

    Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these

  16. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  17. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  18. Perceptual and statistical analysis of cardiac phase and amplitude images

    International Nuclear Information System (INIS)

    Houston, A.; Craig, A.

    1991-01-01

    A perceptual experiment was conducted using cardiac phase and amplitude images. Estimates of statistical parameters were derived from the images and the diagnostic potential of human and statistical decisions compared. Five methods were used to generate the images from 75 gated cardiac studies, 39 of which were classified as pathological. The images were presented to 12 observers experienced in nuclear medicine. The observers rated the images using a five-category scale based on their confidence of an abnormality presenting. Circular and linear statistics were used to analyse phase and amplitude image data, respectively. Estimates of mean, standard deviation (SD), skewness, kurtosis and the first term of the spatial correlation function were evaluated in the region of the left ventricle. A receiver operating characteristic analysis was performed on both sets of data and the human and statistical decisions compared. For phase images, circular SD was shown to discriminate better between normal and abnormal than experienced observers, but no single statistic discriminated as well as the human observer for amplitude images. (orig.)

  19. Comparison of the sensitivity and specificity of CT and MR imaging in the detection of cervical nodal tumor necrosis and extracapsular tumor spread

    International Nuclear Information System (INIS)

    Yousem, D.M.; Som, P.M.; Schjwaibold, F.; Hendrix, R.

    1991-01-01

    This paper evaluates if MR imaging can achieve the sensitivity and specificity of enhanced CT in detecting tumoral nodal necrosis (TNN) and extracapsular tumor spread (ETS). Enhanced CT scans and unenhanced and enhanced MR images were retrospectively and separately reviewed by a study-blinded radiologist. Fifty-eight lymph nodes were evaluated for TNN and ETS. Readings were given for CT, T1-weighted MR, T2-weighted MR, T1-weighted and T2-weighted MR, enhanced T1-weighted fat-suppressed MR, and T1-weighted, T2-weighted, and enhanced fat suppressed T1-weighted MR. Pathology proof was used to assess TNN; CT and used to assess ETS. Enhanced CT had the highest sensitivity for TNN. The sensitivity of unenhanced MR ranged from 33% to 50%; that of enhanced MR was 47%. All MR sequences and cT had specificities for TNN >92%. The highest accuracy of MR for TNN was the unenhanced T1-weighted and T2-weighted images alone; CT accuracy was 90%. MR sensitivity for ETS was maximal with T1-weighted images; all sequences had specificities >90%. Gadolinium-enhanced images did not improve accuracy in TNN or ETS

  20. Factors predicting aggressiveness of non-hypervascular hepatic nodules detected on hepatobiliary phase of gadolinium ethoxybenzyl diethylene-triamine-pentaacetic-acid magnetic resonance imaging.

    Science.gov (United States)

    Kanefuji, Tsutomu; Takano, Toru; Suda, Takeshi; Akazawa, Kouhei; Yokoo, Takeshi; Kamimura, Hiroteru; Kamimura, Kenya; Tsuchiya, Atsunori; Takamura, Masaaki; Kawai, Hirokazu; Yamagiwa, Satoshi; Aoyama, Hidefumi; Nomoto, Minoru; Terai, Shuji

    2015-04-21

    To establish a prognostic formula that distinguishes non-hypervascular hepatic nodules (NHNs) with higher aggressiveness from less hazardous one. Seventy-three NHNs were detected in gadolinium ethoxybenzyl diethylene-triamine-pentaacetic-acid magnetic resonance imaging (Gd-EOB-DTPA-MRI) study and confirmed to change 2 mm or more in size and/or to gain hypervascularity. All images were interpreted independently by an experienced, board-certified abdominal radiologist and hepatologist; both knew that the patients were at risk for hepatocellular carcinoma development but were blinded to the clinical information. A formula predicting NHN destiny was developed using a generalized estimating equation model with thirteen explanatory variables: age, gender, background liver diseases, Child-Pugh class, NHN diameter, T1-weighted imaging/T2-weighted imaging detectability, fat deposition, lower signal intensity in arterial phase, lower signal intensity in equilibrium phase, α-fetoprotein, des-γ-carboxy prothrombin, α-fetoprotein-L3, and coexistence of classical hepatocellular carcinoma. The accuracy of the formula was validated in bootstrap samples that were created by resampling of 1000 iterations. During a median follow-up period of 504 d, 73 NHNs with a median diameter of 9 mm (interquartile range: 8-12 mm) grew or shrank by 68.5% (fifty nodules) or 20.5% (fifteen nodules), respectively, whereas hypervascularity developed in 38.4% (twenty eight nodules). In the fifteen shrank nodules, twelve nodules disappeared, while 11.0% (eight nodules) were stable in size but acquired vascularity. A generalized estimating equation analysis selected five explanatories from the thirteen variables as significant factors to predict NHN progression. The estimated regression coefficients were 0.36 for age, 6.51 for lower signal intensity in arterial phase, 8.70 or 6.03 for positivity of hepatitis B virus or hepatitis C virus, 9.37 for des-γ-carboxy prothrombin, and -4.05 for fat

  1. Noninterferometric phase imaging of a neutral atomic beam

    International Nuclear Information System (INIS)

    Fox, P.J.; Mackin, T.R.; Turner, L.D.; Colton, I.; Nugent, K.A.; Scholten, R.E.

    2002-01-01

    We demonstrate quantitative phase imaging of a neutral atomic beam by using a noninterferometric technique. A collimated thermal atomic beam is phase shifted by an off-resonant traveling laser beam with both a Gaussian and a TEM 01 profile and with both red and blue detuning of as much as 50 GHz. Phase variations of more than 1000 rad were recovered from velocity-selective measurements of the propagation of the atomic beam and were found to be in quantitative agreement with theoretical predictions based on independently measured phase object intensity profiles and detunings

  2. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  3. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  4. Analyser-based phase contrast image reconstruction using geometrical optics

    International Nuclear Information System (INIS)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-01-01

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser

  5. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  6. Phase accuracy evaluation for phase-shifting fringe projection profilometry based on uniform-phase coded image

    Science.gov (United States)

    Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu

    2018-06-01

    Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.

  7. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America

  8. Role of magnetic resonance imaging in the diagnosis of spontaneous spondylodiscitis

    International Nuclear Information System (INIS)

    Cusmano, F.; Calabrese, G.; Bassi, S.; Branislav, S.; Bassi, P.

    2000-01-01

    Purpose of this work is to report the Magnetic Resonance Imaging (MRI) features of acute and chronic spontaneous spondylodiscitis as well as any as well as any typical patterns which can be useful for the differential diagnosis between pyogenic and tuberculous forms. Eleven patients affected with spontaneous spondylodiscitis were selected for the study; they were 7 men and 4 women ranging in age 33-87 years (mean: 64). Patients with a superconductive magnet at 1.5, with the following sequences: sagittal PD and T2-weighted TSE, sagittal T1-weighted SE, axial PD and T2-weighted TSE for the lumbar spine, axial T2-weighted GRE for the cervical and dorsal spine and axial and sagittal T1-weighted SE after contrast agent (gadolinium DTPA) injection. MR images were reviewed by three experienced radiologists and morphological and signal intensity changes of vertebral body and disk were recorded on a standard form. In 9 patients it was possible to compare MR to CT findings. Three patients had infectious diseases in other organs and 2 were diabetics. Biopsy was performed in two cases only and demonstrated Staphylococcus aureus in one and Mycobacterium tuberculosis in the other patient. MRI, allowed the correct diagnosis to be made in all cases, demonstrating the pathological involvement of the paravertebral structures and into the spinal canal earlier and more accurately than CT. A common finding in pyogenic and tuberculous spondylodiscitis was the low signal of the subcortical bone marrow on T1-weighted sagittal images, which enhanced after Gd-DTPA administration and became intermediate or high on T2-weighted images. Moreover, the steady high signal intensity of the disk on T2-weighted images and its contrast enhancement on T1-weighted images is typical for an acute inflammatory process. Based on our personal experience an literature data, it is believed that MRI is the most sensitive technique for the diagnosis of spondylodiscitis in the acute phase, whereas it is

  9. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  10. Characterisation of phase evolution under load by means of phase contrast imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Besseghini, S.; Stortiero, F.; Carcano, G.; Villa, E.; Mancini, L.; Tromba, G.; Zanini, F.; Montanari, F.; Airoldi, G.

    2003-01-01

    Phase contrast radiography (PCR) is a quite novel technique that is collecting increasing attention due to the possibility to obtain image information in presence of very small differences in the densities of the materials under analysis. Phase contrast imaging (PCI) has some specific advantage when compared with common microscopic techniques: (a) no special preparation of the sample is needed (b) the simultaneously investigated area is very large and (c) it allows the setting up of complex experimental apparatus. The results here presented are a good evidence of these three advantages. In this paper, we report on the application of phase contrast imaging in the study of the phase evolution during pseudoelastic transformation in the NiTiCu shape memory alloys (SMAs). The investigation was undertaken with the aim to identify some modification of the structure taking place at the end of the transformation plateau in the pseudoelastic behaviour of the alloy

  11. DIPSI: the diffraction image phase sensing instrument for APE

    Science.gov (United States)

    Montoya-Martínez, Luzma; Reyes, Marcos; Schumacher, Achim; Hernández, Elvio

    2006-06-01

    Large segmented mirrors require efficient co-phasing techniques in order to avoid the image degradation due to segments misalignment. For this purpose in the last few years new co-phasing techniques have been developed in collaboration with several European institutes. The Active Phasing Experiment (APE) will be a technical instrument aimed at testing different phasing techniques for an Extremely Large Telescope (ELT). A mirror composed of 61 hexagonal segments will be conjugated to the primary mirror of the VLT (Very Large Telescope). Each segment can be moved in piston, tip and tilt. Three new types of co-phasing sensors dedicated to the measurement of segmentation errors will be tested, evaluated and compared: ZEUS (Zernike Unit for Segment phasing) developed by LAM and IAC, PYPS (PYramid Phase Sensor) developed by INAF/ARCETRI, and DIPSI (Diffraction Image Phase Sensing Instrument) developed by IAC, GRANTECAN and LAM. This experiment will first run in the laboratory with point-like polychromatic sources and a turbulence generator. In a second step, it will be mounted at the Nasmyth platform focus of a VLT unit telescope. This paper describes the scientific concept of DIPSI, its optomechanical design, the signal analysis to retrieve segment piston and tip-tilt, the multiwavelength algorithm to increase the capture range, and the multiple segmentation case, including both simulation and laboratory tests results.

  12. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  13. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  14. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  15. Usefulness of tomographic phase image in ventricular conduction abnormalities

    International Nuclear Information System (INIS)

    Sakurai, Mitsuru; Watanabe, Yoshihiko; Kondo, Takeshi

    1985-01-01

    In order to evaluate three-dimensional phase changes in ventricular conduction abnormalities, tomographic phase images were constructed in 7 normal subjects, 12 patients with ventricular pacing, 21 patients with bundle branch block and 12 patients with Wolff-Parkinson-White syndrome. Eight to 12 slices of the short-axis ventricular tomographic phase image (TPI) were derived using a 7-pinhole collimator, and compared with planar phase images (PPIs) in left anterior oblique (LAO) and right anterior oblique (RAO) projections. TPIs were excellent for observing biventricular phase changes in the long-axis direction. In 6 cases of complete right bundle branch block with left axis deviation (beyond -30 0 ), the phase delay in the left ventricular anterior wall was recognized in 5 cases by TPI, although it was difficult to be detected by PPIs. The site of the pacing electrode was identified by TPI in 11 out of 12 cases, compared to 8 cases by PPIs in LAO and RAO projections. The site of the accessory pathway in Wolff-Parkinson-White syndrome was detected in the basal slice of TPIs in 10 out of 12 cases, compared to 8 cases by PPI in the LAO projection. Therefore, it is obvious that TPIs offer more valid information than PPIs. In conclusion, TPI is useful for investigation of ventricular conduction abnormalities. (author)

  16. Phase retrieval for X-ray in-line phase contrast imaging

    International Nuclear Information System (INIS)

    Scattarella, F.; Bellotti, R.; Tangaro, S.; Gargano, G.; Giannini, C.

