WorldWideScience

Sample records for phase insulin release

  1. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies.

    Science.gov (United States)

    Mahon, Jeffrey L; Beam, Craig A; Marcovina, Santica M; Boulware, David C; Palmer, Jerry P; Winter, William E; Skyler, Jay S; Krischer, Jeffrey P

    2011-11-20

    Detection of below-threshold first-phase insulin release or FPIR (1+3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; pTrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effect of glibenclamide on insulin release at moderate and high blood glucose levels in normal man

    NARCIS (Netherlands)

    Ligtenberg, JJM; Venker, CE; Sluiter, WJ; VanHaeften, TW

    Insulin release occurs in two phases; sulphonylurea derivatives may have different potencies in stimulating first-and second-phase insulin release. We studied the effect of glibenclamide on insulin secretion at submaximally and maximally stimulating blood glucose levels with a primed hyperglycaemic

  3. Insulin release by glucagon and secretin

    DEFF Research Database (Denmark)

    Kofod, Hans; Andreu, D; Thams, P

    1988-01-01

    Secretin and glucagon potentiate glucose-induced insulin release. We have compared the effects of secretin and glucagon with that of four hybrid molecules of the two hormones on insulin release and formation of cyclic AMP (cAMP) in isolated mouse pancreatic islets. All six peptides potentiated...... the release of insulin at 10 mM D-glucose, and their effects were indistinguishable with respect to the dynamics of release, dose-response relationship, and glucose dependency. However, measurements of cAMP accumulation in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (10(-4) M...... potentiating effects of secretin and glucagon on glucose-induced insulin release, their modes of action may be different....

  4. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.

    Science.gov (United States)

    Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony

    2015-09-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.

  5. Munc18-1 Regulates First-phase Insulin Release by Promoting Granule Docking to Multiple Syntaxin Isoforms

    NARCIS (Netherlands)

    Oh, E.; Kalwat, M.A.; Kim, M.J.; Verhage, M.; Thurmond, D.C.

    2012-01-01

    Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1

  6. Biphasic insulin-releasing effect of BTS 67 582 in rats.

    Science.gov (United States)

    Storey, D A; Bailey, C J

    1998-12-01

    BTS 67 582 (1,1-dimethyl-2(2-morpholinophenyl)guanidine fumarate) is being developed as a short-acting anti-diabetic insulin secretagogue. The effect of BTS 67 582 on the phasic pattern of insulin release was assessed in anaesthetized normal rats by measuring arterial plasma insulin concentrations while arterial glucose concentrations were fixed at 6, 8.5 and 12.5 mM. Intravenous BTS 67 582 (10 mg kg(-1)) induced an immediate but transient increase in insulin concentrations which declined by 10 min (first phase). This was followed by a smaller but sustained increase in insulin concentrations (second phase). The increment from basal to peak insulin release (0-2 min) was independent of glucose, but the first phase was maintained for longer and the second phase was greater at the highest concentration of glucose (12.5 mM). BTS 67 582 also extended the first-phase insulin response to a standard intravenous glucose challenge and enhanced the rate of glucose disappearance by approximately 12%. Thus BTS 67 582 causes biphasic stimulation of insulin release and augments the insulin-releasing effect of glucose.

  7. Glucose tolerance, insulin release, and insulin binding to monocytes in kidney transplant recipients

    International Nuclear Information System (INIS)

    Briggs, W.A.; Wielechowski, K.S.; Mahajan, S.K.; Migdal, S.D.; McDonald, F.D.

    1982-01-01

    In order to evaluate glucose tolerance following renal transplantation, intravenous glucose tolerance tests (IVGTT), with evaluation of hormonal responses to the intravenous glucose load and percent specific 125 I-insulin binding to peripheral blood monocytes, were studied in eight clinically stable kidney transplant recipients. For comparison purposes, identical studies were done in eight control subjects and seven clinically stable hemodialysis patients. One transplant recipient was glucose intolerant, with fasting hyperglycemia, elevated HbA1C, and abnormal glucose decay constant. Impaired pancreatic insulin release appeared to be the major factor accounting for his glucose intolerance. The seven glucose-tolerant transplant recipients had significantly increased insulin release during IVGTT compared to control subjects, and significant correlations were found among insulin release, glucose decay constant, and fasting blood sugar in those patients. Insulin binding to monocytes was significantly greater in transplant recipients than control subjects due to an increase in insulin binding capacity per cell. A significant correlation was found between percent specific 125 I-insulin binding and steroid dose, expressed as mg/kg body weight/day, in those patients. Thus, chronic steroid administration does not cause glucose intolerance in transplant recipients who manifest steroid-associated increases in pancreatic insulin release and cellular insulin binding capacity

  8. Phosphatidylcholine biosynthesis and insulin release in rat islets of Langerhans

    International Nuclear Information System (INIS)

    Hoffman, J.M.

    1988-01-01

    Turnover of phosphatidylcholine (PC) has been demonstrated to play a role in glucose stimulation of insulin release by pancreatic islets of Langerhans. The activity of the islet CDP-choline pathway of PC synthesis was determined by measuring the incorporation of radiolabeled choline or 32 PO 4 into PC, phosphorylcholine and CDP-choline. Concurrently, insulin release was measured by radioimmunoassay to correlate insulin release and PC synthesis. Glucose concentrations greater than 8.5 mM stimulated CDP-choline pathway activity. However, measurement of PC lipid phosphorus tended to decrease, suggesting that stimulation of the CDP-choline pathway was a means of replenishing PC pools diminished by hydrolysis of PC. Inhibition of glucose oxidation by mannoheptulose or incubations under hypoxic conditions prevented stimulation of the CDP-choline pathway, while inhibition of phospholipase A 2 (PLA 2 ) and secretion by the removal of extracellular Ca 2+ potentiated the stimulation seen with glucose

  9. Insulin Biosynthetic Interaction Network Component, TMEM24, Facilitates Insulin Reserve Pool Release

    Directory of Open Access Journals (Sweden)

    Anita Pottekat

    2013-09-01

    Full Text Available Insulin homeostasis in pancreatic β cells is now recognized as a critical element in the progression of obesity and type II diabetes (T2D. Proteins that interact with insulin to direct its sequential synthesis, folding, trafficking, and packaging into reserve granules in order to manage release in response to elevated glucose remain largely unknown. Using a conformation-based approach combined with mass spectrometry, we have generated the insulin biosynthetic interaction network (insulin BIN, a proteomic roadmap in the β cell that describes the sequential interacting partners of insulin along the secretory axis. The insulin BIN revealed an abundant C2 domain-containing transmembrane protein 24 (TMEM24 that manages glucose-stimulated insulin secretion from a reserve pool of granules, a critical event impaired in patients with T2D. The identification of TMEM24 in the context of a comprehensive set of sequential insulin-binding partners provides a molecular description of the insulin secretory pathway in β cells.

  10. Application of insulin-like growth factor-I and insulin release test in diabetes mellitus

    International Nuclear Information System (INIS)

    Chen Dong; Ma Yongxiu; Duan Wenruo

    2003-01-01

    The purpose of this study was to determine the role of insulin-like growth factor-I (IGF-I) and insulin release test (IRT) in understanding the extent of damage to ability of reducing blood sugar in different types of diabetes mellitus (DM) and in selection of treatment plan and adjustment of using drugs. OGTT, IRT and determination of IGF-I level of 67 normal subjects and 217 DM patients were performed. The result was analyzed comparatively. The level of IGF-I was negatively correlated with the level of fasting blood sugar, and positively correlated with the level of fasting insulin. Our conclusions are: There are two ways of reducing blood sugar: one is by insulin, and the other is by IGF-I. IRT can reflect the former better, and IGF-I the latter. The combination of these two is of significant value in diagnosis and treatment of DM

  11. Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture

    International Nuclear Information System (INIS)

    Formby, B.; Schmid-Formby, F.; Grodsky, G.M.

    1984-01-01

    In short-term batch-incubation or perfusion experiments, we studied insulin release and associated 65 Zn efflux from rat pancreatic islets loaded with 65 Zn by 24-h tissue culture in low-glucose medium. The fractional basal insulin release and 65 Zn efflux were 0.4% and 3% of total content/h/islet, respectively. Thus, basal 65 Zn efflux was much greater than that to be accounted for if zinc was released proportionally with insulin release only; extragranular zinc flux was suggested. Two millimolar glucose, with or without 1 mM 3-isobutyl-1-methylxanthine (IBMX), affected neither insulin release nor associated 65 Zn efflux. Twenty-five millimolar glucose produced a significant threefold increase in insulin release above baseline, but somewhat decreased 65 Zn efflux at marginal significance. Glucose (25 mM) plus 1 mM IBMX provoked a high increase in insulin release and an associated 30% increase in fractional 65 Zn efflux over basal. Calculations based on previous estimations of 65 Zn distribution and equilibrium with islet zinc indicated that molar zinc efflux was more than sufficient to account for a 2-zinc-insulin hexamer. L-Leucine (2 or 20 mM) plus 1 mM IBMX caused far greater 65 Zn efflux for the amount of insulin released, indicating additional 65 Zn mobilization not directly related to insulin secretion. To evaluate 65 Zn efflux during inhibited insulin secretion, batch incubations were performed in 100% D 2 O or at 27 degrees C, conditions that inhibited insulin release stimulated by high glucose plus IBMX. These agents decreased the 65 Zn efflux far below the basal value (35% and 50%, respectively) and greater than could be accounted for by the attendent inhibition of insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The application and evaluation of insulin release test and quantitative parameter in diabetic type II

    International Nuclear Information System (INIS)

    Huang Chenggang; Chen Xiaoyan; Guan Xiaofeng

    2002-01-01

    Objective: To analyse the curve of Insulin Release Test (IRT) about the patients whit type II diabetes, to evaluate β-cell function and the sensitivity of body to Insulin using Insulin Release Index (IRI) and Insulin Sensitivity Index (ISI), and to probe the value for clinical therapy. Methods: 1) Have a IRT of 396 cases with type II diabetes and 17 normal bodies and acquire the IRT curve, 2) Design the count methods about IRI and ISI, IRI = Ins max/Ins FBI x Δ Ins max/T max (minute), ISI=(Ins max-Ins FBI)/(Ins 180'-Ins FBI), 3) Compare IRI Changes of before and after treatment for 12 cases with no insulin release and 9 cases with less insulin release. Results: IRT curve type (No release type 21.0%, less release type 33.3%, peak delay type 36.9%, high insulin type 6.0%, release delay type 2.8%); respective IRI, ISI compared to normal, P<0.01; IRI of before and after treatment with insulin P<0.01. Conclusions: IRT Curve combining IRI and ISI can reflect accurately β-cell function with type II diabetes and the sensitivity of body to insulin, Also it has some reference value for clinical therapy

  13. Release of immunoreactive and radioactively prelabelled endogenous (pro-)insulin from isolated islets of rat pancreas in the presence of exogenous insulin

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, H [Giessen Univ. (Germany, F.R.). Zentrum fuer Innere Medizin; Pfeiffer, E F

    1977-01-01

    To study the influence of insulin on its secretion, collagenase-isolated islets of rat pancreas were prelabelled with (/sup 3/H)leucine for 2 h. After washing the islets, (pro-)insulin release was stimulated by glucose in the presence or absence of exogenous insulin (up to 2.5 mu./ml. Hormone release was unchanged by the presence of exogenous insulin as judged by determination of both immunoreactive insulin and radioactivity incorporated into the proinsulin and insulin fractions of the medium. No direct feedback mechanism for insulin secretion was apparent from this study.

  14. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    Marcia eHiriart

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  15. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Insulin-releasing action of the novel antidiabetic agent BTS 67 582.

    Science.gov (United States)

    McClenaghan, N H; Flatt, P R; Bailey, C J

    1998-02-01

    1. BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl)guanidine fumarate) is a novel antidiabetic agent with a short-acting insulin-releasing effect. This study examined its mode of action in the clonal B-cell line BRIN-BD11. 2. BTS 67582 increased insulin release from BRIN-BD11 cells in a concentration-dependent manner (10[-8] to 10[-4] M) at both non-stimulating (1.1 mM) and stimulating (16.7 mM) concentrations of glucose. 3. BTS 67582 (10[-4] M) potentiated the insulin-releasing effect of a depolarizing concentration of K+ (30 mM), whereas the K+ channel openers pinacidil (400 microM) and diazoxide (300 microM) inhibited BTS 67582-induced release. 4. Suppression of Ca+ channel activity with verapamil (20 microM) reduced the insulin-releasing effect of BTS 67582 (10[-4] M). 5. BTS 67582 (10[-4] M) potentiated insulin release induced by amino acids (10 mM), and enhanced the combined stimulant effects of glucose plus either the fatty acid palmitate (10 mM), or agents which raise intracellular cyclic AMP concentrations (25 microM forskolin and 1 mM isobutylmethylxanthine), or the cholinoceptor agonist carbachol (100 microM). 6. Inhibition of glucose-stimulated insulin release by adrenaline or noradrenaline (10 microM) was partially reversed by BTS 67582 (10[-4] M). 7. These data suggest that the insulin-releasing effect of BTS 67582 involves regulation of ATP-sensitive K+ channel activity and Ca2+ influx, and that the drug augments the stimulant effects of nutrient insulin secretagogues and agents which enhance adenylate cyclase and phospholipase C. BTS 67582 may also exert insulin-releasing effects independently of ATP-sensitive K+ channel activity.

  17. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Analysis of results of oral glucose tolerance test (OGTT) and insulin releasing test in hepatogenic diabetics

    International Nuclear Information System (INIS)

    He Haoming; Fu Qiang; Tian Xiaoping; Su Cainu

    2001-01-01

    Objective: To explore the clinical values of OGTT and insulin releasing test in hepatogenic diabetics. Method: OGTT was performed by enzymes method and insulin releasing test by RIA in 30 patients with hepatogenic diabetes, 31 cases with II diabetes and 35 controls. Results: During OGTT, blood glucose levels at various time were about the same in hepatogenic diabetics and II diabetics (P < 0.05), except at 180 min (P < 0.01). Basal hyperinsulinemia was present is hepatogenic diabetics. Conclusion: OGTT and insulin releasing test had a definite clinical value in the differential diagnosis of hepatogenic diabetics

  19. Numerical Modelling of Insulin and Amyloglucosidase Release from Swelling Ca-Alginate Beads

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Snabe, T.; Pedersen, Lars Haastrup

    2003-01-01

    The release of insulin hexamer (39 kD) and amyloglucosidase (AMG, 97 kD), entrapped in spherical Ca–alginate beads, was investigated. While the release of insulin could be described solely by diffusion this was not the case for the 1.6 (r m /r m) larger AMG protein, where rm is the Stokes....... Although it should be expected that the effective diffusion coefficient of AMG is only slightly lower than that of insulin, the results show that the effective diffusions coefficient of AMG was found to be much smaller. In the case of AMG, it was shown that including bead size changes and the resulting...

  20. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    Science.gov (United States)

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  1. Effects of tetracaine on insulin release and calcium handling by rat pancreatic islets

    International Nuclear Information System (INIS)

    Abdel El Motal, S.M.A.; Pian-Smith, M.C.M.; Sharp, G.W.G.

    1987-01-01

    The effects of tetracaine on insulin release and 45 Ca 2+ handling by rat pancreatic islets have been studied under basal, glucose-stimulated, and 3-isobutyl-1-methylxanthine (IBMX)-stimulated conditions. Islets were isolated by the use of collagenase and used either directly (freshly isolated islets) or after a period under tissue culture conditions. Tetracaine was found to stimulate insulin release under basal conditions, to inhibit glucose-stimulated insulin release, and to potentiate insulin release stimulated by IBMX. In studies on the mechanisms underlying these effects, tetracaine was found to decrease glucose-stimulated net retention of 45 Ca 2+ (by an action to block the voltage-dependent Ca channels) and to mobilize Ca 2+ from intracellular stores. These two actions form the basis for the inhibition of glucose-stimulated insulin release, which depends heavily on Ca 2+ entry via the voltage-dependent channels and the synergism with IBMX to potentiate release. No inhibition of IBMX-stimulated release occurs because IBMX does not use the voltage-dependent channels to raise intracellular Ca 2+

  2. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor.

    Science.gov (United States)

    Delanoue, Renald; Meschi, Eleonora; Agrawal, Neha; Mauri, Alessandra; Tsatskis, Yonit; McNeill, Helen; Léopold, Pierre

    2016-09-30

    Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients. Copyright © 2016, American Association for the Advancement of Science.

  3. Fabrication of Glucose-Sensitive Layer-by-Layer Films for Potential Controlled Insulin Release Applications

    Directory of Open Access Journals (Sweden)

    Talusan Timothy Jemuel E.

    2015-01-01

    Full Text Available Self-regulated drug delivery systems (DDS are potential alternative to the conventional method of introducing insulin to the body due to their controlled drug release mechanism. In this study, Layer-by-Layer technique was utlized to manufacture drug loaded, pH responsive thin films. Insulin was alternated with pH-sensitive, [2-(dimethyl amino ethyl aminoacrylate] (PDMAEMA and topped of with polymer/glucose oxidase (GOD layers. Similarly, films using a different polymer, namely Poly(Acrylic Acid (PAA were also fabricated. Exposure of the films to glucose solutions resulted to the production of gluconic acid causing a polymer conformation change due to protonation, thus releasing the embedded insulin. The insulin release was monitored by subjecting the dipping glucose solutions to Bradford Assay. Films exhibited a reversal in drug release profile in the presence of glucose as compared to without glucose. PAA films were also found out to release more insulin compared to that of the PDMAEMA films.The difference in the profile of the two films were due to different polymer-GOD interactions, since both films exhibited almost identical profiles when embedded with Poly(sodium 4-styrenesulfonate (PSS instead of GOD.

  4. Genetic and phenotypic correlations between surrogate measures of insulin release obtained from OGTT data

    DEFF Research Database (Denmark)

    Gjesing, Anette Marianne Prior; Ribel-Madsen, Rasmus; Harder, Marie Neergaard

    2015-01-01

    closely related to fasting insulin with a genetic correlation of 0.85. The effects of 82 selected susceptibility single nucleotide polymorphisms on these insulin secretion indices supported our interpretation of the data and added insight into the biological differences between the examined traits......AIMS/HYPOTHESIS: We examined the extent to which surrogate measures of insulin release have shared genetic causes. METHODS: Genetic and phenotypic correlations were calculated in a family cohort (n = 315) in which beta cell indices were estimated based on fasting and oral glucose-stimulated plasma...... glucose, serum C-peptide and serum insulin levels. Furthermore, we genotyped a large population-based cohort (n = 6,269) for common genetic variants known to associate with type 2 diabetes, fasting plasma glucose levels or fasting serum insulin levels to examine their association with various indices...

  5. pH-Dependent Release of Insulin from Layer-by-Layer-Deposited Polyelectrolyte Microcapsules

    Directory of Open Access Journals (Sweden)

    Kentaro Yoshida

    2015-07-01

    Full Text Available Insulin-containing microcapsules were prepared by a layer-by-layer (LbL deposition of poly(allylamine hydrochloride (PAH and polyanions, such as poly(styrenesulfonate (PSS, poly(vinyl sulfate (PVS, and dextran sulfate (DS on insulin-containing calcium carbonate (CaCO3 microparticles. The CaCO3 core was dissolved in diluted HCl solution to obtain insulin-containing hollow microcapsules. The microcapsules were characterized by scanning electron microscope (SEM and atomic force microscope (AFM images and ζ-potential. The release of insulin from the microcapsules was faster at pH 9.0 and 7.4 than in acidic solutions due to the different charge density of PAH. In addition, insulin release was suppressed when the microcapsules were constructed using PAH with a lower molecular weight, probably owing to a thicker shell of the microcapsules. The results suggested a potential use of the insulin-containing microcapsules for developing insulin delivery systems.

  6. The Role of Taste in Cephalic Phase of Insulin Secretion

    Directory of Open Access Journals (Sweden)

    M. Dušková

    2013-01-01

    Full Text Available The effect of a short gustatory signal of a sweet solution was tested on 15 young male volunteers. The experiment consisted of mouth rinsing with either a sucrose or aspartate solution or pure water as a placebo. Blood was then taken in short intervals of 0, 5, 10, 15 and 20 min. Blood glucose, C-peptide, insulin and cortisol were determined. While C-peptide and glucose were unaffected, a short-term increase in insulin was observed after the sucrose, but not after the aspartate or placebo. The increase in insulin was significant, though it amounted to only 0.5 mIU/l and lasted approx. 15 min reaching then the starting value. The decline of cortisol level within 20 min of the experiment was approx. 40 nmol/l, although it was also observed after aspartate or placebo mouth rinsing and was probably caused by stress factors or anticipation. In conclusion, the contribution of taste to the cephalic phase of insulin secretion is small yet significant, and mouth rinsing with 5% sucrose causes an insulin increase of just under 1 IU/l, which returns to starting level within 15 min.

  7. Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B

    DEFF Research Database (Denmark)

    Hribal, M L; Presta, I; Procopio, T

    2011-01-01

    The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry.......The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry....

  8. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells

    International Nuclear Information System (INIS)

    Hermans, M.P.; Schmeer, W.; Henquin, J.C.

    1987-01-01

    Mouse islets were used to test the hypothesis that the B cell membrane must be depolarized for acetylcholine to increase insulin release. The resting membrane potential of B cells (at 3 mM glucose) was slightly decreased (5 mV) by acetylcholine, but no electrical activity appeared. This depolarization was accompanied by a Ca-independent acceleration of 86 Rb and 45 Ca efflux but no insulin release. When the B cell membrane was depolarized by a stimulatory concentration of glucose (10 mM), acetylcholine potentiated electrical activity, accelerated 86 Rb and 45 Ca efflux, and increased insulin release. This latter effect, but not the acceleration of 45 Ca efflux, was totally dependent on extracellular Ca. If glucose-induced depolarization of the B cell membrane was prevented by diazoxide, acetylcholine lost all effects but those produced at low glucose. In contrast, when the B cell membrane was depolarized by leucine or tolbutamide (at 3 mM glucose), acetylcholine triggered a further depolarization with appearance of electrical activity, accelerated 86 Rb and 45 Ca efflux, and stimulated insulin release. Acetylcholine produced similar effects (except for electrical activity) in the presence of high K or arginine which, unlike the above test agents, depolarize the B cell membrane by a mechanism other than a decrease in K+ permeability. Omission of extracellular Ca abolished the releasing effect of acetylcholine under all conditions but only partially decreased the stimulation of 45 Ca efflux. The results show thus that acetylcholine stimulation of insulin release does not result from mobilization of cellular Ca but requires that the B cell membrane be sufficiently depolarized to reach the threshold potential where Ca channels are activated. This may explain why acetylcholine alone does not initiate release but becomes active in the presence of a variety of agents

  9. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    International Nuclear Information System (INIS)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun; Hwang, You-Cheol; Yang, Tae-Young; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2008-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic β-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic β-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis of insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression

  10. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  11. Role of transglutaminase in insulin release. Study with glycine and sarcosine methylesters

    International Nuclear Information System (INIS)

    Sener, A.; Dunlop, M.E.; Gomis, R.; Mathias, P.C.; Malaisse-Lagae, F.; Malaisse, W.J.

    1985-01-01

    The Ca2+-responsive enzyme transglutaminase, which catalyzes the cross-bridging of proteins, is present in pancreatic islet cells, but its participation in the process of insulin release remains to be documented. Glycine methylester (1.0-10.0 mM) inhibited, in a dose-related manner, transglutaminase activity in rat pancreatic islet homogenates, decreased [ 14 C]methylamine incorporation into endogenous proteins of intact islets, and caused a rapid and reversible inhibition of insulin release evoked by D-glucose, while failing to affect D-[U- 14 C]glucose oxidation. Glycine methylester also inhibited insulin release induced by other nutrient or nonnutrient secretagogues. Sarcosine methylester failed to affect transglutaminase activity, [ 14 C]methylamine incorporation, and insulin release. Both methylesters mobilized 45 Ca from prelabeled intact islets, from membranes of islet cells, liver or brain, and from artificial lipid multilayers, this Ca mobilization being apparently unrelated to changes in transglutaminase activity. It is proposed that, in the pancreatic B cell, transglutaminase participates in the machinery controlling the access of secretory granules to the exocytotic sites

  12. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study

    DEFF Research Database (Denmark)

    Laakso, M; Zilinskaite, J; Hansen, T

    2008-01-01

    AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic...

  13. Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets.

    Science.gov (United States)

    Buchwald, Peter; Cechin, Sirlene R; Weaver, Jessica D; Stabler, Cherie L

    2015-03-28

    In type 1 diabetic patients, who have lost their ability to produce insulin, transplantation of pancreatic islet cells can normalize metabolic control in a manner that is not achievable with exogenous insulin. To be successful, this procedure has to address the problems caused by the immune and autoimmune responses to the graft. Islet encapsulation using various techniques and materials has been and is being extensively explored as a possible approach. Within this framework, it is of considerable interest to characterize the effect encapsulation has on the insulin response of pancreatic islets. To improve our ability to quantitatively describe the glucose-stimulated insulin release (GSIR) of pancreatic islets in general and of micro-encapsulated islets in particular, we performed dynamic perifusion experiments with frequent sampling. We used unencapsulated and microencapsulated murine islets in parallel and fitted the results with a complex local concentration-based finite element method (FEM) computational model. The high-resolution dynamic perifusion experiments allowed good characterization of the first-phase and second-phase insulin secretion, and we observed a slightly delayed and blunted first-phase insulin response for microencapsulated islets when compared to free islets. Insulin secretion profiles of both free and encapsulated islets could be fitted well by a COMSOL Multiphysics model that couples hormone secretion and nutrient consumption kinetics with diffusive and convective transport. This model, which was further validated and calibrated here, can be used for arbitrary geometries and glucose stimulation sequences and is well suited for the quantitative characterization of the insulin response of cultured, perifused, transplanted, or encapsulated islets. The present high-resolution GSIR experiments allowed for direct characterization of the effect microencapsulation has on the time-profile of insulin secretion. The multiphysics model, further validated

  14. Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release

    Directory of Open Access Journals (Sweden)

    Claudia Weber

    2015-01-01

    Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.

  15. Intra-peritoneal administration of interleukin-1 beta induces impaired insulin release from the perfused rat pancreas

    DEFF Research Database (Denmark)

    Wogensen, L; Helqvist, S; Pociot, F

    1990-01-01

    Previous studies have demonstrated a stimulatory effect of interleukin-1 beta (IL-1 beta) on insulin and glucagon release from the perfused rat pancreas, accompanied by selective lysis of 20% of beta-cells as assessed by electronmicroscopy. However, we have not observed an inhibitory action of IL-1...... beta on insulin release from the perfused pancreas as shown for isolated islets. To test whether periodical exposure of the endocrine pancreas to circulating IL-1 beta in vivo affects insulin release from the intact perfused pancreas, rats were treated with daily intraperitoneal injections of 4...

  16. The Type 2 Diabetes Associated Minor Allele of rs2237895 KCNQ1 Associates with Reduced Insulin Release Following an Oral Glucose Load

    DEFF Research Database (Denmark)

    Brunak, Søren; Holmkvist, J; Banasik, K

    2009-01-01

    , and rs2237897) on estimates of glucose stimulated insulin release. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT) in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin...... release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses. Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean......,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified...

  17. Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-stimulated insulin release

    DEFF Research Database (Denmark)

    Nielsen, Trine; Sparsø, T; Grarup, N

    2011-01-01

    By combining multiple genome-wide association (GWA) studies and comprehensive replication efforts, 12 novel type 2 diabetes associated loci have recently been discovered. Here we evaluate the effect of lead variants of these loci on estimates of insulin release and insulin resistance derived from...

  18. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  19. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  20. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes

    DEFF Research Database (Denmark)

    Hansen, Tue Haldor; Vestergaard, Henrik; Jørgensen, Torben

    2015-01-01

    ,641 glucose tolerant controls, respectively. Quantitative trait analyses were performed in up to 13,605 individuals subjected to an OGTT or blood samples obtained after an overnight fast, as well as in 596 individuals subjected to an IVGTT. Results: Analyses of fasting and OGTT-derived quantitative traits did.......024; P=0.01) assuming a dominant model of inheritance, but failed to replicate a previously reported association with area under the curve (AUC) for insulin. Case control analysis did not show an association of the PTBP1 rs11085226 variant with type 2 diabetes. Conclusions: Despite failure to replicate......Background: The variant rs11085226 (G) within the gene encoding polypyrimidine tract binding protein 1 (PTBP1) was reported to associate with reduced insulin release determined by an oral glucose tolerance test (OGTT) as well as an intravenous glucose tolerance test (IVGTT). The aim of the present...

  1. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    OpenAIRE

    Cheang, Kai I.; Sistrun, Sakita N.; Morel, Kelley S.; Nestler, John E.

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n = 16) and normal (n = 15) wo...

  2. Epinephrine impairs insulin release by a mechanism distal to calcium mobilization. Similarity to lipoxygenase inhibitors

    International Nuclear Information System (INIS)

    Metz, S.A.

    1988-01-01

    The mechanisms that enable epinephrine (EPI) and lipoxygenase inhibitors to impede insulin secretion are unknown. We examined the possibility that EPI inhibits Ca 2+ fluxes as its major mechanism by studying 45 Ca efflux from prelabeled, intact rat islets. EPI (2.5 x 10(-7) to 1 x 10(-5) M) inhibited insulin release induced by the influx of extracellular Ca 2+ (46 mM K+) or the mobilization of intracellular Ca 2+ stores (2 mM Ba 2+ ), but it did not reduce the 45 Ca efflux stimulated by either agonist. EPI also nullified insulin release induced by isobutylmethylxanthine or dibutyryl cAMP, with minimal or no effects on 45 Ca efflux, and blocked the insulinotropic effects of 12-O-tetradecanoylphorbol-13-acetate (a direct activator of protein kinase C), which is believed primarily to sensitize the exocytotic apparatus to Ca 2+ without mobilizing additional Ca 2+ . Previously we reported that similar effects were induced by inhibitors of pancreatic islet lipoxygenase. In this study, however, pretreatment with either the alpha 2-adrenergic antagonist yohimbine or pertussis toxin did not block the effects of lipoxygenase inhibitors, although either agent did block the effects of EPI. Thus, EPI, via an alpha 2-receptor mechanism, is able to reduce exocytosis largely distal to, or independent of, changes in Ca 2+ flux, cAMP formation or its Ca 2+ -mobilizing action, or generation of protein kinase C activators. Therefore, EPI may reduce the sensitivity of the exocytotic apparatus to Ca 2+ . Inhibition of islet lipoxygenase may have a similar effect; however, in this case, the effect would have to be unrelated, or distal, to stimulation of alpha 2-receptors

  3. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  4. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  5. Insulin

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Information by Audience For Women Women's Health Topics Insulin Share Tweet ... I start having side effects? What is my target blood sugar level? How often should I check ...

  6. An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro.

    Science.gov (United States)

    Mohankumar, Sureshkumar; McFarlane, James R

    2011-03-01

    Curcuma longa (turmeric) has been used widely as a spice, particularly in Asian countries. It is also used in the Ayurvedic system of medicine as an antiinflammatory and antimicrobial agent and for numerous other curative properties. The aim of this study was to investigate the effects of an aqueous extract of Curcuma longa (AEC) on tissues involved in glucose homeostasis. The extract was prepared by soaking 100 g of ground turmeric in 1 L of water, which was filtered and stored at -20°C prior to use. Pancreas and muscle tissues of adult mice were cultured in DMEM with 5 or 12 mmol/L glucose and varying doses of extract. The AEC stimulated insulin secretion from mouse pancreatic tissues under both basal and hyperglycaemic conditions, although the maximum effect was only 68% of that of tolbutamide. The AEC induced stepwise stimulation of glucose uptake from abdominal muscle tissues in the presence and absence of insulin, and the combination of AEC and insulin significantly potentiated the glucose uptake into abdominal muscle tissue. However, this effect was attenuated by wortmannin, suggesting that AEC possibly acts via the insulin-mediated glucose uptake pathway. In summary, water soluble compounds of turmeric exhibit insulin releasing and mimicking actions within in vitro tissue culture conditions. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    Science.gov (United States)

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and pIGF-1 level 30min after the start of suckling (pIGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and pIGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Direct effect of gonadal and contraceptive steroids on insulin release from mouse pancreatic islets in organ culture

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1984-01-01

    Sex steroids are supposed to contribute to the normal glucose homeostasis and to the altered glucose and insulin metabolism in pregnancy and during contraception. In the present study isolated mouse pancreatic islets were maintained in tissue culture medium RPMI 1640 supplemented with 0.5% newborn...... calf serum and 100 ng/ml of one of the following steroids: oestradiol, progesterone, testosterone, megestrol acetate, medroxyprogesterone, chlormadinone acetate, norethynodrel, norethindrone acetate, and ethynyloestradiol. Release of insulin to the culture medium was measured during a 2 week culture...... in the presence of oestradiol, progesterone, or testosterone were subjected to 30 min stimulation with 5.5, 11, 22 mmol/l glucose, only the progesterone-treated islets released more insulin in response to glucose than the control islets. It is concluded that progesterone and its derivatives have a direct effect...

  9. Gliclazide mainly affects insulin secretion in second phase of type 2 diabetes mellitus

    NARCIS (Netherlands)

    Ligtenberg, JJM; van Haeften, TW

    We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 55 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of

  10. The effect of an insulin releasing agent, BTS 67582, on advanced glycation end product formation in vitro.

    Science.gov (United States)

    Simpson, A E; Jones, R B

    1999-01-01

    BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl) guanidine fumarate) is an insulin-releasing agent currently in phase II clinical trials. Its effect on advanced glycation end product (AGE) formation was measured in the BSA/D-glucose and L-lysine/glucose-6-phosphate assay systems and Amadori product formation was measured in the BSA/D-glucose assay system, following a 3 week incubation period. In the BSA/D-glucose assay system, 200 mM BTS 67582 caused an approximate 70% inhibition in AGE formation (pBTS 67582 and 200 mM aminoguanidine-HCl retarded Amadori product formation by 88% (pBTS 67582 at 20 mM and 2 mM was shown to inhibit Amadori product formation by 67% and 57%, respectively, (pBTS 67582 and 200 mM aminoguanidine-HCl were shown to inhibit AGE formation by about 70% and 96% (p<0.001), respectively. Tolbutamide (200 microM) and glibenclamide (100 microM) had no significant effect on AGE formation.

  11. The initial phase of sudden releases of superheated liquid

    International Nuclear Information System (INIS)

    Schmidli, J.; Yadigaroglu, G.

    1994-01-01

    Series of experiments were conducted with refrigerants-114, -12, propane and butane to investigate the initial phase of sudden releases of superheated liquids due to the catastrophic failure of the vessel containing them. The experiments were initiated by shattering spherical flasks of 100 to 2000 ml containing the liquefied, pressurized gases. The variable parameters were the initial superheat, the filling level, the height of the flask above ground, and the relative humidity of the surrounding air. It was found that the initial flashing process is not determined by homogeneous nucleation, but rather by surface instabilities which lead to an evaporation wave traveling from the initial surface towards the center of the released mass. Cloud shape and expansion velocity could be determined from high speed recordings covering the initial stage of the release during which gravity has no influence. When the internal energy was sufficient, it was observed that the expanding droplet/vapor cloud initially propagated spherically with a constant expansion velocity, until Rayleigh-Taylor type instabilities appeared at its surface. Information about the pool which can be formed on the ground, the pressure decay within the flask, the droplet size, and the cloud temperature was collected. The experimental findings for the expansion velocity, as well as for the pool fraction, were the base for a nondimensional analysis leading to correlations which describe the initial phase of such releases and can be used to define the ''source term'' for turbulent dispersion models. (author) 5 figs., 1 tab., 15 refs

  12. Bioresponsive release of insulin-like growth factor-I from its PEGylated conjugate.

    Science.gov (United States)

    Braun, Alexandra C; Gutmann, Marcus; Mueller, Thomas D; Lühmann, Tessa; Meinel, Lorenz

    2018-06-10

    PEGylation of protein ligands, the attachment of polyethylene glycol (PEG) polymers to a therapeutic protein, increases therapeutics' half-life but frequently comes at the cost of reduced bioactivity. We are now presenting a bioinspired strategy leading out of this dilemma. To this end, we selected a position within insulin-like growth factor I (IGF-I) for decoration with a PEG 30kDa -modified protease-sensitive peptide linker (PSL) using a combination of enzymatic and chemical bioorthogonal coupling strategies. The PSL sequence responded to matrix metalloproteinases (MMP) to provide a targeted release in diseased tissue. The IGF-PSL-PEG conjugate had different binding protein affinity, cell proliferation, and endocytosis patterns as compared to the wild type. Exposure of the conjugate to elevated levels of activated MMPs, as present in inflamed tissues, fully reestablished the wild type properties through effective PSL cleavage. In conclusion, this bioinspired approach provided a blueprint for PEGylated therapeutics combining the pharmacokinetic advantages of PEGylation, while locally restoring the full suite of biological potential of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Insulin Secretagogues

    Science.gov (United States)

    ... than sulfonylureas. What are the side effects and disadvantages of insulin secretagogues? Both types of insulin-releasing ... help find the cause. Questions to ask your doctor What else can I do to keep my ...

  14. The initial phase of sudden releases of superheated liquid

    International Nuclear Information System (INIS)

    Schmidli, J.

    1994-04-01

    The catastrophic failure of a pressure vessel containing a liquefied substance, leading to an instantaneous release of its whole contents is considered as one of the major technological hazards. Due to the rapid depressurization caused by vessel failure, the fluid becomes superheated and unstable. Part of the fluid will evaporate using its internal energy and the two-phase mixture forming will be accelerated. This flashing process can be very violent, as experiments and incidents actually happened have shown. In the past, a number of dispersion models were developed to predict the history of an instantaneous release. In most of these models the source term is considered to be a gas volume at rest and not a rapidly expanding aerosol, as could be observed. Furthermore, it is usually assumed that all of the remaining fluid is entrained into the expanding cloud and nothing is deposited on the ground to form a pool. This work concentrates on the initial phase of the sudden release of superheated liquids with the aim to gain a better understanding of the flashing process and of the physical mechanisms involved, leading to a reliable prediction of the source term. Therefore, more than 400 experiments with propane, butane, refrigerant 12 and 114 were conducted. The experiments were initiated by shattering spherical glass flasks of different sizes. The main parameters varied were the liquid superheat and the filling level of the vessel. Using high-speed video and movie recordings and very fast responding measurement devices, it was possible to study the initial phase of such releases during which gravity plays no role. For sufficiently large released internal energy, the initial evolution of the release was always spherical with a constant radial expansion velocity during he first milliseconds until instabilities appeared at the surface of the droplet/vapor cloud that was formed. For all the experimental conditions, the fraction of the initial liquid falling on the ground

  15. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study

    DEFF Research Database (Denmark)

    Faerch, Kristine; Vaag, Allan; Holst, Jens J

    2008-01-01

    of insulin sensitivity (HOMA-IS), early-phase insulin release (EPIR), and insulin secretion relative to insulin action (disposition index) were estimated. RESULTS: Five years before the pre-diabetes diagnoses (i-IFG, i-IGT, and IFG/IGT), ISI, HOMA-IS, EPIR, and disposition index were lower than...

  16. Potentiation of glucose-induced insulin release in islets by desHis1[Glu9]glucagon amide

    DEFF Research Database (Denmark)

    Kofod, Hans; Unson, C G; Merrifield, R B

    1988-01-01

    Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate...... in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release...

  17. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    Science.gov (United States)

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  18. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, Jeppe; Knudsen, Carsten; O'Meara, Niall M.

    1995-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...

  19. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, J.; Knudsen, C.; O'Meara, N.M.

    1996-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...

  20. Inhibition of insulin release by cyproheptadine: Effects on 3',5'-cyclic-AMP-content and /sup 45/Ca-accumulation of incubated mouse islets

    Energy Technology Data Exchange (ETDEWEB)

    Joost, H G; Beckmann, J; Lenzen, S; Hasselblatt, A [Goettingen Univ. (F.R. Germany)

    1976-01-01

    Cyproheptadine (1, 10 and 100 ..mu..m) significantly reduced insulin release from isolated mouse islets in response to glucose. In contrast, 1 mM cyproheptadine induced a large release of insulin into the incubation medium probably due to islet cell damage, since the islets had lost a considerable amount of their protein content. 3',5'-cyclic-AMP-levels of the islets were not significantly affected by 10 ..mu..M cyproheptadine in the presence as well as in the absence of theophylline (10 mM). As the inhibitory effect of cyproheptadine on insulin release was correlated with reduced accumulation of calcium-45, the agent may inhibit insulin release by interfering with the calcium handling of the ..beta..-cell.

  1. Serological analysis of human IgG and IgE anti-insulin antibodies by solid-phase radioimmunoassays

    International Nuclear Information System (INIS)

    Hamilton, R.G.; Rendell, M.; Adkinson, N.F. Jr.

    1980-01-01

    A single solid-phase assay system which is useful for quantitative measurement of both IgG and IgE anti-insulin antibodies in human serum has been developed. Insulin-specific immunoglobulins are absorbed from human serum by excess quantities of insulin-agarose. After washes to remove unbound immunoglobulins, radioiodinated Staph A or rabbit anti-human IgE is added to detect bound IgG or IgE anbitodies, respectively

  2. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  3. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome.

