WorldWideScience

Sample records for phase modulation due

  1. Terahertz cross-phase modulation of an optical mode

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim

    2013-01-01

    We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....

  2. Phase ramping and modulation of reflectometer signals

    International Nuclear Information System (INIS)

    Conway, G.D.; Bartlett, D.V.; Stoff, P.E.

    1999-01-01

    The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (> 1 fringe) variations with two quite different time scales (2-10 ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the are modulated synchronously with the phase fringes. The slow fringes appear to result radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2-D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (authors)

  3. Self-phase modulation of laser light in laser produced plasma

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.

    1975-02-01

    A spectrum broadening due to the self-phase modulation of a laser light was observed in the laser produced deuterium and hydrogen plasma. Qualitative treatments of the density modulation due to the self-focusing process and the modulational instability were discussed. The theoretical estimation of spectrum broadening fairly accorded with the experimental results. (auth.)

  4. Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase

    International Nuclear Information System (INIS)

    Faccio, Daniele; Serrat, Carles; Cela, Jose M.; Farres, Albert; Di Trapani, Paolo; Biegert, Jens

    2010-01-01

    The process of high-order harmonic generation in gases is numerically investigated in the presence of a few-cycle pulsed-Bessel-beam pump, featuring a periodic modulation in the peak intensity due to large carrier-envelope-phase mismatch. A two-decade enhancement in the conversion efficiency is observed and interpreted as the consequence of a mechanism known as a nonlinearly induced modulation in the phase mismatch.

  5. Phase ramping and modulation of reflectometer signals

    International Nuclear Information System (INIS)

    Conway, G.; Bartlett, D.; Stott, P.

    1999-06-01

    The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (>1 fringe) variations with two quite different time scales (2-10ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the phase fringes. The slow fringes appear to result from radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (author)

  6. Black hole in a waveguide: Hawking radiation or self-phase modulation?

    International Nuclear Information System (INIS)

    Smolyaninov, Igor I

    2015-01-01

    Recently it was suggested that Hawking radiation may be observed in a nonlinear electromagnetic waveguide upon propagation of an optical pulse. We show that the spectral characteristics of the Hawking effect in such a waveguide are indistinguishable from the well-known effect of frequency broadening of an optical pulse due to self-phase modulation. Furthermore, we derive an estimate on the critical optical power at which Hawking effect is dominated by the self-phase modulation. It appears that optical experiments reported so far are clearly dominated by self-phase modulation. (paper)

  7. Graphene based terahertz phase modulators

    Science.gov (United States)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  8. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  9. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  10. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  11. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  12. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    Science.gov (United States)

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  13. Geometric phase modulation for stellar interferometry

    International Nuclear Information System (INIS)

    Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.

    2002-01-01

    Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer

  14. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  15. Particle separation by phase modulated surface acoustic waves.

    Science.gov (United States)

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  16. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.

    Science.gov (United States)

    Buss, Emily; Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of

  17. Symmetry, phase modulation and nonlinear waves

    CERN Document Server

    Bridges, Thomas J

    2017-01-01

    Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

  18. Phase modulation due to crystal diffraction by ptychographic imaging

    Science.gov (United States)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  19. Computing optimal interfacial structure of modulated phases

    OpenAIRE

    Xu, Jie; Wang, Chu; Shi, An-Chang; Zhang, Pingwen

    2016-01-01

    We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and orientation. The boundary conditions and basis functions are chosen to be commensurate with the bulk structures. It is observed that the ordered nature of modulated structures stabilizes the interface, which enables us to obtain optimal interfacial structures...

  20. Experimental investigation on streaming due to a gap between blanket modules in ITER

    International Nuclear Information System (INIS)

    Konno, Chikara; Maekawa, Fujio; Oyama, Yukio; Uno, Yoshitomo; Kasugai, Yoshimi; Maekawa, Hiroshi; Ikeda, Yujiro; Wada, Masayuki

    2000-01-01

    A gap streaming experiment was performed by using a D-T neutron source at FNS/JAERI as the ITER/EDA R and D Task T-218, in order to examine the streaming effects due to gap between shield blanket modules in ITER. The experiment had three phases. The first one defined neutron source characteristics (Source Characterization Experiment), the second (Experiment-l ) aimed at shield for welding part between shield blanket and back plate and the third (Experiment-2) focused on the influence that the gap between shield blanket modules would have on superconducting magnet. The effects of gap streaming were examined in detail experimentally. (author)

  1. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  2. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  3. XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe

    2008-01-01

    The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....

  4. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  5. Crystal structure of the commensurately modulated ζ phase of PAMC

    DEFF Research Database (Denmark)

    Harris, P.; Larsen, F.K.; Lebech, B.

    1994-01-01

    phase, indicating a 'lock-in' and phase shift between adjacent modulated layers. The modulation waves do not change much from the values of the epsilon phase, which confirms the lock-in of the modulation vector; only some components of the modulations of the propylammonium chains appear......The commensurately modulated zeta low-temperature phase of bis(propylammonium) tetrachloromanganate(II), [NH3(C3H7)]2MnCl4, has been determined at 8 K. a = 7.437 (5), b = 7.082 (5), c = 13.096 (8) Angstrom, alpha = 105.59 (1)degrees. Superspace group P2(1)/b(0 beta 0)(1) over bar s, with beta = 1...... to be significantly different, these chains appear to be responsible for the phase shift across the layers....

  6. Amplitude and phase modulation with waveguide optics

    International Nuclear Information System (INIS)

    Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.

    1996-01-01

    We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz

  7. Tune modulation due to synchrotron oscillations and chromaticity, and the dynamic aperture

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    A tracking study was done of the effects of a tune modulations, due to synchrotron oscillations and the tune dependence on momentum (chromaticity), on the dynamic aperture. The studies were done using several RHIC lattices and tracking runs of about 1 x 10 6 turns. The dynamic aperture was found to decrease roughly linearly with the amplitude of the tune modulation. Lower order non-linear resonances, like the 1/3 and 1/4 resonance are not crossed because of the tune modulation. Three different cases were studied, corresponding to RHIC lattices with different β*, and with different synchrotron oscillation amplitudes. In each case, the tune modulation amplitude was varied by changing the chromaticity. In each case, roughly the same result, was found. The result found here for the effect of a tune modulation due to chromaticity may be compared with the result found for the effect of a tune modulation due to a gradient ripple in the quadrupoles. The effect of a tune modulation due to a gradient ripple appears to be about 4 times stronger than the effect of a tune modulation due to chromaticity and synchrotron oscillations

  8. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  9. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags

    Science.gov (United States)

    Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song

    2017-09-01

    We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.

  10. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  11. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    Science.gov (United States)

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  12. Multilevel photonic modules for millimeter-wave phased-array antennas

    Science.gov (United States)

    Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    2000-09-01

    Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.

  13. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  14. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  15. Frequency-Diversity Reception for Phase Modulation

    Science.gov (United States)

    Brockman, M. H.

    1984-01-01

    Signal-to-noise ratio improved. System receives phase modulation transmitted simultaneously on different carrier frequencies. Used for carriers received through different antennas or through same antenna.

  16. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  17. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding.

    Science.gov (United States)

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Huang, Yong; Tan, Xiaodi

    2018-02-19

    A novel phase modulation method for holographic data storage with phase-retrieval reference beam locking is proposed and incorporated into an amplitude-encoding collinear holographic storage system. Unlike the conventional phase retrieval method, the proposed method locks the data page and the corresponding phase-retrieval interference beam together at the same location with a sequential recording process, which eliminates piezoelectric elements, phase shift arrays and extra interference beams, making the system more compact and phase retrieval easier. To evaluate our proposed phase modulation method, we recorded and then recovered data pages with multilevel phase modulation using two spatial light modulators experimentally. For 4-level, 8-level, and 16-level phase modulation, we achieved the bit error rate (BER) of 0.3%, 1.5% and 6.6% respectively. To further improve data storage density, an orthogonal reference encoding multiplexing method at the same position of medium is also proposed and validated experimentally. We increased the code rate of pure 3/16 amplitude encoding method from 0.5 up to 1.0 and 1.5 using 4-level and 8-level phase modulation respectively.

  18. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  19. Phase multistability of self-modulated oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Postnov, D.E.; Nekrasov, A.M.

    2002-01-01

    The paper examines the type of multistability that one can observe in the synchronization of two oscillators when the systems individually display self-modulation or other types of multicrest wave forms. The investigation is based on a phase reduction method and on the calculation of phase maps...... nonlinearity and a biologically motivated model of nephron autoregulation are presented....

  20. Novel electro-optical phase modulator based on GaInAs/InP modulation-doped quantum-well structures

    DEFF Research Database (Denmark)

    Thirstrup, C.

    1992-01-01

    A novel electro-optical phase modulator working at 1.55 µm is analyzed and proposed. It is shown by a numerical model that in a GaInAs/InP pn-nin-pn multiple-quantum-well waveguide structure, large optical phase modulation can be obtained at small intensity modulation and with improved performance...

  1. Phase transitions in spin systems with modulated order

    International Nuclear Information System (INIS)

    Coutinho Filho, M.D.

    1984-01-01

    Spin systems which may display modulated structures are treated. A layered Ising model with competing interactions between nearest and next-nearest layers in the presence of a magnetic field is studied. In the context of a mean-field approximation, the high-temperature region of the phase diagram is studied analytically. The Λ surface, separating the paramagnetic and the modulated phases, is bounded by two lines of tricritical points which join smoothly at the Lifshitz point and terminate at multicritical points, beyond which lines of critical and double critical end points are expected to appear. The low-temperature region is studied numerically. T-H phase diagrams, which exhibit a variety of modulated phases, for various values of the ratio of the strength of the competing interactions are constructed. A theoretical interpretation for the occurrence of a Lifshitz point in the field-temperature phase diagram of MnP is presented. These results, which are based on a X-Y localized spin Hamiltonian, are in qualitative agreement with recently reported experiments. In particular, asymptotic expressions are obtained for the phase boundaries, which meet tangentially at the Lifshitz point, and for some other thermodynamic quantities of interest, such as the longitudinal and transverse susceptibilities. (Author) [pt

  2. Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy

    Science.gov (United States)

    Liu, Z. Q.; Li, L.; Gai, Z.; Clarkson, J. D.; Hsu, S. L.; Wong, A. T.; Fan, L. S.; Lin, M.-W.; Rouleau, C. M.; Ward, T. Z.; Lee, H. N.; Sefat, A. S.; Christen, H. M.; Ramesh, R.

    2016-03-01

    We report a giant, ˜22 %, electroresistance modulation for a metallic alloy above room temperature. It is achieved by a small electric field of 2 kV /cm via piezoelectric strain-mediated magnetoelectric coupling and the resulting magnetic phase transition in epitaxial FeRh /BaTiO3 heterostructures. This work presents detailed experimental evidence for an isothermal magnetic phase transition driven by tetragonality modulation in FeRh thin films, which is in contrast to the large volume expansion in the conventional temperature-driven magnetic phase transition in FeRh. Moreover, all the experimental results in this work illustrate FeRh as a mixed-phase model system well similar to phase-separated colossal magnetoresistance systems with phase instability therein.

  3. Considerations of digital phase modulation for narrowband satellite mobile communication

    Science.gov (United States)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  4. Charge modulation as fingerprints of phase-string triggered interference

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan

    2015-07-07

    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.

  5. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    Science.gov (United States)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  6. Experimental Demonstration of Capacity-Achieving Phase-Shifted Superposition Modulation

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM.......We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM....

  7. Phase dynamics of a Josephson junction ladder driven by modulated currents

    International Nuclear Information System (INIS)

    Kawaguchi, T.

    2011-01-01

    Phase dynamics of disordered Josephson junction ladders (JJLs) driven by external currents which are spatially and temporally modulated is studied using a numerical simulation based on a random field XY model. This model is considered theoretically as an effective model of JJLs with structural disorder in a magnetic field. The spatiotemporal modulation of external currents causes peculiar dynamical effects of phases in the system under certain conditions, such as the directed motion of phases and the mode-locking in the absence of dc currents. We clarify the details of effects of the spatiotemporal modulation on the phase dynamics.

  8. Phase-modulation interferometer for ICF-target characterization

    International Nuclear Information System (INIS)

    Cooper, D.E.

    1981-01-01

    Characterization requirements for high gain laser fusion targets are severe. We are required to detect defects on the surfaces of opaque and transparent shells with an amplitude resolution of +- 5 nm and a spatial resolution of 1 to 10 μm. To achieve this we have developed a laser-illuminated phase-modulation interferometer. This instrument is based on a photoelastic polarization modulation technique which allows one to convert phase information into an intensity modulation which can be easily and sensitively measured using ac signal processing techniques. This interferometer has detected path length changes as small as 1 nm and the required spatial resolution is assured by using a microscope objective to focus the probe laser beam down to a small (approx. 1 μm) spot on the surface of a microballoon. The interferometer will soon be coupled to an LSI-11 controlled 4π sphere manipulator which will allow us to automatically inspect the entire surface area of a target sphere

  9. Phase-modulated radio over fiber multimode links.

    Science.gov (United States)

    Gasulla, Ivana; Capmany, José

    2012-05-21

    We present the first experimental demonstration of a phase-modulated MMF link implementing high-frequency digital transmission in a cost-effective solution based on direct detection. Successful subcarrier transmission of QPSK, 16-QAM and 64-QAM data channels for bit rates up to 120 Mb/s through a 5 km MMF link is achieved over the microwave region comprised between 6 and 20 GHz. The overall capacity of the proposed approach can be further increased by properly accommodating more passband channels in the operative frequency range determined by the phase-to-intensity conversion process provided by the dispersive nature of the optical fiber. In this sense, our results show the possibility of achieving an aggregate bit rate per length product of 144 Gb/s · km and confirm, in consequence, the possibility of broadband phase-modulated radio over fiber transmission through MMF links suitable for multichannel SCM signal distribution.

  10. Chromaticity tracking using a phase modulation technique

    International Nuclear Information System (INIS)

    Tan, C.Y.; Fermilab

    2007-01-01

    In the classical chromaticity measurement technique, chromaticity is measured by measuring the change in betatron tune as the RF frequency is varied. This paper will describe a novel way of measuring chromaticity: we will phase modulate the RF with a known sine wave and then phase demodulate the betatron frequency. The result is a line in Fourier space which corresponds to the frequency of our sine wave modulation. The peak of this sine wave is proportional to chromaticity. For this technique to work, a tune tracker PLL system is required because it supplies the betatron carrier frequency. This method has been tested in the Tevatron and we will show the results here

  11. Stable Optical Phase Modulation With Micromirrors

    Science.gov (United States)

    2012-01-27

    to a voltage signal using a transimpedance amplifier with tranimpedance gain of Rf = 2 kΩ. The detected photocurrent of Iph = 0.6mA from 1.5mW of...the interferometer phase noise of δφmax = 4πrlδθmax/λ , which is then converted to the voltage noise at the output of the transimpedance amplifier by...The depth of modulation for a micromirror driven at mechanical resonance is amplified by the quality factor Q, enabling significant modulation with

  12. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    International Nuclear Information System (INIS)

    Zainal, Nurul Afiqah; Tat, Chan Sooi; Ajisman

    2016-01-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's output is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor. (paper)

  13. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  14. Understanding of phase modulation in two-level systems through inverse scattering

    International Nuclear Information System (INIS)

    Hasenfeld, A.; Hammes, S.L.; Warren, W.S.

    1988-01-01

    Analytical and numerical calculations describe the effects of shaped radiation pulses on two-level systems in terms of quantum-mechanical scattering. Previous results obtained in the reduced case of amplitude modulation are extended to the general case of simultaneous amplitude and phase modulation. We show that an infinite family of phase- and amplitude-modulated pulses all generate rectangular inversion profiles. Experimental measurements also verify the theoretical analysis

  15. Coherent Detection of Wavelength Division Multiplexed Phase-Modulated Radio-over-Fibre Signals

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2008-01-01

    A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km.......A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km....

  16. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    Science.gov (United States)

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  17. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    Science.gov (United States)

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  18. Contrast enhancement in an optical time-domain reflectometer via self-phase modulation compensation by chirped probe pulses

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Vdovenko, V S; Simikin, D E; Gorshkov, B G

    2016-01-01

    In the present paper we propose a novel method for optical time-domain reflectometer (OTDR)–reflectogram contrast enhancement via compensation of nonlinear distortions of propagating probe pulse, which arise due to the self-phase modulation (SPM) effect in optical fiber. The compensation is performed via preliminary frequency modulation (chirp) of the initial probe pulse according to the specific law. As a result the OTDR contrast at some distant predefined fiber point is fully restored to the value of non-distorted probe pulse at the beginning of the fiber line. As a result, the performance of the phase OTDR increases. The point of full SPM compensation could be shifted to any other point of the fiber line via preliminary frequency modulation index change. The feasibility of the proposed method is theoretically proved and experimentally demonstrated. (paper)

  19. Switching Loss Reduction in the Three-Phase Quasi-Z-Source Inverters Utilizing Modified Space Vector Modulation Strategies

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Davari, Pooya; Blaabjerg, Frede

    2018-01-01

    Several single-stage topologies have been introduced since kicking off the three-phase Z-source inverter (ZSI), and among these topologies, the quasi-ZSI (qZSI) is the most common one due to its simple structure and continuous input current. Furthermore, different modulation strategies, utilizing...... multiple reference signals, have been developed as well. However, prior art modulation methods have some demerits, such as the complexity of generating the gate signals, the increased number of switch commutations with continuous commutation at high current level during the entire fundamental cycle...... the generation of the gate signals by utilizing only three reference signals, and achieving a single switch commutation at a time. These modulation strategies are analyzed and compared to the conventional ones, where a reduced-scale 1 kVA three-phase qZSI is designed and simulated using these different...

  20. The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo

    2011-03-28

    We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

  1. Preliminary Studies Of A Phase Modulation Technique For Measuring Chromaticity

    International Nuclear Information System (INIS)

    Tan, C.-Y.

    2006-01-01

    The classical method for measuring chromaticity is to slowly modulate the RF frequency and then measure the betatron tune excursion. The technique that is discussed in this paper instead modulates the phase of the RF and then the chromaticity is obtained by phase demodulating the betatron tune. This technique requires knowledge of the betatron frequency in real time in order for the phase to be demodulated. Fortunately, the Tevatron has a tune tracker based on the phase locked loop principle which fits this requirement. A preliminary study with this technique has showed that it is a promising method for doing continuous chromaticity measurement and raises the possibility of doing successful chromaticity feedback with it

  2. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  3. Spectral decomposition of single-tone-driven quantum phase modulation

    International Nuclear Information System (INIS)

    Capmany, Jose; Fernandez-Pousa, Carlos R

    2011-01-01

    Electro-optic phase modulators driven by a single radio-frequency tone Ω can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of ℎΩ. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1 , the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F 1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  4. Spectral decomposition of single-tone-driven quantum phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Capmany, Jose [ITEAM Research Institute, Univ. Politecnica de Valencia, 46022 Valencia (Spain); Fernandez-Pousa, Carlos R, E-mail: c.pousa@umh.es [Signal Theory and Communications, Department of Physics and Computer Science, Univ. Miguel Hernandez, 03202 Elche (Spain)

    2011-02-14

    Electro-optic phase modulators driven by a single radio-frequency tone {Omega} can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of {h_bar}{Omega}. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F{sub 1}, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F{sub 1} is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  5. Phase-ambiguity resolution for QPSK modulation systems. Part 1: A review

    Science.gov (United States)

    Nguyen, Tien Manh

    1989-01-01

    Part 1 reviews the current phase-ambiguity resolution techniques for QPSK coherent modulation systems. Here, those known and published methods of resolving phase ambiguity for QPSK with and without Forward-Error-Correcting (FEC) are discussed. The necessary background is provided for a complete understanding of the second part where a new technique will be discussed. An appropriate technique to the Consultative Committee for Space Data Systems (CCSDS) is recommended for consideration in future standards on phase-ambiguity resolution for QPSK coherent modulation systems.

  6. A review of single-phase grid-connected inverters for photovoltaic modules

    DEFF Research Database (Denmark)

    Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

    2005-01-01

    -phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the type of grid-connected power stage. Various inverter topologies are presented, compared, and evaluated against demands, lifetime, component ratings, and cost. Finally, some of the topologies are pointed out......This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

  7. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams

    International Nuclear Information System (INIS)

    Li, Huanlu; Strain, Michael J.; Meriggi, Laura; Sorel, Marc; Chen, Lifeng; Zhu, Jiangbo; Cicek, Kenan; Wang, Jianwei; Thompson, Mark G.; Cai, Xinlun; Yu, Siyuan

    2015-01-01

    An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications

  8. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanlu [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Strain, Michael J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Wolfson Centre, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW (United Kingdom); Meriggi, Laura; Sorel, Marc [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Chen, Lifeng; Zhu, Jiangbo; Cicek, Kenan [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Wang, Jianwei; Thompson, Mark G. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); Cai, Xinlun, E-mail: caixlun5@mail.sysu.edu.cn [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yu, Siyuan, E-mail: s.yu@bristol.ac.uk [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-08-03

    An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications.

  9. Fast nanoscale heat-flux modulation with phase-change materials

    OpenAIRE

    Van Zwol , Pieter; Joulain , Karl; Ben-Abdallah , Philippe; Greffet , Jean-Jacques; Chevrier , Joël

    2011-01-01

    International audience; We introduce a new concept for electrically controlled heat flux modulation. A flux contrast larger than 10 dB is expected with switching time on the order of tens of nanoseconds. Heat flux modulation is based on the interplay between radiative heat transfer at the nanoscale and phase change materials. Such large contrasts are not obtainable in solids, or in far field. As such this opens up new horizons for temperature modulation and actuation at the nanoscale.

  10. Modulated phases of phospholipid bilayers induced by tocopherols.

    Science.gov (United States)

    Kamal, Md Arif; Raghunathan, V A

    2012-11-01

    The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation

    DEFF Research Database (Denmark)

    2002-01-01

    The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the...

  12. Longitudinal tracking with phase and amplitude modulated rf

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.

    1993-06-01

    Synchrotron motion was induced by phase shifting the rf of the Indiana University Cyclotron Facility (IUCF) cooler-synchrotron. The resulting coherent-bunch motion was tracked in longitudinal phase space for as many as 700,000 turns, or for over 350 synchrotron oscillations. Results of recent experimental studies of longitudinal motion in which the rf phase and amplitude were harmonically modulated are also presented. Comparisons of experimental data with numerical simulations, assuming independent particle motion, are made. Observed multiparticle effects are also discussed

  13. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  14. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    Directory of Open Access Journals (Sweden)

    Alfonse N. Pham

    2015-12-01

    Full Text Available This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.

  15. Phase Modulation for postcompensation of dispersion in 160-Gb/s systems

    DEFF Research Database (Denmark)

    Siahlo, Andrei; Clausen, A. T.; Oxenløwe, Leif Katsuo

    2005-01-01

    Tunable postcompensation of second-order dispersion by sinusoidal phase modulation is realized for a 160-Gb/s optical transmission system. Accumulated dispersions with magnitudes up to 4 ps/nm are compensated in the receiver end.......Tunable postcompensation of second-order dispersion by sinusoidal phase modulation is realized for a 160-Gb/s optical transmission system. Accumulated dispersions with magnitudes up to 4 ps/nm are compensated in the receiver end....

  16. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  17. A Voltage Modulated DPC Approach for Three-Phase PWM Rectifier

    DEFF Research Database (Denmark)

    Gui, Yonghao; Li, Mingshen; Lu, Jinghang

    2018-01-01

    In this paper, a voltage modulated direct power control for three-phase pulse-width modulated rectifier is proposed. With the suggested method, the differential equations describing the rectifier dynamics are changing from a linear time-varying system into a linear time-invariant one. In this way...

  18. Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.

    Science.gov (United States)

    Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J

    2012-06-15

    A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6  dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

  19. Affects of binary and continuous phase modulations on the structure of Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available The authors implement a novel technique to operate a phase-only spatial light modulator (SLM) in amplitude mode, allowing them to reproduce Durnin’s ring slit on a liquid crystal display (LCD). The affects of binary and continuous phase modulations...

  20. Cognitive digital receiver for burst mode phase modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...

  1. Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

    DEFF Research Database (Denmark)

    Geng, Yan

    the amplitude regeneration capability based on FWM in a highly nonlinear fiber (HNLF). The first reported experimental demonstration of amplitude equalization of 40 Gbit/s RZ-DPSK signals using a 500 m long HNLF is presented. Using four possible phase levels to carry the information, DQPSK allows generation......This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying...... (DQPSK) are used to transport information. All-optical network functionalities -such as optical labeling, wavelength conversion and signal regeneration- are experimentally investigated. Direct detection of phase modulated signals requires phase-to-intensity modulation conversion in a demodulator...

  2. Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects

    International Nuclear Information System (INIS)

    Fisher, R.A.; Suydam, B.R.; Yevick, D.

    1983-01-01

    We show that the temporal distortion and spectral broadening of a pulse generated by the combined effects of group-velocity dispersion and self-phase modulation is removed by reflection of a cw-pumped, broadband, unity-reflecting Kerr-like optical phase conjugator followed by retraversal of the nonlinear medium. We also examine numerically the effects of finite linear loss in the material, of nonunity conjugate reflectivity, and of finite conjugator thickness

  3. Photon-counting 1.0 GHz-phase-modulation fluorometer

    International Nuclear Information System (INIS)

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.

    2015-01-01

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method

  4. Photon-counting 1.0 GHz-phase-modulation fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T., E-mail: iwata@tokushima-u.ac.jp [Division of Energy System, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima, Tokushima 770-8506 (Japan)

    2015-04-15

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.

  5. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  6. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    Science.gov (United States)

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  7. Nonlinearity and Phase Noise Tolerant 75-110 GHz Signal over Fiber System Using Phase Modulation Technique

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhang, Xu

    2013-01-01

    We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....

  8. Commensurately modulated 1/4 and 1/5 phases of deuterated betaine calcium chloride dihydrate: a neutron structural study

    International Nuclear Information System (INIS)

    Hernandez, O.; Cousson, A.; Kiat, J.M.; Ecole Centrale des Arts et Manufactures, 92 - Chatenay-Malabry; Paulus, W.; Technische Hochschule Aachen; Ezpeleta, J.M.; Zuniga, F.J.

    1999-01-01

    The structures of the commensurate 1/4 and 1/5 phases of the displacively modulated compound D-BCCD [deuterated betaine (trimethylammonioacetate) calcium chloride dihydrate, i.e. (CD 3 ) 3 NCD 2 COOCaCl 2 (D 2 O) 2 or CaCl 2 x C 5 D 11 NO 2 x 2D 2 O] have been determined by single-crystal neutron diffraction at 100 and 68 K, respectively. The structural model of the 1/4 phase is found to be quite different from that obtained previously from X-ray diffraction data of the hydrogenated compound. This discrepancy comes from the fact that X-ray irradiation induces in this compound an unusual time-dependent decrease of the intensity of high-order satellite diffraction peaks. As a consequence and due to the commensurate nature of the phases investigated, X-ray diffraction failed to detect the large anharmonicity of the structural modulation which is clearly present in the two structures determined by neutron diffraction. (orig.)

  9. Cavity Voltage Phase Modulation MD blocks 3 and 4

    CERN Document Server

    Mastoridis, T; Butterworth, A; Molendijk, J; Tuckmantel, J

    2013-01-01

    The LHC RF/LLRF system is currently setup for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would push the klystrons to saturation. For beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam (transient beam loading) will not be corrected, but the strong RF feedback and One-Turn Delay feedback will still be active for RF loop and beam stability in physics. To achieve this, the voltage set point should be adapted for each bunch. The goal of these MDs was to test thefirmware version of an iterative algorithm that adjusts the voltage set point to achieve the optimal phase modulation for klystron forward power considerations.

  10. Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes

    International Nuclear Information System (INIS)

    Kirschstein, Anika; Herbst, Christian; Riedel, Kerstin; Carella, Michela; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2008-01-01

    We have explored the design of broadband scalar coupling mediated 13 C- 13 C and cross-relaxation suppressed 1 H- 1 H TOCSY sequences employing phase/amplitude modulated inversion pulses. Considering a variety of supercycles, pulsewidths and a RF field strength of 10 kHz, the Fourier coefficients defining the amplitude and phase modulation profiles of the 180 deg. pulses were optimised numerically so as to obtain efficient magnetisation transfer within the desired range of resonance offsets. The coherence transfer characteristics of the mixing schemes were assessed via numerical simulations and experimental measurements and were compared with commonly used sequences based on rectangular RF pulses. The efficacies of the clean 1 H- 1 H TOCSY sequences were also examined via numerical simulations for application to weakly oriented systems and sequences with efficient, broadband and clean dipolar transfer characteristics were identified. In general, the amplitude and phase modulated TOCSY sequences presented here have moderately better performance characteristics than the sequences currently employed in biomolecular NMR spectroscopy

  11. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  12. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul

    2012-09-30

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  13. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul; Al-Naffouri, Tareq Y.; Mobeen, M. Kashan; Salama, Khaled N.; Shamim, Atif

    2012-01-01

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  14. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"

    Science.gov (United States)

    Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.

    2011-12-01

    Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.

  15. PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com [Physics and Astronomy Department, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States)

    2016-11-20

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.

  16. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

  17. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  18. A simple image-reject mixer based on two parallel phase modulators

    Science.gov (United States)

    Hu, Dapeng; Zhao, Shanghong; Zhu, Zihang; Li, Xuan; Qu, Kun; Lin, Tao; Zhang, Kun

    2018-02-01

    A simple photonic microwave image-reject mixer (IRM) using two parallel phase modulators is proposed. First, a photonic microwave mixer with phase shift ability is achieved using two parallel phase modulators (PMs), an optical bandpass filter, three polarization controllers, three polarization beam splitters and two balanced photodetectors. At the output of the mixer, two frequency downconverted signals with tunable frequency difference can be obtained. By adjusting the phase difference as 90° and utilizing an electrical 90° hybrid, the useless components can be eliminated, and the image reject operation is realized. The key advantage of the proposed scheme is the usage of PM, which avoid the DC bias shifting problem and make the system simple and stable. A simulation is performed to verify the proposed scheme, a relative - 90° or 90° phase shift can be obtained between the two output ports of the photonic microwave mixer, at the output of the IRM, 60 dB image-reject ratio is obtained.