    2011-01-01

    A review article about phase retrieval problem in X-ray phase contrast imaging is presented. A simple theoretical framework of Fresnel diffraction imaging by X-rays is introduced. A review of the most important methods for phase retrieval in free-propagation-based X-ray imaging and a new method developed by our collaboration are shown. The proposed algorithm, Combined Mixed Approach (CMA) is based on a mixed transfer function and transport of intensity approach, and it requires at most an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy with which this initial estimate is known determines the convenience speed of algorithm. The new proposed algorithm is based on the retrieval of both the object phase and its complex conjugate. The results obtained by the algorithm on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The algorithm was also tested on noisy experimental phase contrast data, showing a good efficiency in recovering phase information and enhancing the visibility of details inside soft tissues.

  17. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  18. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    International Nuclear Information System (INIS)

    Neumann, K.; Hosten, N.; Venz, S.

    1995-01-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  19. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, K. [Zentralinstitut fuer Roentgendiagnostik, Universitaetsklinikum Essen, Gesamthochschule Essen (Germany); Hosten, N. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Venz, S. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany)

    1995-11-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  20. ESR imaging investigations of two-phase systems.

    Science.gov (United States)

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  1. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  2. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhang, Kai [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Peiping; Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  3. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations

  4. Analyser-based phase contrast image reconstruction using geometrical optics.

    Science.gov (United States)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  5. Grid-Independent Compressive Imaging and Fourier Phase Retrieval

    Science.gov (United States)

    Liao, Wenjing

    2013-01-01

    This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…

  6. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    Science.gov (United States)

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  8. Extracting flat-field images from scene-based image sequences using phase correlation

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  9. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  10. Implementation of neutron phase contrast imaging at FRM-II

    International Nuclear Information System (INIS)

    Lorenz, Klaus

    2008-01-01

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  11. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  12. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  13. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases

    International Nuclear Information System (INIS)

    Parmar, Hemant; Sitoh, Y.-Y.; Anand, Pooja; Chua, Violet; Hui, Francis

    2006-01-01

    Purpose: The purpose of our study was to compare contrast-enhanced fluid-attenuated inversion recovery (FLAIR) images with contrast-enhanced T1 weighted images for infectious leptomeningitis. Materials and methods: We studied twenty-four patients with a clinical suspicion of infectious meningitis with unenhanced FLAIR, contrast-enhanced T1 weighted and contrast-enhanced FLAIR MR sequences. Twelve patients had cytologic and biochemical diagnosis of meningitis on cerebrospinal fluid (CSF) examination obtained 48 h before or after the MR study. Sequences were considered positive if abnormal signal was seen in the subarachnoid space (cistern or sulci) or along pial surface. Results: Twenty-seven examinations in 24 patients were performed. Of the 12 patients (thirteen studies) in whom cytology was positive, unenhanced FLAIR images were positive in six cases (sensitivity 46%), contrast-enhanced FLAIR images were positive in 11 (sensitivity 85%), and contrast-enhanced T1 weighted MR images were positive in 11 patients (sensitivity 85%). Of the 12 patients (14 studies) in whom cerebrospinal fluid study was negative, unenhanced FLAIR images were negative in 13, contrast-enhanced FLAIR images were negative in 11, and contrast-enhanced T1 weighted MR images were negative in eight. Thus, the specificity of unenhanced FLAIR, contrast-enhanced FLAIR and contrast-enhanced T1 weighted images was 93, 79 and 57%, respectively. Conclusion: Our results suggest that post-contrast FLAIR images have similar sensitivity but a higher specificity compared to contrast-enhanced T1 weighted images for detection of leptomeningeal enhancement. It can be a useful adjunct to post-contrast T1 weighted images in evaluation of infectious leptomeningitis

  14. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Hemant [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore) and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada)]. E-mail: parurad@hotmail.com; Sitoh, Y.-Y. [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Anand, Pooja [Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng (Singapore); Chua, Violet [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Hui, Francis [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-04-15

    Purpose: The purpose of our study was to compare contrast-enhanced fluid-attenuated inversion recovery (FLAIR) images with contrast-enhanced T1 weighted images for infectious leptomeningitis. Materials and methods: We studied twenty-four patients with a clinical suspicion of infectious meningitis with unenhanced FLAIR, contrast-enhanced T1 weighted and contrast-enhanced FLAIR MR sequences. Twelve patients had cytologic and biochemical diagnosis of meningitis on cerebrospinal fluid (CSF) examination obtained 48 h before or after the MR study. Sequences were considered positive if abnormal signal was seen in the subarachnoid space (cistern or sulci) or along pial surface. Results: Twenty-seven examinations in 24 patients were performed. Of the 12 patients (thirteen studies) in whom cytology was positive, unenhanced FLAIR images were positive in six cases (sensitivity 46%), contrast-enhanced FLAIR images were positive in 11 (sensitivity 85%), and contrast-enhanced T1 weighted MR images were positive in 11 patients (sensitivity 85%). Of the 12 patients (14 studies) in whom cerebrospinal fluid study was negative, unenhanced FLAIR images were negative in 13, contrast-enhanced FLAIR images were negative in 11, and contrast-enhanced T1 weighted MR images were negative in eight. Thus, the specificity of unenhanced FLAIR, contrast-enhanced FLAIR and contrast-enhanced T1 weighted images was 93, 79 and 57%, respectively. Conclusion: Our results suggest that post-contrast FLAIR images have similar sensitivity but a higher specificity compared to contrast-enhanced T1 weighted images for detection of leptomeningeal enhancement. It can be a useful adjunct to post-contrast T1 weighted images in evaluation of infectious leptomeningitis.

  15. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    International Nuclear Information System (INIS)

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-01-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. (fast track communication)

  16. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  17. Temporomandibular joint movement; Evaluation of protrusive splint therapy with GRASS MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Itou, S.; Ishii, Y.; Yamamoto, K.; Kawamura, Y.; Matsuda, T.; Hayashi, N.; Ishii, J. (Dept. of Radiology, Dept. of Oral and Maxillofacial Surgery, Fukui Medical School (Japan))

    1992-09-01

    Ten temporomandibular joints (TMJs) of 5 healthy volunteers and 19 TMJs of internal derangements in 16 patients with splint therapy were examined with MR imaging. T1-weighted images were obtained only in the closed mouth position, and gradient recalled acquisition in steady state (GRASS) images were obtained in active opening and closing phases, allowing a pseudodynamic display of TMJ movement. All patients received protrusive splint treatment. The usefulness of MR imaging to assess the efficacy of splint therapy was evaluated. Corrected disk position with the splint in place was clearly demonstrated in 9 TMJs, corresponding with elimination of reciprocal clicking. Ten other TMJs of anterior disk displacement without reduction showed uncorrected disk position by the splint. This information could confirm the therapeutic efficacy, or suggest other treatment alternatives. GRASS MR imaging can provide accurate and physiologic information about disk function in initial and follow-up assessment of protrusive splint therapy. (orig.).

  18. Future of X-ray phase imaging in medical imaging technology

    International Nuclear Information System (INIS)

    Momose, Atsushi

    2007-01-01

    Weakly absorbing materials, such as biological, soft tissues, can be imaged by generating contrast due to the phase shift of X-rays. In the past decade, several methods for X-ray phase imaging were proposed and demonstrated. The performance of X-ray phase imaging is attractive in the field of medical imaging technology, and its development for practical use is expected. Many methods, however, have been developed under the assumption of the use of synchrotron radiation, which is an obstacle to practical use. The method based on Talbot (-Lau) interferometry enables us to use a compact X-ray source, and its development is expected as a breakthrough for medical applications. (author)

  19. Phase-image-based content-addressable holographic data storage

    Science.gov (United States)

    John, Renu; Joseph, Joby; Singh, Kehar

    2004-03-01

    We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.

  20. Phase modulation due to crystal diffraction by ptychographic imaging

    Science.gov (United States)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  1. Gd-DTPA-enhanced MR imaging in meningitis

    International Nuclear Information System (INIS)

    Han, M.H.; Chang, K.H.; Roh, J.K.; Kim, I.O.; Han, M.C.; Kim, C.W.

    1988-01-01

    Gd-DPTA-enhanced MR imaging was performed in 16 patients with meningitis (seven tuberculous, four bacterial, three fungal, and two viral) on a 2.0-T unit. Hemorrhagic infarcts of basal ganglia and localized enhancement of thickened dura adjacent were demonstrated on T1-weighted images in three patients with tuberculous meningitis and four with bacterial meningitis, respectively, that were not seen on CT. Enhanced T1-weighted images readily differentiated leptomeningeal enhancement from vessels in two cases with CT of equivocal meningeal enhancement. Nonenhanced T2-weighted images were most sensitive for demonstrating ischemia/infarct and edema. Otherwise, MR images generally matched CT scans

  2. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    International Nuclear Information System (INIS)

    Park, Ju Young; Lee, In Ho; Song, Chang June; Hwang, Hee Youn

    2012-01-01

    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  3. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Young; Lee, In Ho; Song, Chang June [Chungnam National University Hospital, Daejeon (Korea, Republic of); Hwang, Hee Youn [Eulji University Hospital, Daejeon(Korea, Republic of)

    2012-03-15

    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  4. Model-based magnetization retrieval from holographic phase images

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: f.roeder@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-05-15

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.

  5. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Peterzol, A.; Berthier, J.; Duvauchelle, P.; Babot, D.; Ferrero, C.

    2007-01-01

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  6. Clinical evaluation of phased array multicoil for spine MR imaging

    International Nuclear Information System (INIS)

    Miller, G.M.; Forbes, G.S.; Onofrio, B.M.; Rasmusson, J.J.

    1990-01-01

    Often, it is necessary to image the entire spinal canal or cord. Current surface coil technology necessitates a small field of view (FOV) and multiple coil placements, prolonging the examination. The Phased Array Multicoil (General Electric, Milwaukee, Wis) allows for high-resolution imaging of a larger segment of the spinal axis (48 cm), negating the need for multiple coil placements. The purpose of this paper is to determine whether, this technology can produce higher-quality images with equal or better expediency in a high-volume clinical practice. The studies were performed with a modified 1.5-T system (General Electric, Milwaukee, Wis). Multiple small surface coils are electronically linked so that each coil images only a small segment of the spinal column. The individual images are then fused to display one high-resolution 512-matrix image with up to a 48-cm FOV. A variety of four coil arrays were tested, including a 24-cm FOV dedicated cervical coil, 48-cm FOV shaped cervical/thoracic and straight thoracic/lumbar coils, and a six-coil array 75-cm entire spine coil. The images were then evaluated for overall quality, resolution, signal-to-noise ratio, and area of coverage

  7. Software for imaging phase-shift interference microscope

    Science.gov (United States)

    Malinovski, I.; França, R. S.; Couceiro, I. B.

    2018-03-01

    In recent years absolute interference microscope was created at National Metrology Institute of Brazil (INMETRO). The instrument by principle of operation is imaging phase-shifting interferometer (PSI) equipped with two stabilized lasers of different colour as traceable reference wavelength sources. We report here some progress in development of the software for this instrument. The status of undergoing internal validation and verification of the software is also reported. In contrast with standard PSI method, different methodology of phase evaluation is applied. Therefore, instrument specific procedures for software validation and verification are adapted and discussed.