    Science.gov (United States)

    Cheang, Kai I; Sistrun, Sakita N; Morel, Kelley S; Nestler, John E

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS ( n = 16) and normal ( n = 15) women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUC DCI-IPG ), AUC insulin , and AUC DCI-IPG /AUC insulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUC DCI-IPG /AUC insulin at baseline and a significant relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0003), which was not present in controls. Weight loss was similar between PCOS (-4.08 kg) and normal women (-4.29 kg, p = 0.6281). Weight loss in PCOS women did not change the relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0100), and this relationship remained absent in control women. Conclusion. The association between AUC DCI-IPG /AUC insulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity.

  4. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    Science.gov (United States)

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  5. Insulin binding characteristics in canine muscle tissue: effects of the estrous cycle phases

    Directory of Open Access Journals (Sweden)

    Álan G. Pöppl

    Full Text Available Abstract: Hormonal fluctuations during the different estrous cycle are a well-recognized cause of insulin resistance in bitches, and little is known about insulin receptor binding or post-binding defects associated with insulin resistance in dogs. To evaluate insulin binding characteristics in muscle tissue of bitches during the estrous cycle, 17 owned bitches were used in the study (six in anestrus, five in estrus, and six in diestrus. An intravenous glucose tolerance test (IVGTT was performed in all patients by means of injection of 1mL/kg of a glucose 50% solution (500mg/kg, with blood sample collection for glucose determination at 0, 3, 5, 7, 15, 30, 45 and 60 minutes after glucose infusion. Muscle samples, taken after spaying surgery, were immediately frozen in liquid nitrogen and then stored at -80 ºC until the membranes were prepared by sequential centrifugation after being homogenized. For binding studies, membranes were incubated in the presence of 20,000cpm of human 125I-insulin and in increasing concentrations of unlabeled human regular insulin for cold saturation. The IVGTT showed no differences among bitches during the estrous cycle regarding baseline glycemia or glycemic response after glucose infusion. Two insulin binding sites - high-affinity and low-affinity ones - were detected by Scatchard analysis, and significant statistical differences were observed in the dissociation constant (Kd1 and maximum binding capacity (Bmax1 of the high-affinity binding sites. The Kd1 for the anestrus group (6.54±2.77nM/mg of protein was smaller (P<0.001 than for the estrus (28.54±6.94nM/mg of protein and diestrus (15.56±3.88nM/mg of protein groups. Bmax1 in the estrus (0.83±0.42nM/mg of protein and diestrus (1.24±0.24nM/mg of protein groups were also higher (P<0.001 than the values observed in anestrus (0.35±0.06nM/mg of protein. These results indicate modulation of insulin binding characteristics during different phases of the estrous

  6. Thylakoids promote release of the satiety hormone cholecystokinin while reducing insulin in healthy humans

    DEFF Research Database (Denmark)

    Köhnke, Rickard; Lindbo, Agnes; Larsson, Therese

    2009-01-01

    (CCK, leptin and ghrelin), insulin and blood metabolites (glucose and free fatty acids). RESULTS: The CCK level increased, in particular between the 120 min time-point and onwards, the ghrelin level was reduced at 120 min and leptin level increased at 360 min after intake of the thylakoid-enriched meal....... The insulin level was reduced, whereas glucose concentrations were unchanged. Free fatty acids were reduced between time-point 120 min and onwards after the thylakoid meal. CONCLUSIONS: The addition of thylakoids to energy-dense food promotes satiety signals and reduces insulin response during a single meal......OBJECTIVE: The effects of a promising new appetite suppressor named "thylakoids" (membrane proteins derived from spinach leaves) were examined in a single meal in man. Thylakoids inhibit the lipase/colipase hydrolysis of triacylglycerols in vitro and suppress food intake, decrease body-weight gain...

  7. Cephalic phase secretion of insulin and other enteropancreatic hormones in humans

    DEFF Research Database (Denmark)

    Veedfald, Simon; Plamboeck, Astrid; Deacon, Carolyn F

    2016-01-01

    Enteropancreatic hormone secretion is thought to include a cephalic phase, but the evidence in humans is ambiguous. We studied vagally induced gut hormone responses with and without muscarinic blockade in 10 glucose-clamped healthy men (age: 24.5 ± 0.6 yr, means ± SE; body mass index: 24.0 ± 0.5 kg...... and abolished the MSF response. Neither insulin, C-peptide, glucose-dependent insulinotropic polypeptide (GIP), nor glucagon-like peptide-1 (GLP-1) levels changed in response to MSF or atropine. Glucagon and ghrelin levels were markedly attenuated by atropine prior to and during the clamp: at t = 105 min...... and 3.7 ± 21 pg/ml (means ± SE), P phase response was absent for insulin, glucagon, GLP-1, GIP, and ghrelin....

  8. Neutrophils Release Metalloproteinases during Adhesion in the Presence of Insulin, but Cathepsin G in the Presence of Glucagon

    Directory of Open Access Journals (Sweden)

    Natalia V. Fedorova

    2018-01-01

    Full Text Available In patients with reperfusion after ischemia and early development of diabetes, neutrophils can attach to blood vessel walls and release their aggressive bactericide agents, which damage the vascular walls. Insulin and 17β-estradiol (E2 relieve the vascular complications observed in metabolic disorders. In contrast, glucagon plays an essential role in the pathophysiology of diabetes. We studied the effect of hormones on neutrophil secretion during adhesion to fibronectin. Amino acid analysis revealed that proteins secreted by neutrophils are characterized by a stable amino acid profile enriched with glutamate, leucine, lysine, and arginine. The total amount of secreted proteins defined as the sum of detected amino acids was increased in the presence of insulin and reduced in the presence of glucagon. E2 did not affect the amount of protein secretion. Proteome analysis showed that in the presence of insulin and E2, neutrophils secreted metalloproteinases MMP-9 and MMP-8 playing a key role in modulation of the extracellular matrix. In contrast, glucagon induced the secretion of cathepsin G, a key bactericide protease of neutrophils. Cathepsin G can promote the development of vascular complications because of its proinflammatory activity and ability to stimulate neutrophil adhesion via the proteolysis of surface receptors.

  9. C peptide and insulin releasing RIA test for the investigation of β cell function in diabetic patients

    International Nuclear Information System (INIS)

    Shi Ailan; Zhu Chengmo; Wang Qiyu; Wang Ping

    1993-01-01

    Results of C-peptide releasing RIA test in 15 normals, and 100 diabetes were summarized and compared with glucose tolerance test and serum insulin for investigating the characteristics in different types of diabetes and evaluating the functional state of islet β cell. In 36 cases of IDDM the fasting blood sugar was significantly increased, and further elevated after eating of bread, but its peak time delay in 2 hours (normalin 1 hour). The level of basal C-peptide is very low, but shows slightly weak on no response after bread stimulating test, all of this denotes that β cell function of islets severely injured. The increasing of fasting blood sugar in 64 cases of NIDDM was lower than those of IDDM. Fasting C-peptide and insulin was normal or increased, their peak value increased after bread stimulation with peak time delayed also at 2 hours. Above results demonstrated that the function of islets B cell decreased but not fully deprived. It is concluded that C-peptide and insulin stimulating test, together with OGTT can accurately assess the islets β cell function, and also have important significance in the pathogenesis, classification and staging, prognostic evaluation and monitoring of therapeutic effects in diabetes

  10. Change in body mass index and insulin resistance after 1-year treatment with gonadotropin-releasing hormone agonists in girls with central precocious puberty.

    Science.gov (United States)

    Park, Jina; Kim, Jae Hyun

    2017-03-01

    Gonadotropin-releasing hormone agonist (GnRHa) is used as a therapeutic agent for central precocious puberty (CPP); however, increased obesity may subsequently occur. This study compared body mass index (BMI) and insulin resistance during the first year of GnRHa treatment for CPP. Patient group included 83 girls (aged 7.0-8.9 years) with developed breasts and a peak luteinizing hormone level of ≥5 IU/L after GnRH stimulation. Control group included 48 prepubertal girls. BMI and insulin resistance-related indices (homeostasis model assessment of insulin resistance [HOMA-IR] and quantitative insulin sensitivity check index [QUICKI]) were used to compare the groups before treatment, and among the patient group before and after GnRHa treatment. No statistical difference in BMI z -score was detected between the 2 groups before treatment. Fasting insulin and HOMA-IR were increased in the patient group; fasting glucose-to-insulin ratio and QUICKI were increased in the control group (all P resistance compared to the control group. During GnRHa treatment, normal-weight individuals showed increased BMI z -scores without increased insulin resistance; the overweight group demonstrated increased insulin resistance without significantly altered BMI z -scores. Long-term follow-up of BMI and insulin resistance changes in patients with CPP is required.

  11. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Johan Holmkvist

    Full Text Available BACKGROUND: Polymorphisms in the potassium channel, voltage-gated, KQT-like subfamily, member 1 (KCNQ1 have recently been reported to associate with type 2 diabetes. The primary aim of the present study was to investigate the putative impact of these KCNQ1 polymorphisms (rs2283228, rs2237892, rs2237895, and rs2237897 on estimates of glucose stimulated insulin release. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses. Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean+/-SD: (CC 277+/-160 vs. (AC 280+/-164 vs. (AA 299+/-200 pmol/l, p = 0.008 after an oral glucose load, insulinogenic index (29.6+/-17.4 vs. 30.2+/-18.7vs. 32.2+/-22.1, p = 0.007, incremental area under the insulin curve (20,477+/-12,491 vs. 20,503+/-12,386 vs. 21,810+/-14,685, p = 0.02 among the 4,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified for the less common diabetes risk alleles of rs2237892, rs2237897, or rs2283228. CONCLUSION: The minor C-allele of rs2237895 of KCNQ1, which has a prevalence of about 42% among Caucasians was associated with reduced measures of insulin release following an oral glucose load suggesting that the increased risk of type 2 diabetes, previously reported for this variant, likely is mediated through an impaired beta cell function.

  12. The L-alpha-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in L-arginine-induced insulin release

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Clemmensen, Christoffer; Johansen, Lars Dan

    2013-01-01

    insulin secretion; therefore, the receptor has been hypothesized to have a role in regulating glucose metabolism. In this study, we demonstrate that GPRC6A is expressed in islets of Langerhans, but activation of the receptor by L-arginine did not stimulate insulin secretion. We also investigated central...... metabolic parameters in GPRC6A knockout mice compared with wildtype littermates and found no difference in glucose metabolism or body fat percentage when mice were administered a standard chow diet. In conclusion, our data do not support a role for GPRC6A in L-arginine-induced insulin release and glucose...

  13. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint.

    Science.gov (United States)

    Arkell, Karolina; Knutson, Hans-Kristian; Frederiksen, Søren S; Breil, Martin P; Nilsson, Bernt

    2018-01-12

    With the shift of focus of the regulatory bodies, from fixed process conditions towards flexible ones based on process understanding, model-based optimization is becoming an important tool for process development within the biopharmaceutical industry. In this paper, a multi-objective optimization study of separation of three insulin variants by reversed-phase chromatography (RPC) is presented. The decision variables were the load factor, the concentrations of ethanol and KCl in the eluent, and the cut points for the product pooling. In addition to the purity constraints, a solubility constraint on the total insulin concentration was applied. The insulin solubility is a function of the ethanol concentration in the mobile phase, and the main aim was to investigate the effect of this constraint on the maximal productivity. Multi-objective optimization was performed with and without the solubility constraint, and visualized as Pareto fronts, showing the optimal combinations of the two objectives productivity and yield for each case. Comparison of the constrained and unconstrained Pareto fronts showed that the former diverges when the constraint becomes active, because the increase in productivity with decreasing yield is almost halted. Consequently, we suggest the operating point at which the total outlet concentration of insulin reaches the solubility limit as the most suitable one. According to the results from the constrained optimizations, the maximal productivity on the C 4 adsorbent (0.41 kg/(m 3  column h)) is less than half of that on the C 18 adsorbent (0.87 kg/(m 3  column h)). This is partly caused by the higher selectivity between the insulin variants on the C 18 adsorbent, but the main reason is the difference in how the solubility constraint affects the processes. Since the optimal ethanol concentration for elution on the C 18 adsorbent is higher than for the C 4 one, the insulin solubility is also higher, allowing a higher pool concentration

  14. Increased plasma ghrelin suppresses insulin release in wethers fed with a high-protein diet.

    Science.gov (United States)

    Takahashi, T; Sato, K; Kato, S; Yonezawa, T; Kobayashi, Y; Ohtani, Y; Ohwada, S; Aso, H; Yamaguchi, T; Roh, S G; Katoh, K

    2014-06-01

    Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet. © 2014 Society for Endocrinology.

  15. Xylitol vs glucose: Effect on the rate of gastric emptying and motilin, insulin, and gastric inhibitory polypeptide release

    International Nuclear Information System (INIS)

    Salminen, E.K.; Salminen, S.J.; Porkka, L.; Kwasowski, P.; Marks, V.; Koivistoinen, P.E.

    1989-01-01

    The effect of xylitol and glucose on the rate of gastric emptying and intestinal transit and on motilin, gastric inhibitory polypeptide (GIP), and insulin release were studied in human volunteers. A single oral dose of 200 mL water containing 30 g glucose or 30 g xylitol, mixed with a 99m technetium-tin (99mTc-Sn) colloid, was used. Similar dosing without the label was used in motilin, GIP, and insulin studies. Xylitol decreased the rate of gastric emptying but concomitantly accelerated intestinal transit compared with glucose. The half-times for gastric emptying were 77.5 +/- 4.6 and 39.8 +/- 3.4 min after ingestion of xylitol and glucose solutions, respectively. Glucose suppressed motilin and stimulated GIP secretion; xylitol stimulated motilin secretion but had no effect on GIP, which is currently the main candidate for the role of enterogastrone. The accelerated intestinal transit and increase in plasma motilin observed after xylitol ingestion were thought to be causally related to the diarrhea and gastrointestinal discomfort produced by it

  16. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.

    Science.gov (United States)

    Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc

    2017-06-06

    Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Optimal dose and timing of insulin Aspart to mimic first phase insulin response in patients with recently onset type 2 diabetes

    DEFF Research Database (Denmark)

    Gredal, C.; Rosenfalck, A.; Dejgaard, A.

    2008-01-01

    OBJECTIVE: To assess the optimal dose and timing of subcutaneous injection of insulin Aspart (IAsp) in relation to meal to mimic first phase insulin response in patients with recently diagnosed type 2 diabetes. DESIGN AND METHODS: Twenty patients were randomised in a double blind, double dummy...... design to four standard meal tests with pre-meal injection of insulin Aspart 0.08 IU/kg BW 30 min before the meal, insulin Aspart 0.04 IU/kg BW 30 or 15 min before the meal and placebo. RESULTS: All three insulin regimes significantly reduced postprandial glucose increment (area under the curve AUC(-30...... injection of IAsp 0.08 IU/kg BW. No difference in postprandial glucose profile was demonstrated whether IAsp 0.04 IU/kg BW was administrated 15 or 30 min before mealtime. CONCLUSIONS: IAsp 0.04IU/kg BW injected subcutaneously 15 or 30 min before meal reduced the postprandial blood glucose increment without...

  18. Effect of insulin phase state in water on its radiation stability

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, N N; Ivanova, A I; Tal' roze, V L; Trofimov, V I; Fedotov, V P [Nauchno-Issledovatel' skij Inst. po Biologicheskim Ispytaniyam Khimicheskikh Soedinenij (USSR); AN SSSR, Moscow. Inst. Khimicheskoj Fiziki; Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Ehksperimental' noj Ehndokrinologii i Khimii Gormonov)

    1980-01-01

    Radiation stability of the aqueous solution and the insulin suspension is investigated. The degree of radiation transformations is determined by means of chromatography on paper and with the method of cramp reaction in mice. ..gamma..-irradiation is carried out at room temperature, at dose rate of 0.75 M rad/h. The data obtained prove the earlier suggested hypothesis of a phase division of a biologically active compound, personally medicinal substance and water (for example, in the case of which permits to prolong the preservation of medicine in the case of irradiation.

  19. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    Science.gov (United States)

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  20. Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Dirksen, Carsten; Bojsen-Møller, Kirstine N; Jørgensen, Nils Bruun

    2013-01-01

    Roux-en-Y gastric bypass (RYGB) improves glycaemic control in part by increasing postprandial insulin secretion through exaggerated glucagon-like peptide (GLP)-1 release. However, it is unknown whether islet cell responsiveness to i.v. glucose, non-glucose (arginine) and incretin hormones...

  1. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  2. Agricultural production - Phase 2. Indonesia. Controlled release pesticide formulations

    International Nuclear Information System (INIS)

    Vollner, L.

    1992-01-01

    At the request of the Government of Indonesia, an IAEA expert undertook a two weeks mission from 2 to 15 April 1991, and continued it from the 9 to 22 November 1991 at the Center for Application of Isotopes and Radiation (CAIR) of the National Atomic Energy Agency, BATAN in Jakarta. Expert discussed the project and carried out experiments together with the staff of the center, introducing shellac (description in part II) as a candidate for controlled release formulations. Formulations of carbofuran, butachlor, 2,4-D and diazinon were carried out, using sand and cocconut shells as carriers. Release rates of a.i. into water have been checked and further work has been discussed. Expert assessed further needs for supply of instruments, accessories and chemicals. (author)

  3. Inkjet printing of insulin microneedles for transdermal delivery.

    Science.gov (United States)

    Ross, Steven; Scoutaris, Nicolaos; Lamprou, Dimitrios; Mallinson, David; Douroumis, Dennis

    2015-08-01

    Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin-polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin's alpha helices and β-sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

  4. Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired β-cell function.

    Directory of Open Access Journals (Sweden)

    Silke A Herzberg-Schäfer

    Full Text Available BACKGROUND: To date, fasting state- and different oral glucose tolerance test (OGTT-derived measures are used to estimate insulin release with reasonable effort in large human cohorts required, e.g., for genetic studies. Here, we evaluated twelve common (or recently introduced fasting state-/OGTT-derived indices for their suitability to detect genetically determined β-cell dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: A cohort of 1364 White European individuals at increased risk for type 2 diabetes was characterized by OGTT with glucose, insulin, and C-peptide measurements and genotyped for single nucleotide polymorphisms (SNPs known to affect glucose- and incretin-stimulated insulin secretion. One fasting state- and eleven OGTT-derived indices were calculated and statistically evaluated. After adjustment for confounding variables, all tested SNPs were significantly associated with at least two insulin secretion measures (p≤0.05. The indices were ranked according to their associations' statistical power, and the ranks an index obtained for its associations with all the tested SNPs (or a subset were summed up resulting in a final ranking. This approach revealed area under the curve (AUC(Insulin(0-30/AUC(Glucose(0-30 as the best-ranked index to detect SNP-dependent differences in insulin release. Moreover, AUC(Insulin(0-30/AUC(Glucose(0-30, corrected insulin response (CIR, AUC(C-Peptide(0-30/AUC(Glucose(0-30, AUC(C-Peptide(0-120/AUC(Glucose(0-120, two different formulas for the incremental insulin response from 0-30 min, i.e., the insulinogenic indices (IGI(2 and IGI(1, and insulin 30 min were significantly higher-ranked than homeostasis model assessment of β-cell function (HOMA-B; p<0.05. AUC(C-Peptide(0-120/AUC(Glucose(0-120 was best-ranked for the detection of SNPs involved in incretin-stimulated insulin secretion. In all analyses, HOMA-β displayed the highest rank sums and, thus, scored last. CONCLUSIONS/SIGNIFICANCE: With AUC(Insulin(0

  5. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Science.gov (United States)

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  6. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, M H; Hvidberg, A; Juul, A

    1995-01-01

    levels of insulin-like growth factor-I (IGF-I), IGF-binding protein-3 (IGFBP-3), as well as insulin in obese subjects before and after a massive weight loss. We studied 18 obese subjects (age, 26 +/- 1 yr; body mass index, 40.9 +/- 1.1 kg/m2); 18 normal age-, and sex-matched control subjects; and 9...... using anthropometric measurements and dual energy x-ray absorptiometry scanning (DXA). In the obese subjects, 24-h spontaneous GH release profiles and the GH responses to insulin-induced hypoglycemia and L-arginine as well as basal IGF-I levels and the IGF-I/IGFBP-3 molar ratio were decreased, whereas...

  7. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Kai I. Cheang

    2016-01-01

    Full Text Available Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG may contribute to insulin resistance in polycystic ovary syndrome (PCOS. Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n=16 and normal (n=15 women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUCDCI-IPG, AUCinsulin, and AUCDCI-IPG/AUCinsulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUCDCI-IPG/AUCinsulin at baseline and a significant relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p=0.0003, which was not present in controls. Weight loss was similar between PCOS (−4.08 kg and normal women (−4.29 kg, p=0.6281. Weight loss in PCOS women did not change the relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p=0.0100, and this relationship remained absent in control women. Conclusion. The association between AUCDCI-IPG/AUCinsulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity.

  8. Impaired first-phase insulin response predicts postprandial blood glucose increment in patients with recently diagnosed type 2 diabetes

    DEFF Research Database (Denmark)

    Gredal, C; Rosenfalck, A M; Dejgaard, Anders

    2007-01-01

    The aim of the study was to evaluate the relationship between postprandial blood glucose and first-phase insulin response and, furthermore, to assess whether the intravenous glucagon stimulation test can be used as a predictor for increased postprandial glucose in patients with recently diagnosed...... type 2 diabetes....

  9. Agricultural production - Phase 2. Indonesia. Controlled release pesticide formulations

    International Nuclear Information System (INIS)

    Vollner, L.

    1991-01-01

    At the request of the Government of Indonesia, an IAEA expert undertook a two weeks (of one month) mission from 2 to 15 April 1991 to the Center for Application of Isotopes and Radiation (CAIR) of BATAN in Jakarta. Expert held a seminar, discussed and carried out experiments on Controlled Release Formulations (CRF). Discussed further experiments, cleaned and reinstalled an ECD of the Shimadzu gas chromatograph and optimized the analytical conditions for chlorinated pesticides. He also developed a project for possible submission to the Government of Germany, to allow the staff of CAIR to undertake a more intensive research and to be able to set up training facilities in his research center in Munich/Germany. He furthermore assessed needs for supply of instruments, accessories and radiolabelled pesticides. An agreement for continuing the scientific and technical mission was obtained with the staff of CAIR, in connection with the DDT-RCM at the end of November 1991, provided approval by IAEA

  10. Chronic moderate alcohol drinking alters insulin release without affecting cognitive and emotion-like behaviors in rats.

    Science.gov (United States)

    Nelson, Nnamdi G; Suhaidi, Faten A; Law, Wen Xuan; Liang, Nu-Chu

    2017-12-16

    of insulin release for proper glucose clearance. Such an effect was not observed in females. This landmark study shows that chronic moderate alcohol consumption can have negative metabolic consequences in the absence of overt behavioral deficits, especially in males. Published by Elsevier Inc.

  11. Change in body mass index and insulin resistance after 1-year treatment with gonadotropin-releasing hormone agonists in girls with central precocious puberty

    Directory of Open Access Journals (Sweden)

    Jina Park

    2017-03-01

    Full Text Available PurposeGonadotropin-releasing hormone agonist (GnRHa is used as a therapeutic agent for central precocious puberty (CPP; however, increased obesity may subsequently occur. This study compared body mass index (BMI and insulin resistance during the first year of GnRHa treatment for CPP.MethodsPatient group included 83 girls (aged 7.0–8.9 years with developed breasts and a peak luteinizing hormone level of ≥5 IU/L after GnRH stimulation. Control group included 48 prepubertal girls. BMI and insulin resistance-related indices (homeostasis model assessment of insulin resistance [HOMA-IR] and quantitative insulin sensitivity check index [QUICKI] were used to compare the groups before treatment, and among the patient group before and after GnRHa treatment.ResultsNo statistical difference in BMI z-score was detected between the 2 groups before treatment. Fasting insulin and HOMA-IR were increased in the patient group; fasting glucose-to-insulin ratio and QUICKI were increased in the control group (all P<0.001. In normal-weight subjects in the patient group, BMI z-score was significantly increased during GnRHa treatment (−0.1±0.7 vs. 0.1±0.8, P<0.001, whereas HOMA-IR and QUICKI exhibited no differences. In overweight subjects in the patient group; BMI z-score and HOMA-IR were not significantly different, whereas QUICKI was significantly decreased during GnRHa treatment (0.35±0.03 vs. 0.33±0.02, P=0.044.ConclusionGirls with CPP exhibited increased insulin resistance compared to the control group. During GnRHa treatment, normal-weight individuals showed increased BMI z-scores without increased insulin resistance; the overweight group demonstrated increased insulin resistance without significantly altered BMI z-scores. Long-term follow-up of BMI and insulin resistance changes in patients with CPP is required.

  12. Large-scale studies of the HphI insulin gene variable-number-of-tandem-repeats polymorphism in relation to Type 2 diabetes mellitus and insulin release

    DEFF Research Database (Denmark)

    Hansen, S K; Gjesing, A P; Rasmussen, S K

    2004-01-01

    The class III allele of the variable-number-of-tandem-repeats polymorphism located 5' of the insulin gene (INS-VNTR) has been associated with Type 2 diabetes and altered birthweight. It has also been suggested, although inconsistently, that the class III allele plays a role in glucose-induced ins......The class III allele of the variable-number-of-tandem-repeats polymorphism located 5' of the insulin gene (INS-VNTR) has been associated with Type 2 diabetes and altered birthweight. It has also been suggested, although inconsistently, that the class III allele plays a role in glucose...

  13. The impact of extended release exenatide as adjuvant therapy on hemoglobin A1C, weight, and total daily dose of insulin in patients with type 2 diabetes mellitus using U-500 insulin.

    Science.gov (United States)

    Farwig, Phillip A; Zielinski, Angela J; Accursi, Mallory L; Burant, Christopher J

    2017-12-01

    To evaluate the efficacy and safety of adjuvant exenatide extended release (ER) therapy in patients treated with regular U-500 insulin. In this retrospective chart review at an ambulatory care center in the Midwest, 18 patients with type 2 diabetes being treated with regular U-500 insulin and adjuvant exenatide ER were identified. These patients were evaluated for outcomes following the addition of exenatide ER. The primary outcome was change in HbA 1C from baseline to 3, 6, and 12months. Secondary outcomes included change in weight, total daily dose (TDD) of insulin, and hypoglycemia. Repeated measures ANOVA was performed to assess the differences in mean scores over four time periods. A total of 18 of 50 patients met inclusion criteria with sufficient data to be included in analysis. HbA 1C showed non-significant findings from baseline to 12months (8.08% vs. 8.23%; p=0.75). A non-significant, modest weight loss occurred (146.4kgvs. 144.2kg; -2.2kg; p=0.31). A significant decrease in TDD of insulin was observed (378 units vs. 326 units; p1). There was a trend towards hypoglycemia from baseline to month 3 post addition of exenatide ER (0.33 events vs. 1.33 events; p=0.055). In patients treated with regular U-500 insulin, adjuvant exenatide ER therapy showed no significant improvement in HbA 1C , but did show modest weight loss as well as decreased insulin requirements to achieve a HbA 1C that was comparable to baseline. Published by Elsevier B.V.

  14. Retroendocytosis of insulin in rat adipocytes

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1986-01-01

    A variety of ligands internalized by receptor-mediated endocytosis follow a short circuit pathway that does not lead to degradation but results in rapid exocytosis of intact ligand, a process termed retroendocytosis. We studied the time course of [ 125 I]iodoinsulin processing and retroendocytosis after internalization in isolated rat adipocytes. After steady state binding and internalization, surface receptor-bound insulin was removed by exposing cells to a low pH at low temperatures. The cells containing internalized [ 125 I]iodoinsulin were reincubated in fresh medium; subsequently, the radioactivity remaining within the cells and released into the medium were analyzed at various times by trichloroacetic acid (TCA) precipitation, Sephadex G-50 gel filtration, and reverse phase HPLC. Cell-associated radioactivity progressively decreased after reincubation in 37 C buffer, with 50% released in 9 min and 85% by 45 min. In the media, TCA-precipitable material appeared quickly, with a t1/2 of 2 min, and plateaued by 10 min. TCA-soluble material was released continually throughout the 45-min period. The release of both TCA-precipitable and TCA-soluble material was temperature and energy dependent. Sephadex G-50 chromatography demonstrated the loss of insulin from the intracellular pool and its appearance in the medium with a time course similar to that of TCA-precipitable material. Reverse phase HPLC demonstrated that the intracellular and medium radioactivity eluting in peak II (insulin peak) on Sephadex G-50 was composed of both intact insulin and intermediates. After the internalization of insulin, rat adipocytes release not only small mol wt degradation products of insulin, but also insulin intermediates and intact insulin. The rate of retroendocytosis reported here is almost identical to the rate of insulin receptor recycling in rat adipocytes

  15. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  16. Human interleukin 1. beta. stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca sup 2+ handling

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1{beta} in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca{sup 2+} handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations (<1 min) interleukin 1{beta} did not affect the production of inositoltrisphosphate. Addition of interleukin 1{beta} affected neither the cytoplasmic free Ca{sup 2+} concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a {sup 32}P-labelled substrate for this enzyme, was not altered by interleukin 1{beta}. Separation of {sup 32}P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1{beta} are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca{sup 2+} handling of the B-cells. (author).

  17. Human interleukin 1β stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca2+ handling

    International Nuclear Information System (INIS)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1β in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca 2+ handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations ( 2+ concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a 32 P-labelled substrate for this enzyme, was not altered by interleukin 1β. Separation of 32 P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1β are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca 2+ handling of the B-cells. (author)

  18. Phases of information release during black hole evaporation

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2014-01-01

    In a recent article, we have shown how quantum fluctuations of the background geometry modify Hawking’s density matrix for black hole (BH) radiation. Hawking’s diagonal matrix picks up small off-diagonal elements whose influence becomes larger with the number of emitted particles. We have calculated the “time-of-first-bit', when the first bit of information comes out of the BH, and the “transparency time', when the rate of information release becomes order unity. We have found that the transparency time is equal to the “Page time”, when the BH has lost half of its initial entropy to the radiation, in agreement with Page’s results. Here, we improve our previous calculation by keeping track of the time of emission of the Hawking particles and their back-reaction on the BH. Our analysis reveals a new time scale, the radiation “coherence time”, which is equal to the geometric mean of the evaporation time and the light crossing time. We find, as for our previous treatment, that the time-of-first-bit is equal to the coherence time, which is much shorter than the Page time. But the transparency time is now much later than the Page time, just one coherence time before the end of evaporation. Close to the end, when the BH is parametrically of Planckian dimensions but still large, the coherence time becomes parametrically equal to the evaporation time, thus allowing the radiation to purify. We also determine the time dependence of the entanglement entropy of the early and late-emitted radiation. This entropy is small during most of the lifetime of the BH, but our qualitative analysis suggests that it becomes parametrically maximal near the end of evaporation

  19. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40

    DEFF Research Database (Denmark)

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole

    2011-01-01

    of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2...... found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1......(-/-) knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components...

  20. Effects of immediate-release niacin and dietary fatty acids on acute insulin and lipid status in individuals with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Lopez, Sergio; Bermudez, Beatriz; Guerrero, Juan M; Abia, Rocio; Muriana, Francisco Jg

    2018-04-01

    The nature of dietary fats profoundly affects postprandial hypertriglyceridemia and glucose homeostasis. Niacin is a potent lipid-lowering agent. However, limited data exist on postprandial triglycerides and glycemic control following co-administration of high-fat meals with a single dose of niacin in subjects with metabolic syndrome (MetS). The aim of the study was to explore whether a fat challenge containing predominantly saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated (LCPUFAs) fatty acids together with a single dose of immediate-release niacin have a relevant role in postprandial insulin and lipid status in subjects with MetS. In a randomized crossover within-subject design, 16 men with MetS were given a single dose of immediate-release niacin (2 g) and ∼15 cal kg -1 body weight meals containing either SFAs, MUFAs, MUFAs plus omega-3 LCPUFAs or no fat. At baseline and hourly over 6 h, plasma glucose, insulin, C-peptide, triglycerides, free fatty acids (FFAs), total cholesterol, and both high- and low-density lipoprotein cholesterol were assessed. Co-administered with niacin, high-fat meals significantly increased the postprandial concentrations of glucose, insulin, C-peptide, triglycerides, FFAs and postprandial indices of β-cell function. However, postprandial indices of insulin sensitivity were significantly decreased. These effects were significantly attenuated with MUFAs or MUFAs plus omega-3 LCPUFAs when compared with SFAs. In the setting of niacin co-administration and compared to dietary SFAs, MUFAs limit the postprandial insulin, triglyceride and FFA excursions, and improve postprandial glucose homeostasis in MetS. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Plasma Asprosin Concentrations Are Increased in Individuals with Glucose Dysregulation and Correlated with Insulin Resistance and First-Phase Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Yuren Wang

    2018-01-01

    Full Text Available Background. Adipokines are reported to participate in many common pathologic processes of glucose dysregulation, such as insulin resistance, β-cell dysfunction, and chronic inflammation. Objective. To detect the concentrations of plasma asprosin in subjects with impaired glucose regulation (IGR and newly diagnosed type 2 diabetes (nT2DM and its relationship to parameters of glucose and lipid metabolism, insulin resistance, and pancreatic β-cell function. Methods. 143 eligible participants were included and were divided into three groups including normal glucose regulation (NGR, n=52, IGR (n=40, and nT2DM group (n=51. The intravenous glucose tolerance test (IVGTT and clinical and biochemical parameters were measured in all participants. Results. Plasma asprosin levels were higher in IGR (82.40 ± 91.06 ng/mL, P<0.001 and nT2DM (73.25 ± 91.69 ng/mL, P<0.001 groups compared with those in the NGR (16.22 ± 9.27 ng/mL group, especially in IGR subjects. Correlation analysis showed that plasma asprosin levels were positively correlated with waist circumference (Wc, fasting plasma glucose (FPG, postchallenge plasma glucose (2hPG, HbA1c, triglyceride (TG, and homeostasis model assessment for insulin resistance (HOMA-IR and negatively correlated with homeostasis model assessment for β-cell function (HOMA-β, area under the curve of the first-phase (0–10 min insulin secretion (AUC, acute insulin response (AIR, and glucose disposition index (GDI (all P<0.05. Multiple logistical regression analyses revealed that plasma asprosin concentrations were significantly correlated with IGR and nT2DM after controlling for age, sex, BMI, and WHR. Conclusions. Circulating asprosin might be a predictor of early diagnosis in DM and might be a potential therapeutic target for prediabetes and T2DM.

  2. Similar weight-adjusted insulin secretion and insulin sensitivity in short-duration late autoimmune diabetes of adulthood (LADA) and Type 2 diabetes

    DEFF Research Database (Denmark)

    Juhl, C B; Bradley, U; Holst, Jens Juul

    2014-01-01

    AIMS: To explore insulin sensitivity and insulin secretion in people with latent autoimmune diabetes in adulthood (LADA) compared with that in people with Type 2 diabetes. METHODS: A total of 12 people with LADA, defined as glutamic acid decarboxylase (GAD) antibody positivity and > 1 year...... of insulin independency (group A) were age-matched pairwise to people with Type 2 diabetes (group B) and to six people with Type 2 diabetes of similar age and BMI (group C). β-cell function (first-phase insulin secretion and assessment of insulin pulsatility), insulin sensitivity (hyperinsulinemic......-euglycemic clamp) and metabolic response during a mixed meal were studied. RESULTS: Both first-phase insulin secretion and insulin release during the meal were greater (P = 0.05 and P = 0.009, respectively) in Type 2 diabetes as compared with LADA; these differences were lost on adjustment for BMI (group C...

  3. Effect of the hexane extract of Piper auritum on insulin release from β-cell and oxidative stress in streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Gutierrez, Rosa Martha Perez

    2012-10-01

    The large-leafed perennial plant Piper auritum known as Hoja Santa, is used for its leaves that because of their spicy aromatic scent and flavor have an important presence in Mexican cuisine, and in many regions, this plant is known for its therapeutic properties. In the present study, we investigated the effect of hexane, chloroform and methanol extracts from Piper auritum on cell culture system and the effect in streptozotocin-induced type 1 diabetic rats treated by 28 days on the physiological, metabolic parameters and oxidative stress. The hexane extract of P. auritum (HS) treatment significantly reduced the intake of both food, water and body weight loss as well as levels of blood glucose, serum cholesterol, triglycerides and increase HDL-cholesterol. After 4-week administration of HS antioxidant enzyme as SOD, CAT, GSH, GPx in pancreas were determined. These enzyme increased significantly compared with those of the diabetic rats control and normal animals. For all estimated, the results of HS treated groups leading to a restoration of the defense mechanism. The treatment also improves pancreatic TBARS-reactive substance level and serum NO and iNOS. To determine the insulin releasing activity, after extract treatment the serum and pancreatic sections were processed for examination of insulin-releasing activity using an immunocytochemistry kit. The results showed that administration of the hexane extract (200 and 400 mg/kg) exhibited a significant increase in serum and pancreas tissue insulin. Administration of streptozotocin decreased the insulin secretory activity in comparison with intact rats, but treatment with the HS extract increased significantly the activity of the beta cells in comparison with the diabetic control rats. The extract decreased serum glucose in streptozotocin-induced diabetic rats and increased insulin release from the beta cells of the pancreas. In cultured RIN-5F cells, we examined whether hexane extract of P. auritum would protect the

  4. A Genome-Wide Association Study of IVGTT-Based Measures of First Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants

    DEFF Research Database (Denmark)

    Wood, Andrew R; Jonsson, Anna; Jackson, Anne U

    2017-01-01

    Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intrav...

  5. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Energy Technology Data Exchange (ETDEWEB)

    Khan, I. John [The State Univ. of New Jersey, Piscataway, NJ (United States); Murthy, N. Sanjeeva [The State Univ. of New Jersey, Piscataway, NJ (United States); Kohn, Joachim [The State Univ. of New Jersey, Piscataway, NJ (United States)

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  6. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Directory of Open Access Journals (Sweden)

    Joachim Kohn

    2012-10-01

    Full Text Available Voclosporin is a highly potent, new cyclosporine-A derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. We therefore selected it as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE and desaminotyrosyl-tyrosine (DT, and the hydrophilic component is poly(ethylene glycol (PEG. Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide (PLGA, which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  7. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Fehse, Frauke; Trautmann, Michael; Holst, Jens Juul

    2005-01-01

    CONTEXT: First-phase insulin secretion (within 10 min after a sudden rise in plasma glucose) is reduced in type 2 diabetes mellitus (DM2). The incretin mimetic exenatide has glucoregulatory activities in DM2, including glucose-dependent enhancement of insulin secretion. OBJECTIVE: The objective...... of the study was to determine whether exenatide can restore a more normal pattern of insulin secretion in subjects with DM2. DESIGN: Fasted subjects received iv insulin infusion to reach plasma glucose 4.4-5.6 mmol/liter. Subjects received iv exenatide (DM2) or saline (DM2 and healthy volunteers), followed...... by iv glucose challenge. PATIENTS: Thirteen evaluable DM2 subjects were included in the study: 11 males, two females; age, 56 +/- 7 yr; body mass index, 31.7 +/- 2.4 kg/m2; hemoglobin A1c, 6.6 +/- 0.7% (mean +/- sd) treated with diet/exercise (n = 1), metformin (n = 10), or acarbose (n = 2). Controls...

  8. Preliminary study of a phase transformation in insulin crystals using synchrotron-radiation Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, C D; Stowell, B; Joshi, K K; Harding, M M; Maginn, S J; Dodson, G G

    1988-10-01

    Synchrotron-radiation Laue diffraction photographs have been recorded showing the transformation of single 4Zn insulin crystals (a=80.7 (1), c=37.6 (1) A, space group R3) to 2Zn insulin (a=82.5 (1), c=34.0 (1) A, space group R3). The transformation was brought about by changing the mother liquor in the capillary in which the crystal was mounted. Photographs were taken at 10 min intervals (exposure time 3 s) from 0.5 h after mounting. They showed initially a well ordered 4Zn insulin crystal (d/sub min/ ca 2.3 A), then a poorly ordered, sometimes multiple, crystal, and finally a 2Zn insulin crystal, about as well ordered as the initial crystal.

  9. Distal gastrectomy in pancreaticoduodenectomy is associated with accelerated gastric emptying, enhanced postprandial release of GLP-1, and improved insulin sensitivity

    DEFF Research Database (Denmark)

    Harmuth, Stefan; Wewalka, Marlene; Holst, Jens Juul

    2014-01-01

    resistance (HOMA-IR) and oral glucose insulin sensitivity were calculated from glucose and insulin concentrations. RESULTS: Patients with Whipple procedure as compared to PPPD had accelerated gastric emptying (p = 0.01) which correlated with early (0-30 min) integrated GLP-1 (AUC30; r (2) = 0.61; p = 0.......02) and insulin sensitivity (r (2) = 0.41; p = 0.026) and inversely with HOMA-IR (r (2) = 0.17; p = 0.033). Two of 13 Whipple patients (15 %) as compared to seven of 13 after PPPD (54 %) had postload glucose concentrations (i.e. 120 min postmeal) ≥200 mg/dl (p 

  10. Differential response of early and late phases of skeletal muscle regeneration to exogenous supply of testosterone and insulin

    International Nuclear Information System (INIS)

    Qazi, I.; Riaz, S.