  19. Large conditional single-photon cross-phase modulation

    Science.gov (United States)

    Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  20. Phase ambiguity resolution for offset QPSK modulation systems

    Science.gov (United States)

    Nguyen, Tien M. (Inventor)

    1991-01-01

    A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity.

  1. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser

    OpenAIRE

    Vahala, Kerry; Paslaski, Joel; Yariv, Amnon

    1985-01-01

    Simultaneous direct modulation response enhancement, phase noise (linewidth) reduction, and frequency modulation suppression are produced in a coupled-cavity semiconductor laser by the detuned loading mechanism.

  2. The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications

    Science.gov (United States)

    Vanderaar, Mark; Jensen, Chris A.; Terry, John D.

    1997-01-01

    In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.

  3. Electrically and spatially controllable PDLC phase gratings for diffraction and modulation of laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg [Laboratory of Optics and Spectroscopy, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia (Bulgaria); Marinov, Yordan G.; Petrov, Alexander G. [Laboratory of Biomolecular Layers, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia, Bulgaria (Bulgaria)

    2016-03-25

    We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii) spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.

  4. QPSK Modulator with Continuous Phase and Fast Response Based on Phase-Locked Loop

    Directory of Open Access Journals (Sweden)

    L. Kirasamuthranon

    2017-06-01

    Full Text Available Among M-phase shift keying (M-PSK schemes, quadrature phase-shift keying (QPSK is used most often because of its efficient bandwidth consumption. However, in comparison with minimum-shift keying, which has continuous phase transitions, QPSK requires a higher bandwidth to transmit a signal. This article focuses on the phase transitions in QPSK signals, and a QPSK modulator based on a phase-locked loop (PLL is proposed. The PLL circuit in the proposed system differs from that of conventional PLL circuits because a three-input XOR gate and a summing circuit are used. With these additional components, the proposed PLL provides a continuous phase change in the QPSK signal. Consequently, the required bandwidth for transmitting the QPSK signal when using the proposed circuit is less than that for a conventional QPSK signal with a discontinuous phase. The analytical results for the proposed system in the time domain agree well with the experimental and simulation results of the circuit. Both the theoretical and experimental results thus confirm that the proposed technique can be realized in real-world applications.

  5. FEL small signal gain reduction due to phase error of undulator

    International Nuclear Information System (INIS)

    Jia Qika

    2002-01-01

    The effects of undulator phase errors on the Free Electron Laser small signal gain is analyzed and discussed. The gain reduction factor due to the phase error is given analytically for low-gain regimes, it shows that degradation of the gain is similar to that of the spontaneous radiation, has a simple exponential relation with square of the rms phase error, and the linear variation part of phase error induces the position shift of maximum gain. The result also shows that the Madey's theorem still hold in the presence of phase error. The gain reduction factor due to the phase error for high-gain regimes also can be given in a simple way

  6. Characterization of ultrashort laser pulses employing self-phase modulation dispersion-scan technique

    Science.gov (United States)

    Sharba, A. B.; Chekhlov, O.; Wyatt, A. S.; Pattathil, R.; Borghesi, M.; Sarri, G.

    2018-03-01

    We present a new phase characterization technique for ultrashort laser pulses that employs self-phase modulation (SPM) in the dispersion scan approach. The method can be implemented by recording a set of nonlinearly modulated spectra generated with a set of known chirp values. The unknown phase of the pulse is retrieved by linking the recorded spectra to the initial spectrum of the pulse via a phase function guessed by a function minimization iterative algorithm. This technique has many advantages over the dispersion scan techniques that use frequency conversion processes. Mainly, the use of SPM cancels out the phase and group velocity mismatch errors and dramatically widens the spectral acceptance of the nonlinear medium and the range of working wavelength. The robustness of the technique is demonstrated with smooth and complex phase retrievals using numerical examples. The method is shown to be not affected by the spatial distribution of the beam or the presence of nonlinear absorption process. In addition, we present an efficient method for phase representation based on a summation of a set of Gaussian functions. The independence of the functions from each other prevents phase coupling of any kind and facilitates a flexible phase representation.

  7. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From the measure...... the measurements we derive the small-signal alpha-parameter and the time-dependent chirp for different operation conditions.......In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  8. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...... interact at the beginning or the end of the fiber, and complete collisions, in which the four fields interact at the midpoint of the fiber. If the Green function is separable, there is only one output Schmidt mode, which is free from temporal entanglement. We find that nonlinear phase modulation always...... chirps the input and output Schmidt modes and renders the Green function formally nonseparable. However, by pre-chirping the pumps, one can reduce the chirps of the Schmidt modes and enable approximate separability. Thus, even in the presence of nonlinear phase modulation, frequency conversion...

  9. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation

    Science.gov (United States)

    Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato

    2018-06-01

    We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m  =  3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0  =  100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.

  10. Three-Phase Modulated Pole Machine Topologies Utilizing Mutual Flux Paths

    DEFF Research Database (Denmark)

    Washington, Jamie G.; Atkinson, Glynn J.; Baker, Nick J.

    2012-01-01

    This paper discusses three-phase topologies for modulated pole machines (MPMs). The authors introduce a new threephase topology, which takes advantage of mutual flux paths; this is analyzed using 3-D finite-element methods and compared to a three-phase topology using three single-phase units...... stacked axially. The results show that the new “combined-phase MPM” exhibits a greater torque density, while offering a reduction in the number of components. The results obtained from two prototypes are also presented to verify the concept; the results show that the “combined-phase” machine could provide...

  11. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam

    International Nuclear Information System (INIS)

    Yuan, G H; Wang, Q; Tan, P S; Lin, J; Yuan, X-C

    2012-01-01

    A novel phase modulation method for dynamic manipulation of surface plasmon polaritons (SPPs) with a phase engineered optical vortex (OV) beam illuminating on nanoslits is experimentally demonstrated. Because of the unique helical phase carried by an OV beam, dynamic control of SPP multiple focusing and standing wave generation is realized by changing the OV beam’s topological charge constituent with the help of a liquid-crystal spatial light modulator. Measurement of SPP distributions with near-field scanning optical microscopy showed an excellent agreement with numerical predictions. The proposed phase modulation technique for manipulating SPPs features has seemingly dynamic and reconfigurable advantages, with profound potential for development of SPP coupling, routing, multiplexing and high-resolution imaging devices on plasmonic chips. (paper)

  12. Radar transponder operation with compensation for distortion due to amplitude modulation

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  13. Proposal and design of phase-modulated fiber gratings in transmission for pulse shaping.

    Science.gov (United States)

    Preciado, Miguel A; Shu, Xuewen; Sugden, Kate

    2013-01-01

    An approach to pulse shaping using a phase-modulated fiber Bragg grating (FBG) in transmission is proposed and designed. We show that phase-modulated FBGs can provide transmission responses suitable for pulse shaping applications, offering important technological feasibility benefits, since the coupling strength remains basically uniform in the grating. Moreover, this approach retains the substantial advantages of FBGs in transmission, such as optimum energy efficiency, no requirement for an optical circulator, and robustness against fabrication errors.

  14. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    Science.gov (United States)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the

  15. Statistics of errors in fibre communication lines with a phase-modulation format and optical phase conjugation

    International Nuclear Information System (INIS)

    Shapiro, Elena G; Fedoruk, Mikhail P

    2011-01-01

    Analytical formulas are derived to approximate the probability density functions of 'zero' and 'one' bits in a linear communication channel with a binary format of optical signal phase modulation. Direct numerical simulation of the propagation of optical pulses in a communication line with optical phase conjugation is performed. The results of the numerical simulation are in good agreement with the analytical approximation. (fibreoptic communication lines)

  16. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  17. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    International Nuclear Information System (INIS)

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by π radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments

  18. Commensurate and incommensurate '5M' modulated crystal structures in Ni-Mn-Ga martensitic phases

    International Nuclear Information System (INIS)

    Righi, L.; Albertini, F.; Pareti, L.; Paoluzi, A.; Calestani, G.

    2007-01-01

    It is well known that the composition of ferromagnetic shape memory Ni-Mn-Ga Heusler alloys determines both temperature of martensitic transformations and the structure type of the product phase. In the present work we focused our attention on the structural study of the so-called '5M' modulated structure. In particular, the structure of Ni 1.95 Mn 1.19 Ga 0.86 martensitic phase is analysed by powder X-ray diffraction (PXRD) and compared with that of the stoichiometric Ni 2 MnGa martensite. The study of the diffraction data reveals the occurrence of commensurate (C) structural modulation in Ni 1.95 Mn 1.19 Ga 0.86 ; this contrasts with Ni 2 MnGa, where an incommensurate (IC) structural modulation was evident. The two phases also differ in the symmetry of the fundamental martensitic lattice. In fact, the incommensurate modulation is related to an orthorhombic basic structure, while the commensurate variant presents a monoclinic symmetry. The commensurate modulated structure has been investigated by using the superspace approach already adopted to solve the structure of Ni 2 MnGa martensite. The structure has been determined by Rietveld refinement of PXRD data

  19. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light

    Science.gov (United States)

    Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad

    2016-03-01

    We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.

  20. Modulational-instability gain bands in quasi-phase-matched materials

    International Nuclear Information System (INIS)

    Corney, J.F.; Bang, O.

    2002-01-01

    Full text: Quadratically nonlinear materials are of significant technological interest in optics because of their strong and fast cascaded nonlinearities, which are accessed most efficiently with quasi-phase-matching (QPM) techniques. We study the gain spectra of modulational instabilities (Ml) in quadratic materials where the linear and nonlinear properties are modulated with QPM gratings. The periods and intensity-dependence of the Ml can now be measured in the laboratory. Using an exact Floquet theory, we find that novel low- and high-frequency bands appear in the gain spectrum (gain versus transverse spatial frequency). The high-frequency gain bands are a general feature of gain spectra for QPM gratings. They form part of an extensive series of bands that correspond to Ml in the non-phase-matched, quickly varying components of the fields. The low-frequency bands correspond to Ml in the phase-matched DC components of the fields and are accurately predicted by a simple average theory. This theory includes the effect of the quickly varying components as induced cubic terms, which can be strong enough to suppress the low-frequency bands, in which case dark solitons and other broad beams may be effectively stable, since the high-frequency bands are typically small

  1. Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lei, Kai; Wang, Yang; Jiang, Minghui; Wu, Yiqun

    2016-01-01

    In this study, the controllable effective refractive index modulation of Sb 70 Te 30 phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.

  2. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  3. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    International Nuclear Information System (INIS)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-01-01

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility

  4. EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing.

    Science.gov (United States)

    Lee, Meng-Jung; Chen, Yi-Hsin; Wang, I-Chung; Yu, Ite A

    2012-05-07

    All-optical switching (AOS) or cross-phase modulation (XPM) based on the effect of electromagnetically induced transparency (EIT) makes one photon switched or phase-modulated by another possible. The existence of four-wave mixing (FWM) process greatly diminishes the switching or phase-modulation efficiency and hinders the single-photon operation. We proposed and experimentally demonstrated an idea that with an optimum detuning the EIT-based AOS can be completely intact even under the influence of FWM. The results of the work can be directly applied to the EIT-based XPM. Our work makes the AOS and XPM schemes more flexible and the single-photon operation possible in FWM-allowed systems.

  5. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    Science.gov (United States)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  6. Enhanced wavefront reconstruction by random phase modulation with a phase diffuser

    DEFF Research Database (Denmark)

    Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2011-01-01

    propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...... of the diffusely scattered beam. The use of demagnification optics will also allow the investigations of relatively large objects. In the second setup, a transparent object is illuminated using a wavefront with random phase and constant amplitude by positioning the phase diffuser close to the object. The benefit...

  7. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  8. Single-Carrier Modulation for Neutral-Point-Clamped Inverters in Three-Phase Transformerless Photovoltaic Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Cavalcanti, Marcelo C.; Farias, Alexandre M.

    2013-01-01

    Modulation strategy is one of the most important issues for three-level neutral-point-clamped inverters in three-phase transformerless photovoltaic systems. A challenge for modulation is how to keep the common-mode voltages constant to reduce the leakage currents. A single-carrier modulation...... strategy is proposed. It has a very simple structure, and the common-mode voltages can be kept constant with no need of complex space-vector modulation or multicarrier pulsewidth modulation. Experimental results verify the theoretical analysis and the effectiveness of the presented method....

  9. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    Science.gov (United States)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  10. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    Science.gov (United States)

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  11. Phase Velocity Estimation of a Microstrip Line in a Stoichiometric Periodically Domain-Inverted LiTaO3 Modulator Using Electro-Optic Sampling Technique

    Directory of Open Access Journals (Sweden)

    Shintaro Hisatake

    2008-01-01

    Full Text Available We estimate the phase velocity of a modulation microwave in a quasi-velocity-matched (QVM electro-optic (EO phase modulator (QVM-EOM using EO sampling which is accurate and the most reliable technique for measuring voltage waveforms at an electrode. The substrate of the measured QVM-EOM is a stoichiometric periodically domain-inverted LiTaO3 crystal. The electric field of a standing wave in a resonant microstrip line (width: 0.5 mm, height: 0.5 mm is measured by employing a CdTe crystal as an EO sensor. The wavelength of the traveling microwave at 16.0801 GHz is determined as 3.33 mm by fitting the theoretical curve to the measured electric field distribution. The phase velocity is estimated as vm=5.35×107 m/s, though there exists about 5% systematic error due to the perturbation by the EO sensor. Relative dielectric constant of εr=41.5 is led as the maximum likelihood value that derives the estimated phase velocity.

  12. Influence of modulation method on using LC-traps with single-phase voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Min, Huang; Bai, Haofeng

    2015-01-01

    The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

  13. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Hendriks, A

    2012-08-01

    Full Text Available amplitude modulation of the light, i.e., in amplitude and phase. We outline the theoretical concept, and then illustrate its use with the example of the laser beam shaping of Gaussian beams into flat-top beams. We quantify the performance of this approach...

  14. Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Delettrez, J.A.; Goncharov, V.N.; Marshall, F.J.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Town, R.P.J.; Yaakobi, B.

    2002-01-01

    The temporal evolution of inner-shell modulations, unstable during the deceleration phase of a laser-driven spherical implosion, has been measured through K-edge imaging [B. Yaakobi et al., Phys. Plasmas 7, 3727 (2000)] of shells with titanium-doped layers. The main study was based on the implosions of 1 mm diam, 20 μm thick shells filled with either 18 atm or 4 atm of D 3 He gas driven with 23 kJ, 1 ns square laser pulses on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. These targets have similar modulation levels at the beginning of the deceleration phase due to similar modulation growths in the acceleration phase, but different modulation growths throughout the deceleration phase due to different fill pressures (convergence ratios). At peak compression, the measured inner surface, areal-density nonuniformity σ rms levels were 23±5 % for more-stable 18 atm fill targets and 53±11 % for less-stable 4 atm fill targets. The inner-surface modulations grow throughout the deceleration phase due to Rayleigh-Taylor instability and Bell-Plesset convergence effects. The nonuniformity at peak compression is sensitive to the initial perturbation level as measured in implosions with different laser-smoothing conditions

  15. Damping coherent phase oscillations by means of path-length modulation

    International Nuclear Information System (INIS)

    Rees, J.R.

    1978-06-01

    Multi-bunch storage rings and synchrotrons are typically plagued by a tendency for the bunches to indulge in unstable coherent phase oscillations engendered by their electromagnetic interactions with the vacuum chamber. In many machines feedback systems have been used successfully to damp these oscillations using a signal proportional to the coherent phase motion or the concomitant energy motion to control an auxiliary longitudinal electric field. The purpose of this note is to describe an alternative feedback system which, using the same kind of a signal, modulates the path length of the orbit of the reference particle (the synchronous particle in the absence of coherent phase oscillations) in such a way as to damp coherent oscillations. 2 refs., 1 fig

  16. Experimental observation of chaotic phase synchronization of a periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Hui; Kuo, Chie-Tong [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Hsu, Tzu-Fang, E-mail: tfhsu@mail.npue.edu.tw [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan, ROC (China); Jan, Hengtai; Han, Shiang-Yi [Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd., Yanchao District, Kaohsiung City 824, Taiwan, ROC (China); Ho, Ming-Chung, E-mail: t1603@nknucc.nknu.edu.tw [Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd., Yanchao District, Kaohsiung City 824, Taiwan, ROC (China); Jiang, I-Min [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China)

    2012-03-12

    In this Letter we demonstrate the experimental observation of chaotic phase synchronization (CPS) in a periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser. PS transition is displayed via the stroboscopic technique. We apply the recurrence probability and correlation probability of recurrence to estimate the degree of PS. The degree of PS is studied taking into account the modulation amplitude and modulation frequency. We also propose an experimental compatible numerical simulation to reflect the fact that the Arnold tongues are experimentally and numerically exhibited in the periodically pump-modulated multimode microchip Nd:YVO{sub 4} laser. -- Highlights: ► We show chaotic phase synchronization in a pump-modulated microchip Nd:YVO{sub 4} laser. ► Phase synchronization (PS) transition is displayed via the stroboscopic technique. ► The degree of PS is studied taking into account the modulation parameters. ► The Arnold tongues are experimentally and numerically exhibited in the laser.

  17. Phase of the annual modulation as a tool for determining the mass of the weakly interacting massive particle

    International Nuclear Information System (INIS)

    Lewis, Matthew J.; Freese, Katherine

    2004-01-01

    The count rate of weakly interacting massive particle (WIMP) dark matter candidates in direct detection experiments experiences an annual modulation due to the Earth's motion around the Sun. In the standard isothermal halo model, the signal peaks near June 2nd at high recoil energies; however, the signal experiences a phase reversal and peaks in December at low energy recoils. We show that this phase reversal may be used to determine the WIMP mass. If an annual modulation were observed with the usual phase (i.e., peaking on June 2nd) in the lowest accessible energy recoil bins of the DAMA, CDMS-II, CRESST-II, EDELWEISS-II, GENIUS-TF, ZEPLIN-II, XENON, or ZEPLIN-IV detectors, one could immediately place upper bounds on the WIMP mass of 103, 48, 6, 97, 10, 52, 29, and 29 GeV, respectively. In addition, detectors with adequate energy resolution and sufficiently low recoil energy thresholds may determine the crossover recoil energy at which the phase reverses, thereby obtaining an independent measurement of the WIMP mass. We study the capabilities of various detectors, and find that CRESST-II, ZEPLIN-II, and GENIUS-TF should be able to observe the phase reversal in a few years of runtime, and can thus determine the mass of the WIMP if it is O(100 GeV). Xenon based detectors with 1000 kg (XENON and ZEPLIN-IV) and with energy recoil thresholds of a few keV require 25 kg yr exposure, which will be readily attained in upcoming experiments

  18. Speckle-free and halo-free low coherent Mach-Zehnder quantitative-phase-imaging module as a replacement of objective lens in conventional inverted microscopes

    Science.gov (United States)

    Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.

  19. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  20. Thermal hydraulics-II. 2. Benchmarking of the TRIO Two-Phase-Flow Module

    International Nuclear Information System (INIS)

    Helton, Donald; Kumbaro, Anela; Hassan, Yassin

    2001-01-01

    The Commissariat a l'Energie Atomique (CEA) is currently developing a two-phase-flow module for the Trio-U CFD computer program. Work in the area of advanced numerical technique application to two-phase flow is being carried out by the SYSCO division at the CEA Saclay center. Recently, this division implemented several advanced numerical solvers, including approximate Riemann solvers and flux vector splitting schemes. As a test of these new advances, several benchmark tests were executed. This paper describes the pertinent results of this study. The first benchmark problem was the Ransom faucet problem. This problem consists of a vertical column of water acting under the gravity force. The appeal of this problem is that it tests the program's handling of the body force term and it has an analytical solution. The Trio results [based on a two-fluid, two-dimensional (2-D) simulation] for this problem were very encouraging. The two-phase-flow module was able to reproduce the analytical velocity and void fraction profiles. A reasonable amount of numerical diffusion was observed, and the numerical solution converged to the analytical solution as the grid size was refined, as shown in Fig. 1. A second series of benchmark problems is concerned with the employment of a drag force term. In a first approach, we test the capability of the code to take account of this source term, using a flux scheme solution technique. For this test, a rectangular duct was utilized. As shown in Fig. 2, mesh refinement results in an approach to the analytical solution. Next, a convergent/divergent nozzle problem is proposed. The nozzle is characterized by a brief contraction section and a long expansion section. A two-phase, 2-D, non-condensing model is used in conjunction with the Rieman solver. Figure 3 shows a comparison of the pressure profile for the experimental case and for the values calculated by the TRIO U two-phase-flow module. Trio was able to handle the drag force term and

  1. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    Science.gov (United States)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  2. Phase-ambiguity resolution for QPSK modulation systems. Part 2: A method to resolve offset QPSK

    Science.gov (United States)

    Nguyen, Tien Manh

    1989-01-01

    Part 2 presents a new method to resolve the phase-ambiguity for Offset QPSK modulation systems. When an Offset Quaternary Phase-Shift-Keyed (OQPSK) communications link is utilized, the phase ambiguity of the reference carrier must be resolved. At the transmitter, two different unique words are separately modulated onto the quadrature carriers. At the receiver, the recovered carrier may have one of four possible phases, 0, 90, 180, or 270 degrees, referenced to the nominally correct phase. The IF portion of the channel may cause a phase-sense reversal, i.e., a reversal in the direction of phase rotation for a specified bit pattern. Hence, eight possible phase relationships (the so-called eight ambiguous phase conditions) between input and output of the demodulator must be resolved. Using the In-phase (I)/Quadrature (Q) channel reversal correcting property of an OQPSK Costas loop with integrated symbol synchronization, four ambiguous phase conditions are eliminated. Thus, only four possible ambiguous phase conditions remain. The errors caused by the remaining ambiguous phase conditions can be corrected by monitoring and detecting the polarity of the two unique words. The correction of the unique word polarities results in the complete phase-ambiguity resolution for the OQPSK system.

  3. Dependence of optical phase modulation on anchoring strength of dielectric shield wall surfaces in small liquid crystal pixels

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2018-03-01

    We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10-4 J/m2, respectively.

  4. Microstrip linear phase low pass filter based on defected ground structures for partial response modulation

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Johansen, Tom Keinicke; Olmos, Juan Jose Vegas

    2018-01-01

    We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing the characte......We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing...... the characteristic impedance of transmission lines. Experimental results prove that the proposed filter can successfully modulate a non‐return‐to‐zero (NRZ) signal into a five levels PR one....

  5. Phase Modulation Method for Control Systems of Rotary Machine Parameters

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2014-01-01

    Full Text Available Traditionally, vibration-based diagnostics takes the main place in a large complex of technical control means of rotary machine operation. It allows us to control the onset of extreme limit states of operating construction and its elements. However, vibration-based diagnostics is incapable to provide differentiated information about the condition of particular units, type of fault and point of its occurrence.From the practical experience of optoelectronic sensors development, methods of phase coding information about the behavior of the investigated object are known. They allow us to overcome the abovementioned disadvantage of vibration-based diagnostics through the modulation of the reflected radiation from the object. This phase modulation is performed with the image analyzers, in which the modulating raster (alternating transparent and nontransparent sectors is designed so, that the carrier frequency of oscillations is absent (suppressed in frequency spectrum, and all useful information can be found in the side frequencies.Carrier frequency suppression appears for two complete turns of the modulating raster. Each time during this process oscillations have a 180° phase shift (hop relatively to the initial oscillation on the boundary of each turn. It leads to a substantial increase in signal/noise ratio and possibility to conduct high-accuracy diagnostics.The principle of the pseudo inversion is used for measurements to suppress an adverse effect of various factors in dynamic control system. For this principle the leaving and returned beams practically go on the same way with small spatial shift. This shift occurs then the leaving beam reflects from a basic surface and the reflected – from the measured surface of the object. Therefore the measurements become insensitive to any other errors of system, except relative position of system «model-object».The main advantages of such measurements are the following:- system steadiness to error

  6. A vector modulated three-phase four-quadrant rectifier - Application to a dc motor drive

    Energy Technology Data Exchange (ETDEWEB)

    Jussila, Matti; Salo, Mika; Kaehkoenen, Lauri; Tuusa, Heikki

    2004-07-01

    This paper introduces a theory for a space vector modulation of a three-phase four-quadrant PWM rectifier (FQR). The presented vector modulation method is simple to realize with a microcontroller and it replaces the conventional modulation methods based on the analog technology. The FQR may be used to supply directly a dc load, e.g. a dc machine. The vector modulated FQR is tested in simulations supplying a 4.5 kW dc motor. The simulations show the benefits of the vector modulated FQR against thyristor converters: the supply currents are sinusoidal and the displacement power factor of the supply can be controlled. Furthermore the load current is smooth. (author)

  7. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    Science.gov (United States)

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  8. Refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films by multiple femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Kai; Wang, Yang, E-mail: ywang@siom.ac.cn; Jiang, Minghui; Wu, Yiqun [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-05-07

    In this study, the controllable effective refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.

  9. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  10. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    Science.gov (United States)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  11. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-01-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

  12. Role of a Modulator in the Synthesis of Phase-Pure NU-1000.

    Science.gov (United States)

    Webber, Thomas E; Liu, Wei-Guang; Desai, Sai Puneet; Lu, Connie C; Truhlar, Donald G; Penn, R Lee

    2017-11-15

    NU-1000 is a robust, mesoporous metal-organic framework (MOF) with hexazirconium nodes ([Zr 6 O 16 H 16 ] 8+ , referred to as oxo-Zr 6 nodes) that can be synthesized by combining a solution of ZrOCl 2 ·8H 2 O and a benzoic acid modulator in N,N-dimethylformamide with a solution of linker (1,3,6,8-tetrakis(p-benzoic acid)pyrene, referred to as H 4 TBAPy) and by aging at an elevated temperature. Typically, the resulting crystals are primarily composed of NU-1000 domains that crystallize with a more dense phase that shares structural similarity with NU-901, which is an MOF composed of the same linker molecules and nodes. Density differences between the two polymorphs arise from the differences in the node orientation: in NU-1000, the oxo-Zr 6 nodes rotate 120° from node to node, whereas in NU-901, all nodes are aligned in parallel. Considering this structural difference leads to the hypothesis that changing the modulator from benzoic acid to a larger and more rigid biphenyl-4-carboxylic acid might lead to a stronger steric interaction between the modulator coordinating on the oxo-Zr 6 node and misaligned nodes or linkers in the large pore and inhibit the growth of the more dense NU-901-like material, resulting in phase-pure NU-1000. Side-by-side reactions comparing the products of synthesis using benzoic acid or biphenyl-4-carboxylic acid as a modulator produce structurally heterogeneous crystals and phase-pure NU-1000 crystals. It can be concluded that the larger and more rigid biphenyl-4-carboxylate inhibits the incorporation of nodes with an alignment parallel to the neighboring nodes already residing in the crystal.

  13. Modulator noise suppression in the LISA time-delay interferometric combinations

    International Nuclear Information System (INIS)

    Tinto, Massimo; Armstrong, J W; Estabrook, Frank B

    2008-01-01

    Laser Interferometer Space Antenna (LISA) is a mission to detect and study low-frequency cosmic gravitational radiation through its influence on the phases of six modulated laser beams exchanged between three remote spacecraft. We previously showed how the measurements of some 18 time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passing gravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use the recently measured noise spectrum of an individual modulator (Klipstein et al 2006 Proc. 6th Int. LISA Symp. (Greenbelt, MA) (AIP Conf. Proc. vol 873) ed S M Merkowitz and J C Livas pp 19-23) to quantify the contribution of modulator noise to the first and second-generation time-delay interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than ∼682 MHz in the case of the unequal-arm Michelson TDI combination X 1 , ∼ 1.08 GHz for the Sagnac TDI combination α 1 , and ∼706 MHz for the symmetrical Sagnac TDI combination ζ 1 . These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISA's oscillator noise calibration subsystem. The measurements in Klipstein et al were performed in a laboratory experiment for a range of modulation frequencies, but we emphasize that, for the reference oscillator noise calibration algorithm to work, the modulation frequencies must be equal to the

  14. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    Science.gov (United States)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  15. Smoothing by spectral dispersion using random phase modulation for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rothenberg, J.E.

    1995-01-01

    Numerical simulations of beam smoothing using random phase modulation and grating dispersion are presented. Spatial spectra of the target illumination show that significantly improved smoothing at low spatial frequency is achieved while maintaining uniform intensity in the laser amplifier

  16. Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry.

    Science.gov (United States)

    Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F

    2008-11-10

    Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.

  17. Operators Manual and Technical Reference for the Z-Beamlet Phase Modulation Failsafe System: Version 1.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell J.

    2014-09-01

    The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.

  18. Smectic-like phase for modulated XY spins in two dimensions

    International Nuclear Information System (INIS)

    Benakli, M.; Gabay, M.; Saslow, W.M.

    1997-09-01

    The row model for frustrated XY spins on a triangular lattice in 2D is used to study incommensurate (IC) and commensurate (C) phases, in the regime where a (C)-(IC) transition may be observed. Thermodynamic quantities for the (IC) state are computed analytically by means of the NSCHA, a new variational method appropriate for frustrated systems. On the commensurate side of the (C)-(IC) boundary, NSCHA predicts an instability of the (C) phase suggesting that this state is in fact spatially inhomogeneous. Detailed Monte-Carlo (MC) simulations using fluctuating boundary conditions and specific histogram techniques show that in this regime the configuration consists of stripes of (C) and (IC) phases alternating in space. This state, which resembles the smectic-A phase of liquid crystals, exists because of the strong coupling between chiral and phase (spin angle) variables. As a result, the transition between the (IC) and the (C) states can only occur at zero temperature T so that the Lifshitz point is at T = 0 for modulated XY spins in 2D. (author)

  19. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  20. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    Science.gov (United States)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching

  1. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-06-13

    ... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...

  2. An amplitude and phase hybrid modulation Fresnel diffractive optical element

    Science.gov (United States)

    Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi

    2018-04-01

    An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.

  3. Modulating patterns of two-phase flow with electric fields.

    Science.gov (United States)

    Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T

    2014-07-01

    This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.