  8. Acoustic noise reduction in T 1- and proton-density-weighted turbo spin-echo imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Breuer, Felix; Grodzki, David; Heismann, Björn; Jakob, Peter

    2016-02-01

    To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice. Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison. An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1-4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved. The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.

  9. Multiparticle imaging velocimetry measurements in two-phase flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1998-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)

  10. A phase contrast imaging system for TEXT-U

    International Nuclear Information System (INIS)

    Chatterjee, R.; Hallock, G.A.; Gartman, M.L.

    1994-01-01

    A diagnostic to study plasma density fluctuations, Phase Contrast Imaging (PCI) has been developed for the Texas Experimental Tokamak-Upgrade. The diagnostic has a sensitivity of about 10 -4 n e0 and is capable of detecting a wide range of wavenumbers (0.5 cm -1 - 12 cm -1 ) with a bandwidth of 500 Khz. The design of the diagnostic, some results of acoustic calibration tests and preliminary results of simulation of expected spectra are presented

  11. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  12. Phase correction of MR perfusion/diffusion images

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Pipe, J.G.; Brunberg, J.A.; Yeung, H.N.

    1989-01-01

    Apparent diffusion coefficient (ADC) and perfusion MR sequences are exceptionally sensitive to minute motion and, therefore, are prone to bulk motions that hamper ADC/perfusion quantification. The authors have developed a phase correction algorithm to substantially reduce this error. The algorithm uses a diffusion-insensitive data set to correct data that are diffusion sensitive but phase corrupt. An assumption of the algorithm is that bulk motion phase shifts are uniform in one dimension, although they may be arbitrarily large and variable from acquisition to acquisition. This is facilitated by orthogonal section selection. The correction is applied after one Fourier transform of a two-dimensional Fourier transform reconstruction. Imaging experiments on rat and human brain demonstrate significant artifact reduction in ADC and perfusion measurements

  13. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  14. Differential diagnosis of benign and malignant vertebral compression fractures with MR imaging

    International Nuclear Information System (INIS)

    Staebler, A.; Krimmel, K.; Seiderer, M.; Gaertner, C.; Fritsch, S.; Raum, W.

    1992-01-01

    42 patients with known malignancy and vertebral compressions underwent MRI. Sagittal T 1 -weighted spin-echo images pre and post Gd-DTPA, out of phase long TR gradient-echo images (GE) and short T 1 inversion recovery images (STIR) were obtained at 1.0 T. In 39 of 42 cases a correct differentiation between osteoporotic and tumorous vertebral compression fractures was possible by quantification and correlation of SE and GE signal intensities. Gd-DTPA did not improve differential diagnosis, since both tumour infiltration and bone marrow oedema in acute compression fracture showed comparable enhancement. STIR-sequences were most sensitive for pathology but unspecific due to a comparable amount of water in tumour tissue and bone marrow oedema. Susceptibility-induced signal reduction in GE images and morphologic criteria proved to be most reliable for differentiation of benign and tumour-related fractures. (orig./GDG) [de

  15. Gd-DTPA-enhanced MR imaging of avascular necrosis of the hip

    International Nuclear Information System (INIS)

    Van de Berg, B.; Malghem, J.; Noel, H.; Maldague, B.

    1990-01-01

    This paper evaluates the interest of Gd-DTPA-enhanced MR imaging in the diagnosis of avascular necrosis (AVN) of the hip. MR imaging of 10 patients with various stages of AVN of the femoral head (14 abnormal hips) was performed (1.5-T Gyroscan). T1-weighted images before and after contrast injection and T2-weighted images were obtained in two planes. MR images were compared with pathologic findings in six femoral head specimens (total hip replacement). In the early stages of AVN (Mitchell classes A and B), a peripheral band of contrast-enhanced tissue appears on T1-weighted images after Gd-DTPA injection, mimicking the double line seen on T2-weighted images. In later stages (class C and D), the sequestrated segments, appearing hypointense on T1-weighted images, usually show a significant signal intensity enhancement after Gd-DTPA injection. The truly avascular areas may be limited to a band of thickened subchondral bone

  16. MR imaging of the postoperative spine

    International Nuclear Information System (INIS)

    Ross, J.S.; Modic, M.T.; Masaryk, T.T.; Bohlman, H.

    1986-01-01

    Preoperative, immediate postoperative, and delayed (2-6 months) postoperative MR studies were obtained in 20 patients who had undergone a variety of spinal surgical procedures. In addition, 50 postoperative patients without preoperative studies were also reviewed. MR studies included sagittal T1-weighted, T2-weighted, and axial T1-weighted and multiecho T2-weighted images. The evolution of signal intensity changes with time is demonstrated. Diskectomy produced no significant vertebral body changes and reduced but did not completely remove the extradural mass of herniation. Anterior fusion resulted in decreased signal on T1-weighted and increased signal on T2-weighted images in adjacent vertebral bodies, which were changes that were similar to those seen around bone grafts but distinct from the graft itself. Scar formation was better defined 2-3 months postoperatively

  17. Computerized detection of lacunar infarcts in brain MR images

    International Nuclear Information System (INIS)

    Uchiyama, Yoshikazu; Matsui, Atsushi; Yokoyama, Ryujiro

    2007-01-01

    Asymptomatic lacunar infarcts are often found in the Brain Dock. The presence of asymptomatic lacunar infarcts increases the risk of serious cerebral infarction. Thus, it is an important task for radiologists and/or neurosurgeons to detect asymptomatic lacunar infarctions in MRI images. However, it is difficult for radiologists and/or neurosurgeons to identify lacunar infarcts correctly in MRI images, because it is hard to distinguish between lacunar infarcts and enlarged Virchow-Robin space. Therefore, the purpose of our study was to develop a computer-aided diagnosis scheme for detection of lacunar infarctions in order to assist radiologists and/or neurosurgeons' interpretation as a ''second opinion.'' Our database consisted of 1143 T2-weighted MR images and 1143 T1-weighted MR images, which were selected from 132 patients. First, we segmented the cerebral parenchyma region by use of a region growing technique. The white-tophat transformation was then applied for enhancement of lacunar infarcts. The multiple-phase binarization was used for identifying initial candidates of lacunar infarcts. For removal of false positives (FPs), 12 features were determined in each of the initial candidates in T2 and T1-weighted MR images. The rule-based schemes and an artificial neural network with these features were used for distinguishing between lacunar infarcts and FPs. The sensitivity of detection of lacunar infarcts was 96.8% (90/93) with 0.69 (737/1063) FP per image. This computerized method may be useful for radiologists and/or neurosurgeons in detecting lacunar infracts in MRI images. (author)

  18. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  19. Skeletal muscle lymphoma: observations at MR imaging

    International Nuclear Information System (INIS)

    Eustace, S.; Winalski, C.S.; McGowen, A.; Lan, H.; Dorfman, D.

    1996-01-01

    We present the MR appearances of three patients with biopsy-proven primary lymphoma of skeletal muscle. In each case lymphoma resulted in bulky expansion of the involved muscle, homogeneously isointense to skeletal muscle on T1-weighted images, homogeneously hyperintense to skeletal muscle on T2-weighted images and diffusely enhancing following intravenous administration of gadopentate dimeglumine. (orig.)

  20. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    Science.gov (United States)

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  1. Acute renal failure secondary to rhabdomyolysis; MR imaging of the kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Han, M.C.; Kim, S.; Lee, J.S. (Dept. of Radiology and Dept. of Internal Medicine, Seoul National Univ., Coll. of Medicine (Korea, Republic of))

    1992-11-01

    MR imaging of the kidney was performed in 6 patients with acute renal failure (ARF) secondary to rhabdomyolysis caused by snake bite (n = 4), crush injury (n = 1), and carbon monoxide poisoning (n = 1). A test for urine myoglobin was positive in all 6 patients and MR imaging was done 6 to 18 days after the causative event of the rhabdomyolysis. MR images in all 6 patients showed globular swelling of the kidneys, preserved corticomedullary contrast on T1-weighted images, and obliteration of corticomedullary contrast on T2-weighted images. Unlike other medical renal diseases in which corticomedullary contrast is lost on T1-weighted images, preservation of the corticomedullary contrast on T1-weighted MR images with globular renal swelling was a constant finding in patients with ARF secondary to rhabdomyolysis. (orig.).

  2. NMR imaging of the liver. Diagnostics, differential diagnostics, therapeutic approaches; MRT der Leber. Diagnostik, Differenzialdiagnostik, Therapieansaetze

    Energy Technology Data Exchange (ETDEWEB)

    Fischbach, Frank; Fischbach, Katharina [Universitaetsklinikum Magdeburg A.oe.R. (Germany). Klinik fuer Radiologie und Nuklearmedizin

    2017-03-01

    The book on NMR imaging of the liver covers the following issues: Fundamentals of NMR imaging, T1-weighted imaging; T2-weighted imaging, diffusion-weighted imaging, cavernous hemangioma, focal nodular hyperplasy; hepatocellular adenoma, hepatocellulas carcinoma, cholangiocellular carcinoma, hepatic metastases.

  3. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  4. MR imaging of a case of adenomatoid tumor of the adrenal gland

    International Nuclear Information System (INIS)

    Rodrigo Gasque, C.; Marti-Bonmati, L.; Dosda, R.; Gonzalez Martinez, A.

    1999-01-01

    The aim of this case report is to describe the appearance on magnetic resonance imaging (MRI) of an incidentally found adenomatoid tumor of the adrenal gland, and to evaluate the utility of MRI in characterizing this type of tumor. The appearance of the tumor was nonspecific on T1-weighted in-phase, opposed-phase, and T2-weighted images, as well as its behavior after paramagnetic contrast administration, outlining the differential diagnosis among carcinoma, metastatic tumors, and pheochromocytoma. After surgery, the pathologic diagnosis was adenomatoid benign tumor of mesothelial origin. Although MRI enables the characterization of most benign lesions of the adrenal gland, the appearance of other lesions is nonspecific. In our case, MRI did not assist in preoperative diagnosis, guiding us towards a diagnosis of malignancy. (orig.)

  5. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    Science.gov (United States)

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Magnetic resonance imaging of ulnocarpal abutment syndrome

    International Nuclear Information System (INIS)

    Imaeda, Toshihiko; Nakamura, Ryogo; Shionoya, Kaori; Kato, Hitoshi; Makino, Naoki

    1996-01-01

    Ulnocarpal abutment syndrome (UAS) is the impingement between lunate and ulnar head. Twenty-two wrists of 19 patients were diagnosed as UAS arthroscopically after having undergone MRI examination. Ten wrists had MRI both before and after ulnar recession arthroplasty. Spin-echo pulse sequences were taken. T1-weighted and T2-weighted images were obtained. On T1-weighted images, the focal signal intensity of the ulnar part of the lunate was decreased in 18 wrists. On T2-weighted images, the focal signal intensity of the ulnar aspect of the lunate were from high to low in 18 wrists. There was focal and abnormal signal intensity of the triquetrum found in 10 wrists and was abnormal signal intensity of the ulnar head in two wrists. After the operation, on the T1-weighted image signal intensity of the lunate shifted from low through slightly low to iso. On the T2-weighted images it shifted from low to high or iso. Focal low signal intensity of the lunate on T1-weighted images is diagnostic of ulnocarpal abutment syndrome. The intensity of the signal from the lunate on T2-weighted images may indicate the severity of the disease. (author)

  7. Two-phase summation imaging using transvenous DSA in subclavian steal syndrome

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1984-01-01

    A simple method is reported to obtain a two-phase summation image in subclavian steal syndrome using digital subtraction angiography (DSA) via selection of a mask during the early arterial phase and the contrast image during delayed retrograde filling of the ipsilateral vertebral artery and the postocclusive subclavian artery. The summation image results by employing replay of the stored image information. (orig.) [de

  8. Three-phase radionuclide bone imaging in sports medicine

    International Nuclear Information System (INIS)

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-01-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions

  9. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  10. Review on improved seismic imaging with closure phase

    KAUST Repository

    Schuster, Gerard T.