    2005-01-01

    Effect of insulin and testosterone, separately and in combination on the regeneration of skeletal fibres within intact extensor digitorum longus (EDL) muscle grafts was studied in mice. It was found that intraperitoneal supply of 2 mg/100 g body weight/day of testosterone accelerated skeletal muscle regeneration within ten days of grafting. The regenerated muscle fibres in such grafts attained significantly higher % recovery of average cross-sectional area (ACSA) than in the controls grafts. Later on, provision of the hormone did not further promote growth of the regenerated muscle fibres. In the insulin-supplemented animals (2 units/100 g body weight/day) the grafts showed hyperplasia and atrophy of the regenerating muscle fibres during the first and the last study periods, respectively. Histological and morphometric analysis of 20-day old EDL muscle regenerates that were supplied with either insulin or testosterone during the first 10-days of transplantation followed by hormone administration in reverse sequence revealed valuable differences. Supply of testosterone and then insulin escalated the process of regeneration and growth so that the ACSA of the regenerated muscle fibres in such grafts turned out to be significantly higher that in the corresponding stages of control, or when only insulin and only testosterone were administered. Reverse sequence of the administration of the hormones exerted negative effects and the regenerated muscle fibres showed various levels of atrophy. These results indicate the importance of identification of particular phases of the process of skeletal muscle regeneration that may be more responsive to anabolic agents. Proper sequence of administration of the hormones to promote the regeneration of skeletal muscle fibres in whole EDL muscle autotransplants is also explained. (author)

  11. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    Science.gov (United States)

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  12. Plasma adiponectin levels are increased despite insulin resistance in corticotropin-releasing hormone transgenic mice, an animal model of Cushing syndrome.

    Science.gov (United States)

    Shinahara, Masayuki; Nishiyama, Mitsuru; Iwasaki, Yasumasa; Nakayama, Shuichi; Noguchi, Toru; Kambayashi, Machiko; Okada, Yasushi; Tsuda, Masayuki; Stenzel-Poore, Mary P; Hashimoto, Kozo; Terada, Yoshio

    2009-01-01

    Adiponectin (AdN), an adipokine derived from the adipose tissue, has an insulin-sensitizing effect, and plasma AdN is shown to be decreased in obesity and/or insulin resistant state. To clarify whether changes in AdN are also responsible for the development of glucocorticoid-induced insulin resistance, we examined AdN concentration in plasma and AdN expression in the adipose tissue, using corticotropin-releasing hormone (CRH) transgenic mouse (CRH-Tg), an animal model of Cushing syndrome. We found, unexpectedly, that plasma AdN levels in CRHTg were significantly higher than those in wild-type littermates (wild-type: 19.7+/-2.5, CRH-Tg: 32.4+/-3.1 microg/mL, pAdN mRNA and protein levels were significantly decreased in the adipose tissue of CRH-Tg. Bilateral adrenalectomy in CRH-Tg eliminated both their Cushing's phenotype and their increase in plasma AdN levels (wild-type/sham: 9.4+/-0.5, CRH-Tg/sham: 15.7+/-2.0, CRH-Tg/ADX: 8.5+/-0.4 microg/mL). These results strongly suggest that AdN is not a major factor responsible for the development of insulin resistance in Cushing syndrome. Our data also suggest that glucocorticoid increases plasma AdN levels but decreases AdN expression in adipocytes, the latter being explained possibly by the decrease in AdN metabolism in the Cushing state.

  13. The effect of endogenously released glucose, insulin, glucagon-like peptide 1, ghrelin on cardiac output, heart rate, stroke volume, and blood pressure.

    Science.gov (United States)

    Hlebowicz, Joanna; Lindstedt, Sandra; Björgell, Ola; Dencker, Magnus

    2011-12-29

    Ingestion of a meal increases the blood flow to the gastrointestinal organs and affects the heart rate (HR), blood pressure and cardiac output (CO), although the mechanisms are not known. The aim of this study was to evaluate the effect of endogenously released glucose, insulin, glucagon-like peptide 1 (GLP-1), ghrelin on CO, HR, stroke volume (SV), and blood pressure. Eleven healthy men and twelve healthy women ((mean ± SEM) aged: 26 ± 0.2 y; body mass index: 21.8 ± 0.1 kg/m(2))) were included in this study. The CO, HR, SV, systolic and diastolic blood pressure, antral area, gastric emptying rate, and glucose, insulin, GLP-1 and ghrelin levels were measured. The CO and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting in both men and women (P blood pressure (P = 0.021, r = -0.681), and the change in SV (P = 0.008, r = -0.748) relative to the fasting in men. The insulin 0-30 min AUC was significantly correlated to the CO 0-30 min AUC (P = 0.002, r = 0.814) in men. Significant correlations were also found between the 0-120 min ghrelin and HR AUCs (P = 0.007, r = 0.966) in men. No statistically significant correlations were seen in women. Physiological changes in the levels of glucose, insulin, GLP-1 and ghrelin may influence the activity of the heart and the blood pressure. There may also be gender-related differences in the haemodynamic responses to postprandial changes in hormone levels. The results of this study show that subjects should not eat immediately prior to, or during, the evaluation of cardiovascular interventions as postprandial affects may affect the results, leading to erroneous interpretation of the cardiovascular effects of the primary intervention. NCT01027507.

  14. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model

    Directory of Open Access Journals (Sweden)

    Seok Joo Park

    2014-09-01

    Full Text Available BackgroundIt has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH/insulin-like growth factor-1 (IGF-1.MethodsIn this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice.ResultsThe GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt/phospho-glycogen synthase kinase3β (p-GSK3β, phospho-extracellular signal-related kinase (p-ERK, and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK, Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist.ConclusionThe results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation.

  15. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    Science.gov (United States)

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  16. DEFECTS IN INSULIN-SECRETION IN NIDDM - B-CELL GLUCOSE INSENSITIVITY OR GLUCOSE TOXICITY

    NARCIS (Netherlands)

    VANHAEFTEN, TW

    In NIDDM, first-phase insulin release to glucose is (almost) absent. However, in contrast to older studies which suggested that in NIDDM the B-cell is ''blind'' for glucose, recent evidence indicates that the B-cell is not insensitive for glucose as far as second phase release is concerned. This

  17. **-Postprandial pancreatic ["1"1C]methionine uptake after pancreaticoduodenectomy mirrors basal beta cell function and insulin release

    International Nuclear Information System (INIS)

    Steiner, Emanuel; Kazianka, Lukas; Breuer, Robert; Miholic, Johannes; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus; Stimpfl, Thomas; Reiter, Birgit; Karanikas, Georgios

    2017-01-01

    [S-methyl-"1"1C]-L-methionine (["1"1C]MET) uptake in the pancreas might be a central indicator of beta cell function. Since gastric emptying was recently shown to influence glycemic control in subjects after pancreaticoduodenectomy (PD, the surgical treatment of neoplasms of the pancreas head), we looked for imaginable relationships between gastric emptying, pre- and postprandial insulin concentrations, and ["1"1C]MET uptake. Nineteen tumor-free survivors after PD (age mean ± SD: 61 ± 8.7 yrs.; 10 male, 9 female) and 10 healthy controls (age: 27 ± 8.7 yrs.; 7 male, 3 female) were given a mixed test meal. One gram of paracetamol was ingested with the meal to evaluate the speed of gastric emptying. Insulin, glucose, and paracetamol plasma concentrations were measured before and over 180 minutes after ingestion. Beta cell function was calculated from fasting glucose and insulin plasma concentrations. Simultaneously, 800 MBq of ["1"1C]MET were administered and the activity (maximum tissue standardized uptake values [SUVmax]) over the pancreas was measured at 15, 30, and 60 minutes after injection. Total integrated SUVmax (area under the curve [AUC]) and incremental SUVmax were calculated. The uptake of ["1"1C]MET in the pancreas was significantly higher (p < 0.0001) in controls compared to the PD group. Gastric emptying was significantly slower in controls compared to pancreatectomy subjects (p < 0.0001). Paracetamol AUC_3_0 correlated with the SUVmax increment between 15 and 30 minutes (R"2 = 0.27, p = 0.0263), suggesting a relationship between gastric emptying and the uptake of ["1"1C]MET. Total integrated SUVmax correlated with insulin AUC_6_0 (R"2 = 0.66,p < 0.0001) in patients after PD. Multivariate regression analysis revealed insulin AUC_6_0 and beta cell function, calculated from the fasting insulin to glucose ratio, as independent predictors of "1"1C-methionine uptake, i.e. total integrated SUVmax, in patients after PD (R"2 = 0.78, p < 0.0001). Postprandial

  18. **-Postprandial pancreatic [{sup 11}C]methionine uptake after pancreaticoduodenectomy mirrors basal beta cell function and insulin release

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Emanuel; Kazianka, Lukas; Breuer, Robert; Miholic, Johannes [Medical University of Vienna, Department of Surgery, Vienna (Austria); Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Vienna (Austria); Stimpfl, Thomas; Reiter, Birgit [Medical University of Vienna, Clinical Institute of Laboratory Medicine, Forensic Toxicology, Vienna (Austria); Karanikas, Georgios [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Divisional Head PET-PET/CT (Nuclear Medicine), Vienna (Austria)

    2017-03-15

    [S-methyl-{sup 11}C]-L-methionine ([{sup 11}C]MET) uptake in the pancreas might be a central indicator of beta cell function. Since gastric emptying was recently shown to influence glycemic control in subjects after pancreaticoduodenectomy (PD, the surgical treatment of neoplasms of the pancreas head), we looked for imaginable relationships between gastric emptying, pre- and postprandial insulin concentrations, and [{sup 11}C]MET uptake. Nineteen tumor-free survivors after PD (age mean ± SD: 61 ± 8.7 yrs.; 10 male, 9 female) and 10 healthy controls (age: 27 ± 8.7 yrs.; 7 male, 3 female) were given a mixed test meal. One gram of paracetamol was ingested with the meal to evaluate the speed of gastric emptying. Insulin, glucose, and paracetamol plasma concentrations were measured before and over 180 minutes after ingestion. Beta cell function was calculated from fasting glucose and insulin plasma concentrations. Simultaneously, 800 MBq of [{sup 11}C]MET were administered and the activity (maximum tissue standardized uptake values [SUVmax]) over the pancreas was measured at 15, 30, and 60 minutes after injection. Total integrated SUVmax (area under the curve [AUC]) and incremental SUVmax were calculated. The uptake of [{sup 11}C]MET in the pancreas was significantly higher (p < 0.0001) in controls compared to the PD group. Gastric emptying was significantly slower in controls compared to pancreatectomy subjects (p < 0.0001). Paracetamol AUC{sub 30} correlated with the SUVmax increment between 15 and 30 minutes (R{sup 2} = 0.27, p = 0.0263), suggesting a relationship between gastric emptying and the uptake of [{sup 11}C]MET. Total integrated SUVmax correlated with insulin AUC{sub 60} (R{sup 2} = 0.66,p < 0.0001) in patients after PD. Multivariate regression analysis revealed insulin AUC{sub 60} and beta cell function, calculated from the fasting insulin to glucose ratio, as independent predictors of {sup 11}C-methionine uptake, i.e. total integrated SUVmax, in

  19. Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat.

    Directory of Open Access Journals (Sweden)

    Tamara J Varcoe

    Full Text Available Shift work during pregnancy is associated with an increased risk for preterm birth and low birth weight. However, the impact upon the long term health of the children is currently unknown. In this study, we used an animal model to determine the consequences of maternal shift work exposure on the health of the adult offspring. Pregnant rats were exposed to chronic phase shifts (CPS in their photoperiod every 3-4 days throughout gestation and the first week after birth. Adult offspring were assessed for a range of metabolic, endocrine, circadian and neurobehavioural parameters. At 3 months of age, male pups exposed to the CPS schedule in utero had increased adiposity (+29% and hyperleptinaemia (+99% at 0700h. By 12 months of age, both male and female rats displayed hyperleptinaemia (+26% and +41% respectively and hyperinsulinaemia (+110% and +83% respectively. 12 month old female CPS rats displayed poor glucose tolerance (+18% and increased insulin secretion (+29% in response to an intraperitoneal glucose tolerance test. In CPS males the glucose response was unaltered, but the insulin response was reduced by 35%. The glucose response to an insulin tolerance test was decreased by 21% in CPS females but unaltered in males. Disruption of circadian rhythmicity during gestation resulted in gender dependent metabolic consequences for the adult offspring. These results highlight the need for a thorough analysis of shift work exposure in utero on the health of the adult offspring in humans.

  20. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: studies involving 19,605 Europeans

    DEFF Research Database (Denmark)

    Sparsø, Thomas; Bonnefond, Amélie; Andersson, Ehm

    2009-01-01

    independent effect on FPG with isolated impaired fasting glycemia (i-IFG), isolated impaired glucose tolerance (i-IGT), type 2 diabetes, and measures of insulin release and peripheral and hepatic insulin sensitivity. RESEARCH DESIGN AND METHODS: We examined European-descent participants in the Inter99 study...... (n = 5,553), in a sample of young healthy Danes (n = 372), in Danish twins (n = 77 elderly and n = 97 young), in additional Danish type 2 diabetic patients (n = 1,626) and control subjects (n = 505), in the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) study (n = 4...

  1. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Martinussen, Christoffer; Bojsen-Moller, Kirstine N; Dirksen, Carsten

    2015-01-01

    effectiveness with Bergman's minimal model. In the fasting state, insulin sensitivity was estimated by HOMA-S and β-cell function by HOMA-β. Moreover, mixed meal tests and OGTTs were performed. In patients with type 2 diabetes, glucose levels normalized after RYGB, first-phase insulin secretion in response...... to iv glucose increased two-fold and HOMA-β improved already 1 week postoperatively, with further enhancements at 3 months. Insulin sensitivity increased in the liver (HOMA-S) at 1 week and at 3 months in peripheral tissues (Si), whereas glucose effectiveness did not improve significantly. During oral...... first-phase insulin secretion to iv glucose and increased HOMA-β. A major role for improved glucose effectiveness after RYGB was not supported by this study....

  2. Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; van Lith, Simone Cornelia; Frandsen, Flemming

    2010-01-01

    The release to the gas phase of inorganic elements such as alkali metals. Cl, S, and heavy metals in Waste-to-Energy (WtE) boilers is a challenge. Besides the risk of harmful emissions to the environment, inorganic elements released from the grate may cause severe ash deposition and corrosion...... and the link to the formation of fly ash and aerosols in full-scale waste incinerators. The release of metals, S and Cl from four dedicated waste fractions was quantified as a function of temperature in a lab-scale fixed-bed reactor. The waste fractions comprised chromated copper arsenate (CCA) impregnated....... The lab-scale release results were then compared with results from a related, full-scale partitioning study, in which test runs with the addition of similar, dedicated waste fractions to a base-load waste had been performed in a grate-fired WtE boiler. In general, the elements Al, Ca, Cr, Cu, Fe, Mg, Si...

  3. Improved insulin sensitivity and secretion in prediabetic patients with adrenal insufficiency on dual-release hydrocortisone treatment: a 36-month retrospective analysis.

    Science.gov (United States)

    Guarnotta, Valentina; Ciresi, Alessandro; Pillitteri, Giuseppe; Giordano, Carla

    2018-05-01

    Dual-release hydrocortisone (DR-HC) provides physiological cortisol exposure, leading to an improvement of anthropometric and metabolic parameters. The aim of the study was to evaluate the effects of DR-HC on insulin secretion and sensitivity and cardiometabolic risk, indirectly expressed by the visceral adiposity index (VAI). Retrospective analysis of 49 patients, 13 with primary and 36 with secondary adrenal insufficiency (AI), respectively, on conventional glucocorticoid treatment at baseline and switched to DR-HC for 36 months. Overall, 24 patients had AI-pre-diabetes (impaired fasting glucose, impaired glucose tolerance and the combination), and 25 had AI-normal glucose tolerance (NGT). Clinical and metabolic parameters, including VAI, insulin secretion and sensitivity indexes (fasting insulinaemia, AUC 2 h insulinaemia , oral disposition index [Dio] and ISI-Matsuda), were evaluated. In patients with AI-NGT and AI-prediabetes, a significant decrease in BMI (P = .017 and P 36 and P = .043) was, respectively, observed. In addition, in prediabetic patients, only we found a significant decrease in insulinaemia (P = .014), AUC 2 h insulinaemia (P = .038) and VAI (P = .001), in concomitance with a significant increase in DIo (P = .041) and ISI-Matsuda (P = .038). Long-term DR-HC therapy is associated with an improvement in insulin secretion and sensitivity in patients with prediabetes. However, all patients appear to benefit from the treatment in terms of improvement of metabolic and anthropometric parameters. Larger studies are required to confirm our preliminary data. © 2018 John Wiley & Sons Ltd.

  4. The effect of endogenously released glucose, insulin, glucagon-like peptide 1, ghrelin on cardiac output, heart rate, stroke volume, and blood pressure

    Directory of Open Access Journals (Sweden)

    Hlebowicz Joanna

    2011-12-01

    Full Text Available Abstract Background Ingestion of a meal increases the blood flow to the gastrointestinal organs and affects the heart rate (HR, blood pressure and cardiac output (CO, although the mechanisms are not known. The aim of this study was to evaluate the effect of endogenously released glucose, insulin, glucagon-like peptide 1 (GLP-1, ghrelin on CO, HR, stroke volume (SV, and blood pressure. Methods Eleven healthy men and twelve healthy women ((mean ± SEM aged: 26 ± 0.2 y; body mass index: 21.8 ± 0.1 kg/m2 were included in this study. The CO, HR, SV, systolic and diastolic blood pressure, antral area, gastric emptying rate, and glucose, insulin, GLP-1 and ghrelin levels were measured. Results The CO and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting in both men and women (P P = 0.015, r = 0.946, and between ghrelin levels and HR (P = 0.013, r = 0.951 at 110 min. Significant correlations were also found between the change in glucose level at 30 min and the change in systolic blood pressure (P = 0.021, r = -0.681, and the change in SV (P = 0.008, r = -0.748 relative to the fasting in men. The insulin 0-30 min AUC was significantly correlated to the CO 0-30 min AUC (P = 0.002, r = 0.814 in men. Significant correlations were also found between the 0-120 min ghrelin and HR AUCs (P = 0.007, r = 0.966 in men. No statistically significant correlations were seen in women. Conclusions Physiological changes in the levels of glucose, insulin, GLP-1 and ghrelin may influence the activity of the heart and the blood pressure. There may also be gender-related differences in the haemodynamic responses to postprandial changes in hormone levels. The results of this study show that subjects should not eat immediately prior to, or during, the evaluation of cardiovascular interventions as postprandial affects may affect the results, leading to erroneous interpretation of the cardiovascular effects of the

  5. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release.

    Science.gov (United States)

    Meeus, Joke; Lenaerts, Maité; Scurr, David J; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van Den Mooter, Guy

    2015-04-01

    For ternary solid dispersions, it is indispensable to characterize their structure, phase behavior, and the spatial distribution of the dispersed drug as this might influence the release profile and/or stability of these formulations. This study shows how formulation (feed concentration) and process (feed rate, inlet air temperature, and atomizing air pressure) parameters can influence the characteristics of ternary spray-dried solid dispersions. The microspheres considered here consist of a poly(lactic-co-glycolic acid) (PLGA) surface layer and an underlying polyvinylpyrrolidone (PVP) phase. A poorly soluble active pharmaceutical ingredient (API) was molecularly dispersed in this matrix. Differences were observed in component miscibility, phase heterogeneity, particle size, morphology, as well as API surface coverage for selected spray-drying parameters. Observed differences are likely because of changes in the droplet generation, evaporation, and thus particle formation processes. However, varying particle characteristics did not influence the drug release of the formulations studied, indicating the robustness of this approach to produce particles of consistent drug release characteristics. This is likely because of the fact that the release is dominated by diffusion from the PVP layer through pores in the PLGA surface layer and that observed differences in the latter have no influence on the release. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  7. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  8. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    Science.gov (United States)

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Operational intervention levels and related requirements on radiation monitoring during pre-release / release phase of an accident

    International Nuclear Information System (INIS)

    Carny, P.; Cabanekova, H

    2003-01-01

    In this paper authors discusses required outputs of emergency radiological monitoring in various phases of an accident and rationale of these requirements. In various phases of an accident various intervention levels are important and consequently various radiological quantities should be preferably measured. Distinguished tasks or aims of monitoring in different phases of accident have strong influence on methods of monitoring, instrumentation and capabilities of monitoring groups. Required tasks and outputs of monitoring are discussed

  10. Reversed-phase high-performance liquid chromatographic analyses of insulin biosynthesis in isolated rat and mouse islets

    DEFF Research Database (Denmark)

    Linde, S; Hansen, Bruno A.; Welinder, B S

    1989-01-01

    deletion compared to rat C-peptide I. A marked species difference in the ratio between insulin I and II was observed, i.e., 2:1 in the rat and 1:2 in the mouse. Pulse-chase experiments in rat islets have demonstrated that the ratio between insulin I and II in newly synthesized insulin is higher than...

  11. Release of Inorganic Elements during Wood Combustion. Release to the Gas Phase of Inorganic Elements during: Wood Combustion. Part 1: Development and Evaluation of Quantification Methods

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Alonso-Ramírez, Violeta; Jensen, Peter Arendt

    2006-01-01

    During wood combustion, inorganic elements such as alkali metals, sulfur, chlorine, and some heavy metals are partly released to the gas phase, which may cause problems in combustion facilities because of deposit formation and corrosion. Furthermore, it may cause harmful emissions of gases......) in this reactor, whereas methods B and C involved initial pyrolysis and combustion, respectively, of a large fuel sample (~5 kg) in a bench-scale fixed-bed reactor at 500 C. The methods were evaluated by comparing the data on the release of Cl, S, K, Na, Zn, and Pb from fiber board obtained by the three methods...

  12. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    Science.gov (United States)

    Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling

    2016-01-01

    Purpose Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Methods Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Results Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. Conclusion With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. PMID:26966360

  13. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  14. DPP-4 inhibitor des-F-sitagliptin treatment increased insulin exocytosis from db/db mice {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagamatsu, Shinya, E-mail: shinya@ks.kyorin-u.ac.jp [Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611 (Japan); Ohara-Imaizumi, Mica; Nakamichi, Yoko; Aoyagi, Kyota; Nishiwaki, Chiyono [Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611 (Japan)

    2011-09-09

    Highlights: {yields} Anti-diabetic new drug, DPP-4 inhibitor, can affect the insulin exocytosis. {yields} DPP-4 inhibitor treatment altered syntaxin 1 expression. {yields} Treatment of db/db mice with DPP-4 inhibitor increased insulin release. -- Abstract: Incretin promotes insulin secretion acutely. Recently, orally-administered DPP-4 inhibitors represent a new class of anti-hyperglycemic agents. Indeed, inhibitors of dipeptidyl peptidase-IV (DPP-4), sitagliptin, has just begun to be widely used as therapeutics for type 2 diabetes. However, the effects of sitagliptin-treatment on insulin exocytosis from single {beta}-cells are yet unknown. We therefore investigated how sitagliptin-treatment in db/db mice affects insulin exocytosis by treating db/db mice with des-F-sitagliptin for 2 weeks. Perfusion studies showed that 2 weeks-sitagliptin treatment potentiated insulin secretion. We then analyzed insulin granule motion and SNARE protein, syntaxin 1, by TIRF imaging system. TIRF imaging of insulin exocytosis showed the increased number of docked insulin granules and increased fusion events from them during first-phase release. In accord with insulin exocytosis data, des-F-sitagliptin-treatment increased the number of syntaxin 1 clusters on the plasma membrane. Thus, our data demonstrated that 2-weeks des-F-sitagliptin-treatment increased the fusion events of insulin granules, probably via increased number of docked insulin granules and that of syntaxin 1 clusters.

  15. Tripeptide amide L-pyroglutamyl-histidyl-L-prolineamide (L-PHP-thyrotropin-releasing hormone, TRH) promotes insulin-producing cell proliferation.

    Science.gov (United States)

    Luo, LuGuang; Luo, John Z Q; Jackson, Ivor

    2013-02-01

    A very small tripeptide amide L-pyroglutamyl-L-histidyl-L-prolineamide (L-PHP, Thyrotropin-Releasing Hormone, TRH), was first identified in the brain hypothalamus area. Further studies found that L-PHP was expressed in pancreas. The biological role of pancreatic L-PHP is still not clear. Growing evidence indicates that L-PHP expression in the pancreas may play a pivotal role for pancreatic development in the early prenatal period. However, the role of L-PHP in adult pancreas still needs to be explored. L-PHP activation of pancreatic β cell Ca2+ flow and stimulation of β-cell insulin synthesis and release suggest that L-PHP involved in glucose metabolism may directly act on the β cell separate from any effects via the central nervous system (CNS). Knockout L-PHP animal models have shown that loss of L-PHP expression causes hyperglycemia, which cannot be reversed by administration of thyroid hormone, suggesting that the absence of L-PHP itself is the cause. L-PHP receptor type-1 has been identified in pancreas which provides a possibility for L-PHP autocrine and paracrine regulation in pancreatic function. During pancreatic damage in adult pancreas, L-PHP may protect beta cell from apoptosis and initiate its regeneration through signal pathways of growth hormone in β cells. L-PHP has recently been discovered to affect a broad array of gene expression in the pancreas including growth factor genes. Signal pathways linked between L-PHP and EGF receptor phosphorylation suggest that L-PHP may be an important factor for adult β-cell regeneration, which could involve adult stem cell differentiation. These effects suggest that L-PHP may benefit pancreatic β cells and diabetic therapy in clinic.

  16. Phase changing nanocomposites for low temperature thermal energy storage and release

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2017-09-01

    Full Text Available The aim of this paper is to develop new elastomeric phase change materials (PCM for the thermal energy storage/release below room temperature. In particular, poly(cyclooctene (PCO/paraffin blends filled with various concentrations of carbon nanotubes (CNTs, were prepared by a melt compounding process. The microstructural, thermo-mechanical and electrical properties of the resulting materials were investigated. The microstructure of these materials was characterized by the presence of paraffin domains inside the PCO, and CNTs were located only inside the paraffin domains in forms of aggregated clusters. DSC tests evidenced the existence of two distinct crystallization peaks at –10 and at 6 °C, respectively associated to the paraffin and the PCO phases, indicating that both the polymeric constituents are thermally active below room temperature. Moreover, CNT addition did not substantially alter the melting/crystallization properties of the material. Noticeable improvements of the mechanical properties and of the electrical conductivity with respect to the neat PCO/paraffin blend could be obtained upon CNT addition, and also thermal conductivity/diffusivity values were considerably enhanced above the percolation threshold. Finite element modeling demonstrated the efficacy of the prepared nanocomposites for applications in the thermal range from –30 to 6 °C.

  17. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    Science.gov (United States)

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  18. 1,5-anhydroglucitol is associated with early-phase insulin secretion in chinese patients with newly diagnosed type 2 diabetes mellitus.

    Science.gov (United States)

    Ma, Xiaojing; Hao, Yaping; Hu, Xiang; Luo, Yuqi; Deng, Zixuan; Zhou, Jian; Bao, Yuqian; Jia, Weiping

    2015-05-01

    The goal of the present study was to explore the correlations of 1,5-anhydroglucitol (l,5-AG), glycated hemoglobin (HbA1c), and glycated albumin (GA) with insulin sensitivity and secretion. In total, 302 patients with newly diagnosed type 2 diabetes mellitus (166 men, 136 women) were enrolled in this study. The homeostasis model assessment for insulin resistance (HOMA-IR) and homeostasis model assessment for β-cell function (HOMA-β) were calculated to determine the basal insulin sensitivity and secretion. The insulinogenic index (IGI) was used to evaluate early-phase insulin secretion. 1,5-AG and GA were assayed via the enzymatic method, and HbA1c was detected by high-pressure liquid chromatography. Among all 302 subjects, the serum 1,5-AG level was 13.1±7.2 μg/mL, and the HbA1c and GA levels [median (interquartile range)] were 6.7% (6.2-7.3%) and 17.7% (16.0-19.5%), respectively. Increased 1,5-AG quartiles were accompanied by trends toward a decreased HOMA-IR and an increased HOMA-β and IGI (for all trends, P1). 1,5-AG was negatively associated with HOMA-IR (r=-0.200, P1) and positively associated with HOMA-β and IGI (r=0.210 and 0.413, respectively; both P1). 1,5-AG was independently related to HOMA-IR and HOMA-β and exhibited an independent positive association with IGI (standardized β=0.242, P1). Additionally, both HbA1c and GA were independently correlated with HOMA-IR and HOMA-β. 1,5-AG is not only correlated with basal insulin sensitivity and secretion, but also closely associated with early-phase insulin secretion in Chinese patients with newly diagnosed type 2 diabetes mellitus.

  19. Insulin structure and stability.

    Science.gov (United States)

    Brange, J; Langkjoer, L

    1993-01-01

    Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the

  20. Non-Pyrotechnic Latch and Release System for Aerospace and Other Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — American remote Vision Company (ARVC) will continue to research and develop a new non-pryotechnic latch and release sytem for use in servicing and flight release...

  1. The Birth Weight Lowering C-Allele of rs900400 Near LEKR1 and CCNL1 Associates with Elevated Insulin Release following an Oral Glucose Challenge

    DEFF Research Database (Denmark)

    Andersson, Ehm A; Harder, Marie N; Pilgaard, Kasper

    2011-01-01

    participants, midwife journals were traced through the Danish State Archives and association of rs900400 with birth weight was examined. Associations between rs900400 and fasting serum insulin, fasting plasma glucose, insulinogenic index, homeostasis model assessment of insulin resistance (HOMA-IR...

  2. Paediatrics, insulin resistance and the kidney.

    Science.gov (United States)

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  3. Insulin delivery systems combined with microneedle technology.

    Science.gov (United States)

    Jin, Xuan; Zhu, Dan Dan; Chen, Bo Zhi; Ashfaq, Mohammad; Guo, Xin Dong

    2018-03-29

    Diabetes, a metabolic disorder of glucose, is a serious chronic disease and an important public health problem. Insulin is one of the hormones for modulating blood glucose level and the products of which is indispensable for most diabetes patients. Introducing microneedles (MNs) to insulin delivery is promising to pave the way for modulating glucose level noninvasively of diabetes patients, as which born to be painless, easy to handle and no need of any power supply. In this work, we review the process of insulin delivery systems (IDSs) based on MN technology in terms of two categories: drug free MNs and drug loaded MNs. Drug free MNs include solid MNs ("poke and patch"), hollow MNs ("poke and flow") and reservoir-based swelling MNs ("poke and swell R-type"), and drug loaded MNs include coated MNs ("coat and poke"), dissolving MNs ("poke and release") and insulin incorporated swelling MNs ("poke and swell I-type"). Majority researches of MN-based IDSs have been conducted by using hollow MNs or dissolving MNs, and almost all clinical trials for MN-based IDSs have employed hollow MNs. "Poke and patch" approach dramatically increase skin permeability compared to traditional transdermal patch, but MNs fabricated from silicon or metal may leave sharp waste in the skin and cause a safety issue. "Poke and flow" approach, similar to transitional subcutaneous (SC) injection, is capable of producing faster insulin absorption and action than SC injection but may associate with blockage, leakage and low flow rate. Coated MNs are able of retaining the activity of drug, which loaded in a solid phase, for a long time, however have been relatively less studied for insulin application as the low drug dosing. "Poke and release" approach leaves no biohazardous sharp medical waste and is capable of rapid drug release. "Poke and swell R-type" can be seen as a combination of "poke and flow" and "poke and patch" approach, while "poke and swell I-type" is an approach between "coat and

  4. Effects of preoperative feeding with a whey protein plus carbohydrate drink on the acute phase response and insulin resistance. A randomized trial

    Directory of Open Access Journals (Sweden)

    Dock-Nascimento Diana B

    2011-06-01

    Full Text Available Abstract Background Prolonged preoperative fasting increases insulin resistance and current evidence recommends carbohydrate (CHO drinks 2 hours before surgery. Our hypothesis is that the addition of whey protein to a CHO-based drink not only reduces the inflammatory response but also diminish insulin resistance. Methods Seventeen patients scheduled to cholecystectomy or inguinal herniorraphy were randomized and given 474 ml and 237 ml of water (CO group or a drink containing CHO and milk whey protein (CHO-P group respectively, 6 and 3 hours before operation. Blood samples were collected before surgery and 24 hours afterwards for biochemical assays. The endpoints of the study were the insulin resistance (IR, the prognostic inflammatory and nutritional index (PINI and the C-reactive protein (CRP/albumin ratio. A 5% level for significance was established. Results There were no anesthetic or postoperative complications. The post-operative IR was lower in the CHO-P group when compared with the CO group (2.75 ± 0.72 vs 5.74 ± 1.16; p = 0.03. There was no difference between the two groups in relation to the PINI. The CHO-P group showed a decrease in the both CRP elevation and CRP/albumin ratio (p Conclusions Shortening the pre-operative fasting using CHO and whey protein is safe and reduces insulin resistance and postoperative acute phase response in elective moderate operations. Trial registration ClinicalTrail.gov NCT01354249

  5. Advanced Marine Coatings for Naval Vessels - Phase 1. Antifouling and Fouling Release Coatings

    National Research Council Canada - National Science Library

    McCarthy, Gregory

    2003-01-01

    ... in combinatorial materials chemistry high-throughput discovery and evaluation methodology. The protective coatings application being addressed is environmentally compliant antifouling and fouling release coating for Navy ships...

  6. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients

    DEFF Research Database (Denmark)

    Yabe, Daisuke; Kuroe, Akira; Watanabe, Koin

    2015-01-01

    AIMS: Hypersecretion of glucagon and reduced insulin secretion both contribute to hyperglycemia in type 2 diabetes (T2DM). However, the relative contributions of impaired glucagon and insulin secretions in glucose excursions at the various stages of T2DM development remain to be determined. METHODS...... secretions but not incretin secretion are involved in hyperglycemia after ingestion of nutrients in T2DM of even a short duration....

  7. Comparison of insulin lispro mix 25 with insulin lispro mix 50 as insulin starter in Chinese patients with type 2 diabetes mellitus (CLASSIFY study): Subgroup analysis of a Phase 4 open-label randomized trial.

    Science.gov (United States)

    Su, Qing; Liu, Chao; Zheng, Hongting; Zhu, Jun; Li, Peng Fei; Qian, Lei; Yang, Wen Ying

    2017-06-01

    Premixed insulins are recommended starter insulins in Chinese patients after oral antihyperglycemic medication (OAM) failure. In the present study, we compared the efficacy and safety of insulin lispro mix 25 (LM25) twice daily (b.i.d.) and insulin lispro mix 50 (LM50) b.i.d. as a starter insulin regimen in Chinese patients with type 2 diabetes mellitus (T2DM) who had inadequate glycemic control with OAMs. The primary efficacy outcome in the present open-label parallel randomized clinical trial was change in HbA1c from baseline to 26 weeks. Patients were randomized in a ratio of 1:  1 to LM25 (n = 80) or LM50 (n = 76). A mixed-effects model with repeated measures was used to analyze continuous variables. The Cochran-Mantel-Haenszel test with stratification factor was used to analyze categorical variables. At the end of the study, LM50 was more efficacious than LM25 in reducing mean HbA1c levels (least-squares [LS] mean difference 0.48; 95 % confidence interval [CI] 0.22, 0.74; P 1). More subjects in the LM50 than LM25 group achieved HbA1c targets of 1) or ≤6.5 % (52.6 % vs 20.0 %; P 1). Furthermore, LM50 was more effective than LM25 at reducing HbA1c in patients with baseline HbA1c, blood glucose excursion, and postprandial glucose greater than or equal to median levels (P ≤ 0.001). The rate and incidence of hypoglycemic episodes and increase in weight at the end of the study were similar between treatment groups. In Chinese patients with T2DM, LM50 was more efficacious than LM25 as a starter insulin. © 2016 The Authors. Journal of Diabetes published by John Wiley & Sons Australia, Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  8. The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load

    DEFF Research Database (Denmark)

    Hornbak, Malene; Banasik, Karina; Justesen, Johanne Marie

    2011-01-01

    -aged Danish individuals (nACADS=4,324; nACADM=4,337). The T2D-case-control study involved a total of ~8,300 Danish individuals (nACADS=8,313; nACADM=8,344). Results In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS associated with reduced measures of serum insulin at 30 min following...... an oral glucose load (per allele effect (beta)=-3.8% (-6.3%;-1.3%), P=0.003), reduced incremental area under the insulin curve (beta=-3.6% (-6.3%;-0.9%), P=0.009), reduced acute insulin response (beta=-2.2% (-4.2%;0.2%), P=0.03), and with increased insulin sensitivity ISIMatsuda (beta= 2.9% (0.5%;5.2%), P...

  9. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Brock, Birgitte; Perrild, Hans

    2008-01-01

    To assess the effect of liraglutide, a once-daily human glucagon-like peptide-1 analogue on pancreatic B-cell function. methods: Patients with Type 2 diabetes (n = 39) were randomized to treatment with 0.65, 1.25 or 1.9 mg/day liraglutide or placebo for 14 weeks. First- and second-phase insulin...... release were measured by means of the insulin-modified frequently sampled intravenous glucose tolerance test. Arginine-stimulated insulin secretion was measured during a hyperglycaemic clamp (20 mmol/l). Glucose effectiveness and insulin sensitivity were estimated by means of the insulin...

  10. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2002-10-01

    This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.

  11. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  12. Steric effects in release of amides from linkers in solid-phase synthesis. Molecular mechanics modeling of key step in peptide and combinatorial chemistry

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Jensen, Knud Jørgen

    2006-01-01

    Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid-lability of the ba......Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid......-lability of the backbone amide linkage (BAL), which releases sec. amides, compared to C-terminal amide anchoring, which releases primary amides, was rationalized by steric relief upon cleavage. Thus, the relative stability of the carbenium ion formed from the linker in the acidolytic release is an insufficient measure...

  13. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    Science.gov (United States)

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1

    DEFF Research Database (Denmark)

    Shang, Quan; Saumoy, Monica; Holst, Jens Juul

    2009-01-01

    Bile acid sequestrants have been shown to lower glucose levels in patients with type 2 diabetes. To investigate how colesevelam (CL) HCl improves hyperglycemia, studies were conducted in diet-induced obesity (F-DIO) rats, which develop insulin resistance when fed a high-energy (high fat/high sucr......Bile acid sequestrants have been shown to lower glucose levels in patients with type 2 diabetes. To investigate how colesevelam (CL) HCl improves hyperglycemia, studies were conducted in diet-induced obesity (F-DIO) rats, which develop insulin resistance when fed a high-energy (high fat...

  15. Cholinergic induction of input-specific late-phase LTP via localized Ca2+ release in the visual cortex.

    Science.gov (United States)

    Cho, Kwang-Hyun; Jang, Hyun-Jong; Jo, Yang-Hyeok; Singer, Wolf; Rhie, Duck-Joo

    2012-03-28

    Acetylcholine facilitates long-term potentiation (LTP) and long-term depression (LTD), substrates of learning, memory, and sensory processing, in which acetylcholine also plays a crucial role. Ca(2+) ions serve as a canonical regulator of LTP/LTD but little is known about the effect of acetylcholine on intracellular Ca(2+) dynamics. Here, we investigated dendritic Ca(2+) dynamics evoked by synaptic stimulation and the resulting LTP/LTD in layer 2/3 pyramidal neurons of the rat visual cortex. Under muscarinic stimulation, single-shock electrical stimulation (SES) inducing ∼20 mV EPSP, applied via a glass electrode located ∼10 μm from the basal dendrite, evoked NMDA receptor-dependent fast Ca(2+) transients and the subsequent Ca(2+) release from the inositol 1,4,5-trisphosphate (IP(3))-sensitive stores. These secondary dendritic Ca(2+) transients were highly localized within 10 μm from the center (SD = 5.0 μm). The dendritic release of Ca(2+) was a prerequisite for input-specific muscarinic LTP (LTPm). Without the secondary Ca(2+) release, only muscarinic LTD (LTDm) was induced. D(-)-2-amino-5-phosphopentanoic acid and intracellular heparin blocked LTPm as well as dendritic Ca(2+) release. A single burst consisting of 3 EPSPs with weak stimulus intensities instead of the SES also induced secondary Ca(2+) release and LTPm. LTPm and LTDm were protein synthesis-dependent. Furthermore, LTPm was confined to specific dendritic compartments and not inducible in distal apical dendrites. Thus, cholinergic activation facilitated selectively compartment-specific induction of late-phase LTP through IP(3)-dependent Ca(2+) release.

  16. Pharmacokinetics of insulin following intravenous and subcutaneous administration in canines.

    Science.gov (United States)

    Ravis, W R; Comerci, C; Ganjam, V K

    1986-01-01

    Studies were conducted to examine the absorption and disposition kinetics of insulin in dogs following intravenous (IV) and subcutaneous (SC) administration of commercial preparations. After IV and SC dosing, the plasma levels were described by models which considered basal insulin level contributions. Intersubject variation in the disposition kinetics was small with half-lives of 0.52 +/- 0.05 h and total body clearances of 16.21 +/- 2.08 ml min-1 kg-1. Calculated insulin plasma secretion rates in the canines were 14.4 +/- 3.3 mUh-1 kg-1. Following SC injection of regular insulin, the rate and extent of absorption were noted to be quite variable. The absorption process appeared first-order with half-life values of 2.3 +/- 1.3 h and extents of absorption of 78 +/- 15 per cent with a range of 55-101 per cent. Insulin absorption from SC NPH preparations was evaluated as being composed of two zero-order release phases, a rapid and a slow release phase. With a dose of 1.65 U kg-1, the rapid release phase had an average duration of 1.5 h and a rate of 580 +/- 269 mUh-1 (4.2 per cent of dose) while the slow phase had a zero-order rate of 237 +/- 92 mU h-1 which continued beyond 12 h. The extent of absorption from the NPH preparation was 23.6 +/- 5.1 per cent and was significantly lower than that for the regular injection.