  4. Threshold-voltage modulated phase change heterojunction for application of high density memory

    International Nuclear Information System (INIS)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-01-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current

  5. Threshold-voltage modulated phase change heterojunction for application of high density memory

    Science.gov (United States)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-09-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.

  6. Fabricating and Characterizing the Microfluidic Solid Phase Extraction Module Coupling with Integrated ESI Emitters

    Directory of Open Access Journals (Sweden)

    Hangbin Tang

    2018-05-01

    Full Text Available Microfluidic chips coupling with mass spectrometry (MS will be of great significance to the development of relevant instruments involving chemical and bio-chemical analysis, drug detection, food and environmental applications and so on. In our previous works, we proposed two types of microfluidic electrospray ionization (ESI chip coupling with MS: the two-phase flow focusing (FF ESI microfluidic chip and the corner-integrated ESI emitter, respectively. However the pretreatment module integrated with these ESI emitters is still a challenging problem. In this paper, we concentrated on integrating the solid phase micro-extraction (SPME module with our previous proposed on-chip ESI emitters; the fabrication processes of such SPME module are fully compatible with our previous proposed ESI emitters based on the multi-layer soft lithography. We optimized the structure of the integrated chip and characterized its performance using standard samples. Furthermore, we verified its abilities of salt removal, extraction of multiple analytes and separation through on-chip elution using mimic biological urine spiked with different drugs. The results indicated that our proposed integrated module with ESI emitters is practical and effective for real biological sample pretreatment and MS detection.

  7. Phase modulated 2D HSQC-TOCSY for unambiguous assignment of overlapping spin systems

    Science.gov (United States)

    Singh, Amrinder; Dubey, Abhinav; Adiga, Satish K.; Atreya, Hanudatta S.

    2018-01-01

    We present a new method that allows one to unambiguously resolve overlapping spin systems often encountered in biomolecular systems such as peptides and proteins or in samples containing a mixture of different molecules such as in metabolomics. We address this problem using the recently proposed phase modulation approach. By evolving the 1H chemical shifts in a conventional two dimensional (2D) HSQC-TOCSY experiment for a fixed delay period, the phase/intensity of set of cross peaks belonging to one spin system are modulated differentially relative to those of its overlapping counterpart, resulting in their discrimination and recognition. The method thus accelerates the process of identification and resonance assignment of individual compounds in complex mixtures. This approach facilitated the assignment of molecules in the embryo culture medium used in human assisted reproductive technology.

  8. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator.

    Science.gov (United States)

    Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador

    2003-08-15

    We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.

  9. Half-metal phases in a quantum wire with modulated spin-orbit interaction

    Science.gov (United States)

    Cabra, D. C.; Rossini, G. L.; Ferraz, A.; Japaridze, G. I.; Johannesson, H.

    2017-11-01

    We propose a spin filter device based on the interplay of a modulated spin-orbit interaction and a uniform external magnetic field acting on a quantum wire. Half-metal phases, where electrons with only a selected spin polarization exhibit ballistic conductance, can be tuned by varying the magnetic field. These half-metal phases are proven to be robust against electron-electron repulsive interactions. Our results arise from a combination of explicit band diagonalization, bosonization techniques, and extensive density matrix renormalization group computations.

  10. Optical phase-modulated radio-over-fiber links with k-means algorithm for digital demodulation of 8PSK subcarrier multiplexed signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2010-01-01

    A k-means algorithm for phase recovery of three, 50 Mbaud, 8PSK subcarrier multiplexed signals at 5 GHz for optical phase-modulated radio-over-fiber is proposed and experimentally demonstrated after 40 km of single mode fiber transmission......A k-means algorithm for phase recovery of three, 50 Mbaud, 8PSK subcarrier multiplexed signals at 5 GHz for optical phase-modulated radio-over-fiber is proposed and experimentally demonstrated after 40 km of single mode fiber transmission...

  11. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    Science.gov (United States)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  12. Pulse-width modulation for small heat pump installations - Phase 4; Pulsbreitenmodulation fuer Kleinwaermepumpenanlagen. Phase 4: Erweiterung der PBM-Regler fuer Kombianlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M.; Shafai, E. [Eidgenoessische Technische Hochschule (ETH), Institut fuer Mess- und Regeltechnik, Zuerich (Switzerland); Gabathuler, H.R.; Mayer, H. [Gabathuler AG, Beratende Ingenieure, Diessenhofen (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the fourth phase of a project that investigated three types of pulse-width modulation (PWM) controllers that were developed during its first two phases. A third phase monitored the controllers when used in a simulated environment and for a real-life heat pump. The report discusses the fourth phase of the project, in which the controller was further developed and tested using the building emulation developed in the third phase. The functioning of the self-regulating controller and its use of meteorological data is described and the savings to be made in heating costs are discussed.

  13. Phase synchronization in a two-mode solid state laser: Periodic modulations with the second relaxation oscillation frequency of the laser output

    International Nuclear Information System (INIS)

    Hsu, Tzu-Fang; Jao, Kuan-Hsuan; Hung, Yao-Chen

    2014-01-01

    Phase synchronization (PS) in a periodically pump-modulated two-mode solid state laser is investigated. Although PS in the laser system has been demonstrated in response to a periodic modulation with the main relaxation oscillation (RO) frequency of the free-running laser, little is known about the case of modulation with minor RO frequencies. In this Letter, the empirical mode decomposition (EMD) method is utilized to decompose the laser time series into a set of orthogonal modes and to examine the intrinsic PS near the frequency of the second RO. The degree of PS is quantified by means of a histogram of phase differences and the analysis of Shannon entropy. - Highlights: • We study the intrinsic phase synchronization in a periodically pump-modulated two-mode solid state laser. • The empirical mode decomposition method is utilized to define the intrinsic phase synchronization. • The degree of phase synchronization is quantified by a proposed synchronization coefficient

  14. Characterisation of thin films by phase modulated spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Das, N.C.

    1998-07-01

    A wide variety of thin film coatings, deposited by different techniques and with potential applications in various important areas, have been characterised by the Phase Modulated Spectroscopic Ellipsometer, installed recently in the Spectroscopy Division, B.A.R.C. The Phase Modulated technique provides a faster and more accurate data acquisition process than the conventional ellipsometry. The measured Ellipsometry spectra are fitted with theoretical spectra generated assuming an appropriate model regarding the sample. The fittings have been done objectively by minimising the squared difference (χ 2 ) between the measured and calculated values of the ellipsometric parameters and thus accurate information have been derived regarding the thickness and optical constants (viz, the refractive index and extinction coefficient) of the different layers, the surface roughness and the inhomogeneities present in the layers. Measurements have been done on (i) ion-implanted Si-wafers to investigate the formation of SiC layers, (ii) phenyl- silane coating on glass to investigate the surface modifications achieved for better adsorption of rhodamine dye on glass, (iii) GaN films on quartz to investigate the formation of high quality GaN layers by sputtering of GaAs targets, (iv) Diamond-like-coating (DLC) samples prepared by Chemical Vapour Deposition (CVD) to investigate the optical properties which would ultimately lead to an accurate estimation of the ratio of sp 3 and sp 2 bonded carbon atoms in the films and (v) SS 304 under different surface treatments to investigate the growth of different passive films. (author)

  15. Simultaneous all-optical demultiplexing and regeneration based on self-phase and cross-phase modulation in a dispersion shifted fiber

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2001-01-01

    Simultaneous demultiplexing and regeneration of 40-Gb/s optical time division multiplexed (OTDM) signal based on self-phase and cross-phase modulation in a dispersion shifted fiber is numerically and experimentally investigated. The optimal walkoff time between the control pulse and OTDM signal...... is obtained by numerical simulation. Our experiment also shows that it is an effective method for realizing simultaneous demultiplexing and regeneration when used in the middle of a system or in the receiver with a proper walkoff time....

  16. Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2008-01-01

    In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown. The wa....... The wavelength conversion scheme is demonstrated at the record-high bit rate of 640 Gb/s.......In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown...

  17. On The Use of A Phase Modulation Method for Decorrelation in Acoustic Feedback Cancellation

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    A major problem in using an adaptive filter in acoustic feedback cancellation systems is that the loudspeaker signal is correlated with the signals entering the microphones of the audio system, leading to biased filter estimates. One possible solution for reducing this problem is by means...... of decorrelation. In this work, we study a subband phase modulation method, which was originally proposed for decorrelation in multichannel acoustic echo cancellation systems. We determine if this method is effective for decorrelation in acoustic feedback cancellation systems by comparing it to a structurally...... similar frequency shifting decorrelation method. We show that the phase modulation method is suitable for decorrelation in a hearing aid acoustic feedback cancellation system, although the frequency shifting method is in general slightly more effective....

  18. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    Science.gov (United States)

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (pfrequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Generation of sinusoidal fringes with a holographic phase grating and a phase-only spatial light modulator

    International Nuclear Information System (INIS)

    Berberova, Natalia; Stoykova, Elena; Sainov, Ventseslav

    2012-01-01

    A variety of pattern projection methods for the three-dimensional capture of objects is based on the generation of purely sinusoidal fringes. This is not an easy task, especially when a portable non-interferometric system for outdoor usage is required. The use of phase gratings with coherent illumination as a possible solution has the advantage of providing good stability and a large measurement volume. In this work, we analyze the quality of fringes projected with two sinusoidal phase gratings. The first grating is recorded on a silver-halide holographic plate by means of a Michelson interferometer. The spatial resolution of the silver-halide material used is greater than 6000 lines per millimeter, and the recorded grating is practically analogous to a smooth variation of the phase profile. The second grating is formed as a sinusoidal phase variation on a liquid crystal-on-silicon phase-only reflective display with a resolution of 1920×1080 pixels, a pixel pitch of 8 μm and 256 phase levels. The frequency content of the fringes projected with both gratings is analyzed and compared on the basis of the calculated Fresnel diffraction pattern, taking into account that the sinusoidal phase distribution in the case of a spatial light modulator is both sampled and quantized. Experimental fringe patterns projected using both gratings are also provided.

  20. All-Optical 40 Gbit/s Regenerative Wavelength Conversion Based on Cross-Phase Modulation in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Hu, Hao; Ji, Hua

    2013-01-01

    We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration.......We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration....

  1. Effect of realistic astrophysical inputs on the phase and shape of the weakly interacting massive particles annual modulation signal

    International Nuclear Information System (INIS)

    Green, Anne M.

    2003-01-01

    The orbit of the Earth about the Sun produces an annual modulation in the weakly interacting massive particles (WIMP) direct detection rate. If the local WIMP velocity distribution is isotropic then the modulation is roughly sinusoidal with maximum in June; however, if the velocity distribution is anisotropic the phase and shape of the signal can change. Motivated by conflicting claims about the effect of uncertainties in the local velocity distribution on the interpretation of the DAMA annual modulation signal (and the possibility that the form of the modulation could be used to probe the structure of the Milky Way halo), we study the dependence of the annual modulation on various astrophysical inputs. We first examine the approximations used for the Earth's motion about the Sun and the Sun's velocity with respect to the Galactic rest frame. We find that overly simplistic assumptions lead to errors of up to ten days in the phase and up to tens of percent in the shape of the signal, even if the velocity distribution is isotropic. Crucially, if the components of the Earth's velocity perpendicular to the motion of the Sun are neglected, then the change in the phase which occurs for anisotropic velocity distributions is missed. We then examine how the annual modulation signal varies for physically and observationally well-motivated velocity distributions. We find that the phase of the signal changes by up to 20 days and the mean value and amplitude change by up to tens of percent

  2. Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment

    International Nuclear Information System (INIS)

    Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher; Euh, Dong-Jin

    2015-01-01

    In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow

  3. A Comparison of Phase-Shift Self- Oscillating and Carrier-based PWM Modulation for Embedded Audio Amplifiers

    OpenAIRE

    Huffenus , Alexandre; Pillonnet , Gaël; Abouchi , Nacer; Goutti , Frédéric

    2010-01-01

    International audience; This paper compares two modulation schemes for Class-D amplifiers: Phase-Shift Self-Oscillating (PSSO) and Carrier-Based Pulse Width Modulation (PWM). Theoretical analysis (modulation, frequency of oscillation, bandwidth…), design procedure, and IC silicon evaluation will be shown for mono and stereo operation (on the same silicon die) on both structures. The design of both architectures will use as many identical building blocks as possible, to provide a fair, "all el...

  4. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Directory of Open Access Journals (Sweden)

    Liu Huijuan

    2016-09-01

    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  5. Evolution of the optical vortex density in phase corrected speckle fields

    CSIR Research Space (South Africa)

    Roux, FS

    2010-09-01

    Full Text Available In an attempt to understand the process whereby the phase modulation due to atmospheric turbulance causes phase singularities (also called optical vortices), the authors investigated the effect of phase perturbations in speckle beams. They perturb...

  6. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  7. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power...

  8. Performance Evaluation of Digital Coherent Receivers for Phase-Modulated Radio-Over-Fiber Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso

    2011-01-01

    The performance of optical phase-modulated (PM) radio-over-fiber (RoF) links assisted with coherent detection and digital signal processing (PM-Coh) is analyzed and experimentally demonstrated for next-generation wireless-over-fiber systems. PM-Coh offers high linearity for transparent transport ...

  9. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component.

    Science.gov (United States)

    Haywood, Nicholas R; Undurraga, Jaime A; Marquardt, Torsten; McAlpine, David

    2015-12-30

    There has been continued interest in clinical objective measures of binaural processing. One commonly proposed measure is the binaural interaction component (BIC), which is obtained typically by recording auditory brainstem responses (ABRs)-the BIC reflects the difference between the binaural ABR and the sum of the monaural ABRs (i.e., binaural - (left + right)). We have recently developed an alternative, direct measure of sensitivity to interaural time differences, namely, a following response to modulations in interaural phase difference (the interaural phase modulation following response; IPM-FR). To obtain this measure, an ongoing diotically amplitude-modulated signal is presented, and the interaural phase difference of the carrier is switched periodically at minima in the modulation cycle. Such periodic modulations to interaural phase difference can evoke a steady state following response. BIC and IPM-FR measurements were compared from 10 normal-hearing subjects using a 16-channel electroencephalographic system. Both ABRs and IPM-FRs were observed most clearly from similar electrode locations-differential recordings taken from electrodes near the ear (e.g., mastoid) in reference to a vertex electrode (Cz). Although all subjects displayed clear ABRs, the BIC was not reliably observed. In contrast, the IPM-FR typically elicited a robust and significant response. In addition, the IPM-FR measure required a considerably shorter recording session. As the IPM-FR magnitude varied with interaural phase difference modulation depth, it could potentially serve as a correlate of perceptual salience. Overall, the IPM-FR appears a more suitable clinical measure than the BIC. © The Author(s) 2015.

  10. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chu, Y.S.; Chen, B.; Zhang, F.; Berenguer, F.; Bean, R.; Kewish, C.; Vila-Comamala, J.; Rodenburg, J.; Robinson, I.

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  11. Single phase-change analysis of two different PCMs filled in a heat transfer module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)

    2014-07-15

    Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.

  12. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    Science.gov (United States)

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)  GeV dark matter may also be significant, depending on the threshold energy of the experiment.

  13. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  14. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    Science.gov (United States)

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array.

    Science.gov (United States)

    Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng

    2018-03-27

    Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.

  16. Self-phase modulation of a single-cycle THz pulse

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.

    2013-01-01

    We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...... results in a strong modification of the THz-range dielectric function of the material. THz SPM is observed directly in the time domain as a characteristic reshaping of single-cycle THz pulse. In the frequency domain, it corresponds to a strong frequency-dependent refractive index nonlinearity of n...

  17. Double-Carrier Phase-Disposition Pulse Width Modulation Method for Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Zhou, Fayun; Luo, An; Li, Yan

    2017-01-01

    Modular multilevel converters (MMCs) have become one of the most attractive topologies for high-voltage and high-power applications. A double-carrier phase disposition pulse width modulation (DCPDPWM) method for MMCs is proposed in this paper. Only double triangular carriers with displacement ang......, the proposed method and theoretical analysis are verified by simulation and experimental results. View Full-Text...

  18. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion

    NARCIS (Netherlands)

    Forbes, P.A.; Vlutters, M; Dakin, CJ; van der Kooij, H.; Blouin, JS; Schouten, A.C.

    2017-01-01

    During walking, the vestibular influence on locomotor activity is phase-dependent and modulated in both limbs with changes in velocity. It is unclear, however, whether this bilateral modulation is due to a coordinated mechanism between both limbs or instead through limb-specific processes that

  19. Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2016-05-01

    Full Text Available This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used DPWMs, including positive and negative clamped (DPWM+ and DPWM−, and the four possible combinations between them, usually named as DPWM0, DPWM1, DPWM2, and DPWM3. The maximum and the average values of peak-to-peak current ripple are estimated, and a simple method to correlate the ripple envelope with the ripple rms is proposed and verified. Furthermore, all the results obtained by DPWMs are compared to the centered pulse-width modulation (CPWM, equivalent to the space vector modulation to identify the optimal pulse-width modulation (PWM strategy as a function of the modulation index, taking into account the different average switching frequency. In this way, the PWM technique providing for the minimum output current ripple is identified over the whole modulation range. The analytical developments and the main results are experimentally verified by current ripple measurements with a three-phase PWM inverter prototype supplying an induction motor load.

  20. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  1. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  2. Modulation of task-related cortical connectivity in the acute and subacute phase after stroke

    DEFF Research Database (Denmark)

    Larsen, Lisbeth H.; Zibrandtsen, Ivan C.; Wienecke, Troels

    2018-01-01

    The functional relevance of cortical reorganization post-stroke is still not well understood. In this study, we investigated task-specific modulation of cortical connectivity between neural oscillations in key motor regions during the early phase after stroke. EEG and EMG recordings were examined...... from 15 patients and 18 controls during a precision grip task using the affected hand. Each patient attended two sessions in the acute and subacute phase (median of 3 and 34 days) post-stroke. Dynamic causal modelling (DCM) for induced responses was used to investigate task-specific modulations...... of oscillatory couplings in a bilateral network comprising supplementary motor area (SMA), dorsal premotor cortex (PMd) and primary motor cortex (M1). Fourteen models were constructed for each subject, and the input induced by the experimental manipulation (task) was set to inferior parietal lobule (IPL...

  3. From quantum physics to digital communication: Single sideband continuous phase modulation

    Science.gov (United States)

    Farès, Haïfa; Christian Glattli, D.; Louët, Yves; Palicot, Jacques; Moy, Christophe; Roulleau, Preden

    2018-01-01

    In the present paper, we propose a new frequency-shift keying continuous phase modulation (FSK-CPM) scheme having, by essence, the interesting feature of single-sideband (SSB) spectrum providing a very compact frequency occupation. First, the original principle, inspired from quantum physics (levitons), is presented. Besides, we address the problem of low-complexity coherent detection of this new waveform, based on orthonormal wave functions used to perform matched filtering for efficient demodulation. Consequently, this shows that the proposed modulation can operate using existing digital communication technology, since only well-known operations are performed (e.g., filtering, integration). This SSB property can be exploited to allow large bit rates transmissions at low carrier frequency without caring about image frequency degradation effects typical of ordinary double-sideband signals. xml:lang="fr"

  4. Temperature Regulation of Photovoltaic Module Using Phase Change Material: A Numerical Analysis and Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Hasan Mahamudul

    2016-01-01

    Full Text Available This work represents an effective design of a temperature regulated PV module by integrating phase change materials for Malaysian weather condition. Through the numerical analysis and experimental investigation it has been shown that if a PCM layer of width 0.02 m of RT 35 is used as a cooling arrangement with a PV module, the surface temperature of the module is reduced by 10°C, which remains constant for a period of 4–6 hours. This reduction of temperature implies the increase in conversion efficiency of the module. Experiment as well as investigation has been carried out considering typical Malaysian weather. Obtained result has been validated by using experimental prototype and comparative analysis.

  5. Development of an electro-optic super modulator

    International Nuclear Information System (INIS)

    Cusack, B; Shaddock, D.

    2002-01-01

    Full text: Optical phase modulators and amplitude modulators are commonplace in modern laser laboratories. In this talk, we present the development of a device that produces both amplitude modulation (AM) and phase modulation (PM), with a selectable phase relation between the two, on a single free-space Gaussian beam. We term this device a 'super modulator. The device is a version of the Mach-Zehnder modulator, where a beam is split, then separately phase modulated and recombined. Previous work has concentrated on one specific operating point, where the relative modulation phases and the interferometer phase are set to generate single sideband modulation, equivalent to an equal amount of AM and PM in quadrature. Here we are interested in the entire parameter space of amplitude modulation strength, phase modulation strength, and the phase relation between the two. The need for such a super modulator has arisen in the context of control systems for gravitational wave detection interferometers. Typical locking systems are based on the Pound-Drever-Hall method of locking which uses phase modulation. In principle, a super modulator could be used in a PDH configuration, when the locking point of the device will be tunable according to the quantity of AM injected (along with the obligatory PM) into the device

  6. Two benchmark cases for the trio two-phase flow module

    Energy Technology Data Exchange (ETDEWEB)

    Helton, D.; Hassan, Y. [Texas A and M University, Nuclear Engineering Dept., College Station, Texas (United States); Kumbaro, A. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    2001-07-01

    This report presents a series of problems that were studied in order to assess the new implementations recently made to the two-phase flow module. Each problem is designed to give insight into a particular area of the code refinement. As such, each problem, and its corresponding results will be discussed individually, with comparisons made to experimental or analytical results whenever possible. TrioU is a thermal hydraulics program created by CEA. It is currently evolving in to a multi-dimensional, multi-fluid, multi-phase program. The purpose of TrioU is to provide a platform for testing of new numerical methods and physical models that are developed by the Nuclear Reactor Division of CEA. TrioU is written in an object-oriented programming language, and maintained by a version-controllable environment, for ease in parallelization and multiple-site development. (author)

  7. Two benchmark cases for the trio two-phase flow module

    International Nuclear Information System (INIS)

    Helton, D.; Hassan, Y.; Kumbaro, A.

    2001-01-01

    This report presents a series of problems that were studied in order to assess the new implementations recently made to the two-phase flow module. Each problem is designed to give insight into a particular area of the code refinement. As such, each problem, and its corresponding results will be discussed individually, with comparisons made to experimental or analytical results whenever possible. TrioU is a thermal hydraulics program created by CEA. It is currently evolving in to a multi-dimensional, multi-fluid, multi-phase program. The purpose of TrioU is to provide a platform for testing of new numerical methods and physical models that are developed by the Nuclear Reactor Division of CEA. TrioU is written in an object-oriented programming language, and maintained by a version-controllable environment, for ease in parallelization and multiple-site development. (author)

  8. Lunar Phases and Emergency Department Visits for Renal Colic Due to Ureteral Calculus.

    Directory of Open Access Journals (Sweden)

    Andy W Yang

    Full Text Available Urolithiasis affects an estimated 5% of the population and the lifetime risk of passing a stone in the urinary tract is estimated to be 8-10%. Urinary calculus formation is highly variable and while certain risk factors such as age, gender, seasonality, anatomic abnormality, and metabolic diseases have been identified, not much is known regarding the association of environmental factors such as lunar phases on renal colic. We conducted a retrospective study to test the hypothesis that full moon phase is an environmental factor associated for increased emergency department (ED visits for renal colic due to ureteral calculus.We analyzed 559 renal colic diagnoses by the ED at the University of Nebraska Medical Center in a 24-month period and compared them with corresponding lunar phases as well as supermoon events. The lunar phases were defined as full moon ± two days, new moon ± two days, and the days in-between as normal days according to the lunar calendar. Supermoon event dates were obtained from NASA.90 cases (16.1% were diagnosed during full moon phase, 89 cases (15.9% were diagnosed during new moon phase, and 380 cases (68.0% were diagnosed during normal days. The incidence of renal colic showed no statistically significant association with lunar phases or supermoon events.In this retrospective longitudinal study with adequate power, neither full moon phase nor supermoon event exhibited an association with increased renal colic diagnoses due to ureteral calculus by the ED at the University of Nebraska Medical Center.

  9. Lunar Phases and Emergency Department Visits for Renal Colic Due to Ureteral Calculus.

    Science.gov (United States)

    Yang, Andy W; Johnson, Justin D; Fronczak, Carolyn M; LaGrange, Chad A

    2016-01-01

    Urolithiasis affects an estimated 5% of the population and the lifetime risk of passing a stone in the urinary tract is estimated to be 8-10%. Urinary calculus formation is highly variable and while certain risk factors such as age, gender, seasonality, anatomic abnormality, and metabolic diseases have been identified, not much is known regarding the association of environmental factors such as lunar phases on renal colic. We conducted a retrospective study to test the hypothesis that full moon phase is an environmental factor associated for increased emergency department (ED) visits for renal colic due to ureteral calculus. We analyzed 559 renal colic diagnoses by the ED at the University of Nebraska Medical Center in a 24-month period and compared them with corresponding lunar phases as well as supermoon events. The lunar phases were defined as full moon ± two days, new moon ± two days, and the days in-between as normal days according to the lunar calendar. Supermoon event dates were obtained from NASA. 90 cases (16.1%) were diagnosed during full moon phase, 89 cases (15.9%) were diagnosed during new moon phase, and 380 cases (68.0%) were diagnosed during normal days. The incidence of renal colic showed no statistically significant association with lunar phases or supermoon events. In this retrospective longitudinal study with adequate power, neither full moon phase nor supermoon event exhibited an association with increased renal colic diagnoses due to ureteral calculus by the ED at the University of Nebraska Medical Center.

  10. A DC-Link Modulation Scheme with Phase-Shifted Current Control for Harmonic Cancellations in Multidrive Applications

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2016-01-01

    of a new DC link modulation scheme with a phase-shifted current control enabled by the SCR. The DC-link current modulation scheme is implemented by adding and subtracting specific modulation levels, which makes the total currents drawn from the grid “multi-level”, resulting in an improved current quality......This letter proposes a harmonic mitigation strategy to cancel out current harmonics induced by the front-end rectifiers in multi-drive systems, which consist of diode rectifiers, Silicon-Controlled Rectifiers (SCR), and boost converters in the DC-link. The proposed strategy is a combination...

  11. See-saw enhancement of neutrino mixing due to the right-handed phases

    International Nuclear Information System (INIS)

    Tanimoto, M.

    1994-11-01

    We study the see-saw enhancement mechanism in presence of the right-handed phases of the Dirac neutrino mass matrix and the Majorana mass matrix. The enhancement condition given by Smirnov is modified. We point out that the see-saw enhancement could be obtained due to the right-handed phases even if the Majorana matrix is proportional to the unit matrix. We show a realistic Dirac mass matrix which causes the see-saw enhancement. (author)

  12. Numerical modeling of optical coherent transient processes with complex configurations - II. Angled beams with arbitrary phase modulations

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen; Barber, Zeb W.; Randall Babbitt, Wm.

    2004-01-01

    This work is a continuation of the development of the theoretical model for optical coherent transient (OCT) processes with complex configurations. A theoretical model for angled beams with arbitrary phase modulation has been developed based on the model presented in our previous work for the angled beam geometry. A numerical tool has been devised to simulate the OCT processes involving angled beams with the frequency detuning, chirped, and phase-modulated laser pulses. The simulations for pulse shaping and arbitrary waveform generation (AWG) using OCT processes have been performed. The theoretical analysis of programming and probe schemes for pulse shaper and AWG is also presented including the discussions on the rephasing condition and the phase compensation. The results from the analysis, the simulation, and the experiment show very good agreement

  13. Compensation for the phase-type spatial periodic modulation of the near-field beam at 1053 nm

    Science.gov (United States)

    Gao, Yaru; Liu, Dean; Yang, Aihua; Tang, Ruyu; Zhu, Jianqiang

    2017-10-01

    A phase-only spatial light modulator is used to provide and compensate for the spatial periodic modulation (SPM) of the near-field beam at the near infrared at 1053nm wavelength with an improved iterative weight-based method. The transmission characteristics of the incident beam has been changed by a spatial light modulator (SLM) to shape the spatial intensity of the output beam. The propagation and reverse propagation of the light in free space are two important processes in the iterative process. The based theory is the beam angular spectrum transmit formula (ASTF) and the principle of the iterative weight-based method. We have made two improvements to the originally proposed iterative weight-based method. We select the appropriate parameter by choosing the minimum value of the output beam contrast degree and use the MATLAB built-in angle function to acquire the corresponding phase of the light wave function. The required phase that compensates for the intensity distribution of the incident SPM beam is iterated by this algorithm, which can decrease the magnitude of the SPM of the intensity on the observation plane. The experimental results show that the phase-type SPM of the near-field beam is subject to a certain restriction. We have also analyzed some factors that make the results imperfect. The experiment results verifies the possible applicability of this iterative weight-based method to compensate for the SPM of the near-field beam.

  14. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.

    Science.gov (United States)

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-06-15

    It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.

  15. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    Science.gov (United States)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  16. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    Science.gov (United States)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  17. On network coding and modulation mapping for three-phase bidirectional relaying

    KAUST Repository

    Chang, Ronald Y.; Lin, Sian Jheng; Chung, Wei-Ho

    2015-01-01

    © 2015 IEEE. In this paper, we consider the network coding (NC) enabled three-phase protocol for information exchange between two users in a wireless two-way (bidirectional) relay network. Modulo-based (nonbinary) and XOR-based (binary) NC schemes are considered as information mixture schemes at the relay while all transmissions adopt pulse amplitude modulation (PAM). We first obtain the optimal constellation mapping at the relay that maximizes the decoding performance at the users for each NC scheme. Then, we compare the two NC schemes, each in conjunction with the optimal constellation mapping at the relay, in different conditions. Our results demonstrate that, in the low SNR regime, binary NC outperforms nonbinary NC with 4-PAM, while they have mixed performance with 8-PAM. This observation applies to quadrature amplitude modulation (QAM) composed of two parallel PAMs.

  18. On network coding and modulation mapping for three-phase bidirectional relaying

    KAUST Repository

    Chang, Ronald Y.

    2015-12-03

    © 2015 IEEE. In this paper, we consider the network coding (NC) enabled three-phase protocol for information exchange between two users in a wireless two-way (bidirectional) relay network. Modulo-based (nonbinary) and XOR-based (binary) NC schemes are considered as information mixture schemes at the relay while all transmissions adopt pulse amplitude modulation (PAM). We first obtain the optimal constellation mapping at the relay that maximizes the decoding performance at the users for each NC scheme. Then, we compare the two NC schemes, each in conjunction with the optimal constellation mapping at the relay, in different conditions. Our results demonstrate that, in the low SNR regime, binary NC outperforms nonbinary NC with 4-PAM, while they have mixed performance with 8-PAM. This observation applies to quadrature amplitude modulation (QAM) composed of two parallel PAMs.