    2014-08-13

    The timing and amplitudes of arrivals recorded in seismic traces are influenced by velocity variations all along the associated raypaths. Consequently, velocity errors far from the target can lead to blurred imaging of the target body. To partly remedy this problem, we comprehensively reviewed inverting differential traveltimes that satisfied the closure-phase condition. The result is that the source and receiver statics are completely eliminated in the data and velocities far from the target do not need to be known. We successfully used the phase closure equation for traveltime tomography, refraction statics, migration, refraction tomography, and earthquake location, all of which demonstrated the higher resolution achievable by processing data with differential traveltimes rather than absolute traveltimes. More generally, the stationary version of the closure-phase equation is equivalent to Fermat’s principle and can be derived from the equations of seismic interferometry. In summary, the general closure-phase equation is the mathematical foundation for approximately redatuming sources and/or receivers to the target of interest without the need to accurately know the statics or the velocity model away from the target.

  11. A slowly growing mass around a cirrhotic liver: Usefulness of the hepatobility phase in the diagnosis of ectopic liver

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Jung; Kim, Kyung Ah; Im, So Young [St. Vincent' s Hospital, College of Medicine, The Catholic University of Korea, Suwon (Korea, Republic of)

    2017-08-15

    An ectopic liver is a rare congenital abnormality that is difficult to detect before surgery due to its small size. A 53-year-old man had liver cirrhosis and received regular surveillance. An ovoid mass on the surface of the gallbladder separated from the liver proper was found on computed tomography (CT). The mass had grown slowly over five years of surveillance. Upon further evaluation, the mass exhibited iso-signal intensity compared to liver on T2-weighted images, precontrast T1-weighted images, and the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging (MRI). Surgical resection was performed, and the mass was diagnosed as an ectopic liver with normal liver parenchyma without cirrhotic changes. This case demonstrates that ectopic liver with normal liver tissue can develop in a patient with liver cirrhosis and can grow in the absence of a tumor. MRI with gadoxetic acid is useful to identify this condition correctly.

  12. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  13. Troubleshooting arterial-phase MR images of gadoxetate disodium-enhanced liver

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Ji Mi; Kim, So Yeon; Lee, Seung Soo; Kim, Kyoung Won [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yeh, Benjamin M.; Wang, Z. Jane [Dept. of Radiologyand Biomedical Imaging, University of California San Francisco, San Francisco (United States); Wu, En Haw [Dept. of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine, Taoyuan (China); Zhao, Li Qin [Beijing Friendship Hospital, Capital Medical University, Beijing (China); Chang, Wei Chou [Tri-Service General Hospital and National Defense Medical Center, Taipei (China)

    2015-12-15

    Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field.

  14. Troubleshooting arterial-phase MR images of gadoxetate disodium-enhanced liver

    International Nuclear Information System (INIS)

    Huh, Ji Mi; Kim, So Yeon; Lee, Seung Soo; Kim, Kyoung Won; Yeh, Benjamin M.; Wang, Z. Jane; Wu, En Haw; Zhao, Li Qin; Chang, Wei Chou

    2015-01-01

    Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field

  15. Profile of MIBI liquid phase radiopharmaceutical for myocardial imaging

    International Nuclear Information System (INIS)

    I Daruwati; ME Sriyani; NK Oekar; N Zainuddin; KA Hanafiah

    2016-01-01

    The 99m Tc-MIBI radiopharmaceutical has been used in nuclear medicine in Indonesia for myocardial imaging. BATAN researchers have mastered the technology to manufacture MIBI as a lyophilized kit. A reformulation of MIBI radiopharmaceutical has been conducted to improve the stability of the kit especially in the liquid-phase kit. Basically, radiopharmaceuticals in liquid form are not different from the dry kit. However in the manufacturing of liquid-phase kit, lyophilization process was not done. To improve the stability of liquid kit, a reformulation of the components was conducted by using two separate vials (Formulation 2) and the characteristics were compared with the one-vial formulation (Formulation 1). The MIBI Formulation 2 consists of two vials, vial A containing 0.06 mg of SnCl 2 2H 2 O and 2.6 mg Sodium Citrate 2H 2 O and vial B containing 0.5 mg of [Cu(MIBI) 4 ]BF 4 , 1 mg of cysteine hydrochloride, and 20 mg of mannitol. The purposes of this study were to determine the stability of two different formulations of MIBI as a liquid-phase kit, to compare their stability in different storage condition such as in refrigerator and freezer, and to compare the ratio of activities attained between target and nontarget organs after injection to animal model. As a diagnostic agent, MIBI was reconstituted with Technetium-99m as radionuclide tracer to 99m Tc-MIBI labeled compound. The radiochemical purity of 99m Tc-MIBI was determined by chromatography method using alumina thin-layer chromatography paper as the stationary phase and ethanol 95% as the mobile phase. The results showed MIBI Formulation 2 has a higher stability than Formulation 1. Formulation 2 also maintained a 96.68% radiochemical purity under 52-day storage and attained a target-to-nontarget activity ratio of 8.22. (author)

  16. Phase imaging of mechanical properties of live cells (Conference Presentation)

    Science.gov (United States)

    Wax, Adam

    2017-02-01

    The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.

  17. Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization

    International Nuclear Information System (INIS)

    Kubaska, Samantha; Sahani, Dushyant V.; Saini, Sanjay; Hahn, Peter F.; Halpern, Elkan

    2001-01-01

    AIM: Iron oxide contrast agents are useful for lesion detection, and extracellular gadolinium chelates are advocated for lesion characterization. We undertook a study to determine if dual contrast enhanced liver imaging with sequential use of ferumoxides particles and gadolinium (Gd)-DTPA can be performed in the same imaging protocol. MATERIALS AND METHODS: Sixteen patients underwent dual contrast magnetic resonance imaging (MRI) of the liver for evaluation of known/suspected focal lesions which included, metastases (n = 5), hepatocellular carcinoma (HCC;n = 3), cholangiocharcinoma(n = 1) and focal nodular hyperplasia (FNH;n = 3). Pre- and post-iron oxide T1-weighted gradient recalled echo (GRE) and T2-weighted fast spin echo (FSE) sequences were obtained, followed by post-Gd-DTPA (0.1 mmol/kg) multi-phase dynamic T1-weighted out-of-phase GRE imaging. Images were analysed in a blinded fashion by three experts using a three-point scoring system for lesion conspicuity on pre- and post-iron oxide T1 images as well as for reader's confidence in characterizing liver lesions on post Gd-DTPA T1 images. RESULTS: No statistically significant difference in lesion conspicuity was observed on pre- and post-iron oxide T1-GRE images in this small study cohort. The presence of iron oxide did not appreciably diminish image quality of post-gadolinium sequences and did not prevent characterization of liver lesions. CONCLUSION: Our results suggest that characterization of focal liver lesion with Gd-enhanced liver MRI is still possible following iron oxide enhanced imaging. Kubaska, S. et al. (2001)

  18. Changes in signal-to-noise ratios and contrast-to-noise ratios of hypervascular hepatocellular carcinomas on ferucarbotran-enhanced dynamic MR imaging

    International Nuclear Information System (INIS)

    Park, Yulri; Choi, Dongil; Kim, Seong Hyun; Kim, Seung Hoon; Kim, Min Ju; Lee, Jongmee; Lim, Jae Hoon; Lee, Won Jae; Lim, Hyo K.

    2006-01-01

    Purpose: To verify changes in the signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of hypervascular hepatocellular carcinomas (HCCs) on ferucarbotran-enhanced dynamic T1-weighted MR imaging. Materials and methods: Fifty-two patients with 61 hypervascular HCCs underwent ferucarbotran-enhanced dynamic MR imaging, and then hepatic resection. Hypervascular HCCs were identified when definite enhancement was noted during the arterial dominant phase of three-phase MDCT. Dynamic MR Images with T1-weighted fast multiplanar spoiled gradient-recalled echo sequence (TR200/TE4.2) were obtained before and 20 s, and 1, 3, 5, and 10 min, after bolus injection of ferucarbotran. We estimated the signal intensities of tumors and livers, and calculated the SNRs and CNRs of the tumors. Results: On ferucarbotran-enhanced dynamic MR imaging, SNR measurements showed a fluctuating pattern, namely, an increase in SNR followed by a decrease and a subsequent increase (or a decrease in SNR followed by a increase and a subsequent decrease) in 50 (82.0%) of 61 tumors, a single-peak SNR pattern (highest SNR on 20 s, 1, 3, or 5 min delayed images followed by a decrease) in seven (11.5%), and a decrease in SNR followed by an increase in four (6.6%). Maximum absolute CNRs with positive value were noted on 10 min delayed images in 41 (67.2%) tumors, and maximum absolute CNRs with negative value were observed on 20 s delayed images in 12 (19.7%) and on 1 min delayed images in eight (13.1%). Conclusion: Despite showing various SNR and CNR changes, the majority of hypervascular HCCs demonstrated a fluctuating SNR pattern on ferucarbotran-enhanced dynamic MR imaging and a highest CNR on 10 min delayed image, which differed from the classic enhancement pattern on multiphasic CT

  19. Phase contrast imaging diagnostic for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, Lukas-Georg; Grulke, Olaf [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany)

    2016-07-01

    The phase contrast imaging (PCI) diagnostic allows for non-invasive measurements of density fluctuations in high temperature plasmas. Since the index of refraction in a plasma is a function of the electron density, an incoming laser beam experiences a phase shift, which can be converted to intensity variations via interference after passing a phase plate. Generally speaking, the signal contains only the line-integrated information along the beam path. This limitation can be circumvented by using the fact that the density fluctuations form filamentary structures that are well aligned with the local magnetic field. If the magnetic field direction significantly varies along the beam path, optical filtering allows for localization of the density fluctuations. In order to identify the best diagnostic position regarding localization performance three figures of merit are introduced. They allow for quantitative comparison of different lines of sight and different magnetic field configurations. The results of the optimization process and a comparison with other fusion experiments are shown in this contribution.

  20. Matrix phased array (MPA) imaging technology for resistance spot welds

    Science.gov (United States)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  1. Matrix phased array (MPA) imaging technology for resistance spot welds

    International Nuclear Information System (INIS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-01-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed

  2. Matrix phased array (MPA) imaging technology for resistance spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong K.; Gleeson, Sean T. [Edison Welding Institute, 1250 Arthur E. Adams Drive, Columbus, OH 43221 (United States)

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  3. Difference between T1 and T2 weighted MR images in avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Kokubo, Takashi; Yoshikawa, Koki; Itai, Yuzo; Iio, Masahiro; Takatori, Yoshio; Kamogawa, Morihide; Ninomiya, Setsuo

    1990-01-01

    T 1 and T 2 weighted MR images were compared in 32 hips with avascular necrosis, and the difference between them was discussed. In 27 of 32 hips, abnormal low intensity area in the affected femoral head is smaller in T 2 weighted images than in T 1 weighted images. The area of low intensity on T 1 weighted image and high on T 2 weighted image might be granuloma in reactive tissue and surrounding hyperemia. The difference between T 1 and T 2 weighted images must be taken into consideration especially in determination of the border of affected bone. (author)

  4. The pelvis after surgery and radio-chemotherapy for rectal cancer studied with Gd-DTPA-enhanced fast dynamic MR imaging

    International Nuclear Information System (INIS)

    Blomqvist, L.; Fransson, P.; Hindmarsh, T.

