WorldWideScience

Sample records for phase plzt ceramics

  1. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    International Nuclear Information System (INIS)

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10 14 350 keV Ar/cm 2 + 1 x 10 15 500 keV Ne/cm 2 is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity

  2. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    Science.gov (United States)

    Land, Cecil E.

    1990-01-01

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.

  3. PLZT capacitor and method to increase the dielectric constant

    Science.gov (United States)

    Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.

    2017-12-12

    A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.

  4. High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics.

    Science.gov (United States)

    Li, Bi; Liu, Qiuxiang; Tang, Xingui; Zhang, Tianfu; Jiang, Yanping; Li, Wenhua; Luo, Jie

    2017-02-08

    (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT2/95/5) ceramics were successfully prepared via a solid-state reaction route. The dielectric properties were investigated in the temperature region of 26-650 °C. The dielectric diffuse anomaly in the dielectric relaxation was found in the high temperature region of 600-650 °C with increasing the measuring frequency, which was related to the dynamic thermal process of ionized oxygen vacancies generated in the high temperature. Two phase transition points were detected during heating, which were found to coexist from 150 to 200 °C. Electric field induced ferroelectric to antiferroelectric phase transition behavior of the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics was investigated in this work with an emphasis on energy storage properties. A recoverable energy-storage density of 0.83 J/cm³ and efficiency of 70% was obtained in (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics at 55 kV/cm. Based on these results, (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics with a large recoverable energy-storage density could be a potential candidate for the applications in high energy-storage density ceramic capacitors.

  5. High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics

    Directory of Open Access Journals (Sweden)

    Bi Li

    2017-02-01

    Full Text Available (Pb0.97La0.02(Zr0.95Ti0.05O3 (PLZT2/95/5 ceramics were successfully prepared via a solid-state reaction route. The dielectric properties were investigated in the temperature region of 26–650 °C. The dielectric diffuse anomaly in the dielectric relaxation was found in the high temperature region of 600–650 °C with increasing the measuring frequency, which was related to the dynamic thermal process of ionized oxygen vacancies generated in the high temperature. Two phase transition points were detected during heating, which were found to coexist from 150 to 200 °C. Electric field induced ferroelectric to antiferroelectric phase transition behavior of the (Pb0.97La0.02(Zr0.95Ti0.05O3 ceramics was investigated in this work with an emphasis on energy storage properties. A recoverable energy-storage density of 0.83 J/cm3 and efficiency of 70% was obtained in (Pb0.97La0.02(Zr0.95Ti0.05O3 ceramics at 55 kV/cm. Based on these results, (Pb0.97La0.02(Zr0.95Ti0.05O3 ceramics with a large recoverable energy-storage density could be a potential candidate for the applications in high energy-storage density ceramic capacitors.

  6. PLZT-based photovoltaic Piezoelectric Transformer with light feedback

    Energy Technology Data Exchange (ETDEWEB)

    Kozielski, L [University of Silesia, Dep. Materials Sc, 2, Sniezna St. Sosnowiec, 41-200 Poland (Poland); Adamczyk, M [University of Silesia, Institute Phys., 4, Uniwersytecka St. Katowice, 40-007 Poland (Poland); Erhart, J, E-mail: lucjan.kozielski@us.edu.pl [Technical University of Liberec, Studencka St. 2, CZ-461 17 Liberec (Czech Republic)

    2011-10-29

    Piezoelectric Transformer (PT) converts an electrical AC input voltage into ultrasonic vibrations and reconverts back to an output as AC voltage. Hard lead zirconate titanate (PZT) ceramics is typically used for fabrications of such devices. In case of lanthaniun ion La{sup 3+} addition in PZT solid solution we can achieve piezoelectric ceramics with good transparency exhibiting both optical Pockels and Kerr effects. Values of these coefficients in the PLZT system are much bigger than in LiNbO{sub 3} or SBN single crystals. Among the various PLZT compositions 8/65/35, near the morphotropic boundary, exhibit large electrooptic effect and thus have found applications in light shutters and displays. In the present study we have investigated radial mode piezoelectric transformer based on optically transparent PLZT8/65/35 ceramics. The effect of the UV light generated photovoltage and photostriction on the efficiency and voltage step-up ratio of piezoelectric transformer have been demonstrated. Novel functions of this device is proposed by superimposing two sophistically coupled effects of piezoelectricity and photostriction.

  7. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  8. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    Science.gov (United States)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  9. PLZT Film Capacitors for Power Electronics and Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Hu, Zhongqiang; Koritala, Rachel E.; Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-12-01

    Ceramic film capacitors with high dielectric constant and high breakdown strength hold special promise for applications demanding high power density. By means of chemical solution deposition, we deposited ≈2-μm-thick films of lanthanum-doped lead zirconate titanate (PLZT) on LaNiO3-buffered Ni (LNO/Ni) foils and platinized silicon (PtSi) substrates. The dielectric properties and energy storage performance of the resulting samples were determined under a high level of applied electric field. X-ray diffraction stress analysis revealed that PLZT on LNO/Ni bears a compressive stress of ≈370 MPa while PLZT on PtSi endures a tensile stress of ≈250 MPa. Compressive stress was found to lead to heightened polarization, improved tunability, increased irreversible domain wall motion, and enhanced breakdown strength for PLZT deposited on the LNO/Ni as compared with the PtSi substrate. We observed a tunability of ≈55 and ≈40 % at room temperature under 100 kV/cm applied field, remanent polarization of ≈23.5 and ≈7.4 µC/cm^2, coercive electric field of ≈25.6 and ≈21.1 kV/cm, and dielectric breakdown strength of ≈2.6 and ≈1.5 MV/cm for PLZT deposited on LNO/Ni foils and PtSi substrates, respectively. A high recoverable energy density of ≈85 J/cm^3 and energy conversion efficiency of ≈65 % were measured on the PLZT film grown on LNO/Ni.

  10. Preliminary Investigation of an Active PLZT Lens

    Science.gov (United States)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  11. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    Science.gov (United States)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  12. Comparative Performance of PLZT and PVDF Pyroelectric Sensors Used to the Thermal Characterization of Liquid Samples

    Directory of Open Access Journals (Sweden)

    Gemima Lara Hernandez

    2013-01-01

    Full Text Available Among the photothermal methods, the photopyroelectric (PPE technique is a suitable method to determine thermal properties of different kinds of samples ranging from solids to liquids and gases. Polyvinylidene difluoride (PVDF is one of the most frequently used pyroelectric sensors in PPE technique but has the disadvantage that it can be easily deformed by the sample weight. This deformation could add a piezoelectric effect to the thermal parameters assessment; also PVDF has a narrow temperature operation range when compared with ceramic pyroelectric sensors. In order to minimize possible piezoelectric effects due to sensor deformation, a ceramic of lanthanum modified lead zirconate (PLZT was used as pyroelectric sensor in the PPE technique. Then, thermal diffusivity of some liquid samples was measured, by using the PPE configuration that denominated the thermal wave resonator cavity (TWRC, with a PLZT ceramic as pyroelectric detector. The performance obtained with the proposed ceramic in the TWRC configuration was compared with that obtained with PVDF by using the same configuration.

  13. Ultraviolet-light-induced multi-physics behaviors of 0–3 polarized transparent PLZT plates: II. Finite element analysis and validation

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2011-01-01

    This paper presents a novel finite element formulation for 0–3 polarized PbLaZrTi (PLZT) plates and a comparison of the predicted and measured bending displacements. The coupled multi-physics fields and Hamilton's principle for piezoelectric (PZT) materials are first extended to PLZT ceramics by including the anomalous photovoltaic and photo-thermal effects. The photo-induced non-uniform electrical field and mechanical strains across the thickness are modeled in the present finite element formulation for 0–3 polarized PLZT plates, and the associated actuator and sensor equations are derived. The transverse displacements of a 0–3 polarized PLZT plate are predicted using the present finite element formulation and compared with the measured data given in part I. A reasonably good correlation is noted for the transverse displacements at the ten measurement points

  14. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    International Nuclear Information System (INIS)

    Zhu, Renqiang; Zhu, Kongjun; Qiu, Jinhao; Bai, Lin; Ji, Hongli

    2010-01-01

    Lanthanum-modified lead zirconate titanate Pb 1-x La x (Zr 1-y Ti y )O 3 (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  15. PLZT capacitor on glass substrate

    Science.gov (United States)

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  16. Direct thermal to electrical energy conversion using 9.5/65/35 PLZT ceramics in the ergodic relaxor phase.

    Science.gov (United States)

    Chin, Thomas K; Lee, Felix Y; McKinley, Ian M; Goljahi, Sam; Lynch, Christopher S; Pilon, Laurent

    2012-11-01

    This paper reports on direct thermal to electrical energy conversion by performing the Olsen cycle on 9.5/65/35 lead lanthanum zirconate titanate (PLZT). The Olsen cycle consists of two isothermal and two isoelectric field processes in the electric displacement versus electric field diagram. It was performed by alternatively dipping the material in hot and cold dielectric fluid baths under specified electric fields. The effects of applied electric field, sample thickness, electrode material, operating temperature, and cycle frequency on the energy and power densities were investigated. A maximum energy density of 637 ± 20 J/L/cycle was achieved at 0.054 Hz with a 250-μm-thick sample featuring Pt electrodes and coated with a silicone conformal coating. The operating temperatures varied between 3°C and 140°C and the electric field was cycled between 0.2 and 6.0 MV/m. A maximum power density of 55 ± 8 W/L was obtained at 0.125 Hz under the same operating temperatures and electric fields. The dielectric strength of the material, and therefore the energy and power densities generated, increased when the sample thickness decreased from 500 to 250 μm. Furthermore, the electrode material was found to have no significant effect on the energy and power densities for samples subject to the same operating temperatures and electric fields. However, samples with electrode material possessing thermal expansion coefficients similar to that of PLZT were capable of withstanding larger temperature swings. Finally, a fatigue test showed that the power generation gradually degraded when the sample was subject to repeated thermoelectrical loading.

  17. PLZT (9/65/35) sintering and characterization through the Pechini and partial oxalate processes

    International Nuclear Information System (INIS)

    Cerqueira, Marinalva; Nasar, Ricardo Silveira; Leite, Edson Roberto; Longo, Elson; Varela, Jode Arana

    1996-01-01

    Zr Ti O 4 obtained by the Pechini method was used as precursor for obtaining PLZT. An aqueous solution of oxalic acid was prepared with ZT, Pb (NO 3 ) 2 and La 2 O 3 particles. After the Pb C 2 O 4 and La 2 O 3 precipitation on ZT, the material was calcined and x-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered in two steps and density about 8.0 g/cm 3 were obtained. After second sintering XRD showed the occurrence of tetragonal and rhombohedral phases. This was caused by an estequiometric deviation, however the material showed a high optical transparency. (author)

  18. Development of a helmet-mounted PLZT thermal/flash protection system

    International Nuclear Information System (INIS)

    Harris, J.O. Jr.; Cutchen, J.T.; Pfoff, B.J.

    1976-01-01

    Sandia Laboratories is developing PLZT thermal/flash protective devices (TFPD's) goggles to prevent exposure and resultant eye damage from nuclear weapon detonations. The primary emphasis of the present program is to transfer technology and establish production capability for helmet-mounted PLZT/TFPD goggles for USAF flight crews, with a non-helmet-mounted configuration to follow. The first production units are anticipated in the fall of 1977. The operating principles of the PLZT/TFPD goggle device are briefly outlined, and the device configuration and operational characteristics are described

  19. Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C

    Science.gov (United States)

    Hooker, Matthew W.

    1998-01-01

    The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

  20. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT)

    Science.gov (United States)

    Foster, William J.; Meen, James K.; Fox, Donald A.

    2016-01-01

    Context Perovskite compounds, including Lead-Lanthanum-Zirconium Titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, have been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. Objective We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Materials and Methods Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. Results We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. Discussion By comparing the unit cell of PLZT with that of CaTiO3, which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO3. It is thus reasonable that PLZT will react with aqueous solutions. Conclusion The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications. PMID:22697294

  1. A mathematical model for predicting photo-induced voltage and photostriction of PLZT with coupled multi-physics fields and its application

    International Nuclear Information System (INIS)

    Huang, J H; Wang, X J; Wang, J

    2016-01-01

    The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic–electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model. (paper)

  2. Producing transparent PLZT ceramics using different synthesis method

    International Nuclear Information System (INIS)

    Dambekalne, M.; Antonova, M.; Livinsh, M.; Kalvane, A.; Plonska, M.; Garbarz-Glos, B.

    2004-01-01

    Full text: Ceramic samples of Pb 1-x La x (Zr 0.65 Ti 0.35 )O 3 (x 8, 9, 10) were prepared from powders being sintered by two methods: 1) peroxohydroxopolimer (PHP), where as precursors were used solutions of inorganic salts TiCl 4 , ZrOCl 4 ·8H 2 O, Pb(NO 3 ) 2 , La(NO 3 ) 3 ·6H 2 O); 2) sol-gel, using as precursors solutions of metal organic salts Pb(COOCH 3 ) 2 ·3H 2 O, La(COOCH 3 ) 3 ·1.5H 2 O, Zr(OCH 2 CH 2 CH 3 ) 4 , Ti(OCH 2 CH 2 CH 3 ) 4 . The thermal regimes for both powders were similar: synthesis at 600 0 C for 2 - 4h, obtaining amorphous nanopowder. Ceramic samples were produced by hot pressing at 1100 - 1200 0 C for 2 - 6h and pressure of 20Mpa.Optical transmittance of ceramic samples from PHP derived powders was higher than that from sol- gel derived. The transparency of poled plates with thickness of 0.3mm (wavelength λ = 630nm) was 67 - 69% and 56 - 59%, respectively. It can be explained by lack of technical support for sol-gel processing in atmosphere of neutral gas, as metal organic precursors are extremely sensitive to moisture of air. X-ray and DTA studies were used for powders. Dielectrics, ferroelectric and optical properties as well as studies of icrostructure were carried out for ceramic samples. The grain size of ceramics produced from PHP powders is 3- 4μ, for sol-gel ceramics less than 1μ

  3. A new approach to integrate PLZT thin films with micro-cantilevers

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 34; Issue 4. A new approach to integrate PLZT thin films with micro-cantilevers ... Different types of cantilever beams incorporating PLZT films have been successfully fabricated using 'lift-off' process and bulk micromachining technology. The proposed process can be advantageously ...

  4. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT): potential retinotoxicity.

    Science.gov (United States)

    Foster, William J; Meen, James K; Fox, Donald A

    2013-03-01

    Perovskite compounds, including lead-lanthanum-zirconium titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, has been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. By comparing the unit cell of PLZT with that of CaTiO(3), which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO(3). It is thus reasonable that PLZT will react with aqueous solutions. The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications.

  5. Rhombohedral PLZT piezoelectric microfibers: a combined Raman and X-ray diffraction study

    Science.gov (United States)

    Kozielski, Lucjan; Buixaderas, Elena; Clemens, Frank

    2014-11-01

    A combination of micro- and macro-scale structural characterization methods was implemented for clarification of the influence of different sintering atmospheres on the structural properties of Pb1-xLax(ZryTi1-y)O3 (PLZT) fibers. Three powders, PbZrO3 and ZrO2 (PZ + Z), PbZrO3 (PZ), and PbZrO3 + PbO (PZ + P), were used for the generation of protective atmospheres. Vibrations corresponding to the rhombohedral phase in (Pb0.93La0.07)(Zr0.65Ti0.35)O3 fibers were measured and mapped along the section of the fibers by micro-Raman spectroscopy. Comparison of the Raman data with the evolution of the unit cell parameters indicates that the PZ + Z protective atmosphere ensures the best properties during the PLZT sintering at the temperature of 1250 °C for 6 hours.

  6. Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Park, Hyung-Ho; Hill, Ross H.

    2004-01-01

    The ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-doped lead zirconate titanate (PLZT) multilayer films formed by photochemical metal-organic deposition (PMOD) using photosensitive precursors have been characterized. The substitution of La for Pb was reported to induce improved ferroelectric properties, especially fatigue resistance, through the reduction of oxygen vacancies. The relation between La-substitution and the ferroelectric properties was investigated by characterization of the effect of the order of stacking four ferroelectric layers of PZT or PLZT in the multilayer films 4-PZT, PZT/2-PLZT/PZT, PLZT/2-PZT/PLZT, and 4-PLZT. The films with the PLZT layer at the top and bottom showed an improvement in the fatigue resistance. It was revealed that defect dipole such as O vacancy was reduced at the ferroelectric/Pt interface by doping with La. Also, the bottom layer, just on Pt substrate had a significant influence on the surface microstructure and growth orientation of ferroelectric film

  7. Switching and energy-storage characteristics in PLZT 2/95/5 antiferroelectric ceramic system

    Directory of Open Access Journals (Sweden)

    A. Peláiz-Barranco

    2016-12-01

    Full Text Available Switching mechanisms and energy-storage properties have been investigated in (Pb0.98La0.02(Zr0.95Ti0.050.995O3 antiferroelectric ceramics. The electric field dependence of polarization (P–E hysteresis loops indicates that both the ferroelectric (FE and antiferroelectric (AFE phases coexist, being the AFE more stable above 100∘C. It has been observed that the temperature has an important influence on the switching parameters. On the other hand, the energy-storage density, which has been calculated from the P–E hysteresis loops, shows values higher than 1J/cm3 for temperatures above 100∘C with around 73% of efficiency as average. These properties indicate that the studied ceramic system reveals as a promising AFE material for energy-storage devices application.

  8. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  9. PLZT thermal/flash protective goggles: device concepts and constraints

    International Nuclear Information System (INIS)

    Cutchen, J.T.

    1979-01-01

    In 1975 Sandia Laboratories began the design and development of PLZT Goggles for the US Air Force to provide protection from temporary flashblindness and permanent retinal burns caused by the brilliant flash of nuclear explosions. The user requirements, system and physical constraints, and use/storage environments were all considered in arriving at the final design goals. When the program began, there was no industrial capability to manufacture large-aperture PLZT materials or bonded lens assemblies. The technology has been established from a laboratory baseline in a brief period, and operational testing and evaluation by the Air Force has been completed. The goggles, identified as the EEU-2/P,, are now in production

  10. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  11. The temperature dependences of electromechanical properties of PLZT ceramics

    Science.gov (United States)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  12. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    Science.gov (United States)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  13. Develop techniques for ion implantation of PLZT [lead-lanthanum-zirconate-titanate] for adaptive optics

    International Nuclear Information System (INIS)

    Batishko, C.R.; Brimhall, J.L.; Pawlewicz, W.T.; Stahl, K.A.; Toburen, L.H.

    1987-09-01

    Research was conducted at Pacific Northwest Laboratory to develop high photosensitivity adaptive optical elements utilizing ion implanted lanthanum-doped lead-zirconate-titanate (PLZT). One centimeter square samples were prepared by implanting ferroelectric and anti-ferroelectric PLZT with a variety of species or combinations of species. These included Ne, O, Ni, Ne/Cr, Ne/Al, Ne/Ni, Ne/O, and Ni/O, at a variety of energies and fluences. An indium-tin oxide (ITO) electrode coating was designed to give a balance of high conductivity and optical transmission at near uv to near ir wavelengths. Samples were characterized for photosensitivity; implanted layer thickness, index of refraction, and density; electrode (ITO) conductivity; and in some cases, residual stress curvature. Thin film anti-ferroelectric PLZT was deposited in a preliminary experiment. The structure was amorphous with x-ray diffraction showing the beginnings of a structure at substrate temperatures of approximately 550 0 C. This report summarizes the research and provides a sampling of the data taken during the report period

  14. Dielectric properties of PLZT-x/65/35 (2≤x≤13 under mechanical stress, electric field and temperature loading

    Directory of Open Access Journals (Sweden)

    K. Pytel

    2013-01-01

    Full Text Available We investigated the effect of uniaxial pressure (0÷1000 bars applied parallely to the ac electric field on dielectric properties of PLZT-x/65/35 (2≤x≤13 ceramics. There was revealed a significant effect of the external stress on these properties. The application of uniaxial pressure leads to the change of the peak intensity of the electric permittivity (ϵ, of the frequency dispersion as well as of the dielectric hysteresis. The peak intensity ϵ becomes diffused/sharpened and shifts to a higher/lower temperatures with increasing the pressure. It was concluded that the application of uniaxial pressure induces similar effects as increasing the Ti ion concentration in PZT system. We interpreted our results based on the domain switching processes under the action of combined electromechanical loading.

  15. PLZT light transmittance memory driven with an asymmetric voltage pulse

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Morita, Takeshi

    2010-01-01

    PLZT is a ferroelectric electro-optic material, which has been operated with a constant voltage supply to keep a certain optical property. In this study, we propose an optical transmittance memory effect by controlling the domain conditions. The keypoint is to use an asymmetric voltage pulse. In the positive direction, a sufficiently-large voltage is applied to align the polarization directions. After this operation, a relatively small light transmittance is memorized even after removing the electric field. On the other hand, in the negative direction, the amplitude of the voltage is adjusted to the coercive electric field. In this condition, the domain structure is almost the same as the depolarization state. With this voltage supply, the maximum light transmittance can be kept after removing the electric field. Using these voltage operations, the PLZT can obtain two light transmittance states depending on the domain structure. This memory effect should be useful for innovative optical scanners or shutters in the future.

  16. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  17. Development of optical phase shifter based on piezoelectric ceramic

    Science.gov (United States)

    Yu, Fusheng; Shen, Xiaoqin; Yao, Chunjuan; Leng, Changlin

    2005-02-01

    The phase shifter is necessary in the optical phase-shifting measurement. At present the phase shifter commonly used is approximately divided into the penetrance-type and the reflection-type. In this paper, a reflection-type phase shifter made of piezoelectric ceramic stackup assemble is developed. The assemble are constituted of the flat piezoelectric ceramic with parallel connection circuit and inline structure. The communication between the computer and MCU is by RS232. The D/A converter controlled by the MCU outputs 0~10V voltage. Then the voltage is amplified to 0~400V DC voltage by the designed linear DC amplifier. When this voltage loads on the piezoelectric ceramic stackup assemble, the assemble will axially extend 0~5mm. In this paper, the connecting types for the mechanical construction and circuit of the piezoelectric ceramic stackup assemble, the driving power and the DC amplifier with high linearity are all introduced. The whole system developed is standardized by using phase-interfering Michelson. The standardization and the practical application indicates that this system has excellent linearity and precision repeatability.

  18. Efficient photoemission from robust ferroelectric ceramics

    International Nuclear Information System (INIS)

    Boscolo, I.; Castellano, M.; Catani, L.; Ferrario, M.; Tazzioli, F.; Giannessi, L.

    1999-01-01

    Experimental results on photoemission by ferroelectric ceramic disks, with a possible interpretation, are present. Two types of lead zirconate titanate lanthanum doped, PLZT, ceramics have been used for tests. 25 ps light pulses of 532 and 355 nm were used for excitation. The intensity ranged within the interval 0.1-3 GW/cm 2. The upper limit of the intensity was established by the damage threshold tested by the onset of ion emission. At low value of the intensity the yield was comparable at the two wavelengths. At the highest intensity of green light the emitted charge was 1 nC per 10 mm 2, but it was limited by the space charge effect. In fact, the applied field was only 20 kV/cm, allowed both by the mechanical design of the apparatus and the poor vacuum, 10 - 4 mbar. No surface processing was required. The measurement of the electron pulse length under way

  19. Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics

    Science.gov (United States)

    Slodczyk, Aneta; Colomban, Philippe

    2010-01-01

    Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1−x)PbMg1/3Nb2/3O3−xPbTiO3) solid solutions arise from the coexistence of different symmetries with long and short scales in the morphotropic phase boundary (MPB) region. This complex physical behavior requires the use of experimental techniques able to probe the local structure at the nanoregion scale. Since both Raman signature and thermal expansion behavior depend on the chemical bond anharmonicity, these techniques are very efficient to detect and then to analyze the subtitle structural modifications with an efficiency comparable to neutron scattering. Using the example of poled (field cooling or room temperature) and unpoled PMN-PT single crystal and textured ceramic, we show how the competition between the different sublattices with competing degrees of freedom, namely the Pb-Pb dominated by the Coulombian interactions and those built of covalent bonded entities (NbO6 and TiO6), determine the short range arrangement and the outstanding ferro- and piezoelectric properties. PMID:28883367

  20. Evaluation of a novel multiple phase veneering ceramic.

    Science.gov (United States)

    Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah

    2015-04-01

    To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Rhombohedral PLZT piezoelectric microfibers: a combined Raman and X ray diffraction study

    Czech Academy of Sciences Publication Activity Database

    Kozielski, L.; Buixaderas, Elena; Clemens, F.

    2014-01-01

    Roč. 87, 10-11 (2014), s. 982-991 ISSN 0141-1594 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : Raman scattering * X-ray difraccion * piezoelectrics * microfibers * PLZT * extrusion method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.954, year: 2014

  2. Raman spectroscopy and effective dielectric function in PLZT x/40/60

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Gregora, Ivan; Kamba, Stanislav; Petzelt, Jan; Kosec, M.

    2008-01-01

    Roč. 20, č. 34 (2008), 345229/1-345229/10 ISSN 0953-8984 R&D Projects: GA AV ČR IAA100100701; GA AV ČR KAN301370701; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : PLZT * Raman and Infrared spectroscopies * phonons * effective medium approximation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.900, year: 2008

  3. Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics.

    Science.gov (United States)

    Zheng, Ting; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie

    2015-09-16

    The piezoelectricity of (K,Na)NbO3 ceramics strongly depends on the phase boundary types as well as the doped compositions. Here, we systematically studied the relationships between the compositions and phase boundary types in (K,Na) (Nb,Sb)O3-Bi0.5Na0.5AO3 (KNNS-BNA, A=Hf, Zr, Ti, Sn) ceramics; then their piezoelectricity can be readily modified. Their phase boundary types are determined by the doped elements. A rhombohedral-tetragonal (R-T) phase boundary can be driven in the compositions range of 0.035≤BNH≤0.040 and 0.035≤BNZ≤0.045; an orthorhombic-tetragonal (O-T) phase boundary is formed in the composition range of 0.005≤BNT≤0.02; and a pure O phase can be only observed regardless of BNS content (≤0.01). In addition, the phase boundary types strongly affect their corresponding piezoelectricities. A larger d33 (∼440-450 pC/N) and a higher d33* (∼742-834 pm/V) can be attained in KNNS-BNA (A=Zr and Hf) ceramics due to the involvement of R-T phase boundary, and unfortunately KNNS-BNA (A=Sn and Ti) ceramics possess a relatively poor piezoelectricity (d33≤200 and d33*piezoelectricity and phase boundary types were also discussed. We believe that comprehensive research can design more excellent ceramic systems concerning potassium-sodium niobate.

  4. Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory

    Science.gov (United States)

    Wang, Liming; Zheng, Shijie

    2018-02-01

    In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.

  5. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  6. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Influence of crystal phases on electro-optic properties of epitaxially grown lanthanum-modified lead zirconate titanate films

    Science.gov (United States)

    Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro

    2010-02-01

    We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.

  8. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei; Xiang, Weidong; Ji, Zhenguo

    2015-01-01

    Highlights: • Ga 2 O 3 and YF 3 dual-phase embedded glass ceramics were fabricated. • RE 3+ and Cr 3+ dopants incorporated into YF 3 and Ga 2 O 3 lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga 2 O 3 and β-YF 3 nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu 3+ or Tm 3+ ) and transition metal (Cr 3+ ) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu 3+ (or Tm 3+ ) ions partitioned into the crystallized orthorhombic YF 3 nanophases, while Cr 3+ ones entered into the precipitated cubic Ga 2 O 3 nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm 3+ blue and Cr 3+ deep-red emissions are easily achieved in the Tm 3+ /Cr 3+ co-doped dual-phase glass ceramics

  9. paraelectric phase transition

    Indian Academy of Sciences (India)

    The ferroelectric phase transition is diffuse in nature and broadening of the peak increases with La content. Keywords. PLZT ... Marssi et al (1998) concluded the PLZTs x/65/35 as a model. ∗ ... by analysing field cooled (FC) and zero field cooled (ZFC) dielectric ... material are fitted with universal dielectric behaviour within.

  10. A Dual-Phase Ceramic Membrane with Extremely High H2 Permeation Flux Prepared by Autoseparation of a Ceramic Precursor.

    Science.gov (United States)

    Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui

    2016-08-26

    A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  12. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Ga{sub 2}O{sub 3} and YF{sub 3} dual-phase embedded glass ceramics were fabricated. • RE{sup 3+} and Cr{sup 3+} dopants incorporated into YF{sub 3} and Ga{sub 2}O{sub 3} lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga{sub 2}O{sub 3} and β-YF{sub 3} nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu{sup 3+} or Tm{sup 3+}) and transition metal (Cr{sup 3+}) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu{sup 3+} (or Tm{sup 3+}) ions partitioned into the crystallized orthorhombic YF{sub 3} nanophases, while Cr{sup 3+} ones entered into the precipitated cubic Ga{sub 2}O{sub 3} nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm{sup 3+} blue and Cr{sup 3+} deep-red emissions are easily achieved in the Tm{sup 3+}/Cr{sup 3+} co-doped dual-phase glass ceramics.

  13. Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.

    Science.gov (United States)

    An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng

    2018-05-13

    Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.

  14. Application Of Light Valves For Continuous-Tone Printing

    Science.gov (United States)

    Vergona, Albert B.

    1989-07-01

    New opportunities are emerging in the graphic-arts pre-press market stimulated by the need for digitally created images. To meet this need, we have designed a cost-effective three-color digital printer using PLZT light valves. Transparent lead lanthanum zirconate titanate (PLZT) ceramic crystals when used as a linear modulator offer a number of significant benefits. The primary advantage is that the light valve is an efficient modulator of incoherent light providing a broad spectral output ranging from 400nm to well into the infrared region. In addition, light valves offer the advantages of being small, low cost, have a wide dynamic range (>1000 to 1), and can be used with simple optical designs. The characteristics of the PLZT material plays an important role in the performance of the light valve. A number of variables such as ceramic composition, electrode spacing, and ceramic thickness can be altered to affect its quadratic electrooptic behavior. Additionally, the modulator design requires a closed-loop servo to eliminate the errors caused by the device's remanent polarization and nonlinear behavior.

  15. Structural, Optical, and Dielectric Investigations of the Relaxor PLZT 9,75/65/35 Ceramics Irradiated by High-Current Pulsed Electron Beam

    CERN Document Server

    Efimov, V V; Kalmikov, A V; Klevtsova, E A; Minashkin, V F; Novikova, N N; Sikolenko, V V; Skripnik, A V; Sternberg, A; Tiutiunnikov, S I; Yakovlev, V A

    2002-01-01

    First time comprehensive study of high-current pulsed electron irradiation effects on the structural, optical and dielectric properties of relaxor (Pb_{(1-x)}La^{x}(Zr_{0.65}Ti_{0.35})_{1-x/4}O_{3} ceramics with x=9.75% has been provided. The electron beam had the following parameters: energy E_{e}=250 keV, current density J_{e}=1000 A/cm^{2}, pulse duration tau = 300 ns, density 10^{15} electrons/cm^{2} per pulse. Infrared reflectivity spectra in the region of 100-2000 cm^{-1} were obtained in virgin, irradiated by 1500 pulses and annealed up to t=500^{circ}C ceramics. The reconstruction of perovskite ABO_{3} structure in irradiated samples has been studied by complex use of X-ray and neutron scattering and IR spectroscopy techniques revealing the changes in transverse and longitudinal phonon modes, oscillators strength and damping of modes. Radiation effects on temperature behaviour of dielectric permittivity in the region of phase transition were studied. The possible mechanisms of pulsed electron irradiat...

  16. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  17. Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Li Lu; Xu Yeming

    2008-01-01

    Lead lanthanum zirconate titanate (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 (PLZT) was synthesized by one step molten salt method with the starting materials of PbC 2 O 4 , La 2 O 3 , ZrO(NO 3 ) 2 .2H 2 O and TiO 2 in the NaCl-KCl eutectic mixtures in the temperature range of 700-1000 deg. C. The single phase of (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 powders was prepared at a temperature as low as 850 deg. C for 5 h. The effects of process parameters, such as soaking temperature and time, salt species, and the amount of flux with respect to the starting materials were investigated. The growth process of the PLZT particles in the molten salt undergoes a transition from a diffusion controlled mechanism to an interfacial reaction controlled mechanism at 900 deg. C

  18. A New Method to Improve the Electrical Properties of KNN-based Ceramics: Tailoring Phase Fraction

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Zhu, Jianguo; Xiao, Dingquan; Zhang, Xixiang

    2017-01-01

    Although both the phase type and fraction of multi-phase coexistence can affect the electrical properties of (K,Na)NbO3 (KNN)-based ceramics, effects of phase fraction on their electrical properties were few concerned. In this work, through changing the calcination temperature of CaZrO3 powders, we successfully developed the 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.01CaZrO3-0.03Bi0.5Na0.5HfO3 ceramics containing a wide rhombohedral-tetragonal (R-T) phase coexistence with the variations of T (or R) phase fractions. It was found that higher T phase fraction can warrant a larger piezoelectric constant (d33) and d33 also showed a linear variation with respect to tetragonality ratio (c/a). More importantly, a number of domain patterns were observed due to high T phase fraction and large c/a ratio, greatly benefiting the piezoelectricity. In addition, the improved ferroelectric fatigue behavior and thermal stability were also shown in the ceramics containing high T phase fraction. Therefore, this work can bring a new viewpoint into the physical mechanism of KNN-based ceramics behind R-T phase coexistence.