  19. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF, 07738 (Mexico); Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510, Mexico, DF (Mexico); Rangel-Rojo, R [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada Apartado Postal 360, Ensenada, BC, 22860 (Mexico); Torres-Martinez, R, E-mail: crstorres@yahoo.com.mx [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada Unidad Queretaro, Instituto Politecnico Nacional, Santiago de Queretaro, Queretaro, 76090 (Mexico)

    2011-09-02

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  20. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    International Nuclear Information System (INIS)

    Torres-Torres, C; Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A; Rangel-Rojo, R; Torres-Martinez, R

    2011-01-01

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  1. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  2. Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-fiber link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Highest reported bit rate of 2.5 Gb/s for optically phase modulated radio-over-fiber (RoF) link, employing digital coherent detection, is demonstrated. Demodulation of 3$,times,$ 2.5 Gb/s quadrature phase-shift keying modulated wavelength-division-multiplexed RoF channels is achieved after 79 km ...... of transmission through deployed fiber. Error-free performance (bit-error rate corresponding to $10^{{-}4}$) is achieved using a digital coherent receiver in combination with a $K$-means algorithm for radio-frequency phase recovery....

  3. Coherent Control of Photofragment Distributions Using Laser Phase Modulation in the Weak-Field Limit

    DEFF Research Database (Denmark)

    Garcia-Vela, Alberto; Henriksen, Niels Engholm

    2015-01-01

    The possibility of quantum interference control of the final state distributions of photodissociation fragments by means of pure phase modulation of the pump laser pulse in the weak-field regime is demonstrated theoretically for the first time. The specific application involves realistic wave pac...

  4. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI.

    Science.gov (United States)

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2013-09-23

    We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

  5. Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata

    2005-01-01

    An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...

  6. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.

    Science.gov (United States)

    Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo

    2018-05-15

    We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.

  7. Polydyne displacement interferometer using frequency-modulated light

    Science.gov (United States)

    Arablu, Masoud; Smith, Stuart T.

    2018-05-01

    A radio-frequency Frequency-Modulated (FM) signal is used to diffract a He-Ne laser beam through an Acousto-Optic Modulator (AOM). Due to the modulation of the FM signal, the measured spectra of the diffracted beams comprise a series of phase-synchronized harmonics that have exact integer frequency separation. The first diffraction side-beam emerging from the AOM is selected by a slit to be used in a polydyne displacement interferometer in a Michelson interferometer topology. The displacement measurement is derived from the phase measurement of selected modulation harmonic pairs. Individual harmonic frequency amplitudes are measured using discrete Fourier transform applied to the signal from a single photodetector. Phase signals are derived from the changes in the amplitudes of different harmonic pairs (typically odd-even pairs) with the phase being extracted using a standard quadrature method. In this study, two different modulation frequencies of 5 and 10 kHz are used at different modulation depths. The measured displacements by different harmonic pairs are compared with a commercial heterodyne interferometer being used as a reference for these studies. Measurements obtained from five different harmonic pairs when the moving mirror of the interferometer is scanned over ranges up to 10 μm all show differences of less than 50 nm from the reference interferometer measurements. A drift test was also used to evaluate the differences between the polydyne interferometer and reference measurements that had different optical path lengths of approximately 25 mm and 50 mm, respectively. The drift test results indicate that about half of the differences can be attributed to temperature, pressure, and humidity variations. Other influences include Abbe and thermal expansion effects. Rough magnitude estimates using simple models for these two effects can account for remaining observed deviations.

  8. Module-Integrated Power Converters Based on Universal Dock

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Patrick; Rodriguez, Fernando

    2015-03-13

    Solar power installations using alternating current photovoltaic (ACPV) modules have significant cost and performance advantages over systems using conventional solar modules and string inverters. ACPV modules have improved energy harvest due to module-level power point tracking and redundancy. More importantly, ACPV modules are easier and cheaper to install, lowering the total installed cost, indirect costs, and barriers to market entry. Furthermore, ACPV modules have communications and data logging capability, yielding module-level telemetry data that is useful in site diagnostics and other data applications. The products of these efforts were threefold. First, an advanced microinverter power topology was developed, modeled, simulated, and tested. Second, new microinverter enclosure concepts were developed and tested. Third, a new ACPV module prototype was constructed, combining the power topology and the enclosure concepts. SolarBridge filed for patents in each of these areas and is transitioning the project from a concept phase to full development.

  9. Multilevel Modulation formats for Optical Communication

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee

    2008-01-01

    This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...... or a combination of the two have been studied. The use of polarization multiplexing (PolMux) to double the bit rate has also been investigated. The impact of transmission impairments such as chromatic dispersion, self phase modulation and cross phase modulation has been investigated. The feasibility of multilevel...... modulation for network oriented scenarios has been demonstrated....

  10. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfvén waves

    Directory of Open Access Journals (Sweden)

    Y. Nariyuki

    2006-01-01

    Full Text Available Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfvén waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfvén waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation. We first discuss the modulational instability within the derivative nonlinear Schrödinger (DNLS equation, which is a subset of the Hall-MHD system including the right- and left-hand polarized, nearly degenerate quasi-parallel Alfvén waves. The dominant nonlinear process within this model is the four wave interaction, in which a quartet of waves in resonance can exchange energy. By numerically time integrating the DNLS equation with periodic boundary conditions, and by evaluating relative phase among the quartet of waves, we show that the phase coherence is generated when the waves exchange energy among the quartet of waves. As a result, coherent structures (solitons appear in the real space, while in the phase space of the wave frequency and the wave number, the wave power is seen to be distributed around a straight line. The slope of the line corresponds to the propagation speed of the coherent structures. Numerical time integration of the Hall-MHD system with periodic boundary conditions reveals that, wave power of transverse modes and that of longitudinal modes are aligned with a single straight line in the dispersion relation phase space, suggesting that efficient exchange of energy among transverse and longitudinal wave modes is realized in the Hall-MHD. Generation of the longitudinal wave modes violates the assumptions employed in deriving the DNLS such as the quasi

  11. Wire Bonding on 2S Modules of the Phase-2 CMS Detector

    CERN Document Server

    AUTHOR|(CDS)2226525; Pooth, Oliver

    The LHC will be upgraded to the HL-LHC in the Long Shutdown 3 starting 2024. This upgrade will increase the collision rate and the overall number of colliding particles requiring high precision particle detectors which are able to cope with much higher radiation doses and numbers of particle interactions per bunch crossing. To fulfill these technical requirements the CMS detector will be upgraded in the so-called Phase-2 Upgrade. Among others the silicon tracking system will be completely replaced by a new system providing a higher acceptance, an improved granularity and the feature to include its tracking information into the level-1 trigger. The new outer-tracker will consist of so called 2S modules consisting of two strip sensors and PS modules with a macro-pixel sensor and a strip sensor. The electrical connection between the strip sensors and the front-end electronics is realized by thin aluminum wire bonds. In this thesis the process of wire bonding is introduced and its implementation in the 2S module ...

  12. Measurement of the amplitude and phase transfer functions of an optical modulator using a heterodyne technique

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2001-01-01

    We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....

  13. Using Real-Worldness and Cultural Difference to Enhance Student Learning in a Foundation Phase Life Skills Module

    Science.gov (United States)

    Koen, Mariette; Ebrahim, Hasina Banu

    2013-01-01

    Our aim was to explore how real-world experience, inclusive of engagement with cultural differences, influences the quality of students' learning in a Life Skills module in pre-service Foundation Phase teacher education. The study was conducted with 147 students in their final year of the Bachelor of Education (Foundation Phase specialisation), at…

  14. The use of phase modulation optimization for power lasers. Minimizing the FM-AM conversion while preserving spectral broadening functionalities required for fusion

    International Nuclear Information System (INIS)

    Hocquet, St.

    2009-11-01

    This research thesis deals with the problem of phase modulations in power lasers (such as the MegaJoule laser which is developed in France) and their impact of different physical phenomena like the suppression of the stimulated Brillouin scattering (which is necessary to avoid optics damage) and the optical smoothing which allows a spatial homogenisation of focal stains. The author deeply discusses the phase modulation counterparts, and more particularly the FM-AM conversion which is the source of unwanted intensity modulation and of energy loss. He reports the development of a comprehensive modelling of phenomena generating FM-AM conversion on a power laser chain. He theoretically and experimentally studies two methods allowing the FM-AM conversion to be reduced to a given spectral distortion: the compensation of transfer functions and the modification of the phase modulation signal to make it less sensitive to spectral distortion effects. For this last method, he determines the ideal spectrum shape for the phase modulation, and proposes a method to approach it. He shows the feasibility of such a method and reports experiments showing to which extent these solutions may improve performance of power lasers. Finally, he proposed optimised solutions for the MegaJoule Laser

  15. Magnetic field modulated microwave spectroscopy across phase transitions and the search for new superconductors

    International Nuclear Information System (INIS)

    Ramírez, Juan Gabriel; Basaran, Ali C; De la Venta, J; Pereiro, Juan; Schuller, Ivan K

    2014-01-01

    This article introduces magnetic field modulated microwave spectroscopy (MFMMS) as a unique and high-sensitivity technique for use in the search for new superconductors. MFMMS measures reflected microwave power as a function of temperature. The modulation induced by the external ac magnetic field enables the use of phase locked detection with the consequent sensitivity enhancement. The MFMMS signal across several prototypical structural, magnetic, and electronic transitions is investigated. A literature review on microwave absorption across superconducting transitions is included. We show that MFMMS can be used to detect superconducting transitions selectively with very high sensitivity. (report on progress)

  16. High-speed and efficient silicon modulator based on forward-biased pin diodes

    Directory of Open Access Journals (Sweden)

    Suguru eAkiyama

    2014-11-01

    Full Text Available Silicon modulators, which use the free-carrier-plasma effect, were studied, both analytically and experimentally. It was demonstrated that the loss-efficiency product, a-VpL, was a suitable figure of merit for silicon modulators that enabled their intrinsic properties to be compared. Subsequently, the dependence of VpL on frequency was expressed by using the electrical parameters of a phase shifter when the modulator was operated by assuming a simple driving configuration. A diode-based modulator operated in forward biased mode was expected from analyses to provide more efficient operation than that in reversed mode at high frequencies due to its large capacitance. We obtained an a-VpL of 9.5 dB-V at 12.5 GHz in experiments by using the fabricated phase shifter with pin diodes operated in forward biased mode. This a-VpL was comparable to the best modulators operated in depletion mode. The modulator exhibited a clear eye opening at 56 Gb/s operated by 2 V peak-to-peak signals that was achieved by incorporating such a phase shifter into a ring resonator.

  17. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    Science.gov (United States)

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.

  18. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    Science.gov (United States)

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  19. Electron transport due to inhomogeneous broadening and its potential impact on modulation speed in p-doped quantum dot lasers

    International Nuclear Information System (INIS)

    Deppe, D G; Freisem, S; Huang, H; Lipson, S

    2005-01-01

    Data are first presented on spontaneous and laser emission of p-doped and undoped quantum dot (QD) heterostructures to characterize the increase in optical gain in p-type modulation doped QD lasers. Because the increase in gain due to p-doping should also increase the differential gain, but does not greatly increase the modulation speed in present p-doped QD lasers, we further examine nonequilibrium electron transport effects in p-doped active material that may still limit the modulation speed. Electron transport through the dot wetting layer caused by the nonlasing QDs of the active ensemble is shown to be capable of substantially reducing the modulation speed, independent of the differential gain. This nonequilibrium limitation can be eliminated by reducing the inhomogeneous broadening in the QD ensemble

  20. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    Low, Yin Fen; Strauss, Daniel J

    2009-01-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  1. EEG phase reset due to auditory attention: an inverse time-scale approach.

    Science.gov (United States)

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  2. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  3. Digital quadrature phase detection

    Science.gov (United States)

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  4. All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel

    2010-01-01

    Roč. 283, č. 9 (2010), s. 1744-1749 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502 Institutional research plan: CEZ:AV0Z20670512 Keywords : Wavelength conversion * Fiber cross phase modulation * Fiber Bragg grating Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  5. Modulated crystal structures of VII and V phases in (NH4)3H(SO4)2. I. Neutron Laue diffraction

    International Nuclear Information System (INIS)

    McIntyre, G.; Smirnov, L.S.; Baranov, A.I.; Dolbinina, V.V.; Frontas'eva, M.V.; Pavlov, S.S.; Pankratova, Yu.S.

    2010-01-01

    The study of crystal structures of VII and V phases of (NH 4 ) 3 H(SO 4 ) 2 by means of neutron Laue diffraction is carried out at temperatures from 5 to 300 K. It is found that crystal structures of VII and V phases have incommensurate modulation with different periods, and phase transition from phase VII to phase V is transition of the first type

  6. Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials.

    Science.gov (United States)

    Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan

    2018-05-01

    A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.

  7. Probing exotic phases of interacting two-dimensional carriers using one-dimensional density modulation

    Science.gov (United States)

    Mueed, M. A.

    nature of the interacting bilayer system at nu=1 and 1/2. Finally, we focus on the half filling of a higher Landau level, namely nu=7/2, where B|| induces an anisotropic stripe phase. We show that a minute external density modulation is sufficient to cause a reorientation of the stripe phase if its wavelength is comparable to the external modulation period.

  8. Parametric resonances in the amplitude-modulated probe-field absorption spectrum of a two-level atom driven by a resonance amplitude- and phase-modulated pumping field

    International Nuclear Information System (INIS)

    Sushilov, N.V.; Kholodkevich, E.D.

    1995-01-01

    An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field

  9. Laterally structured ripple and square phases with one and two dimensional thickness modulations in a model bilayer system.

    Science.gov (United States)

    Debnath, Ananya; Thakkar, Foram M; Maiti, Prabal K; Kumaran, V; Ayappa, K G

    2014-10-14

    Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, Lβ', to the one dimensional (1D) rippled, Pβ' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel Lβ' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of ∼2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.

  10. Current Status of the Pixel Phase I Upgrade in CMS: Barrel Module Production

    CERN Document Server

    Bartek, Rachel

    2016-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. Before 2018 the instantaneous luminosity of the LHC is expected to reach about 2~x~$10^{34}~\\rm{cm}^{-2}\\rm{s}^{-1}$, which will significantly increase the number of interactions per bunch crossing. To maintain a high tracking efficiency, CMS has planned to replace the current pixel system during phase I by a new lightweight detector, equipped with an additional 4th layer in the barrel, and one additional forward/backward disk. The present status of barrel modules production will be presented, including preliminary results from tests on the first production pixel modules of the new pixel tracker.

  11. Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol

    International Nuclear Information System (INIS)

    Tsurumaru, Toyohiro

    2007-01-01

    In this paper, we discuss the security of the differential-phase-shift quantum-key-distribution (DPSQKD) protocol by introducing an improved version of the so-called sequential attack, which was originally discussed by Waks et al. [Phys. Rev. A 73, 012344 (2006)]. Our attack differs from the original form of the sequential attack in that the attacker Eve modulates not only the phases but also the amplitude in the superposition of the single-photon states which she sends to the receiver. Concentrating especially on the 'discretized Gaussian' intensity modulation, we show that our attack is more effective than the individual attack, which had been the best attack up to present. As a result of this, the recent experiment with communication distance of 100 km reported by Diamanti et al. [Opt. Express 14, 13073 (2006)] turns out to be insecure. Moreover, it can be shown that in a practical experimental setup which is commonly used today, the communication distance achievable by the DPSQKD protocol is less than 95 km

  12. Utilization of a liquid crystal spatial light modulator in a gray scale detour phase method for Fourier holograms.

    Science.gov (United States)

    Makey, Ghaith; El-Daher, Moustafa Sayem; Al-Shufi, Kanj

    2012-11-10

    This paper introduces a new modification for the well-known binary detour phase method, which is largely used to represent Fourier holograms; the modification utilizes gray scale level control provided by a liquid crystal spatial light modulator to improve the traditional binary detour phase. Results are shown by both simulation and experiment.

  13. Crystallization behavior of nanocomposites based on poly(L-lactide) and layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller

    Science.gov (United States)

    Schoenhals, Andreas; Leng, Jing; Wurm, Andreas; Schick, Christoph

    Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller) . In most cases a separation of both contributions is not possible without further assumptions. Here polymer nanocomposite based on poly(L-lactide) and layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA its crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated without any assumption. Two different systems with a different degree of exfoliation were prepared and discussed in detail.

  14. Optimized logarithmic phase masks used to generate defocus invariant modulation transfer function for wavefront coding system.

    Science.gov (United States)

    Zhao, Hui; Li, Yingcai

    2010-08-01

    In a previous Letter [Opt. Lett. 33, 1171 (2008)], we proposed an improved logarithmic phase mask by making modifications to the original one designed by Sherif. However, further studies in another paper [Appl. Opt. 49, 229 (2010)] show that even when the Sherif mask and the improved one are optimized, their corresponding defocused modulation transfer functions (MTFs) are still not stable with respect to focus errors. So, by further modifying their phase profiles, we design another two logarithmic phase masks that exhibit more stable defocused MTF. However, with the defocus-induced phase effect considered, we find that the performance of the two masks proposed in this Letter is better than the Sherif mask, but worse than our previously proposed phase mask, according to the Hilbert space angle.

  15. Magnet strength fluctuations in the SSC [Superconducting Super Collider] lattice: Part 2, Frequency modulation

    International Nuclear Information System (INIS)

    Goderre, G.P.

    1987-06-01

    This is a continuation of SSC-N-305. SSC-N-305 examined the effects of field strength modulation, when the modulation frequency (f/sub mod/) was equal to zero (i.e., current offset). The objective of this study is to examine the effect of field strength modulation with modulation frequencies other than zero. To this end, the tracking routine TEAPOT is modified to simulate frequency modulation of the current output from the 10 main SSC magnet power supplies. The amplitude (A/sub i/) and phase (phi/sub i/) of the modulation for the i/sup th/ power supply are chosen randomly. Effects of bore tube shielding are included only when studying 60 Hz modulation frequency. Bore tube shielding is due to the copper coating on the bore tube walls. This coating modifies the amplitude and phase of the modulation inside the bore tube. The bore tube is more effective at shielding the dipole field and it becomes most effective as the modulation frequency increases. 3 refs., 10 figs., 3 tabs

  16. Emerging technologies and approaches to minimize discharges into Lake Michigan Phase 2, Module 3 report.

    Energy Technology Data Exchange (ETDEWEB)

    Negri, M. C.; Gillenwater, P.; Urgun Demirtas, M. (Energy Systems)

    2011-05-11

    Purdue University Calumet (Purdue) and Argonne National Laboratory (Argonne) have conducted an independent study to identify deployable technologies that could help the BP Whiting Refinery, and other petroleum refineries, meet future wastewater discharge limits. This study has been funded by BP. Each organization tested a subset of the target technologies and retains sole responsibility for its respective test design and implementation, quality assurance and control, test results obtained from each of the technologies, and corresponding conclusions and recommendations. This project was divided in two phases and modules. This report summarizes the work conducted by Argonne in Phase II Module 3 (Bench Scale Testing). Other Modules are discussed elsewhere (Emerging Technologies and Approaches to Minimize Discharges into Lake Michigan, Phase 2, Modules 1-3 Report, April 2011, prepared for BP Americas by the Argonne - Purdue Task Force). The goal of this project was to identify and assess available and emerging wastewater treatment technologies for removing mercury and vanadium from the Whiting Refinery wastewater and to conduct bench-scale tests to provide comparable, transparent, and uniform results across the broad range of technologies tested. After the bench-scale testing phase, a previously developed decision matrix was refined and applied by Argonne to process and review test data to estimate and compare the preliminary performance, engineering configuration, preliminary cost, energy usage, and waste generation of technologies that were shown to be able to remove Hg and/or V to below the target limit at the bench scale. The data were used as the basis to identify the best candidates for further testing at the bench or pilot scale on a slip stream of effluent to lake (ETL) or clarifier effluent (CE) at the Whiting Refinery to determine whether future limits could be met and to generate other pertinent data for scale-up and sustainability evaluation. As a result of

  17. Performance degradation of integrated optical modulators due to electrical crosstalk

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2016-01-01

    In this paper, we investigate electrical crosstalk in integrated Mach-Zehnder modulator arrays based on n-doped InP substrate and show that it can be the cause for transmitter performance degradations. In particular, a common ground return path between adjacent modulators can cause high coupling

  18. Study of the frequency modulation of various U.H.F. signals occurring in a linear electron accelerator; Etude de la modulation de frequence de divers signaux U.H.F. existant dans un accelerateur lineaire d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R; Veyssiere, A; Daujat, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    This paper contains a digest of a series of studies on the frequency modulation of U.H.F. fields and signals associated with the linear electron accelerator at Saclay. We first consider the frequency modulation of a U. H. F. pulse before its injection into an accelerating structure and after its subsequent propagation when no accelerated electrons are present. We then apply a similar analysis to the frequency modulation due to the direct interaction of the electron beam itself, and the accelerating U.H.F. fields. Finally we consider the phase modulation of the elementary electron packet itself. This phase modulation can be correctly interpreted by considering the dynamics of the electron beam as such. This analysis moreover, gives a correct interpretation of the evolution of the phase modulation with time, as the elementary electron packets move along with the sinusoidal U.H.F. accelerating fields. (authors) [French] Cet article resume les etudes faites sur l'accelerateur lineaire d'electrons de Saclay a propos de la modulation de frequence des divers signaux U.H.F. presents autour de l'accelerateur. On etudie d'abord la modulation de frequence des impulsions U.H.F. entrant sur la structure acceleratrice ou transmises par cette structure en l'absence de faisceau d'electrons acceleres. On analyse ensuite la modulation de frequence resultant de l'interaction d'une de ces ondes avec le faisceau d'electrons acceleres. On etudie enfin, la modulation de phase des divers paquets elementaires constituant une impulsion d'electrons acceleres. On montre comment cette modulation de phase peut s'expliquer par des considerations sur la dynamique du faisceau et conduire a une representation dans les divers cas possibles de l'evolution de la phase d'accrochage des electrons sur l'onde sinusoidale progressive de champ accelerateur. (auteurs)

  19. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of

  20. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  1. Experimental investigation of turbulence modulation in particle-laden coaxial jets by Phase Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Mergheni, M.A. [CORIA UMR 6614 CNRS, Universite et INSA de ROUEN, Avenue de l' Universite, BP 12, 76801 Saint Etienne du Rouvray, Cedex (France)]|[LESTE Ecole Nationale d' Ingenieurs de Monastir, 5019 Monastir (Tunisia); Sautet, J.C.; Godard, G. [CORIA UMR 6614 CNRS, Universite et INSA de ROUEN, Avenue de l' Universite, BP 12, 76801 Saint Etienne du Rouvray, Cedex (France); Ben Ticha, H.; Ben Nasrallah, S. [LESTE Ecole Nationale d' Ingenieurs de Monastir, 5019 Monastir (Tunisia)

    2009-03-15

    The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 {mu}m were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows. (author)

  2. Research Leading to High Throughput Processing of Thin-Film CdTe PV Module: Phase I Annual Report, October 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R. C.; Meyers, P. V.

    2004-02-01

    Work under this subcontract contributes to the overall manufacturing operation. During Phase I, average module efficiency on the line was improved from 7.1% to 7.9%, due primarily to increased photocurrent resulting from a decrease in CdS thickness. At the same time, production volume for commercial sale increased from 1.5 to 2.5 MW/yr. First Solar is committed to commercializing CdTe-based thin-film photovoltaics. This commercialization effort includes a major addition of floor space and equipment, as well as process improvements to achieve higher efficiency and greater durability. This report presents the results of Phase I of the subcontract entitled''Research Leading to High Throughput Processing of Thin-Film CdTe PV Modules.'' The subcontract supports several important aspects needed to begin high-volume manufacturing, including further development of the semiconductor deposition reactor, advancement of accelerated life testing methods and understanding, and improvements to th e environmental, health, and safety programs. Progress in the development of the semiconductor deposition reactor was made in several areas. First, a new style of vapor transport deposition distributor with simpler operational behavior and the potential for improved cross-web uniformity was demonstrated. Second, an improved CdS feed system that will improve down-web uniformity was developed. Third, the core of a numerical model of fluid and heat flow within the distributor was developed, including flow in a 3-component gas system at high temperature and low pressure and particle sublimation.

  3. Intensity-Modulated Whole Abdominal Radiotherapy After Surgery and Carboplatin/Taxane Chemotherapy for Advanced Ovarian Cancer: Phase I Study

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D.; Dinkel, Julien; Herfarth, Klaus K.; Schubert, Kai; Eichbaum, Michael H.; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-01-01

    Purpose: To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Methods and Materials: Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Results: Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. Conclusions: The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  4. Intensity-modulated whole abdominal radiotherapy after surgery and carboplatin/taxane chemotherapy for advanced ovarian cancer: phase I study.

    Science.gov (United States)

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D; Dinkel, Julien; Herfarth, Klaus K; Schubert, Kai; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-04-01

    To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  5. Design and assembly of the optical modules for phase-2 of the NEMO project

    Energy Technology Data Exchange (ETDEWEB)

    Leonora, E., E-mail: emanuele.leonora@ct.infn.it; Aiello, S.

    2013-10-11

    The NEMO collaboration team has undertaken a Phase-2 project, which aims at the realization and installation of a new infrastructure at the Capo Passero (Italy) deep-sea site at a depth of 3500 m. With this objective in mind, a fully equipped tower with 8-storey hosting two optical modules at each end is under construction. Following a well established procedure, 32 optical modules have been assembled. The optical module consists of a large area photomultiplier tube enclosed in a pressure resistant glass sphere with a diameter of 13 in. The photomultiplier is a R7081 type, produced by Hamamatsu, with a photocathode area with a diameter of 10 in. and 10 dynodes. Mechanical and optical contacts between the front of the photomultiplier tube and the glass surface are ensured by an optical bi-component silicone gel. A mu-metal cage is used to shield the photomultiplier against the influence of the Earth's magnetic field.

  6. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  7. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  8. Pulse Pattern-Modulated Strategy for Harmonic Current Components Reduction in Three-Phase AC–DC Converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2016-01-01

    , which need to be considered in order to be competitive in the market. Therefore, having a flexibility to meet various requirements imposed by the standard recommendations or costumer needs is at most desirable. This makes the generated harmonic current mitigation a challenging task especially with three......-phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable...

  9. Pulse pattern modulated strategy for harmonic current components reduction in three-phase AC-DC converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    , which need to be considered in order to be competitive in the market. Therefore, having a flexibility to meet various requirements imposed by the standard recommendations or costumer needs is at most desirable. This makes the generated harmonic current mitigation a challenging task especially with three......-phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable...

  10. Influence of ionic conductivity on in-phase and anti-phase motions of antiferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Das, D.; Majumder, T.P.; Ghosh, N.K.

    2014-01-01

    The in-phase and anti-phase motions of antiferroelectric liquid crystals were changed due to the influence of charge density associated with the layer modulation modifying the elastic behaviour. The elastic constant was changed because of the coupling between charge density variation and variation of azimuthal angle (ϕ). We obtained theoretically a modified elastic constant depending on the variation of charge density in both in-phase and anti-phase motions. The theoretically elastic constant decreases with the increase of the coupling coefficient between charge density and in-phase azimuthal angle (ϕ a ). We theoretically accounted the dependence of dielectric strength for both relaxations depending on the effective elastic constant influenced by the presence of charge density and discussed the results with experimental observations

  11. Significantly High Modulation Efficiency of Compact Graphene Modulator Based on Silicon Waveguide.

    Science.gov (United States)

    Shu, Haowen; Su, Zhaotang; Huang, Le; Wu, Zhennan; Wang, Xingjun; Zhang, Zhiyong; Zhou, Zhiping

    2018-01-17

    We theoretically and experimentally demonstrate a significantly large modulation efficiency of a compact graphene modulator based on a silicon waveguide using the electro refractive effect of graphene. The modulation modes of electro-absorption and electro-refractive can be switched with different applied voltages. A high extinction ratio of 25 dB is achieved in the electro-absorption modulation mode with a driving voltage range of 0 V to 1 V. For electro-refractive modulation, the driving voltage ranges from 1 V to 3 V with a 185-pm spectrum shift. The modulation efficiency of 1.29 V · mm with a 40-μm interaction length is two orders of magnitude higher than that of the first reported graphene phase modulator. The realisation of phase and intensity modulation with graphene based on a silicon waveguide heralds its potential application in optical communication and optical interconnection systems.

  12. Characterisation of different single and multilayer films using phase modulated spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Das, N.C.; Bhattacharyya, D.; Thakur, S.

    1998-06-01

    Different single layers and multilayer coatings deposited by e-beam evaporation and r.f. sputtering techniques have been characterised by the Phase Modulated Spectroscopic Ellipsometer, installed recently in the Spectroscopy Division, B.A.R.C. The Phase Modulated technique provides a faster and more accurate data acquisition process than the conventional ellipsometry. Measurements have been done on single layers of Cu, Si and ZrO 2 films and on multilayer thin films devices e.g., high reflectivity mirror, beam combiner, beam splitter, narrow band filter etc. consisting of several bilayers of TiO 2 /SiO 2 . The measured Ellipsometry spectra is then fitted with a theoretical spectra generated assuming an appropriate model regarding the sample. The layer thickness and composition have been used as fitting parameters. The optical constants of the substrates have been supplied and a trial dispersion relation have been used for the layers. In case of inhomogeneous layers, trial compositions have been given for the individual components for each layer. The roughness of the layers has been taken into account by assuming the film to be an inhomogeneous mixture of material and voids. The fittings have been done objectively by minimising the squared difference (χ 2 ) between the measured and calculated values of the ellipsometric parameters and thus accurate information have been derived regarding the thickness and optical constants (viz, the refractive index and extinction coefficient) of the different layers, the surface roughness and the inhomogeneities present in the layers. (author)

  13. The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks.

    Science.gov (United States)

    Flanagan, Sheila; Goswami, Usha

    2018-03-01

    Recent models of the neural encoding of speech suggest a core role for amplitude modulation (AM) structure, particularly regarding AM phase alignment. Accordingly, speech tasks that measure linguistic development in children may exhibit systematic properties regarding AM structure. Here, the acoustic structure of spoken items in child phonological and morphological tasks, phoneme deletion and plural elicitation, was investigated. The phase synchronisation index (PSI), reflecting the degree of phase alignment between pairs of AMs, was computed for 3 AM bands (delta, theta, beta/low gamma; 0.9-2.5 Hz, 2.5-12 Hz, 12-40 Hz, respectively), for five spectral bands covering 100-7250 Hz. For phoneme deletion, data from 94 child participants with and without dyslexia was used to relate AM structure to behavioural performance. Results revealed that a significant change in magnitude of the phase synchronisation index (ΔPSI) of slower AMs (delta-theta) systematically accompanied both phoneme deletion and plural elicitation. Further, children with dyslexia made more linguistic errors as the delta-theta ΔPSI increased. Accordingly, ΔPSI between slower temporal modulations in the speech signal systematically distinguished test items from accurate responses and predicted task performance. This may suggest that sensitivity to slower AM information in speech is a core aspect of phonological and morphological development.