    1998-01-01

    The aim of this work was to study the gadolinium-enhancement of malignant and benign pathology in the pelvis after surgery for rectal cancer. Thirty patients with either local recurrence (n = 17) or benign changes related to treatment for rectal cancer (n = 13) were studied with pelvic MR imaging. T2-weighted fast spin-echo as well as T1-weighted spin- or gradient-echo imaging before and after intravenous contrast was performed and referred to as contrast-enhanced MRI (CEMRI). In addition, between the pre- and postcontrast images, dynamic contrast-enhanced MRI (DCEMRI) was performed using a single-slice, multi-phase, contrast-enhanced T1-weighted fast spoiled gradient-echo sequence. The time between the start of contrast injection to the beginning of enhancement, the duration and rate of enhancement as well as enhancement amplitude were recorded. The data were compared with the clinical diagnosis according to biopsy in 8 patients and surgery in 6 patients. In the remaining 16 patients, the clinical diagnosis was obtained by clinical or radiological follow-up. DCEMRI did not improve the diagnostic information compared with CEMRI. None of the examined parameters were found to help discriminating malignant from benign changes. Characterisation of lesions in the pelvis after rectal cancer surgery was not improved by a dynamic gadolinium-enhanced sequence. (orig.)

  5. MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time

    International Nuclear Information System (INIS)

    Seiderer, M.; Staebler, A.; Wagner, H.

    1999-01-01

    Signal intensity for opposed-phase gradient-echo (GE) sequences of tissues composed of fat- and water-equivalent cells such as red bone marrow is extremely sensitive to variation of the ratio of both cell populations (fat-to-water ratio Q F/W ). Because most bone marrow pathology results in variation of Q F/W , GE sequences are characterized by high-contrast imaging of pathology. The aim of this study was to evaluate the influence of TR, TE, FA, Q F/W and histology on signal intensity. Signal intensity of opposed-phase GE sequences as a function of TR, TE, FA, and Q F/W was measured for a fat-water phantom and cadaver specimens of normal bone marrow (red and yellow) and pathological bone marrow (tumors). All specimens were correlated to histology. Opposed-phase GE imaging of red bone marrow pathology results in low-signal-intensity imaging of intact red bone marrow and high-signal-intensity positive contrast imaging of pathology associated with a change in Q F/W . In first-order approximation the signal intensity of pathology is linearly correlated to the change in Q F/W . Opposed-phase GE imaging is a sensitive imaging technique for red bone marrow pathology. Relative contrast of red bone marrow pathology is similar to fat-suppressed imaging techniques. Acquisition time is identical to T1-weighted SE sequences. (orig.)

  6. NMR multiple-echo phase-contrast blood flow imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1986-01-01

    A method is described for magnetic resonance imaging of fluid flow in a sample, comprising the steps of: (a) immersing the sample in a static magnetic field disposed in a first direction; (b) applying a first sequence of magnetic field gradients and radio-frequency signals to the sample to both define a slab, of the sample to be imaged, in a plane substantially orthogonal to a selected direction for which flow velocity is to be measured, and to obtain a plurality N of spin-echo response signals form that slab; (c) processing the plurality of first sequence spin-echo signals to obtain a complex value A/sub 1/(X,Y,Z) relating both the spin density rho'(X,Y,Z),... and the phase rotation phi(X,Y,Z), induced by the first sequence, for each of a selected number of sequential locations (X,Y,Z) in the sample slab; (d) applying a second sequence of magnetic field gradient and radio-frequency signals to both define the same sample slab as in step (b) and to obtain another plurality N of spin-echo response signals from that slab; (e) including a waveform in at least one of the magnetic field gradient and radio-frequency signals applied in step (d) for imparting to each of the spin-echo signal components from each slab location having a flowing material therein a phase rotation dependent upon the magnitude of the flow velocity therein in the selected direction; (f) processing the plurality of second sequence spin-echo signals to obtain a complex value A/sub 2/(X,Y,Z) relating the spin density rho'(X,Y,Z) and the imparted phase rotation of the sample material along the selected flow measurement direction for each of the sequential locations (X,Y,Z) in the sample slab; and (g) processing the complex values A/sub 1/(X,Y,Z) and A/sub 2/(X,Y,Z) for each sample location to obtain a differential phase-contrast value related to the velocity of the flowing material therein in the selected measurement direction

  7. Differentiating Focal Eosinophilic Infiltration from Metastasis in the Liver with Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mi Hee; Kim, Seong Hyun; Kim, Hee Jung; Lee, Min Woo; Lee, Won Jae [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2011-08-15

    To determine the most useful findings of gadoxetic acid-enhanced 3.0 Tesla (T) MRI for differentiating focal eosinophilic infiltration (FEI) from hepatic metastasis with verification of their usefulness. Pathologically or clinically proven 39 FEIs from 25 patients and 79 hepatic metastases from 51 patients were included in the study. Gadoxetic acid-enhanced 3.0T MRI was performed in all cancer patients. Size differences measured between T2-weighted and hepatobiliary-phase images for lesions > 1 cm and morphologic findings (margin, shape, signal intensity on T1- and T2-weighted images, enhancement pattern on dynamic images, and target appearance on hepatobiliary-phase images) were compared between two groups via Student's t test as well as univariate and multivariate analyses. Diagnostic predictive values of two observers for differentiating two groups were assessed before (session 1) and after (session 2) recognition of results. Mean size difference (2.1 mm) in FEIs between the two images was significantly greater than for metastases (0.7 mm) (p < 0.05). An ill-defined margin and isointensity on T1-weighted images were independently significant morphologic findings (p < 0.05) for differentiating the two groups. All observers achieved a higher diagnostic accuracy in session 2 (97% and 98%) than session 1 (92% and 89%) with statistical significance in observer 2 (p < 0.05). All observers had significantly higher sensitivities (95%) and negative predictive values (NPVs) (98%) in session 2 than in session 1 (sensitivity, 74% in two observers; NPV, 89% and 88%) (p < 0.05). With the size change, an ill-defined margin and isointensity on T1-weighted images are the most useful findings for differentiating FEI from hepatic metastasis on gadoxetic acid-enhanced 3.0T MRI.

  8. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  9. Myositis ossificans: magnetic resonance images

    International Nuclear Information System (INIS)

    Dosda, R.; Marti-Bonmati, L.; Concepcion, L.; Galant, J.

    1999-01-01

    Myositis ossificans is characterized by a benign, self-limiting, ossifying mass of the white tissue. In the present report, we describe the magnetic resonance (MR) images in three cases of myositis ossificans in pediatric patients, correlating the MR findings with those obtained with other radiological studies. The lesions were detected in three patients, two boys and one girl, ranging in age between 10 and 14 years. The nature of the lesion was confirmed histologically in all three cases. The MR images were obtained using superconductive units at 0.5 Teslas, with T1 and T2-weighted spin-echo and STIR sequences. In two patients, gadolinium-enhanced T1-weighted images were also obtained. As in any process of maturation, the proliferation/maturation ratio depends on the moment in the course of the lesion, which affects its MR features,. In acute phases, the soft tissue mass with an intraosseous, perilesional adematous reaction predominates, while annular calcification and lesser edema are characteristic of subacute episode. Myositis ossificans is very rare in children. The inflammatory response may present a radiological pattern difficult to distinguish from that of aggressive tumor or infection, especially in the acute phase. (Author) 7 refs

  10. Quasiparticle scattering image in hidden order phases and chiral superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thalmeier, Peter [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Akbari, Alireza, E-mail: alireza@apctp.org [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Department of Physics, and Max Planck POSTECH Center for Complex Phase Materials, POSTECH, Pohang 790-784 (Korea, Republic of)

    2016-02-15

    The technique of Bogoliubov quasiparticle interference (QPI) has been successfully used to investigate the symmetry of unconventional superconducting gaps, also in heavy fermion compounds. It was demonstrated that QPI can distinguish between the d-wave singlet candidates in CeCoIn{sub 5}. In URu{sub 2}Si{sub 2} presumably a chiral d-wave singlet superconducting (SC) state exists inside a multipolar hidden order (HO) phase. We show that hidden order leaves an imprint on the symmetry of QPI pattern that may be used to determine the essential question whether HO in URu{sub 2}Si{sub 2} breaks the in-plane rotational symmetry or not. We also demonstrate that the chiral d-wave SC gap leads to a crossover to a quasi-2D QPI spectrum below T{sub c} which sharpens the HO features. Furthermore we investigate the QPI image of chiral p-wave multigap superconductor Sr{sub 2}RuO{sub 4}. - Highlights: • The chiral multigap structure of Sr{sub 2}RuO{sub 4} leads to rotation of QPI spectrum with bias voltage. • 5f band reconstruction in hidden order phase of URu{sub 2}Si{sub 2} is obtained from two orbital model. • The chiral superconductivity in URu{sub 2}Si{sub 2} leads to quasi-2D quasiparticle interference (QPI).

  11. MR imaging pulse sequence rationale: SD-, T1-, and T2-weighted images

    International Nuclear Information System (INIS)

    Sax, S.; Weathers, S.W.; Schneiders, N.J.; Horowitz, B.L.; Mawad, M.E.; Sandlin, M.E.; Blackwell, R.; Bryan, R.N.

    1986-01-01

    Over 500 patients have been examined with a pulse sequence designed to provide spin-density (SD)-weighted images (TR=3 sec, TE=35 msec), T1-weighted images (TR=0.3 sec, TE=35msec), and T2-weighted images (TR=3 sec, TE=105 msec) from which calculated ''synthesized'' images and SD, T1, and T2 calculated images could be obtained. Each image contributes unique information. SD-weighted images optimally display anatomy and often best highlight pathology. T1-weighted images are critical in assessing cerebral hemorrhages. T2-weighted images best display most lesions, but yield incomplete information in 35% of cases. All three types of ''weighted'' images are necessary to optimally display anatomy and fully characterize a lesion. Computerized calculations and simulations suggest that no other combination of pulse sequences yields equal information for a given examination time

  12. Magnetic resonance imaging of myositis ossificans: Analysis of seven cases

    International Nuclear Information System (INIS)

    De Smet, A.A.; Norris, M.A.; Fisher, D.R.

    1992-01-01

    Since magnetic resonance imaging (MRI) is commonly used to evaluate soft tissue masses, we analyzed eight MR examinations in seven patients with myositis ossificans to determine if typical patterns were present. One acute lesion had homogeneous intermediate signal intensity on T1-weighted images and high signal intensity on T2-weighted images. Two subacute lesions had low signal intensity margins with slightly increased signal intensity centers on T1-weighted images and very high signal intensity on T2-weighted images. Five chronic lesions had two different patterns. All five were well-defined with low signal intensity borders. Three had signal intensity patterns characteristic of fat on T1-weighted and T2-weighted images. The other two lesions had intermediate signal intensity on T1-weighted images and slightly increased signal intensity on T2-weighted images. We conclude that typical MR appearances of myositis ossificans do exist. A low signal intensity rim is a common finding. However, these patterns are not unique to myositis ossificans and resemble those that have been reported in other lesions. It is important to be aware of the spectrum of MR findings of myositis ossificans when considering the differential diagnosis of a soft tissue mass. (orig./MG)

  13. Changes in the phase and amplitude images in the rehabilitation phase after myocardial infarction

    International Nuclear Information System (INIS)

    Csernay, L.; Mester, J.; Vidakovich, T.; Rajtar, M.; Pavics, L.; Szasz, K.