  17. Influence of Nanomaterial Compatibilization Strategies on Polyamide Nanocomposites Properties and Nanomaterial Release during the Use Phase.

    Science.gov (United States)

    Fernández-Rosas, Elisabet; Vilar, Gemma; Janer, Gemma; González-Gálvez, David; Puntes, Victor; Jamier, Vincent; Aubouy, Laurent; Vázquez-Campos, Socorro

    2016-03-01

    The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use. Two nanocomposites (NCs) containing SiO2 nanoparticles (NPs) with different surface properties and two multiwalled carbon nanotube (MWCNT) NCs obtained by different addition methods were produced and characterized, before and after accelerated wet aging conditions. Octyl-modified SiO2 NPs, though initially more aggregated than uncoated SiO2 NPs, reduced PA6 hydrolysis and, consequently, NM release. Although no clear differences in dispersion were observed between the two types of MWCNT NCs (masterbatch vs direct addition) after manufacture, the use of the MWCNT masterbatch reduced PA6 degradation during aging, preventing MWCNT accumulation on the surface and further release or potential exposure by direct contact. The amounts of NM released were lower for MWCNTs (36 and 108 mg/m(2)) than for SiO2 NPs (167 and 730 mg/m(2)), being lower in those samples where the NC was designed to improve the nanofiller-matrix interaction. Hence, this study shows that optimal compatibilization between NM and matrix can improve NC performance, reducing polymer degradation and exposure and/or release of the nanofiller.

  18. The role of a detailed aqueous phase source release model in the LANL area G performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Vold, E.L.; Shuman, R.; Hollis, D.K. [Los Alamos National Lab., NM (United States)] [and others

    1995-12-31

    A preliminary draft of the Performance Assessment for the Los Alamos National Laboratory (LANL) low-level radioactive waste disposal facility at Area G is currently being completed as required by Department of Energy orders. A detailed review of the inventory data base records and the existing models for source release led to the development of a new modeling capability to describe the liquid phase transport from the waste package volumes. Nuclide quantities are sorted down to four waste package release categories for modeling: rapid release, soil, concrete/sludge, and corrosion. Geochemistry for the waste packages was evaluated in terms of the equilibrium coefficients, Kds, and elemental solubility limits, Csl, interpolated from the literature. Percolation calculations for the base case closure cover show a highly skewed distribution with an average of 4 mm/yr percolation from the disposal unit bottom. The waste release model is based on a compartment representation of the package efflux, and depends on package size, percolation rate or Darcy flux, retardation coefficient, and moisture content.

  19. The GLP-1 analogue liraglutide improves first-phase insulin secretion and maximal beta-cell secretory capacity over 14 weeks of therapy in subjects with Type 2 diabetes

    DEFF Research Database (Denmark)

    Madsbad, Sten; Vilsbøll, Tina; Brock, Birgitte

    Aims: We investigated the clinical effect of liraglutide, a long- acting GLP-1 analogue, on insulin secretion in Type 2 diabetes. Methods: Thirty-nine subjects (28 completed) from a randomised trial received a hyperglycaemic clamp (20 mM) with intravenous arginine stimulation, and an insulin...... group. Conclusion: In subjects with Type 2 diabetes, 14 weeks’ once-daily liraglutide (1.25 and 1.9 mg/day) markedly improves beta-cell function, significantly increases first-phase insulin secretion and maximal beta-cell secretory capacity....

  20. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    Science.gov (United States)

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  1. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    Directory of Open Access Journals (Sweden)

    J. L. Pérez-Arellano

    1995-01-01

    Full Text Available Hydrolytic enzymes are the major constituents of alveolar macrophages (AM and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs. An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF protein concentration, BALF LDH and BALF alkaline phosphatase activities. All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease.

  2. Effects of acute and chronic attenuation of postprandial hyperglycemia on postglucose-load endothelial function in insulin resistant individuals: is stimulation of first phase insulin secretion beneficial for the endothelial function?

    DEFF Research Database (Denmark)

    Major-Pedersen, A; Ihlemann, N; Hermann, T S

    2008-01-01

    The aim of the study is to determine if attenuation of postprandial hyperglycemia, by acutely and chronically enhancing postprandial insulin secretion in insulin-resistant individuals, improves the endothelial dysfunction. We assessed postoral glucose-load endothelial function in 56 insulin....... We found no relationship between postprandial hyperglycemia and post-OGL FMD....

  3. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Optically-controlled long-term storage and release of thermal energy in phase-change materials.

    Science.gov (United States)

    Han, Grace G D; Li, Huashan; Grossman, Jeffrey C

    2017-11-13

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid-solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g -1 ) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.

  5. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    Science.gov (United States)

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  6. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

    Science.gov (United States)

    Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin

    2013-01-01

    In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008

  7. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    Directory of Open Access Journals (Sweden)

    Liu LY

    2016-02-01

    Full Text Available Liyao Liu, Cuiping Zhou, Xuejun Xia, Yuling Liu State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China Purpose: Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery.Methods: Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats.Results: Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant

  8. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions

    KAUST Repository

    Hong, Seunghyuck

    2013-12-01

    This paper presents an experimental investigation into mode-transitions observed in a 50-kW, atmospheric pressure, backward-facing step combustor burning lean premixed C3H8/H2 fuel mixtures over a range of equivalence ratios, fuel compositions and preheat temperatures. The combustor exhibits distinct acoustic response and dynamic flame shape (collectively referred to as "dynamic modes") depending on the operating conditions. We simultaneously measure the dynamic pressure and flame chemiluminescence to examine the phase between pressure (p\\') and heat release fluctuations (q\\') in the observed dynamic modes. Results show that the heat release is in phase with the pressure oscillations (θqp≈0) at the onset of a dynamic mode, while as the operating conditions change within the mode, the phase grows until it reaches a critical value θqp=θc, at which the combustor switches to another dynamic mode. According to the classical Rayleigh criterion, this critical phase (θc) should be π/2, whereas our data show that the transition occurs well below this value. A linear acoustic energy balance shows that this critical phase marks the point where acoustic losses across the system boundaries equal the energy addition from the combustion process to the acoustic field. Based on the extended Rayleigh criterion in which the acoustic energy fluxes through the system boundaries as well as the typical Rayleigh source term (p\\'q\\') are included, we derive an extended Rayleigh index defined as Re=θqp/θc, which varies between 0 and 1. This index, plotted against a density-weighted strained consumption speed, indicates that the impact of the operating parameters on the dynamic mode selection of the combustor collapses onto a family of curves, which quantify the state of the combustor within a dynamic mode. At Re=0, the combustor enters a mode, and switches to another as Re approaches 1. The results provide a metric for quantifying the instability margins of fuel

  9. Efficacy of extended-release tramadol for treatment of prescription opioid withdrawal: A two-phase randomized controlled trial*

    Science.gov (United States)

    Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L.

    2013-01-01

    Background Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: 1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and 2) whether cessation of ER tramadol produces opioid withdrawal. Methods Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Results Use of breakthrough withdrawal medication differed significantly (popioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. PMID:23755929

  10. Efficacy of extended-release tramadol for treatment of prescription opioid withdrawal: a two-phase randomized controlled trial.

    Science.gov (United States)

    Lofwall, Michelle R; Babalonis, Shanna; Nuzzo, Paul A; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L

    2013-11-01

    Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: (1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and (2) whether cessation of ER tramadol produces opioid withdrawal. Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Use of breakthrough withdrawal medication differed significantly (popioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release

    DEFF Research Database (Denmark)

    Hamid, Y H; Vissing, H; Holst, B

    2005-01-01

    AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40 for varia......AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40...... compared with the wild type (P = 0.01). The Arg211His polymorphism had a similar allele frequency among 1384 Type 2 diabetic patients [MAF%; 23.4 (95% CI: 21.8-25.0)] and 4424 middle-aged glucose-tolerant subjects [24.1% (23.2-25.0)]. A genotype-quantitative trait study of 5597 non-diabetic, middle...

  12. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements

    DEFF Research Database (Denmark)

    Falge, E.; Tenhunen, J.; Baldocchi, D.

    2002-01-01

    , as well as for global inversion studies, and can help improve phenological modules in SVAT or biogeochemical models. The results of this study have important validation potential for global carbon cycle modeling. The phasing of respiratory and assimilatory capacity differed within forest types...... in four classes: (1) boreal and high altitude conifers and grasslands: (2) temperate deciduous and temperate conifers; (3) tundra and crops; (4) evergreen Mediterranean and tropical forest,,, Similar results are found for maximum daytime uptake (F-min) and the integral net carbon flux, but temperate......-min are largest for managed grasslands and crops. Largest observed values of F-min varied between -48 and -2 mumol m(-2) s(-1), decreasing in the order C-4-crops > C-3-crops > temperate deciduous forests > temperate conifers > boreal conifers > tundra ecosystems. Due to data restrictions, our analysis centered...

  13. Second Order Kinetic Modeling of Headspace Solid Phase Microextraction of Flavors Released from Selected Food Model Systems

    Directory of Open Access Journals (Sweden)

    Jiyuan Zhang

    2014-09-01

    Full Text Available The application of headspace-solid phase microextraction (HS-SPME has been widely used in various fields as a simple and versatile method, yet challenging in quantification. In order to improve the reproducibility in quantification, a mathematical model with its root in psychological modeling and chemical reactor modeling was developed, describing the kinetic behavior of aroma active compounds extracted by SPME from two different food model systems, i.e., a semi-solid food and a liquid food. The model accounted for both adsorption and release of the analytes from SPME fiber, which occurred simultaneously but were counter-directed. The model had four parameters and their estimated values were found to be more reproducible than the direct measurement of the compounds themselves by instrumental analysis. With the relative standard deviations (RSD of each parameter less than 5% and root mean square error (RMSE less than 0.15, the model was proved to be a robust one in estimating the release of a wide range of low molecular weight acetates at three environmental temperatures i.e., 30, 40 and 60 °C. More insights of SPME behavior regarding the small molecule analytes were also obtained through the kinetic parameters and the model itself.

  14. The future of basal insulin supplementation

    NARCIS (Netherlands)

    Simon, Airin C. R.; DeVries, J. Hans

    2011-01-01

    This review presents an overview of the candidates for an improved basal insulin in the pharmaceutical pipeline. The first new basal insulin to enter the market is most likely insulin degludec (IDeg), currently reporting in phase 3 of development, from Novo Nordisk (Bagsvaerd, Denmark). IDeg has a

  15. Studies on insulin receptor, 1

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study was designed for the purpose of establishing a method of insulin radioreceptor assay using plasma membranes of guinea pigs as receptor sites. The results obtained are as follows: 1) Insulin receptor in the renal plasma membranes of guinea pigs showed a significantly high affinity to porcine insulin compared with that in the plasma membranes of guinea pig liver or rat kidney and liver. 2) In the insulin radioreceptor assay, an optimum condition was observed by the incubation at 4 0 C for 24 - 48 hours with 100 μg membrane protein of guinea pig kidney and 0.08 ng of 125 I-insulin. This assay method was specific for insulin and showed an accurate biological activity of insulin. 3) The recovery rate of insulin radioreceptor assay was 98.4% and dilution check up to 16 times did not influence on the result. An average of coefficient variation was 3.92% within assay. All of these results indicated the method to be satisfactory. 4) Glucose induced insulin release by perfusion method in isolated Langerhans islets of rats showed an identical pattern of reaction curves between radioreceptor assay and radioimmunoassay, although the values of radioreceptor assay was slightly low. 5) Insulin free serum produced by ultra filtration method was added to the standard assay medium. By this procedure, direct measurement of human serum by radioreceptor assay became possible. 6) The value of human serum insulin receptor binding activity by the radioreceptor assay showed a high correlation with that of insulin radioimmunoassay in sera of normal, borderline or diabetic type defined by glucose tolerance test. (author)

  16. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    International Nuclear Information System (INIS)

    Salhanick, A.I.; Amatruda, J.M.

    1988-01-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable [ 14 C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus

  17. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    Science.gov (United States)

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Differential involvement of IL-6 in the early and late phase of 1-methylnicotinamide (MNA) release in Concanavalin A-induced hepatitis.

    Science.gov (United States)

    Sternak, Magdalena; Jakubowski, Andrzej; Czarnowska, Elzbieta; Slominska, Ewa M; Smolenski, Ryszard T; Szafarz, Malgorzata; Walczak, Maria; Sitek, Barbara; Wojcik, Tomasz; Jasztal, Agnieszka; Kaminski, Karol; Chlopicki, Stefan

    2015-09-01

    Exogenous 1-methylnicotinamide (MNA) displays anti-inflammatory activity. The aim of this work was to characterize the profile of release of endogenous MNA during the initiation and progression of murine hepatitis induced by Concanavalin A (ConA). In particular we aimed to clarify the role of interleukin-6 (IL-6) as well as the energy state of hepatocytes in MNA release in early and late phases of ConA-induced hepatitis in mice. Hepatitis was induced by ConA in IL-6(+/+) and IL-6(-/-) mice, and various parameters of liver inflammation and injury, as well as the energy state of hepatocytes, were analysed in relation to MNA release. The decrease in ATP/ADP and NADH/NAD ratios, cytokine release (IL-6, IFN-ɤ), acute phase response (e.g. haptoglobin) and liver injury (alanine aminotransaminase, ALT) were all blunted in ConA-induced hepatitis in IL-6(-/-) mice as compared to IL-6(+/+) mice. The release of MNA in response to Con A was also significantly blunted in IL-6(-/-) mice as compared to IL-6(+/+) mice in the early stage of ConA-induced hepatitis. In turn, nicotinamide N-methyltransferase (NNMT) and aldehyde oxidase (AO) activities were blunted in the liver and MNA plasma concentration was elevated to similar degree in the late stage after Concanavalin A in IL-6(+/+) and IL-6(-/-) mice. In conclusion, we demonstrated that in ConA-induced hepatitis, early, but not late MNA release was IL-6-dependent. Our results suggest that in the initiation and early hepatitis, MNA release is linked to the energy deficit/impaired redox status in hepatocytes, while in a later phase, MNA release is rather linked to the systemic inflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    International Nuclear Information System (INIS)

    Affholter, J.A.; Roth, R.A.; Cascieri, M.A.; Bayne, M.L.; Brange, J.; Casaretto, M.

    1990-01-01

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants [B1-24-His 25 -NH 2 ]insulin and [B1-24-Leu 25 -NH 2 ]insulin, but not [B1-24-Trp 25 -NH 2 ]insulin and [B1-24-Tyr 25 -NH 2 ]insulin. The truncated analogue with the lowest affinity for IDE ([B1-24-His 25 -NH 2 ]insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ

  20. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    Science.gov (United States)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  1. Determination of phthalates released from paper packaging materials by solid-phase extraction-high-performance liquid chromatography.

    Science.gov (United States)

    Gao, Xin; Yang, Bofeng; Tang, Zhixu; Luo, Xin; Wang, Fengmei; Xu, Hui; Cai, Xue

    2014-01-01

    A solid phase extraction (SPE) high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of 10 phthalic acid esters (dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzylbutyl phthalate, diisobutyl phthalate, dicyclohexyl phthalate, diamyl phthalate, di-n-hexyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate) released from food paper packaging materials. The use of distilled water, 3% acetic acid (w/v), 10% ethanol (v/v) and 95% ethanol (v/v) instead of the different types of food simulated the migration of 10 phthalic acid esters from food paper packaging materials; the phthalic acid esters in four food simulants were enriched and purified by a C18 SPE column and nitrogen blowing, and quantified by HPLC with a diode array detector. The chromatographic conditions and extraction conditions were optimized and all 10 of the phthalate acid esters had a maximum absorbance at 224 nm. The method showed limitations of detection in the range of 6.0-23.8 ng/mL the correlation coefficients were greater than 0.9999 in all cases, recovery values ranged between 71.27 and 106.97% at spiking levels of 30, 60 and 90 ng/mL and relative standard deviation values ranged from 0.86 to 8.00%. The method was considered to be simple, fast and reliable for a study on the migration of these 10 phthalic acid esters from food paper packaging materials into food.

  2. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    Science.gov (United States)

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  3. Chitosan nanofibers for transbuccal insulin delivery.

    Science.gov (United States)

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  4. Adding fast‐acting insulin aspart to basal insulin significantly improved glycaemic control in patients with type 2 diabetes: A randomized, 18‐week, open‐label, phase 3 trial (onset 3)

    OpenAIRE

    Rodbard, Helena W.; Tripathy, Devjit; Vidrio Velázquez, Maricela; Demissie, Marek; Tamer, Søren C.; Piletič, Milivoj

    2017-01-01

    Aim To confirm glycaemic control superiority of mealtime fast‐acting insulin aspart (faster aspart) in a basal–bolus (BB) regimen vs basal‐only insulin. Materials and methods In this open‐label, randomized, 18‐week trial (51 sites; 6 countries), adults (n = 236) with inadequately controlled type 2 diabetes (T2D; mean glycosylated haemoglobin [HbA1c] ± SD: 7.9% ± 0.7% [63.1 ± 7.5 mmol/mol]) receiving basal insulin and oral antidiabetic drugs underwent 8‐week optimization of prior once‐daily ba...

  5. Higher intramuscular triacylglycerol in women does not impair insulin sensitivity and proximal insulin signaling

    DEFF Research Database (Denmark)

    Høeg, Louise; Roepstorff, Carsten; Thiele, Maja

    2009-01-01

    that despite 47% higher IMTG levels in women in the follicular phase whole body as well as leg insulin sensitivity are higher than in matched men. This was not explained by sex differences in proximal insulin signalling in women. In women it seems that a high capillary density and type 1 muscle fiber...... expression may be important for insulin action. Key words: Muscle Triglycerides, gender, insulin action, sex paradox....

  6. Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water-edible oil two-phase system.

    Science.gov (United States)

    Hu, Minglue; Zhang, Xuehong; Wang, Zhilong

    2016-11-01

    Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil-water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.

  7. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  8. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin.

    Science.gov (United States)

    Chono, Sumio; Togami, Kohei; Itagaki, Shirou

    2017-11-01

    We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. The present study provides the useful information for development of noninvasive treatment of diabetes. Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.

  9. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  10. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  11. Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes.

    Science.gov (United States)

    Ciechanowska, Magdalena; Łapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek

    2011-01-01

    There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo-pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo-anterior pituitary unit. © CSIRO 2011 Open Access

  12. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    Science.gov (United States)

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  13. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    Science.gov (United States)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  14. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  15. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors

    International Nuclear Information System (INIS)

    Marshall, S.

    1985-01-01

    Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125 I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125 I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells)

  16. Reinforcing the inner phase of the filled hydrogels with CNTs alters drug release properties and human keratinocyte morphology: A study on the gelatin- tamarind gum filled hydrogels.

    Science.gov (United States)

    Maharana, Vivek; Gaur, Deepanjali; Nayak, Suraj K; Singh, Vinay K; Chakraborty, Subhabrata; Banerjee, Indranil; Ray, Sirsendu S; Anis, Arfat; Pal, Kunal

    2017-11-01

    The study reports the synthesis and characterization of gelatin-tamarind gum (TG) based filled hydrogels for drug delivery applications. In this study, three different types of carbon nanotubes (CNTs) were incorporated within the dispersed TG phase of the filled hydrogels. The prepared hydrogels were thoroughly characterised using bright field microscope, FESEM, FTIR spectroscopy, differential scanning calorimeter, and mechanical tester. The swelling and the drug (salicylic acid) release properties of the filled hydrogels were also evaluated. The micrographs revealed the formation of biphasic systems. The internal phase appeared as agglomerates, and the CNTs were confined within the dispersed TG phase. FTIR and XRD studies revealed that CNTs promoted associative interactions among the components of the hydrogel, which promoted the formation of large crystallite size. The mechanical study indicated better resistance to the breakdown of the architecture of the CNT-containing filled hydrogels. Drug release studies, both passive and iontophoretic, suggested that the non-Fickian diffusion of the drug was prevalent during its release from hydrogel matrices. The prepared hydrogels were cytocompatible with human keratinocytes. The results suggested the probable use of such hydrogels in wound healing, tissue engineering and drug delivery applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 77 FR 57085 - Mobility Fund Phase I Auction; Release of Files with Recalculated Road Miles for Auction 901...

    Science.gov (United States)

    2012-09-17

    ... FEDERAL COMMUNICATIONS COMMISSION [AU Docket No. 12-25; DA 12-1446] Mobility Fund Phase I Auction... Mobility Fund Phase I support to be offered in Auction 901, which is to be held on September 27, 2012, and..., 77 FR 32092, May 31, 2012, the Bureaus identified census blocks eligible for the Mobility Fund Phase...

  18. Reduction of insulinotropic properties of GLP-1 and GIP after glucocorticoid-induced insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Marie; Jensen, David H; Tribler, Siri

    2015-01-01

    . In addition, first-phase insulin responses were determined at 7 mmol/l and 15 mmol/l and second-phase insulin responses at 7 mmol/l. RESULTS: After dexamethasone treatment, all 19 participants had increased insulin resistance (HOMA-IR and insulin sensitivity index [M/I] values) and 2 h plasma glucose...

  19. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Knop, F K; Krarup, T

    2003-01-01

    [maturity-onset diabetes of the young (MODY)3]; and 5) newly diagnosed type 1 diabetic patients. All participants underwent three hyperglycemic clamps (2 h, 15 mM) with continuous infusion of saline, 1 pmol GLP-1 (7-36)amide/kg body weight.min or 4 pmol GIP pmol/kg body weight.min. The early-phase (0-20 min......The effect of the insulinotropic incretin hormone, glucagon-like peptide-1 (GLP-1), is preserved in typical middle-aged, obese, insulin-resistant type 2 diabetic patients, whereas a defective amplification of the so-called late-phase plasma insulin response (20-120 min) to glucose by the other...... incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is seen in these patients. The aim of the present investigation was to evaluate plasma insulin and C-peptide responses to GLP-1 and GIP in five groups of diabetic patients with etiology and phenotype distinct from the obese type 2...

  20. Anti-insulin antibody test

    Science.gov (United States)

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... Normally, there are no antibodies against insulin in your blood. ... different laboratories. Some labs use different measurements or ...

  1. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial.

    Science.gov (United States)

    Zhao, Yong; Jiang, Zhaoshun; Zhao, Tingbao; Ye, Mingliang; Hu, Chengjin; Zhou, Huimin; Yin, Zhaohui; Chen, Yana; Zhang, Ye; Wang, Shanfeng; Shen, Jie; Thaker, Hatim; Jain, Summit; Li, Yunxiang; Diao, Yalin; Chen, Yingjian; Sun, Xiaoming; Fisk, Mary Beth; Li, Heng

    2013-07-09

    The prevalence of type 2 diabetes (T2D) is increasing worldwide and creating a significant burden on health systems, highlighting the need for the development of innovative therapeutic approaches to overcome immune dysfunction, which is likely a key factor in the development of insulin resistance in T2D. It suggests that immune modulation may be a useful tool in treating the disease. In an open-label, phase 1/phase 2 study, patients (N=36) with long-standing T2D were divided into three groups (Group A, oral medications, n=18; Group B, oral medications+insulin injections, n=11; Group C having impaired β-cell function with oral medications+insulin injections, n=7). All patients received one treatment with the Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, briefly co-cultures them with adherent cord blood-derived multipotent stem cells (CB-SCs), and returns the educated autologous cells to the patient's circulation. Clinical findings indicate that T2D patients achieve improved metabolic control and reduced inflammation markers after receiving Stem Cell Educator therapy. Median glycated hemoglobin (HbA1C) in Group A and B was significantly reduced from 8.61%±1.12 at baseline to 7.25%±0.58 at 12 weeks (P=2.62E-06), and 7.33%±1.02 at one year post-treatment (P=0.0002). Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) demonstrated that insulin sensitivity was improved post-treatment. Notably, the islet beta-cell function in Group C subjects was markedly recovered, as demonstrated by the restoration of C-peptide levels. Mechanistic studies revealed that Stem Cell Educator therapy reverses immune dysfunctions through immune modulation on monocytes and balancing Th1/Th2/Th3 cytokine production. Clinical data from the current phase 1/phase 2 study demonstrate that Stem Cell Educator therapy is a safe approach that produces lasting improvement in

  2. Reductive methylation of insulin. Production of a biologically active tritiated insulin

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, J W; Nahum, A; Steiner, D F [Department of Biochemistry, University of Chicago, Illinois, USA

    1983-01-01

    Reductive methylation of the three amino groups of porcine insulin was accomplished by incubation with formaldehyde and sodium cyanoborohydride. The two amino termini and the epsilon amino group of B29 lysine were each dimethylated within 1 h of incubation. The fully methylated insulin bound more tightly to a reverse phase column than did native insulin, had a slightly more acid isoelectric point, and maintained approximately 50% biological activity when examined with an insulin sensitive cultured cell line. Reductive methylation with sodium cyanoboro (/sup 3/H) hydride resulted in a (/sup 3/H) methylated insulin with a specific activity of 6 Ci/mmol.

  3. The effect of salmeterol and salbutamol on mediator release and skin responses in immediate and late phase allergic cutaneous reactions

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Skov, P S

    1999-01-01

    on clinical and biochemical EAR and LPR in human skin. METHODS: Measurement of wheal and flare reactions to allergen, codeine, and histamine, and LPR (induration) to allergen. Assessment of histamine and prostaglandin D2 (PGD2) release by microdialysis technique in EAR, and measurement of mediators in LPR......, myeloperoxidase, or eosinophil cationic protein in LPR. CONCLUSIONS: Salmeterol and salbutamol inhibited allergen-induced skin responses, and reduced mediator release in EAR but not LPR. In general, the anti-inflammatory effects of salmeterol did not differ from those induced by salbutamol....

  4. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    Science.gov (United States)

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  5. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; MacDonald, Robert C. (NWU)

    2010-01-18

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, {approx} 40-45 C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer 'frustration' which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored

  6. In situ depot comprising phase-change materials that can sustainably release a gasotransmitter H2S to treat diabetic wounds.

    Science.gov (United States)

    Lin, Wei-Chih; Huang, Chieh-Cheng; Lin, Shu-Jyuan; Li, Meng-Ju; Chang, Yen; Lin, Yu-Jung; Wan, Wei-Lin; Shih, Po-Chien; Sung, Hsing-Wen

    2017-11-01

    Patients with diabetes mellitus are prone to develop refractory wounds. They exhibit reduced synthesis and levels of circulating hydrogen sulfide (H 2 S), which is an ephemeral gaseous molecule. Physiologically, H 2 S is an endogenous gasotransmitter with multiple biological functions. An emulsion method is utilized to prepare a microparticle system that comprises phase-change materials with a nearly constant temperature of phase transitions to encapsulate sodium hydrosulfide (NaHS), a highly water-labile H 2 S donor. An emulsion technique that can minimize the loss of water-labile active compounds during emulsification must be developed. The as-prepared microparticles (NaHS@MPs) provide an in situ depot for the sustained release of exogenous H 2 S under physiological conditions. The sustained release of H 2 S promotes several cell behaviors, including epidermal/endothelial cell proliferation and migration, as well as angiogenesis, by extending the activation of cellular ERK1/2 and p38, accelerating the healing of full-thickness wounds in diabetic mice. These experimental results reveal the strong potential of NaHS@MPs for the sustained release of H 2 S for the treatment of diabetic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women.

    Science.gov (United States)

    Liao, Shunyao; Liu, Yunqiang; Chen, Xiaojuan; Tan, Yuande; Mei, Jie; Song, Wenzhong; Gan, Lu; Wang, Hailian; Yin, Shi; Dong, Xianjue; Chi, Shu; Deng, Shaoping

    2015-11-01

    We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m(2)) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute's proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to β-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis. © The Author(s) 2015.

  8. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation.

    Science.gov (United States)

    Pineros, Isabel; Slowing, Karla; Serrano, Dolores R; de Pablo, Esther; Ballesteros, Maria Paloma

    2017-04-01

    Development of analgesic and anti-inflammatory controlled-released injectable microemulsions utilising lysine clonixinate (LC) as model drug and generally regarded as safe (GRAS) excipients. Different microemulsions were optimised through pseudo-ternary phase diagrams and characterised measuring droplet size, viscosity, ex vivo haemolytic activity and in vitro drug release. The anti-inflammatory and analgesic activity was tested in mice (Hot plate test) and rats (Carrageenan-induced paw edema test) respectively and their activity was compared to an aqueous solution of LC salt. The aqueous solution showed a faster and shorter response whereas the optimised microemulsion increased significantly (p<0.01) the potency and duration of the analgesic and anti-inflammatory activity after deep intramuscular injection. The droplet size and the viscosity were key factors to control the drug release from the systems and enhance the effect of the formulations. The microemulsion consisting of Labrafil®/Lauroglycol®/Polysorbate 80/water with LC (56.25/18.75/15/10, w/w) could be a promising formulation after buccal surgery due to its ability to control the drug release and significantly achieve greater analgesic and anti-inflammatory effect over 24h. Copyright © 2016. Published by Elsevier B.V.

  9. Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals.

    Directory of Open Access Journals (Sweden)

    Francesco Andreozzi

    Full Text Available To evaluate if plasma kisspeptin concentrations are associated with insulin secretion, as suggested by recent in vitro studies, independently of confounders. 261 nondiabetic subjects were stratified into tertiles according to kisspeptin values. Insulin secretion was assessed using indexes derived from oral glucose tolerance test (OGTT. After adjusting for age, gender, and BMI, subjects in the highest (tertile 3 kisspeptin group exhibited significantly lower values of insulinogenic index, corrected insulin response (CIR30, and Stumvoll indexes for first-phase and second-phase insulin release as compared with low (tertile 1 or intermediate (tertile 2 kisspeptin groups. Univariate correlations between kisspeptin concentration and metabolic variables showed that kisspeptin concentration was significantly and positively correlated with age, blood pressure, and 2-h post-load glucose, and inversely correlated with BMI, and waist circumference. There was an inverse relationship between kisspeptin levels and OGTT-derived indexes of glucose-stimulated insulin secretion. A multivariable regression analysis in a model including all the variables significantly correlated with kisspeptin concentration showed thar age (β = -0.338, P<0.0001, BMI (β = 0.272, P<0.0001, 2-h post-load glucose (β = -0.229, P<0.0001, and kisspeptin (β = -0.105, P = 0.03 remained associated with insulinogenic index. These factors explained 34.6% of the variance of the insulinogenic index. In conclusion, kisspeptin concentrations are associated with insulin secretion independently of important determinants of glucose homeostasis such as gender, age, adiposity, 2-h post-load glucose, and insulin sensitivity.

  10. Islet oxygen consumption rate (OCR) dose predicts insulin independence for first clinical islet allotransplants

    Science.gov (United States)

    Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK

    2014-01-01

    Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089

  11. Insulin-egg yolk dispersions in self microemulsifying system.

    Science.gov (United States)

    Singnurkar, P S; Gidwani, S K

    2008-11-01

    Formulation of insulin into a microemulsion very often presents a physicochemical instability during their preparation and storage. In order to overcome this lack of stability and facilitate the handling of these colloidal systems, stabilization of insulin in presence of hydrophobic components of a microemulsion appears as the most promising strategy. The present paper reports the use of egg yolk for stabilization of insulin in self microemulsifying dispersions. Insulin loaded egg yolk self microemulsifying dispersions were prepared by lyophilization followed by dispersion into self microemulsifying vehicle. The physicochemical characterization of selfmicroemulsifying dispersions includes such as insulin encapsulation efficiency, in vitro stability of insulin in presence of proteolytic enzymes and in vitro release. The biological activity of insulin from the dispersion was estimated by enzyme-linked immunosorbant assay and in vivo using Wistar diabetic rats. The particle size ranged 1.023±0.316 μm in diameter and insulin encapsulation efficiency was 98.2±0.9 %. Insulin hydrophobic self microemulsifying dispersions suppressed insulin release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Egg yolk encapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.

  12. Exosomes released in vitro from Epstein-Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs.

    Science.gov (United States)

    Canitano, Andrea; Venturi, Giulietta; Borghi, Martina; Ammendolia, Maria Grazia; Fais, Stefano

    2013-09-01

    EBV is a human herpesvirus associated with a number of malignancies. Both lymphoblastoid cell lines (LCLs), and EBV-infected nasopharyngeal carcinoma (NPC) cells have been demonstrated to release exosomes containing the EBV-encoded latent membrane protein 1 (LMP1), and mature micro-RNAs (EBV-miRNAs). Here we analyze the EBV protein and nucleic acid content of exosomes from different EBV-infected cells (LCL, 721 and Daudi) and we show for the first time that exosomes released from LCLs and 721 also contain EBV-encoded latent phase mRNAs. This confirms and strengthens exosomes pathogenetic potential, and might provide insights for development of novel diagnostic and therapeutic strategies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses.

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca(2+) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.

  14. Elementary properties of Ca2+ channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L.; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca2+ entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca2+ channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses. PMID:25904847

  15. Insulin secretion and glucose uptake by isolated islets of the hamster. Effect of insulin, proinsulin and C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J C; McLaughlin, W J; Walsh, M F.J.; Foa, P P [Sinai Hospital of Detroit, Mich. (USA). Dept. of Research

    1976-01-01

    Isolated pancreatic islets of normal hamsters were perfused either in a closed or in a open system. When the buffer was recirculated and the endogenous insulin was allowed to accumulate, the islets secreted significantly less insulin than when the system was open and the endogenous insulin was washed away. The addition of monocomponent insulin or of proinsulin to the perfusion buffer significantly decreased insulin secretion. The inhibitory action of proinsulin was significantly greater than that of monocomponent insulin. C peptide had no effect. When pancreatic islets were incubated in a fixed volume of stationary buffer containing unlabeled glucose (1.0 mg or 3.0 mg/ml) and glucose-U-/sup 14/C (1.0 ..mu..C/ml), the amount of insulin secreted and the /sup 14/CO/sub 2/ produced by each islet decreased progressively as the number of islets in the sample increased. Under these conditions, the concentration of insulin required to inhibit insulin secretion increased with the concentration of glucose in the medium. Proinsulin did not alter the incorporation of leucine-4.5-/sup 3/H into total extractable insulin (insulin + proinsulin). Thus, insulin and proinsulin appear to inhibit insulin release, but not insulin synthesis.

  16. Insulin Resistance Induced by Short term Fructose Feeding may not ...

    African Journals Online (AJOL)

    Fructose feeding causes insulin resistance and invariably Non-Insulin Dependent Diabetes Mellitus (NIDDM) in rats and genetically predisposed humans. The effect of insulin resistance induced by short term fructose feeding on fertility in female rats was investigated using the following parameters: oestrous phase and ...

  17. Optically-controlled long-term storage and release of thermal energy in phase-change materials

    OpenAIRE

    Han, Grace G. D.; Li, Huashan; Grossman, Jeffrey C.

    2017-01-01

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid–solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive ...

  18. Concentrated insulins: the new basal insulins

    Directory of Open Access Journals (Sweden)

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  19. Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation

    OpenAIRE

    Talija Hristovska; Marko R. Cincović; Branislava Belić; Dragica Stojanović; Milanka Jezdimirović; Radojica Đoković; Bojan Toholj

    2017-01-01

    Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA), glucose and insulin concentrations, r...

  20. Repeated allergen exposure reduce early phase airway response and leukotriene release despite upregulation of 5-lipoxygenase pathways

    Directory of Open Access Journals (Sweden)

    Cui Zhi-Hua

    2012-03-01

    Full Text Available Abstract Background Allergen induced early phase airway response and airway plasma exudation are predominantly mediated by inflammatory mast cell mediators including histamine, cysteinyl leukotrienes (cysLTs and thromboxane A2 (TXA2. The aim of the present study was to evaluate whether repeated allergen exposure affects early phase airway response to allergen challenge. Methods A trimellitic anhydride (TMA sensitized guinea pig model was used to investigate the effects of low dose repeated allergen exposure on cholinergic airway responsiveness, early phase airway response and plasma exudation, as well as local airway production of mast cell derived cysteinyl leukotrienes and thromboxane B2 (TXB2 after allergen challenge. Results Repeated low dose allergen exposure increased cholinergic airway responsiveness. In contrast, early phase airway response and plasma exudation in response to a high-dose allergen challenge were strongly attenuated after repeated low dose allergen exposure. Inhibition of the airway response was unspecific to exposed allergen and independent of histamine receptor blocking. Furthermore, a significant reduction of cysteinyl leukotrienes and TXB2 was found in the airways of animals repeatedly exposed to a low dose allergen. However, in vitro stimulation of airway tissue from animals repeatedly exposed to a low dose allergen with arachidonic acid and calcium ionophore (A23187 induced production of cysteinyl leukotrienes and TXB2, suggesting enhanced activity of 5-lipoxygenase and cyclooxygenase pathways. Conclusions The inhibition of the early phase airway response, cysteinyl leukotriene and TXB2 production after repeated allergen exposure may result from unresponsive effector cells.

  1. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    Science.gov (United States)

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.

  2. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme.

    Science.gov (United States)

    Affholter, J A; Cascieri, M A; Bayne, M L; Brange, J; Casaretto, M; Roth, R A

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Degludec insulin: A novel basal insulin

    OpenAIRE

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  4. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Affholter, J.A.; Roth, R.A. (Stanford Univ. School of Medicine, CA (USA)); Cascieri, M.A.; Bayne, M.L. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA)); Brange, J. (Novo Research Institute, Bagsvaerd (Denmark)); Casaretto, M. (Deutsches Wollforschungsinstitut an der Technischen, Aachen (West Germany))

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants (B25-Asp)insulin and (B25-His)insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants (B1-24-His{sup 25}-NH{sub 2})insulin and (B1-24-Leu{sup 25}-NH{sub 2})insulin, but not (B1-24-Trp{sup 25}-NH{sub 2})insulin and (B1-24-Tyr{sup 25}-NH{sub 2})insulin. The truncated analogue with the lowest affinity for IDE ((B1-24-His{sup 25}-NH{sub 2})insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ.

  5. Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    temperatures in the range of 500–1150 °C in a laboratory-scale tube reactor and by performing mass balance calculations based on the weight measurements and chemical analyses of the wood fuels and the residual ash samples. Four wood fuels with different ash contents and inorganic compositions were investigated...... of the alkali metals K and Na was, however, strongly dependent on both the temperature and the fuel composition under the investigated conditions. The release of the heavy metals Zn and Pb started around 500 °C and increased sharply to more than 85% at 850 °C in the case of spruce, beech, and bark...

  6. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2011-02-01

    even too short (see postprandial glycaemic excursions with test meals in the publication by Rosenstock et al. in The Lancet (1)). In the end a number of aspects are of relevance for the success of a given product; one key aspect is clearly the price. However, for patients also practical aspects (handling, need for regular pulmonary function test etc.) are of importance. We shall have to see how creatively MannKind will handle all such questions. Until now Al Mann and his colleagues were able to manage a number of challenges during the clinical development process successfully, so one can have hopes for the market success of TI. However, it is clear that at the same time, if TI fails like Exubera did before, this will be the end for pulmonary insulin in general. Not too many original publications presenting data from clinical trials were published in the last year when it comes to oral insulin (OI), nasal insulin or transdermal insulin developments; simply none with transdermal insulin. Also at the last international congresses not many studies about ARIA were presented. At least in part this might be still a reflection of the shockwaves that the failure of Exubera has sent out to pharmaceutical companies and venture capitalists; they are quite reluctant to invest in any of these developments. However, a considerable number of reviews (in some cases more than original papers!) were published about ARIA. These reviews are listed for completeness, but in most cases are not further commented. OI is still the area of research most companies are active in; however, in some cases it is not clear how active they really are (e.g. Diabetology). Nevertheless, at least some companies are quite active and progressed in their clinical development programme close to market approval, e.g. the large Indian company Biocon is in late phase 3 with IN-105 and the small Israel-based company Oramed is in phase 2b. It appears that other interesting OI developments (e.g. Diasome) were not very

  7. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase.

    Science.gov (United States)

    Moss, David K; Wilde, Andrew; Lane, Jon D

    2009-03-01

    During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.

  8. Derived emergency reference levels for the introduction of countermeasures in the early to intermediate phases of emergencies involving the release of radioactive materials to atmosphere

    International Nuclear Information System (INIS)

    Linsley, G.S.; Crick, M.J.; Simmonds, J.R.; Haywood, S.M.

    1986-03-01

    Derived Emergency Reference Levels (DERLs) are practical quantities intended for use in the aftermath of an accident involving the release of radioactive materials to atmosphere and for use in preparing emergency plans for the protection of the public. The results of environmental measurements may be compared with them as a means of assessing the seriousness of the release and in order to form judgements on the need to institute protective countermeasures. DERLs are the practical expression of Emergency Reference Levels, the radiological criteria for planning the introduction of emergency countermeasures. DERLs have been evaluated for a range of radionuclides which could be released in the event of an accident and for a number of different exposure pathways that are relevant in the initial phase of an accident. These pathways are: inhalation of activity both in the plume and resuspended from the ground; skin irradiation by β-emitting noble gases in the cloud; doses from β-emitters deposited on the skin; and external γ irradiation from ground deposits. (author)

  9. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning.