  14. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  15. Simulation of Processes in Dual Three-Phase System on the Base of Four Inverters with Synchronized Modulation

    OpenAIRE

    Oleschuk, Valentin; Grandi, Gabriele; Sanjeevikumar, Padmanaban

    2011-01-01

    Novel method of space-vector-based pulse-width modulation (PWM) has been disseminated for synchronous control of four inverters feeding six-phase drive on the base of asymmetrical induction motor which has two sets of windings spatially shifted by 30 electrical degrees. Basic schemes of synchronized PWM, applied for control of four separate voltage-source inverters, allow both continuous phase voltages synchronization in the system and required power sharing between DC sources. Detailed MATLA...

  16. Time gated phase-correlation distributed Brillouin fibre sensor

    Science.gov (United States)

    Denisov, Andrey; Soto, Marcelo A.; Thévenaz, Luc

    2013-05-01

    A random access distributed Brillouin fibre sensor is presented, based on phase modulation using a pseudo-random bit sequence (PRBS) together with time gating. The standard phase-correlation technique is known to show a noise level increasing linearly with the number of measured points due to weak gratings generated randomly along the whole sensing fibre. Here we show how intensity modulated pump and time gated detection significantly improve the signal-tonoise ratio (SNR) of the system with no impact on the spatial resolution. A measurement with 1.1 cm spatial resolution over 3.3 km is demonstrated, representing 300'000 equivalent points. The limitations of the proposed technique are discussed through the paper.

  17. A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

    Directory of Open Access Journals (Sweden)

    Ruchi Gahley

    2017-01-01

    Full Text Available This paper presents time modulated beam steered antenna array without phase shifters. The beam steering is analyzed considering a two-element time modulated antenna array (TMAA of printed dipoles with microstrip via-hole balun. The proposed array resonates at the Industrial, Scientific, and Medical (ISM radio bands, 2.45 GHz and 5.8 GHz, and offers wide bandwidth inherited due to modified structure of ground plane. Array elements are excited by complex exponential excitation signal through broadband power divider and radio frequency (RF switches to achieve amplitude and phase variation without phase shifters. Differential Evolution algorithm is used to modify the time sequences of the RF switches connected to the antennas to generate radiation pattern with optimum dynamic efficiency by suppressing sideband radiations. Also switch-on time instant of RF switch connected to the subsequent element is modulated to steer the beam towards different directions. The proposed prototype is fabricated followed by parametric optimization. The fabrication results agree significantly well with simulated results.

  18. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Sancho-Parramon, J. [Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb 10002 (Croatia); Jover, E.; Bertran, E. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Canillas, A., E-mail: acanillas@ub.ed [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain)

    2011-02-28

    We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 {mu}m and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

  19. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

    International Nuclear Information System (INIS)

    Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O.; Sancho-Parramon, J.; Jover, E.; Bertran, E.; Canillas, A.

    2011-01-01

    We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 μm and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

  20. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.

    2017-03-08

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition cross over at ∼50 at. % of Mo and W in ReS2 in both monolayer and bulk form, respectively. Experimentally, two different types of structural modulations at 50% and a modulation corresponding to trimerization at 75% alloy composition are observed for RexMo1-xS2 and only one type of modulation is observed at the 50% RexW1-xS2 alloy system. The 50% alloy system is found to be a suitable monolithic candidate for metal semiconductor transition with minute external perturbation. ReS2 is known to be in the 2D Peierls distorted 1Td structure and forms a chain like superstructure. Incorporation of Mo and W atoms into the ReS2 lattice modifies the metal-metal hybridization between the cations and influences the structural modulation and electronic properties of the system. The results offer yet another effective way to tune the electronic structure and poly-type phases of this class of materials other than intercalation, strain, and vertical stacking arrangement.

  1. Degradation of gas-phase trichloroethylene over thin-film TiO2 photocatalyst in multi-modules reactor

    International Nuclear Information System (INIS)

    Kim, Sang Bum; Lee, Jun Yub; Kim, Gyung Soo; Hong, Sung Chang

    2009-01-01

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO 2 . A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  2. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  3. Fermi-Pasta-Ulam recurrence and modulation instability

    Science.gov (United States)

    Kuznetsov, E. A.

    2017-01-01

    We give a qualitative conceptual explanation of the Fermi-Pasta-Ulam (FPU) like recurrence in the onedimensional focusing nonlinear Schrodinger equation (NLSE). The recurrence can be considered as a result of the nonlinear development of the modulation instability. All known exact localized solitary wave solutions describing propagation on the background of the modulationally unstable condensate show the recurrence to the condensate state after its interaction with solitons. The condensate state locally recovers its original form with the same amplitude but a different phase after soliton leave its initial region. Based on the integrability of the NLSE, we demonstrate that the FPU recurrence takes place not only for condensate, but also for a more general solution in the form of the cnoidal wave. This solution is periodic in space and can be represented as a solitonic lattice. That lattice reduces to isolated soliton solution in the limit of large distance between solitons. The lattice transforms into the condensate in the opposite limit of dense soliton packing. The cnoidal wave is also modulationally unstable due to soliton overlapping. The recurrence happens at the nonlinear stage of the modulation instability. Due to generic nature of the underlying mathematical model, the proposed concept can be applied across disciplines and nonlinear systems, ranging from optical communications to hydrodynamics.

  4. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain

    Science.gov (United States)

    Kou, Na; Yu, Shixing; Li, Long

    2017-01-01

    A high-order Bessel vortex beam carrying orbital angular momentum (OAM) is generated by using multilayer amplitude-phase-modulated surfaces (APMSs) at 10 GHz. The APMS transmitarray is composed of four-layer conformal square-loop (FCSL) surfaces with both amplitude and phase modulation. The APMS can transform a quasi-spherical wave emitted from the feeding source into a pseudo non-diffractive high-order Bessel vortex beam with OAM. The APMS for a second-order Bessel beam carrying OAM in the n = 2 mode is designed, fabricated, and measured. Full-wave simulation and measurement results confirm that Bessel vortex beams with OAM can be effectively generated using the proposed APMS transmitarray.

  5. Nonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks

    NARCIS (Netherlands)

    Altabas, J.A.; Rommel, S.; Puerta, R.; Izquierdo, D.; Ignacio Garces, J.; Antonio Lazaro, J.; Vegas Olmos, J.J.; Tafur Monroy, I.

    2017-01-01

    In this paper, a combined nonorthogonal multiple access (NOMA) and multiband carrierless amplitude phase modulation (multiCAP) scheme is proposed for capacity enhancement of and flexible resource provisioning in 5G mobile networks. The proposed scheme is experimentally evaluated over a W-band

  6. Unravelling the role of quantum interference in the weak-field laser phase modulation control of photofragment distributions

    DEFF Research Database (Denmark)

    García-Vela, Alberto; Henriksen, Niels Engholm

    2016-01-01

    The role played by quantum interference in the laser phase modulation coherent control of photofragment distributions in the weak-field regime is investigated in detail in this work. The specific application involves realistic wave packet calculations of the transient vibrational populations of t...

  7. Pulse width modulation based pneumatic frequency tuner of the superconducting resonators at IUAC

    International Nuclear Information System (INIS)

    Pandey, A.; Suman, S.K.; Mathuria, D.S.

    2015-01-01

    The existing phase locking scheme of the quarter wave resonators (QWR) used in superconducting linear accelerator (LINAC) of IUAC consists of a fast time (electronic) and a slow time (pneumatic) control. Presently, piezo based mechanical tuners are being used to phase lock the resonators installed in the second and third accelerating modules of LINAC. However, due to space constraint, the piezo tuner can't be implemented on the resonators of the first accelerating module. Therefore, helium gas operated mechanical tuners are being used to phase lock the resonators against the master oscillator (MO) frequency. The present pneumatic frequency tuner has limitations of non-linearity, hysteresis and slow response time. To overcome these problems and to improve the dynamics of the existing tuner, a new pulse width modulation (PWM) based pneumatic frequency tuning system was adopted and successfully tested. After successful test, the PWM based pneumatic frequency tuner was installed in four QWR of the first accelerating module of LINAC. During beam run the PWM based frequency tuner performed well and the cavities could be phase locked at comparatively higher accelerating fields. A comparison of the existing tuning mechanism and the PWM based tuning system along with the test results will be presented in the paper. (author)

  8. On the application of neural networks to the classification of phase modulated waveforms

    Science.gov (United States)

    Buchenroth, Anthony; Yim, Joong Gon; Nowak, Michael; Chakravarthy, Vasu

    2017-04-01

    Accurate classification of phase modulated radar waveforms is a well-known problem in spectrum sensing. Identification of such waveforms aids situational awareness enabling radar and communications spectrum sharing. While various feature extraction and engineering approaches have sought to address this problem, the use of a machine learning algorithm that best utilizes these features is becomes foremost. In this effort, a comparison of a standard shallow and a deep learning approach are explored. Experiments provide insights into classifier architecture, training procedure, and performance.

  9. Experimental 2.5 Gbit/s QPSK WDM coherent phase modulated radio-over-fibre link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio; Amaya Fernández, Ferney Orlando

    2009-01-01

    Highest reported bit rate of 2.5 Gbit/s for optically phase modulated radio-over-fibre link employing coherent detection is demonstrated. Demodulation of 3·2.5 Gbit/s QPSK modulated WDM channels, is achieved after 79km of transmission through deployed fiber....

  10. Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut Gaussian beam

    Science.gov (United States)

    Udhayakumar, M.; Prabakaran, K.; Rajesh, K. B.; Jaroszewicz, Z.; Belafhal, Abdelmajid; Velauthapillai, Dhayalan

    2018-06-01

    Based on vector diffraction theory and inverse Faraday effect (IFE), the light induced magnetization distribution of a tightly focused azimuthally polarized doughnut Gaussian beam superimposed with a helical phase and modulated by an optimized multi belt complex phase filter (MBCPF) is analysed numerically. It is noted that by adjusting the radii of different rings of the complex phase filter, one can achieve many novel magnetization focal distribution such as sub wavelength scale (0.29λ) and super long (52.2λ) longitudinal magnetic probe suitable for all optical magnetic recording and the formation of multiple magnetization chain with four, six and eight sub-wavelength spherical magnetization spots suitable for multiple trapping of magnetic particles are achieved.

  11. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    Science.gov (United States)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  12. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  13. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...

  14. ANALYSIS OF PROCESSES IN AN INDEPENDENT GENERATOR WITH A NONCONTACT CASCADE THREE-PHASE MODULATED EXCITER VIA A STAR-CONNECTED CIRCUIT WITH A COMMON MODULATOR PHASE CONNECTION UNDER OPERATION TO AN INDUCTION MOTORS SITE

    Directory of Open Access Journals (Sweden)

    K.M. Vasyliv

    2013-04-01

    Full Text Available By means of a mathematical experiment, electromagnetic and electromechanical processes in an independent electric power supply system based on an asynchronized generator with a three-phase modulated exciter are investigated. The processes are analyzed to specify the working capacity of the power supply system during its operation to an induction motors site. Regularities of the electromagnetic and electromechanical processes behavior versus load intensity and the switch control system parameters are identified.

  15. Nonlinear self-modulation of ion-acoustic waves

    International Nuclear Information System (INIS)

    Ikezi, H.; Schwarzenegger, K.; Simons, A.L.; Ohsawa, Y.; Kamimura, T.

    1978-01-01

    The nonlinear evolution of an ion-acoustic wave packet is studied. Experimentally, it is found that (i) nonlinear phase modulation develops in the wave packet; (ii) the phase modulation, together with the dispersion effect, causes expansion and breaking of the wave packet; (iii) the ions trapped in the troughs of the wave potential introduce self-phase modulation; and (iv) the ion-acoustic wave is stable with respect to the modulational instability. Computer simulations have reproduced the experimental results. The physical picture and the model equation describing the wave evolution are discussed

  16. Degradation of gas-phase trichloroethylene over thin-film TiO{sub 2} photocatalyst in multi-modules reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Lee, Jun Yub, E-mail: ljy02191@hanafos.com [Power Engineering Research Institute, Korea Power Engineering Company, Inc. (Korea, Republic of); Kim, Gyung Soo [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Hong, Sung Chang [Department of Environmental Engineering, Kyonggi University (Korea, Republic of)

    2009-07-30

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO{sub 2}. A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  17. Emerging technologies and approaches to minimize discharges into Lake Michigan, phase 2 module 4 report.

    Energy Technology Data Exchange (ETDEWEB)

    Negri, M.C.; Gillenwater, P.; Urgun-Demirtas, M.; Nnanna, G.; Yu, J.; Jannotta, I, (Energy Systems); (Purdue University Calumet)

    2012-04-19

    The Great Lakes Initiative (GLI) established the new water quality-based discharge criteria for mercury (Hg), thereby increasing the need for many municipal and industrial wastewater treatment plants in the region to lower the mercury in their effluents. Information on deployable technologies to satisfy these requirements for industrial and municipal dischargers in the Great lakes region is scarce. Therefore, BP funded Purdue University Calumet and Argonne to identify deployable Hg removal technologies to meet the GLI discharge criterion at its Whiting Refinery in Indiana. The joint PUC/Argonne project was divided into 2 phases. Results from Phase I and Phase II Modules 1-3 have been previously reported. This report summarizes the work done in Phase 3 Module 4, which consisted of the pilot scale testing of Hg removal technologies previously selected in Module 3. The pilot testing was an Argonne/PUC jointly directed project that was hosted at and funded by the BP refinery in Whiting, IN. As two organizations were involved in data analysis and interpretation, this report combines two independent sets of evaluations of the testing that was done, prepared respectively by Argonne and Purdue. Each organization retains sole responsibility for its respective analysis conclusions and recommendations. Based on Module 3 bench testing with pre-Effluent To Lake (pre-ETL) and clarifier effluent (CE) samples from the Whiting refinery, three different technologies were chosen for pilot testing: (1) Ultrafiltration (using GE ZeeWeed(reg sign) Technology, 0.04 {mu}m pore size and made up of PVDF) for particulate mercury removal; (2) Adsorption using Mersorb(reg sign) LW, a sulfur-impregnated activated carbon, for dissolved mercury removal if present and (3) The Blue PRO(reg sign) reactive filtration process for both particulate and dissolved (if present) mercury removal. The ultrafiltration and the Blue PRO(reg sign) reactive filtration pilot studies were done simultaneously at the

  18. Phase-sensitive flow cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.

    1992-12-31

    This report describes phase-sensitive flow cytometer (FCM) which provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  19. Phase Clustering Based Modulation Classification Algorithm for PSK Signal over Wireless Environment

    Directory of Open Access Journals (Sweden)

    Qi An

    2016-01-01

    Full Text Available Promptitude and accuracy of signals’ non-data-aided (NDA identification is one of the key technology demands in noncooperative wireless communication network, especially in information monitoring and other electronic warfare. Based on this background, this paper proposes a new signal classifier for phase shift keying (PSK signals. The periodicity of signal’s phase is utilized as the assorted character, with which a fractional function is constituted for phase clustering. Classification and the modulation order of intercepted signals can be achieved through its Fast Fourier Transform (FFT of the phase clustering function. Frequency offset is also considered for practical conditions. The accuracy of frequency offset estimation has a direct impact on its correction. Thus, a feasible solution is supplied. In this paper, an advanced estimator is proposed for estimating the frequency offset and balancing estimation accuracy and range under low signal-to-noise ratio (SNR conditions. The influence on estimation range brought by the maximum correlation interval is removed through the differential operation of the autocorrelation of the normalized baseband signal raised to the power of Q. Then, a weighted summation is adopted for an effective frequency estimation. Details of equations and relevant simulations are subsequently presented. The estimator proposed can reach an estimation accuracy of 10-4 even when the SNR is as low as -15 dB. Analytical formulas are expressed, and the corresponding simulations illustrate that the classifier proposed is more efficient than its counterparts even at low SNRs.

  20. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency...

  1. A simple microwave technique for plasma density measurement using frequency modulation

    International Nuclear Information System (INIS)

    Bora, D.; Jayakumar, R.; Vijayashankar, M.K.

    1984-01-01

    A simple method of determining the phase variation unambiguously during microwave interferometric measurement is described. The frequency of the Klystron source is modulated with the help of staircase voltage pulse. The height of each stair is adjusted such that the corresponding phase shift in the test branch with an additional path length is 90 0 . Signals, proportional to cosine and sine of the phase shift due to plasma, can be generated in the same channel and plasma density information can be inferred. The microwave hardware remains the same as in conventional interferometry and the cost of such a scheme is low. (author)

  2. Quantum model for electro-optical amplitude modulation.

    Science.gov (United States)

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  3. Compact energy conversion module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  4. Investigation of the impact of mechanical stress on the properties of silicon sensor modules for the ATLAS Phase II upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin; Polay, Luise; Spehrlich, Dennis; Bloch, Ingo [DESY, Zeuthen (Germany)

    2016-07-01

    The new ATLAS tracker for phase II will be composed of silicon pixel and strip sensor modules. Such a module consists of silicon sensors, boards and readout chips. In a currently ongoing study new adhesives to connect the modular components thermally and mechanically are examined. It was shown that the silicon sensor is exposed to mechanical stress when part of a module. Mechanical stress can cause damage to a sensor and can change the tensors of electrical properties. The study of the effects of mechanical stress on characteristics of the silicon sensor modules are the focus in this presentation. The thermal induced tensile stress near to the surface of a silicon sensor build in a module was simulated. A four point bending setup was used to measure the maximum tensile stress of silicon and to verify the piezoresistive effect on ATLAS07 sensors. The results of the electrical measurements and simulations of stressed silicon sensor modules are shown in the presentation.

  5. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  6. Compact Energy Conversion Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  7. Laser frequency stabilisation by the Pound - Drever - Hall method using an acousto-optic phase modulator operating in the pure Raman - Nath diffraction regime

    International Nuclear Information System (INIS)

    Baryshev, Vyacheslav N

    2012-01-01

    Frequency stabilisation of diode laser radiation has been implemented by the Pound - Drever - Hall method using a new acousto-optic phase modulator, operating in the pure Raman - Nath diffraction regime. It is experimentally shown that, as in the case of saturated-absorption spectroscopy in atomic vapour, the spatial divergence of the frequency-modulated output spectrum of this modulator does not interfere with obtaining error signals by means of heterodyne frequency-modulation spectroscopy with a frequency discriminator based on a high-Q Fabry - Perot cavity with finesse of several tens of thousands.

  8. Evaluation of the stability and precipitation behavior of G phase in dual-phase stainless steels by thermodynamic calculations

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Ito, Shota; Minamoto, Satoshi

    2017-01-01

    Degradation of dual-phase stainless steel in nuclear power plants due to thermal ageing during long-term use is an important issue. This occurs mainly due to breakdown of the ferrite phase as a result of spinodal decomposition, followed by clustering or precipitation of the intermetallic G-phase compound, 'Ni 16 Si 7 Mn 6 ', which consists primarily of Ni, Si and Mn. The degradation mechanism is complicated because both radiation effects and thermal ageing simultaneously occur. However, only limited information is available concerning this phenomenon, and particularly regarding precipitation of the G phase. In the present study, thermodynamic equilibrium calculations were carried out for two types of dual-phase stainless steel (weld metal and cast steel) to evaluate the influence of the temperature and constituent elements on the stability of the G phase. The calculations were performed using the Thermo-Calc program with the thermodynamic database, FE-DATA (ver. 6). Precipitation of the G phase was investigated using the TC-PRISMA precipitation module together with the MOB2 diffusion database. It was found that for both types of steel, the G phase contains not only Ni, Si and Mn, but also small amounts of Fe and Cr. The stability of the G phase is dependent on the Ni, Mn, Cr, Si and Mo content in the original steel, and particularly on that of the latter two elements. Due to its higher Si content, the G phase was shown to be more stable in cast steel than in weld metal. (author)

  9. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.; Bhat, U.; Batra, Nitin M; Sharona, H.; Vishal, B.; Sarkar, S.; Devi, Assa Aravindh Sasikala; Peter, S. C.; Roqan, Iman S.; Costa , P. M. F. J.; Datta, Ranjan

    2017-01-01

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition

  10. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp

  11. Injection of a Phase Modulated Source into the Z-Beamlet Laser for Increased Energy Extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Patrick K.; Armstrong, Darrell J.; Schwarz, Jens; Smith, Ian C; Shores, Jonathon; Speas, Christopher; Porter, John L.

    2014-11-01

    The Z-Beamlet laser has been operating at Sandia National Laboratories since 2001 to provide a source of laser-generated x-rays for radiography of events on the Z-Accelerator. Changes in desired operational scope have necessitated the increase in pulse duration and energy available from the laser system. This is enabled via the addition of a phase modulated seed laser as an alternative front-end. The practical aspects of deployment are discussed here.

  12. Protection Of TEG Module at High Temperature Transient Boundary Condition Using Phase Change Materials, an Experimental Investigation

    DEFF Research Database (Denmark)

    Ahmadi Atouei,, Saeed; Rezaniakolaei, Alireza; Akbar Ranjbar, Ali

    2017-01-01

    phase change materials (PCM) in an aluminium box are placed between heat source and the thermoelectric module. The results show when the input heat flux is high, a fraction of the thermal energy is saved in the PCM during the melting process, and when the heat source is off, the saved energy in the PCM...

  13. High-resolution resonant magnetic x-ray scattering on TbNi2B2C: Determination of the modulation wave vector in the orthorhombic phase

    International Nuclear Information System (INIS)

    Song, C.; Wermeille, D.; Goldman, A. I.; Canfield, P. C.; Rhee, J. Y.; Harmon, B. N.

    2001-01-01

    Resonant magnetic x-ray scattering measurements have been performed on a single crystal of TbNi 2 B 2 C to uniquely determine the modulation wave vector in the low-temperature orthorhombic phase. Below the transition temperature of 14.4(±0.1)K, two magnetic satellite peaks develop, centered on (h00) orth charge reflections. Our study shows that the longitudinal modulation of the magnetic moment is along the longer basal plane axes of the orthorhombic phase. Power law fits to the temperature dependence of the structural distortion, a/b-1, and the magnetic scattering intensity result in the same exponent, β, and transition temperature evidencing explicitly that the structural phase transition is magneto-elastic in origin

  14. Experimental investigation of zero phase shift effects for Coriolis flowmeters due to pipe imperfections

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel; Neumeyer, Stefan

    2011-01-01

    mass as well as temperature changes could be causes contributing to a time-varying measured zero shift, as observed with some commercial CFMs. The conducted experimental tests of the theoretically based hypotheses have shown that simple mathematical models and approximate analysis allow general......, the flexural vibrations of two bent, parallel, non-fluid-conveying pipes are studied experimentally, employing an industrial CFM. Special attention has been paid on the phase shift in the case of zero mass flow, i.e. the zero shift, caused by various imperfections to the ‘‘perfect’’ CFM, i.e. non-uniform pipe...... damping and mass, and on ambient temperature changes. Experimental observations confirm the hypothesis that asymmetry in the axial distribution of damping will induce zero shifts similar to the phase shifts due to fluid flow. Axially symmetrically distributed damping was observed to influence phase shift...

  15. Modulation Algorithms for Manipulating Nuclear Spin States

    OpenAIRE

    Liu, Boyang; Zhang, Ming; Dai, Hong-Yi

    2013-01-01

    We exploit the impact of exact frequency modulation on transition time of steering nuclear spin states from theoretical point of view. 1-stage and 2-stage Frequency-Amplitude-Phase modulation (FAPM) algorithms are proposed in contrast with 1-stage and 3-stage Amplitude-Phase modulation (APM) algorithms. The sufficient conditions are further present for transiting nuclear spin states within the specified time by these four modulation algorithms. It is demonstrated that transition time performa...

  16. Flexible digital modulation and coding synthesis for satellite communications

    Science.gov (United States)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  17. Schedule-selective biochemical modulation of 5-fluorouracil in advanced colorectal cancer – a phase II study

    Directory of Open Access Journals (Sweden)

    Savage Paul

    2002-05-01

    Full Text Available Abstract Background 5-fluorouracil remains the standard therapy for patients with advanced/metastatic colorectal cancer. Pre-clinical studies have demonstrated the biological modulation of 5-fluorouracil by methotrexate and leucovorin. This phase II study was initiated to determine the activity and toxicity of sequential methotrexate – leucovorin and 5-fluorouracil chemotherapy in patients with advanced colorectal cancer. Methods Ninety-seven patients with metastatic colorectal cancer were enrolled onto the study. Methotrexate – 30 mg/m2 was administered every 6 hours for 6 doses followed by a 2 hour infusion of LV – 500 mg/m2. Midway through the leucovorin infusion, patients received 5-fluorouracil – 600 mg/m2. This constituted a cycle of therapy and was repeated every 2 weeks until progression. Results The median age was 64 yrs (34–84 and the Eastern Cooperative Group Oncology performance score was 0 in 37%, 1 in 55% and 2 in 8% of patients. Partial and complete responses were seen in 31% of patients with a median duration of response of 6.4 months. The overall median survival was 13.0 months. The estimated 1-year survival was 53.7%. Grade III and IV toxic effects were modest and included mucositis, nausea and vomiting. Conclusions This phase II study supports previously reported data demonstrating the modest clinical benefit of 5-FU modulation utilizing methotrexate and leucovorin in patients with metastatic colorectal cancer. Ongoing studies evaluating 5-fluorouracil modulation with more novel agents (Irinotecan and/or oxaliplatin are in progress and may prove encouraging.

  18. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly

    2015-01-01

    at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling......, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry......) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method...

  19. Space Vector Modulation Technique to Reduce Leakage Current of a Transformerless Three-Phase Four-Leg Photovoltaic System

    Directory of Open Access Journals (Sweden)

    F. Hasanzad

    2017-06-01

    Full Text Available Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer or without it (transformerless. Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV, and total harmonic distortion (THD. An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique.

  20. Functional tests of 2S modules for the CMS Phase-2 Tracker Upgrade with a MicroTCA-based readout system

    CERN Document Server

    Preuten, Marius; Klein, Katja; Lipinski, Martin; Rauch, Max; Feld, Lutz

    2017-01-01

    First full size 2S module prototypes for the CMS Phase-2 Outer Tracker Upgrade have been assembled. With two sensors of realistic dimensions and 16 CBC2 readout ASICs on two front-end hybrids, the characteristics of these novel and complex objects can be studied.A MicroTCA based readout system was developed to test multiple front-end hybrids simultaneously. Therefore the concurrent information of the full module can be used for noise and signal studies.

  1. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    Science.gov (United States)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  2. Modulational effects in accelerators

    International Nuclear Information System (INIS)

    Satogata, T.

    1997-01-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed

  3. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  4. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... all phases show MI, but at the same time it has also been found that for antiferro- magnetic phase, MI depends on the relative .... with wave functions, time and spatial coordinates are measured in the units of. (¯h/2mωz)−3/2, ω−1 ... The manipulation of the resulting matrix gives eigenvalues. From the form of ...

  5. Optics modules for circular accelerator design

    International Nuclear Information System (INIS)

    Brown, K.L.; Servranckx, R.V.

    1986-05-01

    The first-order differential equations of motion for a single particle in a closed circular machine are solved, introducing the concepts of phase shift, beta functions, and the Courant-Snyder invariant. The transfer matrix between two points in the machine is derived as a function of the phase shift and the parameters contained in the Courant-Snyder invariant. Typical optical modules used in circular machine designs are introduced and related to their characteristic transfer matrix elements, the phase shift through them, and the Courant-Snyder-Twiss parameters. The systematics of some elementary phase ellipse matching problems between optical modules are discussed. Second-order optical modules are discussed, including how they are used to provide the momentum bandwidth needed for the design of a typical circular machine

  6. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  7. Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Zhao, Xudong; Li, Peng; Zhang, Xingxing; Ali, Samira; Tan, Junyi

    2015-01-01

    Aim of the paper is to present a theoretical investigation into the energy performance of a novel PV/T module that employs the MPCM (Micro-encapsulated Phase Change Material) slurry as the working fluid. This involved (1) development of a dedicated mathematical model and computer program; (2) validation of the model by using the published data; (3) prediction of the energy performance of the MPCM (Microencapsulated Phase Change Material) slurry based PV/T module; and (4) investigation of the impacts of the slurry flow state, concentration ratio, Reynolds number and slurry serpentine size onto the energy performance of the PV/T module. It was found that the established model, based on the Hottel–Whillier assumption, is able to predict the energy performance of the MPCM slurry based PV/T system at a very good accuracy, with 0.3–0.4% difference compared to a validated model. Analyses of the simulation results indicated that laminar flow is not a favorite flow state in terms of the energy efficiency of the PV/T module. Instead, turbulent flow is a desired flow state that has potential to enhance the energy performance of PV/T module. Under the turbulent flow condition, increasing the slurry concentration ratio led to the reduced PV cells' temperature and increased thermal, electrical and overall efficiency of the PV/T module, as well as increased flow resistance. As a result, the net efficiency of the PV/T module reached the peak level at the concentration ratio of 5% at a specified Reynolds number of 3,350. Remaining all other parameters fixed, increasing the diameter of the serpentine piping led to the increased slurry mass flow rate, decreased PV cells' temperature and consequently, increased thermal, electrical, overall and net efficiencies of the PV/T module. In overall, the MPCM slurry based PV/T module is a new, highly efficient solar thermal and power configuration, which has potential to help reduce fossil fuel consumption and carbon emission to

  8. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  9. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    OpenAIRE

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Traisathit, Patrinee; Van Gestel, Dirk

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan w...

  10. Variability of phase and amplitude fronts due to horizontal refraction in shallow water.

    Science.gov (United States)

    Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F

    2018-01-01

    The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.

  11. Phase modulation spectroscopy of space-charge wave resonances in Bi12SiO20

    DEFF Research Database (Denmark)

    Vasnetsov, M.; Buchhave, Preben; Lyuksyutov, S.

    1997-01-01

    A new experimental method for the study of resonance effects and space-charge wave excitation in photorefractive Bi12SiO20 crystals by using a combination of frequency detuning and phase modulation technique has been developed. The accuracy of the method allows a detection of resonance peaks...... of diffraction efficiency within 0.5 Hz. Numerical simulations of the nonlinear differential equations describing the behaviour of the space-charge waves in photorefractive crystals have been performed and found to be in a good agreement with experiment. We have measured the photocurrent through the crystal...

  12. 3D-printed phase waveplates for THz beam shaping

    Science.gov (United States)

    Gospodaric, J.; Kuzmenko, A.; Pimenov, Anna; Huber, C.; Suess, D.; Rotter, S.; Pimenov, A.

    2018-05-01

    The advancement of 3D-printing opens up a new way of constructing affordable custom terahertz (THz) components due to suitable printing resolution and THz transparency of polymer materials. We present a way of calculating, designing, and fabricating a THz waveplate that phase-modulates an incident THz beam (λ0 = 2.14 mm) in order to create a predefined intensity profile of the optical wavefront on a distant image plane. Our calculations were performed for two distinct target intensities with the use of a modified Gerchberg-Saxton algorithm. The resulting phase-modulating profiles were used to model the polylactide elements, which were printed out with a commercially available 3D-printer. The results were tested in a THz experimental setup equipped with a scanning option, and they showed good agreement with theoretical predictions.

  13. Common-Mode Voltage Reduction of Three-to-Five Phase Indirect Matrix Converters with Zero-Current Vector Modulation

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Yang, Jian; Yang, Yongheng

    2017-01-01

    In order to reduce the Common-Mode Voltage (CMV) in three-to-five phase indirect matrix converters, three improved Space Vector Pulse Width Modulation (SVPWM) methods are proposed and discussed. The improved modulation schemes are achieved by reorganizing zero vectors from the inversion stage......) in the inversion stage, which results in a large amount of third-order harmonics in output currents. In addition, the method that utilizes two adjacent active current vectors (ACVs) and the method that uses two non-adjacent ACVs in the rectification stage have the same CMV peak value. By contrast, the latter...... achieves a lower Total Harmonic Distortion (THD) level of the output currents. Simulation results verify the effectiveness of the proposed methods....

  14. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    Science.gov (United States)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  15. Sensory modulation intervention and behaviour support modification for the treatment of severe aggression in Huntington's disease. A single case experimental design.

    Science.gov (United States)

    Fisher, Caroline A; Brown, Anahita

    2017-09-01

    Aggression is common in Huntington's disease. However, at present there are no standard guidelines for managing aggression in Huntington's sufferers due to a lack of empirical research. This paper presents a case study of the treatment of very high levels of aggression with sensory modulation and behaviour support intervention in a Huntington's sufferer. The client exhibited a range of aggressive behaviours, including physical aggression to people, furniture and objects, and verbal aggression. Following an eight week baseline phase, five weeks of sensory modulation intervention were employed. A behaviour support plan was then implemented as an adjunct to the sensory intervention, with aggressive behaviour systematically audited for a further 11 weeks. The results indicate a significant reduction in reported levels of aggression during the combined sensory modulation and behaviour support phase, compared to both the baseline and the sensory modulation therapy alone phases. This case study highlights the efficacy non-pharmacological interventions may have for reducing aggression in HD.

  16. Tune shift and betatron modulations due to insertion devices in SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.

    1989-12-01

    SPEAR will soon operate as a dedicated synchrotron radiation source with up to 5 beamlines fed from insertion devices. These magnets introduce additional focusing forces into the storage ring lattice which increase the vertical betatron tune and modulate the beam envelope in the vertical plane. The lattice simulation code 'GEMINI' is used to evaluate the tune shifts and estimate the degree of betatron modulation as each magnetic insertion device is brought up to full power. A program is recommended to correct the tunes with the FODO cell quadrupoles. 4 refs., 8 figs., 1 tab

  17. Microinverters for employment in connection with photovoltaic modules

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Johnson, Brian Benjamin; Krein, Philip T.

    2015-09-22

    Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.

  18. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    Science.gov (United States)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air

  19. Efficient and Compact Semiconductor Laser Transmitter Modules, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Continue development of a Compact Transmitter Module (CTM). Modules will be voltage controlled to adjust wavlength using temperature and drive current settings. The...

  20. The Design of Phase-Locked-Loop Circuit for Precision Capacitance Micrometer

    Directory of Open Access Journals (Sweden)

    Li Shujie

    2016-01-01

    Full Text Available High precision non-contact micrometer is normally divided into three categories: inductance micrometer, capacitance micrometer and optical interferometer micrometer. The capacitance micrometer is widely used because it has high performance to price ratio. With the improvement of automation level, precision of capacitance micrometer is required higher and higher. Generally, capacitance micrometer consists of the capacitance sensor, capacitance/voltage conversion circuit, and modulation and demodulation circuits. However, due to the existing of resistors, capacitors and other components in the circuit, the phase shift of the carrier signal and the modulated signal might occur. In this case, the specific value of phase shift cannot be determined. Therefore, error caused by the phase shift cannot be eliminated. This will reduce the accuracy of micrometer. In this design, in order to eliminate the impact of the phase shift, the phase-locked-loop (PLL circuit is employed. Through the experiment, the function of tracking the input signal phase and frequency is achieved by the phase-locked-loop circuit. This signal processing method can also be applied to tuber electrical resistance tomography system and other precision measurement circuit.

  1. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A N; Turchin, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resulting field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)

  2. Research on the range side lobe suppression method for modulated stepped frequency radar signals

    Science.gov (United States)

    Liu, Yinkai; Shan, Tao; Feng, Yuan

    2018-05-01

    The magnitude of time-domain range sidelobe of modulated stepped frequency radar affects the imaging quality of inverse synthetic aperture radar (ISAR). In this paper, the cause of high sidelobe in modulated stepped frequency radar imaging is analyzed first in real environment. Then, the chaos particle swarm optimization (CPSO) is used to select the amplitude and phase compensation factors according to the minimum sidelobe criterion. Finally, the compensated one-dimensional range images are obtained. Experimental results show that the amplitude-phase compensation method based on CPSO algorithm can effectively reduce the sidelobe peak value of one-dimensional range images, which outperforms the common sidelobe suppression methods and avoids the coverage of weak scattering points by strong scattering points due to the high sidelobes.

  3. ATLAS ITk Short Strip Prototype Module with Integrated DCDC Powering and Control Phase II Upgrade of the ATLAS Inner Tracker detector at the HL - LHC

    CERN Document Server

    Greenall, Ashley; The ATLAS collaboration

    2017-01-01

    The prototype Barrel module design, for the Phase II upgrade of the of the new Inner Tracker (ITk) detector at the LHC, has adopted an integrated low mass assembly featuring single-sided flexible circuits, with readout ASICs, glued to the silicon strip sensor. Further integration has been achieved by the attachment of module DCDC powering, HV sensor biasing switch and autonomous monitoring and control to the sensor. This low mass, integrated module approach benefits further in a reduced width stave structure to which the modules are attached. The results of preliminary electrical tests of such an integrated module will be presented.

  4. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    In optical Doppler measurements, the path length of the light is unknown. To facilitate quantitative measurements, we develop a phase-modulated Mach-Zehnder interferometer with separate fibers for illumination and detection. With this setup, path-length-resolved dynamic light scattering measurements

  5. Measurement of Chromatic Dispersion using the Baseband Radio-Frequency Response of a Phase-Modulated Analog Optical Link Employing a Reference Fiber

    National Research Council Canada - National Science Library

    McKinney, Jason D; Diehl, John

    2007-01-01

    In this work we demonstrate a new technique for measuring the chromatic dispersion of an optical fiber using the baseband RF response of a phase-modulated analog optical link in concert with a well...

  6. Noise analysis due to strip resistance in the ATLAS SCT silicon strip module

    International Nuclear Information System (INIS)

    Kipnis, I.

    1996-08-01

    The module is made out of four 6 cm x 6 cm single sided Si microstrip detectors. Two detectors are butt glued to form a 12 cm long mechanical unit and strips of the two detectors are electrically connected to form 12 cm long strips. The butt gluing is followed by a back to back attachment. The module in this note is the Rφ module where the electronics is oriented parallel to the strip direction and bonded directly to the strips. This module concept provides the maximum signal-to-noise ratio, particularly when the front-end electronics is placed near the middle rather than at the end. From the noise analysis, it is concluded that the worst-case ΔENC (far-end injection) between end- and center-tapped modules will be 120 to 210 el. rms (9 to 15%) for a non-irradiated detector and 75 to 130 el. rms (5 to 9%) for an irradiated detector, for a metal strip resistance of 10 to 20 Ω/cm

  7. Quantization of band tilting in modulated phononic crystals

    Science.gov (United States)

    Nassar, H.; Chen, H.; Norris, A. N.; Huang, G. L.

    2018-01-01

    A general theory of the tilting of dispersion bands in phononic crystals whose properties are being slowly and periodically modulated in space and time is established. The ratio of tilt to modulation speed is calculated, for the first time, in terms of Berry's phase and curvature and is proven to be a robust integer-valued Chern number. Derivations are based on a version of the adiabatic theorem for elastic waves demonstrated thanks to WKB asymptotics. Findings are exemplified in the case of a 3-periodic discrete spring-mass lattice. Tilted dispersion diagrams plotted using fully numerical simulations and semianalytical calculations based on a numerically gauge invariant expression of Berry's phase show perfect agreement. One-way blocking of waves due to the tilt, and ultimately to the breaking of reciprocity, is illustrated numerically and shown to be highly significant across a limited number of unit cells, suggesting the feasibility of experimental demonstrations. Finally, a version of the bulk-edge correspondence principle relating the tilt of bulk bands to the number of one-way gapless edge states is demonstrated.

  8. Electronically soft phases in manganites.

    Science.gov (United States)

    Milward, G C; Calderón, M J; Littlewood, P B

    2005-02-10

    The phenomenon of colossal magnetoresistance in manganites is generally agreed to be a result of competition between crystal phases with different electronic, magnetic and structural order; a competition which can be strong enough to cause phase separation between metallic ferromagnetic and insulating charge-modulated states. Nevertheless, closer inspection of phase diagrams in many manganites reveals complex phases where the two order parameters of magnetism and charge modulation unexpectedly coexist. Here we show that such experiments can be naturally explained within a phenomenological Ginzburg-Landau theory. In contrast to models where phase separation originates from disorder or as a strain-induced kinetic phenomenon, we argue that magnetic and charge modulation coexist in new thermodynamic phases. This leads to a rich diagram of equilibrium phases, qualitatively similar to those seen experimentally. The success of this model argues for a fundamental reinterpretation of the nature of charge modulation in these materials, from a localized to a more extended 'charge-density wave' picture. The same symmetry considerations that favour textured coexistence of charge and magnetic order may apply to many electronic systems with competing phases. The resulting 'electronically soft' phases of matter with incommensurate, inhomogeneous and mixed order may be general phenomena in correlated systems.

  9. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, Stefan

    2017-05-15

    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  10. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    International Nuclear Information System (INIS)

    Weichert, Stefan

    2017-05-01

    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  11. Fringe image analysis based on the amplitude modulation method.

    Science.gov (United States)

    Gai, Shaoyan; Da, Feipeng

    2010-05-10

    A novel phase-analysis method is proposed. To get the fringe order of a fringe image, the amplitude-modulation fringe pattern is carried out, which is combined with the phase-shift method. The primary phase value is obtained by a phase-shift algorithm, and the fringe-order information is encoded in the amplitude-modulation fringe pattern. Different from other methods, the amplitude-modulation fringe identifies the fringe order by the amplitude of the fringe pattern. In an amplitude-modulation fringe pattern, each fringe has its own amplitude; thus, the order information is integrated in one fringe pattern, and the absolute fringe phase can be calculated correctly and quickly with the amplitude-modulation fringe image. The detailed algorithm is given, and the error analysis of this method is also discussed. Experimental results are presented by a full-field shape measurement system where the data has been processed using the proposed algorithm. (c) 2010 Optical Society of America.

  12. MESSENGER Spacecraft Phase Scintillation due to Plasma ductting effect on RF beam propagation at Superior Solar Conjunction

    Science.gov (United States)

    Mosavi, N.; Sequeira, H.; Copeland, D.; Menyuk, C.

    2017-12-01

    We investigate the evolution of a radio frequency (RF) X-band signal as it propagates through the solar corona turbulence in superior solar conjunction at low Sun-Earth-Probe (SEP) angles.Data that was obtained during several MESSENGER (MErcury Surface, Space ENivornment, GEochmeisty, and Ranging) conjunctions reveal a short-term and long-term effect. Amplitude scintillation is evident on a short time scale. Phase scintillations are stronger, but occur over a longer time scale. We examine different possible phenomena in the solar plasma that could be the source of the different time scales of the amplitude and phase scintillations. We propose a theoretical model in which the amplitude scintillations are due to local fluctuations of the index of refraction that scatter the RF signal. These rapidly varying fluctuations randomly attenuate the signal without affecting its phase. By contrast, we propose a model in which phase fluctuations are due to long ducts in the solar plasma, streaming from the sun, that trap some parts of the RF signal. These ducts act as waveguides, changing the phase velocity of the RF beam as it travels a zigzag path inside a duct. When the radiated wave exits from a duct, its phase is changed with respect to the signal that did not pass through the duct, which can lead to destructive interference and carrier suppression. The trapping of the wave is random in nature and can be either a fast or slow process. The predictions of this model are consistent with observations.

  13. An overview of Test Techniques for Characterizing Active Phased Array Antennas

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    1999-01-01

    In this paper a review will be given of the microwave testing of active phased anay antennas. It will be shown that due to the application of Transmit/Receive (T/R) modules in such antennas considerable more tests have to be performed to characterise completely their microwave performance than for

  14. A novel loss reduced modulation strategy for matrix converters

    DEFF Research Database (Denmark)

    Helle, Lars; Munk-Nielsen, Stig

    2001-01-01

    This paper presents a new modulation strategy for three-phase to three-phase matrix converters. The new modulation strategy is applicable whenever the output voltage reference is below half the input voltage. By applying this new modulation method, the switching losses are reduced by 15-35% compa...

  15. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1994-01-01

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200 West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above

  16. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    OpenAIRE

    Poley, Luise; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid-Maria; Jones, Tim; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2015-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy gl...

  17. Computational wavelength resolution for in-line lensless holography: phase-coded diffraction patterns and wavefront group-sparsity

    Science.gov (United States)

    Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen

    2017-06-01

    In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.

  18. 10Gb/s Ultra-Wideband Wireless Transmission Based on Multi-Band Carrierless Amplitude Phase Modulation

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    In this paper, for the first time, a record UWB transmission of 10Gb/s is experimentally demonstrated employing a multi-band approach of carrierless amplitude phase modulation (MultiCAP). The proposed solution complies with the restrictions on the effective radiated power established by both...... the United States Federal Communications Commission and the European Electronic Communications Committee, achieving a BER below the limit for a 7% overhead FEC of 3.8 · 10−3 up to respective wireless distances of 3.5m and 2m....

  19. Wide-band analog frequency modulation of optic signals using indirect techniques

    Science.gov (United States)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  20. Spatial light modulation for mode conditioning

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    We demonstrate patented techniques for generating tuneable complex field distributions for controllable coupling to high-order guided modes of micro-structured fibres. The optical Fourier transform of binary phase-only patterns which are encoded on a computer-controlled spatial light modulator......, generates complex field distributions for selective launching of a desired mode. Both the amplitude and the phase of the programmable fields are modulated by straightforward and fast adjustments of simple pre-defined binary phase-only diffractive patterns. Experiments demonstrate tuneable coupling...

  1. Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement.

    Science.gov (United States)

    Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong

    2015-08-24

    A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.

  2. Modulation cues influence binaural masking-level difference in masking-pattern experiments.

    Science.gov (United States)

    Nitschmann, Marc; Verhey, Jesko L

    2012-03-01

    Binaural masking patterns show a steep decrease in the binaural masking-level difference (BMLD) when masker and signal have no frequency component in common. Experimental threshold data are presented together with model simulations for a diotic masker centered at 250 or 500 Hz and a bandwidth of 10 or 100 Hz masking a sinusoid interaurally in phase (S(0)) or in antiphase (S(π)). Simulations with a binaural model, including a modulation filterbank for the monaural analysis, indicate that a large portion of the decrease in the BMLD in remote-masking conditions may be due to an additional modulation cue available for monaural detection. © 2012 Acoustical Society of America

  3. Phase-amplitude coupling supports phase coding in human ECoG

    Science.gov (United States)

    Watrous, Andrew J; Deuker, Lorena; Fell, Juergen; Axmacher, Nikolai

    2015-01-01

    Prior studies have shown that high-frequency activity (HFA) is modulated by the phase of low-frequency activity. This phenomenon of phase-amplitude coupling (PAC) is often interpreted as reflecting phase coding of neural representations, although evidence for this link is still lacking in humans. Here, we show that PAC indeed supports phase-dependent stimulus representations for categories. Six patients with medication-resistant epilepsy viewed images of faces, tools, houses, and scenes during simultaneous acquisition of intracranial recordings. Analyzing 167 electrodes, we observed PAC at 43% of electrodes. Further inspection of PAC revealed that category specific HFA modulations occurred at different phases and frequencies of the underlying low-frequency rhythm, permitting decoding of categorical information using the phase at which HFA events occurred. These results provide evidence for categorical phase-coded neural representations and are the first to show that PAC coincides with phase-dependent coding in the human brain. DOI: http://dx.doi.org/10.7554/eLife.07886.001 PMID:26308582

  4. Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1999-01-01

    A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased

  5. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a passive nonlinear birefringent photonic crystal fiber

    Science.gov (United States)

    Mahmood, Tanvir

    Considering the network size, bit rate, spectral and channel capacity limitations, different modulation formats may be selectively used in future optical networks. Although the traditional metropolitan area networks (MANs) still uses the non-return-to-zero on-off keying (NRZ-OOK) modulation format due to its technical simplicity and therefore low cost, QPSK format is more advantageous in spectrally efficient long-haul fiber optic transmission systems because of its constant power envelope, and robustness to various transmission impairments. Consequently, an important problem may arise, in particular how to route the OOK-data streams from MANs to long-haul backbone networks when the state of polarization (SOP) of the remotely generated OOK is unpredictable. Hence, the focus of this dissertation was to investigate a polarization insensitive (PI) all-optical nonlinear optical signal processing (NOSP) method that can be implemented at the network cross-connect (X-connect) to transfer data from a remotely and a locally generated OOK data simultaneously to more effectual QPSK format for long-haul transmission. By utilizing cross-phase modulation (XPM) and inherent birefringence of the device, the work demonstrated, for the first time, PI all-optical data transfer utilizing dual pump-phase transmultiplexing (DPTM) from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK in a passive nonlinear birefringent photonic crystal fiber (PCF). Polarization insensitivity was achieved by scrambling the SOP of the remotely generated OOK pump and launching the locally generated OOK pump and the probe off-axis. To mitigate polarization induced power fluctuations and detrimental effects due to nearby partially degenerate and non-degenerate four wave mixings, an optimum pump-probe detuning was also utilized. The PI DPTM RZ-QPSK demonstrated a pre-amplified receiver sensitivity penalty < 5.5 dB at 10--9 bit-error-rate (BER), relative to relative to the FPGA-precoded RZ-DQPSK baseline in ASE

  6. Feedforward and feedback control of locked mode phase and rotation in DIII-D with application to modulated ECCD experiments

    Science.gov (United States)

    Choi, W.; La Haye, R. J.; Lanctot, M. J.; Olofsson, K. E. J.; Strait, E. J.; Sweeney, R.; Volpe, F. A.; The DIII-D Team

    2018-03-01

    The toroidal phase and rotation of otherwise locked magnetic islands of toroidal mode number n  =  1 are controlled in the DIII-D tokamak by means of applied magnetic perturbations of n  =  1. Pre-emptive perturbations were applied in feedforward to ‘catch’ the mode as it slowed down and entrain it to the rotating field before complete locking, thus avoiding the associated major confinement degradation. Additionally, for the first time, the phase of the perturbation was optimized in real-time, in feedback with magnetic measurements, in order for the mode’s phase to closely match a prescribed phase, as a function of time. Experimental results confirm the capability to hold the mode in a given fixed-phase or to rotate it at up to 20 Hz with good uniformity. The control-coil currents utilized in the experiments agree with the requirements estimated by an electromechanical model. Moreover, controlled rotation at 20 Hz was combined with electron cyclotron current drive (ECCD) modulated at the same frequency. This is simpler than regulating the ECCD modulation in feedback with spontaneous mode rotation, and enables repetitive, reproducible ECCD deposition at or near the island O-point, X-point and locations in between, for careful studies of how this affects the island stability. Current drive was found to be radially misaligned relative to the island, and resulting growth and shrinkage of islands matched expectations of the modified Rutherford equation for some discharges presented here. Finally, simulations predict the as designed ITER 3D coils can entrain a small island at sub-10 Hz frequencies.

  7. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    International Nuclear Information System (INIS)

    Poley, Luise; Bloch, Ingo; Edwards, Sam

    2016-04-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  8. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Bloch, Ingo [DESY, Zeuthen (Germany); Edwards, Sam [Birmingham Univ. (United Kingdom); and others

    2016-04-15

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  9. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    Science.gov (United States)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  10. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    International Nuclear Information System (INIS)

    Poley, L.; Bloch, I.; Friedrich, C.; Gregor, I.-M.; Edwards, S.; Pyatt, S.; Wilson, J.; Jones, T.; Lacker, H.; Rehnisch, L.; Sperlich, D.

    2016-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  11. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  12. Liquid phase formation due to solid/solid chemical interaction and its modelling: applications to zircaloy/stainless steel system

    International Nuclear Information System (INIS)

    Garcia, E.A.; Piotrkowski, R.; Denis, A.; Kovacs, J.

    1992-01-01

    The chemical interaction at high temperatures between Zircaloy (Zry) and stainless steel (SS) and the liquid phase formation due to eutectic reactions were studied. In a previous work the Zry/Inconel system was modelled assuming that the kinetics of phase growth is controlled by diffusion. The same model and the obtained Zr diffusion coefficient in the liquid phase were applied in the present work. In order to obtain an adequate description of the Zry/SS the major component of both alloys and also Cr and Ni had to be considered. (author)

  13. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    INSPIRE-00407830; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid M.; Jones, T; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-05-24

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  14. KNN BASED CLASSIFICATION OF DIGITAL MODULATED SIGNALS

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmed Ghauri

    2016-11-01

    Full Text Available Demodulation process without the knowledge of modulation scheme requires Automatic Modulation Classification (AMC. When receiver has limited information about received signal then AMC become essential process. AMC finds important place in the field many civil and military fields such as modern electronic warfare, interfering source recognition, frequency management, link adaptation etc. In this paper we explore the use of K-nearest neighbor (KNN for modulation classification with different distance measurement methods. Five modulation schemes are used for classification purpose which is Binary Phase Shift Keying (BPSK, Quadrature Phase Shift Keying (QPSK, Quadrature Amplitude Modulation (QAM, 16-QAM and 64-QAM. Higher order cummulants (HOC are used as an input feature set to the classifier. Simulation results shows that proposed classification method provides better results for the considered modulation formats.

  15. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    Science.gov (United States)

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.

  16. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    Science.gov (United States)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  17. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  18. Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca

    2015-01-01

    In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based......, at the moderate received SNR region. The performance in these cases is close to the information rate achieved by the above mentioned trellis processing....

  19. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    International Nuclear Information System (INIS)

    Arbeiter, Frederik; Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg

    2012-01-01

    Highlights: ► Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. ► Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250–550 °C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  20. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  1. Influence of modulation frequency in rubidium cell frequency standards

    Science.gov (United States)

    Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.

    1983-01-01

    The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.

  2. Optical encryption using pseudorandom complex spatial modulation.

    Science.gov (United States)

    Sarkadi, Tamás; Koppa, Pál

    2012-12-01

    In this paper we propose a new (to our knowledge) complex spatial modulation method to encode data pages applicable in double random phase encryption (DRPE) to make the system more resistant to brute-force attack. The proposed modulation method uses data page pixels with random phase and amplitude values with the condition that the intensity of the interference of light from two adjacent pixels should correspond to the encoded information. A differential phase contrast technique is applied to recover the data page at the output of the system. We show that the proposed modulation method can enhance the robustness of the DRPE technique using point spread function analysis. Key space expansion is determined by numeric model calculations.

  3. Novel automatic phase lock determination for superconducting cavity tests at vertical test stand at RRCAT

    International Nuclear Information System (INIS)

    Singh, Kunver Adarsh Pratap; Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    RRCAT has developed a Vertical Test Stand (VTS) which is used to test the Nb superconducting cavities under cryogenic conditions. In the VTS, RF cavity is characterized for its quality factor variation vs the accelerating gradient. The RF system is an essential part of the VTS which is required to provide stable RF power to the cavity in terms of amplitude, frequency and phase. RF system of VTS consists of several modules including the LLRF system. The LLRF system consists of the 'Frequency Control Module' which controls the input frequency to the SCRF cavity. Due to high quality factor, bandwidth of the cavity is less than 1 Hz. Even slight mechanical vibrations (microphonics) causes change in cavity resonance frequency resulting in total reflection of incident power. A PLL based frequency tracking module has been used to track the resonant frequency of RF cavity. This module changes RF source frequency according to change in Cavity resonance frequency. A novel method using a LabView based computer program has been developed which changes the phase of input RF signal using IQ modulator and monitors the transmitted power, incident and reflected power. The program plots the graph between phase and ratio of transmitted power to incident/reflected power and gives optimum locking phase for operation which has resulted in significant saving in the overall process time for the tests of the cavities in VTS. (author)

  4. Processing and characterization of device solder interconnection and module attachment for power electronics modules

    Science.gov (United States)

    Haque, Shatil

    This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N 4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the

  5. Rad-hard Location and Attitude Module (R-LAM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — R-LAM (Rad-hard Location and Attitude Module), promises a new generation of both integrated navigation modules and stand-alone navigation subsystems including...

  6. Adjuvant whole abdominal intensity modulated radiotherapy (IMRT) for high risk stage FIGO III patients with ovarian cancer (OVAR-IMRT-01) – Pilot trial of a phase I/II study: study protocol

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Jensen, Alexandra D; Sterzing, Florian; Munter, Marc W; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2007-01-01

    The prognosis for patients with advanced epithelial ovarian cancer remains poor despite aggressive surgical resection and platinum-based chemotherapy. More than 60% of patients will develop recurrent disease, principally intraperitoneal, and die within 5 years. The use of whole abdominal irradiation (WAI) as consolidation therapy would appear to be a logical strategy given its ability to sterilize small tumour volumes. Despite the clinically proven efficacy of whole abdominal irradiation, the use of radiotherapy in ovarian cancer has profoundly decreased mainly due to high treatment-related toxicity. Modern intensity-modulated radiation therapy (IMRT) could allow to spare kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. The OVAR-IMRT-01 study is a single center pilot trial of a phase I/II study. Patients with advanced ovarian cancer stage FIGO III (R1 or R2< 1 cm) after surgical resection and platinum-based chemotherapy will be treated with whole abdomen irradiation as consolidation therapy using intensity modulated radiation therapy (IMRT) to a total dose of 30 Gy in 1.5 Gy fractions. A total of 8 patients will be included in this trial. For treatment planning bone marrow, kidneys, liver, spinal cord, vertebral bodies and pelvic bones are defined as organs at risk. The planning target volume includes the entire peritoneal cavity plus pelvic and para-aortic node regions. The primary endpoint of the study is the evaluation of the feasibility of intensity-modulated WAI and the evaluation of the study protocol. Secondary endpoint is evaluation of the toxicity of intensity modulated WAI before continuing with the phase I/II study. The aim is to explore the potential of IMRT as a new method for WAI to decrease the dose to kidneys, liver, bone marrow while covering the peritoneal cavity with a homogenous dose, and to implement whole abdominal intensity-modulated radiotherapy into the adjuvant multimodal

  7. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  8. Comparative Study of Modulation Techniques for Two-Level Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2016-06-01

    Full Text Available A detailed comparative study of modulation techniques for single and three phase dc-ac inverters is presented.  Sinusoidal Pulse Width Modulation, Triplen Sinusoidal Pulse Width Modulation, Space Vector Modulation, Selective Harmonic Elimination and Wavelet Modulation are assessed and compared in terms of maximum fundamental output, harmonic performance, switching losses and operational mode.  The presented modulation techniques are applied to single and three phase voltage source inverters and are simulated using SIMULINK.  The simulation results clarify the inverter performance achieved using the different modulations techniques.

  9. Modelling of the Thermo-Mechanical Behavior of the Two-Beam Module for the Compact Linear Collider

    CERN Document Server

    Raatikainen, Riku; Österberg, K; Lehtovaara, A; Pajunen, S

    2011-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the compact linear collider, the 2-m long two-beam modules, the shortest repetitive elements in the main linear accelerator, have to be controlled at micrometer level. At the same time these modules are exposed to high power dissipation that varies while the accelerator is ramped up to nominal power and when the mode of the accelerator operation is modified. These variations will give rise to inevitable temperature transients driving mechanical distortions in and between different module components. Therefore, the thermo-mechanical behaviour of the module is of a high importance. This thesis describes a finite element method model for the two-beam compact linear collider module. The components are described in detail compared to earlier models, which should result in a realistic description of the module. Due to the complexity of the modules, the modelling is divided into several phases from geometrical simplification and modification to the...

  10. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  11. Qualification of barrel pixel detector modules for the Phase 1 Upgrade of the CMS vertex detector

    CERN Document Server

    Kudella, Simon

    2016-01-01

    To withstand the higher particle rates of LHC Runs 2 and 3, with expected luminosities of up to $2\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$, the current CMS pixel detector at the LHC will be replaced as part of the CMS Phase I Upgrade during the extended winter shutdown in 2016/17. The new pixel detector features a new geometry with one additional detector layer in the barrel region~(BPIX) and one pair of additional disks in the forward region~(FPIX), new digital readout chips as well as a new CO$_{2}$-based cooling system for both the barrel and forward region. The BPIX detector module production is summarized, with special focus on the different stages of quality assurance. The quality tests as well as the calibrations which all produced modules undergo in a temperature and humidity controlled environment are described. Exemplarily, the KIT/Aachen production line and its subprocesses are presented together with its quality and yields.

  12. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  13. Isolating spectral cues in amplitude and quasi-frequency modulation discrimination by reducing stimulus duration.

    Science.gov (United States)

    Borucki, Ewa; Berg, Bruce G

    2017-05-01

    This study investigated the psychophysical effects of distortion products in a listening task traditionally used to estimate the bandwidth of phase sensitivity. For a 2000 Hz carrier, estimates of modulation depth necessary to discriminate amplitude modulated (AM) tones and quasi-frequency modulated (QFM) were measured in a two interval forced choice task as a function modulation frequency. Temporal modulation transfer functions were often non-monotonic at modulation frequencies above 300 Hz. This was likely to be due to a spectral cue arising from the interaction of auditory distortion products and the lower sideband of the stimulus complex. When the stimulus duration was decreased from 200 ms to 20 ms, thresholds for low-frequency modulators rose to near-chance levels, whereas thresholds in the region of non-monotonicities were less affected. The decrease in stimulus duration appears to hinder the listener's ability to use temporal cues in order to discriminate between AM and QFM, whereas spectral information derived from distortion product cues appears more resilient. Copyright © 2017. Published by Elsevier B.V.

  14. Correction of spectral and temporal phases for ultra-intense lasers; Correction des phases spectrale et temporelle pour les lasers ultra-intenses

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, E

    2000-12-15

    The discovery of new regimes of interaction between laser and matter requires to produce laser pulses presenting higher luminous flux density. The only solutions that allow us to reach important power (about ten peta-watts) imply the correction of non-linear effects before compressing the laser pulse so that we do not transfer the phase modulation to the amplitude modulation. The aim of this work is the correction of the spectral phase through the modulation of the temporal phase. The first chapter is dedicated to the review of the physical phenomena involved in the interaction of ultra-intense laser pulse with matter. The peta-watt laser operating on the LIL (integrated laser line), the prototype line of the Megajoule Laser, is described in the second chapter. The third chapter presents the method used and optimized for getting an absolute measurement of the spectral phase in our experimental configuration. The fourth chapter details the analogy existing between the spatial domain and the temporal domain particularly between diffraction and dispersion. This analogy has allowed us to benefit from the knowledge cumulated in the spatial domain, particularly the treatment of the aberrations and their impact on the focal spot and to use it in the temporal domain. The principle of the phase correction is exposed in the fifth chapter. We have formalized the correspondence of the phase modulation between temporal domain and the spectral domain for strongly stretched pulses. In this way a modulation of the temporal phase is turned into a modulation of the spectral phase. All the measurements concerning phases and modulation spectral phase correction are presented in the sixth chapter. In the last chapter we propose an extension of the temporal phase correction by correcting non-linear effects directly in the temporal phase. This correction will improve the performances of the peta-watt laser. Numerical simulations show that the temporal phase correction can lead to a

  15. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Karlsruhe (Germany); Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. Black-Right-Pointing-Pointer Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250-550 Degree-Sign C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  16. Automated Array Assembly, Phase 2. Final technical progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, B.G.

    1979-11-01

    The 1979 phase of this Automated Array Assembly, Phase 2 contract was devoted solely to the tasks of scaling up the Tandem Junction Cell (TJC) from 2 cm x 2 cm to 6.2 cm x 6.2 cm and the assembly of several modules using these large-area TJCs. The scale-up of the TJC was based on using the existing process and doing the necessary design activities to increase the cell area to an acceptably large area. The design was carried out using available device models. The design was verified and sample large-area TJCs were fabricated. Mechanical and process problems occurred causing a schedule slippage that resulted in contract expiration before enough large-area TCs were fabricated to populate the sample Tandem Junction Modules (TJMs). A TJM design was carried out in which the module interconnects served to augment the current collecting buses on the cell. The module was made up of a 5 x 6 TJC matrix mounted on a porcelainized steel substrate with a glass cover. The TJC matrix was series-parallel connected using copper clad Invar interconnects soldered to the TJC metallization. Sample cell matrices were assembled using dummy cells. No sample TJMs were assembled due to a shortage of large-area TJCs and contract expiration.

  17. Turbulence modification due to bubbles and particles in dispersed two-phase upflows in a vertical pipe

    International Nuclear Information System (INIS)

    Hosokawa, Shigeo; Tomiyama, Akio

    1999-01-01

    One of the key issues in two-phase turbulence modeling is the turbulence modification due to the momentum exchange between the dispersed and continuous phases. As for the gas-liquid two-phase flows in vertical pipes, Serizawa and Kataoka carried out detailed measurement of turbulence intensity and detected the turbulence modification. Gore and Crowe pointed out that the modification is well correlated with the ratio of a particle diameter to a turbulence length scale (d/l t ). However the modification may depend on not only the length scales but also the eddy viscosities of shear-induced and particle-induced turbulence. Hosokawa et al. proposed the ratio φ of the eddy viscosity induced by a dispersed phase to the shear-induced eddy viscosity and confirmed that measured turbulence modification was well correlated with φ for a gas-solid two-phase flow. In this study, we examine whether or not φ is also applicable to gas-liquid and solid-liquid two-phase dispersed upflows in vertical pipes. Using the eddy viscosity ratio instead of d/l t , we could obtain much better correlation. The critical point at which no modification occurred was close to φ = 1, irrespective of a type of a two-phase dispersed flow. Consequently, we could confirm that the eddy viscosity ratio is a more appropriate parameter for correlating the turbulent modification than the conventional critical parameter d/l t . (author)

  18. Principle of Global Decoupling with Coupling Angle Modulation

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). A new scheme coupling phase modulation is found. It introduces a rotating extra coupling into the coupled machine to detect the residual coupling. The eigentune responses are measured with a high resolution phase lock loop (PLL) system. From the minimum and maximum tune splits, the correction strengths are given. The time period occupied by one coupling phase modulation is less than 10 seconds. So it is a very promising solution for the global decoupling on the ramp. In this article the principle of the coupling phase modulation is given. The simulation with the smooth accelerator model is also done. The practical issues concerning its applications are discussed.

  19. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  20. Digital front-end module (DFEM) series; Digital front end module (DFEM) series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The digital front-end module (DFEM) is a module in which the processes ranging from the reception of digitally modulated radiofrequencies to the output of digital IF (Intermediate Frequency) signals or data streams are integrated. Beginning with a module for the MCNS (Multimedia Cable Network System) cable modem which was the first module in this business field approved by the Cable Labs, U.S., Toshiba has developed a series of DFEMs for various digital media for satellites, ground waves, and CATV (Cable Television) systems. The series is characterized by (1) the serialization of DFEMs compatible with various digital modulation techniques such as 8 PSK (Phase Shift Keying), OFDM (Orthogonal Frequency Division Multiplexing), and 256 QAM (Quadrature Amplitude Modulation), (2) easy connection with digital circuits thanks to the high shielding effect, and (3) the achievement of smaller size, higher performance, and lower power consumption. (translated by NEDO)

  1. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    Science.gov (United States)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  2. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2015-04-01

    Full Text Available This paper presents an indirect matrix converter (IMC topology for hybrid electric vehicle (HEV application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system can operate the traction and the compressor motor simultaneously. Furthermore, compared to a conventional dual matrix converter system, the proposed topology can reduce the number of switches that the dual outputs share with a DC-link. The application of this system for HEV has advantages, like long lifetime and reduced volume due to the lack of a DC-link. The proposed control strategy and modulation schemes ensure the sinusoidal input and output waveforms and bidirectional power transmission. The proposed system for the HEV application is verified by simulation and experiments.

  3. CMS Pixel Upgrade for the Phase I: Module Production and Qualification

    CERN Document Server

    AUTHOR|(CDS)2078028

    2016-01-01

    The present CMS pixel detector has been designed to be fully efficient up to a LHC luminosity of $10^{34}~\\mathrm{cm}^{-2}~\\mathrm{s}^{-1}$. However, the luminosity will increase by a factor of two in the coming years. Therefore it is planned to build and install a new detector in the extended year-end technical stop (YETS) in 2016-17. Barrel pixel modules are in production since Spring/Summer 2015 in five different centers. Module production requires bump bonding, wire bonding and gluing processes to finally assemble a full module. To have a uniform performance of all modules standard qualification procedures have been developed. All modules will be subjected to 10 termal cycles between +$17^{\\circ}$C and -$25^{\\circ }$C and then electrically tested. In addition, module performance will be verified under high rate X-rays, and internal calibrate signals used for electrical tests will be calibrated in units of electrons using well defined X-ray fluorescence lines from different target materials. The qualifica...

  4. Performance evaluation and optimization of multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection

    Science.gov (United States)

    Zong, Kang; Zhu, Jiang

    2018-04-01

    In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.

  5. SSD with generalized phase modulation

    International Nuclear Information System (INIS)

    Rothenberg, J.

    1996-01-01

    Smoothing by spectral dispersion (SSD) with standard frequency modulation (FM), although simple to implement, has the disadvantage that low spatial frequencies present in the spectrum of the target illumination are not smoothed as effectively as with a more general smoothing method (eg, induced spatial incoherence method). The reduced smoothing performance of standard FM-SSD can result in spectral power of the speckle noise at these low spatial frequencies as much as one order of magnitude larger than that achieved with a more general method. In fact, at small integration times FM-SSD has no smoothing effect at all for a broad band of low spatial frequencies. This effect may have important implications for both direct and indirect drive ICF

  6. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  7. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  8. Selective modulation of nociceptive processing due to noise distraction.

    Science.gov (United States)

    Boyle, Yvonne; El-Deredy, Wael; Martínez Montes, Eduardo; Bentley, Deborah E; Jones, Anthony K P

    2008-09-15

    This study investigates the effects of noise distraction on the different components and sources of laser-evoked potentials (LEPs) whilst attending to either the spatial component (localisation performance task) or the affective component (unpleasantness rating task) of pain. LEPs elicited by CO2 laser stimulation of the right forearm were recorded from 64 electrodes in 18 consenting healthy volunteers. Subjects reported either pain location or unpleasantness, in the presence and absence of distraction by continuous 85 dBa white noise. Distributed sources of the LEP peaks were identified using Low Resolution Electromagnetic Tomography (LORETA). Pain unpleasantness ratings and P2 (430 ms) peak amplitude were significantly reduced by distraction during the unpleasantness task, whereas the localisation ability and the corresponding N1/N2 (310 ms) peak amplitude remained unchanged. Noise distraction (at 310 ms) reduced activation in the anterior cingulate cortex (ACC) and precuneus during attention to localisation and unpleasantness, respectively. This suggests a complimentary role for these two areas in the control of attention to pain. In contrast, activation of the occipital pole and SII were enhanced by noise during the localisation and unpleasantness task, respectively, suggesting that the presence of noise was associated with increased spatial attentional load. This study has shown selective modulation of affective pain processing by noise distraction, indicated by a reduction in the unpleasantness ratings and P2 peak amplitude and associated activity within the medial pain system. These results show that processing of the affective component of pain can be differentially modulated by top-down processes, providing a potential mechanism for therapeutic intervention.

  9. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  10. Impact of frequency modulation ratio on capacitor cells balancing in phase-shifted PWM based chain-link STATCOM

    DEFF Research Database (Denmark)

    Behrouzian, Ehsan; Bongiorno, Massimo; Teodorescu, Remus

    2014-01-01

    to provide more uniform power distribution among the cells, two different methods called, a) carrier swapping and b) non-integer frequency modulation ratio are studied. In particular, it is shown that the selection of a non-integer frequency modulation ratio helps in providing a more uniform power......The purpose of this paper is to investigate the impact of switching harmonics on the instantaneous power that flows in the cells of a chain-link based STATCOM when using Phase-Shifted PWM. Two different cases are investigated for the converter cells: low, and high switching frequency. It is shown...... that any deviation from the ideal conditions lead to undesired harmonics, which will impact the charge of the dc capacitors. It is also shown that for low switching frequencies, cells voltage sideband harmonics interact with baseband harmonics of the current and causes extra source of unbalance. In order...

  11. Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution

    International Nuclear Information System (INIS)

    Wojtas, H.

    2004-01-01

    The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate

  12. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  13. Multi-phase simulation of fast ion profile flattening due to Alfvén eigenmodes in a DIII-D experiment

    International Nuclear Information System (INIS)

    Todo, Y.; Van Zeeland, M.A.; Bierwage, A.; Heidbrink, W.W.

    2014-01-01

    A multi-phase simulation that is a combination of classical simulation and hybrid simulation for energetic particles interacting with a magnetohydrodynamic (MHD) fluid is developed to simulate the nonlinear dynamics on the slowing down time scale of the energetic particles. The hybrid simulation code is extended with realistic beam deposition profile, collisions and losses, and is used for both the classical and hybrid phases. The code is run without MHD perturbations in the classical phase, while the interaction between the energetic particles and the MHD fluid is simulated in the hybrid phase. In a multi-phase simulation of DIII-D discharge #142111, the stored beam ion energy is saturated due to Alfvén eigenmodes (AE modes) at a level lower than in the classical simulation. After the stored fast ion energy is saturated, the hybrid simulation is run continuously. It is demonstrated that the fast ion spatial profile is significantly flattened due to the interaction with the multiple AE modes with amplitude v/v A  ∼ δB/B ∼ O(10 −4 ). The dominant AE modes are toroidal Alfvén eigenmodes (TAE modes), which is consistent with the experimental observation at the simulated moment. The amplitude of the temperature fluctuations brought about by the TAE modes is of the order of 1% of the equilibrium temperature. This is also comparable with electron cyclotron emission measurements in the experiment. (paper)

  14. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  15. Decorated Ising models with competing interactions and modulated structures

    International Nuclear Information System (INIS)

    Tragtenberg, M.H.R.; Yokoi, C.S.O.; Salinas, S.R.A.

    1988-01-01

    The phase diagrams of a variety of decorated Ising lattices are calculated. The competing interactions among the decorating spins may induce different types of modulated orderings. In particular, the effect of an applied field on the phase diagram of the two-dimensional mock ANNNI model is considered, where only the original horizontal bonds on a square lattice are decorated. Some Bravais lattices and Cayley trees where all bonds are equally decorated are then studied. The Bravais lattices display a few stable modulated structures. The Cayley trees, on the other hand, display a large number of modulated phases, which increases with the lattice coordination number. (authors) [pt

  16. Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion

    International Nuclear Information System (INIS)

    Xian-Qiong, Zhong; An-Ping, Xiang

    2010-01-01

    Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the case of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity. (classical areas of phenomenology)

  17. The Possibility of Phase Change Materials (PCM Usage to Increase Efficiency of the Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Klugmann-Radziemska Ewa

    2014-01-01

    Full Text Available Solar energy is widely available, free and inexhaustible. Furthermore this source of energy is the most friendly to the environment. For direct conversion of solar energy into useful forms like of electricity and thermal energy, respectively photovoltaic cells and solar collectors are being used. Forecast indicate that the first one solution will soon have a significant part in meeting the global energy demand. Therefore it is highly important to increase their efficiency in the terms of providing better energy conversion conditions. It can be obtain by designing new devices or by modifications of existing ones. This article presents general issues of photovoltaic installations exposed to work in high temperatures and basic concepts about phase change materials (PCMs. The paper presents the possibility of PCM usage to receive heat from the photovoltaic module. Specially designed test stand, consisting of PV module covered with a layer of PCM has been build and tested. Current-voltage characteristics of the cell without PCM material and with a layer of PCM have been presented. Authors also describe the results of the electrical and thermal characteristic of a coupled PV-PCM system.

  18. Bidirectional Radio-Over-Fiber System With Phase-Modulation Downlink and RF Oscillator-Free Uplink Using a Reflective SOA

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2008-01-01

    We propose and demonstrate a bidirectional radio-over-fiber (RoF) system based on a reflective semiconductor optical amplifier (RSOA). In this system, phase-modulated 5.25-GHz radio frequency (RF) carrying 850 Mb/s is used for the downstream signal. Optical envelope detection of 10-GHz RF carryin......-effective. The experimental results indicate that after simultaneous transmission of downstream and upstream signals over 25-km fiber, the receiver sensitivities are -22 and -14.5 dBm, respectively....

  19. Pulse width modulation inverter with battery charger

    Science.gov (United States)

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  20. Modulation Schemes of Multi-phase Three-Level Z-Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Loh, P.C.; Blaabjerg, Frede

    2007-01-01

    different modulation requirement and output performance. For clearly illustrating the detailed modulation process, time domain analysis instead of the traditional multi-dimensional space vector demonstration is assumed which reveals the right way to insert shoot-through durations in the switching sequence...... with minimal commutation count. Lastly, the theoretical findings are verified in Matlab/PLECS simulation and experimentally using constructed laboratory prototypes.......This paper investigates the modulation schemes of three-level multiphase Z-source inverters with either two Z-source networks or single Z-source network connected between the dc sources and inverter circuitry. With the proper offset added for achieving both desired four-leg operation and optimized...

  1. Simulated performance of an acoustic modem using phase-modulated signals in a time-varying, shallow-water environment

    DEFF Research Database (Denmark)

    Bjerrum-Niese, Christian; Jensen, Leif Bjørnø

    1996-01-01

    and dynamic multipath channel. Multipath arrivals at the receiver cause phase distortion and fading of the signal envelope. Yet, for extreme ratios of range to depth, the delays of multipath arrivals decrease, and the channel impulse response coherently contributes energy to the signal at short delays......Underwater acoustic modems using coherent modulation, such as phase-shift keying, have proven to efficiently exploit the bandlimited underwater acoustical communication channel. However, the performance of an acoustic modem, given as maximum range and data and error rate, is limited in the complex...... relative to the first arrival, while longer delays give rise to intersymbol interference. Following this, the signal-to-multipath ratio (SMR) is introduced. It is claimed that the SMR determines the performance rather than the signal-to-noise ratio (SNR). Using a ray model including temporal variations...

  2. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Thorsten

    2017-05-15

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  3. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    International Nuclear Information System (INIS)

    Lamb, Thorsten

    2017-05-01

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  4. Phase-Modulated Nonresonant Laser Pulses Can Selectively Convert Enantiomers in a Racemic Mixture

    DEFF Research Database (Denmark)

    Thomas, Esben Folger; Henriksen, Niels Engholm

    2017-01-01

    -modulated, nonresonant, linearly polarized Gaussian laser pulses that can selectively deracemize a racemic mixture of 3D-oriented, 3,5-difluoro-3',5'-dibromobiphenyl (F2H3C6-C6H3Br2) molecules, the laser-induced dynamics of which are well studied experimentally. These results strongly suggest that designing a closed......Deracemization occurs when a racemic molecular mixture is transformed into a mixture containing an excess of a single enantiomer. Recent advances in ultrafast laser technology hint at the possibility of using shaped pulses to generate deracemization via selective enantiomeric conversion; however......, experimental implementation remains a challenge and has not yet been achieved. Here we suggest a simple, yet novel approach to laser-induced enantiomeric conversion based on dynamic Stark control. We demonstrate theoretically that current laser and optical technology can be used to generate a pair of phase...

  5. Physics-Based Scientific Learning Module to Improve Students Motivation and Results

    Directory of Open Access Journals (Sweden)

    Soni Nugroho Yuliono

    2018-02-01

    Full Text Available Teaching materials that available in the school to learn physics especially scientific-based is limited and become one of the obstacles to achieving the learning objectives on electromagnetic waves maerial. The research aims is to gain scientific Physics-based learning modules for high school grade XII students who have met the eligibility criteria, determine the effectiveness of using scientific-based learning modules Physics to improve motivation and learning outcomes from students of grade XII High School. The development of this research on Physics module using 4D development procedure which consist of the steps of define, design, development, and dissemination. Definition phase consists of the teacher and student’s needs analysis process, material analysis, as well as the formulation of the learning module. The design phase of physics learning modules according to the stage of scientific learning are integrated into the module. The development phase consists of the development process of the modules from the design results, validating the feasibility, module revision, limited testing, and the use of scientifically-based learning modules Physics in grade XII IPA 1 Batik 2 Surakarta senior high school. The deployment phase is the deployment process module to another Senior High School in Surakarta. Data Analysis for the study is quantitative descriptive analysis based on the score criteria and analysis of increasing student motivation through N-gain. Conclusion obtained are ; 1 Physics-based scientific learning modules that developed meet the eligibility criteria on aspects of content and presentation, language, the chart, and aspects of learning. The module is declared worthy of the ideals validation results with the percentage of 85.16%, 83.66% by students and teachers in the response phase of the deployment of 85.93%, which is included in the category of "very good"; 2 Physics-based scietific learning modules with material scientific

  6. LMM Holographic Optical Tweezers (HOT) Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to expand the capabilities of the LMM for colloidal and other research by developing a holographic optical tweezers (HOT) module, allowing solid-state...

  7. Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Liu, Xing; Zhou, Binbin; Guo, Hairun

    2015-01-01

    in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...

  8. Direct observation of mass oscillations due to ablative Richtmyer-Meshkov instability and feedout in planar plastic targets

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Velikovich, A.L.; Karasik, M.; Serlin, V.; Pawley, C.J.; Schmitt, A.J.; Obenschain, S.P.; Mostovych, A.N.; Gardner, J.H.; Metzler, N.

    2002-01-01

    Perturbations that seed Rayleigh-Taylor (RT) instability in laser-driven targets form during the early-time period. This time includes a shock wave transit from the front to the rear surface of the target, and a rarefaction wave transit in the opposite direction. During this time interval, areal mass perturbations caused by all sources of nonuniformity (laser imprint, surface ripple) are expected to oscillate. The first direct experimental observations of the areal mass oscillations due to ablative Richtmyer-Meshkov (RM) instability and feedout followed by the RT growth of areal mass modulation are discussed. The experiments were made with 40-99 μm thick planar plastic targets rippled either on the front or on the rear with a sine wave ripple with either 30 or 45 μm wavelength and with 0.5, 1, or 1.5 μm amplitude. Targets were irradiated with 4 ns long Nike KrF laser pulses at ∼50 TW/cm2. The oscillations were observed with our novel diagnostic technique, a monochromatic x-ray imager coupled to a streak camera. For the ablative RM instability (front side ripple), the mass modulation amplitude was typically observed to grow, reach a peak, and then decrease, after which the exponential RT growth started. In some cases, one phase reversal due to the ablative RM instability was observed. For the feedout geometry (rear side ripple), in all cases two phase reversals were observed: a distinct half-oscillation was followed by the onset of the RT growth, resulting in a second phase reversal

  9. Optical spectral reshaping for directly modulated 4-pulse amplitude modulation signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Da Ros, Francesco; Cristofori, Valentina

    2017-01-01

    The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due to their......The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due...... (PAM) [3] signals. However, moving to 4-PAM,many of the impressive demonstrations reported so far rely heavily on off-line digital signal processing (DSP), which increases latency, power consumption and cost. In this talk, we report on (i) a detailed numerical analysis on the complex transfer function...... of the optical filter for optical spectral reshaping in case of pulse amplitude modulation and(ii) an experimental demonstration of real-time dispersion-uncompensated transmission of 10-GBd and 14-GBd 4-PAM signals up to 10- and 26-km SSMF. This is achieved by combining a commercial 10-Gb/s DML with optical...

  10. Experimental Investigations of 3-D-/4-D-CAP Modulation With Directly Modulated VCSELs

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Zhang, Xu; Deng, Lei

    2012-01-01

    correction limit of 2.8 × 10-3 for error-free reception is achieved after 20 km of SSMF transmission. Spectral efficiencies of 2.68 and 2.08 b/s/Hz are reported for 3-D-CAP and 4-D-CAP, respectively. We believe that multidimensional modulation formats represent an attractive solution for providing more......In this letter, we present experimental investigations of multidimensional multilevel carrierless amplitude phase (CAP) modulation with directly modulated vertical cavity surface-emitting lasers. The signals are transmitted over 20 km of standard single-mode fiber (SSMF). For multilevel 3-D...

  11. Interplay of phase sequence and electronic structure in the modulated martensites of Mn2NiGa from first-principles calculations

    Science.gov (United States)

    Kundu, Ashis; Gruner, Markus E.; Siewert, Mario; Hucht, Alfred; Entel, Peter; Ghosh, Subhradip

    2017-08-01

    We investigate the relative stability, structural properties, and electronic structure of various modulated martensites of the magnetic shape memory alloy Mn2NiGa by means of density functional theory. We observe that the instability in the high-temperature cubic structure first drives the system to a structure where modulation shuffles with a period of six atomic planes are taken into account. The driving mechanism for this instability is found to be the nesting of the minority band Fermi surface, in a similar way to that established for the prototype system Ni2MnGa . In agreement with experiments, we find 14M modulated structures with orthorhombic and monoclinic symmetries having energies lower than other modulated phases with the same symmetry. In addition, we also find energetically favorable 10M modulated structures which have not been observed experimentally for this system yet. The relative stability of various martensites is explained in terms of changes in the electronic structures near the Fermi level, affected mostly by the hybridization of Ni and Mn states. Our results indicate that the maximum achievable magnetic field-induced strain in Mn2NiGa would be larger than in Ni2MnGa . However, the energy costs for creating nanoscale adaptive twin boundaries are found to be one order of magnitude higher than that in Ni2MnGa .

  12. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    International Nuclear Information System (INIS)

    Huang, Houbing; Zhao, Congpeng; Ma, Xingqiao

    2017-01-01

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  13. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Houbing, E-mail: hbhuang@ustb.edu.cn; Zhao, Congpeng; Ma, Xingqiao, E-mail: xqma@sas.ustb.edu.cn

    2017-03-15

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  14. Studying the effect of over-modulation on the output voltage of three-phase single-stage grid-connected boost inverter

    Directory of Open Access Journals (Sweden)

    A. Abbas Elserougi

    2013-09-01

    Full Text Available Voltage boosting is very essential issue in renewable-energy fed applications. The classical two-stage power conversion process is typically used to interface the renewable energy sources to the grid. For better efficiency, single-stage inverters are recommended. In this paper, the performance of single-stage three-phase grid-connected boost inverter is investigated when its gain is extended by employing over-modulation technique. Using of over-modulation is compared with the employment of third order harmonic injection. The latter method can increase the inverter gain by 15% without distorting the inverter output voltage. The performance of extended gain grid-connected boost inverter is also tested during normal operation as well as in the presence of grid side disturbances. Simulation and experimental results are satisfactory.

  15. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice.

  16. Phase Difference Measurement Method Based on Progressive Phase Shift

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2018-06-01

    Full Text Available This paper proposes a method for phase difference measurement based on the principle of progressive phase shift (PPS. A phase difference measurement system based on PPS and implemented in the FPGA chip is proposed and tested. In the realized system, a fully programmable delay line (PDL is constructed, which provides accurate and stable delay, benefitting from the feed-back structure of the control module. The control module calibrates the delay according to process, voltage and temperature (PVT variations. Furthermore, a modified method based on double PPS is incorporated to improve the resolution. The obtained resolution is 25 ps. Moreover, to improve the resolution, the proposed method is implemented on the 20 nm Xilinx Kintex Ultrascale platform, and test results indicate that the obtained measurement error and clock synchronization error is within the range of ±5 ps.

  17. EORTC QLQ-COMU26: a questionnaire for the assessment of communication between patients and professionals. Phase III of the module development in ten countries.

    Science.gov (United States)

    Arraras, Juan Ignacio; Wintner, Lisa M; Sztankay, Monika; Tomaszewski, Krzysztof A; Hofmeister, Dirk; Costantini, Anna; Bredart, Anne; Young, Teresa; Kuljanic, Karin; Tomaszewska, Iwona M; Kontogianni, Meropi; Chie, Wei-Chu; Kulis, Dagmara; Greimel, Eva

    2017-05-01

    Communication between patients and professionals is one major aspect of the support offered to cancer patients. The European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Group (QLG) has developed a cancer-specific instrument for the measurement of different issues related to the communication between cancer patients and their health care professionals. Questionnaire development followed the EORTC QLG Module Development Guidelines. A provisional questionnaire was pre-tested (phase III) in a multicenter study within ten countries from five cultural areas (Northern and South Europe, UK, Poland and Taiwan). Patients from seven subgroups (before, during and after treatment, for localized and advanced disease each, plus palliative patients) were recruited. Structured interviews were conducted. Qualitative and quantitative analyses have been performed. One hundred forty patients were interviewed. Nine items were deleted and one shortened. Patients' comments had a key role in item selection. No item was deleted due to just quantitative criteria. Consistency was observed in patients' answers across cultural areas. The revised version of the module EORTC QLQ-COMU26 has 26 items, organized in 6 scales and 4 individual items. The EORTC COMU26 questionnaire can be used in daily clinical practice and research, in various patient groups from different cultures. The next step will be an international field test with a large heterogeneous group of cancer patients.

  18. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    International Nuclear Information System (INIS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-01-01

    The new metastable compound Cr 1+x Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni 2 In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr 1+x Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr 1+x Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr 1.6 Sb in Ni 2 In-type structure. • The new Cr-rich phase shows half-metallic behavior

  19. Smooth Phase Interpolated Keying

    Science.gov (United States)

    Borah, Deva K.

    2007-01-01

    Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

  20. Discontinuous conduction mode analysis of phase-modulated series ...

    Indian Academy of Sciences (India)

    modulated dc–dc series resonant converter (SRC) operating in discontinuous conduction mode (DCM). The conventional fundamental harmonic approximation technique is extended for a non-ideal series resonant tank to clarify the limitations of ...

  1. A COMPARATIVE ANALYSIS OF PROCESSES IN AN INDEPENDENT GENERATOR WITH A NONCONTACT CASCADE THREE-PHASE MODULATED EXCITER VIA A STAR-CONNECTED CIRCUIT UNDER ACTIVE-INDUCTIVE LOADING

    Directory of Open Access Journals (Sweden)

    K.M. Vasyliv

    2013-02-01

    Full Text Available By means of mathematical experiment, the author investigates electromagnetic and electromechanical processes in an independent electric power supply system based on an asynchronized generator with a three-phase modulated exciter. The processes are analyzed to specify the working capacity of the power supply system during its operation under active-inductive loading. Regularities of the electromagnetic and electromechanical processes behavior versus load intensity and the modulator scheme are identified.

  2. Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation

    Science.gov (United States)

    Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai

    2018-03-01

    The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.

  3. The New Phases due to Symmetry Protected Piecewise Berry Phases; Enhanced Pumping and Non-reciprocity in Trimer Lattices.

    Science.gov (United States)

    Liu, Xuele; Agarwal, G S

    2017-03-24

    Finding new phase of matter is a fundamental task in physics. Generally, various phases or states of matter (for instance solid/liquid/gas phases) have different symmetries, the phase transitions among them can be explained by Landau's symmetry breaking theory. The topological phases discovered in recent years show that different phases may have the same symmetry. The different topological phases are characterized by different integer values of the Berry phases. By studying one dimensional (1D) trimer lattices we report new phases beyond topological phases. The new phases that we find are characterized by piecewise continuous Berry phases with the discontinuity occurring at the transition point. With time-dependent changes in trimer lattices, we can generate two dimensional (2D) phases, which are characterized by the Berry phase of half period. This half-period Berry phase changes smoothly within one state of the system while changes discontinuously at the transition point. We further demonstrate the existence of adiabatic pumping for each phase and gain assisted enhanced pumping. The non reciprocity of the pumping process makes the system a good optical diode.

  4. Frequency-Modulation Correlation Spectrometer

    Science.gov (United States)

    Margolis, J. S.; Martonchik, J. V.

    1985-01-01

    New type of correlation spectrometer eliminates need to shift between two cells, one empty and one containing reference gas. Electrooptical phase modulator sinusoidally shift frequencies of sample transmission spectrum.

  5. Diffractive generalized phase contrast for adaptive phase imaging and optical security

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for onthe- fly optimiza...... security applications and can be used to create phasebased information channels for enhanced information security....

  6. Amplitude and Phase Calibration of an Dual Polarized Active Phased Array Antenna

    NARCIS (Netherlands)

    Vermeulen, B.C.B.; Paquay, M.H.A.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a Polarimetrie C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronym for Phased Array Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 modules (expandable to 96). A module is

  7. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    Science.gov (United States)

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  8. Power module for an experimental picosatellite Cubesat type

    Directory of Open Access Journals (Sweden)

    Javier Castro Avellaneda

    2016-06-01

    Full Text Available This article describes a power module for picosatellite following CubeSat standard requirements [1,2,3,13]. The Power Module project is developed in four phases: study, design, implementation and testing. In the study phase of the theoretical framework and preliminary designs made in the Universidad Distrital [4,5] and other CubeSat developed in the world is reviewed, also investigates existing technologies and components in the market and its affordability. The design phase involves analysis of the system and using a computer program designed to generate the necessary hardware. The ultimate goal is to obtain a functional power module and work in space environment conditions in which the picosatellite keep his focus on an application in telemedicine, with a payload that would become the telecommunications system mission.

  9. Modulated ordering Nb-H alloys

    International Nuclear Information System (INIS)

    Kajitani, T.; Brun, T.O.; Mueller, M.H.; Birnbaum, H.K.; Makenas, B.J.

    1979-01-01

    Ordering reactions in α' and β-NbH alloys have been investigated using elastic theory. The α'-β and β-lambda phase transformations are driven by the elastic interaction in the niobium lattice distorted by the protons on the t-site interstitials. The β phase is shown to have a three dimensional structure. The fundamental period of the long range modulation along the c-axis in the lambda-phase, an incommensurated β phase, is approximately 5 lattice constants

  10. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  11. DAMA/LIBRA-phase1 results and perspectives of the phase2

    Directory of Open Access Journals (Sweden)

    Bernabei R.

    2015-01-01

    Full Text Available The results obtained with the total exposure of 1.04 ton × yr collected by DAMA/LIBRA–phase1 deep underground at the Gran Sasso National Laboratory (LNGS of the I.N.F.N. during 7 annual cycles are summarized. The DAMA/LIBRA–phase1 and the former DAMA/NaI data (cumulative exposure 1.33 ton × yr, corresponding to 14 annual cycles give evidence at 9.3 σ C.L. for the presence of Dark Matter (DM particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl target. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. The same data of DAMA/LIBRA–phase1 have also been analyzed searching for possible DM second-order diurnal effect; at present, the DM diurnal modulation amplitude – expected because of the Earth diurnal motion – evaluated on the basis of the DAMA Dark Matter annual modulation results is below the reached experimental sensitivity. Some of the perspectives of the presently running DAMA/LIBRA–phase2 are outlined.

  12. Oblique electron-cyclotron-emission radial and phase detector of rotating magnetic islands applied to alignment and modulation of electron-cyclotron-current-drive for neoclassical tearing mode stabilization

    International Nuclear Information System (INIS)

    Volpe, F.; Austin, M. E.; Campbell, G.; Deterly, T.

    2012-01-01

    A two channel oblique electron cyclotron emission (ECE) radiometer was installed on the DIII-D tokamak and interfaced to four gyrotrons. Oblique ECE was used to toroidally and radially localize rotating magnetic islands and so assist their electron cyclotron current drive (ECCD) stabilization. In particular, after manipulations operated by the interfacing analogue circuit, the oblique ECE signals directly modulated the current drive in synch with the island rotation and in phase with the island O-point, for a more efficient stabilization. Apart from the different toroidal location, the diagnostic view is identical to the ECCD launch direction, which greatly simplified the real-time use of the signals. In fact, a simple toroidal extrapolation was sufficient to lock the modulation to the O-point phase. This was accomplished by a specially designed phase shifter of nearly flat response over the 1–7 kHz range. Moreover, correlation analysis of two channels slightly above and below the ECCD frequency allowed checking the radial alignment to the island, based on the fact that for satisfactory alignment the two signals are out of phase.

  13. A Novel Phase-Locking-Free Phase Sensitive Amplifier based Regenerator

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Røge, Kasper Meldgaard; Guan, Pengyu

    2016-01-01

    We propose a scheme for phase regeneration of optical binary phase-shift keying (BPSK) data signals based on phase sensitive amplification without active phase-locking. A delay interferometer (DI) is used to convert a BPSK signal impaired by noise to an amplitude modulated signal followed by cross......-locked pumps. As a result, active phase-stabilization is avoided. A proof-of-principle experiment is carried out with a dual-pump degenerate phase sensitive amplifier (PSA), demonstrating regeneration for a 10 Gb/s non-return-to-zero differential BPSK (NRZ-DPSK) data signal degraded by a sinusoidal phase...

  14. Preparing last LEP superconducting module for removal

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    The last superconducting module travels along the LEP tunnel towards one of the shafts where it will be lifted to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  15. Integrated InP frequency discriminator for Phase-modulated microwave photonic links.

    Science.gov (United States)

    Fandiño, J S; Doménech, J D; Muñoz, P; Capmany, J

    2013-02-11

    We report the design, fabrication and characterization of an integrated frequency discriminator on InP technology for microwave photonic phase modulated links. The optical chip is, to the best of our knowledge, the first reported in an active platform and the first to include the optical detectors. The discriminator, designed as a linear filter in intensity, features preliminary SFDR values the range between 67 and 79 dB.Hz(2/3) for signal frequencies in the range of 5-9 GHz limited, in principle, by the high value of the optical losses arising from the use of several free space coupling devices in our experimental setup. As discussed, these losses can be readily reduced by the use of integrated spot-size converters improving the SFDR by 17.3 dB (84-96 dB.Hz(2/3)). Further increase up to a range of (104-116 dB.Hz(2/3)) is possible by reducing the system noise eliminating the EDFA employed in the setup and using a commercially available laser source providing higher output power and lower relative intensity noise. Other paths for improvement requiring a filter redesign to be linear in the optical field are also discussed.

  16. Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays

    International Nuclear Information System (INIS)

    Lobanov, Valery E.; Vysloukh, Victor A.; Kartashov, Yaroslav V.

    2010-01-01

    We consider the evolution of multichannel excitations in longitudinally modulated waveguide arrays where the refractive index either oscillates out-of-phase in all neighboring waveguides or when it is modulated in phase in several central waveguides surrounded by out-of-phase oscillating neighbors. Both types of modulations allow resonant inhibition of light tunneling, but only the modulation of the latter type conserves the internal structure of multichannel excitations. We show that parameter regions where light tunneling inhibition is possible depend on the symmetry and structure of multichannel excitations. Antisymmetric multichannel excitations are more robust than their symmetric counterparts and experience nonlinearity-induced delocalization at higher amplitudes.

  17. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  18. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    Science.gov (United States)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  19. Analysis of the unmodulated diffraction beam of the phase-only liquid crystal spatial light modulator and a method for reducing its influence

    International Nuclear Information System (INIS)

    Qi, Yue; Li, Dayu; Hu, Lifa; Xuan, Li; Xia, Mingliang

    2012-01-01

    As a wavefront corrector, the phase-only liquid crystal spatial light modulator has been widely using in adaptive optics systems. However, the unmodulated diffracted beam of the modulator will affect the light spot centroid detection accuracy of a Shack–Hartmann wavefront sensor and decrease the image quality after correction. In this paper, we have diminished the effect by introducing a modified weight algorithm in our closed-loop adaptive optics system. The Strehl ratio of the image is higher than 0.8 after correction, even when the wavefront aberration is larger than 3 μm. The correction precision and image quality are both improved significantly. (paper)

  20. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Science.gov (United States)

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  1. AMPX-77 Phase 1 certification package

    Energy Technology Data Exchange (ETDEWEB)

    Niemer, K.A.

    1994-03-01

    The AMPX-77 Phase 1 modules have been certified. AMPX-77 is a modular code system for generating coupled multigroup neutron-gamma cross section libraries from Evaluated Nuclear Data Files (ENDF/B). All basic cross-section data are input from the formats used by the ENDF/B, and output can be obtained from a variety of formats, included in its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-ray data. The AMPX-77 code system will be used at SRS to perform critical calculations related to nuclear criticality safety. The AMPX-77 modular codes system contains forty-seven separate modules. For the certification process, the 47 modules have been divided into three groups or phases. This Certification Package is for the Phase 1 modules: BONAMI, LAPHNGAS, MALOCS, NITAWL, ROLAIDS, SMUG, and XSDRNPM.

  2. Studying and comparing spectrum efficiency and error probability in GMSK and DBPSK modulation schemes

    Directory of Open Access Journals (Sweden)

    Juan Mario Torres Nova

    2008-09-01

    Full Text Available Gaussian minimum shift keying (GMSK and differential binary phase shift keying (DBPSK are two digital modulation schemes which are -frequently used in radio communication systems; however, there is interdependence in the use of its benefits (spectral efficiency, low bit error rate, low inter symbol interference, etc. Optimising one parameter creates problems for another; for example, the GMSK scheme succeeds in reducing bandwidth when introducing a Gaussian filter into an MSK (minimum shift ke-ying modulator in exchange for increasing inter-symbol interference in the system. The DBPSK scheme leads to lower error pro-bability, occupying more bandwidth; it likewise facilitates synchronous data transmission due to the receiver’s bit delay when re-covering a signal.

  3. Laser projection using generalized phase contrast

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Rodrigo, Peter John

    2007-01-01

    is introduced. An arbitrary phase shift filter eliminates the need for high-frequency modulation and conjugate phase encoding. This lowers device performance requirements and allows practical implementation with currently available dynamic spatial light modulators. (c) 2007 Optical Society of America.......We demonstrate experimental laser projection of a gray-level photographic image with 74% light efficiency using the generalized phase contrast (GPC) method. In contrast with a previously proposed technique [Alonzo et al., New J. Phys. 9, 132 (2007)], a new approach to image construction via GPC...

  4. Large resistivity modulation in mixed-phase metallic systems.

    Science.gov (United States)

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-07

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  5. Analysis of ultrasonic beam profile due to change of elements' number for phased array transducer (part 2)

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    The phased array offers many advantages and improvements over conventional single-element transducers such as the straight-beam and angle-beam. The advantages of array sensors for large structures are two folds; firstly, array transducers provide a method of rapid beam steering and sequential addressing of a large area of interest without requiring mechanical or manual scanning which is particularly important in real-time application. Secondly, array transducer provide a method of dynamic focusing, in which the focal length of the ultrasonic beam varies as the pulse propagates through the material. There are some parameters such as number, size, center to center space of elements to design phased array transducer. In previous study. the characteristics of beam steering and dynamic focusing had been simulated for ultrasonic SH-wave with varying the number of phased array transducer's element. In this study, the characteristic of beam steering for phased array transducer has been simulated for ultrasonic SH-wave on the basis of Huygen's principle with varying center to center space of elements. Ultrasonic beam directivity and focusing due to change of time delay of each element were discussed with varying center to center space of elements.

  6. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  7. Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting

    2010-06-21

    In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

  8. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury. Copyright © 2015. Published by Elsevier B.V.

  9. A new phase modulated binomial-like selective-inversion sequence for solvent signal suppression in NMR.

    Science.gov (United States)

    Chen, Johnny; Zheng, Gang; Price, William S

    2017-02-01

    A new 8-pulse Phase Modulated binomial-like selective inversion pulse sequence, dubbed '8PM', was developed by optimizing the nutation and phase angles of the constituent radio-frequency pulses so that the inversion profile resembled a target profile. Suppression profiles were obtained for both the 8PM and W5 based excitation sculpting sequences with equal inter-pulse delays. Significant distortions were observed in both profiles because of the offset effect of the radio frequency pulses. These distortions were successfully reduced by adjusting the inter-pulse delays. With adjusted inter-pulse delays, the 8PM and W5 based excitation sculpting sequences were tested on an aqueous lysozyme solution. The 8 PM based sequence provided higher suppression selectivity than the W5 based sequence. Two-dimensional nuclear Overhauser effect spectroscopy experiments were also performed on the lysozyme sample with 8PM and W5 based water signal suppression. The 8PM based suppression provided a spectrum with significantly increased (~ doubled) cross-peak intensity around the suppressed water resonance compared to the W5 based suppression. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-12

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  11. Error compensation of IQ modulator using two-dimensional DFT

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Takashi, E-mail: ohshima@spring8.or.jp [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Maesaka, Hirokazu [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsubara, Shinichi [Japan Synchrotron Radiation Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Otake, Yuji [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-06-01

    It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.

  12. Modulational instability of the obliquely modulated ion acoustic waves in a warm ion plasma

    International Nuclear Information System (INIS)

    Saxena, M.K.; Arora, A.K.; Sharma, S.R.

    1981-01-01

    Using KBM. perturbation technique, it is shown that the modulationally unstable domain in the (kappa - phi) plane for the obliquely modulated ion acoustic waves is appreciably modified due to the finite ion temperature. It is also shown that in a collisionless plasma having small TAUsub(i)/TAUsub(e) ( 0 approximately 0.1) may exceed the Landau damping rate provided the modulation is sufficiently oblique. (author)

  13. Bunch identification module

    International Nuclear Information System (INIS)

    Fox, J.D.

    1981-01-01

    This module provides bunch identification and timing signals for the PEP Interaction areas. Timing information is referenced to the PEP master oscillator, and adjusted in phase as a function of region. Identification signals are generated in a manner that allows observers in all interaction regions to agree on an unambiguous bunch identity. The module provides bunch identification signals via NIM level logic, upon CAMAC command, and through LED indicators. A front panel ''region select'' switch allows the same module to be used in all regions. The module has two modes of operation: a bunch identification mode and a calibration mode. In the identification mode, signals indicate which of the three bunches of electrons and positrons are interacting, and timing information about beam crossing is provided. The calibration mode is provided to assist experimenters making time of flight measurements. In the calibration mode, three distinct gating signals are referenced to a selected bunch, allowing three timing systems to be calibrated against a common standard. Physically, the bunch identifier is constructed as a single width CAMAC module. 2 figs., 1 tab

  14. Phase calibration strategies for synchrotron RF signals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Aleksandr [TEMF, Technische Universitaet Darmstadt (Germany); Klingbeil, Harald [TEMF, Technische Universitaet Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lens, Dieter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-07-01

    For the FAIR facility that is currently under construction, the beam quality requirements impose several demands on the low-level RF (LLRF) systems. For example the phase error of the gap voltage of a specific RF cavity must be less than 1 . The RF reference signals for the FAIR synchrotron RF cavity systems are generated by direct digital synthesis modules (DDS) mounted in one crate called Group-DDS. In order to allow performing various multi-harmonic operations, each DDS unit operates at a certain mode defined by the harmonic number that can be changed during the operation. Since the DDS modules generate reference RF signals for different LLRF systems, the precise calibration of units to compensate the different phase response is of importance. The currently used calibration procedure is done with a fixed harmonic number for each module and uses the DDS module configured to the highest harmonic number as a reference. If the harmonic number of the DDS module is changed, one then has to repeat the calibration for the new values. Therefore, a new calibration method with respect to the absolute phases of DDS modules is under development and will be presented.

  15. Properties of a novel radiophotoluminescent readout system using a cw modulated UV laser diode and phase-sensitive technique

    International Nuclear Information System (INIS)

    Zhao, C.; Kurobori, T.; Miyamoto, Y.; Yamamoto, T.

    2011-01-01

    We have proposed and constructed a novel readout system for measuring a dose-dependent radiophotoluminescence (RPL) signal of a silver-activated phosphate glass dosimeter. The present reader consists of a modulated continuous-wave (cw) ultraviolet (UV) laser diode at 375 nm as an excitation and a phase-sensitive technique using a lock-in amplifier. Preliminary results using a home-made reader are compared with those of the conventional technique based on a combination of a pulsed UV N 2 laser excitation at 337 nm and a photon counting system.

  16. Predictive Pulse Pattern Current Modulation Scheme for Harmonic Reduction in Three-Phase Multidrive Systems

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz

    2016-01-01

    at the rectification stage to synthesize sinusoidal input currents. The input voltage sensing is avoided in order to minimize the number of required sensors, and the grid synchronization also has been implemented based on a common Phase-Locked-Loop (PLL) using the DC-link capacitor voltage ripple. Experimental results......The majority of the industrial motor drive systems are equipped with the conventional line-commutated front-end rectifiers, and being one of the main sources of harmonics in the power line. While a parallel combination of these drive units elevates current quality issues, a proper arrangement...... of them can lead to the cancellation of specific harmonics. This paper proposes a new cost-effective harmonic mitigation solution for multi-drive systems using a predictive pulse pattern current modulation control strategy. The proposed technique applies suitable interaction among parallel drive units...

  17. 2D Finite Element Model of a CIGS Module

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, P.O.Box 1, NL-1755 ZG Petten (Netherlands)

    2012-06-15

    The performance of thin-film CIGS (Copper indium gallium selenide) modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is presented that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.

  18. 2D - Finite element model of a CIGS module

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    The performance of thin-film CIGS modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is demonstrated that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.

  19. Numerical study and modeling of turbulence modulation in a sheet flow burdened with particulates; Etude numerique et modelisation de la modulation de la turbulence dans un ecoulement de nappe chargee en particules

    Energy Technology Data Exchange (ETDEWEB)

    Vermorel, O

    2003-11-15

    This work is devoted to the numerical and theoretical study of turbulence modulation by particles using direct numerical simulation for the continuous phase coupled with a Lagrangian prediction of trajectories of discrete particles. The configuration corresponds to a slab of particles injected at high velocity into an isotropic decaying turbulence. The motion of a particle is supposed to be governed only by the drag force. The particle mass loading is large so that momentum exchange between particles and fluid results in a significant modulation of the turbulence. Collisions are neglected. The momentum transfer between particles and gas causes a strong acceleration of the gas in the slab. In the periphery of the slab, the turbulence is enhanced due to the production by the mean gas velocity gradients. The analysis of the interphase transfer terms in the gas turbulent kinetic energy equation shows that the direct effect of the particles is to damp the turbulence in the core of the slab but to enhance it in the periphery. This last effect is due to a strong correlation between the particle distribution and the instantaneous gas velocity. Another issue concerns the k-{epsilon} model and the validity of its closure assumptions in two phase flows. A new eddy viscosity expression, function of particle parameters, is used to model the Reynolds stress tensor. The modelling of the gas turbulent dissipation rate is questioned. A two-phase Langevin equation is also tested to model drift velocity and fluid-particles velocity covariance equations. (author)

  20. Polarization modulation in Young's interference experiment

    International Nuclear Information System (INIS)

    Tervo, Jani

    2008-01-01

    Polarization properties at the observation screen in Young's interference experiment are examined. Several recent results on the modulation of Stokes parameters, including the minimum number of modulated parameters, are reviewed. The theory is then applied to find out the relation between the Stokes parameters at the pinholes and the Pancharatnam-Berry phase at the screen.

  1. Concept for phase-to-intensity conversion in SOAs by facet reflections

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    All-optical conversion from phase-modulated signals to intensity-modulated signals is theoretically demonstrated in semiconductor optical amplifiers (SOAs). Large-signal and small-signal calculations show significant conversion responses appearing as a result of even minute reflections at the end...... mirrors of the SOA. It is discussed how reflected phase-modulated signals can lead to interference resulting in intensity fluctuations that are amplified by the gain in a SOA. The effect can be utilized for deliberate conversion between optical modulation formats.......All-optical conversion from phase-modulated signals to intensity-modulated signals is theoretically demonstrated in semiconductor optical amplifiers (SOAs). Large-signal and small-signal calculations show significant conversion responses appearing as a result of even minute reflections at the end...

  2. Tilt-effect of holograms and images displayed on a spatial light modulator.

    Science.gov (United States)

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  3. Alignment error of mirror modules of advanced telescope for high-energy astrophysics due to wavefront aberrations

    Science.gov (United States)

    Zocchi, Fabio E.

    2017-10-01

    One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.

  4. Effectiveness of Discovery Learning-Based Transformation Geometry Module

    Science.gov (United States)

    Febriana, R.; Haryono, Y.; Yusri, R.

    2017-09-01

    Development of transformation geometry module is conducted because the students got difficulties to understand the existing book. The purpose of the research was to find out the effectiveness of discovery learning-based transformation geometry module toward student’s activity. Model of the development was Plomp model consisting preliminary research, prototyping phase and assessment phase. The research was focused on assessment phase where it was to observe the designed product effectiveness. The instrument was observation sheet. The observed activities were visual activities, oral activities, listening activities, mental activities, emotional activities and motor activities. Based on the result of the research, it is found that visual activities, learning activities, writing activities, the student’s activity is in the criteria very effective. It can be concluded that the use of discovery learning-based transformation geometry module use can increase the positive student’s activity and decrease the negative activity.

  5. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    Directory of Open Access Journals (Sweden)

    Eichbaum Michael H

    2011-01-01

    Full Text Available Abstract Background The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally. Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment. Methods/design The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy. A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border, heart, vertebral bodies and pelvic bones. Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival. Discussion Intensity-modulated WAR provides

  6. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Debus, Juergen; Kieser, Meinhard; Sterzing, Florian; Krause, Sonja; Lindel, Katja; Harms, Wolfgang; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof

    2011-01-01

    The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally. Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR) as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT) has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment. The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy. A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border), heart, vertebral bodies and pelvic bones. Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival. Intensity-modulated WAR provides a new promising option in the consolidation treatment of

  7. Beam Tests on the ATLAS Tile Calorimeter Demonstrator Module

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new read-out system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the electronics – the Demonstrator - has been tested exposing a module of the calorimeter to particles at the Super Proton Synchrotron (SPS) accelerator of CERN. Data were collected with beams of muons, electrons and hadrons and muons, at various incident energies and impact angles. The measurements aim to check the calibration and to determine the performance the detector exploiting the features of the interactions of the muons, electrons and hadrons with matter. We present the current status and results where the new Demonstrator new electronics were situated in calorimeter modules and exposed to beams of muons, electrons and hadrons with different energies and impact angles.

  8. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  9. Flux Modulation in the Electrodynamic Loudspeaker

    DEFF Research Database (Denmark)

    Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.

    2015-01-01

    This paper discusses the effect of flux modulation in the electrodynamic loudspeaker with main focus on the effect on the force factor. A measurement setup to measure the AC flux modulation with static voice coil is explained and the measurements shows good consistency with FEA simulations....... Measurements of the generated AC flux modulation shows, that eddy currents are the main source to magnetic losses in form of phase lag and amplitude changes. Use of a copper cap shows a decrease in flux modulation amplitude at the expense of increased power losses. Finally, simulations show...... that there is a high dependency between the generated AC flux modulation from the voice coil and the AC force factor change....

  10. Phase separation and formation of omega phase in the beta matrix of a Ti-V-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Devaraj, A.; Nag, S. [Center for Advanced Research and Technology, Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Bettles, C.J. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, M. [CSIRO Process Science and Engineering, Locked Bag 10, Clayton South, Victoria 3169 (Australia); Fraser, H.L. [Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Muddle, B.C. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Banerjee, R., E-mail: rajarshi.banerjee@unt.edu [Center for Advanced Research and Technology, Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States)

    2011-05-15

    The formation of the {omega} phase in the presence of simultaneous development of compositional modulations (or phase separation) within the body-centered cubic {beta} matrix phase of a Ti-10V-6Cu (wt.%) alloy during continuous cooling has been investigated using a combination of transmission electron microscopy and atom probe tomography. While a water quench from the high-temperature {beta} phase field allows apparently athermal formation of {omega} domains without any significant partitioning of solute or modulation in matrix composition, subsequent annealing at 500 {sup o}C for just 60 s leads to unusually rapid growth of the {omega} domains concurrent with, but apparently independent of, a slower development of finer-scale modulations in solute composition occurring apparently uniformly across both {omega} and {beta} phases. In contrast, on slower air cooling from the solution treatment temperature, there are pronounced compositional fluctuations within the {beta} phase, presumably as a product of spinodal decomposition, that are detectable prior to the formation of {omega} phase. The {omega} phase subsequently forms preferentially in solute-depleted regions of the matrix {beta}, with a composition reflecting the local matrix composition and a solute content significantly lower than the average matrix composition. As a result, it has a cuboidal morphology, distinguishably different from the elliposoidal form that is observed in samples water-quenched and annealed at 500 deg. C.

  11. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    Science.gov (United States)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  12. Now entering phase two...

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Building on the success of their feasibility phase, the CLIC test facility, CTF3, has just launched into a five-year project development phase. This will involve detailed performance optimisation studies, marking the project’s transition from pure research and development to prototyping and construction.   CLIC accelerator modules under construction at CERN. “With the feasibility phase now complete, we have established that CLIC can be built,” says Roberto Corsini, CLIC Collaboration spokesperson. “Now we want to be sure that it can provide the luminosity and energy performance needed. We will be looking at the engineering, performance and cost of a real CLIC machine also seeing if we can reduce it.” CTF3’s second phase will focus on selected performance-related research areas for further investigation. The largest of these involves the construction and testing of several authentic CLIC accelerator modules that are currently being ...

  13. Intermediate Photovoltaic System Application Experiment. Oklahoma Center for Science and Arts. Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report presents the key results of the Phase II efforts for the Intermediate PV System Applications Experiment at the Oklahoma Center for Science and Arts (OCSA). This phase of the project involved fabrication, installation and integration of a nominal 140 kW flat panel PV system made up of large, square polycrystalline-silicon solar cell modules, each nominally 61 cm x 122 cm in size. The output of the PV modules, supplied by Solarex Corporation, was augmented, 1.35 to 1 at peak, by a row of glass reflectors, appropriately tilted northward. The PV system interfaces with the Oklahoma Gas and Electric Utility at the OCSA main switchgear. Any excess power generated by the system is fed into the utility under a one to one buyback arrangement. Except for a shortfall in the system output, presently suspected to be due to the poor performance of the modules, no serious problems were encountered. Certain value engineering changes implemented during construction and early operational failure events associated with the power conditioning system are also described. The system is currently undergoing extended testing and evaluation.

  14. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    Science.gov (United States)

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  15. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  16. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  17. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  18. Electron injection by evolution of self-modulated laser wakefields

    International Nuclear Information System (INIS)

    Kim, Changbum; Kim, Guang-Hoon; Kim, Jong-Uk; Lee, Hae June; Suk, Hyyong; Ko, In Soo

    2003-01-01

    Self-injection mechanisms in the self-modulated laser wakefield acceleration (SM-LWFA) are investigated. Two-dimensional (2D) particle-in-cell (PIC) simulations show that a significant amount of plasma electrons can be self-injected into the acceleration phase of a laser wakefield by a dynamic increase in the wake wavelength in the longitudinal direction. In this process, it is found that the wake wavelength increases due to the relativistic effect and this leads to a large amount of electron injection into the wakefields. In this paper, the injection phenomena are studied with 2D simulations and a brief explanation of the new self-injection mechanism is presented. (author)

  19. Producing superfluid circulation states using phase imprinting

    Science.gov (United States)

    Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène

    2018-04-01

    We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.

  20. PSB beam longitudinal blow-up by phase modulation with the digital LLRF prototype system

    CERN Document Server

    Angoletta, M E; Butterworth, A; Findlay, A; Jaussi, M; Leinonen, P; Molendijk, J; Sanchez-Quesada, J

    2014-01-01

    The PSB will be upgraded to a new, Digital Low-Level RF (DLLRF) system in 2014 at the injectors’ restart after LS1. This DLLRF is an evolution of that successfully deployed in LEIR and comprises new hardware, software and implementation strategies. Machine development studies have been carried out in the PSB over recent years with the existing LEIR-style hardware installed in PSB ring four. These studies have allowed testing approaches and validating implementation strategies. This note focuses on a series of MDs carried out during the 2011 run where a new implementation of the longitudinal beam blow-up obtained by phase modulation was tested. Test results and effects on the beam are show for a CNGS-type beam. Finally, an overview is given of the final longitudinal blow-up implementation planned with the new hardware, which will be operationally deployed in 2014.