    1984-01-01

    A studing involving patients with completed myocardial infarction, who underwent a 3-week exercise program at a cardiocirculatory rehabilitation center in Southern Hungary, is described. Infarctions were confirmed by the typical clinical and ECG signs and symptoms as well as by 201-T1 imaging at rest. Patients with normal 201-T1 activity distribution were excluded. Three ECG-gated equilibrium radionuclide studies were performed in each case: The first was done on the first day of rehabilitation (at a mean post-infarction interval of 1.5 months); the second study was scheduled 3 weeks after the first on completion of the exercise program and the last 9 weeks after the first (on an outpatient basis). From April 25, 1983 to September 9, 1983 a total of 25 patients were investigated. Of these, 9 had normal 201-T1 images. Of the remaining 16, 9 showed no significant changes of the phase and amplitude images. In 2 cases dyskinesia was found to have been replaced by akinesia, and in another 3 akinesia was replaced by hypokinesia. By contrast, 2 previously akinetic patients became dyskinetic. We expect to increase our patient material to at least 50 cases by the end of 1983 and would like to present our results, illustrating them by some typical examples. (Author)

  14. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  15. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  16. Fast-gradient-echo variable-flip-angle imaging of the cervical spine

    International Nuclear Information System (INIS)

    Van Dyke, C.W.; Ross, J.S.; Masaryk, T.J.; Tkach, J.; Beale, S.; Hueftle, M.G.; Kaufman, B.; Modic, M.T.

    1987-01-01

    Two hundred consecutive patients were studied with 4-mm sagittal and axial T1-weighted images and gradient echo sequences with 6-msec or 13-msec echo time (TE) and 10 0 or 60 0 flip angles to evaluate cervical extradural disease. Images were independently evaluated for contrast behavior and anatomy, then directly compared for conspicuity of lesions. FLASH sequences produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo (SE) sequences were more sensitive to marrow changes and intradural disease. Shorter TEs produced overall image improvement and reduced susceptibility effects. A fast and sensitive cervical examination combines sagittal T1-weighted SE with sagittal and axial FLASH 10 0 sequences with 6-msec TE

  17. Optical multiple-image encryption based on multiplane phase retrieval and interference

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method

  18. Magnetic resonance imaging in the management of suspected spinal canal disease in patients with known malignancy

    International Nuclear Information System (INIS)

    Loughrey, Gareth J.; Collins, Conor D.; Todd, Susan M.; Brown, Nicola M.; Johnson, Richard J.

    2000-01-01

    AIM: The aim of this study was to examine the spectrum of spinal canal disease in patients with known malignancy using magnetic resonance imaging (MRI). MATERIALS AND METHODS: One hundred and fifty-five patients underwent a total of 159 spinal MRI examinations over a three-year period. Patients were examined using a 1.0T magnet and a phased array surface spine coil. Sagittal T1 weighted spin echo and STIR sequences were routinely employed. Axial T1 and T2 weighted spin echo images were obtained at sites of identified pathology. Contrast enhanced sagittal and axial T1 weighted spin echo images were acquired when the unenhanced appearances did not correlate with the clinical findings or when the images suggested intradural or intramedullary disease. RESULTS: Malignant disease affecting the spinal cord or cauda equina was noted in 104/159 (65%) patients (extradural n= 78, intradural n= 20, intramedullary n= 7); one patient had evidence of both intradural and intramedullary deposits. Multiple levels of extradural cord/cauda equina compression were present in 18/78 patients (23%). The thoracic spine was the most frequently affected (74%). Bone elements were the major component of extradural compression in 11/78 patients (14%). Intradural metastases were multiple in 15/20 patients (75%). Four of the six solitary intramedullary metastases were situated in the conus medullaris. CONCLUSION: Magnetic resonance imaging of the entire spine is the investigation of choice in patients with known malignancy and suspected spinal canal disease. Contrast-enhanced images should be acquired when the unenhanced appearances do not correlate with the clinical findings or when they suggest intradural or intramedullary disease. Loughrey, G.J. (2000)

  19. Magnetic resonance imaging in the management of suspected spinal canal disease in patients with known malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Loughrey, Gareth J.; Collins, Conor D.; Todd, Susan M.; Brown, Nicola M.; Johnson, Richard J

    2000-11-01

    AIM: The aim of this study was to examine the spectrum of spinal canal disease in patients with known malignancy using magnetic resonance imaging (MRI). MATERIALS AND METHODS: One hundred and fifty-five patients underwent a total of 159 spinal MRI examinations over a three-year period. Patients were examined using a 1.0T magnet and a phased array surface spine coil. Sagittal T1 weighted spin echo and STIR sequences were routinely employed. Axial T1 and T2 weighted spin echo images were obtained at sites of identified pathology. Contrast enhanced sagittal and axial T1 weighted spin echo images were acquired when the unenhanced appearances did not correlate with the clinical findings or when the images suggested intradural or intramedullary disease. RESULTS: Malignant disease affecting the spinal cord or cauda equina was noted in 104/159 (65%) patients (extradural n= 78, intradural n= 20, intramedullary n= 7); one patient had evidence of both intradural and intramedullary deposits. Multiple levels of extradural cord/cauda equina compression were present in 18/78 patients (23%). The thoracic spine was the most frequently affected (74%). Bone elements were the major component of extradural compression in 11/78 patients (14%). Intradural metastases were multiple in 15/20 patients (75%). Four of the six solitary intramedullary metastases were situated in the conus medullaris. CONCLUSION: Magnetic resonance imaging of the entire spine is the investigation of choice in patients with known malignancy and suspected spinal canal disease. Contrast-enhanced images should be acquired when the unenhanced appearances do not correlate with the clinical findings or when they suggest intradural or intramedullary disease. Loughrey, G.J. (2000)

  20. Improvements in image quality with pseudo-parallel imaging in the phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, in which the amplitude of the PSFT presents some kind of blurred image of the objects. Therefore, the signal can be considered to exist in the object domain as well as the Fourier domain of the object. This notable feature makes it possible to assign weights to the reconstructed images by applying a weighting function to the PSFT signal after data acquisition, and as a result, pseudo-parallel image reconstruction using these aliased image data with different weights on the images is feasible. In this study, the improvements in image quality with such pseudo-parallel imaging were examined and demonstrated. The weighting function of the PSFT signal that provides a given weight on the image is estimated using the obtained image data and is iteratively updated after sensitivity encoding (SENSE)-based image reconstruction. Simulation studies showed that reconstruction errors were dramatically reduced and that the spatial resolution was also improved in almost all image spaces. The proposed method was applied to signals synthesized from MR image data with phase variations to verify its effectiveness. It was found that the image quality was improved and that images almost entirely free of aliasing artifacts could be obtained. (author)

  1. A Gimbal-Stabilized Compact Hyperspectral Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gimbal-stabilized Compact Hyperspectral Imaging System (GCHIS) fully integrates multi-sensor spectral imaging, stereovision, GPS and inertial measurement,...

  2. Web Based Distributed Coastal Image Analysis System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops Web based distributed image analysis system processing the Moderate Resolution Imaging Spectroradiometer (MODIS) data to provide decision...

  3. Color-coded MR imaging phase velocity mapping with the Pixar image processor

    International Nuclear Information System (INIS)

    Singleton, H.R.; Cranney, G.B.; Pohost, G.M.

    1989-01-01

    The authors have developed a graphic interaction technique in which a mouse and cursor are used to assign colors to phase-sensitive MR images of the heart. Two colors are used, one for flow in the positive direction, another for flow in the negative direction. A lookup table is generated interactively by manipulating lines representing ramps superimposed on an intensity histogram. Intensity is made to vary with flow magnitude in each color's direction. Coded series of the ascending and descending aorta, and of two- and four-chamber views of the heart, have been generated. In conjunction with movie display, flow dynamics, especially changes in direction, are readily apparent

  4. Low flip angle spin-echo MR imaging to obtain better Gd-DTPA enhanced imaging with ECG gating

    International Nuclear Information System (INIS)

    Sugimura, Kazuro; Kawamitsu, Hideaki; Yoshikawa, Kazuaki; Kasai, Toshifumi; Yuasa, Koji; Ishida, Tetsuya

    1992-01-01

    ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifact. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. In computer simulation, the predicted image contrast and single-to-noise ratio (SNR) obtained for each flip angle (0-180deg) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR=500 msec, TE=20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muslce) 2* 100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38deg was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100deg, and that at 53deg was identical to that with T1-weighted spin-echo. CI on LFSE (74.0±52.0) was significantly higher than CI on CSE (40.9±35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging. (author)

  5. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  6. Pre- and postcontrast FLAIR MR imaging in the diagnosis of intracranial meningeal pathology

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Hachiya, Junichi

    2000-01-01

    Few reports address the use of fluid-attenuated inversion-recovery (FLAIR) images of the brain in the diagnosis of extraaxial lesions. Our purpose was to assess the value of FLAIR images, including postcontrast ones, in the diagnosis of intracranial meningeal diseases. We reviewed precontrast (n=24) and postcontrast (n=20) FLAIR images obtained from 25 patients with infectious meningitis (n=13), carcinomatous meningitis or dissemination of primary brain tumor (n=7), dural metastasis (n=3), and others (n=2) in comparison with fast spin-echo T2-weighted and postcontrast T1-weighted images. In lesion detectability, precontrast FLAIR images were significantly superior to fast spin-echo T2-weighted images but inferior to postcontrast T1-weighted images. There was no significant difference between postcontrast T1-weighted and FLAIR images. Precontrast FLAIR images can substitute for conventional fast spin-echo T2-weighted images. Postcontrast FLAIR images have diagnostic potential equivalent to conventional postcontrast T1-weighted images. (author)

  7. MR imaging of shaken baby syndrome manifested as chronic subdural hematoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yul; Lee, Kwan Seop; Hwang, Dae Hyun; Lee, In Jae; Kim, Hyun Beom; Lee, Jae Young [Hallym University College of Medicine, Anyang (Korea, Republic of)

    2001-09-01

    Shaken baby syndrome (SBS) is a form of child abuse that can cause significant head injuries, of which subdural hematoma (SDH) is the most common manifestation. We report the MRI findings of chronic SDH in three cases of SBS, involving two-, three- and eight-month-old babies. The SDH signal was mostly low on T1-weighted images and high on T2-weighted images, suggesting chronic SDH. In chronic SDH, a focal high signal on T1-weighted images was also noted, suggesting rebleeding. Contrast-enhanced MRI revealed diffuse dural enhancement.

  8. Computed Tomography and Magnetic Resonance Imaging of Myoepitheliloma in the Soft Palate: A Case Report

    International Nuclear Information System (INIS)

    Lim, Hun Cheol; Yu, In Kyu; Park, Mi Ja; Jang, Dong Sik

    2011-01-01

    We report the appearance of myoepithelioma arising from minor salivary glands in the soft palate observed on computed tomography (CT) and magnetic resonance imaging (MRI). CT, the tumor was round with a smooth and partial lobulating contour, and slightly marginal contrast enhancement. On T1-weighted images, the mass had heterogeneous iso-signal intensity compared to the pharyngeal muscle. Additionally, the tumor had heterogeneously high T2 signal intensity with heterogeneously strong enhancement on the Gd-enhanced T1-weighted image. Radiologists should consider myoepithelioma in the radiological differential diagnosis of soft palate tumors.