    Science.gov (United States)

    Yang, Yi; Chen, Bo; Hower, James; Schindler, Michael; Winkler, Christopher; Brandt, Jessica; Di Giulio, Richard; Ge, Jianping; Liu, Min; Fu, Yuhao; Zhang, Lijun; Chen, Yuru; Priya, Shashank; Hochella, Michael F

    2017-08-08

    Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO 2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magnéli phases (Ti x O 2x-1 with 4 ≤ x ≤ 9) from TiO 2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magnéli phases have potential toxicity pathways that are not photoactive like TiO 2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung.Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.

  10. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  11. National preparedness guide for exiting the emergency phase subsequent to a nuclear accident causing moderate, short-term release on French soil - working document, version 0, May 2010

    International Nuclear Information System (INIS)

    2010-05-01

    This National Guide provides basic explanations and methods to assist in drawing up a local plan for the emergency phase way-out, subsequent to a nuclear accident of moderate magnitude causing short-term (under 24 hours) radioactive release, which could possibly occur in France. The accident situations considered in this Guide have little likelihood of arising and are representative of environmental contamination accidents that might occur at French nuclear facilities covered by a special intervention plan (plan particulier d'intervention, PPI). Such accidents may cause environmental contamination warranting action for post-accident impact management within a range of ten to fifty kilometres from the accident site. To provide some perspective, the accidents considered here would be classified Levels 3, 4 or 5 (incidents or accidents causing release into the environment) on the INES scale customarily used to help the public and media to immediately understand the severity of an incident or accident in the nuclear field. This Guide was drawn up subsequently to the work carried out by the Steering Committee on Post- Accident Phase Management in the Event of a Nuclear Accident or Radiological Emergency Situation (CODIRPA), instituted by the French Nuclear Safety Authority (ASN) in June 2005, and in charge of setting out the basic principles underlying the management of nuclear post-accident situations. This version of the Guide shall be updated on the basis of the operating experience feedback received on its use. The Guide is a planning tool, intended for the Prefectures of department where a basic nuclear facility PPI has been instituted. Its purpose is to enable Prefects to plan and effectively conduct preparedness measures at the local level with the aim of winding down the emergency phase, actively involving all of the relevant actors for this purpose. The exit period from the emergency phase is defined as extending approximately one week from the end of the

  12. Insulin internalization in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Galan, J.; Trankina, M.; Noel, R.; Ward, W.

    1990-01-01

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of 125 I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in 125 I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the 125 I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of 125 I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization

  13. Possible modulatory effect of endogenous islet catecholamines on insulin secretion

    Directory of Open Access Journals (Sweden)

    Gagliardino Juan J

    2001-10-01

    Full Text Available Abstract Background The possible participation of endogenous islet catecholamines (CAs in the control of insulin secretion was tested. Methods Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT, a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I] and α1-adrenergic antagonists (prazosin [P] and terazosin [T] upon insulin secretion elicited by high glucose. Results Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p Conclusion Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.

  14. Clinical evaluation of the intraoral fluoride releasing system in radiation-induced xerostomic subjects. Part 2: Phase I study.

    Science.gov (United States)

    Chambers, Mark S; Mellberg, James R; Keene, Harris J; Bouwsma, Otis J; Garden, Adam S; Sipos, Tibor; Fleming, Terence J

    2006-10-01

    Radiation-induced xerostomia can result in the rapid onset and progression of dental caries in head and neck cancer patients. Topically applied fluorides have been successfully used to inhibit the formation of dental caries in this population. However, because intensive daily self-application is required, compliance is an issue. The intraoral fluoride-releasing system (IFRS) containing a sodium fluoride core is a newly developed, sustained-release, passive drug delivery system that does not require patient involvement except for periodic replacement, thus reducing the effect of patient compliance on its effectiveness in dental caries prevention. Twenty-two head and neck cancer patients from U. T. M. D. Anderson Cancer Center, with radiation-induced xerostomia, were entered into a pilot study to contrast the daily home use of a 0.4% stannous fluoride-gel-containing tray (control group) to IFRS (study group) with respect to tolerability and adherence, and to obtain information on relative caries preventive efficacy. Participants were stratified on the basis of radiation exposure and randomly assigned to treatment with either IFRS or stannous fluoride gel. Patients in both groups were fitted with two IFRS retainers and also were instructed to use a 1100-ppm fluoride conventional sodium fluoride dentifrice twice daily. The study was conducted as a single-blinded, parallel-cell trial. Pre-existing carious lesions were restored prior to the beginning of the study. The efficacy variable was determined by the mean number of new or recurrent decayed surfaces. Patients were examined for caries 4, 8, 12, 24, 36, and 48 weeks after initiation of treatment. Reports of adverse reactions were based on information volunteered by patients and that were elicited during interviews. At baseline, the resting and stimulated salivary flow rates (g/5min) were significantly greater in the control group than in the study group (pIFRS groups during the study period. The rate of new or

  15. Insulin and the Brain

    Directory of Open Access Journals (Sweden)

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  16. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    Science.gov (United States)

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  17. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity....... Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole...

  18. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    Science.gov (United States)

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p protocol improves insulin sensitivity and mitochondrial

  19. The interaction of insulin with phospholipids

    Science.gov (United States)

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholineInsulin decreased the [14C]glucose solubilized by phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid, but not by sphingomyelin. 5. The significance of these results and the molecular requirements for the formation of insulin–phospholipid complexes in chloroform are discussed. PMID:5158903

  20. Alteration in insulin action

    DEFF Research Database (Denmark)

    Tanti, J F; Gual, P; Grémeaux, T

    2004-01-01

    Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterised by a decrease in insulin effect on glucose transport in muscle and adipose tIssue. Tyrosine phosphorylation of insulin receptor substrate 1 (IRS......-1) and its binding to phosphatidylinositol 3-kinase (PI 3-kinase) are critical events in the insulin signalling cascade leading to insulin-stimulated glucose transport. Modification of IRS-1 by serine phosphorylation could be one of the mechanisms leading to a decrease in IRS-1 tyrosine...... to phosphorylate these serine residues have been identified. These exciting results suggest that serine phosphorylation of IRS-1 is a possible hallmark of insulin resistance in biologically insulin responsive cells or tIssues. Identifying the pathways by which "diabetogenic" factors activate IRS-1 kinases...

  1. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Hanson, K

    2001-01-01

    Plasma concentrations of interleukin-6 (IL-6), a proinflammatory cytokine produced and released in part by adipose tissue, are elevated in people with obesity and type 2 diabetes. Because recent studies suggest that markers of inflammation predict the development of type 2 diabetes, we examined w...... whether circulating plasma IL-6 concentrations were related to direct measures of insulin resistance and insulin secretory dysfunction in Pima Indians, a population with high rates of obesity and type 2 diabetes....

  3. Effect of iodination site on binding of radiolabeled ligand by insulin antibodies and insulin autoantibodies

    International Nuclear Information System (INIS)

    Diaz, J.L.; Wilkin, T.J.

    1988-01-01

    Four human insulins and four porcine insulins, each monoiodinated to the same specific activity at one of the four tyrosine residues (A14, A19, B16, B26) and purified by reversed-phase liquid chromatography, were tested in a radiobinding assay against a panel of insulin-antibody (IA)-positive sera from 10 insulin-treated diabetics and insulin-autoantibody-positive (IAA) sera from 10 nondiabetics. Of the 10 IAA-positive sera, five were fully cross reactive with both insulin species, and five were specific for human insulin. The rank order of binding of sera with the four ligands from each species was random for IA (mean rank values of 1.9 for A14, 2.0 for A19, 2.5 for B16, and 3.6 for B26 from a possible ranking range of 1 to 4), but more consistent for non-human-insulin-specific IAA (mean rank values 1.3 for A14, 3.8 for A19, 1.7 for B16, and 3.2 for B26 for labeled human insulins; 1.2 for A14, 4.0 for A19, 1.8 for B16, and 3.0 for B26 for labeled porcine insulins). The rank order of binding was virtually uniform for human-insulin-specific IAA (mean values 1.2 for A14, 3.0 for A19, 1.8 for B16, and 4.0 for B26). The influence of iodination site on the binding of labeled insulin appears to be dependent on the proximity of the labeled tyrosine to the antibody binding site and the clonal diversity, or restriction, of insulin-binding antibodies in the test serum. When IA and IAA are measured, the implications of this study regarding the choice of assay ligand may be important

  4. Mineral Phases and Release Behaviors of As in the Process of Sintering Residues Containing As at High Temperature

    Directory of Open Access Journals (Sweden)

    Xingrun Wang

    2014-01-01

    Full Text Available To investigate the effect of sintering temperature and sintering time on arsenic volatility and arsenic leaching in the sinter, we carried out experimental works and studied the structural changes of mineral phases and microstructure observation of the sinter at different sintering temperatures. Raw materials were shaped under the pressure of 10 MPa and sintered at 1000~1350°C for 45 min with air flow rate of 2000 mL/min. The results showed that different sintering temperatures and different sintering times had little impact on the volatilization of arsenic, and the arsenic fixed rate remained above 90%; however, both factors greatly influenced the leaching concentration of arsenic. Considering the product’s environmental safety, the best sintering temperature was 1200°C and the best sintering time was 45 min. When sintering temperature was lower than 1000°C, FeAsS was oxidized into calcium, aluminum, and iron arsenide, mainly Ca3(AsO42 and AlAsO4, and the arsenic leaching was high. When it increased to 1200°C, arsenic was surrounded by a glass matrix and became chemically bonded inside the matrix, which lead to significantly lower arsenic leaching.

  5. Determination of free formaldehyde in cosmetics containing formaldehyde-releasing preservatives by reversed-phase dispersive liquid-liquid microextraction and liquid chromatography with post-column derivatization.

    Science.gov (United States)

    Miralles, Pablo; Chisvert, Alberto; Alonso, M José; Hernandorena, Sandra; Salvador, Amparo

    2018-03-30

    An analytical method for the determination of traces of formaldehyde in cosmetic products containing formaldehyde-releasing preservatives has been developed. The method is based on reversed-phase dispersive liquid-liquid microextraction (RP-DLLME), that allows the extraction of highly polar compounds, followed by liquid chromatography-ultraviolet/visible (LC-UV/vis) determination with post-column derivatization. The variables involved in the RP-DLLME process were studied to provide the best enrichment factors. Under the selected conditions, a mixture of 500 μL of acetonitrile (disperser solvent) and 50 μL of water (extraction solvent) was rapidly injected into 5 mL of toluene sample solution. The extracts were injected into the LC-UV/vis system using phosphate buffer 6 mmol L -1 at pH 2 as mobile phase. After chromatographic separation, the eluate merged with a flow stream of pentane-2,4-dione in ammonium acetate solution as derivatizing reagent and passed throughout a post-column reactor at 85 °C in order to derivatize formaldehyde into 3,5-diacetyl-1,4-dihydrolutidine, according to Hantzsch reaction, which was finally measured spectrophotometrically at 407 nm. The method was successfully validated showing good linearity, an enrichment factor of 86 ± 2, limits of detection and quantification of 0.7 and 2.3 ng mL -1 , respectively, and good repeatability (RSD < 9.2%). Finally, the proposed analytical method was applied to the determination of formaldehyde in different commercial cosmetic samples containing formaldehyde-releasing preservatives, such as bronopol, diazolidinyl urea, imidazolidinyl urea, and DMDM hydantoin, with good relative recovery values (91-113%) thus showing that matrix effects were negligible. The good analytical features of the proposed method besides of its simplicity and affordability, make it useful to carry out the quality control of cosmetic products containing formaldehyde-releasing preservatives. Copyright

  6. Phase III Study on Efficacy and Safety of Triple Combination (Exenatide/Metformin/Biphasic Insulin Aspart) Therapy for Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Su, Ke; Lv, Chunmei; Ji, Zongwen; Wang, Yishu; Wang, Haifeng; Bai, Ying; Liu, Yaping

    2016-02-03

    Exenatide, metformin (MET), and biphasic insulin aspart 30 (BIA30) have been widely used in the treatment of patients with type 2 diabetes mellitus (T2DM); however, each of these medications has significant adverse effects, which limit their utilization. This study aimed to evaluate the efficacy and safety of triple combination (exenatide/metformin/biphasic insulin aspart) therapy for T2DM. Two hundred patients with poorly controlled T2DM were randomly divided into the low-dose (0.5 μg exenatide, 0.05 U·kg·d BIA30, and 0.01 g MET twice daily) and normal-dose (2 μg exenatide, 0.2 U·kg·d BIA30, and 0.05 g MET twice daily) groups for 48 weeks of treatment. Of note, 82 and 90 individuals from the low-dose and normal-dose groups, respectively, completed the study. The levels of adiponectin, C-reactive protein, tumor necrosis factor-α, and resistin were measured. The normal-dose treatment was more effective at lowering hemoglobin A1c levels than the low-dose therapy (HbA1c changes of -2.5 ± 0.19% and -0.8 ± 0.07%, respectively) after 48 weeks. The maximum weight decrease was 0.9 kg in the low-dose group and 4.0 kg in the normal-dose group. The triple combination therapy increased the levels of insulin sensitivity and adiponectin and reduced the levels of C-reactive protein, resistin, and tumor necrosis factor-α. No significant difference in the adverse effects was found between the low-dose and normal-dose groups (P > 0.05). In conclusion, the investigated triple combination therapy for T2MD is therefore an effective and safe therapeutic strategy.This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially.

  7. MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry.

    Science.gov (United States)

    Jain, Miten; Tyson, John R; Loose, Matthew; Ip, Camilla L C; Eccles, David A; O'Grady, Justin; Malla, Sunir; Leggett, Richard M; Wallerman, Ola; Jansen, Hans J; Zalunin, Vadim; Birney, Ewan; Brown, Bonnie L; Snutch, Terrance P; Olsen, Hugh E

    2017-01-01

    Long-read sequencing is rapidly evolving and reshaping the suite of opportunities for genomic analysis. For the MinION in particular, as both the platform and chemistry develop, the user community requires reference data to set performance expectations and maximally exploit third-generation sequencing. We performed an analysis of MinION data derived from whole genome sequencing of Escherichia coli K-12 using the R9.0 chemistry, comparing the results with the older R7.3 chemistry. We computed the error-rate estimates for insertions, deletions, and mismatches in MinION reads. Run-time characteristics of the flow cell and run scripts for R9.0 were similar to those observed for R7.3 chemistry, but with an 8-fold increase in bases per second (from 30 bps in R7.3 and SQK-MAP005 library preparation, to 250 bps in R9.0) processed by individual nanopores, and less drop-off in yield over time. The 2-dimensional ("2D") N50 read length was unchanged from the prior chemistry. Using the proportion of alignable reads as a measure of base-call accuracy, 99.9% of "pass" template reads from 1-dimensional ("1D")  experiments were mappable and ~97% from 2D experiments. The median identity of reads was ~89% for 1D and ~94% for 2D experiments. The total error rate (miscall + insertion + deletion ) decreased for 2D "pass" reads from 9.1% in R7.3 to 7.5% in R9.0 and for template "pass" reads from 26.7% in R7.3 to 14.5% in R9.0. These Phase 2 MinION experiments serve as a baseline by providing estimates for read quality, throughput, and mappability. The datasets further enable the development of bioinformatic tools tailored to the new R9.0 chemistry and the design of novel biological applications for this technology. K: thousand, Kb: kilobase (one thousand base pairs), M: million, Mb: megabase (one million base pairs), Gb: gigabase (one billion base pairs).

  8. Once daily controlled-release pregabalin in the treatment of patients with fibromyalgia: a phase III, double-blind, randomized withdrawal, placebo-controlled study.

    Science.gov (United States)

    Arnold, Lesley M; Arsenault, Pierre; Huffman, Cynthia; Patrick, Jeffrey L; Messig, Michael; Chew, Marci L; Sanin, Luis; Scavone, Joseph M; Pauer, Lynne; Clair, Andrew G

    2014-10-01

    Safety and efficacy of a once daily controlled-released (CR) formulation of pregabalin was evaluated in patients with fibromyalgia using a placebo-controlled, randomized withdrawal design. This multicenter study included 6 week single-blind pregabalin CR treatment followed by 13 week double-blind treatment with placebo or pregabalin CR. The starting dose of 165 mg/day was escalated during the first 3 weeks, up to 495 mg/day based on efficacy and tolerability. Patients with ≥50% reduction in average daily pain score at the end of the single-blind phase were randomized to continue pregabalin CR at the optimized dose (330-495 mg/day) or to placebo. The primary endpoint was time to loss of therapeutic response (LTR), defined as treatment' (Benefit, Satisfaction, and Willingness to Continue Scale) in the pregabalin CR group; no other secondary endpoints were statistically significant. Most AEs were mild to moderate in severity (most frequent: dizziness, somnolence). The percentage of pregabalin CR patients discontinuing because of AEs was 12.2% and 4.8% in the single-blind and double-blind phases, respectively (placebo, 0%). Time to LTR was significantly longer with pregabalin CR versus placebo in fibromyalgia patients who initially showed improvement with pregabalin CR, indicating maintenance of response. Pregabalin CR was well tolerated in most patients. Generalizability may be limited by study duration and selective population.

  9. Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis.

    Directory of Open Access Journals (Sweden)

    José A G Pertusa

    Full Text Available β-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance. Glucose and K+-induced insulin release were analyzed in isolated mouse islets by static incubation and perifusion experiments in the presence and absence of albumin and Zn2+ chelators. Insulin tolerance tests were performed in rats using different insulin solutions with and without Zn2+ and/or albumin. Albumin-free buffer does not alter quantification by RIA of Zn2+-free insulin but strongly affects RIA measurements of Zn2+-insulin. In contrast, accurate determination of Zn2+-insulin was obtained only when bovine serum albumin or Zn2+ chelators were present in the assay buffer solution. Albumin and Zn2+ chelators do not modify insulin release but do affect insulin determination. Preincubation with albumin or Zn2+ chelators promotes the conversion of "slow" Zn2+-insulin into "fast" insulin. Consequently, insulin diffusion from large islets is ameliorated in the presence of Zn2+ chelators. These observations support the notion that the Zn2+-binding properties of albumin improve the dissociation of Zn2+-insulin into subunits after exocytosis, which may be useful in insulin determination, insulin pharmacokinetic assays and islet transplantation.

  10. Efficacy of vildagliptin for prevention of postpartum diabetes in women with a recent history of insulin-requiring gestational diabetes: A phase II, randomized, double-blind, placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Sandra Hummel

    2018-03-01

    Full Text Available Objective: Women with insulin-requiring gestational diabetes mellitus (GDM are at high risk of developing diabetes within a few years postpartum. We implemented this phase II study to test the hypothesis that vildagliptin, a dipeptidyl peptidase-4 inhibitor, is superior to placebo in terms of reducing the risk of postpartum diabetes. Methods: Women with insulin-requiring GDM were randomized to either placebo or 50 mg vildagliptin twice daily for 24 months followed by a 12-month observation period (EudraCT: 2007-000634-39. Both groups received lifestyle counseling. The primary efficacy outcomes were the diagnosis of diabetes (American Diabetes Association (ADA criteria or impaired fasting glucose (IFG/impaired glucose tolerance (IGT. Results: Between 2008 and 2015, 113 patients (58 vildagliptin, 55 placebo were randomized within 2.2–10.4 (median 8.6 months after delivery. At the interim analysis, nine diabetic events and 28 IFG/IGT events had occurred. Fifty-two women withdrew before completing the treatment phase. Because of the low diabetes rate, the study was terminated. Lifestyle adherence was similar in both groups. At 24 months, the cumulative probability of postpartum diabetes was 3% and 5% (hazard ratio: 1.03; 95% confidence interval: 0.15–7.36 and IFG/IGT was 43% and 22% (hazard ratio: 0.55; 95% confidence interval: 0.26–1.19 in the placebo and vildagliptin groups, respectively. Vildagliptin was well tolerated with no unexpected adverse events. Conclusions: The study did not show significant superiority of vildagliptin over placebo in terms of reducing the risk of postpartum diabetes. However, treatment was safe and suggested some improvements in glycemic control, insulin resistance, and β-cell function. The study identified critical issues in performing clinical trials in the early postpartum period in women with GDM hampering efficacy assessments. With this knowledge, we have set a basis for which properly powered trials could

  11. Efficacy of vildagliptin for prevention of postpartum diabetes in women with a recent history of insulin-requiring gestational diabetes: A phase II, randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Hummel, Sandra; Beyerlein, Andreas; Pfirrmann, Markus; Hofelich, Anna; Much, Daniela; Hivner, Susanne; Bunk, Melanie; Herbst, Melanie; Peplow, Claudia; Walter, Markus; Kohn, Denise; Hummel, Nadine; Kratzsch, Jürgen; Hummel, Michael; Füchtenbusch, Martin; Hasford, Joerg; Ziegler, Anette-G

    2018-03-01

    Women with insulin-requiring gestational diabetes mellitus (GDM) are at high risk of developing diabetes within a few years postpartum. We implemented this phase II study to test the hypothesis that vildagliptin, a dipeptidyl peptidase-4 inhibitor, is superior to placebo in terms of reducing the risk of postpartum diabetes. Women with insulin-requiring GDM were randomized to either placebo or 50 mg vildagliptin twice daily for 24 months followed by a 12-month observation period (EudraCT: 2007-000634-39). Both groups received lifestyle counseling. The primary efficacy outcomes were the diagnosis of diabetes (American Diabetes Association (ADA) criteria) or impaired fasting glucose (IFG)/impaired glucose tolerance (IGT). Between 2008 and 2015, 113 patients (58 vildagliptin, 55 placebo) were randomized within 2.2-10.4 (median 8.6) months after delivery. At the interim analysis, nine diabetic events and 28 IFG/IGT events had occurred. Fifty-two women withdrew before completing the treatment phase. Because of the low diabetes rate, the study was terminated. Lifestyle adherence was similar in both groups. At 24 months, the cumulative probability of postpartum diabetes was 3% and 5% (hazard ratio: 1.03; 95% confidence interval: 0.15-7.36) and IFG/IGT was 43% and 22% (hazard ratio: 0.55; 95% confidence interval: 0.26-1.19) in the placebo and vildagliptin groups, respectively. Vildagliptin was well tolerated with no unexpected adverse events. The study did not show significant superiority of vildagliptin over placebo in terms of reducing the risk of postpartum diabetes. However, treatment was safe and suggested some improvements in glycemic control, insulin resistance, and β-cell function. The study identified critical issues in performing clinical trials in the early postpartum period in women with GDM hampering efficacy assessments. With this knowledge, we have set a basis for which properly powered trials could be performed in women with recent GDM. TRIAL REGISTRATION

  12. Patient safety and minimizing risk with insulin administration - role of insulin degludec.

    Science.gov (United States)

    Aye, Myint M; Atkin, Stephen L

    2014-01-01

    Diabetes is a lifelong condition requiring ongoing medical care and patient self-management. Exogenous insulin therapy is essential in type 1 diabetes and becomes a necessity in patients with longstanding type 2 diabetes who fail to achieve optimal control with lifestyle modification, oral agents, and glucagon-like peptide 1-based therapy. One of the risks that hinders insulin use is hypoglycemia. Optimal insulin therapy should therefore minimize the risk of hypoglycemia while improving glycemic control. Insulin degludec (IDeg) is a novel basal insulin that, following subcutaneous injection, assembles into a depot of soluble multihexamer chains. These subsequently release IDeg monomers that are absorbed at a slow and steady rate into the circulation, with the terminal half-life of IDeg being ~25 hours. Thus, it requires only once-daily dosing unlike other basal insulin preparations that often require twice-daily dosing. Despite its long half-life, once-daily IDeg does not cause accumulation of insulin in the circulation after reaching steady state. IDeg once a day will produce a steady-state profile with a lower peak:trough ratio than other basal insulins. In clinical trials, this profile translates into a lower frequency of nocturnal hypoglycemia compared with insulin glargine, as well as an ability to allow some flexibility in dose timing without compromising efficacy and safety. Indeed, a study that tested the extremes of dosing intervals of 8 and 40 hours showed no detriment in either glycemic control or hypoglycemic frequency versus insulin glargine given at the same time each day. While extreme flexibility in dose timing is not recommended, these findings are reassuring. This may be particularly beneficial to elderly patients, patients with learning difficulties, or others who have to rely on health-care professionals for their daily insulin injections. Further studies are required to confirm whether this might benefit adherence to treatment, reduce long

  13. Interaction between exogenous insulin, endogenous insulin, and glucose in type 2 diabetes patients.

    Science.gov (United States)

    Janukonyté, Jurgita; Parkner, Tina; Bruun, Niels Henrik; Lauritzen, Torsten; Christiansen, Jens Sandahl; Laursen, Torben

    2015-05-01

    Little is known about the influence of exogenous insulin and actual glucose levels on the release of endogenous insulin in insulin-treated type 2 diabetes mellitus (T2DM) patients. This study investigated the interaction among serum endogenous insulin (s-EI), serum exogenous insulin aspart (s-IAsp), and blood glucose levels in an experimental short-term crossover design. Eight T2DM patients (63.52 years old; range, 49-69 years; mean body mass index, 28.8±3.8 kg/m(2)) were randomized to treatment with individual fixed doses of insulin aspart (0.5-1.5 IU/h) as a continuous subcutaneous insulin infusion (CSII) during a 10-h period on two occasions with different duration of hyperglycemia: (1) transient hyperglycemia for 2 h (visit TH) and (2) continuous hyperglycemia for 12 h (visit CH). During steady state the variances of plasma glucose (p-glucose), s-IAsp, and s-EI were equal within visit TH and within visit CH, but variances were significantly higher during visit CH compared with visit TH. The s-IAsp reached lower levels at visit CH compared with visit TH (test for slope=1, P=0.005). The s-EI depended on p-glucose in a nonlinear fashion during the first 100 min of both visits when s-IAsp was undetectable (adjusted R(2)=0.9). A complex but statistically significant interaction among s-IAsp, s-EI, p-glucose, and patients was observed during measurable s-IAsp levels (adjusted R(2)=0.70). Endogenous and exogenous insulin showed higher variation during continuous hyperglycemia. Significantly lower levels of exogenous insulin were observed following CSII during continuous hyperglycemia compared with transient hyperglycemia. Endogenous insulin levels could in a complex way be explained by an individual interaction among p-glucose and serum exogenous insulin, if present.

  14. Giving an insulin injection

    Science.gov (United States)

    ... hand. The bubbles will float to the top. Push the bubbles back into the insulin bottle, then pull back to ... hand. The bubbles will float to the top. Push the bubbles back into the insulin bottle, then pull back to ...

  15. Insulin Resistance and Prediabetes

    Science.gov (United States)

    ... Your Baby is Born Monogenic Diabetes Insulin Resistance & Prediabetes Insulin resistance and prediabetes occur when your body ... will stay in the healthy range. What is prediabetes? Prediabetes means your blood glucose levels are higher ...

  16. Phorbol-ester-induced down-regulation of protein kinase C in mouse pancreatic islets. Potentiation of phase 1 and inhibition of phase 2 of glucose-induced insulin secretion

    DEFF Research Database (Denmark)

    Thams, P; Capito, K; Hedeskov, C J

    1990-01-01

    and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1...

  17. Pharmacokinetics, safety, and efficacy of APF530 (extended-release granisetron) in patients receiving moderately or highly emetogenic chemotherapy: results of two Phase II trials

    International Nuclear Information System (INIS)

    Gabrail, Nashat; Yanagihara, Ronald; Spaczyński, Marek; Cooper, William; O’Boyle, Erin; Smith, Carrie; Boccia, Ralph

    2015-01-01

    Despite advances with new therapies, a significant proportion of patients (>30%) suffer delayed-onset chemotherapy-induced nausea and vomiting (CINV) despite use of antiemetics. APF530 is a sustained-release subcutaneous (SC) formulation of granisetron for preventing CINV. APF530 pharmacokinetics, safety, and efficacy were studied in two open-label, single-dose Phase II trials (C2005-01 and C2007-01, respectively) in patients receiving moderately emetogenic chemotherapy or highly emetogenic chemotherapy. In C2005-01, 45 patients received APF530 250, 500, or 750 mg SC (granisetron 5, 10, or 15 mg, respectively). In C2007-01, 35 patients were randomized to APF530 250 or 500 mg SC. Injections were given 30 to 60 minutes before single-day moderately emetogenic chemotherapy or highly emetogenic chemotherapy. Plasma granisetron was measured from predose to 168 hours after study drug administration. Safety and efficacy were also evaluated. APF530 pharmacokinetics were dose proportional, with slow absorption and elimination of granisetron after a single SC dose. Median time to maximum plasma concentration and half-life were similar for APF530 250 and 500 mg in both trials, with no differences between the groups receiving moderately and highly emetogenic chemotherapy. Exposure to granisetron was maintained at a therapeutic level over the delayed-onset phase, at least 168 hours. Adverse events in both trials were as expected for granisetron; injection site reactions (eg, erythema and induration) were predominantly mild and seen in ≤20% of patients. Complete responses (no emesis, with no rescue medication) were obtained in the acute, delayed, and overall phases in ≥80% and ≥75% of patients in both trials with the 250 and 500 mg doses, respectively. After a single injection of APF530, there were dose-proportional pharmacokinetics and sustained concentrations of granisetron over 168 hours. The 250 and 500 mg doses were well tolerated and maintained therapeutic granisetron

  18. Classifying insulin regimens

    DEFF Research Database (Denmark)

    Neu, A; Lange, K; Barrett, T

    2015-01-01

    Modern insulin regimens for the treatment of type 1 diabetes are highly individualized. The concept of an individually tailored medicine accounts for a broad variety of different insulin regimens applied. Despite clear recommendations for insulin management in children and adolescents with type 1...

  19. Glycosphingolipids and insulin resistance

    NARCIS (Netherlands)

    Langeveld, Mirjam; Aerts, Johannes M. F. G.

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple

  20. Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation

    Directory of Open Access Journals (Sweden)

    Talija Hristovska

    2017-01-01

    Full Text Available Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA, glucose and insulin concentrations, revised quantitative insulin sensitivity check index and glucose-to-insulin ratio. Niacin supplementation led to a decrease of NEFA concentration and an increase of glucose and insulin concentrations during the first three weeks after calving. Cows in the niacin group which were more resistant to insulin showed higher concentrations of non-esterified fatty acid in comparison with more sensitive cows from the same group, but still lower than the control. The regression analyses suggest the following characteristics of cows supplemented with niacin in comparison with the control group: the insulin response to glucose was more intense; the antilipolytic effect of insulin was lower; insulin efficiency expressed as glucose-to-insulin ratio increase with a decrease in NEFA. The metabolic changes due to niacin supplementation showed a dual influence on the insulin resistance in dairy cows during early lactation: decreased NEFA concentrations led to a decrease in the insulin resistance (due to an increase in insulin efficiency and insulin sensitivity index, but increased concentrations of insulin and glucose possibly caused an increase in the insulin resistance in dairy cows (due to lower insulin sensitivity index and possibly lower antilipolytic effects of insulin.

  1. Endogenous incretin hormone augmentation of acute insulin secretion in normoglycemic relatives of type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Alford, Frank P; Rantzau, Christian; Henriksen, Jan-Erik

    2014-01-01

    AIMS/HYPOTHESIS: The pathophysiological role of gut incretin hormone argumentation on acute insulin release in the genesis of type 2 diabetes (TDM2) is uncertain. We examined retrospectively at 0 year and 10 years the endogenous incretin hormone action (IHA) on acute insulin release and glucose...

  2. A variant in the G6PC2/ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads

    DEFF Research Database (Denmark)

    Rose, C S; Grarup, N; Krarup, N T

    2009-01-01

    An association between elevated fasting plasma glucose and the common rs560887 G allele in the G6PC2/ABCB11 locus has been reported. In Danes we aimed to examine rs560887 in relation to plasma glucose and serum insulin responses following oral and i.v. glucose loads and in relation to hepatic...... glucose production during a hyperinsulinaemic-euglycaemic clamp. Furthermore, we examined rs560887 for association with impaired fasting glycaemia (IFG), impaired glucose tolerance (IGT), type 2 diabetes and components of the metabolic syndrome....

  3. Insulin and the Lung

    DEFF Research Database (Denmark)

    Singh, Suchita; Prakash, Y S; Linneberg, Allan

    2013-01-01

    , molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung...... and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin...

  4. Transfer plate radioassay using adsorbed anti-insulin antibody to detect insulin secreted by islet cell cultures

    International Nuclear Information System (INIS)

    Scearce, R.M.; Oie, H.K.; Gazdar, A.F.; Chick, W.L.; Eisenbarth, G.S.

    1981-01-01

    A solid-phase radioimmunoassay for detection of insulin synthesized by islet cell clones is described. This assay employs anti-insulin antibody adsorbed onto fenestrated polyvinyl chloride 96-well plates ('transfer plates'). The calibrated aperture in the bottom of each transfer plate well permits fluid to enter the wells when transfer plates are lowered into microculture wells containing insulin. With this assay it is possible to rapidly screen hundreds of islet cell cultures for insulin production. The authors have used this assay to facilitate cloning of the RIN rat insulinoma cell line. The assay readily detects insulin synthesis by RIN cells and [ 125 I]insulin is not displaced by culture medium from cells which do not produce insulin. The transfer plate format should be applicable to semiautomate other radioimmunoassays. (Auth.)

  5. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: focus on insulin glulisine

    Directory of Open Access Journals (Sweden)

    Heather Ulrich

    2007-07-01

    Full Text Available Heather Ulrich1,4, Benjamin Snyder1,Satish K Garg1,2,31Barbara Davis Center for Childhood Diabetes; 2Department of Medicine; 3Pediatrics; 4Department of Clinical Pharmacy, School of Pharmacy, University of Colorado at Denver and Health Sciences Center, Denver, CO, USAAbstract: Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI. Insulin glulisine (Apidra® is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs. The safety and tolerability profile of insulin glulisine is also comparable to that of insulin

  6. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeong, Jieun; Wi, Anjin; Park, Whoashig [Jeollanamdo Forest Resources Research Institute, Naju 520-833 (Korea, Republic of); Han, Ho-jae [College of Veterinary Medicine, Seoul National University, Seoul 151-741 (Korea, Republic of); Park, Soo-hyun, E-mail: parksh@chonnam.ac.kr [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  7. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    International Nuclear Information System (INIS)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-01-01

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

  8. Top-Down Charge Transfer Dissociation (CTD) of Gas-Phase Insulin: Evidence of a One-Step, Two-Electron Oxidation Mechanism

    Science.gov (United States)

    Li, Pengfei; Kreft, Iris; Jackson, Glen P.

    2018-02-01

    Top-down analyses of protonated insulin cations of charge states of 4+, 5+, or 6+ were performed by exposing the isolated precursor ions to a beam of helium cations with kinetic energy of more than 6 keV, in a technique termed charge transfer dissociation (CTD). The 100 ms charge transfer reaction resulted in approximately 20% conversion efficiency to other intact charge exchange products (CTnoD), and a range of low abundance fragment ions. To increase backbone and sulfide cleavages, and to provide better structural information than straightforward MS2 CTD, the CTnoD oxidized products were isolated and subjected to collisional activation at the MS3 level. The MS3 CTD/CID reaction effectively broke the disulfide linkages, separated the two chains, and yielded more structurally informative fragment ions within the inter-chain cyclic region. CTD also provided doubly oxidized intact product ions at the MS2 level, and resonance ejection of the singly oxidized product ion revealed that the doubly oxidized product originates directly from the isolated precursor ion and not from consecutive CTD reactions of a singly oxidized intermediate. MS4 experiments were employed to help identify potential radical cations and diradical cations, but the results were negative or inconclusive. Nonetheless, the two-electron oxidation process is a demonstration of the very large potential energy (>20 eV) available through CTD, and is a notable capability for a 3D ion trap platform.

  9. Insulin aspart in diabetic pregnancy

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R

    2008-01-01

    in insulin requirements during pregnancy necessitate short-acting insulins for postprandial control of hyperglycemia. The fast-acting insulin analogue insulin aspart has been tested in a large, randomized trial of pregnant women with Type 1 diabetes and offers benefits in control of postprandial...... hyperglycemia with a tendency towards fewer episodes of severe hypoglycemia compared with human insulin. Treatment with insulin aspart was associated with a tendency toward fewer fetal losses and preterm deliveries than treatment with human insulin. Insulin aspart could not be detected in the fetal circulation...... and no increase in insulin antibodies was found. Thus, the use of insulin aspart in pregnancy is regarded safe....

  10. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  11. Toward understanding insulin fibrillation.

    Science.gov (United States)

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  12. Conversion From Twice-Daily Tacrolimus Capsules to Once-Daily Extended-Release Tacrolimus (LCPT): A Phase 2 Trial of Stable Renal Transplant Recipients

    Science.gov (United States)

    Gaber, A. Osama; Alloway, Rita R.; Bodziak, Kenneth; Kaplan, Bruce; Bunnapradist, Suphamai

    2013-01-01

    Background LCP-Tacro is an extended-release formulation of tacrolimus designed for once-daily dosing. Phase 1 studies demonstrated greater bioavailability to twice-daily tacrolimus capsules and no new safety concerns. Methods In this phase 2 study, adult stable kidney transplant patients on tacrolimus capsules (Prograf) twice-daily were converted to tacrolimus tablets (LCP-Tacro) once-daily; patients continued on LCP-Tacro once-daily for days 8 to 21; trough levels were to be maintained between 5 and 15 ng/mL; 24-hr pharmacokinetic assessments were done on days 7 (baseline pre-switch), 14, and 21. Results Forty-seven patients completed LCP-Tacro dosing per protocol. The mean conversion ratio was 0.71. Pharmacokinetic data demonstrated consistent exposure (AUC) at the lower conversion dose. Cmax (P=0.0001), Cmax/Cmin ratio (P<0.001), percent fluctuation (P<0.0001), and swing (P=0.0004) were significantly lower and Tmax significantly (P<0.001) longer for LCP-Tacro versus Prograf. AUC24 and Cmin correlation coefficients after 7 and 14 days of therapy were 0.86 or more, demonstrating a robust correlation between LCP-Tacro tacrolimus exposure and trough levels. There were three serious adverse events; none were related to study drug and all were resolved. Conclusions Stable kidney transplant patients can be safely converted from Prograf twice-daily to LCP-Tacro. The greater bioavailability of LCP-Tacro allows for once-daily dosing and similar (AUC) exposure at a dose approximately 30% less than the total daily dose of Prograf. LCP-Tacro displays flatter kinetics characterized by significantly lower peak-trough fluctuations. PMID:23715050

  13. Comfort and Functional Properties of Far-Infrared/Anion-Releasing Warp-Knitted Elastic Composite Fabrics Using Bamboo Charcoal, Copper, and Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-02-01

    Full Text Available Elastic warp-knitted composite fabrics with far-infrared emissivity and an anion-releasing property were prepared using bamboo charcoal (BC, copper (Cu, and phase-change material (PCM. The functional composite fabric, which was composed of self-made complex yarns with various twisting degrees and material composition, were created using a rotor twister and ring-spinning technique. The fabric structure was diversified by the feeding modes of weft yarn into a crochet-knitting machine. The twist number of complex yarns was optimized by tensile tenacity, twist contraction, and hairiness, and analysis showed that twisting at 12 twists per inch produced the highest tensile tenacity and appropriate twist contraction and hairiness. Comfort evaluation showed that the elastic composite fabrics with BC weft yarns exhibited higher water–vapor transmission rate and air permeability, reaching 876 g/m2∙ day and 73.2 cm3/s/cm2, respectively. Three structures of composite fabric with various weft yarns had >0.85 ε far-infrared emissivity and 350–420 counts/cm3 anion amount. The prepared elastic warp-knitted fabrics can provide a comfortable, dry, and breathable environment to the wearer and can thus be applied as health-care textiles in the future.

  14. Short-term fasting promotes insulin expression in rat hypothalamus.

    Science.gov (United States)

    Dakic, Tamara B; Jevdjovic, Tanja V; Peric, Mina I; Bjelobaba, Ivana M; Markelic, Milica B; Milutinovic, Bojana S; Lakic, Iva V; Jasnic, Nebojsa I; Djordjevic, Jelena D; Vujovic, Predrag Z

    2017-07-01

    In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Monomeric insulins and their experimental and clinical implications.

    Science.gov (United States)

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    hypoglycemic response with the analogues were observed. The monomeric insulin had no lag phase and followed a monoexponential course throughout the absorption process. In contrast, two phases in rate of absorption were identified for the dimer and three for the normal hexameric human insulin. The initial lag phase and the subsequent accelerated absorption of soluble insulin can now be explained by the associated state of native insulin in pharmaceutical formulation and its progressive dissociation into smaller units during the absorption process. In the light of these results, the effects of insulin concentration, injected volume, temperature, and massage on the absorption process are now also understood.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Pharmacokinetics, safety, and efficacy of APF530 (extended-release granisetron in patients receiving moderately or highly emetogenic chemotherapy: results of two Phase II trials

    Directory of Open Access Journals (Sweden)

    Gabrail N

    2015-03-01

    Full Text Available Nashat Gabrail,1 Ronald Yanagihara,2 Marek Spaczyński,3 William Cooper,4 Erin O'Boyle,5 Carrie Smith,1 Ralph Boccia6 1Gabrail Cancer Center, Canton, OH, USA; 2St Louise Regional Hospital, Gilroy, CA, USA; 3Department of Gynecology, Obstetrics and Gynecologic Oncology, University of Medical Sciences, Poznan, Poland; 4TFS International, Flemington, NJ, USA; 5FibroGen, Inc., San Francisco, CA, USA; 6Center for Cancer and Blood Disorders, Bethesda, MD, USA Background: Despite advances with new therapies, a significant proportion of patients (>30% suffer delayed-onset chemotherapy-induced nausea and vomiting (CINV despite use of antiemetics. APF530 is a sustained-release subcutaneous (SC formulation of granisetron for preventing CINV. APF530 pharmacokinetics, safety, and efficacy were studied in two open-label, single-dose Phase II trials (C2005-01 and C2007-01, respectively in patients receiving moderately emetogenic chemotherapy or highly emetogenic chemotherapy. Methods: In C2005-01, 45 patients received APF530 250, 500, or 750 mg SC (granisetron 5, 10, or 15 mg, respectively. In C2007-01, 35 patients were randomized to APF530 250 or 500 mg SC. Injections were given 30 to 60 minutes before single-day moderately emetogenic chemotherapy or highly emetogenic chemotherapy. Plasma granisetron was measured from predose to 168 hours after study drug administration. Safety and efficacy were also evaluated. Results: APF530 pharmacokinetics were dose proportional, with slow absorption and elimination of granisetron after a single SC dose. Median time to maximum plasma concentration and half-life were similar for APF530 250 and 500 mg in both trials, with no differences between the groups receiving moderately and highly emetogenic chemotherapy. Exposure to granisetron was maintained at a therapeutic level over the delayed-onset phase, at least 168 hours. Adverse events in both trials were as expected for granisetron; injection site reactions (eg, erythema

  17. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    Science.gov (United States)

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  18. Effect of Avocado Soybean Unsaponifiables on Insulin Secretion and Insulin Sensitivity in Patients with Obesity

    Directory of Open Access Journals (Sweden)

    Esperanza Martínez-Abundis

    2013-10-01

    Full Text Available Aim: To evaluate the effect of avocado soybean unsaponifiables (ASU on insulin secretion and insulin sensitivity in patients with obesity. Methods: A randomized, double-blind, placebo-controlled, clinical trial was carried out in 14 obese adult volunteers. After random allocation of the intervention, 7 patients received 300 mg of ASU or placebo during a fasting state for 3 months. A metabolic profile including IL-6 and high-sensitivity C-reactive protein (hs-CRP levels was carried out prior to the intervention. A hyperglycemic-hyperinsulinemic clamp technique was used to assess insulin secretion and insulin sensitivity phases. Mann-Whitney U test and Wilcoxon test were performed for statistical analyses. The study was approved by the local ethics committee of our institution. Results: At baseline, both groups were similar according to clinical and laboratory characteristics. There was no significant difference in insulin secretion and insulin sensitivity with ASU. Conclusions: ASU administration for 3 months did not modify insulin secretion and insulin sensitivity in patients with obesity.

  19. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Cui, Fude; Shi, Kai; Zhang, Liqiang; Tao, Anjin; Kawashima, Yoshiaki

    2006-08-28

    Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 nm mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained.

  20. The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Abolfathi, Bela; Aguado, D. S.; Aguilar, Gabriela; Allende Prieto, Carlos; Almeida, Andres; Tasnim Ananna, Tonima; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Ata, Metin; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Balland, Christophe; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bastien, Fabienne; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; Bovy, Jo; Andres Bradna Diaz, Christian; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cañas, Caleb I.; Cano-Díaz, Mariana; Cappellari, Michele; Carrera, Ricardo; Casey, Andrew R.; Cervantes Sodi, Bernardo; Chen, Yanping; Cherinka, Brian; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Cruz-Gonzalez, Irene; Cunha, Katia; da Silva Ilha, Gabriele; Damke, Guillermo J.; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; de Icaza Lizaola, Miguel Angel C.; de la Macorra, Axel; de la Torre, Sylvain; De Lee, Nathan; de Sainte Agathe, Victoria; Deconto Machado, Alice; Dell’Agli, Flavia; Delubac, Timothée; Diamond-Stanic, Aleksandar M.; Donor, John; José Downes, Juan; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Davis Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Erfanianfar, Ghazaleh; Escoffier, Stephanie; Fan, Xiaohui; Fernández Alvar, Emma; Fernandez-Trincado, J. G.; Cirolini, Rafael Fernando; Feuillet, Diane; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gómez Maqueo Chew, Yilen; Galbany, Lluís; García Pérez, Ana E.; Garcia-Dias, R.; García-Hernández, D. A.; Garma Oehmichen, Luis Alberto; Gaulme, Patrick; Gelfand, Joseph; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; González Hernández, Jonay I.; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gueguen, Alain; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Patrick; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez, Jesus; Hernandez Toledo, Hector; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Hou, Jiamin; Hsieh, Bau-Ching; Hunt, Jason A. S.; Hutchinson, Timothy A.; Hwang, Ho Seong; Jimenez Angel, Camilo Eduardo; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Sakil Khan, Fahim; Kinemuchi, Karen; Kirkby, David; Kirkpatrick, Charles C., IV; Kitaura, Francisco-Shu; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Le Goff, Jean-Marc; Lee, Young-Bae; Li, Hongyu; Li, Cheng; Lian, Jianhui; Liang, Yu; Lima, Marcos; Lin, Lihwai; Long, Dan; Lucatello, Sara; Lundgren, Britt; Mackereth, J. Ted; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Majewski, Steven; Manchado, Arturo; Maraston, Claudia; Mariappan, Vivek; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McDermid, Richard M.; McGreer, Ian D.; Melendez, Matthew; Meneses-Goytia, Sofia; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Mueller, Eva-Maria; Muller-Sanchez, Francisco; Muna, Demitri; Muñoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Noterdaeme, Pasquier; O’Connell, Julia; Oelkers, Ryan James; Oravetz, Audrey; Oravetz, Daniel; Aquino Ortíz, Erik; Osorio, Yeisson; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Hsi-An; Pan, Kaike; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rodríguez Torres, Sergio; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Ruiz, Jose; Salvato, Mara; Sánchez, Ariel G.; Sánchez, Sebastián F.; Sanchez Almeida, Jorge; Sánchez-Gallego, José R.; Santana Rojas, Felipe Antonio; Santiago, Basílio Xavier; Schiavon, Ricardo P.; Schimoia, Jaderson S.; Schlafly, Edward; Schlegel, David; Schneider, Donald P.; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Shen, Shiyin; Shen, Yue; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Víctor; Simon, Joshua D.; Skrutskie, Mike; Slosar, Anže; Smethurst, Rebecca; Smith, Verne; Sobeck, Jennifer; Somers, Garrett; Souter, Barbara J.; Souto, Diogo; Spindler, Ashley; Stark, David V.; Stassun, Keivan; Steinmetz, Matthias; Stello, Dennis; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Talbot, Michael S.; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Tissera, Patricia; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas W.; Urry, Meg; Valenzuela, O.; van den Bosch, Remco; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vogt, Nicole; Wake, David; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2018-04-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as “The Cannon” and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

  1. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however

  2. Solid phase microextraction as a reliable alternative to conventional extraction techniques to evaluate the pattern of hydrolytically released components in Vitis vinifera L. grapes.

    Science.gov (United States)

    Perestrelo, Rosa; Caldeira, Michael; Câmara, José S

    2012-06-15

    In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-qMS), was evaluated as a reliable and improved alternative to the commonly used liquid-liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35°C for 42h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible

  3. Evaluation of adrenal function in patients with hypothalamic and pituitary disorders : comparison of serum cortisol, urinary free cortisol and the human-corticotrophin releasing hormone test with the insulin tolerance test

    NARCIS (Netherlands)

    Dullaart, RPF; Pasterkamp, SH; Beentjes, JAM; Sluiter, WJ

    OBJECTIVE This study aimed to evaluate the performance of screening tests (serum cortisol and 24-h urinary free cortisol) and the human-corticotrophin releasing hormone (h-CRH) test in the assessment of adrenal function in patients with hypothalamic-pituitary disorders. DESIGN Summary receiver

  4. Insulin resistance in dairy cows.

    Science.gov (United States)

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Flexibility in insulin prescription

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  6. Insulin sensitivity and albuminuria

    DEFF Research Database (Denmark)

    Pilz, Stefan; Rutters, Femke; Nijpels, Giel

    2014-01-01

    OBJECTIVE: Accumulating evidence suggests an association between insulin sensitivity and albuminuria, which, even in the normal range, is a risk factor for cardiovascular diseases. We evaluated whether insulin sensitivity is associated with albuminuria in healthy subjects. RESEARCH DESIGN...... AND METHODS: We investigated 1,415 healthy, nondiabetic participants (mean age 43.9 ± 8.3 years; 54.3% women) from the RISC (Relationship between Insulin Sensitivity and Cardiovascular Disease) study, of whom 852 participated in a follow-up examination after 3 years. At baseline, insulin sensitivity...... was assessed by hyperinsulinemic-euglycemic clamps, expressed as the M/I value. Oral glucose tolerance test-based insulin sensitivity (OGIS), homeostasis model assessment of insulin resistance (HOMA-IR), and urinary albumin-to-creatinine ratio (UACR) were determined at baseline and follow-up. RESULTS...

  7. Insulin aspart pharmacokinetics

    DEFF Research Database (Denmark)

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  8. Diabetes, insulin and exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    The metabolic and hormonal adaptations to single exercise sessions and to exercise training in normal man and in patients with insulin-dependent as well as non-insulin-dependent diabetes mellitus are reviewed. In insulin-dependent (type I) diabetes good metabolic control is best obtained...... by a regular pattern of life which will lead to a fairly constant demand for insulin from day to day. Exercise is by nature a perturbation that makes treatment of diabetes difficult: Muscle contractions per se tend to decrease the plasma glucose concentration whereas the exercise-induced response of the so......-called counter-regulatory hormones tend to increase plasma glucose by increasing hepatic glucose production and adipose tissue lipolysis. If the pre-exercise plasma insulin level is high, hypoglycaemia may develop during exercise whereas hyperglycaemia and ketosis may develop if pre-exercise plasma insulin...

  9. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  10. Radioimmunologic analysis of insulin secretion during acute radiation sickness

    Energy Technology Data Exchange (ETDEWEB)

    Barkalaya, A I

    1975-01-01

    Rats were subjected to whole-body gamma irradiation (750 rad) and the secretory activity of the insular apparatus was studied radioimmunologically, using insulin labelled with iodine-125. The post-radiation dynamics of the insulin concentration in the blood were shown to have a phase character. The insulin level had risen after 1, 3 and 8 days. After 2 days the hormone concentration had dropped significantly and become two times lower than normal. After the other time intervals, the concentration of insulin in the blood varied within normal limits.

  11. Insulin, cognition, and dementia

    Science.gov (United States)

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  12. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  13. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    OpenAIRE

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-01-01

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosph...

  14. Characterisation of insulin analogues therapeutically available to patients

    KAUST Repository

    Adams, Gary G.

    2018-03-29

    The structure and function of clinical dosage insulin and its analogues were assessed. This included \\'native insulins\\' (human recombinant, bovine, porcine), \\'fast-acting analogues\\' (aspart, glulisine, lispro) and \\'slow-acting analogues\\' (glargine, detemir, degludec). Analytical ultracentrifugation, both sedimentation velocity and equilibrium experiments, were employed to yield distributions of both molar mass and sedimentation coefficient of all nine insulins. Size exclusion chromatography, coupled to multi-angle light scattering, was also used to explore the function of these analogues. On ultracentrifugation analysis, the insulins under investigation were found to be in numerous conformational states, however the majority of insulins were present in a primarily hexameric conformation. This was true for all native insulins and two fast-acting analogues. However, glargine was present as a dimer, detemir was a multi-hexameric system, degludec was a dodecamer (di-hexamer) and glulisine was present as a dimer-hexamer-dihexamer system. However, size-exclusion chromatography showed that the two hexameric fast-acting analogues (aspart and lispro) dissociated into monomers and dimers due to the lack of zinc in the mobile phase. This comprehensive study is the first time all nine insulins have been characterised in this way, the first time that insulin detemir have been studied using analytical ultracentrifugation and the first time that insulins aspart and glulisine have been studied using sedimentation equilibrium. The structure and function of these clinically administered insulins is of critical importance and this research adds novel data to an otherwise complex functional physiological protein.

  15. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton

    2008-01-01

    and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium...... secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance...... responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor...

  16. Insulin action in human thighs after one-legged immobilization

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Mizuno, M.

    1989-01-01

    Insulin action was assessed in thighs of five healthy young males who had one knee immobilized for 7 days by a splint. The splint was not worn in bed. Subjects also used crutches to prevent weight bearing of the immobilized leg. Immobilization decreased the activity of citrate synthase and 3-OH......-acyl-CoA-dehydrogenase in the vastus lateralis muscle by 9 and 14%, respectively, and thigh volume by 5%. After 7 days of immobilization, a two-step euglycemic hyperinsulinemic clamp procedure combined with arterial and bilateral femoral venous catheterization was performed. Insulin action on glucose uptake and tyrosine release...... of the thighs at mean plasma insulin concentrations of 67 (clamp step I) and 447 microU/ml (clamp step II) was decreased by immobilization, whereas immobilization did not affect insulin action on thigh exchange of free fatty acids, glycerol, O2, or potassium. Before and during the clamp step I, lactate release...

  17. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  18. An overview of natural polymers for oral insulin delivery.

    Science.gov (United States)

    Sonia, T A; Sharma, Chandra P

    2012-07-01

    Current therapy for diabetes mellitus through oral anti-diabetic drugs and subcutaneous administration of insulin suffers from serious disadvantages, such as patient noncompliance and occasional hypoglycemia. Moreover, these approaches doesn't mimic the normal physiological pattern of insulin release. Oral route would be the most convenient and preferred route if it is available. Polymeric nano and/or microparticles, either natural or synthetic have been used as matrices for oral insulin delivery. Natural polymers are of particular interest due to their nontoxic, biocompatible, biodegradable and hydrophilic nature. Among the natural polymers used for oral insulin delivery, chitosan (CS) is widely explored owing to its ease of chemical modification and favorable biological properties. In addition, many advantages such as safety, biodegradability, widespread availability and low cost justify the continuing development of promising insulin delivery system based on CS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    Science.gov (United States)

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.

  20. Fifty Years of Insulin

    African Journals Online (AJOL)

    has since saved millions of lives throughout the world. The year 197I is the 50th anniversary of Banting's historic discovery. The story of insulin ... He found no evidence of injury. An impaired ... Prize in medicine for his discovery of insulin.

  1. Insulin Resistance of Puberty.

    Science.gov (United States)

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  2. Older Subjects with β-cell Dysfunction have an Accentuated Incretin Release.

    Science.gov (United States)

    Garduno-Garcia, José de Jesús; Gastaldelli, Amalia; DeFronzo, Ralph A; Lertwattanarak, Raweewan; Holst, Jens J; Musi, Nicolas

    2018-04-16

    Insulin secretion declines with age and this contributes to the increased risk of developing impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older subjects. Insulin secretion is regulated by the incretin hormones glucagon-like peptide (GLP) 1 and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is reduced in older subjects, and that this decline is associated with β-cell dysfunction. 40 young (25±3 y) and 53 older (74±7 y) lean non-diabetic subjects underwent a 2 h oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided in 3 groups: young normal glucose tolerant (Y-NGT, n=40), older with NGT (O-NGT, n=32), and older with IGT (O-IGT, n=21). Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15-30 min. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. Matsuda index, early phase ISR (0-30min) and parameters of β-cell function were reduced in O-IGT vs. Y-NGT, but not in O-NGT. GLP-1 concentrations were elevated in both older groups [GLP-1_AUC0-120 was 2.8±0.1 in Y-NGT, 3.8±0.5 in O-NGT, and 3.7±0.4 nmol/l∙120 min in O-IGT (P<0.05)] while GIP secretion was elevated in O-NGT vs. Y-NGT [GIP_AUC0-120 was 4.7±0.3 in Y-NGT, 6.0±0.4 in O-NGT, and 4.8±0.3 nmol/l∙120 min in O-IGT (P<0.05)]. Aging is associated with an exaggerated GLP-1 secretory response. However, this was not sufficient to increase insulin first phase release in O-IGT and overcome insulin resistance.

  3. Insulin production rate in normal man as an estimate for calibration of continuous intravenous insulin infusion in insulin-dependent diabetic patients.

    Science.gov (United States)

    Waldhäusl, W K; Bratusch-Marrain, P R; Francesconi, M; Nowotny, P; Kiss, A

    1982-01-01

    This study examines the feasibility of deriving the 24-h insulin requirement of insulin-dependent diabetic patients who were devoid of any endogenous insulin release (IDD) from the insulin-production rate (IPR) of healthy man (basal, 17 mU/min; stimulated 1.35 U/12.5 g glucose). To this end, continuous intravenous insulin infusion (CIVII) was initiated at a precalculated rate of 41.2 +/- 4.6 (SD) U/24 h in IDD (N - 12). Blood glucose profiles were compared with those obtained during intermittent subcutaneous (s.c.) insulin therapy (IIT) and those of healthy controls (N = 7). Regular insulin (Hoechst CS) was infused with an adapted Mill Hill Infuser at a basal infusion rate of 1.6 U/h (6:00 a.m. to 8:00 p.m.), and of 0.8 U/h from 8:00 p.m. to 6:00 a.m. Preprandial insulin (3.2-6.4 U) was added for breakfast, lunch, and dinner. Daily individual food intake totaled 7688 +/- 784 kJ (1836 +/- 187 kcal)/24 h including 184 +/- 37 g of glucose. Proper control of blood glucose (BG) (mean BG 105 +/- 10 mg/dl; mean amplitude of glycemic excursions 54 +/- 18 mg/dl; and 1 h postprandial BG levels not exceeding 160 mg/dl) and of plasma concentrations of beta-hydroxybutyrate and lactate was maintained by 41.4 +/- 4.4 U insulin/24 h. Although BG values only approximated the upper normal range as seen in healthy controls, they were well within the range reported by others during CIVII. Therefore, we conclude that in adult IDD completely devoid of endogenous insulin (1) the IPR of normal man can be used during CIVII as an estimate for the patient's minimal insulin requirement per 24 h, and (2) this approach allows for a blood glucose profile close to the upper range of a normal control group. Thus, deriving a patient's daily insulin dose from the insulin production rate of healthy man may add an additional experimental protocol which aids in making general calculations of a necessary insulin dose instead of using trial and error or a closed-loop insulin infusion system.

  4. Calcineurin inhibitors acutely improve insulin sensitivity without affecting insulin secretion in healthy human volunteers

    DEFF Research Database (Denmark)

    Øzbay, Aygen; Møller, Niels; Juhl, Claus

    2012-01-01

    and tacrolimus has been attributed to both beta cell dysfunction and impaired insulin sensitivity. WHAT THIS STUDY ADDS: This is the first trial to investigate beta cell function and insulin sensitivity using gold standard methodology in healthy human volunteers treated with clinically relevant doses...... of ciclosporin and tacrolimus. We document that both drugs acutely increase insulin sensitivity, while first phase and pulsatile insulin secretion remain unaffected. This study demonstrates that ciclosporin and tacrolimus have similar acute effects on glucose metabolism in healthy humans. AIM The introduction...... of calcineurin inhibitors (CNIs) ciclosporin (CsA) and tacrolimus (Tac) has improved the outcome of organ transplants, but complications such as new onset diabetes mellitus after transplantation (NODAT) cause impairment of survival rates. The relative contribution of each CNI to the pathogenesis and development...

  5. Differential effects of insulin injections and insulin infusions on levels ...

    African Journals Online (AJOL)

    Studies have shown that while injections of insulin cause an increase in fat mass, infusions of insulin increase fat mass. The aim of this paper was to test the hypothesis that if an increase in glycogen is an indicator of an impending increase in adipose mass, then insulin infusions should not increase glycogen, while insulin ...

  6. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  7. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  8. MICRONEEDLES AS A WAY TO INCREASE THE TRANSDERMAL INSULIN DELIVERY

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available Aim: to prove the possibility of increasing the diffusion of insulin through the skin in vitro with pre-applying microneedles.Materials and methods. Microemulsion for transdermal therapeutic system of insulin has been used in vitro studies. Genetically engineered human insulin has been used in this research. Applicators with silicon microneedles (40 and 150 microns long have been used to enhance the diffusion fl ux of drug substance. The dynamics of insulin release from the transdermal therapeutic systems through the rabbit skin has been studied in glass Franz diffusion cells in analyzer diffusion of drugs HDT 1000 (Copley Scientifi c Ltd., UK. Insulin has been labeled with fl uorescein isothiocyanate to separate the insulin absorption spectrum from the spectra of native skin proteins at spectrophotometer measurements.Results. The amounts of insulin delivered through the skin in vitro after previous application of microneedles of 40 and 150 microns are 282.5 ± 61.1 and 372.3 ± 7.0 microgram, respectively. This is 1.4 and 1.9 times more than in the transdermal system without microneedles.Conclusion. The conditions for increasing the diffusion of insulin through the skin in a model transdermal therapeutic system with microneedles (length – 150 microns, duration of pre-application – 1 hour have been found.

  9. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  10. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    Science.gov (United States)

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  11. Radioreceptor assay for insulin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [Tokyo Univ. (Japan). Faculty of Medicine

    1975-04-01

    Radioreceptor assay of insulin was discussed from the aspects of the measuring method, its merits and problems to be solved, and its clinical application. Rat liver 10 x g pellet was used as receptor site, and enzymatic degradation of insulin by the system contained in this fraction was inhibited by adding 1 mM p-CMB. /sup 125/I-labelled porcine insulin was made by lactoperoxidase method under overnight incubation at 4/sup 0/C and later purification by Sephadex G-25 column and Whatman CF-11 cellulose powder. Dog pancreatic vein serum insulin during and after the glucose load was determined by radioreceptor assay and radioimmunoassay resulting that both measurements accorded considerably. Radioreceptor assay would clarify the pathology of disorders of glucose metabolism including diabetes.

  12. AMPK and insulin action

    DEFF Research Database (Denmark)

    Frøsig, Christian; Jensen, Thomas Elbenhardt; Jeppesen, Jacob

    2013-01-01

    The 5'-AMP-activated protein kinase (AMPK) is considered "a metabolic master-switch" in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact...... role of AMPK is not well understood. Here we hypothesized that mice lacking a2AMPK activity in muscle would be more susceptible to develop insulin resistance associated with ageing alone or in combination with high fat diet. Young (~4 month) or old (~18 month) wild type and muscle specific a2AMPK...... kinase-dead mice on chow diet as well as old mice on 17 weeks of high fat diet were studied for whole body glucose homeostasis (OGTT, ITT and HOMA-IR), insulin signaling and insulin-stimulated glucose uptake in muscle. We demonstrate that high fat diet in old mice results in impaired glucose homeostasis...

  13. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  14. Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Zinman, Bernard; Philis-Tsimikas, Athena; Cariou, Bertrand

    2012-01-01

    To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs).......To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs)....

  15. Insulin and Glucagon

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Holland, William; Gromada, Jesper

    2017-01-01

    In August 2016, several leaders in glucagon biology gathered for the European Association for the Study of Diabetes Hagedorn Workshop in Oxford, England. A key point of discussion focused on the need for basal insulin to allow for the therapeutic benefit of glucagon blockade in the treatment...... of the discussion as a consensus was reached. Agents that antagonize glucagon may be of great benefit for the treatment of diabetes; however, sufficient levels of basal insulin are required for their therapeutic efficacy....

  16. A common variation of the PTEN gene is associated with peripheral insulin resistance

    DEFF Research Database (Denmark)

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, Jørgen

    2016-01-01

    . RESULTS: The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single...... nucleotide polymorphism was not associated with either PI3K or Akt activities. CONCLUSION: A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling......AIM: Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated...

  17. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence.

    Directory of Open Access Journals (Sweden)

    Zachary J Farino

    Full Text Available Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment.

  18. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion.

    Science.gov (United States)

    Geffner, M E; Kaplan, S A; Bersch, N; Golde, D W; Landaw, E M; Chang, R J

    1986-03-01

    Six nonobese women with polycystic ovarian disease (PCOD) showed significant hyperinsulinemia, compared with controls after oral glucose (P less than 0.05). As an indicator of insulin sensitivity, in vitro proliferation of erythrocyte progenitor cells of PCOD subjects exposed to physiologic concentrations of insulin was significantly blunted (P less than 0.001). Monocyte insulin receptor binding was not impaired in the PCOD subjects. Three of the PCOD patients were treated with a long-acting gonadotropin-releasing hormone agonist for 6 months, which resulted in marked suppression of ovarian androgen secretion but no demonstrable changes in in vivo or in vitro indicators of insulin resistance. Thus insulin resistance in PCOD subjects appears to be unrelated to ovarian hyperandrogenism (or acanthosis or obesity). Although certain tissues are insulin-resistant in PCOD patients, the ovary may remain sensitive and overproduce androgens in response to high circulating insulin levels.

  19. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review.

    Science.gov (United States)

    Cárdenas-Bailón, Fernando; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhrí

    2013-01-01

    Oral insulin delivery represents one of the most challenging goals for pharmaceutical industry. In general, it is accepted that oral administration of insulin would be more accepted by patients and insulin would be delivered in a more physiological way than the parenteral route. From all strategies to deliverer insulin orally, microencapsulation or nanoencapsulation of insulin are the most promising approaches because these techniques protect insulin from enzymatic degradation in stomach, show a good release profile at intestine pH values, maintain biological activity during formulation and enhance intestinal permeation at certain extent. From different microencapsulation techniques, it seems that complex coacervation, multiple emulsion and internal gelation are the most appropriate techniques to encapsulate insulin due to their relative ease of preparation. Besides that, the use of organic solvents is not required and can be scaled up at low cost; however, relative oral bioavailability still needs to be improved.

  20. Dissociation between insulin secretion and DNA synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1985-01-01

    -Tdr incorporation. However, long-term exposure to IBMX did not result in increased DNA content of the islets. Inhibition of the DNA synthesis by 5 mM hydroxyurea resulted in a marked reduction in DNA content of the islets but no decrease in either insulin release or insulin content when expressed per ng DNA...

  1. Circadian control of insulin secretion is independent of the temporal distribution of feeding

    NARCIS (Netherlands)

    Kalsbeek, Andries; Strubbe, JH

    1998-01-01

    To investigate whether there is a circadian regulation of insulin secretion, rats were adapted to a feeding regimen of six meals equally distributed over 24 h. Under these conditions basal glucose and insulin levels increased during the light phase and decreased during the dark phase. Maximal blood

  2. Effect of prandial treatment timing adjustment, based on continuous glucose monitoring, in patients with type 2 diabetes uncontrolled with once-daily basal insulin: A randomized, phase IV study.

    Science.gov (United States)

    Ilany, Jacob; Bhandari, Hamad; Nabriski, Dan; Toledano, Yoel; Konvalina, Noa; Cohen, Ohad

    2018-05-01

    To evaluate the glycaemic control achieved by prandial once-daily insulin glulisine injection timing adjustment, based on a continuous glucose monitoring sensor, in comparison to once-daily insulin glulisine injection before breakfast in patients with type 2 diabetes who are uncontrolled with once-daily basal insulin glargine. This was a 24-week open-label, randomized, controlled, multicentre trial. At the end of an 8-week period of basal insulin optimization, patients with HbA1c ≥ 7.5% and FPG sensor) or arm B (sensor) to receive 16-week intensified prandial glulisine treatment. Patients in arm A received pre-breakfast glulisine, and patients in arm B received glulisine before the meal with the highest glucose elevation based on sensor data. The primary outcome was mean HbA1c at week 24 and secondary outcomes included rates of hypoglycaemic events and insulin dosage. A total of 121 patients were randomized to arm A (n = 61) or arm B (n = 60). There was no difference in mean HbA1c at week 24 between arms A and B (8.5% ± 1.2% vs 8.4% ± 1.0%; P = .66). The prandial insulin glulisine dosage for arm A and arm B was 9.3 and 10.1 units, respectively (P = .39). The frequency of hypoglycaemic events did not differ between study arms (36.1% vs 51.7%; P = .08). Using a CGM sensor to identify the meal with the highest glucose excursion and adjusting the timing of prandial insulin treatment did not show any advantage in terms of glycaemic control or safety in our patients. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  3. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Science.gov (United States)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  4. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2012-11-15

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  5. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    Science.gov (United States)

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  6. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    Science.gov (United States)

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  8. Improved insulin sensitivity after exercise: focus on insulin signaling

    DEFF Research Database (Denmark)

    Frøsig, Christian; Richter, Erik

    2009-01-01

    After a single bout of exercise, the ability of insulin to stimulate glucose uptake is markedly improved locally in the previously active muscles. This makes exercise a potent stimulus counteracting insulin resistance characterizing type 2 diabetes (T2D). It is believed that at least part...... of the mechanism relates to an improved ability of insulin to stimulate translocation of glucose transporters (GLUT4) to the muscle membrane after exercise. How this is accomplished is still unclear; however, an obvious possibility is that exercise interacts with the insulin signaling pathway to GLUT4...... translocation allowing for a more potent insulin response. Parallel to unraveling of the insulin signaling cascade, this has been investigated within the past 25 years. Reviewing existing studies clearly indicates that improved insulin action can occur independent of interactions with proximal insulin signaling...

  9. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  10. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    OpenAIRE

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  11. Drug release from non-aqueous suspensions. II. The release of methylxanthines from paraffin suspensions

    NARCIS (Netherlands)

    Blaey, C.J. de; Fokkens, J.G.

    1984-01-01

    The release of 3 methylxanthines, i.e. caffeine, theobromine and theophylline, from suspensions in liquid paraffin to an aqueous phase was determined in an in vitro apparatus. The release rates were determined as a function of the pH of the aqueous phase. It was proved that the release process was

  12. Development and in vivo evaluation of an oral insulin-PEG delivery system.

    Science.gov (United States)

    Calceti, P; Salmaso, S; Walker, G; Bernkop-Schnürch, A

    2004-07-01

    Insulin-monomethoxypoly(ethylene glycol) derivatives were obtained by preparation of mono- and di-terbutyl carbonate insulin derivatives, reaction of available protein amino groups with activated 750 Da PEG and, finally, amino group de-protection. This procedure allowed for obtaining high yield of insulin-1PEG and insulin-2PEG. In vivo studies carried out by subcutaneous injection into diabetic mice demonstrated that the two bioconjugates maintained the native biological activity. In vitro, PEGylation was found to enhance the hormone stability towards proteases. After 1 h incubation with elastase, native insulin, insulin-1PEG and insulin-2PEG undergo about 70, 30 and 10% degradation, respectively, while in the presence of pepsin protein degradation was 100, 70 and 50%, respectively. The attachment of low molecular weight PEG did not significantly (P >0.05) alter insulin permeation behavior across the intestinal mucosa. Insulin-1PEG was formulated into mucoadhesive tablets constituted by the thiolated polymer poly(acrylic acid)-cysteine. The therapeutic agent was sustained released from these tablets within 5 h. In vivo, by oral administration to diabetic mice, the glucose levels were found to decrease of about 40% since the third hour from administration and the biological activity was maintained up to 30 h. According to these results, the combination of PEGylated insulin with a thiolated polymer used as drug carrier matrix might be a promising strategy for oral insulin administration.

  13. Chemical and thermal stability of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands.......To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands....

  14. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    Science.gov (United States)

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-11-08

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.

  15. Decrease of glucose-induced insulin secretion of rat pancreatic islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic); Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic). Radiologische Klinik)

    1983-01-01

    In vitro irradiation of rat pancreatic islets up to a dose of 2.5 Gy did neither alter glucose- nor isobutylmethyl xanthine (IBMX)-induced insulin secretion. Insulin as well as glucagon content of irradiated islets corresponded to that of the control tissue. So it was in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. There was no indication of an enhanced hormone output in the radiation medium and it is to be suggested that higher radiation doses affect the insulin release of pancreatic islets in vitro. This must be taken into consideration for radioimmunosuppression experiments.

  16. Stress degradation studies of Telmisartan and Metoprolol extended release tablets by a validated stability indicating reverse phase-high performance liquid chromatography method

    Directory of Open Access Journals (Sweden)

    Kabeer Ahmed Shaikh

    2014-01-01

    Full Text Available Background and Aim: A sensitive reverse phase high-performance liquid chromatographic method has been developed for the simultaneous determination of Telimisartan and Metoprolol in tablet dosage form. Materials and Method: The chromatographic separation was achieved on Inertsil ODS 3V, 150 x 4.6 mm, 5μ analytical column. Mobile phase consisting of mobile phase A- 0.05M sodium dihydrogen phosphate buffer pH 3.0 and mobile phase B-Acetonitrile, with gradient program time in min /Mobile phase B% 0/22, 4/45, 6/45,18/22, 20/22. Detector was set at 222nm. Results and Conclusion: The described method shows excellent linearity over a range of 80-2 μg mL−1 for Telmisartan and 100-4 μg mL−1 for Metoprolol. The correlation coefficient for Telmisartan is 0.9998 and Metoprolol is 0.9999. The proposed method was found to be suitable for determination of Telmisartan and Metoprolol in tablet dosage form. Forced degradation of the drug product was conducted in accordance with the ICH guideline. Acidic, basic, hydrolytic, oxidative, thermal and photolytic degradation was used to assess the stability indicating power of the method. The drug product was found to be stable in acid, oxidation, thermal and photolytic stress condition and found degradation in base hydrolysis stress condition.

  17. Adipokines mediate inflammation and insulin resistance

    Directory of Open Access Journals (Sweden)

    Jeffrey E. Pessin

    2013-06-01

    Full Text Available For many years, adipose tissue was considered as an inert energy storage organ that accumulates and stores triacylglycerols during energy excess and releases fatty acids in times of systemic energy need. However, over the last two decades adipose tissue depots have been established as highly active endocrine and metabolically important organs that modulate energy expenditure and glucose homeostasis. In rodents, brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against diet-induced obesity. White adipose tissue collectively referred too as either subcutaneous or visceral adipose tissue is responsible for the secretion of an array of signaling molecules, termed adipokines. These adipokines function as classic circulating hormones to communicate with other organs including brain, liver, muscle, the immune system and adipose tissue itself. The dysregulation of adipokines has been implicated in obesity, type 2 diabetes and cardiovascular disease. Recently, inflammatory responses in adipose tissue have been shown as a major mechanism to induce peripheral tissue insulin resistance. Although leptin and adiponectin regulate feeding behavior and energy expenditure, these adipokines are also involved in the regulation of inflammatory responses. Adipose tissue secrete various pro- and anti-inflammatory adipokines to modulate inflammation and insulin resistance. In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced to induce insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the expression of pro- and anti-inflammatory adipokines. Thus we will review the recent progress regarding the physiological and molecular functions of adipokines in the obesity-induced inflammation and insulin resistance with perspectives on future directions.

  18. Future of newer basal insulin

    OpenAIRE

    Madhu, S. V.; Velmurugan, M.

    2013-01-01

    Basal insulin have been developed over the years. In recent times newer analogues have been added to the armanentarium for diabetes therapy. This review specifically reviews the current status of different basal insulins

  19. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  20. Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner.

    Science.gov (United States)

    Mueller, Michael B; Blunk, Torsten; Appel, Bernhard; Maschke, Angelika; Goepferich, Achim; Zellner, Johannes; Englert, Carsten; Prantl, Lukas; Kujat, Richard; Nerlich, Michael; Angele, Peter

    2013-01-01

    Insulin is a commonly used additive in chondrogenic media for differentiating mesenchymal stem cells (MSCs). The indispensability of other bioactive factors like TGF-β or dexamethasone in these medium formulations has been shown, but the role of insulin is unclear. The purpose of this study was to investigate whether insulin is essential for MSC chondrogenesis and if there is a dose-dependent effect of insulin on MSC chondrogenesis. We cultivated human MSCs in pellet culture in serum-free chondrogenic medium with insulin concentrations between 0 and 50 μg/ml and assessed the grade of chondrogenic differentiation by histological evaluation and determination of glycosaminoglycan (GAG), total collagen and DNA content. We further tested whether insulin can be delivered in an amount sufficient for MSC chondrogenesis via a drug delivery system in insulin-free medium. Chondrogenesis was not induced by standard chondrogenic medium without insulin and the expression of cartilage differentiation markers was dose-dependent at insulin concentrations between 0 and 10 μg/ml. An insulin concentration of 50 μg/ml had no additional effect compared with 10 μg/ml. Insulin was delivered by a release system into the cell culture under insulin-free conditions in an amount sufficient to induce chondrogenesis. Insulin is essential for MSC chondrogenesis in this system and chondrogenic differentiation is influenced by insulin in a dose-dependent manner. Insulin can be provided in a sufficient amount by a drug delivery system. Therefore, insulin is a suitable and inexpensive indicator substance for testing drug release systems in vitro.

  1. Impaired insulin secretion in the spontaneous diabetes rats.

    Science.gov (United States)

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  2. Medium scale fire tests of propane tanks to study the boiling liquid expanding vapour explosion (BLEVE) and transient two-phase jet release

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhifei

    1994-07-01

    A series of medium scale fire tests were conducted to study boiling liquid expanding vapour explosions (BLEVE) and transient jet releases resulting from thermally induced propane tank ruptures. The tests were conducted using commercial propane contained in automotive propane tanks with a capacity of ca 400 liters. The tanks were brought to failure using a combination of torch and pool fire impingement. Instrumentation was included to measure internal pressure, liquid, vapour and wall temperature distribution, tank and lading mass, external blast overpressure, and fireball thermal radiation. Video and still cameras were used to record the fireball and jet fire shapes and dimensions. Two different kinds of BLEVE failure were observed. For very weak tanks the BLEVE was a single step process where the rupture propagated rapidly along the length of the tank. The duration of these events was measured in milliseconds and it is suggested that the process is driven by the vapour space energy. The other type of BLEVE was a two step process where a crack would start in a weakened area, arrest in a stronger part of the tank, and then start again to end in catastrophic failure. Initial failure and jet type release results in violent boiling and pressure recovery in the tank, leading to restart of the crack and catastrophic failure. Time duration is measured in seconds, and is driven by energy stored in the liquid. A computer model was developed to simulate the transient jet release resulting from finite tank failures, and can predict transient mass flow, tank pressure decay, visible flame length and jet fire thermal radiation. 253 refs., 132 figs., 29 tabs.

  3. Insulin Resistance in Alzheimer's Disease

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  4. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...

  5. Quantitative determination of insulin entrapment efficiency in triblock copolymeric nanoparticles by high-performance liquid chromatography.

    Science.gov (United States)

    Xu, Xiongliang; Fu, Yao; Hu, Haiyan; Duan, Yourong; Zhang, Zhirong

    2006-04-11

    A rapid and effective isocratic chromatographic procedure was described in this paper for the determination of insulin entrapment efficiency (EE) in triblock copolymeric nanoparticles using reversed-phase high-performance liquid chromatography (RP-HPLC) with an ultraviolet/visible detector at low flow rate. The method has been developed on a Shimadzu Shim-pack VP-ODS column (150 mm x 4.6 mm, 5 microm, Chiyoda-Ku, Tokyo, Japan) using a mixture of 0.2 M sodium sulfate anhydrous solution adjusted to pH 2.3 with phosphoric acid and acetonitrile (73:27, v/v) as mobile phase at the flow rate of 0.8 ml min(-1) and a 214 nm detection. The method was validated in terms of selectivity, linearity, precision, accuracy, solution stability, limit of detection (LOD) and limit of quantification (LOQ). The calibration curve was linear in the concentration range of 2.0-500.0 microg ml(-1), and the limits of detection and quantitation were 8 and 20 ng, respectively. The mean recovery of insulin from spiked samples, in a concentration range of 8-100 microg ml(-1), was 98.96% (R.S.D.= 2.51%, n = 9). The intra- and inter-assay coefficients of variation were less than 2.24%. The proposed method has the advantages of simple pretreatment, rapid isolation, high specificity and precision, which can be used for direct analysis of insulin in commercially available raw materials, formulations of nanoparticles, and drug release as well as stability studies.

  6. Gliclazide directly inhibits arginine-induced glucagon release

    DEFF Research Database (Denmark)

    Cejvan, Kenan; Coy, David H; Holst, Jens Juul

    2002-01-01

    Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect of glicl......Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect....... In islet perifusions with DC-41-33, arginine-induced glucagon release was inhibited by 66%. We therefore concluded that gliclazide inhibits glucagon release by a direct action on the pancreatic A cell....

  7. Insulin som trickster

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    2011-01-01

    grænser nedbrydes i en konstant penetrering af huden, når blodsukkeret måles eller insulinen indsprøjtes. Insulin analyseres som en tricksterfigur, der udøver et grænsearbejde på kroppen, leger med dens kategorier og vender forholdet mellem gift og medicin, frihed og ufrihed, kunstighed og naturlighed...

  8. Diabetes and Insulin

    Science.gov (United States)

    ... are usually used twice daily before breakfast and dinner. They can be used alone or in combination with oral medicines. The type of insulin your doctor prescribes will depend on the type of diabetes you have, your lifestyle (when and what you eat, how much you exercise), your age, and your ...

  9. Polyethyleneglycol RIA (radioimmunoassay) insulin

    International Nuclear Information System (INIS)

    1988-01-01

    Insulin is a polypeptide hormone of M.W. 6,000 composed of two peptide chains, A and B, jointed by two cross-linked disulphide bonds and synthesized by the beta-cells of the islets of Langerhans of the pancreas. Insulin influences most of the metabolic functions of the body. Its best known action is to lower the blood glucose concentration by increasing the rate at which glucose is converted to glycogen in the liver and muscles and to fat in adipose tissue, by stimulating the rate of glucose metabolism and by depressing gluconeogenesis. Insulin stimulates the synthesis of proteins, DNA and RNA in cells generally, and promotes the uptake of aminoacids and their incorporation into muscle protein. It increases the uptake of glucose in adipose tissue and its conversion into fat and inhibits lipolysis. Insulin primary action is on the cell membrane, where it probably facilitates the transport of glucose and aminoacids into the cells. At the same time it may activate intracellular enzymes such as glycogen synthetase, concerned with glycogen synthesis. (Author) [es

  10. A Phase 1 Pharmacokinetic Study of Cysteamine Bitartrate Delayed-Release Capsules Following Oral Administration with Orange Juice, Water, or Omeprazole in Cystinosis.

    Science.gov (United States)

    Armas, Danielle; Holt, Robert J; Confer, Nils F; Checani, Gregg C; Obaidi, Mohammad; Xie, Yuli; Brannagan, Meg

    2018-02-01

    Cystinosis is a rare, metabolic, autosomal recessive, genetic lysosomal storage disorder characterized by an accumulation of cystine in various organs and tissues. Cysteamine bitartrate (CB) is a cystine-depleting aminothiol agent approved in the United States and Europe in immediate-release and delayed-release (DR) formulations for the treatment of nephropathic cystinosis in children and adults. It is recommended that CBDR be administered with fruit juice (except grapefruit juice) for maximum absorption. Omeprazole is a proton pump inhibitor that inhibits gastric acid secretion and, theoretically, may cause the premature release of cysteamine by increasing intragastric pH, thereby affecting the PK of CBDR. This open-label, three-period, randomized study in healthy adult subjects was designed primarily to compare the pharmacokinetics of CBDR capsules after a single oral dose administered with orange juice, water, or multiple oral doses of omeprazole with water at steady state. A total of 32 subjects were randomly assigned to receive study agents in one of two treatment sequences. All subjects completed the study and baseline characteristics of the overall population and the two treatment sequence populations were similar. Peak mean plasma cysteamine concentrations following co-administration of CBDR capsules with orange juice (1892 ng/mL) were higher compared with co-administration with water (1663 ng/mL) or omeprazole 20 mg and water (1712 ng/mL). Mean time to peak plasma concentration was shorter with omeprazole co-administration (2.5 h) compared with orange juice (3.5 h) or water (3.0 h). Statistical comparisons between treatment groups indicated that exposure as assessed by AUC 0-t , AUC 0-∞ , and C max were all within the 80-125% bioequivalence ranges for all comparisons. All treatments were generally well tolerated. Overall, the pharmacokinetics of cysteamine bitartrate DR capsules are not significantly impacted by co-administration with orange juice

  11. Combining two technologies: multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration.

    Science.gov (United States)

    Sakloetsakun, Duangkamon; Dünnhaupt, Sarah; Barthelmes, Jan; Perera, Glen; Bernkop-Schnürch, Andreas

    2013-10-01

    The aim of the study is to develop a self-nanoemulsifying drug delivery system (SNEDDS) based on thiolated chitosan for oral insulin administration. The preparations were characterized by particle size, entrapment efficiency, stability and drug release. Serum insulin concentrations were determined after oral administration of all formulations. Insulin SNEDDS formulation was served as control. The optimized SNEDDS consists of 65% (w/w) miglyol 840, 25% (w/w) cremophor EL, 10% (w/w) co-solvents (a mixture of DMSO and glycerol). The formulations in the presence or absence of insulin (5mg/mL) were spherical with the size range between 80 and 160 nm. Entrapment efficiency of insulin increased significantly when the thiolated chitosan was employed (95.14±2.96%), in comparison to the insulin SNEDDS (80.38±1.22%). After 30 min, the in vitro release profile of insulin from the nanoemulsions was markedly increased compared to the control. In vivo results showed that insulin/thiolated chitosan SNEDDS displayed a significant increase in serum insulin (p-value=0.02) compared to oral insulin solution. A new strategy to combine SNEDDS and thiolated chitosan described in the study would therefore be a promising and innovative approach to improve oral bioavailability of insulin. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Glucose-Responsive Implantable Polymeric Microdevices for "Smart" Insulin Therapy of Diabetes

    Science.gov (United States)

    Chu, Michael Kok Loon

    Diabetes mellitus is a chronic illness manifested by improper blood glucose management, affecting over 350 million worldwide. As a result, all type 1 patients and roughly 20% of type 2 patients require exogenous insulin therapy to survive. Typically, daily multiple injections are taken to maintain normal glucose levels in response glucose spikes from meals. However, patient compliance and dosing accuracy can fluctuate with variation in meals, exercise, glucose metabolism or stress, leading to poor clinical outcomes. A 'smart', closed-loop insulin delivery system providing on-demand release kinetics responding to circulating glucose levels would be a boon for diabetes patients, replacing constant self monitoring and insulin. This thesis focuses on the development of a novel, 'smart' insulin microdevice that can provide on-demand insulin release in response to blood glucose levels. In the early stage, the feasibility of integrating a composite membrane with pH-responsive nanoparticles embedded in ethylcellulose membrane to provide pH-responsive in vitro release was examined and confirmed using a model drug, vitamin B12. In the second microdevice, glucose oxidase for generating pH signals from glucose oxidation, catalase and manganese dioxide nanoparticles, as peroxide scavengers, were used in a bioinorganic, albumin-based membrane cross-linked with a polydimethylsiloxane (PDMS) grid-microdevice system. This prototype device demonstrated insulin release in response to glucose levels in vitro and regulating plasma glucose in type 1 diabetic rats when implanted intraperitoneally. Advancement allowing for subcutaneous implantation and improved biocompatibility was achieved with surface modification of PDMS microdevices grafted with activated 20 kDa polyethylene glycol (PEG) chains, dramatically reducing immune response and local inflammation. When implanted subcutaneously in diabetic rats, glucose-responsive insulin delivery microdevices showed short and long

  13. Relative bioavailability of single doses of prolonged-release tacrolimus administered as a suspension, orally or via a nasogastric tube, compared with intact capsules: a phase 1 study in healthy participants.

    Science.gov (United States)

    Undre, Nasrullah; Dickinson, James

    2017-04-04

    Tacrolimus, an immunosuppressant widely used in solid organ transplantation, is available as a prolonged-release capsule for once-daily oral administration. In the immediate postsurgical period, if patients cannot take intact capsules orally, tacrolimus therapy is often initiated as a suspension of the capsule contents, delivered orally or via a nasogastric tube. This study evaluated the relative bioavailability of prolonged-release tacrolimus suspension versus intact capsules in healthy participants. A phase 1, open-label, single-dose, cross-over study. A single clinical research unit. In total, 20 male participants, 18-55 years old, entered and completed the study. All participants received nasogastric administration of tacrolimus 10 mg suspension in treatment period 1, with randomisation to oral administration of suspension or intact capsules in periods 2 and 3. Blood concentration-time profile over 144 hours was used to estimate pharmacokinetic parameters. Primary end point: relative bioavailability of prolonged-release intact capsule versus oral or nasogastric administration of prolonged-release tacrolimus suspension (area under the concentration-time curve (AUC) from time 0 to infinity post-tacrolimus dose (AUC 0-∞ ); AUC measured until the last quantifiable concentration (AUC 0-tz ); maximum observed concentration (C max ); time to C max (T max )). Tolerability was assessed throughout the study. Relative bioavailability of prolonged-release tacrolimus suspension administered orally was similar to intact capsules, with a ratio of least-square means for AUC 0-tz and AUC 0-∞ of 1.05 (90% CI 0.96 to 1.14). Bioavailability was lower with suspension administered via a nasogastric tube versus intact capsules (17%; ratio 0.83; CI 0.76 to 0.92). C max was higher for oral and nasogastric suspension (30% and 28%, respectively), and median T max was shorter (difference 1.0 and 1.5 hours postdose, respectively) versus intact capsules (2.0 hours). Single 10

  14. Adipokines and Hepatic Insulin Resistance

    Science.gov (United States)

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  15. RELEASE OF ELASTIC STRAIN ENERGY AS ACOUSTIC EMISSION DURING THE REVERSE THERMOELASTIC PHASE TRANSFORMATION IN Au-47.5 at.percent Cd ALLOY

    Energy Technology Data Exchange (ETDEWEB)

    Baram, J.; Avissar, J.; Gefen, Y.; Rosen, M.

    1980-05-01

    The objective of this paper is to present experimental evidence concerning the acoustic energy evolved during the heating and cooling phase changes in Au-47.5 at.% Cd polycrystals. The results are examined from the point of view of the stored elastic strain energy during the martensite formation, and the frictional work that is dissipated by the movement of martensite interfaces in either direction, upon heating and cooling.

  16. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2 excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes

  17. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Science.gov (United States)

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  18. EFFECT OF ORAL INSULIN IN BLOOP G1UCOSE CONCENTRATION

    Directory of Open Access Journals (Sweden)

    DJ. FARID

    1993-07-01

    Full Text Available Gastrointestinal tract can not be used as a route for oral administration of polypeptid hormones because"nof their enzymatic degradation."nDegradation of these macromoleculcs in acidic and alkaline conditions determines the need for using"nprotective delivery systems."nIn this research microcmulsions were used for protection of insulin against proteolytic enzymesof"ngastrointestinal tract. Cholestrol and phospholipids of egg yolk have been used as lipid phase as lipid phase"nand Lecithin as surfactant."nInsulin Regular was used as aqueous phase, being entrapped with lipidic phase in W/O manner. Male"nrabbits with body weight of about 1-1.5 KG were accomplished and oral insulin was force fed to them."nBlood collection has been carried out from heart every 15 minutes after oral administration."nReduction in blood glucose level indicates the well being protection of insulin and absorbtion of it through"nepithelium of small intestine. Increasing of glucose level in placebo demonstrates that endogenous"ninsulin has not been responsible for serum glucose reduction."nThis experiment suggests that microemulsions formed with egg Yolk compounds have the ability to be an"nalternate for parenteral administration of insulin and other chemicals sensitive to enzymatic degradation, in"nhuman.

  19. Selective Insulin Resistance in Adipocytes*

    Science.gov (United States)

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  20. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  1. Erratum to "Clinical evaluation of the intraoral fluoride releasing system in radiation-induced xerostomic subjects. Part 2: Phase I study".

    Science.gov (United States)

    Chambers, Mark S; Fleming, Terence J; Toth, Béla B; Lemon, James C; Craven, Timothy E; Bouwsma, Otis J; Garden, Adam S; Espeland, Mark A; Keene, Harris J; Martin, Jack W; Sipos, Tibor

    2007-01-01

    Radiation-induced xerostomia can result in the rapid onset and progression of dental caries in head and neck cancer patients. Topically applied fluorides have been successfully used to inhibit the formation of dental caries in this population. However, because intensive daily self-application is required, compliance is an issue. The intraoral fluoride-releasing system (IFRS) containing a sodium fluoride core is a newly developed, sustained-release, passive drug delivery system that does not require patient involvement except for periodic replacement, thus reducing the effect of patient compliance on its effectiveness in dental caries prevention. Twenty-two head and neck cancer patients from U. T. M. D. Anderson Cancer Center, with radiation-induced xerostomia, were entered into a pilot study to contrast the daily home use of a 0.4% stannous fluoride-gel-containing tray (control group) to IFRS (study group) with respect to tolerability and adherence, and to obtain information on relative caries preventive efficacy. Participants were stratified on the basis of radiation exposure and randomly assigned to treatment with either IFRS or stannous fluoride gel. Patients in both groups were fitted with two IFRS retainers and also were instructed to use a 1100-ppm fluoride conventional sodium fluoride dentifrice twice daily. The study was conducted as a single-blinded, parallel-cell trial. Pre-existing carious lesions were restored prior to the beginning of the study. The efficacy variable was determined by the mean number of new or recurrent decayed surfaces. Patients were examined for caries 4, 8, 12, 24, 36, and 48 weeks after initiation of treatment. Reports of adverse reactions were based on information volunteered by patients and that were elicited during interviews. At baseline, the resting and stimulated salivary flow rates (g/5min) were significantly greater in the control group than in the study group (pIFRS groups during the study period. The rate of new or

  2. Methane release

    International Nuclear Information System (INIS)

    Seifert, M.

    1999-01-01

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  3. Brownian dynamics simulations of insulin microspheres formation

    Science.gov (United States)

    Li, Wei; Chakrabarti, Amit; Gunton, James

    2010-03-01

    Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.

  4. The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients--the EUGENE2 study

    DEFF Research Database (Denmark)

    Boesgaard, T W; Zilinskaite, J; Vänttinen, M

    2008-01-01

    AIMS/HYPOTHESIS: A recent genome-wide association study identified the SLC30A8 rs13266634 polymorphism encoding an Arg325Trp polymorphism in the zinc transporter protein member 8 (ZnT-8) to be associated with type 2 diabetes. Here, we investigate whether the polymorphism is related to altered ins...

  5. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Knop, F K; Krarup, T

    2003-01-01

    diabetic patients. We studied (six in each group): 1) patients with diabetes mellitus secondary to chronic pancreatitis; 2) lean type 2 diabetic patients (body mass index ... incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is seen in these patients. The aim of the present investigation was to evaluate plasma insulin and C-peptide responses to GLP-1 and GIP in five groups of diabetic patients with etiology and phenotype distinct from the obese type 2...

  6. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: results of a phase I/II clinical trial in NASH

    Directory of Open Access Journals (Sweden)

    Mizrahi M

    2012-12-01

    Full Text Available Meir Mizrahi,1 Yehudit Shabat,1 Ami Ben Ya'acov,1 Gadi Lalazar,1 Tomer Adar,1 Victor Wong,2 Brian Muller,2 Grant Rawlin,2 Yaron Ilan11Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel; 2Immuron Limited, North Melbourne, AustraliaBackground: Nonalcoholic steatohepatitis (NASH is considered to be part of the nonalcoholic fatty liver disorders and its incidence is increasing. Imm124-E (Immuron Ltd, Melbourne, Australia, containing hyperimmune bovine colostrum, has been shown to exert an immunomodulatory effect and to alleviate target organ damage in animal models of NASH. The aim of our study was to determine the safety and efficacy of oral administration of Imm124-E to patients with insulin resistance and NASH.Methods: In an open-label trial, ten patients with biopsy-proven NASH and insulin resistance were orally treated with Imm124-E for 30 days.Results: Oral administration of Imm124-E was safe, and no side effects were noted. Alleviation of insulin resistance was reflected by significantly improved hemoglobin A1c (HbA1c values in all ten treated patients. For between five and eight responders, the following effects were noted: a decrease in fasting glucose levels; improved oral glucose tolerance test (OGGT and homeostatic model assessment insulin resistance (HOMA scores; and alleviation in lipid profile. These effects were accompanied by increased serum levels of glucagon-like peptide 1 (GLP-1, adiponectin and T regulatory cells.Conclusion: Hyperimmune colostrum alleviates NASH.Keywords: NASH, anti-LPS, diabetes, adipokines, regulatory T cells

  7. A randomized, double-blind study of hydromorphone hydrochloride extended-release tablets versus oxycodone hydrochloride extended-release tablets for cancer pain: efficacy and safety in Japanese cancer patients (EXHEAL: a Phase III study of EXtended-release HydromorphonE for cAncer pain reLief

    Directory of Open Access Journals (Sweden)

    Inoue S

    2017-08-01

    Full Text Available Satoshi Inoue,1 Yoji Saito,2 Satoru Tsuneto,3 Etsuko Aruga,4 Azusa Ide,1 Yasuyuki Kakurai5 1Clinical Development Department, R&D Division, Daiichi Sankyo, Tokyo,2Department of Anesthesiology, Faculty of Medicine, Shimane University, Shimane, 3Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 4Department of Palliative Medicine, School of Medicine, Teikyo University, Tokyo, 5Biostatistics and Data Management Department, R&D Division, Daiichi Sankyo, Tokyo, Japan Background: In Japan, there are limited options for switching opioid analgesics. Hydromorphone is an opioid analgesic that is routinely used instead of morphine for cancer pain; however, it is not yet available in Japan. The aim of this study was to assess the efficacy and safety of hydromorphone (DS-7113b extended-release tablets in opioid-naïve patients with cancer pain not relieved by non-opioid analgesics.Subjects and methods: This was a multicenter, randomized, double-blind, parallel-group trial. A double-dummy method was used for blinding. Each randomized subject received either hydromorphone extended-release tablets plus placebo oxycodone hydrochloride extended-release tablets 4 mg/day (n=88 or placebo hydromorphone extended-release tablets plus oxycodone hydrochloride extended-release tablets 10 mg/day (n=93 orally for 7 days (once-daily dosing for hydromorphone and twice-daily dosing for oxycodone. The doses were adjusted as necessary. Efficacy was evaluated by change in visual analog scale (VAS score from baseline to completion of treatment.Results: The between-group difference in least squares mean changes in VAS score from baseline to completion or discontinuation of treatment was −0.4 mm (95% CI −5.9 to 5 mm by analysis of covariance where the baseline VAS score was used as a covariate. The upper limit of the 95% CI was below 10 mm, which was predefined as the noninferiority limit. This verified the noninferiority of hydromorphone tablets

  8. Validation and Application of a New Reversed Phase HPLC Method for In Vitro Dissolution Studies of Rabeprazole Sodium in Delayed-Release Tablets

    Directory of Open Access Journals (Sweden)

    Md. Saddam Nawaz

    2013-01-01

    Full Text Available The purpose of this study was to develop and validate a new reversed phase high performance liquid chromatographic (RP-HPLC method to quantify in vitro dissolution assay of rabeprazole sodium in pharmaceutical tablet dosage form. Method development was performed on C 18, 100×4.6 mm ID, and 10 μm particle size column, and injection volume was 20 μL using a diode array detector (DAD to monitor the detection at 280 nm. The mobile phase consisted of buffer: acetonitrile at a ratio of 60 : 40 (v/v, and the flow rate was maintained at 1.0 mL/min. The method was validated in terms of suitability, linearity, specificity, accuracy, precision, stability, and sensitivity. Linearity was observed over the range of concentration 0.05–12.0 μg/mL, and the correlation coefficient was found excellent >0.999. The method was specific with respect to rabeprazole sodium, and the peak purity was found 99.99%. The method was precise and had relative standard deviations (RSD less than 2%. Accuracy was found in the range of 99.9 to 101.9%. The method was robust in different variable conditions and reproducible. This proposed fast, reliable, cost-effective method can be used as quality control tool for the estimation of rabeprazole sodium in routine dissolution test analysis.

  9. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A

    1983-01-01

    Column perifusion of collagenase-isolated mouse pancreatic islets was used to study the dynamics of insulin release in experiments lasting for several hours. The methyl esters of L-leucine and L-arginine were synthesized. Whereas L-arginine methyl ester (L-arginine OMe) had no effect, L-leucine OMe...... stimulated the release of insulin. The effect of L-leucine OMe was maximal at 5 mmol/liter. Whereas the Km for glucose-stimulated insulin release was unaffected by 1 mmol/liter L-leucine OMe, the maximal release of D-glucose was increased by the amino acid derivative that appeared more effective than L......-leucine. L-Leucine OMe was also a potent stimulus of insulin release from the perfused mouse pancreas. In the presence of 10 mmol/liter L-glutamine, 1 mmol/liter L-leucine OMe induced a 50- to 75-fold increase in insulin release. A similar stimulatory effect was also observed in column-perifused RIN 5F cells...

  10. New Insulin Delivery Recommendations.

    Science.gov (United States)

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. Glucagon and insulin response to meals in non-obese and obese Dutch women

    NARCIS (Netherlands)

    Hill, P.; Garbaczewski, L.; Koppeschaar, H.; Thijssen, J.H.H.; Waard, F. de

    1987-01-01

    Many digestive complaints are associated with abnormalities in gastrointestinal peptide hormone function. To investigate the effect of obesity on the release of pancreatic peptide hormones, we have compared the release of insulin and glucagon in non-obese-obese Dutch women in response to isocaloric

  12. Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.

    Science.gov (United States)

    Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V

    2013-08-12

    The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.

  13. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Directory of Open Access Journals (Sweden)

    Natalia Gustavsson

    Full Text Available BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS: Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  14. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Science.gov (United States)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  15. Insulin resistance: definition and consequences.

    Science.gov (United States)

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  16. Pitfalls of Insulin Pump Clocks

    Science.gov (United States)

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  17. 1,500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction

    DEFF Research Database (Denmark)

    Humaidan, Peter; Bredkjær, Helle Ejdrup; Westergaard, Lars Grabow

    2009-01-01

    OBJECTIVE: To prospectively assess the reproductive outcome with a small bolus of hCG administered on the day of oocyte retrieval after ovulation induction with a GnRH agonist (GnRHa). DESIGN: Prospective, randomized trial. SETTING: Three hospital-based IVF clinics. PATIENT(S): Three hundred five...... IVF/intracytoplasmic sperm injection patients after a GnRH antagonist protocol. INTERVENTION(S): Ovulation induction was performed with either 10,000 IU hCG or 0.5 mg GnRHa (buserelin) supplemented with 1,500 IU hCG on the day of oocyte retrieval. MAIN OUTCOME MEASURE(S): Reproductive outcome...... bolus of hCG in the GnRHa group secured the luteal phase, resulting in a comparable reproductive outcome in the two groups. However, a nonsignificant difference of 7% in delivery rates justifies further studies to refine the use of GnRHa for ovulation induction....

  18. Insulin pumps and insulin quality--requirements and problems.

    Science.gov (United States)

    Brange, J; Havelund, S

    1983-01-01

    In developing insulin solution suitable for delivery devices the chemical and biological stability, as well as the physical stability, must be taken into consideration. Addition of certain mono- and disaccharides increases the physical stability of neutral insulin solutions, but concurrently the chemical and biological stability decrease to an unacceptable degree. Addition of Ca-ions in low concentrations offers a physiologically acceptable method for stabilizing neutral insulin solutions against heat precipitation without affecting the quality, including the chemical and biological stability.

  19. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men.

    Science.gov (United States)

    Jeukendrup, A E; Vet-Joop, K; Sturk, A; Stegen, J H; Senden, J; Saris, W H; Wagenmakers, A J

    2000-01-01

    The aim of the present study was to establish whether gastro-intestinal (GI) complaints observed during and after ultra-endurance exercise are related to gut ischaemia-associated leakage of endotoxins [lipopolysaccharide (LPS)] into the circulation and associated cytokine production. Therefore we collected blood samples from 29 athletes before, immediately after, and 1, 2 and 16 h after a long-distance triathlon for measurement of LPS, tumour necrosis factor-alpha and interleukin-6 (IL-6). As the cytokine response would trigger an acute-phase response, characteristic variables of these responses were also measured, along with creatine kinase (CK) to obtain an indicator of muscle damage. There was a high incidence (93% of all participants) of GI symptoms; 45% reported severe complaints and 7% of the participants abandoned the race because of severe GI distress. Mild endotoxaemia (5-15 pg/ml) was evident in 68% of the athletes immediately after the race, as also indicated by a reduction in IgG anti-LPS levels. In addition, we observed production of IL-6 (27-fold increase immediately after the race), leading to an acute-phase response (20-fold increase in C-reactive protein and 12% decrease in pre-albumin 16 h after the race). The extent of endotoxaemia was not correlated with the GI complaints or the IL-6 response, but did show a correlation with the elevation in C-reactive protein (r(s) 0.389; P=0.037). Creatine kinase levels were increased significantly immediately post-race, and increased further in the follow-up period. Creatine kinase levels did not correlate with those of either IL-6 or C-reactive protein. It is therefore concluded that LPS does enter the circulation after ultra-endurance exercise and may, together with muscle damage, be responsible for the increased cytokine response and hence GI complaints in these athletes.

  20. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    Science.gov (United States)

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  1. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    Science.gov (United States)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  2. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro

    International Nuclear Information System (INIS)

    Green, I.C.; Tadayyon, M.

    1988-01-01

    The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE 2 levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE 2 in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/μg islet protein. Indomethacin sodium salicylate and chlorpropamide all lowered islet PGE 2 levels and stimulated insulin release in vitro. Dynorphin stimulated insulin release at a concentration of 6 x 10 -9 M, while lowering islet PGE 2 . Conversely, at a higher concentration, dynorphin had no stimulatory effect on insulin secretion and did not lower PGE 2 levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE 2 . PGE 2 at a lower concentration did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE 2 stimulated insulin release in the presence of 6mM glucose

  3. Insulin resistance in obesity can be reliably identified from fasting plasma insulin

    NARCIS (Netherlands)

    ter Horst, K. W.; Gilijamse, P. W.; Koopman, K. E.; de Weijer, B. A.; Brands, M.; Kootte, R. S.; Romijn, J. A.; Ackermans, M. T.; Nieuwdorp, M.; Soeters, M. R.; Serlie, M. J.

    2015-01-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely

  4. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin.

    Science.gov (United States)

    Mortazavian, Elaheh; Dorkoosh, Farid Abedin; Rafiee-Tehrani, Morteza

    2014-05-01

    The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81 kg/mm(2) tensile strength and 2.47 N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.

  5. Atmospheric Release Advisory Capability

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years

  6. Insulin autoimmune syndrome: case report

    Directory of Open Access Journals (Sweden)

    Rodrigo Oliveira Moreira

    Full Text Available CONTEXT: Insulin autoimmune syndrome (IAS, Hirata disease is a rare cause of hypoglycemia in Western countries. It is characterized by hypoglycemic episodes, elevated insulin levels, and positive insulin antibodies. Our objective is to report a case of IAS identified in South America. CASE REPORT: A 56-year-old Caucasian male patient started presenting neuroglycopenic symptoms during hospitalization due to severe trauma. Biochemical evaluation confirmed hypoglycemia and abnormally high levels of insulin. Conventional imaging examinations were negative for pancreatic tumor. Insulin antibodies were above the normal range. Clinical remission of the episodes was not achieved with verapamil and steroids. Thus, a subtotal pancreatectomy was performed due to the lack of response to conservative treatment and because immunosuppressants were contraindicated due to bacteremia. Histopathological examination revealed diffuse hypertrophy of beta cells. The patient continues to have high insulin levels but is almost free of hypoglycemic episodes.

  7. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  8. Sampling and analytical procedures for the determination of VOCs released into air from natural and anthropogenic sources: A comparison between SPME (Solid Phase Micro Extraction) and ST (Solid Trap) methods

    International Nuclear Information System (INIS)

    Tassi, F.; Capecchiacci, F.; Buccianti, A.; Vaselli, O.

    2012-01-01

    In the present study, two sampling and analytical methods for VOC determination in fumarolic exhalations related to hydrothermal-magmatic reservoirs in volcanic and geothermal areas and biogas released from waste landfills were compared: (a) Solid Traps (STs), consisting of three phase (Carboxen B, Carboxen C and Carbosieve S111) absorbent stainless steel tubes and (b) Solid Phase Micro Extraction (SPME) fibers, composed of DiVinylBenzene (DVB), Carboxen and PolyDimethylSiloxane. These techniques were applied to pre-concentrate VOCs discharged from: (i) low-to-high temperature fumaroles collected at Vulcano Island, Phlegrean Fields (Italy), and Nisyros Island (Greece), (ii) recovery wells in a solid waste disposal site located near Florence (Italy). A glass condensing system cooled with water was used to collect the dry fraction of the fumarolic gases, in order to allow more efficient VOC absorption avoiding any interference by water vapor and acidic gases, such as SO 2 , H 2 S, HF and HCl, typically present at relatively high concentrations in these fluids. Up to 37 organic species, in the range of 40–400 m/z, were determined by coupling gas chromatography to mass spectrometry (GC–MS). This study shows that the VOC compositions of fumaroles and biogas determined via SPME and ST are largely consistent and can be applied to the analysis of VOCs in gases released from different natural and anthropogenic environments. The SPME method is rapid and simple and more appropriate for volcanic and geothermal emissions, where VOCs are present at relatively high concentrations and prolonged gas sampling may be hazardous for the operator. The ST method, allowing the collection of large quantities of sample, is to be preferred to analyze the VOC composition of fluids from diffuse emissions and air, where these compounds are present at relatively low concentrations.

  9. Impact of IGF-I release kinetics on bone healing: a preliminary study in sheep.

    Science.gov (United States)

    Luginbuehl, Vera; Zoidis, Evangelos; Meinel, Lorenz; von Rechenberg, Brigitte; Gander, Bruno; Merkle, Hans P

    2013-09-01

    Spatiotemporal release of growth factors from a delivery device can profoundly affect the efficacy of bone growth induction. Here, we report on a delivery platform based on the encapsulation of insulin-like growth factor I (IGF-I) in different poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) microsphere (MS) formulations to control IGF-I release kinetics. In vitro IGF-I release profiles generally exhibited an initial burst (14-36% of total IGF-I content), which was followed by a more or less pronounced dormant phase with little release (2 to 34 days), and finally, a third phase of re-increased IGF-I release. The osteoinductive potential of these different IGF-I PL(G)A MS formulations was tested in studies using 8-mm metaphyseal drill hole bone defects in sheep. Histomorphometric analysis at 3 and 6 weeks after surgery showed that new bone formation was improved in the defects locally treated with IGF-I PL(G)A MS (n=5) as compared to defects filled with IGF-I-free PL(G)A MS (n=4). The extent of new bone formation was affected by the particular release kinetics, although a definitive relationship was not evident. Local administration of IGF-I resulted in down-regulation of inflammatory marker genes in all IGF-I treated defects. The over-expression of growth factor genes in response to IGF-I delivery was restricted to formulations that produced osteogenic responses. These experiments demonstrate the osteoinductive potential of sustained IGF-I delivery and show the importance of delivery kinetics for successful IGF-I-based therapies. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue

    2010-01-01

    the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast......BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define...... neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium...

  11. Protein Crystal Recombinant Human Insulin

    Science.gov (United States)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  12. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    Science.gov (United States)

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  13. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  14. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  15. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  16. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  17. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Maria L. Mizgier

    2017-01-01

    Full Text Available Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines. We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS. In conditioned media from human myotubes incubated with/without insulin (100 nmol/L for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p<0.05. Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.

  18. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  19. Sustained release of radioprotective agents

    International Nuclear Information System (INIS)

    Shani, J.

    1980-11-01

    New pharmaceutical formulations for the sustained release into the G.I. tract of radioprotective agents have been developed by the authors. The experimental method initially consisted in the production of methylcellulose microcapsules. This method failed apparently because of the premature ''explosion'' of the microcapsules and the consequent premature release of massive amounts of the drug. A new method has been developed which consists in drying and pulverising cysteamine and cysteine preparations, mixing them in various proportions with stearic acid and ethylcellulose as carriers. The mixture is then compressed into cylindrical tablets at several pressure values and the leaching rate of the radioprotective agents is then measured by spectrophotometry. The relation between the concentration of the active drug and its rate of release, and the effect on the release rate of the pressure applied to the tablet during its formation were also investigated. Results indicating that the release rate was linearly related to the square root of ''t'' seem to be in agreement with what is predictable, according to Higuchi's equation, save for the very initial and terminal phases. A clear correlation was also established between the stearic acid/ethylcellulose ratios and the release of 20% cysteine, namely a marked decrease in the rate of cysteine release was observed with increasing concentrations of stearic acid. Finally, it was observed that a higher formation pressure results in quicker release of the drug

  20. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.

    Science.gov (United States)

    Seong, Keum-Yong; Seo, Min-Soo; Hwang, Dae Youn; O'Cearbhaill, Eoin D; Sreenan, Seamus; Karp, Jeffrey M; Yang, Seung Yun

    2017-11-10

    Proteins are important biologic therapeutics used for the treatment of various diseases. However, owing to low bioavailability and poor skin permeability, transdermal delivery of protein therapeutics poses a significant challenge. Here, we present a new approach for transdermal protein delivery using bullet-shaped double-layered microneedle (MN) arrays with water-swellable tips. This design enabled the MNs to mechanically interlock with soft tissues by selective distal swelling after skin insertion. Additionally, prolonged release of loaded proteins by passive diffusion through the swollen tips was obtained. The bullet-shaped MNs provided an optimal geometry for mechanical interlocking, thereby achieving significant adhesion strength (~1.6Ncm -2 ) with rat skin. By harnessing the MN's reversible swelling/deswelling property, insulin, a model protein drug, was loaded in the swellable tips using a mild drop/dry procedure. The insulin-loaded MN patch released 60% of insulin when immersed in saline over the course of 12h and approximately 70% of the released insulin appeared to have preserved structural integrity. An in vivo pilot study showed a prolonged release of insulin from swellable MN patches, leading to a gradual decrease in blood glucose levels. This self-adherent transdermal MN platform can be applied to a variety of protein drugs requiring sustained release kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The evolutionary benefit of insulin resistance

    NARCIS (Netherlands)

    Soeters, Maarten R.; Soeters, Peter B.

    2012-01-01

    Insulin resistance is perceived as deleterious, associated with conditions as the metabolic syndrome, type 2 diabetes mellitus and critical illness. However, insulin resistance is evolutionarily well preserved and its persistence suggests that it benefits survival. Insulin resistance is important in

  2. Predictive tools for designing new insulins and treatment regimens

    DEFF Research Database (Denmark)

    Klim, Søren

    The thesis deals with the development of "Predictive tools for designing new insulins and treatments regimens" and consists of two parts: A model based approach for bridging properties of new insulin analogues from glucose clamp experiments to meal tolerance tests (MTT) and a second part that des......The thesis deals with the development of "Predictive tools for designing new insulins and treatments regimens" and consists of two parts: A model based approach for bridging properties of new insulin analogues from glucose clamp experiments to meal tolerance tests (MTT) and a second part...... that describes an implemented software program able to handle stochastic differential equations (SDEs) with mixed effects. The thesis is supplemented with scientific papers published during the PhD. Developing an insulin analogue from candidate molecule to a clinical drug consists of a development programme...... and efficacy are investigated. Numerous methods are used to quantify dose and efficacy in Phase II - especially of interest is the 24-hour meal tolerance test as it tries to portray near normal living conditions. Part I describes an integrated model for insulin and glucose which is aimed at simulating 24-hour...

  3. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  4. A pragmatic, phase III, multisite, double-blind, placebo-controlled, parallel-arm, dose increment randomised trial of regular, low-dose extended-release morphine for chronic breathlessness: Breathlessness, Exertion And Morphine Sulfate (BEAMS) study protocol.

    Science.gov (United States)

    Currow, David; Watts, Gareth John; Johnson, Miriam; McDonald, Christine F; Miners, John O; Somogyi, Andrew A; Denehy, Linda; McCaffrey, Nicola; Eckert, Danny J; McCloud, Philip; Louw, Sandra; Lam, Lawrence; Greene, Aine; Fazekas, Belinda; Clark, Katherine C; Fong, Kwun; Agar, Meera R; Joshi, Rohit; Kilbreath, Sharon; Ferreira, Diana; Ekström, Magnus

    2017-07-17

    Chronic breathlessness is highly prevalent and distressing to patients and families. No medication is registered for its symptomatic reduction. The strongest evidence is for regular, low-dose, extended- release (ER) oral morphine. A recent large phase III study suggests the subgroup most likely to benefit have chronic obstructive pulmonary disease (COPD) and modified Medical Research Council breathlessness scores of 3 or 4. This protocol is for an adequately powered, parallel-arm, placebo-controlled, multisite, factorial, block-randomised study evaluating regular ER morphine for chronic breathlessness in people with COPD. The primary question is what effect regular ER morphine has on worst breathlessness, measured daily on a 0-10 numerical rating scale. Uniquely, the coprimary outcome will use a FitBit to measure habitual physical activity. Secondary questions include safety and, whether upward titration after initial benefit delivers greater net symptom reduction. Substudies include longitudinal driving simulation, sleep, caregiver, health economic and pharmacogenetic studies. Seventeen centres will recruit 171 participants from respiratory and palliative care. The study has five phases including three randomisation phases to increasing doses of ER morphine. All participants will receive placebo or active laxatives as appropriate. Appropriate statistical analysis of primary and secondary outcomes will be used. Ethics approval has been obtained. Results of the study will be submitted for publication in peer-reviewed journals, findings presented at relevant conferences and potentially used to inform registration of ER morphine for chronic breathlessness. NCT02720822; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system

    Directory of Open Access Journals (Sweden)

    Paul Pijush Kumar

    2017-06-01

    Full Text Available In this study, we investigate molecularly imprinted polymers (MIPs, which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to b cells bound to insulin. This approach was employed to create a welldefined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MIPs exhibited a high adsorption capacity for the target insulin, which showed a significantly higher release of insulin in solution at pH 7.4 than at pH 1.2. In vivo studies on diabetic Wistar rats showed that the fast onset within 2 h is similar to subcutaneous injection with a maximum at 4 h, giving an engaged function responsible for the duration of glucose reduction for up to 24 h. These MIPs, prepared as nanosized material, may open a new horizon for oral insulin delivery.

  6. A rapid radioimmunoassay for insulin suitable for testing pancreatic tissue prior to transplantation

    International Nuclear Information System (INIS)

    Besch, W.; Kohnert, K.-D.; Hahn, H.-J.; Ziegler, M.; Lorenz, D.

    1984-01-01

    One way of diabetes mellitus treatment is the transplantation of insulin-producing tissue. As islet or pancreas transplantation has made progress, testing of the tissue for its vitality, insulin content and insulin secretory response prior to transplantation became necessary. Apart from problems of rejection of allografted tissue, improvement of the patients metabolic control partly depends on the insulin content of the tissue transplanted. It was the aim of the present work to establish a radioimmunoassay which ensures rapid determination of immunoreactive insulin concentrations (IRI) either intracellularly-stored or released upon stimulation of human pancreas or islet with glucose, and to demonstrate the useful application of this assay for the assessment of transplantable tissue. (Auth.)

  7. Insulin Signaling and Heart Failure

    Science.gov (United States)

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  8. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride.

    Science.gov (United States)

    Yang, Chen; Zhang, Mengmeng; Li, Yagang; Wang, Yan; Mao, Weixian; Gao, Yuan; Xu, Hui

    2015-12-01

    The role of insulin in the mechanism underlying the excessive fluoride that causes skeletal lesion was studied. The in vitro bone marrow stem cells (BMSC) collected from Kunming mice were exposed to varying concentrations of fluoride with or without insulin. The cell viability and early differentiation of BMSC co-treated with fluoride and insulin were measured by using cell counting kit-8 and Gomori modified calcium-cobalt method, respectively. We further investigated the in vivo effects of varying dose of fluoride on rats co-treated with streptozotocin (STZ). Wistar rats were divided into six groups which included normal control, 10 mg fluoride/kg day group, 20 mg fluoride/kg day group, STZ control, STZ+10 mg fluoride/kg day group, and STZ+20 mg fluoride/kg day group. The rats were administered with sodium fluoride (NaF) by gavage with water at doses 10 and 20 mg fluoride/kg day for 2 months. In a period of one month, half of rats in every group were treated with streptozotocin (STZ) once through intraperitoneal injection at 52 mg/kg body weight. The serum glucose, HbA1c, and insulin were determined. Bone mineral content and insulin release were assessed. The results showed insulin combined with fluoride stimulated BMSC cell viability in vitro. The bone mineral content reduced in rats treated with higher dose of fluoride and decreased immensely in rat co-treated with fluoride and STZ. Similarly, a combination treatment of a high dose of fluoride and STZ decreased insulin sensitivity and activity. To sum up, these data indicated fluoride influenced insulin release, activity, and sensitivity. Furthermore, the insulin state in vivo interfered in the osteogenesis in turn and implied there was a close relation between insulin and bone pathogenesis in the mechanism of fluoride toxicity.

  9. Energy Release in Solar Flares,

    Science.gov (United States)

    1982-10-01

    Plasma Research, Stanford University P. Kaufmanu CRAA/CNPq -Conseiho lacional de Desenvolvimento Cientifico e Tecnologico, Slo Paulo, SP, Brasil D.F...three phases of energy release in solar flares (Sturrock, 1980). However, a recent article by Feldman e a.. (1982) points to a significant

  10. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  11. Age and body weight effects on glucose and insulin tolerance in colony cats maintained since weaning on high dietary carbohydrate.

    Science.gov (United States)

    Backus, R C; Cave, N J; Ganjam, V K; Turner, J B M; Biourge, V C

    2010-12-01

    High dietary carbohydrate is suggested to promote development of diabetes mellitus in cats. Glucose tolerance, insulin sensitivity, and insulin secretion were assessed in young [0.8-2.3 (median = 1.1) years, n = 13] and mature [4.0-7.0 (median 5.8) years, n = 12] sexually intact females of a large (n ≅ 700) feline colony in which only dry-type diets (35% metabolizable energy as carbohydrate) were fed from weaning. Insulin sensitivity was assessed from the 'late-phase' (60-120 min) plasma insulin response of intravenous glucose tolerance tests (IVGTTs) and from fractional change in glycaemia from baseline 15 min after an insulin bolus (0.1 U/kg, i.v.). Insulin secretion was assessed from the 'early-phase' (0-15 min) plasma insulin response of IVGTTs. Compared to the young cats, the mature cats had greater body weights [2.3-3.8 (median = 2.9) vs. 3.0-6.3 (median = 4.0) kg, p < 0.01], greater late-phase insulin responses (p < 0.05), lower insulin-induced glycaemic changes (p = 0.06), lower early-phase insulin responses (p < 0.05), and non-significantly different rates of glucose disposal. The late-phase insulin response was correlated with body weight and age (p < 0.05). When group assignments were balanced for body weight, the age-group differences and correlations became non-significant. The findings indicate that body weight gain is more likely than dry-type diets to induce the pre-diabetic conditions of insulin resistance and secretion dysfunction. © 2010 The Authors. Journal of Animal Physiology and Animal Nutrition © 2010 Blackwell Verlag GmbH.

  12. Effectiveness, pharmacokinetics, and safety of a new sustained-release leuprolide acetate 3.75-mg depot formulation for testosterone suppression in patients with prostate cancer: a Phase III, open-label, international multicenter study.

    Science.gov (United States)

    Marberger, Michael; Kaisary, Amir V; Shore, Neal D; Karlin, Gary S; Savulsky, Claudio; Mis, Ricard; Leuratti, Chiara; Germa, Josep R

    2010-04-01

    A microencapsulated, sustained-release formulation of leuprolide acetate 3.75 mg has been developed. This study investigated the effectiveness, pharmacokinetics, and safety profile of a 1-month leuprolide acetate 3.75-mg depot formulation for suppressing testosterone concentrations in patients with prostate cancer. This was a Phase III, open-label, international multicenter clinical trial. Patients with prostate cancer who, in the judgment of the investigators, could benefit from androgen deprivation therapy received 6 monthly intramuscular injections of leuprolide acetate 3.75-mg depot. Plasma testosterone concentrations were determined at specific times throughout the study. The primary end point was the proportion of successful patients over the total number of evaluable patients (ie, patients with evaluable testosterone concentrations at all monthly assessments and no missing values due to treatment-related adverse events). Treatment success was defined as testosterone suppression below the clinical castration level (ie, n = 12), showed sustained release of leuprolide from the formulation. Values for AUC(0-t) calculated from day 0 to day 28, days 28 to 56, and days 56 to 84 were 25,976.5 (7892.0), 30,685.5 (9348.4), and 31,030.9 (10,745.0) pg/mL per day, respectively. The most common treatment-related adverse event was hot flashes (45.0% [72/160]). Fatigue, hyperhidrosis, night sweats, and headache each occurred in

  13. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.

    Science.gov (United States)

    Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang

    2017-09-01

    Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. V-Go Insulin Delivery System Versus Multiple Daily Insulin Injections for Patients With Uncontrolled Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Winter, Abigail; Lintner, Michaela; Knezevich, Emily

    2015-04-21

    Type 2 diabetes mellitus affects over 29.1 million Americans, diagnosed and undiagnosed. Achieving and maintaining glycemic control for these patients is of extreme importance when working to prevent complications and improve quality of life for patients. The V-Go is a newly developed insulin delivery system. The push of a button inserts a needle into the patient once daily and remains attached for 24 hours. The V-Go is designed to release a set basal rate throughout the day, while allowing patients to provide up to 36 units of on-demand bolus insulin with the manual click of 2 buttons. It is a spring-loaded device filled daily with rapid-acting insulin that runs without the use of batteries or computer software. The main objective of this prospective active comparator study was to observe the A1C lowering effects of multiple daily insulin injections (MDII) versus the use of the V-Go insulin delivery system for patients with uncontrolled type 2 diabetes mellitus over a 3-month period. In addition, the effect on insulin requirement for these patients was assessed with secondary comparisons of weight, blood pressure, prevalence of hypoglycemic events, and quality of life before and after 3 months of intensified insulin therapy with regular monitoring by a clinical pharmacist at an internal medicine clinic. The average A1C lowering experienced by the 3 patients in the V-Go group was 1.5%, while the average A1C change in the 3 patients in the MDII group was an increase of 0.2%. All patients in the V-Go group experienced a decrease in insulin total daily dose (TDD), with an average decrease of 26.3 units. All patients in the MDII group experienced an increase in insulin TDD with an average of 15 units daily to achieve therapeutic goals individualized for each patient. All patients who underwent intensification of insulin therapy experienced an increase in subjective quality of life (QOL) as determined using the Diabetes-39 (D-39) questionnaire, though QOL results lacked

  15. BAG3 regulates formation of the SNARE complex and insulin secretion

    Science.gov (United States)

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  16. [News and perspectives in insulin treatment].

    Science.gov (United States)

    Haluzík, Martin

    2014-09-01

    Insulin therapy is a therapeutic cornerstone in patients with type 1 diabetes and also in numerous patients with type 2 diabetes especially with longer history of diabetes. The initiation of insulin therapy in type 2 diabetes patients is often delayed which is at least partially due to suboptimal pharmacokinetic characteristics of available insulins. The development of novel insulins with more favorable characteristics than those of current insulins is therefore still ongoing. The aim of this paper is to review current knowledge of novel insulins that have been recently introduced to the market or are getting close to routine clinical use. We will also focus on the perspectives of insulin therapy in the long-term run including the alternative routes of insulin administration beyond its classical subcutaneous injection treatment.Key words: alternative routes of insulin administration - diabetes mellitus - hypoglycemia - insulin - insulin analogues.

  17. Economic benefits of improved insulin stability in insulin pumps.

    Science.gov (United States)

    Weiss, Richard C; van Amerongen, Derek; Bazalo, Gary; Aagren, Mark; Bouchard, Jonathan R

    2011-05-01

    Insulin pump users discard unused medication and infusion sets according to labeling and manufacturer's instructions. The stability labeling for insulin aspart (rDNA origin] (Novolog) was increased from two days to six. The associated savings was modeled from the perspective of a hypothetical one-million member health plan and the total United States population. The discarded insulin volume and the number of infusion sets used under a two-day stability scenario versus six were modeled. A mix of insulin pumps of various reservoir capacities with a range of daily insulin dosages was used. Average daily insulin dose was 65 units ranging from 10 to 150 units. Costs of discarded insulin aspart [rDNA origin] were calculated using WAC (Average Wholesale Price minus 16.67%). The cost of pump supplies was computed for the two-day scenario assuming a complete infusion set change, including reservoirs, every two days. Under the six-day scenario complete infusion sets were discarded every six days while cannulas at the insertion site were changed midway between complete changes. AWP of least expensive supplies was used to compute their costs. For the hypothetical health plan (1,182 pump users) the annual reduction in discarded insulin volume between scenarios was 19.8 million units. The corresponding cost reduction for the plan due to drug and supply savings was $3.4 million. From the U.S. population perspective, savings of over $1 billion were estimated. Using insulin that is stable for six days in pump reservoirs can yield substantial savings to health plans and other payers, including patients.

  18. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes

    Science.gov (United States)

    Stamper, I. J.; Jackson, Elais; Wang, Xujing

    2014-01-01

    In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.

  19. A randomized, phase II study of the anti-insulin-like growth factor receptor type 1 (IGF-1R) monoclonal antibody robatumumab (SCH 717454) in patients with advanced colorectal cancer

    International Nuclear Information System (INIS)

    Lin, Edward H; Lenz, Heinz-Josef; Saleh, Mansoor N; Mackenzie, Mary J; Knost, James A; Pathiraja, Kumudu; Langdon, Ronald B; Yao, Siu-Long; Lu, Brian D

    2014-01-01

    Overexpression of insulin-like growth factor receptor type 1 (IGF-1R) may promote tumor development and progression in some cancer patients. Our objective was to assess tumor uptake of fluorodeoxyglucose by positron-emission tomography in patients with chemotherapy-refractory colorectal cancer treated with an anti-insulin-like growth factor receptor type 1 (anti-IGF-1R) monoclonal antibody, robatumumab. This was a randomized, open-label study with two periods (P1 and P2). Patients were randomized 3:1 into treatment arms R/R and C/R that received, respectively, one cycle of 0.3 mg/kg robatumumab or one or more cycles of second-line chemotherapy in P1, followed in either case by 10 mg/kg robatumumab biweekly in P2. The primary measure of fluorodeoxyglucose uptake was maximum standardized uptake value (SUV max ). The primary endpoint was the proportion of patients in the R/R arm having a mean percent decrease from baseline in SUV max (DiSUV) greater than 20% 12–14 days postdose in P2. Secondary endpoints included Response Evaluation Criteria in Solid Tumors (RECIST)-defined tumor response and pharmacodynamic measures of target engagement. Among 41 patients who were evaluable for the primary endpoint, seven (17%, 95% CI 7%–32%) had DiSUV greater than 20%. Fifty robatumumab-treated patients were evaluable for RECIST-defined tumor response and six (12%) had stable disease lasting greater than or equal to 7 weeks in P2. Pharmacodynamic endpoints indicated target engagement after dosing with 10 mg/kg robatumumab, but not 0.3 mg/kg. The most frequently reported adverse events were fatigue/asthenia, nausea, anorexia, and gastrointestinal disturbances. In this study, few patients with chemotherapy-refractory colorectal cancer appeared to benefit from treatment with the IGF-1R antagonist robatumumab

  20. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  1. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, C.P.; Biermasz, N.R.; Geerling, J.J.; Guigas, B.; Rensen, P.C.N.; Havekes, L.M.; Romijn, J.A.

    2011-01-01

    OBJECTIVE - Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  2. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  3. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    Science.gov (United States)

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  4. The role of releasing hormones in the diagnosis of hypopituitarism ...

    African Journals Online (AJOL)

    Luteinising hormone-releasing factor and thyrotrophinreleasing factor were used in conjunction with the insulin tolerance test in 9 patients with known or suspected panhypopituitarism. It appears that growth hormone and luteinising hormone fail early in panhypopituitarism. Cortisol and thyroid-stimulating hormone ...

  5. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    Science.gov (United States)

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  6. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  7. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats.

    Science.gov (United States)

    Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E

    2015-01-01

    To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.

  8. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  9. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    Science.gov (United States)

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs

    Czech Academy of Sciences Publication Activity Database

    Jiráček, Jiří; Žáková, Lenka

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 167. ISSN 1664-2392 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 Keywords : insulin receptor * insulin binding * analog * diabetes * glucose Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.675, year: 2016 http://journal.frontiersin.org/article/10.3389/fendo.2017.00167/full

  11. Feeding cycle-dependent circulating insulin fluctuation is not a dominant Zeitgeber for mouse peripheral clocks except in the liver: Differences between endogenous and exogenous insulin effects.

    Science.gov (United States)

    Oishi, Katsutaka; Yasumoto, Yuki; Higo-Yamamoto, Sayaka; Yamamoto, Saori; Ohkura, Naoki

    2017-01-29

    The master clock in the suprachiasmatic nucleus synchronizes peripheral clocks via humoral and neural signals in mammals. Insulin is thought to be a critical Zeitgeber (synchronizer) for peripheral clocks because it induces transient clock gene expression in cultured cells. However, the extent to which fluctuations in feeding-dependent endogenous insulin affect the temporal expression of clock genes remains unclear. We therefore investigated the temporal expression profiles of clock genes in the peripheral tissues of mice fed for 8 h during either the daytime (DF) or the nighttime (NF) for one week to determine the involvement of feeding cycle-dependent endogenous insulin rhythms in the circadian regulation of peripheral clocks. The phase of circulating insulin fluctuations was reversed in DF compared with NF mice, although those of circulating corticosterone fluctuations and nocturnal locomotor activity were identical between these mice. The reversed feeding cycle affected the circadian phases of Per1 and Per2 gene expression in the liver and not in heart, lung, white adipose and skeletal muscle tissues. On the other hand, injected exogenous insulin significantly induced Akt phosphorylation in the heart and skeletal muscle as well as the liver, and significantly induced Per1 and Per2 gene expression in all examined tissues. These findings suggest that feeding cycles and feeding cycle-dependent endogenous insulin fluctuations are not dominant entrainment signals for peripheral clocks other than the liver, although exogenous insulin might reset peripheral oscillators in mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yasemin Budama-Kilinc

    2017-04-01

    Full Text Available Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability.  Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI, loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid (PLGA and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity. DOI: http://dx.doi.org/10.17807/orbital.v9i1.934 

  13. Continuation versus discontinuation of insulin secretagogues when initiating insulin in type 2 diabetes

    NARCIS (Netherlands)

    Swinnen, S. G.; Dain, M.-P.; Mauricio, D.; DeVries, J. H.; Hoekstra, J. B.; Holleman, F.

    2010-01-01

    We compared the combined use of basal insulin, metformin and insulin secretagogues with a combination of basal insulin and metformin in patients with type 2 diabetes starting basal insulin analogue therapy. This analysis was part of a 24-week trial, in which 964 insulin-naive patients with type 2

  14. Effect of starvation on human muscle protein metabolism and its response to insulin

    International Nuclear Information System (INIS)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A.

    1990-01-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using [3H]phenylalanine (Phe) and [14C]leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action

  15. Effect of starvation on human muscle protein metabolism and its response to insulin

    Energy Technology Data Exchange (ETDEWEB)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-10-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using (3H)phenylalanine (Phe) and (14C)leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action.

  16. Quantitative analysis of secretome from adipocytes regulated by insulin

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  17. A Unifying Organ Model of Pancreatic Insulin Secretion.

    Directory of Open Access Journals (Sweden)

    Andrea De Gaetano

    Full Text Available The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes and low-frequency oscillations (period approx. 1.5 hours. Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model's success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different

  18. News/Press Releases

    Data.gov (United States)

    Office of Personnel Management — A press release, news release, media release, press statement is written communication directed at members of the news media for the purpose of announcing programs...

  19. Oral Insulin - Fact or Fiction?

    Indian Academy of Sciences (India)

    attempts have explored the following options, either singly, or together: • Protecting ... derivative of insulin has been seen to maintain its biological activity and also have .... that in the short future any oral preparation that can achieve consistent ...

  20. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    International Nuclear Information System (INIS)

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman; Denizli, Adil

    2015-01-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  1. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr; Denizli, Adil

    2015-07-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  2. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation.

    Science.gov (United States)

    Zhang, Yan; Wu, Xiaorong; Meng, Lingkuo; Zhang, Yu; Ai, Ruiting; Qi, Na; He, Haibing; Xu, Hui; Tang, Xing

    2012-10-15

    In the present study thiolated Eudragit L100 (Eul) based polymeric nanoparticles (NPs) were employed to develop an oral insulin delivery system. Sulfydryl modification was achieved by grafting cysteine to the carboxylic acid group of Eudragit L100, which displayed maximum conjugate level of 390.3±13.4 μmol thiol groups per gram. Eudragit L100-cysteine (Eul-cys) and Eul nanoparticles were prepared by the precipitation method, in which reversible swelling of pH-sensitive material was used for insulin loading and release. Nanoparticles were characterized in terms of their particle size, morphology, loading efficiency (LE%) and in vitro insulin release behavior. The NPs had an average size of 324.2±39.0 nm and 308.8±35.7 nm, maximal LE% of 92.2±1.7% and 96.4±0.5% for Eul-cys and Eul, respectively. The release profile of NPs in vitro showed pH-dependent behavior. Circular dichroism (CD) spectroscopy analysis proved that the secondary structure of the insulin released from NPs was unchanged compared with native insulin. The mucoadhesion study in vitro showed that Eul-cys NPs produced a 3-fold and 2.8-fold increase in rat jejunum and ileum compared with unmodified polymer NPs, respectively, which was due to the immobilization of thiol groups on Eudragit L100. Oral administration of insulin-loaded Eul-cys NPs produced a higher and prolonged hypoglycemic action, and the corresponding relative bioavailability of insulin was found to be 7.33±0.33%, an increase of 2.8-fold compared with Eul NPs (2.65±0.63%). This delivery system is a promising novel tool to improve the absorption of protein and peptide drugs in the intestinal tract. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  4. Development of AIDA v4.3b Diabetes Simulator: Technical Upgrade to Support Incorporation of Lispro, Aspart, and Glargine Insulin Analogues

    Directory of Open Access Journals (Sweden)

    Eldon D. Lehmann

    2011-01-01

    Full Text Available Introduction. AIDA is an interactive educational diabetes simulator available on the Internet without charge since 1996 (accessible at: http://www.2aida.org/. Since the program’s original release, users have developed new requirements, with new operating systems coming into use and more complex insulin management regimens being adopted. The current work has aimed to design a comprehensive diabetes simulation system from both a clinical and information technology perspective. Methods. A collaborative development is taking place with a new generic model of subcutaneous insulin absorption, permitting the simulation of rapidly-acting and very long-acting insulin analogues, as well as insulin injections larger than 40 units. This novel, physiological insulin absorption model has been incorporated into AIDA v4. Technical work has also been undertaken to install and operate the AIDA software within a DOSBox emulator, to ensure compatibility with Windows XP, Vista and 7 operating systems as well as Apple Macintosh computers running Parallels PC emulation software. Results. Plasma insulin simulations are demonstrated following subcutaneous injections of a rapidly-acting insulin analogue, a short-acting insulin preparation, intermediate-acting insulin, and a very long-acting insulin analogue for injected insulin doses up to 60 units of insulin. Discussion. The current work extends the useful life of the existing AIDA v4 program.

  5. Insulin resistance in therapeutic clinic

    Directory of Open Access Journals (Sweden)

    Anna V. Pashentseva

    2017-09-01

    Full Text Available Today an obesity became the global epidemic striking both children, and adults and represents one of the most important problems of health care worldwide. Excess accumulation of fatty tissue is resulted by insulin resistance and a compensatory hyperinsulinaemia which are the main predictors of development of a diabetes mellitus type 2. Insulin resistance is also one of key links of a pathogenesis of such diseases as cardiovascular pathology, not-alcoholic fatty liver disease, a polycystic ovary syndrome, gestational diabetes and many others. Depression of sensitivity of tissues to insulin can be physiological reaction of an organism to stress factors and pathological process. The endogenic reasons also take part in development of insulin resistance besides factors of the external environment. The role of genetic predisposition, a subclinical inflammation of fatty tissue, thyroid hormones, adipokines and vitamin D in formation of this pathological process is studied. As insulin resistance takes part in a pathogenesis of various diseases, methods of its diagnostics and correction are of great importance in therapeutic practice. At purpose of treatment it is worth giving preference to the drugs which are positively influencing sensitivity of tissues to insulin.

  6. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles.

    Science.gov (United States)

    Peng, Qiang; Zhang, Zhi-Rong; Gong, Tao; Chen, Guo-Qiang; Sun, Xun

    2012-02-01

    The application of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) for sustained and controlled delivery of hydrophilic insulin was made possible by preparing insulin phospholipid complex loaded biodegradable PHBHHx nanoparticles (INS-PLC-NPs). The INS-PLC-NPs produced by a solvent evaporation method showed a spherical shape with a mean particle size, zeta potential and entrapment efficiency of 186.2 nm, -38.4 mv and 89.73%, respectively. In vitro studies demonstrated that only 20% of insulin was released within 31 days with a burst release of 5.42% in the first 8 h. The hypoglycaemic effect in STZ induced diabetic rats lasted for more than 3 days after the subcutaneous injection of INS-PLC-NPs, which significantly prolonged the therapeutic effect compared with the administration of insulin solution. The pharmacological bioavailability (PA) of INS-PLC-NPs relative to insulin solution was over 350%, indicating that the bioavailability of insulin was significantly enhanced by INS-PLC-NPs. Therefore, the INS-PLC-NPs system is promising to serve as a long lasting insulin release formulation, by which the patient compliance can be enhanced significantly. This study also showed that phospholipid complex loaded biodegradable nanoparticles (PLC-NPs) have a great potential to be used as a sustained delivery system for hydrophilic proteins to be encapsulated in hydrophobic polymers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... endogenous insulin secretion, which was estimated by deconvolution of C-peptide concentrations. Hepatic extraction of insulin was calculated as 1 minus the ratio of fasting posthepatic insulin delivery rate to fasting endogenous insulin secretion rate. Compared with controls, LIPO displayed increased fasting...... insulin (130%, P Hepatic extraction of insulin was similar between groups (LIPO, 55%; controls, 57%; P > .8). In LIPO, HEXi and MCRi correlated inversely with fasting insulin (r = -0.56, P

  8. Insulin degludec as an ultralong-acting basal insulin once a day: a systematic review

    Directory of Open Access Journals (Sweden)

    Wang F

    2012-07-01

    Full Text Available Fei Wang,1 Justine Surh,1 Manmeet Kaur21University of Connecticut School of Pharmacy, Department of Pharmacy Practice, Storrs, 2Joslin Diabetes Center Affiliate, Hospital of Central Connecticut, New Britain, CT, USABackground: Insulin degludec (IDeg is a neutral, ultralong-acting new generation basal insulin analog developed by NovoNordisk currently in Phase III clinical development. IDeg offers a duration of action of more than 42 hours in adults, much longer than current basal insulin formulations.Objective: The aim of this review is to assess the efficacy and safety data of IDeg in the treatment of type 1 and type 2 diabetes mellitus.Methods: Relevant English language articles from 2010 to 2012 were identified through MEDLINE, PubMed, EMBASE, Scopus, BIOSIS, and Google Scholar. Online conference proceedings of the 71st ADA Scientific Sessions and the 47th EASD Annual Meeting were reviewed. Studies were compared in terms of their study designs, primary and secondary efficacy parameters, and tolerability data.Results: There are a total of nine published trials investigating the clinical efficacy and safety of IDeg in over 3000 subjects with type 1 and 2 diabetes. Only three trials were published in full. All were open-label, randomized multicenter trials with durations of 16 to 52 weeks. IDeg and coformulations of IDeg with insulin aspart (IAsp were compared to insulin glargine (IGlar, detemir, and biphasic IAsp 30 (BIAsp 30.Conclusion: Based upon the available evidence, there appear to be no reported differences between IDeg and IGlar, detemir, or BIAsp 30 in the reduction of the primary efficacy end-points of HbA1c and mean fasting plasma glucose (FPG concentrations. Only flexible dosing of IDeg provided a significant reduction in FPG compared to IGlar. IDeg demonstrated a significant reduction in nocturnal hypoglycemia in type 1 diabetes. In type 2 diabetes, IDeg reduced the incidence of hypoglycemia by 18% and 58% compared to IGlar and

  9. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1

    International Nuclear Information System (INIS)

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-01-01

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. - Highlights: • A novel model of liver-specific Prep1 knockout is established. • Ablation of Prep1 in hepatocytes increases insulin sensitivity. • Prep1 controls hepatic insulin sensitivity by regulating localization of FOXO1. • Prep1 regulates

  10. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery.

    Science.gov (United States)

    Mukhopadhyay, Piyasi; Chakraborty, Souma; Bhattacharya, Sourav; Mishra, Roshnara; Kundu, P P

    2015-01-01

    Chitosan-alginate (CS/ALG) nanoparticles were prepared by formation of an ionotropic pre-gelation of an alginate (ALG) core entrapping insulin, followed by chitosan (CS) polyelectrolyte complexation, for successful oral insulin administration. Mild preparation process without harsh chemicals is aimed at improving insulin bio-efficiency in in vivo model. The nanoparticles showed an average particle size of 100-200 nm in dynamic light scattering (DLS), with almost spherical or sub-spherical shape and ∼ 85% of insulin encapsulation. Again, retention of almost entire amount of encapsulated insulin in simulated gastric buffer followed by its sustained release in simulated intestinal condition proved its pH sensitivity in in vitro release studies. Significant hypoglycemic effects with improved insulin-relative bioavailability (∼ 8.11%) in in vivo model revealed the efficacy of these core-shell nanoparticles of CS/ALG as an oral insulin carrier. No systemic toxicity was found after its peroral treatment, suggesting these core-shell nanoparticles as a promising device for potential oral insulin delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Markers of inflammation and cellular adhesion molecules in relation to insulin resistance in nondiabetic elderly: the Rotterdam study

    NARCIS (Netherlands)

    A.E. Hak (Liesbeth); H.A.P. Pols (Huib); C.D. Stehouwer (Coen); J. Meijer (John); A.J. Kiliaan (Amanda); M.M.B. Breteler (Monique); J.C.M. Witteman (Jacqueline); A. Hofman (Albert)

    2001-01-01

    textabstractInsulin resistance, which is highly prevalent in the elderly, is suggested to be accompanied by an increased acute phase response. Until now, it is unclear whether cellular adhesion molecules are involved in the clustering of insulin resistance. In the present study, we

  12. Increased CD19+CD24+CD27+ B regulatory cells are associated with insulin resistance in patients with type I Hashimoto's thyroiditis.

    Science.gov (United States)

    Yang, Min; Du, Changji; Wang, Yinping; Liu, Jun

    2017-06-01

    Hashimoto's thyroiditis (HT) is characterized by dysregulated immune responses and is commonly associated with insulin resistance. However, the mechanism of insulin resistance in HT remains to be fully elucidated. The aim of the present study was to investigate the correlation between the percentage of B regulatory lymphocytes (Bregs) and insulin resistance in patients with HT but with normal thyroid function (type I). A total of 59 patients with type I HT and 38 healthy volunteers were enrolled in the study. An oral glucose tolerance test was performed to measure insulin secretion and assess β‑cell functions. Flow cytometry was performed to examine the percentages of lymphocyte populations. The patients with HT exhibited normal fasting and postprandial glucose and fasting insulin secretion, but increased secretion of early‑phase and total insulin. The patients with HT also had insufficient β‑cell compensation for insulin resistance, indicated by a reduced disposition index, in the fasting state. An elevation in the percentage of CD19+CD24+CD27+ Bregs was also observed, which correlated positively with insulin secretion and insulin resistance in the fasting state. The patients with type I HT had postprandial insulin resistance and insufficient β‑cell compensation for fasting insulin resistance. Therefore, the increase in CD19+CD24+CD27+ Bregs was closely associated with fasting insulin secretion. These results provide novel insight into the mechanism of insulin resistance in HT.

  13. FACTORS AFFECTING THE RELEASE RATE OF A HIGHLY SOLUBLE DRUG FROM A PROGRAMMED RELEASE MEGALOPOROUS SYSTEM

    NARCIS (Netherlands)

    VANDERVEEN, C; MENGER, NR; LERK, CF

    The present study reports on the successful incorporation of a highly soluble drug, procaine HCl, in a programmed-release megaloporous system. This solid two-phase system is composed of housing phase matrix granules (HMG), controlling liquid penetration into the system, and of restraining phase

  14. Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers.

    Science.gov (United States)

    Grabovac, Vjera; Föger, Florian; Bernkop-Schnürch, Andreas

    2008-02-04

    The aim of this study was to develop and evaluate a novel three-layered oral delivery system for insulin in vivo. The patch system consisted of a mucoadhesive layer, a water insoluble backing layer made of ethylcellulose and an enteric coating made of Eudragit. Drug release studies were performed in media mimicking stomach and intestinal fluids. For in vivo studies patch systems were administered orally to conscious non-diabetic rats. Orally administered insulin in aqueous solution was used as control. After the oral administration of the patch systems a decrease of glucose and increase of insulin blood levels were measured. The mucoadhesive layer, exhibiting a diameter of 2.5mm and a weight of 5mg, comprised polycarbophil-cysteine conjugate (49%), bovine insulin (26%), gluthatione (5%) and mannitol (20%). 74.8+/-4.8% of insulin was released from the delivery system over 6h. Six hours after administration of the patch system mean maximum decrease of blood glucose level of 31.6% of the initial value could be observed. Maximum insulin concentration in blood was 11.3+/-6.2ng/ml and was reached 6h after administration. The relative bioavailability of orally administered patch system versus subcutaneous injection was 2.2%. The results indicate that the patch system provides enhancement of intestinal absorption and thereby offers a promising strategy for peroral peptide delivery.

  15. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  16. Clinical use of the co-formulation of insulin degludec and insulin aspart

    DEFF Research Database (Denmark)

    Kumar, A; Awata, T; Bain, S C

    2016-01-01

    (HbA1c ) to current modern insulins, but with lower risk of nocturnal hypoglycaemia. In prior insulin users, glycaemic control was achieved with lower or equal insulin doses vs. other basal+meal-time or premix insulin regimens. In insulin-naïve patients with T2DM, IDegAsp can be started once or twice...... a simpler insulin regimen than other available basal-bolus or premix-based insulin regimens, with stable daytime basal coverage, a lower rate of hypoglycaemia and some flexibility in injection timing compared with premix insulins....

  17. [Primary study on characteristics of insulin secretion rate, metabolic clearance rate and sensitivity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees].

    Science.gov (United States)

    Ran, J; Cheng, H; Li, F

    2000-01-01

    index (BMI) (P < 0.01), and MCR-I had significant negative correlation with AUCC (P < 0.01). There are obvious impaired first phase insulin secretion after glucose challenge in non-insulin-dependent diabetic subjects from MDP. Decrease in endogenous MCR-I might be an important factor to hyperinsulinemia and insulin resistance. Increased insulin secretion, decreased MCR-I and insulin sensitivity can be observed in abdominal obese subjects of control group.

  18. Intranasal insulin therapy: the clinical realities

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, Sten; Hvidberg, A

    1995-01-01

    To evaluate metabolic control and safety parameters (hypoglycaemia frequency and nasal mucosa physiology), 31 insulin-dependent diabetic patients were treated with intranasal insulin at mealtimes for 1 month and with subcutaneous fast-acting insulin at meals for another month in an open, crossover...... randomized trial. During both treatment periods the patients were treated with intermediate-acting insulin at bedtime. Six of the patients were withdrawn from the study during intranasal insulin therapy due to metabolic dysregulation. Serum insulin concentrations increased more rapidly and decreased more...... quickly during intranasal as compared with subcutaneous insulin administration. Metabolic control deteriorated, as assessed by haemoglobin A1c concentrations, slightly but significantly after intranasal as compared with subcutaneous insulin therapy. The bioavailability of intranasally applied insulin...

  19. Bioavailability and variability of biphasic insulin mixtures

    DEFF Research Database (Denmark)

    Søeborg, Tue; Rasmussen, Christian Hove; Mosekilde, Erik

    2012-01-01

    Absorption of subcutaneously administered insulin is associated with considerable variability. Some of this variability was quantitatively explained for both soluble insulin and insulin suspensions in a recent contribution to this journal (Søeborg et al., 2009). In the present article......, the absorption kinetics for mixtures of insulins is described. This requires that the bioavailability of the different insulins is considered. A short review of insulin bioavailability and a description of the subcutaneous depot thus precede the presentation of possible mechanisms associated with subcutaneous...... insulin degradation. Soluble insulins are assumed to be degraded enzymatically in the subcutaneous tissue. Suspended insulin crystals form condensed heaps that are assumed to be degraded from their surface by invading macrophages. It is demonstrated how the shape of the heaps affects the absorption...

  20. Glucose and insulin dynamics associated with continuous rate infusion of dextrose solution or dextrose solution and insulin in healthy and endotoxin-exposed horses.

    Science.gov (United States)

    Han, Janet H; McKenzie, Harold C; McCutcheon, L Jill; Geor, Raymond J

    2011-04-01

    To investigate the effects of a continuous rate infusion (CRI) of dextrose solution or dextrose solution and insulin on glucose and insulin concentrations in healthy and endotoxin-exposed horses. 9 adult mares. During phase 1, treatments consisted of saline (0.9% NaCl) solution (control group; n = 4) or 20% dextrose solution (group 1; 4) administered IV as a 360-minute CRI. During phase 2, treatments consisted of 360-minute CRIs of 20% dextrose solution and insulin administered simultaneously at 367.6 mg/kg/h (30 kcal/kg/d) and 0.07 U/kg/h, respectively, in healthy horses (group 2; n = 4) or horses administered 35 ng of lipopolysaccharide/kg, IV, 24 hours before starting the dextrose solution and insulin CRIs (group 3; 4). A balanced crossover study design was used in both phases. Blood samples were collected for measurement of plasma glucose and insulin concentrations. Infusion of dextrose solution alone resulted in hyperglycemia for most of the 360-minute CRI. Insulin concentration increased significantly in group 1, compared with that in the control group. Mean insulin concentration of group 2 was significantly higher throughout most of the infusion period, compared with concentrations of the control group and group 1. Mean glucose concentration did not differ significantly between groups 2 and 3. Insulin infusion at a rate of 0.07 U/kg/h was found to be effective for the prevention of hyperglycemia when administered concurrently with dextrose solution. This rate was considered to be safe because horses did not become hypoglycemic during infusions of dextrose solution.

  1. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  2. Preliminary evidence for obesity-associated insulin resistance in adolescents without elevations of inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Cohen Jessica I

    2012-06-01

    Full Text Available Abstract Background To ascertain whether the associations between obesity, inflammation, and insulin resistance established in human adult studies are found among adolescents. Methods We contrasted 36 obese and 24 lean youth on fasting glucose, insulin levels, lipid profile, hemoglobin A1C, markers of hepatic function, white blood cell count, C-reactive protein (CRP and fibrinogen levels. The cytokines IL-6, TNF-α, IFN-γ, IL-10 and IL-4 and the adipokines leptin, resistin, and adiponectin were also compared between the two groups. The fasting glucose and insulin values were used to estimate the degree of insulin resistance with the homeostatic model assessment of insulin resistance (HOMA-IR. T-tests and correlations were run to examine group differences and associations between groups. In addition, regression analyses were used to ascertain whether the markers of inflammation were predictive of the degree of insulin resistance. Results Although obese adolescents had clear evidence of insulin resistance, only CRP, fibrinogen and leptin were elevated; there were no group differences in pro- or anti-inflammatory cytokines nor adiponectin and resistin. Anthropometric measures of obesity and level of insulin resistance were highly correlated to the acute phase reactants CRP and fibrinogen; however, the degree of insulin resistance was not predicted by the pro- or anti-inflammatory cytokine markers. Obese adolescents had higher white blood cell counts. In addition they had higher circulating alanine aminotransferase concentrations and lower circulating albumin and total protein than lean adolescents, possibly as a result of hepatocyte damage from fatty liver. Conclusion Unlike rodent or adult studies, we found that wide-spread systemic inflammation is not necessarily associated with insulin resistance among adolescents. This finding does not support the current paradigm that the associations between obesity and insulin resistance are, to a

  3. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  4. The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest

    DEFF Research Database (Denmark)

    Alibegovic, Amra C; Sonne, Mette P; Højbjerre, Lise

    2010-01-01

    of FPIR in response to insulin resistance induced by bed rest was lower in carriers of the T-allele (P hepatic insulin resistance......OBJECTIVE: The aim of this study was to determine whether the type 2 diabetes-associated T-allele of transcription factor 7-like 2 (TCF7L2) rs7903146 associates with impaired insulin secretion to compensate for insulin resistance induced by bed rest. RESEARCH DESIGN AND METHODS: A total of 38....... The genetic analyses were done assuming a dominant model of inheritance. RESULTS: The first-phase insulin response (FPIR) was significantly lower in carriers of the T-allele compared with carriers of the CC genotype before bed rest, with and without correction for insulin resistance. The incremental rise...

  5. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  6. Decrease of glucose-induced insulin secretion of pancreatic rat islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J

    1983-01-01

    Irradiation of pancreatic rat islets up to a dose of 2.5 Gy did neither alter glucose-nor IBMX-induced insulin secretion studied in vitro. The insulin as well as glucagon content of irradiated islets were similar as in the control tissue. This was also true in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. Since we did not find indications of an enhanced hormone output in the radiation medium, we want to suggest that higher irradiation doses affect insulin release of pancreatic islets in vitro. This observation has to be taken into account for application of radioimmunosuppression for transplantation.

  7. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-01-01

    Full Text Available Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing.

  8. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-01-01

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  9. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    Science.gov (United States)

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  10. Cancer risk among insulin users

    DEFF Research Database (Denmark)

    But, Anna; De Bruin, Marie L.; Bazelier, Marloes T.

    2017-01-01

    Aims/hypothesis: The aim of this work was to investigate the relationship between use of certain insulins and risk for cancer, when addressing the limitations and biases involved in previous studies. Methods: National Health Registries from Denmark (1996–2010), Finland (1996–2011), Norway (2005......–2010) and Sweden (2007–2012) and the UK Clinical Practice Research Datalink database (1987–2013) were used to conduct a cohort study on new insulin users (N = 327,112). By using a common data model and semi-aggregate approach, we pooled individual-level records from five cohorts and applied Poisson regression...... models. For each of ten cancer sites studied, we estimated the rate ratios (RRs) by duration (≤0.5, 0.5–1, 1–2, 2–3, 3–4, 4–5, 5–6 and >6 years) of cumulative exposure to insulin glargine or insulin detemir relative to that of human insulin. Results: A total of 21,390 cancer cases occurred during a mean...

  11. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    Science.gov (United States)

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  12. Insulin therapy in patients with cystic fibrosis in the pre-diabetes stage: a systematic review.

    Science.gov (United States)

    Pu, Mariana Zorrón Mei Hsia; Christensen-Adad, Flávia Corrêa; Gonçalves, Aline Cristina; Minicucci, Walter José; Ribeiro, José Dirceu; Ribeiro, Antonio Fernando

    2016-09-01

    To elucidate whether insulin is effective or not in patients with cystic fibrosis before the diabetes mellitus phase. The study was performed according to the Prisma method between August and September 2014, using the PubMed, Embase, Lilacs and SciELO databases. Prospective studies published in English, Portuguese and Spanish from 2002 to 2014, evaluating the effect of insulin on weight parameters, body mass index and pulmonary function in patients with cystic fibrosis, with a mean age of 17.37 years before the diabetes mellitus phase were included. Eight articles were identified that included 180 patients undergoing insulin use. Sample size ranged from 4 to 54 patients, with a mean age ranging from 12.4 to 28 years. The type of follow-up, time of insulin use, the dose and implementation schedule were very heterogeneous between studies. There are theoretical reasons to believe that insulin has a beneficial effect in the studied population. The different methods and populations assessed in the studies do not allow us to state whether early insulin therapy should or should not be carried out in patients with cystic fibrosis prior to the diagnosis of diabetes. Therefore, studies with larger samples and insulin use standardization are required. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. Insulin therapy in patients with cystic fibrosis in the pre-diabetes stage: a systematic review

    Directory of Open Access Journals (Sweden)

    Mariana Zorrón Mei Hsia Pu

    Full Text Available Abstract Objective: To elucidate whether insulin is effective or not in patients with cystic fibrosis before the diabetes mellitus phase. Data source: The study was performed according to the Prisma method between August and September 2014, using the PubMed, Embase, Lilacs and SciELO databases. Prospective studies published in English, Portuguese and Spanish from 2002 to 2014, evaluating the effect of insulin on weight parameters, body mass index and pulmonary function in patients with cystic fibrosis, with a mean age of 17.37 years before the diabetes mellitus phase were included. Data synthesis: Eight articles were identified that included 180 patients undergoing insulin use. Sample size ranged from 4 to 54 patients, with a mean age ranging from 12.4 to 28 years. The type of follow-up, time of insulin use, the dose and implementation schedule were very heterogeneous between studies. Conclusions: There are theoretical reasons to believe that insulin has a beneficial effect in the studied population. The different methods and populations assessed in the studies do not allow us to state whether early insulin therapy should or should not be carried out in patients with cystic fibrosis prior to the diagnosis of diabetes. Therefore, studies with larger samples and insulin use standardization are required.

  14. Probing the mechanism of insulin fibril formation with insulin mutants.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Brange, J; Uversky, V N; Fink, A L

    2001-07-27

    The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation

  15. Acupuncture treatment for insulin sensitivity of women with polycystic ovary syndrome and insulin resistance: a study protocol for a randomized controlled trial.

    Science.gov (United States)

    Li, Juan; Ng, Ernest Hung Yu; Stener-Victorin, Elisabet; Hu, Zhenxing; Shao, Xiaoguang; Wang, Haiyan; Li, Meifang; Lai, Maohua; Xie, Changcai; Su, Nianjun; Yu, Chuyi; Liu, Jia; Wu, Taixiang; Ma, Hongxia

    2017-03-09

    Our prospective pilot study of acupuncture affecting insulin sensitivity on polycystic ovary syndrome (PCOS) combined with insulin resistance (IR) showed that acupuncture had a significant effect on improving the insulin sensitivity of PCOS. But there is still no randomized controlled trial to determine the effect of acupuncture on the insulin sensitivity in women with PCOS and IR. In this article, we present the protocol of a randomized controlled trial to compare the effect of true acupuncture on the insulin sensitivity of these patients compared with metformin and sham acupuncture. Acupuncture may be an effective therapeutic alternative that is superior to metformin and sham acupuncture in improving the insulin sensitivity of PCOS combined with IR. This study is a multi-center, controlled, double-blind, and randomized clinical trial aiming to evaluate the effect of acupuncture on the insulin sensitivity in PCOS combined with IR. In total 342 patients diagnosed with PCOS and IR will be enrolled. Participants will be randomized to one of the three groups: (1) true acupuncture + metformin placebo; (2) sham acupuncture + metformin, and (3) sham acupuncture + metformin placebo. Participants and assessors will be blinded. The acupuncture intervention will be given 3 days per week for a total of 48 treatment sessions during 4 months. Metformin (0.5 g per pill) or placebo will be given, three times per day, and for 4 months. Primary outcome measures are changes in homeostasis model assessment of insulin resistance (HOMA-IR) and improvement rate of HOMA-IR by oral glucose tolerance test (OGTT) and insulin releasing test (Ins). Secondary outcome measures are homeostasis model assessment-β (HOMA-β), area under the curve for glucose and insulin, frequency of regular menstrual cycles and ovulation, body composition, metabolic profile, hormonal profile, questionnaires, side effect profile, and expectation and credibility of treatment. Outcome measures are