  19. A New Method to Improve the Electrical Properties of KNN-based Ceramics: Tailoring Phase Fraction

    KAUST Repository

    Lv, Xiang

    2017-08-18

    Although both the phase type and fraction of multi-phase coexistence can affect the electrical properties of (K,Na)NbO3 (KNN)-based ceramics, effects of phase fraction on their electrical properties were few concerned. In this work, through changing the calcination temperature of CaZrO3 powders, we successfully developed the 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.01CaZrO3-0.03Bi0.5Na0.5HfO3 ceramics containing a wide rhombohedral-tetragonal (R-T) phase coexistence with the variations of T (or R) phase fractions. It was found that higher T phase fraction can warrant a larger piezoelectric constant (d33) and d33 also showed a linear variation with respect to tetragonality ratio (c/a). More importantly, a number of domain patterns were observed due to high T phase fraction and large c/a ratio, greatly benefiting the piezoelectricity. In addition, the improved ferroelectric fatigue behavior and thermal stability were also shown in the ceramics containing high T phase fraction. Therefore, this work can bring a new viewpoint into the physical mechanism of KNN-based ceramics behind R-T phase coexistence.

  20. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  1. RF magnetron sputtered La3+-modified PZT thin films: Perovskite phase stabilization and properties

    International Nuclear Information System (INIS)

    Singh, Ravindra; Goel, T.C.; Chandra, Sudhir

    2008-01-01

    In this work, we report the preparation of lanthanum-modified lead zirconate titanate (PLZT) thin films in pure perovskite phase by RF magnetron sputtering. Various deposition parameters such as target-to-substrate spacing, sputtering gas composition, deposition temperature, post-deposition annealing temperature and time have been optimized to obtain PLZT films in pure perovskite phase. The films prepared in pure argon at 100 W RF power without external substrate heating exhibit pure perovskite phase after rapid thermal annealing (RTA) at 700 deg. C for 5 min. The film prepared at 225 deg. C substrate temperature also exhibits pure perovskite phase after RTA at 700 deg. C for 2 min. SIMS depth profile performed on one of the pure perovskite films (RTA at 700 deg. C for 5 min) shows very good stoichiometric uniformity of all elements of PLZT. The surface morphology of the films was examined using SEM and AFM. The dielectric, ferroelectric and electrical properties of the pure perovskite films were also investigated in detail. The remanent polarization for the films annealed at 700 deg. C for 5 and 2 min were found to be 15 and 13.5 μC cm -2 , respectively. Both the films have high DC resistivity of the order of 10 11 Ω cm at the electric field of ∼80 kV cm -1

  2. Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic

    Science.gov (United States)

    Samah, K. A.; Sahar, M. R.; Yusop, M.; Omar, M. F.

    2018-03-01

    Novel ceramics from waste material made of ( x) paper ash-(80 - x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.

  3. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang

    2017-10-04

    Although a rhombohedral-tetragonal (R-T) phase boundary is known to substantially enhance the piezoelectric properties of potassium-sodium niobate ceramics, the structural evolution of the R-T phase boundary itself is still unclear. In this work, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <-125 °C) → Rhombohedral+Orthorhombic (R+O, -125 °C to 0 °C) → Rhombohedral+Tetragonal (R+T, 0 °C to 150 °C) → dominating Tetragonal (T, 200 °C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450±5 pC/N, a conversion piezoelectric coefficient (d33*) of ~580±5 pm/V, an electromechanical coupling factor (kp) of ~0.50±0.02, and TC~250 °C), fatigue-free behavior, and good thermal stability were exhibited by the ceramics possessing the R-T phase boundary. This work improves understanding of the physical mechanism behind the R-T phase boundary in KNN-based ceramics and is an important step towards their adoption in practical applications. This article is protected by copyright. All rights reserved.

  4. Phase composition of murataite ceramics for excess weapons plutonium immobilization

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Stefanovsky, S.V.; Myasoedov, B.F.; Kullako, Y.M.; Yudintsev, S.V.

    2000-01-01

    Among the host phases for actinides immobilization, murataite (cubic, space group Fm3m) with the general formula A 4 B 2 C 7 O 22-x (A=Ca, Mn, Na, Ln, An; B=Mn, Ti, Zr, An IV ; C=Ti, Al, Fe; 0< x<1.5) is a promising matrix due to high isomorphic capacity and low leaching of actinides. One feature of murataite actinide zoning is an order-of-magnitude difference in concentration between the core and the rim. [1,2] Investigation of murataite ceramics in detail has shown occurrence of several murataite varieties with three-, five-, and eight-fold fluorite unit cells. [1-3] The goal of the present step of work is to study an effect of waste elements on phase composition of murataite ceramic and isomorphic capacity of waste elements

  5. Crystal phase analysis of SnO2-based varistor ceramic using the Rietveld method

    International Nuclear Information System (INIS)

    Moreira, M.L.; Pianaro, S.A.; Andrade, A.V.C.; Zara, A.J.

    2006-01-01

    A second addition of l mol% of CoO to a pre calcined SnO 2 -based ceramic doped with 1.0 mol% of CoO, 0.05 mol% of Nb 2 O 5 and 0.05 mol% of Cr 2 O 3 promotes the appearance of a secondary phase, Co 2 SnO 4 , besides the SnO 2 cassiterite phase, when the ceramic was sintered at 1350 deg. C/2 h. This was observed using X-ray powder diffraction, scanning electron microscopy and energy dispersive X-ray techniques. Rietveld refinement was carried out to quantify the phases present in the ceramic system. The results of the quantitative analysis were 97 wt.% SnO 2 and 3 wt.% Co 2 SnO 4 . The microstructural analysis showed that a certain amount of cobalt ion remains into cassiterite grains

  6. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  7. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  8. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  9. Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics

    International Nuclear Information System (INIS)

    Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook

    2015-01-01

    Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel

  10. Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves

    Science.gov (United States)

    Yamamoto; Kokubo; Sakai; Takagi

    2000-03-01

    We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.

  11. Applications of phase diagrams in metallurgy and ceramics

    International Nuclear Information System (INIS)

    Carter, G.C.

    1978-03-01

    The workshop represents an effort to coordinate and reinforce the current efforts on compilation of phase diagrams of alloys and ceramics. Many research groups and individual scientists throughout the world are concerned with phase equilibrium data. Specialized expertise exists in small institutions as well as large laboratories. If this talent can be effecively utilized through a cooperative effort, the needs for such data can be met. The Office of Standard Reference Data, which serves as the program management office for the National Standard Reference Data System, is eager to work with all groups concerned with this problem. Through a cooperative international effort we can carry out a task which has become too large for an individual. Volume 2 presents computational techniques for phase diagram construction

  12. Gas phase fractionation method using porous ceramic membrane

    Science.gov (United States)

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  13. A PLZT Novel Sensor with Pt Implanted for Biomedical Application: Cardiac Micropulses Detection on Human Skin

    Directory of Open Access Journals (Sweden)

    Carlos O. González-Morán

    2017-01-01

    Full Text Available Advances in sensors for biomedical applications have been a great motivation. In this research, a PLZT (lead lanthanum zirconate titanate novel sensor with platinum wire implanted in its longitudinal section was developed through of the synthesis process based on powder technology. The raw materials as lead (PbO, lanthanum (La2O3, zircon (ZrO2, and titanium (TiO2 were used in the formation of the chemical composition (62.8% PbO, 4.5% La2O3, 24.2% ZrO2, and 8.5% TiO2. Then, these powders were submitted to mix-mechanical milling at high energy; cylindrical samples with the implant of the platinum wire were obtained with the load application. Finally, the compacted samples were sintered at 1200°C for 2 hours, then followed by a polarization potential of 1500 V/mm at 60°C to obtain a novel sensor. The density and porosity were evaluated using the Archimedes’ principle, while the mechanical properties such as fracture toughness value and Young’s modulus were determined by indentation and ultrasonic methods, respectively. A microscopic examination was also carried out to investigate the structural properties of the material. The PLZT novel sensor is electronically arranged for monitoring the cardiac pulses through a data acquisition system. The results obtained in this research are analyzed and discussed.

  14. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  15. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  16. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  17. Induced phase transformations and nature of metastable states in ZTLL ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ishchuk, V M; Zavadskij, Eh A

    1987-12-01

    Phase transitions in ZTLL ceramics with zirconium content being 65%, titanium content - 35%, are considered. Peculiarities in the ZTLL behaviour are shown to be caused by the existence of an intermediate range between ferroelectric and antiferroelectric states. The state of samples in the range is determined by their prehistory. It is emphasized that phase transitions in ZTLL can be explained in the framework of the existing models.

  18. Phase analysis and dielectric properties of ceramics in PbO–MgO ...

    Indian Academy of Sciences (India)

    sintering these phases at 1000°C the perovskite phase content decreased. The dielectric constant of the compo- site materials formed by the ceramic route was in the region of 14 to 20 and varied little with frequency. The composites obtained by the molten salt method, however, showed much larger dielectric constants in ...

  19. Determination of phase compositions in ceramics from Gobi desert using complementary diffraction techniques

    International Nuclear Information System (INIS)

    Gilles, R.; Hoelzel, M.; Siouris, I.M.; Katsavounis, S.; Visser, D.; Brunelli, M.

    2013-01-01

    The city Khara Khoto is located in the Gobi desert in Inner Mongolia. This city was deserted in the late 14th century and rediscovered in the beginning of the 20th century. In the present study, ceramic sherds typical for the Khara Khoto area have been analysed using neutrons, laboratory X-ray diffraction, synchrotron radiation X-ray diffraction as well as optical microscopy as complementary probes in extracting information on the mineral phase compositions as well as on the firing conditions during the pottery production. The data evaluation was performed with the standard diffraction analysis package GSAS and the new developed program AmPhOrAe. The dominating phase is mullite (∼60 %) compared to a variable mixture of SiO 2 quartz and cristobalite phases (∼35 %) and feldspar as a minority phase. Refiring experiments on one of the sherds allow estimating the firing temperatures of the ceramics within the region of 1,150 and 1,250 deg C. (author)

  20. High Radiation Tolerant Ceramic Voltage Isolator (Non-optical Gate Driver), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Phase I effort is to design, develop and demonstrate a novel solid-state ceramic-based voltage isolator and demonstrate its potential to provide a...

  1. Phase transitions of Pb(ZrxTi1-x)O3 ceramics

    International Nuclear Information System (INIS)

    Frantti, J.; Kakihana, M.; Ivanov, S.; Eriksson, S.; Rundloef, H.; Lantto, V.; Lappalainen, J.

    2002-01-01

    Recent experimental and theoretical reports on the structure of lead zirconate titanate [Pb(Zr x Ti 1-x )O 3 (PZT)] ceramics with compositions in the vicinity of the morphotropic phase boundary are discussed. There has been ambiguity concerning the low-temperature structure of x=0.52 samples, due to the superlattice reflections which were not explained by the reported monoclinic phase Cm [B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and L. E. Cross, Phys. Rev. B 63, 014103 (2001)]. Neutron powder diffraction (NPD) and Rietveld refinement were used to identify the space group symmetries of x=0.52 and x=0.53 samples at 10 K. Both samples had two coexisting phases R3c and Cm at 10 K. At 10 K, monoclinic angles of both samples were larger than at 295 K, as was the octahedral tilt angle of the R3c phase of the x=0.53 sample. We analyzed our previous and current NPD data to study the structural changes in PZT ceramics, 0.20≤x≤0.53, as a function of x and temperature. Bond-valence calculations were carried out to test the models used in Rietveld refinements. Valences of Zr and Ti ions were larger and smaller than their nominal valences, respectively, although the anomaly decreased with increasing x. The composition-weighted-average valence of Zr and Ti ions was close to +4, and the relationship between the positions and valences of Zr and Ti ions explains the main structural features of PZT ceramics as a function of x. The valence of Pb ions was slightly below +2 and decreased with increasing x until it started to slightly increase for x≥0.50. Average oxygen valency was found to be close to -2. Also spontaneous polarization values were computed and found to be reasonable

  2. Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics

    Science.gov (United States)

    Liu, Gang; Wang, Ziyang; Zhang, Leiyang; Shi, Wenjing; Jing, Jiayi; Chen, Yi; Liu, Hongbo; Yan, Yan

    2018-03-01

    MgO doped NBT-BT ceramics were prepared by the conventional electroceramic processing. The effects of MgO on the phase, microstructures and electrical properties of NBT-BT ceramics were systematically investigated. When doping content is more than 1%, a second phase appeared, which has great effect on dielectric, ferroelectric, and piezoelectric properties, such as the T F-R peak weakened, moved to the higher temperature, and eventually disappeared. When the doping content is above 1.5%, the ceramic samples show a strong relaxation. The detailed analysis and discussion can be found within this study.

  3. Phase transition characteristics and associated piezoelectricity of potassium-sodium niobate lead-free ceramics.

    Science.gov (United States)

    Wang, Yuanyu; Hu, Liang; Zhang, Qilong; Yang, Hui

    2015-08-14

    To achieve high piezoelectric activity and a wide sintering temperature range, the ceramic system concerning (1 - x)(K(0.48)Na(0.52))(Nb(0.96)Sb(0.04))O(3)-x[Bi(0.5)(Na(0.7)Ag(0.3))(0.5)](0.90) Zn(0.10)ZrO(3) was designed, and the rhombohedral-tetragonal (R-T) phase boundary can drive a high d(33). Phase transition characteristics as well as their effects on the electrical properties were investigated systematically. The R-T coexistence phase boundary (0.04 ≤ x ≤ 0.05) can be driven via modification with BNAZZ, and has been confirmed by XRD and temperature-dependent dielectric constants as well as Raman analysis, and the ceramics possess enhanced piezoelectric properties (d(33) ∼ 425 pC N(-1) and k(p) ∼ 0.43) and a high unipolar strain (∼0.3%). In addition, a wide sintering temperature range of 1050-1080 °C can warrant a large d(33) of 400-430 pC N(-1), which can benefit practical applications. As a result, the addition of BNAZZ is an effective method to improve the electrical properties (piezoelectricity and strain) and sintering behavior of potassium-sodium niobate ceramics.

  4. Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics

    KAUST Repository

    Lv, Xiang

    2017-08-07

    The mechanisms behind the high piezoelectricity of (K,Na)NbO3-based lead-free ceramics were investigated, including electric field-induced phase transitions and composition-driven nanodomains. The construction of a rhombohedral-tetragonal (R-T) phase boundary, confirmed using several advanced techniques, allowed a large piezoelectric constant (d33) of 450 ± 5 pC/N to be obtained in (1-x)K0.4Na0.6Nb0.945Sb0.055O3-xBi0.5Na0.5(Hf1-ySny)O3 (0 ≤ x ≤ 0.06 and 0 ≤ y ≤ 0.5) ceramics possessing an ultralow ΔUT-R of 7.4 meV. More importantly, the existence of an intermediate phase, i.e., the electric-induced phase (EIP), bridging the rhombohedral R [Ps//(111)] and tetragonal T [Ps//(001)] phases during the polarization rotation was demonstrated. Striped nanodomains (∼40 nm) that easily responded to external stimulation were also observed in the ceramics with an R-T phase. Thus, the enhanced piezoelectric properties originated from EIP and the striped nanodomains.

  5. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  6. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  7. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  8. Phase transformations on the surface of YAG composite ceramics under the action of directed laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, M., E-mail: vlasovamarina@inbox.ru; Márquez Aguilar, P.A.; Escobar Martinez, A.; Kakazey, M.; Guardian Tapia, R.; Trujillo Estrada, A.

    2016-07-30

    Highlights: • During directed laser treatment of the surface of the composite ceramics consisting of predominantly Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3}, the oriented crystallization of YAG and Al{sub 2}O{sub 3} takes place. • As a result of high-temperature heating, in the surface layer of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9} and enrichment in YAlO{sub 3} occur. • The content of YAlO{sub 3}, the size of YAG crystallites, and their crystallographic texturing depend on the irradiation mode. • After laser treatment, the ceramic material transforms into a three-layer macrostructure consisting of the basic ceramic material, near-surface textured layer, and surface layer. - Abstract: The laser treatment of composite ceramics based on Y{sub 3}Al{sub 5}O{sub 12} with Y{sub 2}Ti{sub 2}O{sub 7}, Al{sub 2}Y{sub 4}O{sub 9}, and Al{sub 2}O{sub 3} additives is accompanied by the melting of the surface layer and formation of tracks. In the volume of tracks, the partial dissociation of Y{sub 3}Al{sub 5}O{sub 12}, Y{sub 2}Ti{sub 2}O{sub 7}, and Al{sub 2}Y{sub 4}O{sub 9}, and the formation of new phases such as YAlO{sub 3} of orthorhombic and hexagonal modifications along with the appearance of additional content of Y{sub 3}Al{sub 5}O{sub 12} and Al{sub 2}O{sub 3} are observed. The content of all these phases depends on the irradiation mode and the phase composition of the ceramics. With increase in the corundum content in ceramic specimens, in the tracks, the Al{sub 2}O{sub 3} content increases, and the Y{sub 3}Al{sub 5}O{sub 12} content decreases. In the volume of tracks, Y{sub 3}Al{sub 5}O{sub 12} crystallites are textured. The size of YAG crystallites and their crystallographic texturing depend on the irradiation mode and Y{sub 3}Al{sub 5}O{sub 12}/Al{sub 2}O{sub 3} phase ratio. On the surface of tracks, a layer enriched in YAlO{sub 3} forms. Thus, as a result of laser

  9. Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Alikin, D. O.; Turygin, A. P.; Shur, V. Ya.; Walker, J.; Rojac, T.; Shvartsman, V. V.; Kholkin, A. L.

    2015-01-01

    BiFeO 3 (BFO) is a classical multiferroic material with both ferroelectric and magnetic ordering at room temperature. Doping of this material with rare-earth oxides was found to be an efficient way to enhance the otherwise low piezoelectric response of unmodified BFO ceramics. In this work, we studied two types of bulk Sm-modified BFO ceramics with compositions close to the morphotropic phase boundary (MPB) prepared by different solid-state processing methods. In both samples, coexistence of polar R3c and antipolar P bam phases was detected by conventional X-ray diffraction (XRD); the non-polar P nma or P bnm phase also has potential to be present due to the compositional proximity to the polar-to-non-polar phase boundary. Two approaches to separate the phases based on the piezoresponse force microscopy measurements have been proposed. The obtained fractions of the polar and non-polar/anti-polar phases were close to those determined by quantitative XRD analysis. The results thus reveal a useful method for quantitative determination of the phase composition in multi-phase ceramic systems, including the technologically most important MPB systems

  10. Characterization of glassy phase at the surface of alumina ceramics substrate and its effect on laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Fu Renli [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal); Li Yanbo [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Xu Xin; Ferreira, J.M.F. [Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal)

    2004-07-01

    Nowadays alumina ceramic substrates are widely used for high precision applications in electronic devices, such as hybrid integrated circuits (HIC). Usually, the alumina ceramic substrates are shaped through tape casting method and sintered in continuous slab kilns. The sintering aids used to enhance densification during sintering give rise to the formation of an alumino-silicate liquid phase, which is of crucial importance in pressureless and low-temperature sintering (<1600 C) of alumina ceramics. The preferential migration of liquid phase to the surface of alumina substrates under the capillary action and its transformation into glassy phase during cooling affects the subsequent processing steps of HIC. A smoothening effect on surface with its enrichment in glassy phase is accompanied by a decrease of the surface toughness. On the other hand, the accumulated glassy phase onto the surface has a great effect on laser cutting. The high temperatures developed during laser cutting turn the superficial glassy phase into liquid again, while rapid solidification will occur after removing laser beam. The fast cooling of the liquid phase causes formation of extensive network of cracks on the surface of alumina substrate. Apparently, the presence of such faults degrades mechanical strength and thermal shock resistance of alumina substrates. Meanwhile, the recast layers and spatter deposits at the periphery of the hole has been observed. (orig.)

  11. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  12. A Novel In Situ Method for Producing a Dispersion of a Ceramic Phase into Copper That Remains Stable at 0.9 T M

    Science.gov (United States)

    Castellan, Enzo; Ischia, Gloria; Molinari, Alberto; Raj, Rishi

    2013-10-01

    We apply an in situ approach, whereby a polymer is incorporated into copper and evolves within the metal into the ceramic phase, to create a dispersion of hard particles in a metal. All constituents for the ceramic phase are contained within the organic polymer. The temperature for this polymer to ceramic conversion lies in the 1073 K to 1273 K (800 °C to 1000 °C) range. The process produces a nanoscale dispersion of the ceramic, which leads to high microhardness that remains unaltered at temperatures up to 1223 K (950 °C) (0.9 T M). Apparently, the introduction of the ceramic phase leads to the retention of copper crystallite size of a few hundred nm, despite exposure to heat treatments at these very high temperatures. We call these materials polymer-derived metal-matrix composites.

  13. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  14. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Deo, M.N. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kothiyal, G.P., E-mail: gpkoth@barc.gov.in [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-03-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO{sub 2}-50CaO-15P{sub 2}O{sub 5}-(10 - x)Fe{sub 2}O{sub 3}-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca{sub 3}Si{sub 2}O{sub 7}) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  15. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath; Deo, M.N.; Kothiyal, G.P.

    2010-01-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO 2 -50CaO-15P 2 O 5 -(10 - x)Fe 2 O 3 -xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca 3 Si 2 O 7 ) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  16. High-speed, low-damage grinding of advanced ceramics Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A. [Eaton Corp., Willoughby Hills, OH (United States). Mfg. Technologies Center; Malkin, S. [Univ. of Massachusetts (United States)

    1995-03-01

    In manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. Most of these costs arise from the conventional multi-step grinding process with numerous grinding wheels and additional capital equipment, perishable dressing tools, and labor. In an attempt to reduce structural ceramic grinding costs, a feasibility investigation was undertaken to develop a single step, roughing-finishing process suitable for producing high-quality silicon nitride ceramic parts at high material removal rates at lower cost than traditional, multi-stage grinding. This feasibility study employed combined use of laboratory grinding tests, mathematical grinding models, and characterization of resultant material surface condition. More specifically, this Phase 1 final report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding and the conditions necessary to achieve the small grain depths of cut necessary for low damage grinding while operating at relatively high material removal rates. Particular issues addressed include determining effects of wheel speed and material removal rate on resulting mode of material removal (ductile or brittle fracture), limiting grinding forces, calculation of approximate grinding zone temperatures developed during HSLD grinding, and developing the experimental systems necessary for determining HSLD grinding energy partition relationships. In addition, practical considerations for production utilization of the HSLD process are also discussed.

  17. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  18. Phase transition stability within ceramics

    International Nuclear Information System (INIS)

    Wang, E.; Wang, D.

    1992-01-01

    Irreversible thermodynamics is applied to analyse nucleation, both in metals and ceramics, in order to distinguish the stability of metastable under cooled melts. The hypothesis of local equilibrium has been used to apply research results from equilibrium thermodynamics, for the study of irreversible processes. The under cooling equation for homogenous nucleation only depends on a coefficient which is not related to the melting point of the material. The calculated critical under cooling values for metals are compared with experimental data. The metastable phase formation of plasma-sprayed alumina and zircon coatings has been discussed based on irreversible thermodynamics. A critical under cooling parameter (β) is defined. The metastable phase formation of plasma-sprayed alumina and zircon has been discussed. The analysis shows that γ-Al 2 O 3 is first formed in the coating since it has a lower β value than α-Al 2 O 3 . Zircon dissociates into ZrO 2 and SiO 2 , and rapid quenching of plasma spraying prevents their re association. The cooling rate determines whether t-ZrO 2 or c-ZrO 2 will form in the sprayed coating. It can be confirmed by the experiments that the content of t-ZrO 2 will increase correspondingly as the sprayed particle size decreases. At high transition temperatures, c-ZrO 2 will be formed because of the anisotropic thermal expansion behaviour in the crystal structure. 22 refs., 2 tabs

  19. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  20. Method of manufacture of single phase ceramic superconductors

    Science.gov (United States)

    Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

    1995-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

  1. Photostimulated luminescence from a fluorobromozirconate glass-ceramic and the effect of crystallite size and phase

    CERN Document Server

    Secu, M; Spaeth, J M; Edgar, A; Williams, G V M; Rieser, U

    2003-01-01

    We report a systematic study of the photoluminescence (PL), photostimulated luminescence (PSL) and thermostimulated luminescence (TSL) from europium-and bromine-doped fluorozirconate glass-ceramics. Eu sup 2 sup + ions in the as-prepared glass show no PL, but after suitable thermal annealing hexagonal phase and orthorhombic phase barium bromide crystallites are precipitated and PL is observed from Eu sup 2 sup + ions in these crystallites. Room temperature PSL is observed from the orthorhombic phase, with an efficiency which is up to 9% of the well known crystalline storage phosphor BaFBr:Eu sup 2 sup +. The emission is at 404 nm, and there is a maximum in the stimulation at 580 nm. We associate the PSL with an optically quenchable peak in the glow curve, which has an activation energy of 1.20 eV and attribute this feature to a perturbed F centre. Room temperature PSL from glass-ceramics containing predominantly the hexagonal phase of BaBr sub 2 has a relative efficiency of less than 0.07%. The resultant trap...

  2. Infrared studies of the monoclinic-tetragonal phase transition in Pb(Zr,Ti)O3 ceramics

    International Nuclear Information System (INIS)

    Guarany, C A; Pelaio, L H Z; Araujo, E B; Yukimitu, K; Moraes, J C S; Eiras, J A

    2003-01-01

    Recently, the observation of a new monoclinic phase in the PbZr 1-x Ti x O 3 (PZT) system in the vicinity of the morphotropic phase boundary was reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. In this work, the monoclinic → tetragonal phase transition in PbZr 0.50 Ti 0.50 O 3 ceramics was studied using infrared spectroscopy between 1000 and 400 cm -1 . The four possible ν 1 -stretching modes (Ti-O and Zr-O stretch) in the BO 6 octahedron in the ABO 3 structure of PZT in this region were monitored as a function of temperature. The lower-frequency mode ν 1 -(Zr-O) remains practically unaltered, while both intermediate ν 1 -(Ti-O) modes decrease linearly as temperature increases from 89 to 263 K. In contrast, the higher-frequency ν 1 -(Ti-O) and ν 1 -(Zr-O) modes present anomalous behaviour around 178 K. The singularity observed at this mode was associated with the monoclinic → tetragonal phase transition in PbZr 0.50 Ti 0.50 O 3 ceramics

  3. Effects of Pb concentration on phase, microstructure and electrical properties of Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Lawita, P.; Siriprapa, P.; Watcharapasorn, A.; Jiansirisomboon, S.

    2012-01-01

    In this work, effects of Pb-doping concentration on phase, microstructure and electrical properties of bismuth lead lanthanum titanate (Bi 1−x Pb x ) 3.25 La 0.75 Ti 3 O 12 or BPLT ceramics when x = 0, 0.01, 0.03, 0.05, 0.07, 0.09 and 0.1 were investigated. Phase analysis by X-ray diffraction indicated the existence of orthorhombic phase for all BPLT powders and ceramics. Microstructural investigation using scanning electron microscope showed that all ceramics composed mainly of plate-like grains. An increase in PbO doping content reduced not only diameter and thickness of the grains but also density of the ceramics. Electrical conductivity was found to decrease while dielectric constant increased with Pb-doping concentration. Small reduction of remanent polarization and coercive field was observed in Pb-doped samples. - Highlights: ► We prepared bismuth lead lanthanum titanate ceramics by a solid state mixed-oxide method. ► The optimum sintering temperature was found to be 1150 °C. ► BPLT ceramic was identified by X-ray diffraction method to possess an orthorhombic structure. ► All samples shows plate-like morphology with varying grain size and orientation. ► Increasing Pb-doping content tended to decrease electrical conductivity values.

  4. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  5. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  6. Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Amonpattaratkit, P. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, P. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Ananta, S., E-mail: suponananta@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-09-01

    In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1−x)PFN–xPZT (x=0.1–0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO{sub 4}B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M–H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (M{sub max}), remanent polarization (M{sub r}), and coercive field (H{sub C}). - Highlights: • Fabrication of PFN-PZT multiferroic ceramics from PZT and FeNbO{sub 4} precursors. • Effect of PZT content on phase transformation of PFN-PZT multiferroic ceramics. • Effect of PZT content on magnetic properties of PFN-PZT multiferroic ceramics.

  7. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  8. Visualising phase change in a brushite-based calcium phosphate ceramic

    Science.gov (United States)

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-09-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s - Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media.

  9. Mathematical model and characteristic analysis of hybrid photovoltaic/piezoelectric actuation mechanism

    Science.gov (United States)

    Jiang, Jing; Li, Xiaonan; Ding, Jincheng; Yue, Honghao; Deng, Zongquan

    2016-12-01

    Photovoltaic materials can turn light energy into electric energy directly, and thus have the advantages of high electrical output voltages and the ability to realize remote or non-contact control. When high-energy ultraviolet light illuminates polarized PbLaZrTi (PLZT) materials, high photovoltages will be generated along the spontaneous polarization direction due to the photovoltaic effect. In this paper, a novel hybrid photovoltaic/piezoelectric actuation mechanism is proposed. PLZT ceramics are used as a photovoltaic generator to drive a piezoelectric actuator. A mathematical model is established to define the time history of the actuation voltage between two electrodes of the piezoelectric actuator, which is experimentally validated by the test results of a piezoelectric actuator with different geometrical parameters under irradiation at different light intensities. Some important characteristics of this novel actuation mechanism are analyzed and it can be concluded that (1) it is experimentally validated that there is no hysteresis between voltage and deformation which exists in a PLZT actuator; (2) the saturated voltage and response speed can be improved by using a multi-patch PLZT generator to drive the piezoelectric actuator; and (3) the initial voltage of the piezoelectric actuator can be acquired by controlling the logical switch between the PLZT and the piezoelectric actuator while the initial voltages increase with the rise of light intensity.

  10. Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics.

    Science.gov (United States)

    Miragaya, Luciana Meireles; Guimarães, Renato Bastos; Souza, Rodrigo Othávio de Assunção E; Santos Botelho, Glauco Dos; Antunes Guimarães, José Guilherme; da Silva, Eduardo Moreira

    2017-08-01

    The aim of the present study was to evaluate the influence of intra-oral aging on the tetragonal-to-monoclinic (t→m) phase transformation of two Y-TZP dental ceramics - Lava Frame (Frame) and Lava Plus (Plus) - and determine the impact of this response on their microstructures and mechanical properties: flexural strength, Young's modulus, microhardness and fracture toughness. Standardized ceramic specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). After the baseline analysis, the specimens were attached to personalized intra-oral resin appliances and exposed to the oral cavity of 20 subjects for 60 days and then analyzed again. Specimens produced for mechanical properties evaluation were also analyzed before and after the 60-day intra-oral aging. The data were analyzed using two-way ANOVA and Tukey HSD's post hoc test (α=0.05). Weibull analysis was used to evaluate the strength reliability. Both Y-TZP ceramics suffered t→m phase transformation after 60-day intra-oral aging (Plus=4.7%/Frame=7.7%). SEM and AFM analyses showed dislodgement of ZrO 2 grains and a significant increase in roughness after intra-oral aging for both ceramics. Both Y-TZP ceramics suffered a decrease on flexural strength, Young's modulus and fracture toughness after intra-oral aging (pdental ceramics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Novel fabrication of silica nanotubes using multi-walled carbon nanotubes as template ... In this paper, nanostructure TiO2 thin films were deposited on glass substrates by sol–gel dip coating technique. ... Temperature dependence of electromechanical properties of PLZT /57/43 ceramics .... pp 419-425 Composites.

  13. Quantitative analysis of crystalline and remaining glass phases in CaO-B2O3-SiO2 ternary system glass ceramics

    International Nuclear Information System (INIS)

    He Ming; Wu Mengqiang; Zhang Shuren; Zhou Xiaohua; Zhang Ting; Chen Song

    2010-01-01

    Research highlights: → As for CBS ternary system glass ceramics, due to the complex phase compositions, many methods could be difficult to determine quantitatively the absolute amounts of crystalline and remaining oxides. In this study, an available method based on the Rietveld method was used to quantitatively analyze the relative weight fraction and densities of crystalline phases. These above data are used to obtain a table of both relative weight fraction of crystalline phases and densities of all phases including CBS LTCC. Using volume additivity rule, it is possible to analysis quantitatively the absolute weight fraction of crystalline phases and also the oxides molar content in the remaining glass. - Abstract: Based on Rietveld method of X-ray techniques and volume additivity rule, a new method was developed to quantitatively analyze the phase composition of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics. Lattice parameters, densities and relative weight fractions of crystalline phases in CaO-B 2 O 3 -SiO 2 ternary system were obtained by X-ray diffraction (XRD) refinement. According to the relative weight fraction of crystalline phases and densities of various components, the volume additivity rule was revealed by calculating the absolute weight fraction of crystalline phases of CaO-B 2 O 3 -SiO 2 glass ceramics. In addition, molar contents of the oxides in the remaining glass can also be determined by this method. Comparing this method with internal standard method, it is found that the maximum deviations of the crystallinity and the absolute weight fraction of crystalline phases are less than 2.6% and 2.9%, respectively. As a result, quantitative evaluation of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics can be achieved using this method.

  14. Augite-anorthite glass-ceramics from residues of basalt quarry and ceramic wastes

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2015-06-01

    Full Text Available Dark brown glasses were prepared from residues of basalt quarries and wastes of ceramic factories. Addition of CaF2, Cr2O3 and their mixture CaF2-Cr2O3 were used as nucleation catalysts. Generally, structures with augite and anorthite as major phases and small amount of magnetite and olivine phases were developed through the crystallization process. In the samples heat treated at 900 °C the dominant phase is augite, whereas the content of anorthite usually overcomes the augite at higher temperature (1100 °C. Fine to medium homogenous microstructures were detected in the prepared glass-ceramic samples. The coefficient of thermal expansion and microhardness measurements of the glass-ceramic samples were from 6.16×10-6 to 8.96×10-6 °C-1 (in the 20–500 °C and 5.58 to 7.16 GP, respectively.

  15. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  16. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  17. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  18. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Zhang, Xixiang

    2017-01-01

    , the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction

  19. Influence of diopside: feldspar ratio in ceramic reactions assessed by quantitative phase analysis (X-ray diffraction - Rietveld method)

    International Nuclear Information System (INIS)

    Kuzmickas, L.; Andrade, F.R.D.; Szabo, G.A.J.; Motta, J.F.M.; Cabral Junior, M.

    2013-01-01

    White ceramics were produced with raw mixtures prepared with varying proportions of diopside-rich rock (0 to 20 wt.%) and potassic feldspar (40 to 20 wt.%), and fixed proportions of kaolinite (40 wt.%) and quartz (20 wt.%), fired in a temperature range from 1170 to 1210 deg C. The phases identified in the experimental ceramics were quartz, anorthite, mullite and glass, and their relative mass proportions were determined by X-ray diffraction (Rietveld method). The addition of diopside as a partial substitute for potassic feldspar causes the formation of a calcium silicate, analogous of the natural anorthite (CaSi 2 Al 2 O 8 ) in the ceramics, with proportional reduction in its glass and mullite contents. Water absorption and porosity of the ceramic bodies clearly decrease with increasing firing temperature, while the effect of the raw mixture composition on the physical and mechanical properties of the ceramics is less evident. Diopside-rich rock has low iron content (1.5 wt.% Fe 2 O 3 ) and, therefore, promotes white burning. (author)

  20. Influence of diopside: feldspar ratio in ceramic reactions assessed by quantitative phase analysis (X-ray diffraction - Rietveld method)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmickas, L.; Andrade, F.R.D.; Szabo, G.A.J. [Universidade de Sao Paulo (IGc/USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotecnia; Motta, J.F.M.; Cabral Junior, M., E-mail: lukuzmickas@gmail.com, E-mail: dias@usp.br, E-mail: gajszabo@usp.b, E-mail: motta.jf@gmail.com, E-mail: marsis@ipt.br [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil). Secao de Recursos Minerais e Tecnologia Ceramica

    2013-04-15

    White ceramics were produced with raw mixtures prepared with varying proportions of diopside-rich rock (0 to 20 wt.%) and potassic feldspar (40 to 20 wt.%), and fixed proportions of kaolinite (40 wt.%) and quartz (20 wt.%), fired in a temperature range from 1170 to 1210 deg C. The phases identified in the experimental ceramics were quartz, anorthite, mullite and glass, and their relative mass proportions were determined by X-ray diffraction (Rietveld method). The addition of diopside as a partial substitute for potassic feldspar causes the formation of a calcium silicate, analogous of the natural anorthite (CaSi{sub 2}Al{sub 2}O{sub 8}) in the ceramics, with proportional reduction in its glass and mullite contents. Water absorption and porosity of the ceramic bodies clearly decrease with increasing firing temperature, while the effect of the raw mixture composition on the physical and mechanical properties of the ceramics is less evident. Diopside-rich rock has low iron content (1.5 wt.% Fe{sub 2}O{sub 3}) and, therefore, promotes white burning. (author)

  1. Ferroelectric inverse opals with electrically tunable photonic band gap

    International Nuclear Information System (INIS)

    Li Bo; Zhou Ji; Li Longtu; Wang Xingjun; Liu Xiaohan; Zi Jian

    2003-01-01

    We present a scheme for tuning the photonic band gap (PBG) by an external electric field in a ferroelectric inverse opal structure. The inverse opals, consisting of ferroelectric (Pb,La)(Zr,Ti)O 3 (PLZT) ceramics, were synthesized by a sol-gel process. Optical reflection spectra show that the PBG of the PLZT inverse opals shifts continuously with the change in the applied electric field. As the photonic crystals (PCs) consist of the high-refractive-index constituent and possess an 'all-solid' structure, it should supply a more reliable mode to tune the PBG by the electric field for the superprism effect in PCs. It should be of high interest in device applications

  2. KNN–NTK composite lead-free piezoelectric ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T., E-mail: ta-matsuoka@mg.ngkntk.co.jp; Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K. [NGK SPARK PLUG Co., Ltd., 2808 Iwasaki, Komaki, Aichi 485-8510 (Japan)

    2014-10-21

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patterns confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.

  3. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  4. Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of stoneware ceramics and bricks

    Czech Academy of Sciences Publication Activity Database

    Gualtieri, A. F.; Riva, V.; Bresciani, A.; Maretti, S.; Tamburini, M.; Viani, Alberto

    2014-01-01

    Roč. 47, č. 3 (2014), s. 835-846 ISSN 0021-8898 R&D Projects: GA MŠk(CZ) LO1219 Keywords : amorphous phases * bricks * ceramics * internal standards * quantitative phase analysis Subject RIV: JN - Civil Engineering Impact factor: 3.720, year: 2014 http://scripts.iucr.org/cgi-bin/paper?S160057671400627X

  5. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  6. Phase stabilization in transparent Lu2O3:Eu ceramics by lattice expansion

    Science.gov (United States)

    Seeley, Z. M.; Dai, Z. R.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2012-11-01

    Gadolinium lutetium oxide transparent ceramics doped with europium (Gd,Lu)2O3:Eu were fabricated via vacuum sintering and hot isostatic pressing (HIP). Nano-scale starting powder with the composition GdxLu1.9-xEu0.1O3 (x = 0, 0.3, 0.6, 0.9, 1.0, and 1.1) were uniaxially pressed and sintered under high vacuum at 1625 °C to obtain ˜97% dense structures with closed porosity. Sintered compacts were then subjected to 200 MPa argon gas at temperatures between 1750 and 1900 °C to reach full density. It was observed that a small portion of the Eu3+ ions were exsolved from the Lu2O3 cubic crystal lattice and concentrated at the grain boundaries, where they precipitated into a secondary monoclinic phase creating optical scattering defects. Addition of Gd3+ ions into the Lu2O3 cubic lattice formed the solid solution (Gd,Lu)2O3:Eu and stretched the lattice parameter allowing the larger Eu3+ ions to stay in solid solution, reducing the secondary phase and improving the transparency of the ceramics. Excess gadolinium, however, resulted in a complete phase transformation to monoclinic at pressures and temperatures sufficient for densification. Light yield performance was measured and all samples show equal amounts of the characteristic Eu3+ luminescence, indicating gadolinium addition had no adverse effect. This material has potential to improve the performance of high energy radiography devices.

  7. V K Agrawal

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V K Agrawal. Articles written in Bulletin of Materials Science. Volume 33 Issue 4 August 2010 pp 383-390 Electrical Properties. Temperature dependence of electromechanical properties of PLZT /57/43 ceramics · A K Shukla V K Agrawal I M L Das Janardan Singh S L ...

  8. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  9. Phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Mao, Chaoliang; Liu, Zhen; Dong, Xianlin; Cao, Fei; Wang, Genshui, E-mail: genshuiwang@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2015-03-02

    The phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} lead-free ceramics were investigated systematically. The loss tangent of poled sample shows a broad peak when heating to about 80 °C, i.e., depolarization temperature T{sub d}. The polarization-electric field hysteresis loops at different temperature exhibit the feature of ferroelectric (FE)- antiferroelectric (AFE) phase transition and the co-existence of FE and AFE phase. The pyroelectric coefficients curve confirms its diffusion behaviors. The initial hysteresis loop and switching current curves under T{sub d} indicate the co-existence of FE and AFE phase. The domain morphology of transmission electron microscopy supports the co-existence of FE and AFE phase. Our work not only exhibit that the FE and AFE phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics but also they may be helpful for further investigation on lead-free ceramics.

  10. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    Science.gov (United States)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  11. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  12. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  13. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  14. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  15. I M L Das

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. I M L Das. Articles written in Bulletin of Materials Science. Volume 33 Issue 4 August 2010 pp 383-390 Electrical Properties. Temperature dependence of electromechanical properties of PLZT /57/43 ceramics · A K Shukla V K Agrawal I M L Das Janardan Singh S L Srivastava.

  16. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    International Nuclear Information System (INIS)

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  17. Corrosion behavior of pyroclore-rich titanate ceramics for plutonium disposition; impurity effects

    International Nuclear Information System (INIS)

    Bakel, A. J.

    1999-01-01

    The baseline ceramic contains Ti, U, Ca, Hf, Gd, and Ce, and is made up of only four phases, pyrochlore, zirconolite, rutile, and brannerite. The impurities present in the three other ceramics represent impurities expected in the feed, and result in different phase distributions. The results from 3 day, 90 C MCC-1 tests with impurity ceramics were significantly different than the results from tests with the baseline ceramic. Overall, the addition of impurities to these titanate ceramics alters the phase distributions, which in turn, affects the corrosion behavior

  18. Basic research in crystalline and noncrystalline ceramic systems. Annual report, March 1, 1974--February 28, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Research results reported are: heats of transport in hypo- and hyperstoichiometric UO 2 in thermal gradients; fabrication of transparent PLZT; creep in Al 2 O 3 ; ambipolar diffusion and diffusional creep; diffusion-controlled final-stage sintering; sintering mechanism in Al 2 O 3 ; internal stresses in polycrystalline Al 2 O 3 ; x-ray study of the high-temperature alpha form of AgI single crystal; theory of effects of transmutation on radiotracer diffusion in ionic solids; 204 Tl diffusion in KCl at 240 to 700 0 C; diffusion of Ni 2+ in MgO; defect (diffusion) equilibration kinetics in CoO; diffusional contributions to grain boundary-related damping; color boundary migration in doped Al 2 O 3 ; defect studies in MgO and other solids; preparation of Al 2 O 3 -doped MgO; space charges and dielectric losses in MgO; production of thin MgO foils; precipitation in MgO; grain boundary segregation in Li-doped NiO; various research needs in ceramic science; and a test of a prototype ZrO 2 --UO 2 fuel cell. (U.S.)

  19. Towards a single host phase ceramic formulation for UK plutonium disposition

    International Nuclear Information System (INIS)

    Stennett, M. C.; Hyatt, N. C.; Gilbert, M.; Livens, F. R.; Maddrell, E. R.

    2008-01-01

    The UK has a considerable stockpile of separated plutonium; a legacy of over 50 years of civilian nuclear programmes. This material has been considered both as an asset for future energy generation and a liability due to the proliferation threat. A proportion of the PuO 2 stocks may be consumed by nuclear fission, in mixed oxide (MOx) or inert matrix (IMF) fuels but a quantity of waste PuO 2 will remain which is unsuitable for fuel manufacture and will require immobilisation. A research program is currently underway to investigate the potential of various single phase ceramic formulations for the immobilisation of this waste PuO 2 fraction. In this work a number of synthetic mineral systems have been considered including titanate, zirconate, phosphate and silicate based matrices. Although a wealth of information on plutonium disposition in some of the systems exists in the literature, the data is not always directly comparable which hinders comparison between different ceramic hosts. The crux of this research has been to compile a database of information on the proposed hosts to allow impartial comparison of the relative merits and shortcomings in each system. (authors)

  20. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  1. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  2. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  3. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A.

    2008-01-01

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  4. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  5. Comparison of thermal analysis, micro structural and compositional of archaeological indigenous ceramic (Caninhas site of Canas - SP) with actual clay/ceramic of region

    International Nuclear Information System (INIS)

    Nakano, F.P.; Taguchi, S.P.; Matos, C.C.; Ribeiro, R.B.

    2009-01-01

    The ceramic material found at the archaeological site in Caninhas, shows funerary structures of combustion and various objects of Tupi-Guarani indigenous use. These pieces and fragments were saved and cataloged, in approximately 4000 units. The ceramics present a gradient of color, from ochre to dark gray, when from the surface to the center of the piece, indicating compositional variation caused by inefficient sintering carried out by indigenous people. The goal of this study was to observe the phase transition temperature, decomposition, mass variation and reactions that occur in the archaeological and nowadays ceramics (by DSC/TG), together with micro structural analysis (by SEM), phase analysis (by XRD) and chemical composition (by EDS). Ceramics nowadays are sintered with air, in a temperature ranging between 400-800 °C for one hour, and presents heterogeneous microstructure. The archaeological ceramics were identified by the illite, hydrated alumina, lutecite and quartz phase, and the caulinite, lutecite and quartz phase in clay produced today from that region differs in all characteristics and aspects according to time. The interaction between different areas of expertise is fundamental to aggregate knowledge: the use of ceramic material engineering to archaeological application. (author)

  6. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  7. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  8. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  9. Contribution to the investigation of phase transitions induced by irradiation in insulating crystalline ceramics

    International Nuclear Information System (INIS)

    Simeone, D.

    2003-01-01

    The author gives a rather detailed overview of his research activities on the behaviour of ceramics subjected to irradiations by charged or not-charged particles. He reports the development of a new application of low incidence X ray diffraction to assess the evolutions within irradiated solids. Coupling this technique with Raman spectroscopy studies enabled the monitoring of order parameter evolution in these solids. He shows that, in some oxides, irradiation effects entail order-disorder type transitions and, more surprisingly, displacive phase transitions. From this experimental work, he developed a modelling of these phase transitions induced by irradiation. Quantitative data obtained on the evolutions of order parameters enabled these phase transitions to be explained within the frame of the thermodynamics of off-equilibrium phenomena

  10. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  11. Phase Transformation of Andalusite-Mullite and Its Roles in the Microstructure and Sinterability of Refractory Ceramic

    Science.gov (United States)

    Li, Bowen; He, Mengsheng; Wang, Huaguang

    2017-07-01

    Andalusite has been realized as a special mineral for the production of refractory ceramics due to its unique property to automatically decompose into mullite and silica during heating at high temperature. The phase transformation from andalusite to mullite plays a critical role for the effective applications of andalusite. This study investigated the microstructural characteristics and sinterability of andalusite powder during high-temperature decomposition. The andalusite powder was bonded with kaolin and prepared as a cylinder green body at 20 MPa; it was then fired at 1423 K to 1723 K (1150 °C to 1450 °C). The microstructures and mechanical strengths of the sintered ceramics were studied by the compressive test, X-ray diffraction, and scanning electron microscopy. The results showed that newly born mullite appeared as rodlike microcrystals and dispersed around the initial andalusite. At 1423 K (1150 °C), the mullitization of andalusite was started, but the complete mullitization was not found until firing at 1723 K (1450 °C). The compressive strength of the ceramics increased from 93.7 to 294.6 MPa while increasing the fire temperature from 1423 K to 1723 K (1150 °C to 1450 °C). Meanwhile, the bulk density of the ceramics was only slightly changed from 2.15 to 2.19 g/cm3.

  12. Ceramic Foams from Pre-Ceramic Polymer Routes for Reusable Acreage Thermal Protection System Applications

    Science.gov (United States)

    Stackpoole, Mairead; Chien, Jennifer; Schaeffler, Michelle

    2004-01-01

    Contents include the following: Motivation. Current light weight insulation. Advantages of preceramic-polymer-derived ceramic foams. Rigid insulation materials. Tailor foam microstructures. Experimental approach. Results: sacrificial materials, sacrificial fillers. Comparison of foam microstructures. Density of ceramic foams. Phase evolution and properties: oxidation behavior. mechanical properties, aerothermal performance. Impact damage of microcellular foams. Conclusions.

  13. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  14. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  15. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  16. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  17. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system

    International Nuclear Information System (INIS)

    Wang, Yiliang; Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Zhang, Hui

    2013-01-01

    Highlights: ► (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 ceramics were synthesized. ► A systematic structural change was observed near x = 0.07 and x = 0.4. ► A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. ► (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range. - Abstract: (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 [(1 − x)BT–xBZZ, 0.01 ⩽ x ⩽ 0.6] ceramics were synthesized by solid-state reaction technique. Based on the X-ray diffraction data analysis, a systematic structure change from the ferroelectric tetragonal phase to pseudocubic phase and the pseudocubic phase to orthorhombic phase was observed near x = 0.07 and x = 0.4 at room temperature, respectively. Dielectric measurements show a dielectric anomaly, over the temperature range from 50 to 200 °C for the compositions with 0.03 ⩽ x ⩽ 0.09. A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. Moreover, (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range, which indicates that these ceramics can be applied in the temperature stability devices.

  18. On the high temperature phase transition in Ba(Zr0.20Ti0.80O3 ceramic

    Directory of Open Access Journals (Sweden)

    K. P. Chandra

    2017-08-01

    Full Text Available Temperature dependent X-ray diffraction (XRD and dielectric properties of perovskite Ba(Zr0.2Ti0.8O3 ceramic prepared using a standard solid-state reaction process is presented. Along with phase transitions at low temperature, a new phase transition at high temperature (873∘C at 20Hz, diffusive in character has been found where the lattice structure changes from monoclinic (space group: P2∕m to hexagonal (space group: P6∕mmm. This result places present ceramic in the list of potential candidate for intended high temperature applications. The AC conductivity data followed hopping type charge conduction and supports jump relaxation model. The experimental value of d33=98pC/N was found. The dependence of polarization and strain on electric field at room temperature suggested that lead-free Ba(Zr0.2Ti0.8O3 is a promising material for electrostrictive applications.

  19. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    Science.gov (United States)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  20. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  1. Applications of Phase Diagrams in Metallurgy and Ceramics: Proceedings of a Workshop Held at the National Bureau of Standards, Gaithersburg, Maryland, January 10-12, 1977. Volumes 1 [and] 2.

    Science.gov (United States)

    Carter, G. C., Ed.

    This document is a special National Bureau of Standards publication on a Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics. The purposes of the Workshop were: (1) to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics and semiconductors; (2) to determine the…

  2. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  3. Phase development and dielectric properties of (1-x)Pb(Zr0.52Ti0.48)O3-xBaTiO3 ceramics

    International Nuclear Information System (INIS)

    Chaisan, Wanwilai; Yimnirun, Rattikorn; Ananta, Supon; Cann, David P.

    2006-01-01

    (1-x)Pb(Zr 0.52 Ti 0.48 )O 3 -xBaTiO 3 ceramics were prepared by a modified mixed-oxide method. The phase formation was studied by XRD analysis. All compositions exhibit complete solid solutions of perovskite-like phase in the (1-x)PZT-xBT system. The (2 0 0)/(0 0 2) peak was found to split at the composition x = 0.6 and the co-existence of tetragonal-rhombohedral phases occurs with x ≤ 0.6. The possible range of compositions which correspond to a phase transition is 0.6 < x < 0.7. While pure BT ceramics exhibited a sharp phase transformation expected for normal ferroelectrics, phase transformation behavior of the (1-x)PZT-xBT solid solutions became more diffuse with increasing BT contents. This was primarily evidenced by an increased broadness in the dielectric peak, with a maximum peak width occurring at x = 0.5

  4. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  5. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  6. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  7. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  8. Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases

    International Nuclear Information System (INIS)

    Li, Huidong; Wu, Lang; Xu, Dong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang

    2015-01-01

    In order to increase the solubility of actinides in the glass matrix, the effects of CaO, TiO 2 , and ZrSiO 4 addition (abbreviated as CTZ, in the mole ratio of 2:2:1) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass–ceramics were investigated. The results show that the samples possess both zirconolite-2M and titanite phase when the CTZ content is greater than or equal to 45 wt.%. For the glass–ceramics with 45 wt.% CTZ (CTZ-45), only zirconolite-2M phase is observed after annealing at 680–740 °C for 2 h. The CTZ-45 possess zirconolite-2M and titanite phases after annealing at 700 °C first, and then annealing at 900–1050 °C for 2 h. Furthermore, the zirconolite-2M and titanite grains show a strip and brick shape, respectively. The CTZ-45 annealing at 950 °C shows the lower normalized leaching rates of B, Na and Nd when compared to that of CTZ-0 and CTZ-55. - Highlights: • CaO, TiO 2 , ZrSiO 4 (CTZ) as nucleating agents were added to barium borosilicate glass. • The samples with 45–55 wt% CTZ possess CaZrTi 2 O 7 -2M and CaTiSiO 5 crystalline phases. • CTZ-45 (45wt% CTZ) possesses only CaZrTi 2 O 7 -2M phase after annealing at 680–740 °C. • CTZ-45 possesses CaZrTi 2 O 7 -2M and CaTiSiO 5 phases after annealing at 900–1050 °C. • CTZ-45 annealing at 950 °C shows the lower leaching rates of B, Na and Nd than CTZ-0 and CTZ-55.

  9. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-09-01

    Full Text Available Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE as the matrix and low-density polyethylene (LDPE coated BaO–Nd2O3–TiO2 (BNT ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol% could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz to 11.87 (7 GHz, while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  10. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Science.gov (United States)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  11. Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics

    International Nuclear Information System (INIS)

    Du Hongliang; Zhou Wancheng; Luo Fa; Zhu Dongmei; Qu Shaobo; Li Ye; Pei Zhibin

    2008-01-01

    Lead-free ceramics (1 - x)(K 0.5 Na 0.5 )NbO 3 -x(Bi 0.5 K 0.5 )TiO 3 [(1 - x)KNN-xBKT] were synthesized by conventional solid-state sintering. The phase structure, microstructure and electrical properties of (1 - x)KNN-xBKT ceramics were investigated. At room temperature, the polymorphic phase transition (from the orthorhombic to the tetragonal phase) (PPT) was identified at x = 0.02 by the analysis of x-ray diffraction patterns and dielectric spectroscopy. Enhanced electrical properties (d 33 = 251 pC N -1 , k p = 0.49, k t = 0.50, ε 33 T / ε 0 =1260, tan δ = 0.03 and T C = 376 deg. C) were obtained in the ceramics with x = 0.02 owing to the formation of the PPT at 70 deg. C and the selection of an optimum poling temperature. The related mechanisms for high piezoelectric properties in (1 - x)KNN-xBKT (x = 0.02) ceramics were discussed. In addition, the results confirmed that the selection of the optimum poling temperature was an effective way to further improve the piezoelectric properties of KNN-based ceramics. The enhanced properties were comparable to those of hard Pb(Zr, Ti)O 3 ceramics and indicated that the (1 - x)KNN-xBKT (x = 0.02) ceramic was a promising lead-free piezoelectric candidate material for actuator and transducer applications

  12. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    Science.gov (United States)

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  14. The effect of the ceramic core initial phase composition on the Ag-sheathed Bi-2223 tapes critical properties

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Khlebova, N.E.; Antipova, E.V.; Dontsova, E.V.; Kazakov, E.G.; Medvedev, M.I.; Kozlenkova, N.I.; Shishov, V.N.; Akimov, I.I.

    1993-01-01

    Ag - sheathed superconducting tapes were fabricated using ''powder-in-tube'' method with powders of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O x chemical composition prepared by the ''freeze-drying'' tecnique and taken as a core materials. The effect of ceramic core initial phase composition: the mixture of oxide non-superconducting phases - OP (typeI) and 50% OP + 50% OP ''2212''- phase (type II) on the critical current density was investigated as well as the ''annealing - cold pressing'' parameters. Multifilamentary superconducting tapes and the pancake coils were fabricated. (orig.)

  15. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    OpenAIRE

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Va...

  16. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  17. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  18. Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, Qiang; Zhu, Xiaohong; Xu, Yunhui; Gao, Haobin; Xiao, Yunjun; Liang, Dayun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-01-01

    Highlights: ► Structural properties of Bi 1−x La x FeO 3 ceramics are improved by La 3+ substitution. ► Significant magnetoelectric responses are observed in Bi 1−x La x FeO 3 ceramics. ► T C is lowered while T N is enhanced in the La-doped BiFeO 3 ceramics. ► Much higher dielectric constant is obtained in the La-doped BiFeO 3 ceramics. ► The ferroelectric properties are enhanced in the La-doped BiFeO 3 ceramics. - Abstract: Multiferroic Bi 1−x La x FeO 3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) (represented as B 1−x L x FO) ceramics were prepared using the conventional solid state reaction route. The effects of La 3+ doping on the density, phase structure, morphology, dielectric and ferroelectric properties were investigated. Judging from X-ray diffraction patterns, all the B 1−x L x FO ceramic samples were well crystallized in a pure perovskite phase while the crystal structure changed from rhombohedral to orthorhombic with increasing the La 3+ substitution. SEM observations clearly revealed that the grain size was remarkably decreased by La 3+ doping. As a result, the ferroelectric Curie temperature was lowered in the La-doped ceramics. However, the abnormal dielectric responses near the antiferromagnetic Néel temperature (T N ) demonstrated the existence of remarkable magnetoelectric coupling in the Bi 1−x La x FeO 3 ceramics, and the T N was shown to increase substantially with the increase in La 3+ doping content. It was found that the dielectric permittivity of the ceramics was significantly increased and the dielectric loss was slightly increased with the increase in La 3+ content. The dielectric constant ε r of the Bi 0.85 La 0.15 FeO 3 ceramic at 10 kHz reached as high as 1008, 20 times larger than that for pure BiFeO 3 . In addition, the ferroelectric properties of the B 1−x L x FO ceramics were improved and the remanent polarization was increased by La 3+ doping. This is probably because the A-site doping with more stable La 3+ could

  19. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  20. Synthesis of nucleated glass-ceramics using oil shale fly ash

    International Nuclear Information System (INIS)

    Luan Jingde; Li Aimin; Su Tong; Cui Xiaobo

    2010-01-01

    Nucleated glass-ceramics materials were produced from oil shale fly ash obtained from Huadian thermal power plant in China with the addition of analytic reagent CaO. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of two parent glass samples with different alkalinity (Ak=m CaO /m SiO 2 ) were identified as Tn 1 = 810 deg. C, Tc 1 = 956 deg. C and Tn 2 = 824 o C, Tc 2 = 966 deg. C, respectively. X-ray diffraction (XRD) analysis of the produced nucleated glass-ceramics materials revealed that there was a coexistence phenomenon of multi-crystalline phase and the main crystalline phase was anorthite ([Ca,Na][AI,Si] 2 Si 2 O 8 ). The microstructure of the glass-ceramics materials was examined by scanning electron microscope (SEM). SEM observation indicated that there was an increase in the quantity of sphere-shaped crystals when crystallization time increased. Furthermore, the increase of alkalinity caused more amorphous phase occurring in glass-ceramics materials. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase and fine microstructure had high density, fine performance of resisting compression (328.92 MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall results indicated that it was a feasible attempt to produce nucleated glass-ceramics materials for building and decorative materials from oil shale fly ash.

  1. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  2. X-ray powder diffraction analysis of liquid-phase-sintered silicon carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L.; Sanchez-Bajo, F. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Cumbrera, F.L. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica

    2002-07-01

    In an attempt to gain a comprehensive understanding of the microstructural evolution in liquid-phase-sintered silicon carbide ceramics, the effect of the starting {beta}-SiC powder has been studied. Pellets of two different {beta}-SiC starting powders were sintered with simultaneous additions of Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} at 1950 C for 1 hour in flowing argon atmosphere. Here we have used X-ray diffraction to obtain the relative abundance of the resulting SiC polytypes after sintering. The significant influence of the defects concentration on the {beta} to {alpha} transformation rate has been determined using the Rietveld method. (orig.)

  3. Method and apparatus for bistable optical information storage for erasable optical disks

    Science.gov (United States)

    Land, Cecil E.; McKinney, Ira D.

    1990-01-01

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.

  4. Phase relations in crystalline ceramic nuclear waste forms the system UO/sub 2 + x/-CeO2-ZrO2-ThO2 at 12000C in air

    International Nuclear Information System (INIS)

    Pepin, J.G.; McCarthy, G.J.

    1981-01-01

    Steady-state phase relations in the system UO/sub 2 + x/-CeO 2 -ZrO 2 -ThO 2 were determined for application to phase relations in the high-level crystalline ceramic nuclear waste form Supercalcine-Ceramics. Samples were treated at 1200 0 C at an oxygen partial pressure of 0.21 atm and a total pressure of 1 atm. Phase assemblages were found to be composed of cubic solid solutions of the flourite structure type, solid solutions based on ZrO 2 , and orthorhombic solid solutions based on U 3 O 8

  5. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  6. Phase structure, dielectric, and piezoelectric properties of (K{sub 0.94-x}Na{sub x}Li{sub 0.06})(Nb{sub 0.94}Sb{sub 0.06})O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lingling; Lin, Dunmin; Zheng, Qiaoji; Wu, Xiaochun; Xu, Chenggang [College of Chemistry and Materials Science, and Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu 610066 (China)

    2012-11-15

    Lead-free piezoelectric ceramics (K{sub 0.94-x}Na{sub x}Li{sub 0.06})(Nb{sub 0.94}Sb{sub 0.06})O{sub 3} have been fabricated by a conventional ceramic technique and the effects of K{sup +}/Na{sup +} ratio on the structure and piezoelectric properties of the ceramics have been studied. All the ceramics possess a pure perovskite structure. The coexistence of tetragonal and orthorhombic phases is formed at room temperature in the ceramics with 0.45 {<=} x {<=} 0.55. The tetragonal-orthorhombic phase-transition temperature T{sub O-T} decreases from 110 to 54 C with x increasing from 0.35 to 0.55 and then increases from 84 to 144 C with x further increasing from 0.6 to 0.7, while the Curie temperature T{sub C} deceases from 388 to 348 C with x increasing from 0.35 to 0.70. Because of the coexistence of the two phases near room temperature, the ceramics with x = 0.50 exhibit the optimum piezoelectric properties: d{sub 33} = 230 pC/N and k{sub p} = 49%. The ceramics possess good time stability of piezoelectric properties. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  8. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  9. Phase coexistence and high piezoelectric properties in (K0.40Na0.60)0.96Li0.04Nb0.80Ta0.20O3 ceramics

    International Nuclear Information System (INIS)

    Wu Ling; Zhang Jialiang; Shao Shoufu; Zheng Peng; Wang Chunlei

    2008-01-01

    Lead-free (K x Na 1-x ) 0.96 Li 0.04 Nb 0.80 Ta 0.20 O 3 ceramics with x = 0.10-0.70 were prepared by the conventional solid-state reaction technique. The influence of the K/Na ratio on the microstructure, crystallographic structure, phase transition and piezoelectric properties was investigated. It has been disclosed that the phase transition temperature T O-T drastically decreases with x in the narrow compositional range of x 0.30-0.40 and the phase coexistence of the orthorhombic structure and the tetragonal structure occurs near x = 0.40. The ceramics with x = 0.40 shows high piezoelectric properties (d 33 = 254 pC N -1 , k p = 51.5%, k t = 49.4% and k 33 = 66.6%, respectively) with low dielectric loss (tan δ 1.5%) and weak temperature dependence between 10 and 85 deg. C. In particular, the piezoelectric properties remain almost unchanged in the thermal ageing test from -125 to 300 deg. C. Therefore, this ceramic is considered to be a very promising lead-free piezoelectric material for practical applications. The relation of piezoelectric properties with morphotropic phase boundary and polymorphic phase transition was discussed

  10. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  11. Study of glass-nanocomposite and glass-ceramic containing ferroelectric phase

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, E.K., E-mail: Eid_khalaf0@yahoo.com [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt); Mohamed, E.A. [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt); Salem, Shaaban M.; Ebrahim, F.M.; Kashif, I. [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Glass nanocomposites was synthesized. Black-Right-Pointing-Pointer Glass nanocomposites exhibit both optical transmission bands at 598 and 660 nm and broad dielectric anomalies. Black-Right-Pointing-Pointer The ferroelectricity in pure single-phase oxide glass has not yet been discovered. - Abstract: Transparent glass nanocomposite in the pseudo binary system (100 - x) Li{sub 2}B{sub 4}O{sub 7}-xBaTiO{sub 3} with x = 0 and 60 (in mol%) were prepared. Amorphous and glassy characteristics of the as-prepared samples were established via X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) respectively. The precipitated BaTiO{sub 3} nanocrystal phase embedded in the glass sample at x = 60 mol% was identified by transmission electron microscopic (TEM). The optical transmission bands at 598 and 660 nm were assigned to Ti{sup 3+} ions in tetragonal distorted octahedral sites. The precipitated Li{sub 2}B{sub 4}O{sub 7}, BaTi(BO{sub 3}){sub 2} and BaTiO{sub 3} nanocrystallites phases with heat-treatment at 923 K for 6 h (HT923) in glass-ceramic were identified by XRD, TEM and infrared absorption spectroscopy. The as-prepared at x = 60 mol% and the HT923 samples exhibit broad dielectric anomalies in the vicinity of the ferroelectric-to-paraelectric transition temperature. The results demonstrate that the method presented may be an effective way to fabricate ferroelectric host and development of multifunctional ferroelectrics.

  12. The effects of sulfate content on crystalline phase, microstructure, and chemical durability of zirconolite−barium borosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lang, E-mail: lang.wu@163.com [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xin; Li, Huidong; Teng, Yuancheng [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Peng, Long [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2016-09-15

    The effects of sulfate content on structure and chemical durability of barium borosilicate glass-ceramics were studied. The results show that the glass-ceramics with 0–1.10 mol% SO{sub 3} possess mainly CaZrTi{sub 2}O{sub 7}-2M phase along with a small amount of CaZrTi{sub 2}O{sub 7}-3T and ZrO{sub 2} phases. The hexagonal CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface of glass-ceramics. For the samples with 1.24–1.55 mol% SO{sub 3}, the main crystalline phases are CaTiSiO{sub 5} and CaZrTi{sub 2}O{sub 7}-2M in the bulk, while a separate sulfate layer containing Na{sub 2}SO{sub 4} and BaSO{sub 4} is observed on the surface. X-ray fluorescence analysis indicates that about 2/3 of the SO{sub 3} originally added has been lost by volatility. The normalized mass loss (NL{sub i}) for Na, B, Ca elements remains almost unchanged (∼10{sup −2} g/m{sup 2}) after 7 days for the samples with 0–1.10 mol% SO{sub 3}. The NL{sub i} for both Na and B increases gradually after 7 days when the SO{sub 3} content is 1.24 mol%. - Highlights: • Strip-shaped CaZrTi{sub 2}O{sub 7}-2M and plate-like CaTiSiO{sub 5} crystals crystallize in the bulk. • CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface for samples with 0–1.10 mol% SO{sub 3}. • A separate sulfate layer crystallizes on the surface when SO{sub 3} exceeds solubility.

  13. Effect of different materials of all-ceramic crowns on viability of fibroblasts and preliminary exploration of possible molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ju Li

    2016-02-01

    Full Text Available Objective: To study the effect of different materials of all-ceramic crowns on viability of fibroblasts and the possible molecular mechanisms. Methods: Fibroblast cell lines L929 were cultured, extracting solution of diatomite ceramic, casting ceramic, heat-pressed ceramic, infiltrated ceramic and Ni-Cr alloy porcelain was prepared and used to process L929 cells, and then cell apoptosis, percentages of cell cycle as well as expression levels of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 were detected. Results: Cell apoptosis indexes, number of early apoptosis, number of aponecrosis, percentages of G1 phase, S phase and G2 phase cells as well as expression levels of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 of diatomite ceramic group, casting ceramic group, heat-pressed ceramic group and infiltrated ceramic group had no differences from those of control group; cell apoptosis indexes, number of early apoptosis, number of aponecrosis, percentages of G2 phase cells as well as expression levels of Bax, Caspase-3, Caspase-8 and Caspase-9 of diatomite ceramic group, casting ceramic group, heat-pressed ceramic group and infiltrated ceramic group were lower than those of Ni-Cr alloy porcelain group, and percentages of G1 phase and S phase cells as well as expression levels of Bcl-2 were significantly higher than those of Ni-Cr alloy porcelain group. Conclusion: The effect of different materials of all-ceramic crowns on viability of fibroblasts has no differences and is weaker than that of Ni-Cr alloy porcelain crown, and biocompatibility of diatomite ceramic is equivalent to that of casting ceramic, heat-pressed ceramic, infiltrated ceramic and Ni-Cr alloy porcelain; mechanisms of different materials of all-ceramic crowns to regulate cell viability include Bcl-2/Bax pathway and Caspase pathway.

  14. Ferroelectric properties and diffuse phase transition in (Pb,La)Zrsub(0.55)Tisub(0.45)O3 ceramics

    International Nuclear Information System (INIS)

    Wolters, M.

    1976-01-01

    A preparation technique for (Pb,La)Zrsub(0.55)Tisub(0.45)O 3 ceramics is described by which inhomogeneities are eliminated. Grain size effects are studied and ferroelectric-paraelectric phase-transitions are investigated by means of X-ray diffraction analysis and dielectric weak-field (permittivity) and high-field (dc bias and hysteresis) measurements

  15. Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.

    Science.gov (United States)

    Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang

    2016-07-28

    Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics.

  16. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  17. Preparation and leaching property of Nd-doped zirconolite-based glass-ceramic

    International Nuclear Information System (INIS)

    Wu Lang; Xu Dong; Teng Yuancheng; Li Yuxiang; Liu Zongqiang

    2014-01-01

    Nd-doped zirconolite-based glass-ceramics were prepared by melting-heat treatment technique. The effects of heat treatment processing on phase structure of the glass-ceramics were investigated. The leaching properties of the glass-ceramics were also evaluated by static leaching experiments (product consistency test, PCT). The results show that glass transformation temperature (T g ) and crystallization temperature of the glass-ceramics are about 580℃ and 740℃, respectively. CaTiO 3 phase forms easily when the glass-ceramics were prepared by two-step method, i.e. the glass was prepared first, and then it was heat-treated at the crystallization temperatures. 2M-zirconolite phase can be obtained by one-step method, i.e. the heat-treatment immediately followed by the melting process. In addition, the zirconolite crystals exhibit a dendritic shape. The normalized mass loss of B and Na in the glass-ceramics remains almost unchanged (about 1 mg/m 2 ) after 14 days, while the normalized mass loss of Nd reaches stable value (about 0.2 mg/m 2 ) after 28 days. The normalized mass loss of B, Na, and Nd in the glass-ceramics is an order of magnitude lower than that of borosilicate glasses, respectively. (authors)

  18. Electrical properties and phase transition of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kruea-In, C. [Faculty of Science and Technology, Chiang Mai Rajabhat University (Thailand); Rujijanagul, G., E-mail: rujijanagul@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University (Thailand)

    2015-09-15

    Highlights: • Properties of of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics were investigated. • Small amount of dopant produced a large change in dielectric and phase transition. • A phase diagram of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics was proposed. • Dielectric tunability increased with increasing x concentration. - Abstract: In this work, properties of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics with 0.00≤ x ≤0.07 were investigated. The ceramics were fabricated by a solid state reaction technique. X-ray diffraction analysis indicated that all samples exhibited single phase perovskite. Examination of the dielectric spectra revealed that the Fe and Ta additives promoted a diffuse phase transition, and the two phase transition temperatures, as observed in the dielectric curve of pure Ba(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, merged into a single phase transition temperature for higher x concentrations. The transformation was confirmed by ferroelectric measurements. In addition, the doped ceramics exhibited high relative dielectric tunability, especially for higher x concentration samples.

  19. Continuous fiber ceramic composite. Phase I final report, April 1992--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, R.W.

    1995-04-01

    Babcock and Wilcox assembled a team to develop the Continuous Fiber Ceramic Composite (CFCC) processing technology, identify the industrial applications, generate design and life prediction software, and to begin the necessary steps leading to full commercialization of CFCC components. Following is a summary of Phase I activities on this program. B&W has selected an oxide-oxide composite system for development and optimization in this program. This selection was based on the results of exposure tests in combustion environments typical of the boiler and heat exchanger applications. Aluminum oxide fiber is the selected reinforcement, and both aluminum oxide and zirconium oxide matrices were selected, based on their superior resistance to chemical attack in hostile industrial service.

  20. Formation and corrosion of a 410 SS/ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X., E-mail: xin.chen@anl.gov [Civil and Materials Engineering Department, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607 (United States); Nuclear Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Ebert, W.L. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Indacochea, J.E. [Civil and Materials Engineering Department, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607 (United States)

    2016-11-15

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases. - Highlights: • An alloy/ceramic composite was made to evaluate corrosion at phase boundaries. • Lanthanide oxides and Zr added to 410 steel reacted to form durable zirconates. • Corrosion behavior was evaluated using electrochemical tests and SEM analyses. • Regions of active, passive, galvanic, sensitized, and chemical corrosion observed. • The corrosion current was proportional to relative areas of active alloy phases.

  1. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  2. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-11-01

    Full Text Available Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD, beam bending viscometry (BBV, and transmission electron microscopy (TEM. Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s throughout the whole thermal treatment.

  3. Preparation of novel ceramics with high CaO content from steel slag

    International Nuclear Information System (INIS)

    Zhao, Lihua; Li, Yu; Zhou, Yuanyuan; Cang, Daqiang

    2014-01-01

    Highlights: • Efficiently utilize such solid waste with high CaO content. • A novel ceramics was put forward by traditional ceramic process. • The novel ceramics attained high strength. • Sintering mechanisms of the novel ceramics were discussed. - Abstract: Steel slag, an industrial waste discharged from steelmaking process, cannot be extensively used in traditional aluminosilicate based ceramics manufacturing for its high content of calcium oxide. In order to efficiently utilize such solid waste, a method of preparing ceramics with high CaO content was put forward. In this paper, steel slag in combination with quartz, talcum, clay and feldspar was converted to a novel ceramic by traditional ceramic process. The sintering mechanism, microstructure and performances were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) techniques, combined experimenting of linear shrinkage, water absorption and flexural strength. The results revealed that all crystal phases in the novel ceramic were pyroxene group minerals, including diopsite ferrian, augite and diopsite. Almost all raw materials including quartz joined the reaction and transformed into pyroxene or glass phase in the sintering process, and different kinds of clays and feldspars had no impact on the final crystal phases. Flexural strength of the ceramic containing 40 wt.% steel slag in raw materials can reach 143 MPa at sintering temperature of 1210 °C and its corresponding water absorption, weight loss, linear shrinkage were 0.02%, 8.8%, 6.0% respectively. Pyroxene group minerals in ceramics would contribute to the excellent physical and mechanical properties

  4. Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Manan Abdul

    2015-03-01

    Full Text Available Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.

  5. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    Science.gov (United States)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.

    2018-04-01

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.

  6. Electrical properties and temperature stability of a new kind of lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Wang Yuanyu; Wu Jiagang; Xiao Dingquan; Zhang Bin; Wu Wenjuan; Shi Wei; Zhu Jianguo

    2008-01-01

    0.995[(K 0.50 Na 0.50 ) 0.94 Li 0.06 ]NbO 3 -0.005AETiO 3 (AE=Ca, Sr, Mg, Ba) lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AETiO 3 and poling temperature on the electrical properties of the ceramics were carefully studied, and the temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the ceramics with Li and CaTiO 3 possess the pure phase, Li and AETiO 3 improves the electrical properties of the pure (K 0.50 Na 0.50 )NbO 3 ceramics, the poling temperature near tetragonal and orthorhombic phase transition will enhance the piezoelectric properties of the ceramics and the KNLN-CT ceramics exhibit good temperature stability of electrical properties for tetragonal and orthorhombic phase transition below room temperature. The KNLN-CT ceramics exhibit relatively good properties: d 33 = 172 pC N -1 , k p = 0.43, tan δ = 0.032, ε r = 771 and T c = 465 deg. C. As a result, the KNLN-CT ceramic is promising candidate material for piezoelectric devices.

  7. Phase Identification and Dielectric Properties of Pb0.94 Ca0.06 TiO3 Ceramics

    International Nuclear Information System (INIS)

    Khin Thida; Tin Tin Aye; Aye Aye Phyu; Moe Moe Myint; Ko Ko Kyaw Soe

    2008-03-01

    The ferroelectric materials of Ca (6 mol %) doped PbTiO3 (abbreviated to PCT6) ceamics were prepared by using conventional solid solution method. Phase assignment is identified by XRD technique. The change in capacitance, the variation of dielectric constant and dielectric loss as a function of applied frequency modes (1 kHz-10 kHz)at zero bias voltage of PCT6 ceramics by using Cu and Ag electrodes were investigated.

  8. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  9. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  10. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  11. Research and development of the industrial basic technologies of the next generation, 'composite materials (fine ceramics)'. Evaluation of the first phase research and development; Jisedai sangyo kiban gijutsu kenkyu kaihatsu 'fine ceramics'. Daiikki kenkyu kaihatsu hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-30

    The results of the first phase research and development project for developing fine ceramics as the basic technologies of the next generation are evaluated. The R and D themes are selected to develop fine ceramics of high strength, corrosion resistance, precision and wear resistance, noting their excellent characteristics. Development of the basic techniques for these materials is of high significance, and highly rated. The efforts in the first-phase R and D project are aimed at development of silicon nitride and silicon carbide for synthesis of the stock materials; explosive forming/treating the stock powders; forming, sintering and processing/joining; evaluation of the characteristics; non-destructive testing methods; designs; and evaluation of the parts, among others, as the elementary techniques for production, evaluation and application of the fine ceramic materials. The technical targets of improving functions have been achieved, or bright prospects have been obtained therefor in development of the techniques for synthesis of the stock materials, forming/sintering and processing/joining. The silica reduction for stock synthesis, basic techniques for molding/sintering, and rheological considerations for the molding/sintering techniques represent the techniques of the next generation, because they break through the limitations of the conventional techniques. (NEDO)

  12. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  13. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  14. Effect of lead addition on the formation of superconducting phases in Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Martinelli, A.E.

    1991-01-01

    Superconducting ceramics with starting composition Bi 2 - x Pb x Sr 2 Ca 2 Cu 3 O y (0,0 ≤ X ≤ 0,6) were prepared in order to investigate the effects of partial substitution of Pb for Bi and sintering time and atmosphere in the formation of superconducting phases. For all samples X-ray diffraction analyses were performed to estimate the amount of superconducting phases; superconductivity was analysed by dc electrical resistance and ac magnetic susceptibility measurements. The main results show that: a) the longer the sintering time (up to 168 h), the larger the volume fraction of superconducting phases with critical temperature (T c ) greater than the temperature of nitrogen liquefaction; b) by partially substituting Pb for Bi it is possible to restrain the formation of 2212 phase (T c = 80 K) and to enhance the amount of 2223 phase (T c = 105 K); C) a heat treatment under oxygen atmosphere before sintering enhances the formation of 2223 phase. (author)

  15. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  16. Plutonium immobilization in glass and ceramics

    International Nuclear Information System (INIS)

    Knecht, D.A.; Murphy, W.M.

    1996-01-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 degrees C, a higher temperature (1450 degrees C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature

  17. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    International Nuclear Information System (INIS)

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  18. Superconductivity and ceramic superconductors II; Proceedings of the Symposium, Orlando, FL, Nov. 12-15, 1990. Ceramic transactions. Vol. 18

    International Nuclear Information System (INIS)

    Nair, K.M.; Balachandran, U.; Chiang, Y.-M.; Bhalla, A.S.

    1991-01-01

    The present symposium on superconductivity and ceramic superconductors discusses fundamentals and general principles, powder processing and properties, fabrication and properties, and device reliability and applications. Attention is given to phase formation in the Tl-Ca-Ba-Cu-O system, comparative defect studies in La2CuO4 and La2NiO4, solid solution and defect behavior in high Tc oxides, oxygen ion transport and disorder in cuprates, and Sr-free Bi-Ln-Ca-Cu-O superconductors. Topics addressed include the preparation of superconductor Y-Ba-Cu-O powder by single-step calcining in air, low-temperature synthesis of YBa2Cu3O(7-x), synthesis of high-phase purity ceramic oxide superconductors by the xerogel method, and the preparation and characterization of the BYa2Cu4O8 superconductor. Also discussed are optical studies of humidity-based corrosion effects on thin film and bulk ceramic YBa2Cu3O(7-delta), thermomechanical processing of YBa2Cu3O(x)/Ag sheathed wires, and the expansion of high-Tc superconducting ceramics

  19. CVI-R gas phase processing of porous, biomorphic SiC-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, H.; Vogli, E.; Mueller, F.; Greil, P. [Erlangen-Nuernberg Univ., Erlangen (DE). Dept. of Materials Science (III) Glass and Ceramics; Popovska, N.; Gerhard, H. [Univ. of Erlangen-Nuremberg, Dept. of Industrial Chemistry I, Erlangen (Germany)

    2002-07-01

    Natural pine wood was converted into biomorphic SiC-ceramics by CVI-R processing (chemical vapour infiltration - reaction). The wood samples were first pyrolyzed in inert atmosphere at temperatures of 800 C to yield biocarbon-derived template structures. Subsequently, the biocarbon preforms were infiltrated with silicon by isothermal CVI processing with MTS (methyltrichlorosilane) in excess of hydrogen at temperatures between 800 and 850 C, then converted into SiC-ceramic by annealing in inert atmosphere at temperatures between 1200-1600 C. During processing, the inherent open porous structure of the pine wood is retained down to the submicrometer level, yielding a highly porous SiC-ceramic with a unique microcellular morphology. (orig.)

  20. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2014-12-01

    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  1. Formation and corrosion of a 410 SS/ceramic composite

    Science.gov (United States)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  2. Extrinsic coefficient charcterisation of PZT ceramics near the morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Albareda, A.

    2006-06-01

    Full Text Available PZT ceramics with high piezoelectric coefficients have high extrinsic contributions. This extrinsic behaviour, which is related to the domain wall movement, produces high non-linear effects that are sometimes inconvenient, for example when it increases the losses in power devices. The relation between extrinsic behaviour and non-linearities could be used to provide a good extrinsic characterization of materials in order to optimise the piezoelectric devices. In all cases the physical explanation of the behaviour is sought. The aim of this work is to study the dependence of the linear and non-linear dielectric, piezoelectric and mechanical coefficients on the Ti fraction in PZT ceramic compositions near the morphotropic phase boundary (MPB. The dependence of these coefficients on the defect concentration is also analysed. Hard ceramics belonging to Ferroperm Piezoceramics, with two different acceptor dopant levels, high and low, have been measured.

    Las cerámicas PZT con coeficientes piezoeléctricos elevados poseen contribuciones extrínsecas grandes. Este comportamiento extrínseco, relacionado con el movimiento de las paredes de los dominios, comporta efectos no lineales grandes que no siempre son deseables, por ejemplo, al incrementar las pérdidas de los dispositivos piezoeléctricos. Esta correspondencia entre efectos extrínsecos y no linealidades puede ser utilizada para caracterizar las cerámicas con el fin de optimizar sus propiedades piezoeléctricas. En todos los casos se busca una interpretación física de los resultados obtenidos. El objetivo de este trabajo es el estudio de la dependencia de los coeficientes lineales y no lineales dieléctricos, piezoeléctricos y elásticos con la fracción de Ti en cerámicas PZT con composiciones de Zr-Ti cerca de la transición de fase morfotrópica (MPB. También se analiza la dependencia de estos coeficientes con la concentración de impurezas, utilizando para ello cerámicas de

  3. A new bio-active glass ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Suleman, M.; Hussain, K.; Shah, W.A.

    1995-01-01

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  4. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  5. Microstructural, compositional and mechanical properties of the archaeological indigenous ceramics of Caninhas, Sao Paulo,Brazil

    International Nuclear Information System (INIS)

    Nakano, F.P.; Taguchi, S.P.; Ribeiro, R.B.; Rosa, S.J.L.; Bornal, W.G.; Queiroz, C.M.

    2009-01-01

    Archaeological ceramics contain infinity of data about social and cultural indigenous site Caninhas/SP. The ceramics present a gradient of color (ochre to dark gray), when from the surface to the center of the piece, indicating compositional variability caused by inefficient sintering carried out by indigenous peoples. It was analyzed the composition phases by X-rays diffraction (XRD) and mapping by EDS, identifying the illite, quartz and lutecite phases (ochre region) and illite, quartz, hydrated alumina and lutecite phases (dark gray region). The results of EDS confirmed the stages identified by X-rays diffraction and suggesting the presence of roots and scrap of ceramics sintered in the composition of indigenous ceramics, when compared by optical microscope and scanning electron microscope. Vickers hardness identified as fragile and heterogeneous are archaeological ceramics, reaching approximately 203 HV in the grains of silica and 16 HV in the ceramic matrix. (author)

  6. Phase transition and piezoelectric properties of K0.48Na0.52NbO3-LiTa0.5Nb0.5O3-NaNbO3 lead-free ceramics

    International Nuclear Information System (INIS)

    Gao Feng; Liu Liangliang; Xu Bei; Cao Xiao; Deng Zhenqi; Tian Changsheng

    2011-01-01

    Highlights: → The evolution of the crystal structure for the new phase K 3 Li 2 Nb 5 O 15 was described. → The dielectric relaxor behavior would be strengthened by increasing plate-like NN. → k p and d 33 decrease with increasing amount of plate-like NN. → 0.01-0.03 mol of plate-like NN is a proper content for texturing ceramics by RTGG. - Abstract: Plate-like NaNbO 3 (NN) particles were used as the raw material to fabricate (1 - x)[0.93 K 0.48 Na 0.52 Nb O 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 ]-xNaNbO 3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K 3 Li 2 Nb 5 O 15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K 3 Li 2 Nb 5 O 15 phase. The Curie temperature (T C ) is shifted to lower temperature with increasing NN content. (1 - x)[0.93 K 0.48 Na 0.52 NbO 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 ]-xNaNbO 3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (k p ) and the piezoelectric constant (d 33 ) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO 3 in 0.93 K 0.48 Na 0.52 NbO 3 -0.07Li(Ta 0.5 Nb 0.5 )O 3 gives the optimum content for preparing textured ceramics by the RTGG method.

  7. Dielectric behaviour of (Ba,Sr)TiO3 perovskite borosilicate glass ceramics

    International Nuclear Information System (INIS)

    Yadav, Avadhesh Kumar; Gautam, C.R.

    2013-01-01

    Various perovskite (Ba,Sr)TiO 3 borosilicate glasses were prepared by rapid melt-quench technique in the glass system ((Ba 1-x Sr x ).TiO 3 )-(2SiO 2 .B 2 O 3 )-(K 2 O)-(La 2 O 3 ). On the basis of differential thermal analysis results, glasses were converted into glass ceramic samples by regulated heat treatment schedules. The dielectric behaviour of crystallized barium strontium titanate borosilicate glass ceramic samples shows diffuse phase transition. The study depicts the dielectric behaviour of glass ceramic sample BST5K1L0.2S814. The double relaxation was observed in glass ceramic samples corresponding 80/20% Ba/Sr due to change in crystal structure from orthorhombic to tetragonal and tetragonal to cubic with variation of temperature. The highest value of dielectric constant was found to be 48289 for the glass ceramic sample BST5K1L0.2S814. The high value of dielectric constant attributed to space charge polarization between the glassy phase and perovskite phase. Due to very high value of dielectric constant, such glass ceramics are used for high energy storage devices. La 2 O 3 acts as nucleating agent for crystallization of glass to glass ceramics and enhances the dielectric constant and retarded dielectric loss. Such glass ceramics can be used in high energy storage devices such as barrier layer capacitors, multilayer capacitors etc. (author)

  8. Pressure-induced phase transitions in Zr-rich PbZr{sub 1-x}Ti{sub x}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, A.G. [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Ceara (Brazil)]. E-mail: agsf@fisica.ufc.br; Faria, J.L.B.; Freire, P.T.C.; Ayala, A.P.; Sasaki, J.M.; Melo, F.E.A.; Mendes Filho, J. [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Ceara (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual de Sao Paulo, Campus de Ilha Solteira, Ilha Solteira, SP (Brazil); Eiras, J.A. [Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2001-08-20

    A Raman study of structural changes in the Zr-rich PbZr{sub 1-x}Ti{sub x}O{sub 3} (PZT) system under hydrostatic pressures up to 5.0 GPa is presented. We observe that externally applied pressure induces several phase transitions in PZT ceramics among phases with orthorhombic (A{sub O}), rhombohedral low-temperature (R{sub LT}), and rhombohedral high-temperature (R{sub HT}) symmetries (all found in PZT at ambient pressure and room temperature). Each of the compositions investigated (0.02{<=}x{<=}0.14) exhibits a high-pressure phase with orthorhombic (O{sub I'}) symmetry. We further report a detailed study of the pressure dependence of Raman frequencies to elucidate the phase transitions and to provide a set of pressure coefficients for the high-pressure phases. (author)

  9. Chemistry-driven structural alterations in short-term retrieved ceramic-on-metal hip implants: Evidence for in vivo incompatibility between ceramic and metal counterparts.

    Science.gov (United States)

    Zhu, Wenliang; Pezzotti, Giuseppe; Boffelli, Marco; Chotanaphuti, Thanainit; Khuangsirikul, Saradej; Sugano, Nobuhiko

    2017-08-01

    Ceramic-on-metal (CoM) hip implants were reported to experience lower wear rates in vitro as compared to metal-on-metal (MoM) bearings, thus hinting metal-ion release at lower levels in vivo. In this article, we show a spectroscopic study of two short-term retrieval cases of zirconia-toughened alumina (ZTA) femoral heads belonging to CoM hip prostheses, which instead showed poor wear performances in vivo. Metal contamination and abnormally high fractions of tetragonal-to-monoclinic (t→m) polymorphic transformation of the zirconia phase could be found on both ZTA heads, which contrasted with the optimistic predictions of in vitro experiments. At the molecular scale, incorporation of metal ions into the ceramic lattices could be recognized as due to frictionally assisted phenomena occurring at the ceramic surface. Driven by abnormal friction, diffusion of metal ions induced lattice shrinkage in the zirconia phases, while residual stress fields became stored at the surface of the femoral head. Diffusional alterations destabilized the chemistry of the ceramic surface and resulted in an abnormal increase in t→m phase transformation in vivo. Frictionally driven metal transfer to the ceramic lattice thus hinders the in vivo performance of CoM prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1469-1480, 2017. © 2016 Wiley Periodicals, Inc.

  10. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    International Nuclear Information System (INIS)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping. (orig.)

  11. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    Science.gov (United States)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping.

  12. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  13. Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes

    International Nuclear Information System (INIS)

    Lokken, R.O.; Chick, L.A.; Thomas, L.E.

    1982-09-01

    Basalt-based waste forms were developed for the immobilization of transuranic (TRU) contaminated wastes. The specific waste studied is a 3:1 blend of process sludge and incinerator ash. Various amounts of TRU blended waste were melted with Pomona basalt powder. The vitreous products were subjected to a variety of heat treatment conditions to form glass ceramics. The total crystallinity of the glass ceramic, ranging from 20 to 45 wt %, was moderately dependent on composition and heat treatment conditions. Three parent glasses and four glass ceramics with varied composition and heat treatment were produced for detailed phase characterization and leaching. Both parent glasses and glass ceramics were mainly composed of a continuous, glassy matrix phase. This glass matrix entered into solution during leaching in both types of materials. The Fe-Ti rich dispersed glass phase was not significantly degraded by leaching. The glass ceramics, however, exhibited four to ten times less elemental releases during leaching than the parent glasses. The glass ceramic matrix probably contains higher Fe and Na and lower Ca and Mg relative to the parent glass matrix. The crystallization of augite in the glass ceramics is believed to contribute to the improved leach rates. Leach rates of the basalt glass ceramic are compared to those of other TRU nuclear waste forms containing 239 Pu

  14. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  15. Fabrication and characterization of glass–ceramics materials developed from steel slag waste

    International Nuclear Information System (INIS)

    He, Feng; Fang, Yu; Xie, Junlin; Xie, Jun

    2012-01-01

    Highlights: ► Steelmaking slag (SS) is one of the most common industrial wastes. ► Glass–ceramics produced from SS is observed to have good properties. ► A large volume of raw SS can be recycled. ► The utilization of SS could reduce solid waste pollution. -- Abstract: In this study, glass–ceramic materials were produced from SS (steel slag) obtained from Wuhan Iron and Steel Corporation in China. The amount of SS used in glass batch was about 31–41 wt.% of the total batch mixture. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of the parent glass samples were identified, respectively. X-ray diffraction (XRD) revealed that multiple crystalline phases coexisted in the glass–ceramics, and the main crystalline phase was wollastonite (CaSiO 3 ). SEM observation indicated that there was an increase in the amount of crystalline phase in the glass–ceramics when the CaO content and crystallization time increased. It was also found that the glass–ceramics with fine microstructure enhance mechanical properties and erosion wear resistance. The obtained glass–ceramics showed a maximum bending strength of 145.6 MPa and very nice wear resistance. Therefore, it is feasible to produce nucleated glass–ceramics materials for building and decorative materials from SS.

  16. The intermediate phase and low wave number phonon modes in antiferroelectric (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} ceramics discovered from temperature dependent Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaojuan; Guo, Shuang [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Hu, Zhigao, E-mail: zghu@ee.ecnu.edu.cn [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chen, Xuefeng; Wang, Genshui [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Dong, Xianlin; Chu, Junhao [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2016-05-15

    Optical phonons and phase transitions of (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} (PLZST 97/2/60/40-100y/100y) ceramics with different compositions have been investigated by x-ray diffraction and temperature dependent Raman spectra. From the temperature dependence of low wavenumber phonon modes, two phase transitions (antiferroelectric orthorhombic to intermediate phase and intermediate phase to paraelectric cubic phase) were detected. The intermediate phase could be the coexistence one of antiferroelectric orthorhombic and ferroelectric rhombohedral phase. In addition, two modes (a soft mode and an anharmonic hopping central mode) were found in the high temperature paraelectric cubic phase. On cooling, the anharmonic hopping central mode splits into two modes in the terahertz range. Moreover, the antiferrodistortive mode appears in the antiferroelectric orthorhombic phase. Based on the analysis, the phase diagram of PLZST ceramics can be well improved. - Highlights: • The evolution of phonon modes in antiferroelectric PLZST ceramics. • An intermediate phase was found between orthorhombic and cubic phase. • The phase diagram of PLZST ceramics can be well improved.

  17. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Andrikopoulos, Konstantinos S; Kantiranis, Nikolaos; Voyiatzis, George A; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2014-12-01

    Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (Pceramics, however statistically significant was for the WI group (Pceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Multi-layer SiC ceramics/Mo joints brazed using high-temperature solders

    International Nuclear Information System (INIS)

    Olesinska, W.; Kesik, J.

    2003-01-01

    The paper presents the results of studies on joining SiC ceramics with molybdenum, with the ceramic surface being activated by titanium, chromium or copper. Titanium or chromium were deposited by the sputtering technique, and copper - by the electro-chemical method. The microstructures of the SiC/Mo joints brazed with the CuMn13Ni3 solder and copper in a nitrogen atmosphere were examined and the results discussed. The joints, in which the ceramic surface was activated in addition with chromium, do not contain mechanical defects caused by the joining process, and the ceramic surface is covered with a continuous layer of the solder. A phase analysis of the interface surface identified an MeSiC phase. The mechanical strength of the joints in which the ceramic surface was modified by the Ti, Cr and Cu layers was markedly greater than that of the joints brazed directly to the uncoated ceramics with the use of active solders. (author)

  19. CeO2-ZrO2 ceramic compounds

    International Nuclear Information System (INIS)

    Melo, F.C.L.; Cairo, C.A.C.; Devezas, T.C.; Nono, M.C.A.

    1988-01-01

    In order to study the mechanical properties of tetragonal polycrystal zirconia stabilized with ceria various powder compositions with different CeO 2 content were made. Modulus of rupture for those compounds was measured. Tetragonal retained phase was determined for samples of CeO 2 -ZrO 2 ceramics with and without superficial mechanical treatment. The experimental results allowed us to evaluate the effects of CeO 2 content and sintering temperature in the mechanical properties and tetragonal transformed phase (t→ m) in ceramics of CeO 2 -ZrO 2 systems. (author) [pt

  20. Sintering mechanism of blast furnace slag-kaolin ceramics

    International Nuclear Information System (INIS)

    Mostafa, Nasser Y.; Shaltout, Abdallah A.; Abdel-Aal, Mohamed S.; El-maghraby, A.

    2010-01-01

    A general ceramics processing scheme by cold uniaxial pressing and conventional sintering process have been used to prepare ceramics from mixtures of blast furnace slag (BFS) and kaolin (10%, 30% and 50% kaolin). The properties of the ceramics were studied by measuring linear shrinkage, bulk density, apparent porosity and mechanical properties of samples heated at temperatures from 800 o C to 1100 o C. The formed crystalline phases were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Slag melt formed at relatively low temperatures (800-900 o C) modified the sintering process to liquid phase sintering mechanism. Combination of BFS with 10% kaolin gave the highest mechanical properties, densification and shrinkage at relatively low firing temperatures. The crystalline phases were identified as gehlenite (Ca 2 Al 2 SiO 7 ) in both BFS and BFS with 10% kaolin samples. Anorthite (CaAl 2 Si 2 O 8 ) phase increased with increasing kaolin contents. In the case of kaolin-rich mixtures (30% and 50% kaolin), increased expansion took place during firing at temperatures in the range 800-1000 o C. This effect could be attributed to the entrapment of released gases.

  1. Interaction at interface between superconducting yttrium ceramics and copper or niobium

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Medved', N.V.; Myshlyaeva, M.M.

    1992-01-01

    Light metallography, scanning electron microscopy and local energy dispersion analysis have been used to study the interaction of Y-ceramics with copper and niobium. Samples in the form of wire of two types were employed, that is, consisting of ceramic core YBaCuO and Cu shell or a ceramic core YBaCuO and bimetallic Cu/Nb shell. The interaction of the ceramics with the shell metal began already at 500 deg with the formation at the interafaces Cu-YBaCuO of oxide layers containing ceramic elements, and in the ceramic core - nonsuperconducting phases. A thin Al-layer placed between the ceramics and the shell appreciably decreased the reactability of the ceramics with respect to copper and niobium

  2. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  3. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  4. Strong, tough and stiff bioinspired ceramics from brittle constituents

    Science.gov (United States)

    Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain

    2014-05-01

    High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.

  5. Inter-granular glassy phases in the low-CaO-doped HIPed Si{sub 3}N{sub 4} ceramics. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Hui [State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Inst. of Ceramics, Chinese Academy of Sciences, SH (China); Tanaka, Isao [Dept. of Materials Science and Engineering, Kyoto Univ. (Japan); Cannon, Rowland M. [Materials Science Div., Lawrence Berkeley National Lab., CA (United States); Pan, Xiaoqing [Dept. of Materials Science and Engineering, Michigan Univ., Ann Arbor (United States); Ruehle, Manfred [Max Planck Inst. for Metals Research, Stuttgart (Germany)

    2010-01-15

    This review outlines the essence of a progressive study on the glassy inter-granular film (IGF) in a model ceramic system, the low-CaO-doped HIPed high-purity Si{sub 3}N{sub 4}. This was initiated from the finding of a systematic variation of equilibrium IGF thickness following the dopant chemistry, manifesting its fundamental important to ceramic processing. By employing analytical transmission electron microscopy to measure the local chemistry in IGF, however, significant discrepancy was found between trends of local IGF chemistry and thickness. A stable IGF composition was revealed in this system, while a bi-level distribution of Ca segregation establishes a correspondence between the IGF structure and the surface crystallography. The detection of similar levels of nitrogen in IGF through the whole series further supports the presence of a rather stable IGF chemistry. After the saturation of dopants in the stable IGF, extra CaO was found to re-distribute in pockets by enrichment at tips, leading to a liquid phase separation with the Ca-rich phase wetting the entrance zone contacting IGF. The perspective for establishing a comprehensive correlation between the inter-granular phases and the bi-modal microstructure induced by faster growth of basal facets is briefly discussed to pave the way for future work. (orig.)

  6. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  7. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers.

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-04-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  8. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  9. Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1-xLixNbO3 textured ceramics

    Science.gov (United States)

    Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.

    2011-06-01

    The structure, ferroelectric and piezoelectric properties of textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.

  10. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Zhu, Jianguo; Xiao, Dingquan; Zhang, Xixiang

    2018-01-01

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  11. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang

    2018-04-16

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  12. TOF neutron diffraction study of archaeological ceramics

    International Nuclear Information System (INIS)

    Kockelmann, W.; Kirfel, A.

    1999-01-01

    Complete text of publication follows. The time-of flight (TOF) neutron diffractometer ROTAX [1] at ISIS has been used for identification and quantitative phase analysis of archaeological pottery. Neutron diffraction yields mineral phase fractions which, in parallel with information obtained from other archaeometric examination techniques, can provide a fingerprint that can be used to identify provenance and reconstruct methods of manufacturing of an archaeological ceramic product. Phase fractions obtained from a 13th century Rhenish stoneware jar compare well with those obtained from a powder sample prepared from the same fragment. This indicates that reliable results can be obtained by illuminating a large piece or even an intact ceramic object making TOF neutron diffraction a truly non-destructive examination technique. In comparison to X-ray diffraction, information from the bulk sample rather than from surface regions is obtained. ROTAX allows for a simple experimental set-up, free of sample movements. Programmes of archaeological study on ROTAX involve Russian samples (Upper-Volga culture, 5000-2000 BC), Greek pottery, (Agora/Athens, 500-300 BC), and medieval German earthenware and stoneware ceramics (Siegburg waster heap, 13-15th century). (author)

  13. Zirconia toughened mica glass ceramics for dental restorations.

    Science.gov (United States)

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Contributions to the R-curve behaviour of ceramic materials

    International Nuclear Information System (INIS)

    Fett, T.

    1994-12-01

    Several ceramic materials show an increase in crack growth resistance with increasing crack extension. Especially, in case of coarse-grained alumina this ''R-curve effect'' is caused by crack-face interactions in the wake of the advancing crack. Similar effects occur for whisker reinforced ceramics. Due to the crack-face interactions so-called ''bridging stresses'' are generated which transfer forces between the two crack surfaces. A second reason for an increase of crack-growth resistance are stress-induced phase transformations in zirconia ceramics with the tetragonal phase changing to the monoclinic phase. These transformations will affect the stress field in the surroundings of crack tips. The transformation generates a crack-tip transformation zone and, due to the stress balance, also residual stresses in the whole crack region which result in a residual stress intensity factor. This additional stress intensity factor is also a reason for the R-curve behaviour. In this report both effects are outlined in detail. (orig.) [de

  15. Minimum additive waste stabilization using vitreous ceramics. Progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Feng, X.; Hahn, W.K.; Gong, M.; Gong, W.; Wang, L.; Ewing, R.C.

    1995-01-01

    Vitreous ceramic waste forms are being developed at Pacific Northwest Laboratory to complement glass waste forms in implementing the Minimum Additive Waste Stabilization (MAWS) Program to support the US Department of Energy's environmental restoration efforts. These vitreous ceramics are composed of various metal-oxide crystalline phases embedded in a silicate-glass phase. This work extends the success of vitreous ceramic waste forms to treat wastes with both high metal and high alkali contents. Two successful approaches are discussed: developing high-durability alkali-binding crystals in a durable glassy matrix, and developing water-soluble crystals in a durable and continuous glassy matrix. Nepheline-vitreous ceramics were demonstrated for the immobilization of high-alkali wastes with alkali contents up to 21 wt%. The chemical durability of the nepheline-vitreous ceramics is better than the corresponding glasses, especially in over longer times. Vitreous ceramics with Cs 2 O loading up to 35.4 wt% have been developed. Vitreous ceramic waste forms were developed from 90 and 100% Oak Ridge National Laboratory K-25 pond sludge. Heat treatment resulted in targeted crystal formation of spinels, potassium feldspar, and Ca-P phases. The K-25 pond sludge vitreous ceramics were up to 42 times more durable than high-level environmental assessments (EA) glass. The toxicity characteristics leach procedure (TCLP) concentration of LVC-6 is at least 2,000 times lower than US Environmental Protection Agency limits. Idaho Chemical Process Plant (ICPP) calcined wastes were immobilized into vitreous ceramics with calcine loading up to 88%. These ICPP-vitreous ceramics were more durable than the EA glass by factors of 5 to 30. Vitreous ceramic waste forms are being developed to complement, not to replace, glass waste forms

  16. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    Science.gov (United States)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  17. Nano-CT study on nanostructure of porous ceramics

    International Nuclear Information System (INIS)

    Wu Wenquan; Li Wenjie; Guan Yong; Yang Yunhao; Chen Jie; Zhou Jie; Yu Xiyue; Song Xiangxia; Tian Yangchao; Li Wei; Chen Chusheng

    2010-01-01

    The porous structure of ceramic materials has a great impact on their performance. However, the existing characterization techniques fail to give 3D structure of the ceramics. In this work, nano-CT imaging technique was used to study 3D structure of a ceramic fiber tube prepared by a phase inversion technology. The results showed the shape, direction, size distribution, and 3D map of the pores inside the ceramic wall. The pore size is 0.4-1.5 μm, with a porosity of 38.31%. The data can be used to improve their preparation processes and optimize the structure parameters, for applications in chemical, energy, environmental protection and other fields. (authors)

  18. The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics

    International Nuclear Information System (INIS)

    Wang, Yanfei; Xiao, Ping

    2014-01-01

    The low fracture toughness of lanthanum zirconate (La 2 Zr 2 O 7 , LZ) greatly impedes its wide application as thermal barrier coatings (TBC). The 3 mol% Y 2 O 3 -stabilized tetragonal zirconia polycrystals (3Y-TZP) have been introduced to toughen the brittle LZ ceramics. The dispersive 3Y-TZP undergoes a simultaneous t–m transformation upon cooling below a critical volume fraction x of 3Y-TZP, above which its tetragonal phases can however be preserved. The different stabilities of 3Y-TZP second phases arise from a variation of residual tensile stress within them. The fracture toughness has been greatly improved by dispersing the tetragonal particulates (t-3YSZ) in the LZ matrix and the primary toughening mechanisms are phase transformations of the dispersive second phases and the residual compressive stress within the matrix. An anticipated increase of fracture toughness from the ferroelastic toughening and the residual compressive stress toughening highlights the great potentials to improve coating durability by depositing t′-3YSZ/LZ composite TBCs by the industrial non-equilibrium route

  19. Dispersion toughened ceramic composites and method for making same

    Science.gov (United States)

    Stinton, D.P.; Lackey, W.J.; Lauf, R.J.

    1984-09-28

    Ceramic composites exhibiting increased fracture toughness are produced by the simultaneous codeposition of silicon carbide and titanium disilicide by chemical vapor deposition. A mixture of hydrogen, methyltrichlorosilane and titanium tetrachloride is introduced into a furnace containing a substrate such as graphite or silicon carbide. The thermal decomposition of the methyltrichlorosilane provides a silicon carbide matrix phase and the decomposition of the titanium tetrachloride provides a uniformly dispersed second phase of the intermetallic titanium disilicide within the matrix phase. The fracture toughness of the ceramic composite is in the range of about 6.5 to 7.0 MPa..sqrt..m which represents a significant increase over that of silicon carbide.

  20. X-ray diffraction and dielectric studies across morphotropic phase boundary in (1 - x) [Pb(Mg0.5W0.5)O3]-xPbTiO3 ceramics

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, Akhilesh Kumar

    2011-01-01

    Research highlights: → Structural studies reveal pseudocubic structure of PMW-xPT for the x ≤ 0.42, tetragonal for the x ≥ 0.72 and the coexistences of the two phases for intermediate compositions (0.46 ≤ x 0.68). → Temperature dependent dielectric constant for compositions in the two phase region shows two dielectric anomalies above room temperature and not just one as reported by earlier workers. → Rietveld structural analysis of PMW-xPT ceramics is presented for the first time to determine the fraction of the coexisting phases in MPB region. - Abstract: We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 - x)[Pb(Mg 0.5 W 0.5 )O 3 ]-xPbTiO 3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.

  1. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sonigra, Dhiren, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R., E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in [Dept. of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  2. Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Zhang, Xixiang

    2017-01-01

    -T) phase boundary, confirmed using several advanced techniques, allowed a large piezoelectric constant (d33) of 450 ± 5 pC/N to be obtained in (1-x)K0.4Na0.6Nb0.945Sb0.055O3-xBi0.5Na0.5(Hf1-ySny)O3 (0 ≤ x ≤ 0.06 and 0 ≤ y ≤ 0.5) ceramics possessing

  3. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    Kist, A.A.; Flitsiyan, E.S.

    1994-01-01

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  4. Crystallization and properties of a spodumene-willemite glass ceramic

    International Nuclear Information System (INIS)

    Hu, A.M.; Li, M.; Dali, D.L. Mao; Liang, K.M.

    2005-01-01

    Spodumene-willemite glass ceramics were produced by replacement of Al 2 O 3 in lithium aluminium silicate by ZnO. With replacement of Al 2 O 3 by ZnO, the batch melting temperature, glass transition temperature (T g ) and crystallization temperature (T p ) all decreased. The main crystalline phases precipitated were eucriptite, β-spodumene and willemite (Zn 2 SiO 4 ). All compositions of glass ceramics showed bulk crystallization. As ZnO content increased, the grain sizes and thermal expansion coefficients increased, while the flexural strength and fracture toughness of the glass-ceramics increased first, and then decreased. The mechanical properties were correlated with crystallization and morphology of glass ceramics

  5. Ternary ceramic alloys of Zr-Ce-Hf oxides

    Science.gov (United States)

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  6. Variation of the dimensions and the strength of electrical ceramics during irradiation

    International Nuclear Information System (INIS)

    Blaunshtein, I.M.; Kishinevskaya, M.B.; Muminov, M.I.

    1988-01-01

    Changes were studied in the linear dimensions and the ultimate bend strength of a wide range or ceramic materials (MK and GB7 high-alumina ceramics, the UF-46 mullite-corundum ceramic, SNTs and SK-1 steatite ceramics, and the glasses that have the same chemical composition as that of the glass phase of the GB-7 and UF-46 ceramics) following irradiation with a gamma beam from a Co 60 source and in the field of mixed gamma-neutron radiation from a VVR-SM reactor up to the maximum doses

  7. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    Science.gov (United States)

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  8. Ceramic composite resistors of B4C modified by TIO2 and glass phase

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.

    1998-01-01

    Technical progress in the manufacturing technology of composite materials resulted in arising of new generation of bulk resistors, resistant to high levels of overloads and high temperature. These resistors can be applied in extremely heavy working conditions, for instance in cooperation with ignition circuits. The resistors investigated in our research were performed on the basis of ceramic composite consisted of semiconductor boron carbide B 4 C as conductive phase, aluminium oxide Al 2 O 3 and non-alkali glass as insulators and titanium dioxide TiO 2 . The technological procedure of the fabrication of resistors and the results of the tests, such as temperature dependence of the electrical resistance exploitation trials, are presented. (author)

  9. Fabrication and performance of porous lithium sodium potassium niobate ceramic

    Science.gov (United States)

    Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong

    2018-02-01

    Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.

  10. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Science.gov (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  11. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  12. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  13. Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics

    Science.gov (United States)

    Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.

    2018-05-01

    In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies

  14. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klym, H; Shpotyuk, O; Hadzaman, I [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Ingram, A [Opole University of Technology, 75 Ozimska str., Opole, 45370 (Poland); Filipecki, J, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Institute of Physics of Jan Dlugosz University, 13/15 Armii Krajowei, 42201, Czestochowa (Poland)

    2011-04-01

    The new transition-metal manganite Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  15. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Klym, H; Shpotyuk, O; Hadzaman, I; Ingram, A; Filipecki, J

    2011-01-01

    The new transition-metal manganite Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  16. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Zhong [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Tang, Yuanyuan [School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (China); Liu, Chengshuai, E-mail: csliu@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Li, Fangbai [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2017-01-05

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4} spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4}. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr{sub 2}O{sub 3} and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the

  17. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    International Nuclear Information System (INIS)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-01

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr 1.32 Fe 0.19 Al 0.49 O 4 spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that

  18. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  19. Preparation and Characterization of Pu0.5Am0.5O2-x-MgO Ceramic/Ceramic Composites

    International Nuclear Information System (INIS)

    Jankowiak, A.; Jorion, F.; Donnet, L.; Maillard, C.

    2008-01-01

    This study describes the preparation and characterization of Pu 0.5 Am 0.5 O 2-x -MgO ceramic/ceramic (cercer) composites with 20 and 30 vol% of Pu 0.5 Am 0.5 O 2-x . The sintered materials demonstrated very different reduction behavior when exposed to a reducing sintering cycle. The composites were studied by combined X-ray diffraction (XRD) and oxygen-to-metal ratio measurements and exhibited various amounts of body-centered-cubic (bcc) and face-centered-cubic (fcc) phases corresponding to different reduction states of the mixed actinide oxide. The fcc phases correspond to a near stoichiometry phase while the bcc phases are attributed to most reduced phases, which demonstrate a greater similarity with the Am 2 O 3 bcc phase. The XRD results suggest a reduction of Am prior to Pu, which explains this greater similarity. In addition, the 30 vol% composite contains 65 wt% of the bcc phase while the 20 vol% composite exhibits only 29 wt%. This result can be explained by the percolation theory when applied to the oxygen diffusivity and indicates that a threshold value for Pu 0.5 Am 0.5 O 2-x content in the cercer composite exists where the reduction of the mixed oxide significantly increases. (authors)

  20. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    International Nuclear Information System (INIS)

    Wongmaneerung, R.; Tipakontitikul, R.; Jantaratana, P.; Bootchanont, A.; Jutimoosik, J.; Yimnirun, R.; Ananta, S.

    2016-01-01

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe_0_._5Ta_0_._5)O_3–xPb(Zr_0_._5_3Ti_0_._4_7)O_3 (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  1. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  2. Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis

    Science.gov (United States)

    Koruza, J.; Tellier, J.; Malič, B.; Bobnar, V.; Kosec, M.

    2010-12-01

    Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 °C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 °C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 °C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 °C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.

  3. Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis

    International Nuclear Information System (INIS)

    Koruza, J.; Tellier, J.; Malic, B.; Bobnar, V.; Kosec, M.

    2010-01-01

    Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 deg. C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 deg. C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO 3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 deg. C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 deg. C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.

  4. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    International Nuclear Information System (INIS)

    Gutierrez-Gonzalez, C.F.; Agouram, S.; Torrecillas, R.; Moya, J.S.; Lopez-Esteban, S.

    2012-01-01

    Highlights: ► A cryogenic route has been used to obtain ceramic/metal nanostructured powders. ► The powders present good homogeneity and dispersion of metal. ► The metal nanoparticle size distributions are centred in 17–35 nm. ► Both phases, ceramic and metal, present a high degree of crystallinity. ► Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  5. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  6. Characterization of microstructure of Si3N4 whisker reinforced glass ceramic

    International Nuclear Information System (INIS)

    Han, Byoung Sung; Choi, Shung Shaon

    1993-01-01

    Glass ceramics, especially fiber-reinforced composite ceramics, have attracted a great deal of attention in improving the reliability of ceramic components because of the improvement in various mechanical properties. Through hot-pressing and sintering, 225 cordierite was transformed with glass ceramic and mullite phase. Particularly glass glain size increased with the increasing of the sintering temperature and the heat treatment enhance the toughness and hardness of materials. Like the increased sintering temperature, the roughness increased with increasing whisker vol.%. In case of whisker-rinforced glass ceramic, the fracture surface of samples has been associated with a whisker orientation of samples. (Author)

  7. Ceramic stationary gas turbine development. Final report, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  8. Preparation, Structure, and Dielectric and Magnetic Properties of SrFe2/3W1/3O3 Ceramics

    Science.gov (United States)

    Pavlenko, A. V.; Turik, A. V.; Shilkina, L. A.; Kubrin, S. P.; Rusalev, Yu. V.; Reznichenko, L. A.; Andryushina, I. N.

    2018-03-01

    Polycrystalline samples of SrFe2/3W1/3O3 (SFWO) ceramic were obtained by solid-phase reactions with subsequent sintering using conventional ceramic technology. X-ray diffraction analysis showed that at room temperature, the SFWO ceramic is single-phase and has a perovskite-type structure with tetragonal symmetry and parameters a = 3.941(9) Å, c = 3.955(6) Å, and c/a = 1.0035. In studying the magnetic properties and the Mössbauer effect in SFWO ceramics, it is found that the material is a ferrimagnet, and the iron ions are only in the valence state of Fe3+. It is suggested that in the temperature range of T = 150-210°C, a smeared phase transition from a cubic (paraelectric) phase to a tetragonal (ferroelectric) phase takes place in SFWO with decreasing temperature.

  9. Fabrication, phase, microstructure and electrical properties of BNT-doped (Sr,La)TiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Eaksuwanchai, Preeyakarn; Promsawat, Methee; Jiansirisomboon, Sukanda; Watcharapasorn, Anucha [Chiang Mai University, Chiang Mai (Thailand)

    2014-08-15

    This research studied the effects of Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} (BNT) doping on the phase, density, microstructure and electrical properties of (Sr,La)TiO{sub 3} (SLTO) ceramics. Separately calcined SLTO and BNT powders were mixed together to form (1-x)SLTO-xBNT (where x = 0, 0.01, 0.03, 0.05 and 0.07 mol fraction) compounds that were pressed into pellets and then sintered at 1500 .deg. C for 3 h under ambient atmosphere. The relative bulk densities of all the ceramics were greater than 95% their theoretical values which were confirmed by their nearly zero-porosity microstructure. X-ray diffraction patterns indicated complete solid solutions with a cubic structure and a slight lattice contraction when BNT was added. The electrical conductivity was found to decrease with BNT addition, suggesting a reduced number of mobile charges. The dielectric constant also showed limited polarization due to defect dipoles formed by aliovalent ionic substitution of BNT. Further optimization in terms of composition and defect chemistry could lead to a compound suitable for thermoelectric applications.

  10. Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content

    Science.gov (United States)

    Zeng, Tao; Lou, Qi-Wei; Chen, Xue-Feng; Zhang, Hong-Ling; Dong, Xian-Lin; Wang, Gen-Shui

    2015-11-01

    The phase transitions, dielectric properties, and polarization versus electric field (P-E) hysteresis loops of Pb0.97La0.02(Zr0.42Sn0.58-xTix)O3 (0.13≤ x ≤0.18) (PLZST) bulk ceramics were systematically investigated. This study exhibited a sequence of phase transitions by analyzing the change of the P-E hysteresis loops with increasing temperature. The antiferroelectric (AFE) to ferroelectric (FE) phase boundary of PLZST with the Zr content of 0.42 was found to locate at the Ti content between 0.14 and 0.15. This work is aimed to improve the ternary phase diagram of lanthanum-doped PZST with the Zr content of 0.42 and will be a good reference for seeking high energy storage density in the PLZST system with low-Zr content. Project supported by the National Natural Science Foundation of China (Grant Nos. 51202273, 11204304, and 11304334) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14DZ2261000).

  11. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  12. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  13. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  14. Ceramics like PZT-PMN

    International Nuclear Information System (INIS)

    Droescher, R.E.; Sousa, V.C.; Bergman, C.P.

    2009-01-01

    The goal of this work was to achieve piezoelectric ceramics referring to the system PZT-PMN Pb(Mg 1 / 3 Nb 2 / 3 Zr 0 , 52 Ti 0 , 48 )O 3 . Have been analysed ceramics like 0,65PZT-0,35PMN ((Pb(Mg 0 , 1167 Nb 0 , 2300 Zr 0 , 3380 Ti 0 , 3120 )O 3 ), 0,75PZT-0,25PMN ((Pb(Mg 0 , 083 Nb 0 . 1675 Zr 0 , 3900 Ti 0 , 3600 )O3) and the 0,85PZT-0,15PMN ((Pb(Mg 0,0500 Nb 0 , 1000 Zr 0 , 4420 Ti 0 , 4080 )O 3 ). The influence of the calcination and concentration of PZT on the lattice phases, microstructure and density was evaluated. Then, the method used was the mixed-oxide method, the samples were taken under different temperatures of calcination before the final sinterizing. The DRX and SEM techniques were used to identify the phases formed and analyse the microstructure, respectively. The main result revealed that, the better way is to realize three burns before the final sinterizing at 1200 o C/4 h . Like that, on obtain for sure the average lattice phases, like: perovskite, pyrochlore and PbO and also tend to densify the samples. (author)

  15. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  16. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  17. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  18. Chemically bonded ceramic matrix composites: Densification and conversion to diffusion bonding

    International Nuclear Information System (INIS)

    Johnson, B.R.; Guelguen, M.A.; Kriven, W.M.

    1995-01-01

    Chemically bonded ceramics appear to be a promising alternative route for near-net shape fabrication of multi-phase ceramic matrix composites (CMC's). The hydraulic (and refractory) properties of fine mono-calcium aluminate (CaAl 2 O 4 ) powders were used as the chemically bonding matrix phase, while calcia stabilized zirconia powders were the second phase material. Samples containing up to 70 wt% (55 vol%) zirconia have been successfully compacted and sintered. Various processing techniques were evaluated. Processing was optimized based on material properties, dilatometry and simultaneous thermal analysis (DTA/TGA). The physical characteristics of this novel CMC were characterized by hardness, density, and fracture toughness testing. Microstructures were evaluated by SEM and phase identification was verified using XRD

  19. Bulk glass ceramics containing Yb{sup 3+}/Er{sup 3+}: β-NaGdF{sub 4} nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yan [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Zhong, Jiasong; Ding, Mingye [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-07-25

    Highlights: • Hexagonal NaGdF{sub 4} nanocrystals embedded bulk glass ceramics were fabricated. • The incorporation of Ln{sup 3+} dopants into the β-NaGdF{sub 4} lattice was demonstrated. • Upconversion luminescence was highly intensified after glass crystallization. • Such glass ceramics had possible application in the optical temperature sensors. - Abstract: Lanthanide doped hexagonal β-NaGdF{sub 4} nanocrystals embedded transparent bulk glass ceramics were successfully fabricated via a phase-separation-controlled crystallization route. Elemental mapping in the scanning transmission electron microscope and optical spectroscopy analysis demonstrated the partition of the active centers into the β-NaGdF{sub 4} crystalline lattice. As a result, upconversion luminescence of the glass ceramic co-doped with Yb{sup 3+} and Er{sup 3+} is about 60 times as high as that of the precursor glass, attributing to the modification of Yb{sup 3+}/Er{sup 3+} surrounding from phase-separated amorphous nanoparticle to β-NaGdF{sub 4} crystalline lattice with low phonon energy and high crystallinity after crystallization. Furthermore, the temperature-dependent green upconversion emissions assigned to {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2} (520 nm) and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} (540 nm) transitions were investigated, and the corresponding fluorescence intensity ratio of these two thermally coupled emitting-states greatly enhanced with increase of temperature. Using such fabricated glass ceramic as an optical thermometric medium, the maximum sensitivity reached as high as 0.0037 K{sup −1} at 580 K. It is expected that the investigated Er{sup 3+}/Yb{sup 3+} codoped glass ceramic might be a very promising candidate for accurate optical temperature sensors.

  20. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  1. Status of plutonium ceramic immobilization processes and immobilization forms

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-01-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R ampersand D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi 2 O 7 ), the desired actinide host phase, with lesser amounts of hollandite (BaAl 2 Ti 6 O 16 ) and rutile (TiO 2 ). Alternative actinide host phases are also being considered. These include pyrochlore (Gd 2 Ti 2 O 7 ), zircon (ZrSiO 4 ), and monazite (CePO 4 ), to name a few of the most promising. R ampersand D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO 2 powder, cold press and sinter fabrication methods, and immobilization form formulation issues

  2. Radiation Damage Effects in Candidate Ceramics for Plutonium Immobilization: Final Report

    International Nuclear Information System (INIS)

    Strachan, Denis M.; Scheele, Randall D.; Icenhower, Jonathan P.; Buck, Edgar C.; Kozelisky, Anne E.; Sell, Rachel L.; Elovich, Robert J.; Buchmiller, William C.

    2004-01-01

    In this document, we summarize our study of the effects of radiation induced damage to the titanate ceramics that were to be the immobilization form for surplus weapons-grade Pu. In this study, we made five ceramic materials: pure-phase pyrochlore, pure-phase zirconolite, pyrochlore-rich baseline, zirconolite-rich baseline, and impurity baseline. Two-hundred specimens were made of which 130 contained approximately 10 mass% 238Pu and 70 contained 10 mass% 239Pu. The specimens containing 239Pu served as materials against which the behavior of the 238Pu-bearing specimens could be compared. In our studies, we measured the true density (density exclusive of surface connected porosity), bulk density, crystalline-phase composition with X-ray diffraction (XRD), and dissolution rates as radiation induced damage accumulated in the 238Pu-bearing specimens. We routinely took photographs of the specimens during each characterization period. From our studies, we determined that these materials swell less than 10% and generally less than 5%. As the material swells, some open porosity can be converted to closed porosity, often causing the true density to decrease more rapidly than the bulk density. In general, 3?1018 a/g of damage accumulation were required for the materials to become amorphous as determined with the XRD method. The order in which the phases became amorphous was brannerite, pyrochlore, and zirconolite with brannerite being the most susceptible to radiation induced damage. However, we also show that Pu is not evenly distributed amongst the phases when multiple phases are present. We were unsuccessful in making a pure brannerite to study. Therefore, the brannerite was always present with other phases. For a material containing about 10 mass% 239Pu, 3?1018 a/g represent about 500 years in the geologic repository. At no time in our studies was there evidence for microcracking in these materials, even upon close examination in a scanning-electron microscope . Upon

  3. Single-phase ceramics with La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}} composition from precursors obtained by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Moure, A.; Tartaj, J.; Moure, C. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049 Madrid (Spain); Castro, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Ines de la Cruz, 3 Cantoblanco, 28049 Madrid (Spain)

    2009-03-15

    Dense ceramics with La{sub 0.80}Sr{sub 0.20}Ga{sub 0.85}Mg{sub 0.15}O{sub 2.825} and La{sub 0.80}Sr{sub 0.15}Ga{sub 0.85}Mg{sub 0.20}O{sub 2.825} compositions have been prepared by sintering of mechanosynthesized precursors. The perovskite is synthesized after 85 h of milling in a planetary mill. Single phases have been obtained at conditions that are not possible if traditional solid-state reaction (SSR) method is used. The influence of milling time and composition in the reactivity of the precursors is studied. Highest purity is obtained in Sr = 0.15 and Mg = 0.20 composition, with relative density higher than 97%. The total elimination of typical secondary phases for these compositions, as SrLaGaO{sub 4} and SrLaGa{sub 3}O{sub 7}, allows the total conductivity of the ceramics to be improved. The influence of the grain size and the nature of the grain boundaries on the electrical characteristic of the ceramics are also discussed. (author)

  4. Preparation of Biomorphic SiC/C Ceramics from Pine Wood via Supercritical Ethanol Infiltration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Biomorphic (wood derived) carbide ceramics with an overall composition in the SiC/C was produced by supercritical ethanol infiltration of low viscosity tetraethylorthosilicate/supercritical ethanol into biologically derived carbon templates (CB-templates) and in situ hydrolysis into Si(OH)4-gel, the Si(OH)4-gel was calcined at 1400℃ to promote the polycondensation of Si(OH)4-gel into SiO2-phase and then carbonthermal reduction of the SiO2 with the biocarbon template into highly porous, biomorphic SiC/C ceramics. The phases and morphology conversion mechanism of resulting porous SiC/C ceramics have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Experimental results showed that the biomorphic cellular morphology of pinewood charcoal was remained in the porous SiC/C ceramic with high precision that consisted of β-SiC with minority of α-SiC and the remain free carbon existed in amorphous phase.

  5. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of Si

  6. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  7. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  8. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  9. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  10. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  11. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    Science.gov (United States)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  13. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    International Nuclear Information System (INIS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  14. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  15. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  16. Elaboration of optical glass-ceramic for frequency doubling

    International Nuclear Information System (INIS)

    Vigouroux, H.

    2012-01-01

    The High power laser development required the need of materials with nonlinear properties. Glass materials can be considered as ideal materials as they can be transparent and elaborated in very large dimension. Precipitation of non-centro symmetric crystalline particles in bulk glass leads to a material with bulk nonlinear properties. This glass-ceramic should be then easily integrated in such laser facilities. In this thesis, the results concerning the precipitation of the phase LiNbO 3 in the glassy-matrix 35 Li 2 O - 25 Nb 2 O 5 - 40 SiO 2 are detailed. The crystallization mechanism of this phase is studied through thermal analysis, optical and electronic microscopy as well as in-situ analyses. These studies reveal glass-ceramics are obtained through a precipitation of the lithium niobate crystalline phase in spherulite shape. The nonlinear optical properties are investigated on this materials and an original, isotropic Second Harmonic Generation Signal (SHG) is registered in the bulk glass-ceramic. A complete study using a multi-scale approach allows the correlation between the spherulite structure and the nonlinear optical properties. A mechanism at the origin of the SHG signal is proposed. This leads to a new approach for transparent inorganic materials development for isotropic SHG conversion. (author) [fr

  17. The effect of point defects on ferroelastic phase transition of lanthanum-doped calcium titanate ceramics

    International Nuclear Information System (INIS)

    Ni, Yan; Zhang, Zhen; Wang, Dong; Wang, Yu; Ren, Xiaobing

    2013-01-01

    Highlights: ► The effect of point defects on phase transitions in Ca (1−x) La 2x/3 TiO 3 was studied. ► When x = 0.45, normal ferroelastic phase transition happens. ► When x = 0.7, a “glassy-like” frozen process appears. ► Point defects weaken the thermodynamic stability of ferroelastic phase. ► Point defects induce a “glassy-like” frozen process. -- Abstract: In the present paper, La-doped CaTiO 3 is studied to investigate the effect of point defects on ferroelastic phase transition of the ceramics. The dynamic mechanical measurements show that the transition temperature of the orthorhombic to tetragonal phase transition of Ca (1−x) La 2x/3 TiO 3 decreases with increasing dopant (La) concentration x. The samples with the dopant content of x = 0.45 and 0.7 exhibit different structure evolution features during their transition processes as revealed by in situ powder X-ray diffraction (XRD) measurement. Moreover, when x = 0.7, the storage modulus shows a frequency-dependent minimum at T g , which can be well fitted with the Vogel–Fulcher relation, and the corresponding internal friction also exhibits a frequency-dependent peak within the same temperature regime. These results thus indicate that doping La suppresses ferroelastic phase transition in CaTiO 3 and induces a “glassy-like” behavior in Ca (1−x) La 2x/3 TiO 3 , which is similar to “strain glass” in Ni-doped Ti 50−x Ni 50+x

  18. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com [Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tipakontitikul, R. [Department of Physics, Ubonratchathani University, Ubonratchathani 31490 (Thailand); Jantaratana, P. [Department of Physics, Kasetsart University, Bangkok 10900 (Thailand); Bootchanont, A.; Jutimoosik, J.; Yimnirun, R. [School of Physics, Institute of Science, and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Ananta, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  19. Phase evolution and aqueous durability of Zr{sub 1−x−y}Ce{sub x}Nd{sub y}O{sub 2−y/2} ceramics designed to immobilize actinides with multi-valences

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yi, E-mail: dingyi2279@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010 (China); Long, Xinggui, E-mail: xingguil@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Zhang, Dong, E-mail: zd0823@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Tan, Zhaoyi [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Lu, Xirui [Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-04-15

    Zr{sub 1−x−y}Ce{sub x}Nd{sub y}O{sub 2−y/2} ceramics, which were designed as waste form materials, were obtained by simultaneous substitution of Ce{sup 4+} and Nd{sup 3+} for Zr{sup 4+} in ZrO{sub 2}. The influences of the simultaneous substitution of Ce and Nd on phase transformation of ZrO{sub 2} were investigated systematically. Also, the aqueous durability of the ceramics was evaluated. The results show that the phase transformation caused by the simultaneous substitution mainly relates to the total content of Ce and Nd. The ZrO{sub 2} ceramics containing Ce + Nd < 30 mol% exhibit both monoclinic and cubic phases, while the ceramics containing Ce + Nd ≥ 30 mol% are cubic phase. And the cubic phase can be stabilized by incorporating 30 mol% Ce + Nd. Moreover, LR{sub i} are modified by the incorporation of Ce and Nd, because of the presence of oxygen vacancies. The Nd and Ce co-doped zirconia waste form exhibit excellent aqueous durability (∼10{sup −5} g m{sup −2} d{sup −1}). - Highlights: •Zr{sub 1−x−y}Ce{sub x}Nd{sub y}O{sub 2−y/2} were obtained by substitution of Ce and Nd for Zr in ZrO{sub 2}. •Phase transformation mainly relates to the total content of Ce and Nd. •Samples with Ce + Nd < 30 mol% show monoclinic and cubic phases, while ≥30 mol% are cubic. •Stabilized cubic zirconia can be obtained by doping with 30 mol% Ce and Nd. •LR{sub Ce} and LR{sub Nd} (42 d) are ∼ 10{sup −5} g m{sup −2} d{sup −1}, exhibiting excellent aqueous durability.

  20. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  1. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.

    Science.gov (United States)

    Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš

    2011-06-01

    The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  3. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  4. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  5. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  6. Contribution to the joining technique of SiC-ceramic using metallic interlayers

    International Nuclear Information System (INIS)

    Gottselig, B.; Gyarmati, E.; Naoumidis, A.; Nickel, H.

    1989-07-01

    For ceramics to be feasible for technical uses suitable joining techniques must be developed that allow reliable ceramic-ceramic and ceramic-metal connections. As yet such procedures exist, based only on empirical studies omitting the reaction behaviour of the joining materials and the specific properties of the reaction products. For this reason the reaction behaviour of silicon carbide with selected metals and subsequently the compatibility of these reaction layers with the ceramic substrate were investigated. The results gained were then applied to silicon carbide joints using intermediate metallic layers. With the reaction phase Ti 3 SiC 2 , found to be the most suitable in basic experiments, joining strengths could be obtained relative tc the mean strength and Weibull modulus comparable to those of the ceramic starting material. (orig.) [de

  7. Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Kazhugasalamoorthy, S.; Jegatheesan, P.; Mohandoss, R.; Giridharan, N.V.; Karthikeyan, B.; Joseyphus, R. Justin; Dhanuskodi, S.

    2010-01-01

    Pure BiFeO 3 (BFO) and La-modified BiFeO 3 (Bi 1-x La x FeO 3 with x = 0.2 and 0.4) ceramic powders were synthesized at relatively low temperature by ferrioxalate precursor method. Pure compositions did not yield phase pure powders and contain secondary phases. At the same time, La-modification at different concentration levels in BFO promoted the formation of perovskite phase with the elimination of secondary phases and phase pure ceramic powders were obtained for the composition Bi 1-x La x FeO 3 with x = 0.4. Further, the effect of lanthanum substitution on the morphology, electrical and magnetic properties was also investigated.

  8. Microstructure and Mechanical Properties of Al2O3/Er3Al5O12 Binary Eutectic Ceramic Prepared by Bridgman Method

    Science.gov (United States)

    Song, Caiyu; Wang, Shunheng; Liu, Juncheng; Zhai, Shuoyan

    2018-01-01

    Directionally solidified Al2O3/Er3Al5O12 (EAG) eutectic ceramic was prepared via vertical Bridgman method with high-frequency induction heating. The effects of the growth rate on the microstructure and mechanical properties of the solidified ceramic were investigated. The experimental results showed that there were no pores or amorphous phases in the directionally solidified Al2O3/EAG eutectic ceramic. Al2O3 phase was embedded in the EAG matrix phase, and the two phases were intertwined with each other to form a typical binary eutectic “hieroglyphic” structure. With the increase of growth rate, the phase size and spacing of the solidified Al2O3/EAG ceramic both decreased, and the growth rate and phase spacing satisfied the λ2v ≈ 60 formula of Jackson-Hunt theory. The cross section microstructure of the solidified ceramic always exhibited an irregular eutectic growth, while the longitudinal section microstructure presented a directional growth. The mechanical properties of the solidified ceramic gradually increased with the increase of growth rate, and the maximum hardness and fracture toughness could reach 21.57 GPa and 2.98 MPa·m1/2 respectively. It was considered that the crack deflection and branching could enhance the toughness of the solidified ceramic effectively. PMID:29601545

  9. Status of plutonium ceramic immobilization processes and immobilization forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.; Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (United States); Vance, E.R.; Jostsons, A. [Australian Nuclear Science and Technology Organization, Menai (Australia)] [and others

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  10. Microstructures and luminescent properties of Ce-doped transparent mica glass-ceramics

    International Nuclear Information System (INIS)

    Taruta, Seiichi; Iwasaki, Yoshitomo; Nishikiori, Hiromasa; Yamakami, Tomohiko; Yamaguchi, Tomohiro; Kitajima, Kunio; Okada, Kiyoshi

    2012-01-01

    Highlights: ► Ce-doped transparent glass-ceramics and their parent glasses. ► TEM and STEM images for the microstructures. ► Each mica crystal did not contain Ce uniformly. ► Emission due to Ce 3+ ions in the glass phase and/or Ce 3+ ions in the mica crystals. - Abstract: Transparent mica glass-ceramics were prepared by heating parent glasses that had been doped with 0.5–15 mol% CeO 2 . During the melting and heat treatment, Ce 4+ ions in the specimens were reduced to Ce 3+ ions, and one or both of these ion species were then replaced with Li + ions in the interlayers of the separated mica crystals. However, scanning transmission electron microscope (STEM) and Z-contrast imaging revealed that the mica crystals did not contain the same amount of Ce. On excitation at 254 nm, the parent glasses and glass-ceramics emitted blue light, which originated from the 5d to 4f transition of the Ce 3+ ions. The emission of the glass-ceramic containing a smaller amount of Ce was attributed to the Ce 3+ ions in both the glass phase and the mica crystals, whereas that of the glass-ceramics containing a larger amount of Ce was caused mainly by Ce 3+ ions in the mica crystals. The dependence of the emission band of the parent glasses on the amount of Ce was a unique feature of the Ce-doped transparent mica glass-ceramics and was not observed in previous studies of Eu-doped parent glasses and mica glass-ceramics.

  11. Ceramic-glass-metal seal by microwave heating

    Science.gov (United States)

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  12. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy

    International Nuclear Information System (INIS)

    Thakur, O.P.; Kumar, Devendra; Parkash, Om; Pandey, Lakshman

    2003-01-01

    The ac electrical data, measured in the frequency range 0.1 kHz-1 MHz, were used to study the electrical response of strontium titanate borosilicate glass ceramic system with bismuth oxide addition. Complex plane plots from these electrical data for various glass ceramic samples reveal contributions from simultaneously operating polarization mechanisms to overall dielectric behavior. The complex modulus (M * ) representation of electrical data for various glass ceramic samples were found to be more informative. Equivalent circuit models, which represent the electrical behavior of glass ceramic samples, were determined using complex non-linear least square (CNLS) fitting. An attempt has been made to understand the dielectric behavior of various glass ceramics in terms of contributions arising from different polarization processes occurring at glassy matrix, crystalline phases, glass to crystal interface region and blocking electrodes. Glass ceramics containing SrTiO 3 and TiO 2 (rutile) phases show thermally stable dielectric behavior

  13. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  14. Preparation and Characterization of Microfiltration Ceramic Membranes Based on Natural Quartz Sand

    Directory of Open Access Journals (Sweden)

    Andrei Ivanets

    2017-06-01

    Full Text Available The effect of phase and chemical composition of natural quartz sand, binder and burnable additives was studied. The conditions of application of the membrane and biocide layers on the formation of porous ceramic and microfiltration membranes were investigated. It is shown that a crystalline oxide of Si(IV is determinant for obtaining the ceramic materials. The presence of carbonates (calcite, dolomite, aragonite, etc. and crystalline aluminosilicates (microcline, albite, phlogopit, etc. leads to a decrease in mechanical strength of ceramics. The biocide coating designed to protect the ceramic membrane surfaces from biofouling was applied and its anti-bacterial activity was shown.

  15. CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP ceramics)

    International Nuclear Information System (INIS)

    Andrade Nono, M.C. de.

    1990-12-01

    This work presents the development and the characterization of CeO 2 -stabilized tetragonal ZrO 2 polycrystals (Ce-TZP ceramics), since it is considered candidate material for applications as structural high performance ceramics. Sintered ceramics were fabricated from mixtures of powders containing different CeO 2 content prepared by conventional and nonconventional techniques. These powders and their resultant sintered ceramics were specified by chemical and physical characterization, compactation state and mechanical properties. The chemical characteristics were determined by chemical analysis and the physical characteristics were evaluated by phase content, particle and agglomerate size and aspect, and powder porosity. (author)

  16. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  17. Substitution-induced near phase transition with Maxwell-Wagner polarization in SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} ceramics [A = W, Mo and x = 0, 0.025

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Prasun; Franco, Adolfo Jr. [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil)

    2017-10-15

    The synthesis, micro-structure, spectroscopic, and dielectric properties of SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} [with A=W, Mo and x = 0, 0.025] ceramics were systematically studied. A relative density of ≥98% was obtained for all the samples using a two-step solid state sintering process. XRD images showed that a single phase layered perovskite structure of SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) was formed. The orthorhombic structure with A2{sub 1}am phase group was found up to ∝2.5 at.% substitution of W and Mo into the SBN matrix. SEM revealed the rod-like grain structure similar to the Maxwell-Wagner (MW) parallel plate capacitor model in SBN ceramic, whereas smaller heterogeneous grain structure was observed in W and Mo donor doped ceramics. The initial high value of real and imaginary part of relative permittivity also indicated the presence of interfacial MW relaxation in the SBN ceramics. The experimental data fit well to the theoretical data obtained from MW polarization model in SBN ceramics. The possible origin of the difference of the properties present in the doped sample has been explained based on grain size, orientation, and modification done in the ceramic matrices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Silsesquioxane-derived ceramic fibres

    Science.gov (United States)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  19. Phase assemblage study and cytocompatibility property of heat treated potassium magnesium phosphate-silicate ceramics.

    Science.gov (United States)

    Kumar, Ravi; Kalmodia, Sushma; Nath, Shekhar; Singh, Dileep; Basu, Bikramjit

    2009-08-01

    This article reports the study on a new generation bioactive ceramic, based on MgKPO(4) (Magnesium Potassium Phosphate, abbreviated as MKP) for biomedical applications. A series of heat treatment experiments on the slip cast silica (SiO(2)) containing MKP ceramics were carried out at 900, 1,000 and 1,100 degrees C for 4 h in air. The density of the slip cast ceramic increases to 2.5 gm/cm(3) upon heat treatment at 900 degrees C. However, no significant change in density is measured upon heat treatment to higher temperature of 1,000 and 1,100 degrees C. On the basis of XRD results, the presence of K(2)MgSi(5)O(12) and dehydrated MgKPO(4) were confirmed and complementary information has also been obtained using FT-IR and Raman spectroscopy. In order to confirm the in vitro cytocompatibility property, the cell culture tests were carried out on selected samples and the results reveal good cell adhesion and spreading of L929 mouse fibroblast cells. MTT assay analysis with L929 cells confirmed non-cytotoxic behavior of MKP containing ceramics and the results are comparable with sintered HAp ceramics. It is expected that the newly developed MKP based materials could be a good substitute for hydroxyapatite (HAp or HA) based bioceramics.

  20. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  1. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  2. Cordierite Glass-Ceramics for Dielectric Materials

    International Nuclear Information System (INIS)

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  3. Structure properties and relaxor characteristics of the phases transformation in BaTi{sub 0.5}(Fe{sub 0.33}Mo{sub 0.17})O{sub 3} perovskite ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Bourguiba, Fayçal, E-mail: fayssalbourguiba@gmail.com [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, Monastir, 5019 (Tunisia); Dhahri, Ah.; Tahri, Tarek [Laboratoire de Physique appliqué, Département de physique, Faculté des sciences de, Sfax, 3018 (Tunisia); Dhahri, J. [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, Monastir, 5019 (Tunisia); Abdelmoula, N. [Laboratoire des Matériaux Ferroélectriques (LMF), LR-Physique-Mathématiques et Applications, Université de Sfax, Faculté des Sciences (FSS), Route de Soukra km 3.5 B.P 1171, 3000, Sfax (Tunisia); Taibi, K. [Laboratoire de Science et Génie des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Hlil, E.K. [Institut Néel, CNRS-Université J. Fourier, B.P. 166, 38042, Grenoble (France)

    2016-08-05

    The effect of replacing titanium by iron and molybdenum in the B site on the structural and physical properties of BaTi{sub 0.5}(Fe{sub 0.33}Mo{sub 0.17})O{sub 3} polycrystalline sample was investigated by X-ray diffraction, scanning electron microscopy (SEM) as well as dielectric characterizations. Crystal phase, microstructure, and dielectric property of the ceramic were examined. A single hexagonal perovskite structure with space group P6{sub 3}/mmc was obtained at 1400 °C and stabilized at room temperature. The microstructural study of the sintered pellets revealed that the plate-like grains are the typical grain morphologies in this ceramic. The temperature dependence of the dielectric properties was investigated in the frequency range 1 kHz to 1 MHz. Three dielectric relaxations were observed in the present ceramic at the temperature ranges of 330–473 K, 473–550 K and 650–800 K with a maximum in the dielectric permittivity (ε{sup ’}{sub r} ∼ 3518 at 443 K at 1 KHz, ε{sup ’}{sub r} ∼4335 at 502 K at 1 KHz and ε{sup ’}{sub r} ∼11,331 at 749 K at 1 KHz) that shifted to a higher temperature with increasing frequency. Temperature dependent variation of the dielectric constant showed a diffused phase transition which can be well described by fitting the modified Curie–Weiss relation, (1/ε{sup ‘}{sub r}–1/ε{sup ‘}{sub r,max})=(T–T{sub m}){sup γ}/C. - Highlights: • The BaTi{sub 0.5}(Fe{sub 0.33}Mo{sub 0.17})O{sub 3} ceramic was prepared by solid state reaction. • The sample crystallizes in the hexagonal P6{sub 3}/mmc structure. • Temperature dependency dielectric study showed relaxor kind phase transition for different temperature Regions.

  4. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  5. Thermal properties of PZT95/5(1.8Nb) and PSZT ceramics

    International Nuclear Information System (INIS)

    DiAntonio, Christopher Brian; Rae, David F.; Corelis, David J.; Yang, Pin; Burns, George Robert

    2006-01-01

    Thermal properties of niobium-modified PZT95/5(1.8Nb) and PSZT ceramics used for the ferroelectric power supply have been studied from -100 C to 375 C. Within this temperature range, these materials exhibit ferroelectric-ferroelectric and ferroelectric-paraelectric phase transformations. The thermal expansion coefficient, heat capacity, and thermal diffusivity of different phases were measured. Thermal conductivity and Grueneisen constant were calculated at several selected temperatures between -60 C and 100 C. Results show that thermal properties of these two solid solutions are very similar. Phase transformations in these ceramics possess first order transformation characteristics including thermal hysteresis, transformational strain, and enthalpy change. The thermal strain in the high temperature rhombohedral phase region is extremely anisotropic. The heat capacity for both materials approaches to 3R (or 5.938 cal/(g-mole*K)) near room temperature. The thermal diffusivity and the thermal conductivity are quite low in comparison to common oxide ceramics, and are comparable to amorphous silicate glass. Furthermore, the thermal conductivity of these materials between -60 C and 100 C becomes independent of temperature and is sensitive to the structural phase transformation. These phenomena suggest that the phonon mean free path governing the thermal conductivity in this temperature range is limited by the lattice dimensions, which is in good agreement with calculated values. Effects of small compositional changes and density/porosity variations in these ceramics on their thermal properties are also discussed. The implications of these transformation characteristics and unusual thermal properties are important in guiding processing and handling procedures for these materials

  6. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  8. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    International Nuclear Information System (INIS)

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  9. Development of low-expansion ceramics with strength retention to elevated temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, D.A.; Brown, J.J. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1994-09-01

    The development of advanced engines has resulted in the need for new ceramic compositions which exhibit thermo-mechanical properties suitable for the engine environment, e.g., low thermal expansion, stability to 1,200 C, and thermal shock resistance. To meet these goals, a two phase research program was instituted. In the first phase, new oxide ceramics were identified in the AlPO{sub 4}-{beta}-eucryptite, {beta}-cristobalite, mullite and zircon systems. This research focused on screening and property characterization of ceramics in the four systems. The most promising compositions in the AlPO{sub 4}-{beta}-eucryptite and zircon systems were then further evaluated and developed in the second phase with the goal of being ready for prototype testing in actual engines. Of the compositions, calcium magnesium zirconium phosphate (zircon system) exhibits the most desirable properties and is presently being developed for commercialization.

  10. Corrosion of a Pu-doped zirconolite-rich ceramic

    International Nuclear Information System (INIS)

    Bakel, A.J.; Buck, E.C.; Wolf, S.F.; Chamberlain, D.B.; Bates, J.K.; Ebbinghaus, B.B.

    1997-01-01

    As part of a large Pu disposition program, a zirconolite-rich titanate ceramic is being developed at Lawrence Livermore National Laboratory (LLNL) as a possible immobilization material. This same material is being tested at Argonne National Laboratory (ANL). The goal of this study is to describe the corrosion behavior of this ceramic, particularly the release of Pu and Gd, using results from several static corrosion tests (MCC-1, PCT-A, and PCT-B). The release of relatively large amounts of Al, Ba, and Ca in short-term tests (3 day MCC-1 and 7 day PCT-A) indicates that these elements are released from grain boundaries or from highly soluble phases. Results from long-term (28, 98, and 182 day) PCT-B show that the releases of Al, Ba, and Ca decrease with time, the releases of U and Zr increase with time, and that the releases of Cs, Gd, Mo, and Pu remain fairly constant. Formation of alteration phases may lead to the decrease of Ba and Ca in leachate solutions. Due to the heterogeneous nature of the material, the formation of alteration phases, and the inherently low solubility of several elements, no element(s) could be recommended as good markers for the overall corrosion of this ceramic. Data show that, due to the complex nature of this material, the release of each element should be considered separately

  11. Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites

    International Nuclear Information System (INIS)

    Wahsh, M.M.S.; Khattab, R.M.; Awaad, M.

    2012-01-01

    Highlights: ► Alumina–mullite–zirconia ceramic composites were prepared from alumina and zircon. ► Constant amount of magnesia was added as a sintering aid. ► Mechanical properties were enhanced with increasing of zircon up to 30.52 mass%. ► All of ceramic composites were achieved excellent thermal shock resistance. -- Abstract: Alumina–mullite–zirconia ceramic composites were prepared by reaction bonding of alumina and zircon mixtures after firing at different temperatures 1300°, 1400° and 1500 °C. Constant amount of magnesia was added as a sintering aid. The technological parameters of the sintered ceramic composites, i.e. the mechanical properties and densification parameter as well as thermal shock resistance, have been investigated. The phase compositions and microstructure of the sintered ceramic composites were detected by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated that alumina–mullite–zirconia ceramic composites fired at 1500 °C for 2 h were achieved a good densification parameters and mechanical properties as well as excellent thermal shock resistance. In addition, these ceramic composites were showed enhancement in Vickers’ microhardness and fracture toughness values.

  12. Highly textured KNN-based piezoelectric ceramics by conventional sintering

    International Nuclear Information System (INIS)

    Zapata, Angelica Maria Mazuera; Silva Junior, Paulo Sergio da; Zambrano, Michel Venet

    2016-01-01

    Full text: Texturing in ferroelectric ceramics has played an important role in the enhancement of their piezoelectric properties. Common methods for ceramic texturing are hot pressing and template grain ground; nevertheless, the needed facilities to apply hot pressing and the processing of single crystal make the texture of ceramics expensive and very difficult. In this study, a novel method was investigated to obtain highly textured lead-free ceramics. A (K 0.5 Na 0.5 ) 0.97 Li 0. 0 3 Nb 0.8 Ta 0. 2 matrix (KNLNT), with CuO excess was sintered between 1070 and 1110 °C following a solid state reaction procedure. The CuO excess promotes liquid phase formation and a partial melting of the material. XRD patterns showed the intensity of (100) family peaks became much stronger with the increasing of sintering temperature and CuO. In addition, Lotgering factor was calculated and exhibited a texture degree between 40 % and 70 % for sintered samples having 13 and 16 wt. % CuO, respectively. These, highly textured ceramics, with adequate cut, can be used as substitutes single crystals for texturing of KNN-based lead-free ceramics. (author)

  13. Studies on Bi-Sr-Ca-Cu-O glasses and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Singh, R.; Zacharias, E.

    1991-01-01

    Bi-Sr-Ca-Cu-O glasses and glass ceramics of various compositions were synthesised. The glass transition temperature varies from 396 to 422degC depending on the glass composition. The bulk glass ceramics of 4334, 4336, 2223 and 4246 compositions show superconductivity when the corresponding glass samples were heat-treated in air at 820degC for 3, 9, 12 and 24 h respectively. X-ray diffraction studies show that the superconducting phase present in all these compositions is Bi 2 Sr 2 Ca 1 Cu 2 O x . The 4334 glass ceramic is almost a single-phase material with a preferred orientation such that the c axis is normal to the sample surface. The 2223 glass ceramic has a higher T c (onset) than the other three compositions indicating the presence of high T c phase (110 K) also. ESR studies on the glass samples indicate the existence of Cu 2+ . The effect of heat treatment on ESR shows that the intensity of resonance decreases with increase in heat-treatment duration. This effect is more pronounced for the 4334 and 2223 compositions. The advantages of synthesizing superconducting materials by glass route are discussed in view of practical applications. (author). 9 refs., 6 figs

  14. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and...

  15. Production of superconducting ceramic oxides by coprecipitation

    International Nuclear Information System (INIS)

    Bizaio, L.R.; Lima, M.A.F. de; Figueiredo Jardim, R.de; Pinheiro, E.A.; Galembeck, F.

    1988-01-01

    An alternative method for production of ceramic oxides is described. The method consist in the coprecipitation reaction of metallic ions with oxalic acid. The obtainment samples present additional phases characterized by X-rays and optical microscopy. (C.G.C.) [pt

  16. Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Vesna Paunović

    2010-12-01

    Full Text Available La/Mn codoped BaTiO3 with different La2O3 content, ranging from 0.1 to 5.0 at% La, was investigated regarding their microstructural and dielectric characteristics. The content of 0.05 at% Mn was constant in all investigated samples. The samples were sintered at 1320°C and 1350°C for two hours. Microstructural studies were done using SEM and EDS analysis. The fine-grained microstructure was obtained even for low content of La. The appearance of secondary abnormal grains with serrated features along grain boundaries was observed in 1.0 at% La-BaTiO3 sintered at 1350°C. Nearly flat permittivity-temperature response was obtained in specimens with 2.0 and 5.0 at% La. Using the modified Curie-Weiss law a critical exponent γ and C’were calculated. The obtained values of γ pointed out the diffuse phase transformation in heavily doped BaTiO3 and great departure from the Curie-Weiss law for low doped ceramics.

  17. Poly(borosiloxanes as precursors for carbon fiber ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Renato Luiz Siqueira

    2007-06-01

    Full Text Available Ceramic matrix composites (CMCs, constituted of a silicon boron oxycarbide (SiBCO matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS or poly(borosiloxane (PBS matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence of Si-O-B bonds at 880 cm-1, due to the incorporation of the crosslinker trigonal units of BO3 in the polymeric network. X ray diffraction analyses exhibited an amorphous character of the resulting polymer-derived ceramics obtained by pyrolysis up to 1000 °C under inert atmosphere. The C/SiBCO composites showed better thermal stability than the C/SiOC materials. In addition, good adhesion between the carbon fiber and the ceramic phase was observed by SEM microscopy

  18. Phase transformation and impedance spectroscopic study of Ba substituted Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Rekha [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana (India); Agarwal, Ashish; Sanghi, Sujata [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana (India); Sindhu, Monica [Department of Physics, MKJK College, Rohtak, 124001, Haryana (India); Ahlawat, Navneet [Matu Ram Institute of Engineering and Management, Rohtak, 124001, Haryana (India)

    2016-08-15

    (Na{sub 0.5}Bi{sub 0.5}){sub 1−x}Ba{sub x}TiO{sub 3} (x = 0.05, 0.1 and 0.15) ceramics abbreviated as (NBBT1, NBBT2 and NBBT3) are fabricated by conventional ceramic fabrication technique. The analysis of X-ray diffraction pattern of the prepared ceramic performed by Rietveld refinement indicate that crystal structure is rhombohedral for NBBT1, tetragonal for NBBT3 and a phase boundary occurs for NBBT2. Impedance spectroscopy has been employed to study the electrical properties of these ceramics in the frequency range of 10 Hz to 5 MHz and in a temperature range of 303 K–723 K. Frequency and temperature dependent electrical data is analyzed in the framework of conductivity, impedance and electric modulus formalisms. Conductivity spectrum obeys double power law for NBBT1, which is evidenced from two different dispersion regions. While for NBBT2 and NBBT3 only single power law is observed. Relaxation frequency for impedance is found to increase with temperature and obeys Arrhenius relationship with activation energy ≈0.764, 0.527 and 0.471 eV for NBBT1, NBBT2 and NBBT3 respectively. Variation of dielectric constant and tanδ with frequency at different temperatures was analyzed with the help of Maxwell–Wagner and Koop's phenomenogical theory. The presence of peaks in plots showing frequency dependence of tanδ for NBBT2 and NBBT3 indicates relaxor behavior of these compositions. - Highlights: • (Na{sub 0.5}Bi{sub 0.5}){sub 1−x}Ba{sub x}TiO{sub 3} (x = 0.05, 0.1, 0.15) ceramics have been synthesized. • There is change in crystal structure with Ba doping. • NBBT2 and NBBT3 show relaxor behavior.

  19. Synthesis of (Zn, Mg)TiO{sub 3}-TiO{sub 2} composite ceramics for multilayer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Wu, S.P., E-mail: chwsp@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Tu, W.P.; Jiao, L.; Zeng, Z.O. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-11-01

    (Zn{sub 0.8}Mg{sub 0.2})TiO{sub 3}-xTiO{sub 2} composite ceramics has been prepared via the solid-phase synthesis method. TiO{sub 2} was employed to tone temperature coefficient of resonant frequency ({tau}{sub f}) and stabilize hexagonal (Zn, Mg)TiO{sub 3} phase. 3ZnO-B{sub 2}O{sub 3} was effective to promote sintering. The movement of grain boundary was obvious because of the liquid phase sintering. The scanning electron microscope (SEM) photographs and energy dispersive spectrometer (EDS) patterns showed that segregation and precipitation of dissociative (Zn, Mg)TiO{sub 3} grains occurred at grain boundary during sintering. SnO{sub 2} was used as inhibitor to prevent the grain boundary from moving. The dielectric behaviors of specimen strongly depended on structural transition and microstructure. We found that 1.0 wt.% 3ZnO-B{sub 2}O{sub 3} doped (Zn, Mg)TiO{sub 3}-0.25TiO{sub 2} ceramics with 0.1 wt.% SnO{sub 2} additive displayed excellent dielectric properties (at 1000 deg. C): {epsilon}{sub r} = 27.7, Q x f = 65,490 GHz (at 6.07 GHz) and {tau}{sub f} = -8.88 ppm deg. C{sup -1}. The above-mentioned material was applied successfully to make multilayer ceramic capacitors (MLCCs), which exhibited an excellent electrical property. The self-resonance frequency (SRF) and equivalent series resistance (ESR) of capacitor decreased with capacitance increasing, and the quality factor (Q) of capacitor reduced as frequency or capacity increased.

  20. Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique

    Directory of Open Access Journals (Sweden)

    Siti Khadijah Hubadillah

    2016-06-01

    Full Text Available In this study, low cost ceramic supports were prepared from kaolin via phase inversion technique with two kaolin particle sizes, which are 0.04–0.6 μm (denoted as type A and 10–15 μm (denoted as type B, at different kaolin contents ranging from 14 to 39 wt.%, sintered at 1200 °C. The effect of kaolin particle sizes as well as kaolin contents on membrane structure, pore size distribution, porosity, mechanical strength, surface roughness and gas permeation of the support were investigated. The support was prepared using kaolin type A induced asymmetric structure by combining macroporous voids and sponge-like structure in the support with pore size of 0.38 μm and 1.05 μm, respectively, and exhibited ideal porosity (27.7%, great mechanical strength (98.9 MPa and excellent gas permeation. Preliminary study shows that the kaolin ceramic support in this work is potential to gas separation application at lower cost.

  1. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  2. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M. [Dept. of Electrical Engineering, Bengal Institute of Technology Kolkata (India); Mukherjee, S. [Dept. of Metallurgical Engineering, Jadavpur University, Kolkata (India); Maitra, S. [Govt. College of Engg. and Ceramic Technology, Kolkata (India)

    2012-01-15

    Barium strontium titanate (BST) ceramics (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits. (author)

  3. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle [Clemson Univ., SC (United States); Bordia, Rajendra [Clemson Univ., SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chiu, Wilson [Univ. of Connecticut, Storrs, CT (United States); Amoroso, Jake [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-28

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  4. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Science.gov (United States)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  5. Incorporation of flat glass in red ceramic

    International Nuclear Information System (INIS)

    Caldas, T.C.C.; Morais, A.S.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This work have as objective evaluate the effect of incorporation of up to 10% by weight of powdered flat glass , from civil industry, in red ceramic. The bodies were obtained by uniaxial pressing at 20 MPa and fired at temperatures of 850 ° C and 1050 ° C. The parameters studied were linear firing shrinkage, apparent density, water absorption and flexural rupture stress for the evaluation of the mechanical physical properties. The microstructure was observed by scanning electron microscopy and phase identification was performed by X-ray diffraction. The results showed that the waste changes the microstructure and properties of red ceramics. (author)

  6. Modeling of thermal explosion under pressure in metal ceramic systems

    International Nuclear Information System (INIS)

    Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.

    1998-01-01

    The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition

  7. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  8. The microscopic twins and their crystal phase in the high Tc Y-Ba-Cu-O and Dy-Ba-Cu-O superconductive ceramics

    International Nuclear Information System (INIS)

    Zu, Z.J.; Chen, Y.L.

    1988-01-01

    Most consider that the structure of Y-Ba- Cu-O and Dy-Ba-Cu-O stable superconductive crystals with high Tc is associated with the right-angled phase. The superconductivity is closely connected with the right-angled character of the crystalline texture; the better the right- angled character, the better the superconductivity. From statistical investigations of examples the authors have discovered that most of the Y-Ba-Cu-O and Dy-Ba-Cu-O superconductivity with high Tc ceramic crystals is in the monoclinic phase, which, consists of microscopic, lamellar, single twins. The long-columnar grains consisting of lamellar twin slabs show the optical characteristics of right-angled phase. The microscopic twinning and grain morphologies are summarized in this paper

  9. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  10. Corrosion of immersed ceramic heat exchanger tubes in aluminium foundry baths

    Energy Technology Data Exchange (ETDEWEB)

    Bracho-Troconis, C.B.; Frot, G.; Bienvenu, Y. [Ecole des Mines de Paris, Evry (France). Centre des Materiaux; Frety, N. [Ecole des Mines d`Albi-Carmaux (France); Alliat, I. [CERSTA-Gaz de France, Saint-Denis (France)

    1997-12-31

    The corrosion of three non-oxide ceramics by Al-9Si-3Cu baths and by fluxes (mixtures of chlorides and fluorides of sodium and potassium) at about 750 C was studied in a foundry environment. Comparison of results of the metallurgical examination of A, a silicon-nitride-bonded silicon carbide and of B, a reaction-bonded silicon nitride, surface treated to fill all the external porosity provides some insight into the role of the bonding phase and the porosity. Grade C is a graphite bonded silicon carbide with an external protection by a ceramic glazing. The SiC phase in the tubes is inert to the corrosive liquids (attributed to the silicon content in the metal). A and C ceramics react only in the presence of a flux. Sodium and chlorine were identified in the corrosion products as well as AlN (A) and Al{sub 4}C{sub 3} (C), resulting from reaction of the silicon nitride or of the graphite bonding phase with aluminium. This suggests that the fluxes are responsible for the corrosive process, by causing the formation of gaseous aluminium halides which penetrate the porous bonding phase and react with it to form AlN or Al{sub 4}C{sub 3}. (orig.) 13 refs.

  11. Atomic-deficient nanostructurization in water-sorption alumomagnesium spinel ceramics MgAl2O4

    Science.gov (United States)

    Ingram, A.

    2018-02-01

    Atomic-deficient nanostructurization in alumomagnesium MgAl2O4 ceramics sintered at 1100-1400 °C caused by water sorption are studied employing positron annihilation lifetime spectroscopy. Detected PAL spectra are reconstructed from unconstrained x4-term decomposition, and further transformed to x3-term form to be applicable for analysis with x3-x2-CDA (coupling decomposition algorithm). It is proved that water-immersion processes reduce positronium (Ps) decaying in large-size holes of ceramics (1.70-1.84 nm in radius) at the expense of enhanced trapping in tiny ( 0.2 nm in radius) Ps-traps. The water sorption is shown to be more pronounced in structurally imperfect ceramics sintered at T s = 1100-1200 °C due to irreversible transformations between constituting phases, while reversible physical-sorption processes are dominated in structurally uniform ceramics composed of main spinel phase.

  12. Scanning Auger microscopy study of lanthanum partitioning in sphene-based glass-ceramics

    International Nuclear Information System (INIS)

    Hocking, W.H.; Hayward, P.J.; Watson, D.G.; Allen, G.C.

    1984-01-01

    Glass-ceramics are being investigated as possible hosts for the radioactive wastes that would result from recycling irradiated nuclear fuels. The partitioning of lanthanum in sphene-based glass-ceramics has been studied by scanning Auger electron microscopy for lanthanum concentrations from 0.2 to 2.0 mol.%. Sphene crystals (CaTiSiO 5 ) were located in the silica-rich glass matrix by recording digital Auger images of the calcium and titanium distributions. The sphene crystals were typically 0.5 to 5 μm in size and occupied approximately 40% of the total specimen volume. Auger spot analyses revealed that lanthanum was strongly partitioned into the sphene phase of phosphorus-free glass-ceramics; however, when a small amount of phosphorus was included in the glass-ceramic composition as a crystal nucleating agent, the lanthanum was concentrated in a third minor phase which also contained calcium, phosphorus and oxygen. Chemical shift effects in the Auger spectra of silicon, titanium and phosphorus showed evidence for electron-stimulated desorption of oxygen. (author)

  13. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  14. Transmission electron microscope studies of phase transitions in single crystals and ceramics of ferroelectric Pb(Sc1/2Ta1/2)O3

    International Nuclear Information System (INIS)

    Baba-Kishi, K.Z.; Barber, D.J.

    1990-01-01

    An account is given of transmission electron microscope investigations of the phase transitions in single crystals and ceramics of the complex perovskite-structured ferroelectric 'relaxor' compound Pb(Sc 1/2 Ta 1/2 )O 3 . The crystal symmetries pertaining to both the non-polar paraelectric (PE) and polar ferroelectric (FE) states have been studied by the technique of convergent-beam electron diffraction. A new phase transition has been discovered in the temperature range for which the FE and PE states coexist. The new phase transition is interpreted as the creation of a modulated antiferroelectric state, and this is viewed as marking a departure from relaxor behaviour towards more 'normal' ferroelectric behaviour. (orig.)

  15. Thermal properties and crystallization of lithium–mica glass and glass-ceramics

    International Nuclear Information System (INIS)

    Nia, A. Faeghi

    2013-01-01

    Highlights: • Two groups of Li–mica glass-ceramics, have been compared. • By controlling the glass composition, crystalline lepidolite was obtained. • The T p of Li–mica was through the previous virgilite and eucryptite phase. - Abstract: The purpose of this study was the synthesis of two groups of Li–mica glass-ceramics denoted by lepidolite (Al 2.5 F 2 KLi 1.5 O 10 Si 3 ) and Li-phlogopite (LiMg 3 AlSi 3 O 10 F 2 ). The studied system was SiO 2 –Al 2 O 3 –MgO–K 2 O–Li 2 O. A total of 3 compositions were prepared. Bulk casted glasses and sintered glass-ceramics of Li-phlogopite and lepidolite systems, were prepared. Eucryptite and virgilite were two prior phases of lepidolite and Li-phlogopite crystallization. It was shown that the obtained glass-ceramics have lower TEC than corresponding glasses. Sinterability of lepidolite glass-ceramic was shown that improved by increasing the Al 2 O 3 content in glass composition. TEC and microhardness values were α = 6.08 × 10 −6 /°C, 755 ± 11.1, α = 7.86 × 10 −6 /°C, 739 ± 7.4 and α = 5.05 × 10 −6 /°C, 658 ± 6.2 HV for Li-lep, Klep1 and Klep2 glasses, respectively

  16. Potentiality of a frit waste from ceramic sector as raw material to glass-ceramic material production; Potencialidad de un residuo de frita procedente del sector ceramico como materia prima para la produccion de material vitroceramico

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Albert, E.; Llop Pla, J.; Notari Abad, M. D.; Carda Castello, J. B.

    2015-10-01

    This work consists of studying the devitrification capacity of a residue from sodium-calcium frit, using the vitreous powder sintering method, which follows the traditional ceramic processing route, including a specific heat treatment to generate the appearance of crystals from the original glass phase. Initially the frit residue has been characterized by instrumental techniques such as XRF, XRD and DTA/TG. Furthermore, the chemical analysis (XRF) has allowed the prediction of devitrification potentiality of this residue by theoretical approaches represented by Gingsberg, Raschin-Tschetverikov and Lebedeva ternary diagrams. Then, this residue was subjected to traditional ceramic method, by changing the grinding time, the pressing pressure and prepared samples were obtained at different temperatures. In this part, the techniques for measuring particle size by laser diffraction and XRD and SEM to evaluate the generated crystalline phases, were applied. Finally, it has been found that this frit residue works as glass-ceramic precursor, devitrifying in wollastonite crystals as majority phase and without being subjected to the melting step of the glass-ceramic typical method. (Author)

  17. Development in laser peening of advanced ceramics

    Science.gov (United States)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  18. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  19. Crystallization of pyroxene phases and physico-chemical properties of glass-ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic glass system

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S.M.; Salama, S.N.; Abo-Mosallam, H.A., E-mail: abomosallam@yahoo.com.au

    2015-01-15

    The crystallization characteristics, crystalline phase assemblages and solid solution phases developed due to thermally crystallized glasses based on the Li{sub 2}SiO{sub 3}–Li{sub 2}Si{sub 2}O{sub 5}–LiCrSi{sub 2}O{sub 6} (1028 ± 3 °C) eutectic glass system by replacing some trivalent oxides instead of Cr{sub 2}O{sub 3} were investigated. The microhardness and chemical durability of the glass-ceramics were also determined. Lithium meta and disilicate (Li{sub 2}SiO{sub 3} and Li{sub 2}Si{sub 2}O{sub 5}), lithium gallium silicate (LiGaSiO{sub 4}), and varieties of pyroxene phases, including Cr-pyroxene phase, i.e. lithium-kosmochlor (LiCrSi{sub 2}O{sub 6}), lithium aluminum silicate (LiAlSi{sub 2}O{sub 6}), lithium indium silicate (LiInSi{sub 2}O{sub 6}) and pyroxene solid solution of Li-aegerine type [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}] were the main crystalline phases formed in the crystallized glasses. There is no evidence for the formation of solid solution or liquid immiscibility gaps between LiAlSi{sub 2}O{sub 6} or LiInSi{sub 2}O{sub 6} phases and LiCrSi{sub 2}O{sub 6} phase. However, LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} components were accommodated in the pyroxene structure under favorable conditions of crystallization to form monomineralic pyroxene solid solution phase of the probably formula [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}]. The type and compatibility of the crystallized phases are discussed in relation to the compositional variation of the glasses and heat-treatment applied. The microhardness values of the crystalline materials ranged between 5282 and 6419 MPa while, the results showed that the chemical stability of the glass-ceramics was better in alkaline than in acidic media. - Highlights: • Glass ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic (1028 ± 3 °C) glass were prepared. • LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} phases form monomineralic pyroxene solid

  20. The Structural Ceramics Database: Technical Foundations

    Science.gov (United States)

    Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.

    1989-01-01

    The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397

  1. Tungstate-based glass-ceramics for the immobilization of radio cesium

    Science.gov (United States)

    Drabarek, Elizabeth; McLeod, Terry I.; Hanna, John V.; Griffith, Christopher S.; Luca, Vittorio

    2009-02-01

    The preparation of tungstate-containing glass-ceramic composites (GCC) for the potential immobilization of radio cesium has been considered. The GCC materials were prepared by blending two oxide precursor compositions in various proportions. These included a preformed Cs-containing hexagonal tungsten bronze (HTB) phase (Cs 0.3Ti 0.2W 0.8O 3, P6 3/ mcm) and a blend of silica and other oxides. The use of the HTB phase was motivated on the assumption that a HTB-based adsorbent could be used to remove cesium directly from aqueous high level liquid waste feeds. In the absence of the HTB, glass-ceramics were relatively easily prepared from the Cs-containing glass-forming oxide blend. On melting the mixture a relative complex GCC phase assemblage formed. The principal components of this phase assemblage were determined using X-ray powder diffraction, 133Cs MAS-NMR, and cross-sectional SEM and included glass, various zeolites, scheelite (CaWO 4) and a range of other oxide phases and Cs-containing aluminosilicate. Importantly, under no circumstance was cesium partitioned into the glass phase irrespective of whether or not the composition included the preformed Cs-containing HTB compound. For compositions containing the HTB, cesium was partitioned into one of four major phases including zeolite; Cs-silica-tungstate bronze, pollucite (CsAlSi 2O 6), and an aluminosilicate with an Al/Si ratio close to one. The leach resistance of all materials was evaluated and related to the cesium distribution within the GCC phase assemblages. In general, the GCCs prepared from the HTB had superior durability compared with materials not containing tungsten. Indeed the compositions in many cases had leach resistances comparable to the best ceramics or glass materials.

  2. Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures

    Directory of Open Access Journals (Sweden)

    Rosa Maria da Rocha

    2005-06-01

    Full Text Available Research in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components.

  3. Rapid processing of ferrite ceramics with promising magneto-dielectric characteristics

    Directory of Open Access Journals (Sweden)

    Zhuohao Xiao

    2017-12-01

    Full Text Available Ferrite ceramics, Ni0.88Zn0.07Co0.05Fe1.98O4, with the addition of 4wt.% Bi2O3 as sintering aid, were fabricated by using a simple one-step processing without involving the step of calcination. X-ray diffraction (XRD results indicated that single phase ferrite ceramics can be achieved after sintering at 1000∘C for 2h. The samples demonstrated relative densities in the range of 97–99%. Desired magneto-dielectric properties have been approached by adjusting the sintering temperature and sintering time duration. This technique is believed to be applicable to other ceramic materials.

  4. Superconductivity Devices: Commercial Use of Space

    Science.gov (United States)

    Haertling, Gene (Principal Investigator); Furman, Eugene; Li, Guang

    1996-01-01

    The work described in this report covers various aspects of the Rainbow solid-state actuator and sensor technologies. It is presented in five parts dealing with sensor applications, nonlinear properties, stress-optic and electrooptic properties, stacks and arrays, and publications. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It involves a new processing technique for preparing pre-stressed, high lead containing piezoelectric and electrostrictive ceramic materials. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders. Since they can also be used in sensor applications, Rainbows are part of the family of materials known as smart ceramics. During this period, PLZT Rainbow ceramics were characterized with respect to their piezoelectric properties for potential use in stress sensor applications. Studies of the nonlinear and stress-optic/electrooptic birefringent properties were also initiated during this period. Various means for increasing the utility of stress-enhanced Rainbow actuators are presently under investigation.

  5. Synthesis of the phase with T sub c =110 K in Bi(Pb)-Sr-Ca-Cu-O superconducting ceramics. Sintez fazy T sub c =110 K sverkhprovodyashchej keramiki sostava Bi(Pb)-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Dubovitskij, A V; Makarov, E F; Makova, M K; Merzhanov, V A; Topnikov, V N [AN SSSR, Moscow (USSR). Inst. Khimicheskoj Fiziki

    1991-05-01

    Synthesis of 110 K single-phase bismuth ceramics (BiPb){sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub x} was conducted in narrow temperature and time range. Diffusion of bismuth ions is proposed to be the decisive factor of synthesis of bismuth ceramics. The diffusion depends on prehistory of basic burden preparation and on its dispersivity and homogeneity in particluar. Optimal time of synthesis for lead doped ceramics of 2223 composition, synthesized from initial nitrate components, is equal to 65 h at 850 deg C. The role of Pb{sup 2+} ions is probably reduced to decrease of diffusion mobility of Bi{sup 3+} ions over the bismuth sublattice. Ceramics doping with CdO and CdCl{sub 2} compounds instead of lead stabilizes superconductivity in bismuth ceramics, but with worth superconducting parameters.

  6. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  7. Factors controlling crystallization of miserite glass-ceramic.

    Science.gov (United States)

    Muhammed, Fenik K; Moorehead, Robert; van Noort, Richard; Pollington, Sarah

    2015-12-01

    The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC). Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA). The glasses were ground with dry ball-milling and then sieved to different particle sizes prior to sintering. These particle sizes were submitted to heat treatment regimes in a high temperature furnace to form the GC. The crystal phases of the GC were analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to examine the microstructure of the cerammed glass. XRD analysis confirmed that the predominant crystalline phase of the GC was miserite along with a minor crystalline phase of cristobalite only when the particle size is <20 μm and the heat treatment at 1000°C was carried out for 4h and slowly cooled at the furnace rate. For larger particle sizes and faster cooling rates, a pseudowollastonite crystalline phase was produced. Short sintering times produced either a pseudowollastonite or xonotolite crystalline phase. The current study has shown that particle size and heat treatment schedules are major factors in controlling the synthesis of miserite GC. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Kinetic neutron diffraction and SANS studies of phase formation in bioactive machinable glass ceramics

    International Nuclear Information System (INIS)

    Bentley, P M; Kilcoyne, S H; Bubb, N L; Ritter, C; Dewhurst, C D; Wood, D J

    2007-01-01

    Bioactive fluormica-fluorapatite glass-ceramic materials offer a very encouraging solution to the problem of efficient restoration and reconstruction of hard tissues. To produce material with the desired crystalline phases, a five-stage heat treatment must be performed. This thermal processing has a large impact on the microstructure and ultimately the final mechanical properties of the materials. We have examined the thermal processing of one of our most promising machinable biomaterials, using time-resolved small angle neutron scattering and neutron diffraction to study the nucleation and growth of crystallites. The processing route had already been optimized by studying the properties of quenched samples using x-ray diffraction, mechanical measurements and differential thermal analysis. However these results show that the heat treatment can be further optimized in terms of crystal nucleation, and we show that these techniques are the only methods by which a truly optimized thermal processing route may be obtained

  9. Progress in development of a source term for sphene glass-ceramic dissolution under vault conditions

    International Nuclear Information System (INIS)

    Hayward, P.J.; Tait, J.C.; George, I.M.; Carmichael, A.A.; Ross, J.M.P.

    1986-01-01

    This report describes the results of ongoing leaching experiments, involving aluminosilicate glass and sphene (CaTiSiO/sub 5/) ceramics, doped with /sup 22/Na or /sup 45/Ca, and leached in a simulated Ca-NA-Cl brine at 25 0 or 100 0 C. The experiments are designed to aid development of separate models for the dissolution of the glass and the ceramic phase in a sphene glass-ceramic, and to help evaluate a composite model for the dissolution of the glass-ceramic

  10. On the nature of phase transitions in the tetragonal tungsten bronze GdK2Nb5O15 ceramics

    International Nuclear Information System (INIS)

    Gagou, Y.; Lukyanchuk, I.; El Marssi, M.; Amira, Y.; Mezzane, D.; Courty, M.; Masquelier, C.; Yuzyuk, Yu. I.

    2014-01-01

    Phase transitions in gadolinium potassium niobate GdK 2 Nb 5 O 15 (GKN) ceramics have been investigated by x-ray diffraction, dielectric susceptibility, differential scanning calorimetry, and Raman scattering. The results of our complementary studies show that GKN exhibits two phase transitions at T c1  = 238 °C and T c2  = 375 °C attributed to the ferroelectric-antiferroelectric-paraelectric (FE-AFE-PE) phase transitions. According to the x-ray diffraction analysis, the FE and PE phases were refined in the polar P4bm and centrosymmetric P4/mbm space groups. For the intermediate phase, the structure is refined in the space group P4nc with doubling of the c unit cell parameter, which is compatible with an AFE phase. This result was confirmed by Raman spectroscopy since new low-frequency lines are activated in the AFE phase due to the Brillouin zone-folding effect, typical for the modulated phases. The presence of the AFE phase between the FE and PE phases and the complex nature of tetragonal tungsten bronze crystal structure can explain the large thermal hysteresis observed at the FE-AFE transition between heating and cooling cycle and the strong depression of the Curie-Weiss temperature T 0 . The semi-phenomenological Ising-like model based on the obtained experimental data is proposed to account for the observed FE-AFE-PE transition sequence

  11. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  12. Development of glass ceramics for the incorporation of fission products

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Lutze, W.; Malow, G.; Schiewer, E.

    1976-01-01

    Spontaneous devitrification of fission-product-containing borosilicate glasses can be avoided by controlled crystallization after melting. Glass ceramics have been developed from a vitrified simulated waste and further improvement of product properties was achieved. In particular perovskite, h-celsian, diopside and eucryptite glass ceramics were prepared. These contained leach resistant host phases which exhibited considerable enrichment of long-lived fission products. All products showed increased impact resistance, but the thermal expansion was only slightly improved

  13. Crystallization and dielectric properties of PbTiO3 based glass ceramics

    Science.gov (United States)

    Shankar, J.; Rani, G. Neeraja; Deshpande, V. K.

    2018-04-01

    Glass samples with composition (50 - X) PbO - (25 + X) TiO2 - 25 B2O3 (where X = 0, 5, 10 and 12.5 mol %) were prepared using conventional quenching technique. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase. The SEM results show rounded crystallite of lead titanate. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements. The extended heat treatment of glass ceramic samples at 593K for 10 h exhibited saturated hysteresis loops with higher values of remnant polarization.

  14. A finite element model of ferroelectric/ferroelastic polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  15. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega

    1997-01-01

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  16. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  17. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  18. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    Science.gov (United States)

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Development of crystalline ceramic for immobilization of TRU wastes in V.G. Khlopin Radium Institute

    International Nuclear Information System (INIS)

    Burakov, B.E.; Anderson, E.B.

    1999-01-01

    This paper discusses the Radium Institute's experience in the synthesis of crystalline ceramics based on two groups of actinide host-phases: 1) Zircon/zirconia-(Zn, Ac)SiO 4 /(Zr, Ac)O 2 , where Ac=Pu, Np, Am, Cm; 2) Garnet/perovskite-(Y, Gd, Ac) 3 (Al, Ga, Ac,..) 5 O 12 /(Y, Gd, Ac)(Al, Ga)O 3 . The zircon/zirconia ceramic was suggested as an universal waste form for the immobilization of TRU as well as weapon-grade Pu. Because the position of the Russian Ministry of Atomic Energy (Minatom) does not consider weapons Pu as a waste', the Radium Institute proposed the use of the same ceramic (mainly monophase zirconia ) as a Pu-fuel. The garnet/perovskite ceramic was suggested for the immobilization of military TRU wastes of complex chemical composition. The advantage of this ceramic is that Garnet and Perovskite host-phases can incorporate in their lattices not only actinides, but also other elements including neutron absorbers in a broad range of concentration and in different valence state. Sample of zircon/zirconia ceramic were prepared by hot uniaxial pressing (at temperature T=1300, 1400, 1500degC and pressure P=25 MPa) and sintering (at T=1450, 1490, 1500, 1600degC) methods using different types of initial precursor. Samples of garnet/perovskite ceramic were synthesized by melting method at T=2000degC. Ce, U, Gd were used as TRU stimulants for both types of ceramic. One sample of zircon/zirconia ceramic was doped with 10 wt.% of Pu 239 . Physico-chemical features of these ceramics are described. In conclusion we propose that the pressureless technology based on sintering or melting methods be used for the synthesis of ceramics for the immobilization of all types of TRU wastes. (author)

  20. Fabrication and spectral properties of Nd, La: CaF2 transparent ceramics

    Science.gov (United States)

    Xie, Xiaoyu; Mei, Bingchu; Song, Jinghong; Li, Weiwei; Su, Liangbi

    2018-02-01

    1 at.% Nd: CaF2 nanoparticles doped with different concentrations of La3+ ions (from 0 to 5 at.%) were synthesized by co-precipitation method. Phase identification, morphology of the nanoparticles were investigated by XRD and SEM measurements. The Nd, La: CaF2 ceramics were fabricated by hot-pressed method in the vacuum environment. The transmittance of all the ceramics reached 88% at the wavelength of 1400 nm. The luminescence intensities and decay lifetimes enhanced significantly with the increasing of La3+ concentration. The Nd, La: CaF2 ceramics have broad and flat emission band at 1050 nm with the largest FWHM of 28.16 nm. In addition, the spectrum results indicated that the fluorescence lifetime of Nd, La: CaF2 ceramics was longer than that of the Nd, Y: CaF2 ceramics with the same doping concentration.

  1. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  2. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  3. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  4. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    International Nuclear Information System (INIS)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-01-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively

  5. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  6. Synthesis and luminescent properties of Eu{sup 3+}/Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bouchouicha, H. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Panczer, G., E-mail: gerard.panczer@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ligny, D. de [Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Glas und Keramik, D-91058 Erlangen (Germany); Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Baesso, M.L. [Departemento de Fisica, Universidade Estadual de Maringa, 87020-900 Maringa, PR (Brazil); Andrade, L.H.C.; Lima, S.M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul – UEMS, C.P. 351, Dourados, MS (Brazil); Ternane, R. [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia)

    2016-01-15

    Eu{sup 3+} and Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics have been prepared by devitrification of calcium aluminosilicate glass using heat-treatment. Control of crystallization in the glass–ceramics was studied by X-ray diffraction (XRD) and Raman spectroscopy. The results showed that crystalline phases in glass–ceramic belong to the family of melilite Ca{sub 2}Mg{sub 0.25}Al{sub 1.5}Si{sub 1.25}O{sub 7} as the major phase and anorthite CaAl{sub 2}Si{sub 2}O{sub 8} as the minor phase. Luminescent properties were investigated by emission; lifetime and the color points were calculated. Emission spectra showed that Eu{sup 2+} entered into the crystalline phase in a two steps mechanism: first as Eu{sup 3+} which is then reduced to Eu{sup 2+}. This incorporation in the crystal enhanced Eu{sup 2+} emission with increasing time of heat-treatment and therefore crystallization. - Highlights: • Crystallization of doped glass–ceramics by heat-treatment controlled by microRaman. • Crystalline phases consist of melilite and anorthite. • Eu{sup 3+} and Eu{sup 2+} emissions characterized by their lifetime and color indexes. • Crystallization process modified efficiently the emission color point.

  7. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Processing and properties of large-sized ceramic slabs

    Energy Technology Data Exchange (ETDEWEB)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-07-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm{sup 2} and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  9. Processing and properties of large-sized ceramic slabs

    International Nuclear Information System (INIS)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-01-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm 2 and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  10. Piezoelectric properties and diffusion phase transition around PPT of La-doped (Na{sub 0.52}K{sub 0.44}Li{sub 0.04}) Nb{sub 0.8}Ta{sub 0.2}O{sub 3} lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenlong, E-mail: yangwenlong1983@163.com; Wang, Li; Li, Haidong; Han, Junsheng; Xiu, Hanjiang; Zhou, Zhongxiang

    2016-10-01

    Lead-free ceramics (Na{sub 0.52}K{sub 0.44}Li{sub 0.04}){sub 1−3x}La{sub x}Nb{sub 0.8}Ta{sub 0.2}O{sub 3} (KNLNT-Lax, x=0.00, 0.25, 0.5, 0.75, 1.00, 1.25 mol%) as non-polluting materials were prepared by solid state reaction method. The structure, piezoelectric proprieties and temperature stability of KNLNT ceramic with different La doping concentrations were investigated. The results show a transition from orthorhombic-tetragonal mix phase to tetragonal single phase with the variation of La{sup 3+} concentrations. The SEM micrographs of surface and fractured surface show a dense microstructure with few micropores. The La-doped KNLTN ceramic will be an alternative candidate contributes to excellent piezoelectric properties, which are found in the 0.75 mol% La-doped KNLNT ceramics, with d{sub 33}=215pC/N, k{sub p}=42.8%and Q{sub m}=89. It has been remarkably improved that the temperature stability of KNLTN-Lax piezoelectric properties at room temperature, and the dielectric relaxation can be observed obviously. The mechanism of La doping was analyzed in terms of valence compensation and polymorphic phase transition (PPT) diffusion. The orthorhombic-tetragonal phase transition around room temperature and the relaxation transition were considered contributing to the excellent piezoelectric performance and improved temperature stability of La{sup 3+}-doped KNLTN.

  11. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  12. Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics

    Science.gov (United States)

    Qiu, L.; Li, Y. M.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Wu, J. Q.; Xu, C. H.

    2014-01-01

    A three-dimensional reticular macro-porous SiOC ceramics structure, made of spherical agglomerates, has been thermally characterized using a freestanding sensor-based method. The effective thermal conductivity of the macro-porous SiOC ceramics, including the effects of voids, is found to be to at room temperature, comparable with that of alumina aerogel or carbon aerogel. These results suggest that SiOC ceramics hold great promise as a thermal insulation material for use at high temperatures. The measured results further reveal that the effective thermal conductivity is limited by the low solid-phase volume fraction for the SiOC series processed at the same conditions. For SiOC ceramics processed under different pyrolysis temperatures, the contact condition between neighboring particles in the SiOC networks is another key factor influencing the effective thermal conductivity.

  13. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  14. Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    International Nuclear Information System (INIS)

    Suresh Kumar, J.; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-01-01

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na 1.4 Nb 3 Te 4.9 O 18 ) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er 3+ –Yb 3+ co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er 3+ ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied

  15. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot structures fabricated from ceramic composite materials are an attractive design option for components of future high-speed aircraft, re-entry vehicles and...

  17. Tradition and changes in the Lima ceramics of Huaca Pucllana

    OpenAIRE

    Ccencho Huamaní, José

    2017-01-01

    This article presents the results of an analysis of ceramics from the site of Huaca Pucllana carried out by Isabel Flores, director of the Huaca Pucllana Archaeological Project. This research is approached from the perspective of chronologicaldiferentiation, arriving at the continuities and changes that occurred in ceramics at the site during its construction and occupation by the Lima society from 530-650 AD. Five pottery types were identified that relate to three constructive phases and a f...

  18. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    Science.gov (United States)

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  19. Synthesis and Dielectric Properties of Mn-Doped BaTi2O5 Ceramics

    Science.gov (United States)

    Akishige, Yukikuni; Honda, Kazuo; Tsukada, Shinya

    2011-09-01

    High-density ceramics of BaTi2O5 have been fabricated by a conventional sintering method using both sol-gel-derived BaTi2O5 powders and MnO2 additives of 0.2-0.8 wt %. The effects of sintering conditions on the densification, microstructural evolution and dielectric properties are investigated. As the effect of Mn addition, the BaTi2O5 phase becomes stable at least up to 1250 °C, and a significant densification is achieved at temperatures as low as 1200-1250 °C. The dielectric constant ɛ' vs temperature T curve of the MnO2-added ceramics exhibits a broad maximum ɛ'max at the ferroelectric phase transition temperature TC, which is 140 °C lower than that of the nondoped ceramics. Among the ceramics with different Mn contents, the 0.2 wt % MnO2-added ceramics have the largest ɛ'max of 470 at 328 °C and the smallest tan δ of <0.05 at a high temperature of around 520 °C at 1 MHz. We observed a ferroelectric D-E hysteresis loop for the first time in the polycrystalline form of BaTi2O5.

  20. Mechanism of interaction of Co-B and Fe-B melts with ceramic materials

    International Nuclear Information System (INIS)

    Filonov, M.R.; Anikin, D.Yu.; Pecherkin, K.A.

    2003-01-01

    Stability of ceramic materials has been studied in the medium of melts being rendered amorphous. Measurements of limiting wetting angle for these materials were carried out on the ceramic surface. Two conclusions were made from the results of the experiments: melt-ceramics interaction takes place mainly through the slag phase; boron nitride is the most stable ceramics for melting and pouring of melts being rendered amorphous in the air. Materials on the basis of BN were synthesized by the self-propagating high-temperature synthesis. Other refractory compounds were introduced in the ceramics composition for the purpose of improving such service properties as fire resistance, thermal resistance, mechanical strength, stability of compounds to the effect of reaction-active melts. The most promising refractory compositions were determined from the results of the studies [ru

  1. Lead-Free KNbO3:xZnO Composite Ceramics.

    Science.gov (United States)

    Lv, Xiang; Li, Zhuoyun; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo

    2016-11-09

    It is a tough issue to develop dense and water resistant KNbO 3 ceramics due to high evaporation and hygroscopicity of K 2 O. Here, KNbO 3 :xZnO composite ceramics were used to successfully solve this problem, where ZnO particles were randomly distributed into a KNbO 3 matrix. The addition of ZnO hardly affects the phase structure of KNbO 3 , and moreover, the enhancement of electrical properties, thermal stability, and aging characteristics was observed in KNbO 3 :xZnO composite ceramics. The composites possessed the maximum d 33 of 120 ± 5 pC/N, which is superior to that of pure KNbO 3 (d 33 = 80 pC/N). More importantly, a strong water resistance and an aging-free characteristic were observed in KNbO 3 :0.4ZnO. This is the first time for KNbO 3 ceramics to simultaneously improve electrical properties and resolve the water-absorbing properties. We believe that these composite ceramics are promising for practical applications.

  2. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    International Nuclear Information System (INIS)

    Chen Fei; Zhou Hai; Chen Qiang; Ge Yuanjing; Lv Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na 2 SiO 3 -NaB 4 O 7 -(NaPO 3 ) 6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel

  3. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  4. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  5. Zirconia toughened ceramics for heat engine applications

    International Nuclear Information System (INIS)

    Rossi, G.A.; Blum, J.B.; Manwiller, K.E.; Knapp, C.E.

    1986-01-01

    Three classes of zirconia toughened ceramics (ZTC) were studied, i.e. Mg-PSZ (MgO-partially stabilized zirconia), Y-TZP (Y/sub 2/O/sub 3/-tetragonal zirconia polycrystals) and ZTA (zirconia toughened alumina). The main objective was to improve the high temperature strength and toughness, which are not satisfactory in the ''state of the art'' ZTC materials. Powders prepared by melting/rapid solidification and by chemical routes were used. The green parts were made by both dry and wet shape forming methods. Fine grained Mg-PSZ ceramics with unique microstructures were produced using the rapidly solidified powders. The Y-TZP materials were improved mainly through microstructure control and by addition of alpha alumina as a dispersed phase. Preliminary results on ZTA ceramics made with the rapidly solidified powders were also obtained. It is concluded that the Al/sub 2/O/sub 3//Y-TZP composites offer a good chance of meeting the program objectives

  6. Structural behaviour of nitrogen in oxide ceramics

    International Nuclear Information System (INIS)

    Ghauri, K.M.

    1997-01-01

    The solubility of nitrogen in molten oxides has significant consideration for two quite different types of engineering materials. The implication of a knowledge of the role of nitrogen in these oxides for refining high nitrogen steels in obvious but similar nitrogen-bearing oxide melts are of critical importance in the densification of silicon nitride ceramics. Present paper discusses structural behaviour and phase equilibria qualitatively in the light of knowledge available on slag structure through infrared and x-ray diffraction. Nitrogen solubility in glasses and related sialon based ceramics may be of paramount importance to understand the role of nitrogen in these materials as these oxides are similar in composition, structure and characteristics to sintering glasses in nitrogen ceramics. It is quite logical to infer that the same oxide model can be applied in order to massively produce nitrogen alloyed steels which are actively competing to be the materials of the next century. (author)

  7. One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor

    International Nuclear Information System (INIS)

    Liu Lisheng; Zhang Qingjie; Zhai Pengcheng; Cao Dongfeng

    2008-01-01

    An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength

  8. One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor

    Science.gov (United States)

    Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng; Cao, Dongfeng

    2008-02-01

    An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength.

  9. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    International Nuclear Information System (INIS)

    Ye Xinyu; Cai Shu; Dou Ying; Xu Guohua; Huang Kai; Ren Mengguo; Wang Xuexin

    2012-01-01

    Highlights: ► Sol–gel derived 45S5 glass–ceramic coating was prepared on Mg alloy substrate. ► The corrosion resistance of glass–ceramic coated Mg alloy was markedly improved. ► The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass–ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol–gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass–ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na 2 Ca 2 Si 3 O 9 , with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E corr ) form −1.60 V to −1.48 V, and a reduction of corrosion current density (i corr ) from 4.48 μA cm −2 to 0.16 μA cm −2 , due to the protection provided by the glass–ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass–ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass–ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  10. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass-ceramic

  11. Incorporation of low and intermediate level wastes into ceramic clay matrices

    International Nuclear Information System (INIS)

    Kuznetsov, A.S.; Kuznetzov, B.S.; Kuznetzov, B.S.; Na, R.

    1995-01-01

    Conditions for the production of chemically stable high-strength ceramics based on clay are developed using wastes of three types: ashes from radioactive waste burning, hydroxide pulp formed during precipitations in radiochemical technology, suspensions of spent filtering material (filter perlite). The properties of wastes and ceramics are studied by emission spectrography, X-ray phase analysis, mechanical strength and chemical stability of end products are determined. It is shown that the ceramics incorporating 30-50 % wt. of wastes have the apparent density 2.1-2.5 g/cm 3 , the compression strength 40-70 MPa; the radionuclide leaching rate is comparable with the values obtained for borosilicate glasses. (authors)

  12. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  13. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  14. Microstructure characterization and SCG of newly engineered dental ceramics.

    Science.gov (United States)

    Ramos, Nathália de Carvalho; Campos, Tiago Moreira Bastos; Paz, Igor Siqueira de La; Machado, João Paulo Barros; Bottino, Marco Antonio; Cesar, Paulo Francisco; Melo, Renata Marques de

    2016-07-01

    The aim of this study was to characterize the microstructure of four dental CAD-CAM ceramics and evaluate their susceptibility to stress corrosion. SEM and EDS were performed for microstructural characterization. For evaluation of the pattern of crystallization of the ceramics and the molecular composition, XRD and FTIR, respectively, were used. Elastic modulus, Poisson's ratio, density and fracture toughness were also measured. The specimens were subjected to biaxial flexure under five stress rates (0.006, 0.06, 0.6, 6 and 60MPa/s) to determine the subcritical crack growth parameters (n and D). Twenty-five specimens were further tested in mineral oil for determination of Weibull parameters. Two hundred forty ceramic discs (12mm diameter and 1.2mm thick) were made from four ceramics: feldspathic ceramic - FEL (Vita Mark II, Vita Zahnfabrik), ceramic-infiltrated polymer - PIC (Vita Enamic, Vita Zahnfabrik), lithium disilicate - LD (IPS e.max CAD, Ivoclar Vivadent) and zirconia-reinforced lithium silicate - LS (Vita Suprinity, Vita Zahnfabrik). PIC discs presented organic and inorganic phases (n=29.1±7.7) and Weibull modulus (m) of 8.96. The FEL discs showed n=36.6±6.8 and m=8.02. The LD discs showed a structure with needle-like disilicate grains in a glassy matrix and had the lowest value of n (8.4±0.8) and m=6.19. The ZLS discs showed similar rod-like grains, n=11.2±1.4 and m=9.98. The FEL and PIC discs showed the lowest susceptibility to slow crack growth (SCG), whereas the LD and ZLS discs presented the highest. PIC presented the lowest elastic modulus and no crystals in its composition, while ZLS presented tetragonal zirconia. The overall strength and SCG of the new materials did not benefit from the additional phase or microconstituents present in them. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Preparation and Characterization of SiO2/SiCN Core-shell Ceramic Microspheres

    Directory of Open Access Journals (Sweden)

    ZHANG Hai-yuan

    2017-05-01

    Full Text Available The SiO2/PSN core-shell microspheres were prepared via an emulsion reaction combined with the polymer-derived ceramics (PDCs method using polysilazane (PSN in situ polymerization on the surface of SiO2 modified by silane coupling agents MPS, followed by pyrolysis process to obtain SiO2/SiCN core-shell ceramic microspheres. The effects of raw mass ratio, curing time and pyrolysis temperature on the formation and the morphology of core-shell microspheres were studied. The morphology, chemical composition and phase transformation were characterized by SEM, EDS, TEM, FT-IR and XRD. The results show that after reaction for 4h at 200℃, SiO2 completely coated PSN forms a core-shell microsphere with rough surface when the mass ratio of SiO2 and PSN is 1:4; when pyrolysis temperature is at 800-1200℃, amorphous SiO2/SiCN core-shell ceramic microspheres are prepared; at 1400℃, the amorphous phase partially crystallizes to produce SiO2, SiC and Si3N4 phase.

  16. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  17. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  18. Microimpurity composition of superconducting ceramics

    International Nuclear Information System (INIS)

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  19. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  20. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  1. Preparation and electrical properties of (1 - x)Sr(Fe1/2Nb1/2)O3-xPbTiO3 ferroelectric ceramics

    International Nuclear Information System (INIS)

    Fang Bijun; Cheng Zhenquan; Sun Renbing; Ding Chenlu

    2009-01-01

    (1 - x)Sr(Fe 1/2 Nb 1/2 )O 3 -xPbTiO 3 (SFN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via the wolframite precursor route. X-ray diffraction (XRD) measurement confirmed that the synthesized SFN-PT ceramics are of pure perovskite structure. With the increase of the concentration of PbTiO 3 (PT), crystal structure of the sintered SFN-PT ceramics changes from rhombohedral phase to tetragonal phase. Dielectric response of the SFN-PT ceramics changes from diffused and broad dielectric peaks to relatively sharp ones accompanied by the increase of the temperature of dielectric maximum (T m ). Small content of MnO 2 or Li 2 CO 3 doping can greatly decrease the dielectric loss of the SFN-PT ceramics, furthermore, the abnormal increase of dielectric constant and loss tangent in the paraelectric phase is suppressed accordingly. Typical P-E hysteresis loops are observed in the SFN-PT ceramics, however, the saturate polarization (P s ) is small. MnO 2 or Li 2 CO 3 doping can greatly decrease the coercive field (E c ) of the SFN-PT ceramics accompanied by large increase of P s . Piezoelectric constant d 33 of the SFN-PT ceramics is small except for SFN30-PT70 ceramics, which reaches 22pC/N

  2. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  3. Use of solid waste from sand beneficiation process in the ceramic tile industry and its influence on the physical properties of the ceramic products

    International Nuclear Information System (INIS)

    Biff, Sergio; Silva, Manoel Ribeiro da

    2016-01-01

    The current paper had as main aim characterize and assess the use viability of a solid waste from sand beneficiation process in the production of ceramic tiles. To determine the main components the solid waste was characterized by X-ray fluorescence and the main crystalline phases were determined by X-ray diffraction. To evaluate the addition effects of the solid waste over the solid waste was introduced into a ceramic composition in proportions of 5% and 10%. The ceramics materials obtained were subjected to the linear retraction, water absorption and flexural strength analysis according to the Brazilian standard NBR 13818 (1997). Additionally, the solid waste and the ceramic materials obtained in this study were classified according to the Brazilian standard NBR 10004 (2004) to assess the potential environmental impact. The main solid waste constituents identified were silicon dioxide and aluminum oxide, respectively 50.2% e 19.2%, distributed in the crystal forms of quartz and kaolinite. The ceramic materials obtained after firing at 1100 deg C, without and with 10% of solid waste presented respectively flexural strength of 13.86 MPa and 14,52Mpa. The results of water absorption without and with addition of 10% of solid waste were respectively 16.96% and 16.63%, both appropriate performances for use in ceramic tiles according to the Brazilian standard NBR 13818 (1997). On the other hand, the ceramic materials obtained with the addition of 10% of solid waste were classified as inert materials according to Brazilian standard NBR 10004 (2004), showing the capability of incorporating solid waste in ceramic materials. (author)

  4. Radiation damage in nuclear waste ceramics

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.; Rusin, J.M.; Wald, J.W.

    1982-01-01

    The text contains a number of specific observations about the radiation-induced changes in glass, glass-ceramic, and supercalcine nuclear waste forms. Other, more general conclusions can be summarized: Radiation-induced property changes follow an exponential ingrowth curve to saturation. Actinide host phases in both crystalline waste forms become X-ray amorphous. The magnitudes of the waste-form density changes observed could not be directly related to observed changes in the primary actinide phases. Although large crystal-structure changes occur in the materials studied, obvious physical degradation was not observed

  5. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  6. Phase transformations in multiferroic Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} ceramics probed by temperature dependent Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L. P.; Zhang, X. L.; Zhang, J. Z.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Zhang, L. L.; Yu, J. [Functional Material Research Laboratory, Tongji University, Shanghai 200092 (China)

    2014-10-28

    Optical phonons and phase transitions of Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} (BLFTO, 0.02 ≤ x ≤ 0.12, 0.01 ≤ y ≤ 0.08) ceramics have been investigated by Raman scattering in the temperature range from 80 to 680 K. Four phase transitions around 140, 205, 570, and 640 K can be observed. The Raman modes are sensitive to the spin reorientation around 140 and 205 K, owing to the strong magnon-phonon coupling. The transformation around 570 K is a structural transition from rhombohedral to orthorhombic phase due to an external pressure induced by the chemical substitution. The anomalies of the phonon frequencies near Néel temperature T{sub N} have been discussed in the light of the multiferroicity. Moreover, it was found that the structural transition temperature and T{sub N} of BLFTO ceramics decrease towards room temperature with increasing doping composition as a result of size mismatch between substitution and host cations.

  7. Interaction phenomena at reactive metal/ceramic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-11-03

    The objective of this study was to understand the interface chemical reactions between stable ceramics and reactive liquid metals, and developing microstructure. Experiments were conducted at elevated temperatures where small metal samples of Zr and Zr-alloy were placed on top of selected oxide and non-oxide ceramic substrates (Y{sub 2}O{sub 3}, ZrN, ZrC, and HfC). The sample stage was heated in high-purity argon to about 2000 C, held in most cases for five minutes at the peak temperature, and then cooled to room temperature at {approximately}20 c/min. An external video camera was used to monitor the in-situ wetting and interface reactions. Post-test examinations of the systems were conducted by scanning electron microscopy and energy dispersive spectroscopy. It was determined that the Zr and the Zr-alloy are very active in the wetting of stable ceramics at elevated temperatures. In addition, in some systems, such as Zr/ZrN, a reactive transition phase formed between the ceramic and the metal. In other systems, such as Zr/Y{sub 2}O{sub 3}, Zr/ZrC and Zr/HfC, no reaction products formed, but a continuous and strong joint developed under these circumstances also.

  8. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering

    International Nuclear Information System (INIS)

    Du Hongliang; Li Zhimin; Tang Fusheng; Qu Shaobo; Pei Zhibin; Zhou Wancheng

    2006-01-01

    Lead-free piezoelectric ceramics (K 0.5 Na 0.5 )NbO 3 (abbreviated as KNN) with the relative density of 97.6% have been synthesized by press-less sintering owing to the careful control of processing conditions. The phase structure of KNN ceramics with different sintering temperature and heating rate was analyzed. Results show that the pure perovskite phase with orthorhombic symmetry is in all ceramics specimens. The effect of heating rate and sintering temperature on microstructure and piezoelectric properties of KNN ceramics was investigated. The densification behavior and piezoelectric properties of KNN ceramics were enhanced by improving heating rate and sintering temperature. Pure KNN ceramics sintered at 1120 deg. C with heating rate of 5 deg. C/min showed optimized densification and piezoelectric properties (ρ = 4.4 g/cm 3 , d 33 = 120 pC/N -1 , k p = 0.40 and T c = 400 deg. C). The results show that KNN is a promising candidate for lead-free piezoelectric ceramics

  9. Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.

    Science.gov (United States)

    Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2006-12-22

    Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

  10. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  11. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  12. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  13. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  14. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  15. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  16. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances ... ally considered oxide materials for many applications. .... three cases but is more pronounced in the case of C12A7.

  17. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si 3 N 4 -Mo-Si 3 N 4 . These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si 3 N 4 -Si 3 N 4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  18. Effect of Semiconductor Element Substitution on the Electric Properties of Barium Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    Garbarz-Glos B.

    2016-06-01

    Full Text Available The investigated ceramics were prepared by a solid-state reaction from simple oxides and carbonates with the use of a mixed oxide method (MOM. The morphology of BaTi0.96Si0.04O3 (BTSi04 ceramics was characterised by means of a scanning electron microscopy (SEM. It was found that Si+4 ion substitution supported the grain growth process in BT-based ceramics. The EDS results confirmed the high purity and expected quantitative composition of the synthesized material. The dielectric properties of the ceramics were also determined within the temperature range (ΔT=130-500K. It was found that the substitution of Si+4 ions had a significant influence on temperature behavior of the real (ε’ and imaginary (ε” parts of electric permittivity as well as the temperature dependence of a.c. conductivity. Temperature regions of PTCR effect (positive temperature coefficient of resistivity were determined for BTSi04 ceramics in the vicinity of structural phase transitions typical for barium titanate. No distinct maximum indicating a low-temperature structural transition to a rhombohedral phase in BTSi04 was found. The activation energy of conductivity was determined from the Arrhenius plots. It was found that substitution of Si ions in amount of 4wt.% caused almost 50% decrease in an activation energy value.

  19. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    Science.gov (United States)

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  20. Plutonium-238 alpha-decay damage study of the ceramic waste form

    International Nuclear Information System (INIS)

    Frank, S. M.; Barber, T. L.; Cummings, D.G.; DiSanto, T.; Esh, D.W.; Giglio, J. J.; Goff, K. M.; Johnson, S.G.; Kennedy, J.R.; Jue, J-F; Noy, M.; O'Holleran, T.P.; Sinkler, W.

    2006-01-01

    An accelerated alpha-decay damage study of a glass-bonded sodalite ceramic waste form has recently been completed. The purpose of this study was to investigate the physical and chemical durability of the waste form after significant exposure to alpha decay. This accelerated alpha-decay study was performed by doping the ceramic waste form with 238 Pu which has a much greater specific activity than 239 Pu that is normally present in the waste form. The alpha-decay dose at the end of the four year study was approximately 1 x 10 18 alpha-decays/gram of material. An equivalent time period for a similar dose of 239 Pu would require approximately 1100 years. After four years of exposure to 238 Pu alpha decay, the investigation observed little change to the physical or chemical durability of the ceramic waste form (CWF). Specifically, the 238 Pu-loaded CWF maintained it's physical integrity, namely that the density remained constant and no cracking or phase de-bonding was observed. The materials chemical durability and phase stability also did not change significantly over the duration of the study. The only significant measured change was an increase of the unit-cell lattice parameters of the plutonium oxide and sodalite phases of the material and an increase in the release of salt components and plutonium of the waste form during leaching tests, but, as mentioned, these did not lead to any overall loss of waste form durability. The principal findings from this study are: (1) 238 Pu-loaded CWF is similar in microstructure and phase composition to referenced waste form. (2) Pu was observed primarily as oxide comprised of aggregates of nano crystals with aggregates ranging in size from submicron to twenty microns in diameter. (3) Pu phases were primarily found in the intergranular glassy regions. (4) PuO phase shows expected unit cell volume expansion due to alpha decay damage of approximately 0.7%, and the sodalite phase unit cell volume has expanded slightly by 0.3% again

  1. The Microstructure and Physical Properties of Incinerated Paper-Cullet-Clay Ceramics

    Science.gov (United States)

    Sahar, M. R.; Hamzah, K.; Rohani, M. S.; Samah, K. A.; Razi, M. M.

    A series of ceramic based on (x) incinerated recycle paper - (80-x) cullet - 20 Kaolin clay (where 10×45 wt%) has successfully been made by slip casting technique followed by sintering at 1000 °C. The actual composition of ceramic is analyzed using Energy Dispersive of X-Ray (EDAX) while the phase existence is determined using X-Ray Diffraction (XRD) technique. Their microstructural morphology is observed under Scanning Electron Microscope (SEM) and the physical properties are measured in term of their thermal shrinkage and hardness. It is found that the ceramic contain mostly of Silica and the phase is dominated by the existence of Quartz (SiO2), Wollastonite (CaSiO3) and Anorthite (Ca(Al2SiO8)). The SEM micrograph shows that the morphology is dominated by the existence of granular structure, and then become smoother as the cullet level is further increased. It is also found out that the thermal shrinkage is in the range 18% - 6.5% while the hardness is in the range of 152MPa- 1.463 GPa depending on composition.

  2. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  3. Preparation of a ceramic superconductor from ultrafine particles by freeze-dry process in Ba-Y-Cu-O system

    International Nuclear Information System (INIS)

    Chen Zuyao; Qian Yitai; Wan Yanjian; Rong Jingfang; Zhang Han; Pan Guoqiang; Zhao Yong; Zhang Qirui

    1989-01-01

    Freeze-dry technique is first reported for preparing ceramic ultrafines. The single-phase complex oxide Ba 2 YCu 3 O/sub 9-δ/, a poly-crystallized compound, and ceramic superconductor have been synthesized successfully. The experimental results show that not only is the ceramic superconductor obtained uniform with fine particles and excellent superconductivity, but the conditions for solid reactions are relatively limited

  4. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  5. Characterization of ceramics used in mass ceramic industry Goianinha/RN

    International Nuclear Information System (INIS)

    Sales Junior, J.C.C.; Nascimento, R.M. do; Andrade, J.C.S.; Saldanha, K.M.; Dutra, R.P.S.

    2011-01-01

    The preparation of the the ceramic mass is one of the most important steps in the manufacture of ceramic products, since the characteristics of the raw materials used, and the proportions that they are added, directly influence the final properties of ceramic products and the operational conditions of processing. The objective of this paper is to present the results of the characterization of a ceramic mass used in the manufacture of sealing blocks by a red ceramic industry of the city of Goianinha / RN. We analyzed the chemical and mineralogical composition; thermogravimetric and differential thermal analysis; granulometric analysis; evaluation of plasticity; and determining the technological properties of specimens used in test firing at 700, 900 and 1100 ° C. The results show that the ceramic body studied has characteristics that allow use in the manufacture of sealing blocks when burned at a temperature of 900 ° C. (author)

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  7. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  8. The Impact of Ceramic Shell Strength on Hot Tearing during Investment Casting

    International Nuclear Information System (INIS)

    Norouzi, Saeid; Farhangi, Hassan

    2011-01-01

    The effect of ceramic shell strength on hot tearing susceptibility during solidification was inspected practicing investment casting of the cobalt-base superalloy samples with the same casting conditions, but different ceramic shell systems. Results showed that the lower the ceramic shell strength upon using polymer additives, the lower the hindered contraction rate, and the lower the hindered contraction rate, the smaller the hot tearing tendency. Optical microscopy and electron microscopy scanning revealed that the hot tear propagated along the last solidified interdendritic phase, and that the hot tear surface had two major modes: 1) the ductile region in the outer layer; and 2) the inner region of liquid embrittlement.

  9. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  10. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  12. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Amoroso, J.; Marra, J.

    2014-01-01

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear fuel. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing

  13. A new high temperature resistant glass–ceramic coating for gas ...

    Indian Academy of Sciences (India)

    Unknown

    resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs ... processing of two novel glass–ceramic coating materials, ... stainless steel tray to yield frit (a friable glassy material). .... Frit (– 20 mesh) powder.

  14. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  15. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    Science.gov (United States)

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  16. [In vitro evaluation of low-temperature aging effects of Y2O3 stabilized tetragonal zirconia polycrystals dental ceramics].

    Science.gov (United States)

    Yi, Yuan-fu; Liu, Hong-chen; Wang, Chen; Tian, Jie-mo; Wen, Ning

    2008-03-01

    To investigate the influence of in vitro low-temperature degradation (LTD) treatment on the structural stability of 5 kinds of Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramics. TZ-3YS powder was compacted at 200 MPa using cold isostatic pressure and pre-sintered at 1050 degrees C for 2 h forming presintered blocks. Specimens were sectioned into 15 mm x 15 mm x 1.5 mm slices from blocks of TZ-3YS, Vita In-Ceram YZ, Ivoclar, Cercon Smart, and Kavo Y-TZP presintered blocks, 18 slices for each brand, and then densely sintered. Specimens were divided into 6 groups and subjected to an accelerated aging test carried out in an autoclave in steam at 134 degrees C, 0.2 MPa, for 0, 1, 2, 3, 4, and 5 h. X-ray diffraction (XRD) was used to identify crystal phases and relative content of monoclinic phase was calculated. Specimens for three-point bending test were fabricated using TZ-3YS ceramics according to the ISO 6872 standard and bending strength was tested before and after aging. The polished and aging specimens of TZ-3YS and Cercon Smart zirconia ceramics were observed by atomic force microscopy (AFM) to evaluate surface microstructure. Tetragonal-to-monoclinic phase transformation was detected for specimens of TZ-3YS, Vita In-Ceram YZ, Ivoclar, and Kavo zirconia ceramics except for Cercon Smart ceramics after aging, and the relative content of monoclinic phase was increasing with the prolonged aging time. TZ-3YS was the most affected material, Kavo took the second, and Vita and Ivoclar were similar. Aging had no significant negative effects on flexural strength of TZ-3YS with average bending strength being over 1100 MPa. The nucleation and growth of monoclinic phase were detected by AFM in surface of Cercon Smart zirconia in which monoclinic phase was not detected by XRD. The results suggest that LTD of dental Y-TZP is time dependent, but the aging test does not reduce the flexural strength of TZ-3YS. The long-term clinical serviceability of dental

  17. Microstructure examination of the interface of the glass-ceramic insulator of the molybdenum frame of a vacuum tube

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    A common technique used in examining the structural integrity of a glass-ceramic insulator-molybdenum cylinder bond in a vacuum tube subassembly is to slit the outer molybdenum cylinder and separate it from the glass-ceramic insulator. Typically, a black glassy layer (0.001 to 0.002 in. thick) remains on the cylinder. This layer has been interpreted as a requirement for an adequate seal. A subassembly was found that did not exhibit this feature. Further investigation of approximately 100 subassemblies revealed four more parts lacking a black glassy layer. These parts were found to be from two production runs and from three glass-ceramic lots. A microstructural analysis showed that on those parts having a black glassy layer, the crystalline phase in the glass-ceramic grew to within one to two microns of the metal interface and then terminated. A dark region existed in the insulator between the interface and the termination of the crystalline phase. This was attributed to molybdenum oxide dissolved in the glass. On those parts where the glass-ceramic broke clean from the cylinder, the crystalline phase extended up to the metal. Also observed on these parts was the appearance of a dark region adjacent to the metal that extended approximately one to two microns into the glass-ceramic. This was assumed to be an oxide of molybdenum. This report presents information concerning the microstructure of the interface

  18. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  19. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  20. Sol-gel synthesis of lanthanum-gallate-based ceramic coatings

    International Nuclear Information System (INIS)

    Golubko, N.V.; Kaleva, G.M.; Roginskaya, Yu.E.; Politova, E.D.

    2007-01-01

    Phase-pure (La 0.9 Sr 0.1 )(Ga 0.7 Fe 0.3 )O 3-y and (Sr 1.8 La 0.2 )(GaFe)O 5.1 solid solutions with the perovskite and brownmillerite structures have been prepared from salt solutions by sol-gel processing at temperatures from 570 to 870 K. Ceramic coatings up to 100 μm in thickness have been produced by applying suspensions of the sol-gel powders to various substrates. The structure and microstructure of the ceramic coatings have been studied by X-ray diffraction and scanning electron microscopy [ru

  1. Toughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    2017-03-01

    Full Text Available Advanced engineering and functional ceramics are sensitive to damage cracks, which delay the wide applications of these materials in various fields. Ceramic composites with enhanced fracture toughness may trigger a paradigm for design and application of the brittle components. This paper reviews the toughening mechanisms for the nanolayered MAX phase ceramics. The main toughening mechanisms for these ternary compounds were controlled by particle toughening, phase-transformation toughening and fiber-reinforced toughening, as well as texture toughening. Based on the various toughening mechanisms in MAX phase, models of SiC particles and fibers toughening Ti3SiC2 are established to predict and explain the toughening mechanisms. The modeling work provides insights and guidance to fabricate MAX phase-related composites with optimized microstructures in order to achieve the desired mechanical properties required for harsh application environments.

  2. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  3. Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization.

    Science.gov (United States)

    Boushell, Margaret K; Khanarian, Nora T; LeGeros, Raquel Z; Lu, Helen H

    2017-10-01

    The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017. © 2017 Wiley Periodicals, Inc.

  4. Grain growth kinetics for B2O3-doped ZnO ceramics

    Directory of Open Access Journals (Sweden)

    Yuksel Berat

    2015-06-01

    Full Text Available Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 · t · exp(-Q/RT together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning mechanism in the liquid phase sintering.

  5. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    International Nuclear Information System (INIS)

    Oversby, V.M.; van Konynenburg, R.A.; Glassley, W.E.; Curtis, P.G.

    1993-11-01

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200 degrees C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters

  6. Impedance spectroscopy of ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.; Cosentino, I.C.; Florio, D.Z. de; Franca, Y.V.

    1996-01-01

    The Impedance Spectroscopy (IS) technique has been used to the study of Th O 2 :Y 2 O 3 , Zr O 2 :La 2 O 3 and Zr O 2 :Y 2 O 3 solid electrolytes. The results show that solid solution has been attained, grain boundaries act as oxygen-ion blockers, and the importance of the IS technique to study phase transformation in ceramics. (author)

  7. Radiation-induced aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1993-02-01

    The experimental program is designed to reveal details of the metamict (amorphization, or crystal-to-glass) transformation in irradiated ceramics (silica compounds, less-connected lead phosphates). The silica compounds were amorphized using electrons, neutrons, and ions, while the phosphates were amorphized using ions (primarily) and neutrons. Energy-filtered electron microdiffraction, high-resoltuion transmission electron microscopy, and high-performance liquid-phase chromatography are being used

  8. Tribology of ceramics: Report of the Committee on Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.

  9. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  10. Phase transformation in multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2014-02-28

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  11. The preparation of HfC/C ceramics via molecular design.

    Science.gov (United States)

    Inzenhofer, Kathrin; Schmalz, Thomas; Wrackmeyer, Bernd; Motz, Günter

    2011-05-07

    Polymer derived ceramics have received lots of attention throughout the last few decades. Unfortunately, only a few precursor systems have been developed, focusing on silicon based polymers and ceramics, respectively. Herein, the synthesis of novel hafnium containing organometallic polymers by two different approaches is reported. Dialkenyl substituted hafnocene monomers were synthesized and subsequently polymerized via a free radical mechanism. Salt metathesis reactions of hafnocene dichloride with bifunctional linkers led to the formation of polymeric materials. NMR spectroscopic methods--in solution as well as in the solid state--were used to characterize the organometallic polymers. Ceramics were finally obtained after cross-linking and thermal treatment under argon (T(max) = 1800 °C). SEM investigations, elemental analyses, Raman spectroscopy and XRD investigations identified the pyrolyzed products as partially crystalline HfC/C mixed phases.

  12. Raman spectroscopy of Pb(Zr.sub.1-x./sub.Ti.sub.x./sub.)O.sub.3./sub. graded ceramics around the morphotropic phase boundary

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Berta, Milan; Kozielski, L.; Gregora, Ivan

    2011-01-01

    Roč. 84, 5-6 (2011), s. 528-541 ISSN 0141-1594 R&D Projects: GA AV ČR KAN301370701; GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : Raman spectroscopy * PZT ceramics * phonons * ferroelectric phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2011 http://www.informaworld.com/smpp/content~db=all~content=a935088116~frm=titlelink?words=buixaderas

  13. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  14. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  15. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye Xinyu [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Cai Shu, E-mail: caishu@tju.edu.cn [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Dou Ying [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Xu Guohua [Shanghai Changzheng Hospital, Shanghai 200003 (China); Huang Kai; Ren Mengguo; Wang Xuexin [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Sol-gel derived 45S5 glass-ceramic coating was prepared on Mg alloy substrate. Black-Right-Pointing-Pointer The corrosion resistance of glass-ceramic coated Mg alloy was markedly improved. Black-Right-Pointing-Pointer The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na{sub 2}Ca{sub 2}Si{sub 3}O{sub 9}, with the thickness of {approx}1.0 {mu}m, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E{sub corr}) form -1.60 V to -1.48 V, and a reduction of corrosion current density (i{sub corr}) from 4.48 {mu}A cm{sup -2} to 0.16 {mu}A cm{sup -2}, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  16. Thick-film processing of Pb5Ge3O11-based ferroelectric glass-ceramics

    International Nuclear Information System (INIS)

    Cornejo, I.A.; Haun, M.J.

    1996-01-01

    Processing techniques were investigated to produce c-axis orientation, or texture, of ferroelectric Pb 5 Ge 3 O 11 -based glass-ceramic compositions during crystallization of amorphous thick-film printed samples from the Pb 5 Ge 3 O 11 -PbTiO 3 (PG-PT) and Pb 5 Ge 3 O 11 -Pb(Zr 1/2 Ti 1/2 )O 3 (PG-PZT) systems. In these systems the PG crystallized into a ferroelectric phase, producing a multiple ferroelectric phase composite at low temperatures, PG-PT or PG-PZT. In this way the non-ferroelectric component of traditional ferroelectric glass-ceramics was eliminated

  17. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark); Jambhekar, V. A.; Helmig, R. [Department of Hydromechanics and Modelling of Hydrosystems, Institute for Modelling Hydraulic and Environmental Systems, Universität Stuttgart, Stuttgart (Germany)

    2016-06-08

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free–flow region. In order to analyze such interaction processes, a Representative Elementary Volume (REV)–scale model concept is presented for coupling non–isothermal multi–phase compositional porous–media flow and single–phase compositional laminar free–flow. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated with water, and its transport to the free–flow region according to the existent results from the literature.

  18. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana

    2012-01-01

    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  19. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  20. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.