  9. MR imaging of shaken baby syndrome manifested as chronic subdural hematoma

    International Nuclear Information System (INIS)

    Lee, Yul; Lee, Kwan Seop; Hwang, Dae Hyun; Lee, In Jae; Kim, Hyun Beom; Lee, Jae Young

    2001-01-01

    Shaken baby syndrome (SBS) is a form of child abuse that can cause significant head injuries, of which subdural hematoma (SDH) is the most common manifestation. We report the MRI findings of chronic SDH in three cases of SBS, involving two-, three- and eight-month-old babies. The SDH signal was mostly low on T1-weighted images and high on T2-weighted images, suggesting chronic SDH. In chronic SDH, a focal high signal on T1-weighted images was also noted, suggesting rebleeding. Contrast-enhanced MRI revealed diffuse dural enhancement

  10. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    Science.gov (United States)

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  11. Sequential MR images of uterus after Gd-DTPA injection

    International Nuclear Information System (INIS)

    Okada, Susumu; Kato, Tomoyasu; Yamada, Keiko; Sawano, Seishi; Yamashita, Takashi; Hirai, Yasuo; Hasumi, Katsuhiko

    1993-01-01

    To investigate the sequential changes in signal intensity (SI) of normal and abnormal uteri, T1-weighted images were taken repeatedly after the injection of Gd-diethylenetriaminepentaacetic acid (DTPA). Six volunteers and 19 patients with known uterine body malignancy (18 carcinomas, one carcinosarcoma) were examined. The results in volunteers were as follows. In the secretory phase, SI of the endometrium was stronger in the late images than in the early ones, whereas in the proliferative phase, SI was stronger in the early images. SI of the myometrium decreased rapidly and there were no differences in SI between menstrual phases. In 17 of 18 endometrial carcinomas, the tumors showed hypointensity relative to the myometrium, and the contrast between the tumor and the myometrium was better in the early images. In the remaining two cases, the tumor showed hyperintensity and the contrast was better in the late images. After the injection of Gd-DTPA, the endometrium appeared differently according to the menstrual cycle in normal volunteers, and the appearance of uterine structures and endometrial malignant tumors changed sequentially. These findings must be kept in mind when evaluating uterine diseases by Gd-DTPA enhanced MRI. (author)

  12. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  13. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  14. Simultaneous transmission for an encrypted image and a double random-phase encryption key

    Science.gov (United States)

    Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu

    2007-06-01

    We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.

  15. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    Science.gov (United States)

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. MR imaging of acute hemorrhagic brain infarction

    International Nuclear Information System (INIS)

    Uchino, Akira; Ohnari, Norihiro; Ohno, Masato

    1989-01-01

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author)

  17. Gd-DOTA enhancement of cerebral and spinal tumors on MR imaging

    International Nuclear Information System (INIS)

    Berry, I.; Manelfe, C.; Chastin, I.; Arrue, P.; Prere, J.

    1987-01-01

    The use of Gd-DOTA as a contrast agent in MR imaging to improve the diagnosis of cerebral and spinal tumors was assessed in 20 patients, ten with brain tumors and ten with spinal tumors. Imaging was performed with a 0.5-T Magniscan 5000 unit. T1-weighted (spin-echo and gradient-echo) and T2-weighted (spin-echo) images were acquired before and after intravenous injection of Gd-DOTA, 0.1 mmol/kg. On T1-weighted images, Gd-DOTA enhanced sites of presumed disruption of the blood-brain barrier. This made some brain tumors more conspicuous and helped target biopsies, but did not reveal any additional lesions. On the other hand, the use of Gd-DOTA significantly improved the reliability of spinal tumor imaging compared to imaging performed without contrast agent, allowing delineation of abnormalities on T1-weighted images, which frequently contain fewer artifacts than the most sensitive T2-weighted images. Images obtained with Gd-DOTA could be used by the physician to rule out residual tumor after surgery and to assess recurrences. Additional work should be done to discover whether spinal tumor exploration with MR imaging could include solely T1-weighted sequences, performed before and after contrast agent administration, without T2-weighted sequences

  18. An effective approach for iris recognition using phase-based image matching.

    Science.gov (United States)

    Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi

    2008-10-01

    This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.

  19. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B. [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Leidner, Bertil; Svensson, Anders [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden)

    2014-01-15

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  20. High-field MR imaging of spinal cord multiple sclerosis

    International Nuclear Information System (INIS)

    De La Paz, R.L.; Floris, R.; Norman, D.; Enzmann, D.R.

    1987-01-01

    Fifty-one high-field MR imaging studies (1.5 T, General Electric Signa) of the spinal cord were performed in 42 patients (27 female, 15 male; mean age, 40 years) with clinically definitive (n = 34) or probable (n = 8) multiple sclerosis and suspected spinal cord lesions. MR imaging showed focal spinal cord abnormalities in 38 (75%) of 51 studies. T2-weighted images were abnormal (showing foci of high signal intensity) in 38 studies, T1-weighted images were abnormal (showing areas of low signal intensity or mass effect) in 16 (42%) of 38, and GRASS images were abnormal (showing foci of high signal intensity) in 9 (82%) of 11 cases. Brain MR imaging showed periventricular lesions typical of multiple sclerosis in 34 (81%) of 42 studies. Spinal cord studies were positive in eight cases with normal brain MR images, and brain studies were positive in 13 instances of normal spinal cord MR images. Four lesions were at the cervicomedullary junction, 44 in the cervical spinal cord, and three in the thoracic cord. Mass effect in cord lesions, simulating neoplasm, was seen in seven patients during the acute symptomatic phase. Serial studies in three patients with decreasing symptoms showed a reduction after 3-4 weeks and resolution of the mass effect after 2-6 months

  1. Blind phase retrieval for aberrated linear shift-invariant imaging systems

    International Nuclear Information System (INIS)

    Yu, Rotha P; Paganin, David M

    2010-01-01

    We develop a means to reconstruct an input complex coherent scalar wavefield, given a through focal series (TFS) of three intensity images output from a two-dimensional (2D) linear shift-invariant optical imaging system with unknown aberrations. This blind phase retrieval technique unites two methods, namely (i) TFS phase retrieval and (ii) iterative blind deconvolution. The efficacy of our blind phase retrieval procedure has been demonstrated using simulated data, for a variety of Poisson noise levels.

  2. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  3. Predictive value of MR imaging-dependent and non-MR imaging-dependent parameters for recurrence of laryngeal cancer after radiation therapy

    NARCIS (Netherlands)

    Castelijns, J. A.; van den Brekel, M. W.; Smit, E. M.; Tobi, H.; van Wagtendonk, F. W.; Golding, R. P.; Venema, H. W.; van Schaik, C.; Snow, G. B.

    1995-01-01

    To determine the predictive value of several clinical and radiologic parameters for recurrence of laryngeal cancer. Eighty previously untreated patients underwent magnetic resonance (MR) imaging before radiation therapy with curative intent. Tumor volume was calculated from T1-weighted MR images.

  4. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  5. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  6. MR imaging of non-functioning endocrine tumors of the pancreas

    International Nuclear Information System (INIS)

    Irie, Hiroyuki; Honda, Hiroshi; Kuroiwa, Toshiro

    2002-01-01

    The purpose of this study was to clarify the MR imaging characteristics of patients with non-functioning endocrine tumors of the pancreas. Fourteen patients with these tumors underwent MR imaging. The signal characteristics of the tumor on T 1 -, T 2 -, and contrast-enhanced T 1 -weighted images were evaluated. The enhancement pattern of the tumor on dynamic study was also examined. The degree of stromal fibrosis was evaluated on the pathologic specimen, and was then classified as mild, moderate, or marked fibrosis. On T 1 -weighted images, the tumors were hypointense in 12 of 14 cases. The signals of the tumors on T 2 -weighted images were varied. The tumors were hypointense in 1 case, isointense in 2 cases, hyperintense in 6 cases, and very hyperintense in the other 5 cases. On contrast-enhanced T 1 -weighted images, the tumors were hyperintense in 8 cases and very hyperintense in 5 cases. On T 2 - and contrast-enhanced T 1 -weighted images, 4 of 5 malignant tumors were very hyperintense. Dynamic study revealed prolonged enhancement in 10 of 11 cases. Pathologic analysis revealed moderate or marked fibrosis in 10 of 14 cases, and prolonged enhancement was considered to be related stromal fibrosis. In conclusion, MR imaging findings of non-functioning endocrine tumors of the pancreas vary in relation to pathological variety. Prolonged enhancement of the tumor on dynamic study is considered to be one of the characteristic MR imaging findings that corresponds to stromal fibrosis of the tumor. (author)

  7. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  8. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography

    International Nuclear Information System (INIS)

    Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma

    2015-01-01

    In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)

  9. MR imaging of the female urethra

    International Nuclear Information System (INIS)

    Hricak, H.; Secaf, E.; Buckley, D.; Brown, J.J.; McAninch, J.W.; Tanagho, E.A.

    1990-01-01

    This paper evaluates the appearance of the female urethra on noncontrast and contrast-enhanced MR images and to evaluate the potential of MR imaging in the diagnosis of various urethral conditions and the staging of urethral tumors. Sixty-four patients (mean age, 54.6 years) were studied. Normal urethra was assessed in 36 patients, and urethral pathology (including urethral diverticula, inflammatory granuloma, and primary and metastatic neoplasms) in 28. MR imaging was performed on a 1.5-T magnet (General Electric Signa). T1-weighted (500/20) and T2-weighted (2,500/80) images were obtained, with a section thickness of 5 mm (20% gap), a 192 x 256 matrix, and two excitations. In 27 patients, T1-weighted images were repeated after intravenous injection of 0.1 mmol/kg of Gd-DTPA

  10. Parasellar meningiomas: magnetic resonance imaging findings

    International Nuclear Information System (INIS)

    Santos, Alair Augusto S.M.D. dos; Fontes, Cristina Asvolinsque P.

    2001-01-01

    We reviewed 22 cases of patients with parasellar meningiomas evaluated with magnetic resonance imaging (MRI) in private clinics of the cities of Niteroi and Rio de Janeiro, Rio de Janeiro State, Brazil. Our aim was to characterize the imaging findings in this type of tumor. MRI scanners with 0.5 and 1.0 Tesla magnets were used for the acquisition of multiplanar T1-weighted (pre-and post-gadolinium administration) and T2-weighted images. The main symptoms observed were headache and visual disturbances. Hyperprolactinaemia was observed in only one patient. The most frequent imaging finding was a parasellar mass which appeared hypointense on T1-weighted and hyperintense on T2-weighted images, and enhanced intensively after gadolinium administration. MRI is useful to demonstrate the lesion and to asses the damage to adjacent structures, particularly when the patient presents visual disturbances due to involvement of the cavernous sinuses. (author)

  11. MR imaging of normal bone marrow

    International Nuclear Information System (INIS)

    Stajgis, M.; Paprzycki, W.

    1994-01-01

    Principles of MR bone marrow imaging on the basis of retrospective analysis of MR examinations of bone marrow in different anatomic sites in 200 patients have been discussed. Significance of different physiologic factors and processes such as age, steatosis, osteoporosis, conversion and reconversion, which influence on MR bone marrow images, have been emphasized. T1-weighted images obtained with spin-echo sequences give the most of information about bone marrow structure in MR. Thorough knowledge of bone marrow physiology and clinical status of the patient is indispensable in correct interpretation of hypointensive lesions on T1-weighted images. When presence of disseminated bone marrow disease is suspected, authors propose routine imaging of lumbar vertebral column, pelvis and proximal parts of femoral bones. (author)

  12. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  13. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-07-15

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the

  14. Magnetic resonance imaging (MRI) of intracranial chordomas

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Teruo; Inoue, Yuichi; Shakudo, Miyuki and others

    1988-03-01

    MR images of 5 patients with intracranial chordoma were evaluated and compared with those of other clival lesions (1 clival osteomyelitis, 1 metastatic clival tumor, 3 clival meningiomas). The MR examination was performed using a 0.5 T superconductive magnet, with approximately 10 mm section thickness, one average and a 256 x 256 matrix. T1 weighted images were obtainned by inversion recovery (IR) with TR 2100 - 2500 msec, TI 600 msec and TE 40 msec. T2 weighted images were obtained by spin echo pulse sequence with TR 1800 - 2500 msec and TE 120 msec (long SE). In several cases, the spin echo pulse sequences with TR 1000 msec and TE 40 msec (short SE) were also done. Multiplaned images were obtained. Four of 5 intracranial chordomas were low in intensity compared to cerebral gray matter on T1 weighted images, and all of 5 chordomas were as high in intensity as cerebrospinal fluid or higher than that of cerebrospinal fluid on T2 weighted images. Clival fatty marrow is high intensity on T1 weighted images. Clival involvement by a tumor was a clearly demonstrated as disappearance of this high intensity in all cases. In two cases, the tumor extended to the retropharyngeal space and this was detected clearly on short SE image. Although clival fatty marrow was disappeared, osteomyelitis and metastatic tumor in clivus were iso-intense to cerebral gray matter on both T1 and T2 weighted images. All of 3 clival meningiomas showed iso-intensity to cerebral gray matter on T1 weighted images and slightly high intensity to brain on T2 weighted images, and clival fatty marrow was normal in all 3 cases. Although our experiences are limited in number, intracranial chordoma appeared to be differentiated from other clival lesions.

  15. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  16. Endometriosis of the liver: Findings in imaging diagnosis

    International Nuclear Information System (INIS)

    Nakanishi, K.; Bohndorf, K.; Lindemann, F.; Leipprand, E.

    1994-01-01

    Endometriosis of the liver is an extremely rare disease. To our knowledge, no more than three such cases were so far mentioned in the relevant literature. Moreover, we understand that nmr findings to prove the presence of hepatic endometriosis have not yet been described. We consider nmr imaging to be a suitable tool to establish a presumptive, if not firm, diagnosis of hepatic endometriosis. A sign strongly suggestive of the disorder is the irregular pattern of blood constituents of different ages that can invariably be visualized using this method. Due to the great amounts of free methaemoglobin found in subacute haemorrhages in increase insignal intensity can be observed for T 1 -weighted and T 2 -weighted SE sequences. The residues of former bleedings into the stroma, which are histologically confirmed by haemosiderin deposits, account for the greatly diminished signal intensity in T 1 -weighted images. An unusual finding here was the comparatively high signal intensity observed for T 2 -weighted images in those areas, where signals were practically absent in T 1 -weighted images. In our opinion, this can be explained by scattered subacute bleedings, which are probably too small in amount to produce signals in T 1 -weighted pictures. (orig./MG) [de

  17. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging

    International Nuclear Information System (INIS)

    Ragab, Yasser; Emad, Yasser; Gheita, Tamer; Mansour, Maged; Abou-Zeid, A.; Ferrari, Serge; Rasker, Johannes J.

    2009-01-01

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  18. Phased Array Imaging of Complex-Geometry Composite Components.

    Science.gov (United States)

    Brath, Alex J; Simonetti, Francesco

    2017-10-01

    Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke

  19. Imaging diagnosis of temporomandibular disorders (TMD). MR imaging of the disk of the temporomandibular joint

    International Nuclear Information System (INIS)

    Sano, Tsukasa; Yamamoto, Mika; Sakuma, Katsuya

    2001-01-01

    Since its introduction in the 1980s, magnetic resonance imaging has become the preferred method for diagnosing soft tissue abnormalities of temporomandibular joint (TMJ). MR imaging is non-invasive and more accurate than arthorography. In addition, it requires less operator skill and is well tolerated by patients. We are usually taking MR images of the TMJ with the fast spin echo technique that can simultaneously obtain both T2-weighted and proton density images. The purpose of this study was to determine the utility of T2-weighed and proton density images for diagnosing the disk status in TMJ, comparing the results with those obtained by T1-weighted images. We studied 104 TMJs in 52 patients with both T2-weighted and proton density images, and 80 TMJs in 40 patients with only T1-weighted images. The joints were evaluated by two oral radiologists who looked at three aspects of the joints-disk displacement, disk reduction and disk shape - giving ratings of good'' or ''fair'' in each category. Ratings of ''good'' were significant higher in all three categories in T2-weighted and proton density images than in T1-weighted images (p<0.01). Based on these results, we conclude that T2-weighted and proton density images taken with the fast spin echo technique are useful for diagnosing the disk status of the TMJ. (author)

  20. Plenoptic Flow Imaging for Ground Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Instantaneous volumetric flow imaging is crucial to aerodynamic development and testing. Simultaneous volumetric measurement of flow parameters enables accurate...

  1. Highly Stable, Large Format EUV Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher detection efficiency and better radiation tolerance imagers are needed for the next generation of EUV instruments. Previously, CCD technology has demonstrated...

  2. Distinction of heterogeneity on Au nanostructured surface based on phase contrast imaging of atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Mi; Choi, Jeong-Woo

    2010-01-01

    The discrimination of the heterogeneity of different materials on nanostructured surfaces has attracted a great deal of interest in biotechnology as well as nanotechnology. Phase imaging through tapping mode of atomic force microscopy (TMAFM) can be used to distinguish the heterogeneity on a nanostructured surface. Nanostructures were fabricated using anodic aluminum oxide (AAO). An 11-mercaptoundecanoic acid (11-MUA) layer adsorbed onto the Au nanodots through self-assembly to improve the bio-compatibility. The Au nanostructures that were modified with 11-MUA and the concave surfaces were investigated using the TMAFM phase images to compare the heterogeneous and homogeneous nanostructured surfaces. Although the topography and phase images were taken simultaneously, the images were different. Therefore, the contrast in the TMAFM phase images revealed the different compositional materials on the heterogeneous nanostructure surface.

  3. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  4. High resolution MR imaging of the hip using pelvic phased-array coil

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, Mamoru; Mishima, Hajime; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    1997-01-01

    A pelvic phased-array coil was applied to obtain high resolution MR images of the hip. Three-mm-thick fast spin-echo images were obtained in seven hips. Images with a pelvic coil enhanced delineation of acetabular labrum and articular cartilage more clearly than those with a body coil or flexible-surface coil. The use of a pelvic coil in imaging of the hip may be of diagnostic value because of its superior delineation. (author)

  5. Phase-processing as a tool for speckle reduction in pulse-echo images

    DEFF Research Database (Denmark)

    Healey, AJ; Leeman, S; Forsberg, F

    1991-01-01

    . Traditional speckle reduction procedures regard speckle correction as a stochastic process and trade image smoothing (resolution loss) for speckle reduction. Recently, a new phase acknowledging technique has been proposed that is unique in its ability to correct for speckle interference with no image......Due to the coherent nature of conventional ultrasound medical imaging systems interference artefacts occur in pulse echo images. These artefacts are generically termed 'speckle'. The phenomenon may severely limit low contrast resolution with clinically relevant information being obscured...

  6. MEASUREMENTS OF STRAIN FIELDS DUE TO NANOSCALE PRECIPITATES USING THE PHASE IMAGE METHOD

    Directory of Open Access Journals (Sweden)

    Patricia Donnadieu

    2011-05-01

    Full Text Available Owing the phase image method (Hytch, 1998, strain fields can be derived from HREM images. The method is here applied to the nanoscale precipitates responsible for hardening in Aluminum alloys. Since the method is a very sensitive one, we have examined the impact of several aspects of the image quality (noise, fluctuations, distortion. The strain field information derived from the HREM image analysis is further introduced in a simulation of the dislocation motion in the matrix.

  7. Phase-preserving beam expander for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-01-01

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used

  8. Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Alloyeau, D., E-mail: alloyeau.damien@gmail.com [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Hsieh, W.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Anderson, E.H.; Hilken, L. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Benner, G. [Carl Zeiss NTS GmbH, Oberkochen 73447 (Germany); Meng, X. [Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-1770 (United States); Chen, F.R. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Kisielowski, C. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States)

    2010-04-15

    Using two levels of electron beam lithography, vapor phase deposition techniques, and FIB etching, we have fabricated an electrostatic Boersch phase plate for contrast enhancement of weak phase objects in a transmission electron microscope. The phase plate has suitable dimensions for the imaging of small biological samples without compromising the high-resolution capabilities of the microscope. A micro-structured electrode allows for phase tuning of the unscattered electron beam, which enables the recording of contrast enhanced in-focus images and in-line holograms. We have demonstrated experimentally that our phase plate improves the contrast of carbon nanotubes while maintaining high-resolution imaging performance, which is demonstrated for the case of an AlGaAs heterostructure. The development opens a new way to study interfaces between soft and hard materials.

  9. Background free CARS imaging by phase sensitive heterodyne CARS

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2008-01-01

    In this article we show that heterodyne CARS, based on a controlled and stable phase-preserving chain, can be used to measure amplitude and phase information of molecular vibration modes. The technique is validated by a comparison of the imaginary part of the heterodyne CARS spectrum to the

  10. Identification of various phases in HRTEM images of MgO-PSZ

    International Nuclear Information System (INIS)

    Liu, Z.; Spargo, A.E.C.

    2000-01-01

    Magnesia partially stabilized zirconia is one of the most commonly used engineering ceramics based on zirconia. A detailed discussion about how to identify the various phases in the high resolution transmission electron microscopy images of this material is presented. It shows that in some cases, the standard procedures of image simulation are inadequate to interpret these images. By including the effect of astigmatism in both experimental and simulated images, together with the digital Fourier transforms of the images, orthorhombic ZrO 2 in [001] orientation was identified. The δ-phase, which has a marked effect on the thermomechanical properties of MgO-PSZ, can most easily be identified by high resolution imaging in the [130] c zone which coincides with a low-index zone axis of the δ-phase

  11. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Diagnostic Radiology, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  12. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    International Nuclear Information System (INIS)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-01-01

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  13. Initial studies of synchrotron radiation phase-contrast imaging in the field of medicine

    International Nuclear Information System (INIS)

    Chen Shaoliang; Zhang Xi; Peng Yifeng; Li Beilei; Cheng Aiping; Zhu Peiping; Yuan Xiqing; Huang Wanxia

    2010-01-01

    Recently,research on using X-ray phase information in medicine has been growing remarkably fast. Phase-contrast imaging with synchrotron radiation can reveal inner soft tissues such as tendons, cartilage, ligaments, adipose tissue, vessels and nerves without a contrast agent. We have visualized the liver, bile duct, lung, kidney, stomach and intestine, heart, blood vessel, bone and arthrosis, and tumor tissues using 'in-line' phase contrast imaging and diffraction-enhanced imaging. It is seen that the synchrotron radiation graphs show much higher resolution. This method is especially suitable for studying soft tissue structure and blood vessels. (authors)

  14. High-resolution MR imaging of wrist cartilage

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bernreuter, W.K.; Listinsky, J.J.; Lee, D.H.; Kenney, P.J.; Colgin, S.L.

    1991-01-01

    This paper reports that cartilage is an important prognostic factor in arthritis. MR imaging can demonstrate both articular cartilage and subchondral bone. Our purpose was to compare various sequences, for wrist cartilage imaging and determine how extensive damage must be before it is detectable with MR imaging. Six cadaver wrists were imaged before and after arthroscopic cartilage injury (coronal and axial T1- and T2-weighted SE sequences, 3-mm sections; SPGR 45 degrees flip angle volume images with fat saturation. 1.2-mm sections; plus T1-weighted coronal images with fat saturation after injury; General Electric Signa, 1.5 T, with transmit-receive extremity coil). Twenty-two defects were created arthroscopically. Five normal volunteers were imaged for comparison. The greatest contrast among bone, cartilage, and synovial fluid was achieved with T1-weighted fat-suppressed SE image and SPGR. Gradient-recalled volume sequences generated very thin sections but were susceptible to artifact

  15. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu [Imaging and Medical Physics, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, Georgia 30322 (United States); Cai, Weixing [Department of Radiation Oncology, Brigham and Women’s Hospital Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115 (United States); Mao, Hui [Laboratory of Functional and Molecular Imaging and Nanomedicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, Georgia 30329 (United States)

    2016-06-15

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on the paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging</