Phase-space quantization of field theory
International Nuclear Information System (INIS)
Curtright, T.; Zachos, C.
1999-01-01
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999
Phase space properties of charged fields in theories of local observables
International Nuclear Information System (INIS)
Buchholz, D.; D'Antoni, C.
1994-10-01
Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)
Non-cyclic phases for neutrino oscillations in quantum field theory
International Nuclear Information System (INIS)
Blasone, Massimo; Capolupo, Antonio; Celeghini, Enrico; Vitiello, Giuseppe
2009-01-01
We show the presence of non-cyclic phases for oscillating neutrinos in the context of quantum field theory. Such phases carry information about the non-perturbative vacuum structure associated with the field mixing. By subtracting the condensate contribution of the flavor vacuum, the previously studied quantum mechanics geometric phase is recovered.
Grassmann phase space methods for fermions. II. Field theory
Energy Technology Data Exchange (ETDEWEB)
Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-02-15
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Grassmann phase space methods for fermions. II. Field theory
International Nuclear Information System (INIS)
Dalton, B.J.; Jeffers, J.; Barnett, S.M.
2017-01-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Phase Structure Of Fuzzy Field Theories And Multi trace Matrix Models
International Nuclear Information System (INIS)
Tekel, J.
2015-01-01
We review the interplay of fuzzy field theories and matrix models, with an emphasis on the phase structure of fuzzy scalar field theories. We give a self-contained introduction to these topics and give the details concerning the saddle point approach for the usual single trace and multi trace matrix models. We then review the attempts to explain the phase structure of the fuzzy field theory using a corresponding random matrix ensemble, showing the strength and weaknesses of this approach. We conclude with a list of challenges one needs to overcome and the most interesting open problems one can try to solve. (author)
Matrix model approximations of fuzzy scalar field theories and their phase diagrams
Energy Technology Data Exchange (ETDEWEB)
Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)
2015-12-29
We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.
International Nuclear Information System (INIS)
Frohlich, J.
1976-01-01
We prove that a Symanzik--Nelson positive quantum field theory, i.e., a quantum field theory derived from a Euclidean field theory, has a unique decomposition into pure phases which preserves Symanzik--Nelson positivity and Poincare covariance. We derive useful sufficient conditions for the breakdown of an internal symmetry of such a theory in its pure phases, for the self-adjointness and nontrivially (in the sense of Borchers classes) of its quantum fields, and the existence of time-ordered and retarded products. All these general results are then applied to the P (phi) 2 and the phi 3 4 quantum field models
Nonperturbative approach to quantum field theories: phase transitions and confinement
International Nuclear Information System (INIS)
Yankielowicz, S.
1976-08-01
Lectures are given on a nonperturbative approach to quantum field theories. Phenomena are discussed for which the usual weak coupling perturbative approach in terms of Feynman diagrams is of no assistance. Properties associated with large distance behavior, i.e., phase transitions, low lying spectra, coherent excitations which are presumably built out of the long wave structure of the theory are described. These methods are important for the study of strong coupling field theories and the question of quarks confinement. 25 references
Zero energy gauge fields and the phases of a gauge theory
International Nuclear Information System (INIS)
Guendelman, E.I.
1990-01-01
A new approach to the definition of the phases of a Poincare invariant gauge theory is developed. It is based on the role of gauge transformations that change the asymptotic value of the gauge fields from zero to a constant. In the context of theories without Higgs fields, this symmetry can be spontaneously broken when the gauge fields are massless particles, explicitly broken when the gauge fields develop a mass. Finally, the vacuum can be invariant under this transformation, this last case can be achieved when the theory has a violent infrared behavior, which in some theories can be connected to a confinement mechanism
Two applications of Berry's phase in fermionic field theory
International Nuclear Information System (INIS)
Goff, W.E.
1989-01-01
When quantized fermions are coupled to a background field, nontrivial effects may arise due to the geometry and/or topology of the space of background field configurations. In this thesis, two examples of Berry's geometrical phase in a fermionic sea are studied: the anomalous commutator in gauge field theory and the intrinsic orbital angular momentum in superfluid 3 He-A. Chapter 1 is a brief introduction. Chapter 2 reviews Berry's Phase and several toy models. Effective actions are calculated for two models in gradient expansions and the role of a geometric term is discussed. Chapter 3 investigates the anomalous commutator in the generators of gauge symmetry in field theory. Using an idea introduced by Sonoda, the Berry phase of the vacuum state is found to be the sum of the Berry phases of the individual states in the sea plus a piece due to the infinite nature of the Dirac sea. The latter is the anomalous commutator. Also found is a relative minus sign between the commutator of the total gauge symmetry generators and the commutator of the fermionic charge generators. Examples are given. In Chapter 4, a geometric way of deriving the intrinsic orbital angular momentum term in the 3 He-A equations of motion is presented. Homogeneous, adiabatically evolving textures at zero temperature are found to pick up a nonzero groundstate Berry phase, where the ground state is taken to be a filled sea of Bogoliubov quasiparticles. Interpreting the phase as a Wess-Zumino effective action for the condensate provides a geometric origin for the intrinsic angular momentum. The idea of a ground-state phase is then extended to other gap functions and a more general result is obtained. Chapter 5 concludes with a discussion of the possibility of unifying the two problems in a more general framework and directions for further work
Phase diagram of N = 2 superconformal field theories and bifurcation sets in catastrophe theory
International Nuclear Information System (INIS)
Kei Ito.
1989-08-01
Phase diagrams of N=2 superconformal field theories are mapped out. It is shown that they coincide with bifurcation sets in catastrophe theory. The results are applied to the determination of renormalization group flows triggered by a combination of two or more relevant operators. (author). 13 refs, 2 figs
Classical nucleation theory in the phase-field crystal model.
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Classical nucleation theory in the phase-field crystal model
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Phase structure of (φ4)3 field theory at finite temperature
International Nuclear Information System (INIS)
Efimov, G.V.
1992-01-01
Phase structure of φ 4 field theory in the space-time R 3 is investigated at arbitrary coupling constant and temperature. The critical values of the coupling constant and temperature, corresponding to the phase transitions in the system, are calculated by the canonical transformation method within formalism of thermo field dynamics. The Hamiltonians describing the system in each phase are obtained straightforwardly. Comparison with the two-dimensional case shows a crucial influence of higher order renormalization on the phase structure of the model. 13 refs.; 5 figs
Field theory of absorbing phase transitions with a non-diffusive conserved field
International Nuclear Information System (INIS)
Pastor-Satorras, R.; Vespignani, A.
2000-04-01
We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a non-diffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive microscopically the field theory representing this universality class. (author)
Topics in phase-shift analysis and higher spin field theory
International Nuclear Information System (INIS)
Reisen, J.C.J.M.
1983-01-01
The first part of this thesis considers several aspects of the existence of phase-shift ambiguities. The subject is introduced with a few remarks on scattering theory and previous work in this area is discussed. The mathematical restrictions of presenting such problems clearly are considered and the construction of different unitary amplitudes which correspond to the same differential cross section is described. So far, examples of phase-shift ambiguities have only been found for rather special cases but the author shows that these results can be considerably generalized for spinless elastic scattering, leading to properties of phase-shift ambiguities being revealed that were previously absent. These properties are discussed in detail. Phase-shift ambiguities for the spin-0-spin-1/2 elastic scattering are then considered and again generalized. The second part of this thesis is concerned with the investigation of a free field theory for both massive and massless particles with higher spin (1, 2 and 3). A root method has been used which is described and shown to lead to the free field equations and the subsidiary conditions. A field equation and Lagrangian are constructed for massive particles and the former is then used to derive a massless field equation and Lagrangian. The relation between massive and massless field equations is investigated in more detail and particularly the expressions for the amplitude describing exchange of a particle between two external sources are compared. (Auth./C.F.)
Quantum field theory and phase transitions: universality and renormalization group
International Nuclear Information System (INIS)
Zinn-Justin, J.
2003-08-01
In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)
International Nuclear Information System (INIS)
Srivastava, P.P.
1993-01-01
The field theory quantized on the light-front is compared with the conventional equal-time quantized theory. The arguments based on the micro causality principle would imply that the light-front field theory may become nonlocal with respect to the longitudinal coordinate even though the corresponding equal-time formulation is local. This is found to be the case for the scalar theory. The conventional instant form theory is sometimes required to be constrained by invoking external physical considerations; the analogous conditions seem to be already built in the theory on the light-front. In spite of the different mechanisms of the spontaneous symmetry breaking in the two forms of dynamics they result in the same physical content. The phase transition in (φ 4 ) 2 theory is also discussed. The symmetric vacuum state for vanishingly small couplings is found to turn into an unstable symmetric one when the coupling is increased and may result in a phase transition of the second order in contrast to the first order transition concluded from the usual variational methods. (author)
Mean Field Theory, Ginzburg Criterion, and Marginal Dimensionality of Phase-Transitions
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgenau, R. J.
1977-01-01
By applying a real space version of the Ginzburg criterion, the role of fluctuations and thence the self‐consistency of mean field theory are assessed in a simple fashion for a variety of phase transitions. It is shown that in using this approach the concept of ’’marginal dimensionality’’ emerges...... in a natural way. For example, it is shown that for many homogeneous structural transformations the marginal dimensionality is two, so that mean field theory will be valid for real three‐dimensional systems. It is suggested that this simple self‐consistent approach to Landau theory should be incorporated...
Tensor algebra over Hilbert space: Field theory in classical phase space
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt
International Nuclear Information System (INIS)
Srivastava, Prem P.
1994-01-01
The Dirac procedure is used to construct the Hamiltonian formulation of the scalar field theory on the light-front. The theory is quantized and the mechanism of the spontaneous symmetry breaking in the front form and the instant form dynamics are compared. The phase transition in (φ 4 )2 theory is also discussed and found to be of the second order. (author). 36 refs
The phase diagram of scalar field theory on the fuzzy disc
Energy Technology Data Exchange (ETDEWEB)
Rea, Simone; Sämann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics,Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)
2015-11-17
Using a recently developed bootstrapping method, we compute the phase diagram of scalar field theory on the fuzzy disc with quartic even potential. We find three distinct phases with second and third order phase transitions between them. In particular, we find that the second order phase transition happens approximately at a fixed ratio of the two coupling constants defining the potential. We compute this ratio analytically in the limit of large coupling constants. Our results qualitatively agree with previously obtained numerical results.
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2013-12-15
Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.
International Nuclear Information System (INIS)
Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa
2013-01-01
Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior
Dynamical Mean Field Approximation Applied to Quantum Field Theory
Akerlund, Oscar; Georges, Antoine; Werner, Philipp
2013-12-04
We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...
Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.
2009-01-01
A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD
Second order phase transition in two dimensional sine-Gordon field theory - lattice model
International Nuclear Information System (INIS)
Babu Joseph, K.; Kuriakose, V.C.
1978-01-01
Two dimensional sine-Gordon (SG) field theory on a lattice is studied using the single-site basis variational method of Drell and others. The nature of the phase transition associated with the spontaneous symmetry breakdown in a SG field system is clarified to be of second order. A generalisation is offered for a SG-type field theory in two dimensions with a potential of the form [cossup(n)((square root of lambda)/m)phi-1].(author)
International Nuclear Information System (INIS)
Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram
2010-01-01
The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.
Energy Technology Data Exchange (ETDEWEB)
Zinn-Justin, J
2003-08-01
In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2010-07-12
Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.
International Nuclear Information System (INIS)
Deviren, Bayram; Keskin, Mustafa
2010-01-01
Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.
Equivariant topological quantum field theory and symmetry protected topological phases
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [Division of Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA, 91125 (United States); Turzillo, Alex [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794 (United States)
2017-03-01
Short-Range Entangled topological phases of matter are closely related to Topological Quantum Field Theory. We use this connection to classify Symmetry Protected Topological phases in low dimensions, including the case when the symmetry involves time-reversal. To accomplish this, we generalize Turaev’s description of equivariant TQFT to the unoriented case. We show that invertible unoriented equivariant TQFTs in one or fewer spatial dimensions are classified by twisted group cohomology, in agreement with the proposal of Chen, Gu, Liu and Wen. We also show that invertible oriented equivariant TQFTs in spatial dimension two or fewer are classified by ordinary group cohomology.
International Nuclear Information System (INIS)
Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko
2009-01-01
The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.
Martinez-Veracoechea, Francisco J.
2009-11-24
Using self-consistent field theory, the Plumber\\'s Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our knowledge, this is the first time that the P phase has been predicted to be stable using self-consistent field theory. The stabilization is achieved by tuning the composition or conformational asymmetry of the DBC chain, and the architecture or length of the homopolymer. The basic features of the phase diagrams are the same in all cases studied, suggesting a general type of behavior for these systems. Finally, it is noted that the homopolymer length should be a convenient variable to stabilize bicontinuous phases in experiments. © 2009 American Chemical Society.
Geometrical phases from global gauge invariance of nonlinear classical field theories
International Nuclear Information System (INIS)
Garrison, J.C.; Chiao, R.Y.
1988-01-01
We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics
Energy Technology Data Exchange (ETDEWEB)
Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-03-15
The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
A Cosserat crystal plasticity and phase field theory for grain boundary migration
Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut
2018-06-01
The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.
Martinez-Veracoechea, Francisco J.; Escobedo, Fernando A.
2009-01-01
Using self-consistent field theory, the Plumber's Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our
Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA
International Nuclear Information System (INIS)
Sheshadri, K.; Pandit, R.; Krishnamurthy, H.R.; Ramakrishnan, T.V.
1993-01-01
The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described. (orig.)
International Nuclear Information System (INIS)
Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.
1992-05-01
Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
Introduction to classical and quantum field theory
International Nuclear Information System (INIS)
Ng, Tai-Kai
2009-01-01
This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Light-front quantization of field theory
International Nuclear Information System (INIS)
Srivastava, Prem P.
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs
Correlated effective field theory in transition metal compounds
International Nuclear Information System (INIS)
Mukhopadhyay, Subhasis; Chatterjee, Ibha
2004-01-01
Mean field theory is good enough to study the physical properties at higher temperatures and in higher dimensions. It explains the critical phenomena in a restricted sense. Near the critical temperatures, when fluctuations become important, it may not give the correct results. Similarly in low dimensions, the correlations become important and the mean field theory seems to be inadequate to explain the physical phenomena. At low-temperatures too, the quantum correlations become important and these effects are to be treated in an appropriate way. In 1974, Prof. M.E. Lines of Bell Laboratories, developed a theory which goes beyond the mean field theory and is known as the correlated effective field (CEF) theory. It takes into account the fluctuations in a semiempirical way. Lines and his collaborators used this theory to explain the short-range correlations and their anisotropy in the paramagnetic phase. Later Suzuki et al., Chatterjee and Desai, Mukhopadhyay and Chatterjee applied this theory to the magnetically ordered phase and a tremendous success of the theory has been found in real systems. The success of the CEF theory is discussed in this review. In order to highlight the success of this theory, earlier effective field theories and their improvements over mean field theories e.g., Bethe-Peierls-Weiss method, reaction field approximation, etc., are also discussed in this review for completeness. The beauty of the CEF theory is that it is mean field-like, but captures the essential physics of real systems to a great extent. However, this is a weak correlated theory and as a result is inappropriate for the metallic phase when strong correlations become important. In recent times, transition metal oxides become important due to the discovery of the high-temperature superconductivity and the colossal magnetoresistance phenomena. These oxides seem to be Mott insulators and undergo an insulator to metal transition by applying magnetic field, pressure and by changing
International Nuclear Information System (INIS)
Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram
2012-01-01
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.
Energy Technology Data Exchange (ETDEWEB)
Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)
2012-04-15
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.
Grassmann phase space theory for fermions
Energy Technology Data Exchange (ETDEWEB)
Dalton, Bryan J. [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria, 3122 (Australia); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow, G4 ONG (United Kingdom); Barnett, Stephen M. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)
2017-06-15
A phase space theory for fermions has been developed using Grassmann phase space variables which can be used in numerical calculations for cold Fermi gases and for large fermion numbers. Numerical calculations are feasible because Grassmann stochastic variables at later times are related linearly to such variables at earlier times via c-number stochastic quantities. A Grassmann field version has been developed making large fermion number applications possible. Applications are shown for few mode and field theory cases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)
2011-06-15
A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.
Energy Technology Data Exchange (ETDEWEB)
Smiseth, Jo
2005-07-01
The critical properties of three-dimensional U(1)-symmetric lattice gauge theories have been studied. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. The thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions is discussed with emphasis on continuous phase transitions, critical phenomena and phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs model are presented, and the critical phenomena are discussed. Furthermore, the multicomponent Ginzburg-Landau theory and the applications to liquid metallic hydrogen are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme, including the Metropolis algorithm, error estimates, and re weighting techniques. This chapter is followed by the papers I-VIII. Paper I: Criticality in the (2+1)-Dimensional Compact Higgs Model and Fractionalized Insulators. Paper II: Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator. Paper III: Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials. Paper IV: Phase structure of Abelian Chern-Simons gauge theories. Paper V: Critical Properties of the N-Color London Model. Paper VI: Field- and temperature induced topological phase transitions in the three-dimensional N-component London superconductor. Paper VII: Vortex Sublattice Melting in a Two-Component Superconductor. Paper VIII: Observation of a metallic superfluid in a numerical experiment (ml)
Helical Phase Inflation and Monodromy in Supergravity Theory
Directory of Open Access Journals (Sweden)
Tianjun Li
2015-01-01
Full Text Available We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U(1 symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F-term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U(1 symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with SU(2,1/SU(2×U(1 symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.
The Nonlinear Field Space Theory
Energy Technology Data Exchange (ETDEWEB)
Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)
2016-08-10
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
The Nonlinear Field Space Theory
International Nuclear Information System (INIS)
Mielczarek, Jakub; Trześniewski, Tomasz
2016-01-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory
Mueller, Niklas; Venugopalan, Raju
2018-03-01
In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.
The time-dependent relativistic mean-field theory and the random phase approximation
International Nuclear Information System (INIS)
Ring, P.; Ma, Zhong-yu; Van Giai, Nguyen; Vretenar, D.; Wandelt, A.; Cao, Li-gang
2001-01-01
The Relativistic Random Phase Approximation (RRPA) is derived from the Time-Dependent Relativistic Mean-Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also αh-configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative-energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac-sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116 Sn. It is shown that, because the matrix elements of the time-like component of the vector-meson fields which couple the αh-configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the nonrelativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained
Higgs phase in non-Abelian gauge theories
International Nuclear Information System (INIS)
Kaymakcalan, O.S.
1981-06-01
A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory
International Nuclear Information System (INIS)
Bender, C.M.; Pinsky, S.; van de Sande, B.
1993-01-01
We study spontaneous symmetry breaking in (1+1)-dimensional φ 4 theory using the light-front formulation of field theory. Since the physical vacuum is always the same as the perturbative vacuum in light-front field theory the fields must develop a vacuum expectation value through the zero-mode components of the field. We solve the nonlinear operator equation for the zero mode in the one-mode approximation. We find that spontaneous symmetry breaking occurs at λ critical =4π(3+ √3 )μ 2 , which is consistent with the value λ critical =54.27μ 2 obtained in the equal-time theory. We calculate the vacuum expectation value as a function of the coupling constant in the broken phase both numerically and analytically using the δ expansion. We find two equivalent broken phases. Finally we show that the energy levels of the system have the expected behavior for the broken phase
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Directory of Open Access Journals (Sweden)
John D. Clayton
2014-07-01
Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.
Methods of thermal field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)
1998-11-01
We introduce the basic ideas of thermal field theory and review its path integral formulation. We then discuss the problems of QCD theory at high and at low temperatures. At high temperature the naive perturbation expansion breaks down and is cured by resummation. We illustrate this improved perturbation expansion with the g{sup 2}{phi}{sup 4} theory and then sketch its application to find the gluon damping rate in QCD theory. At low temperature the hadronic phase is described systematically by the chiral perturbation theory. The results obtained from this theory for the quark and the gluon condensates are discussed. (author) 22 refs., 6 figs.
Phase transitions and topological excitations in hypergauge theories
International Nuclear Information System (INIS)
Nencka-Ficek, H.
1985-01-01
The problems connected with the phase structure of antisymmetric tensor gauge fields are investigated. (s+1)-dimensional hyperloops cannot be constructed in (s+1)-dimensional lattices. This is the cause of a lack of phase transitions in the U(1) theories with fields being sth-kind gauge invariant in the (s+1)-dimensional lattice
Metastability in Field Theory and Statistical Mechanics
International Nuclear Information System (INIS)
Carvalho, C.A. de.
1984-01-01
After a phase transition analysis which can occur in the framework of a scalar field theory, at finite temperature and in presence of a external field, possibles metastable situations are studied and also how is their relationship with the transitions. In both cases it is used a semiclassical approximation to the theory which, in Statistical Mechanics, corresponds to the droplet-bubble model. (L.C.) [pt
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Miehe, C; Teichtmeister, S; Aldakheel, F
2016-04-28
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).
International Nuclear Information System (INIS)
Dahmen, Bernd
1994-01-01
A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))
Dynamic scattering theory for dark-field electron holography of 3D strain fields
International Nuclear Information System (INIS)
Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin
2014-01-01
Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. - Author-Highlights: • We derive a simple dynamic scattering formalism for dark field electron holography based on a perturbative two-beam theory. • The formalism facilitates the projection of 3D strain fields by a simple weighting integral. • The weighted projection depends analytically on the diffraction order, the excitation error and the specimen thickness. • The weighting integral formalism represents an important prerequisite towards the development of tomographic strain reconstruction techniques
Long-range interactions in lattice field theory
International Nuclear Information System (INIS)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations
Long-range interactions in lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.
International Nuclear Information System (INIS)
Dahmen, B.
1994-12-01
A recently proposed method for a strong coupling analysis of scattering phenomena in hamiltonian lattice field theories is applied to the SU(2) Yang-Mills model in (2 + 1) dimensions. The calculation is performed up to second order in the hopping parameter. All relevant quantities that characterize the collision between the lightest glueballs in the elastic region - cross section, phase shifts, resonance parameters - are determined. (orig.)
Blockspin transformations for finite temperature field theories with gauge fields
International Nuclear Information System (INIS)
Kerres, U.
1996-08-01
A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)
Quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Jegerlehner, F.
1975-01-01
At first a heuristic understanding is given how the relation between quantum field theory and statistical mechanics near phase transitions comes about. A long range scale invariant theory is constructed, critical indices are calculated and the relations among them are proved, field theoretical Kadanoff-scale transformations are formulated and scaling corrections calculated. A precise meaning to many of Kadanoffs considerations and a model matching Wegners phenomenological scheme is given. It is shown, that soft parametrization is most transparent for the discussion of scaling behaviour. (BJ) [de
Nonperturbative studies of quantum field theories on noncommutative spaces
International Nuclear Information System (INIS)
Volkholz, J.
2007-01-01
This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the λφ 4 model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized λφ 4 model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted lattice formulations. (orig.)
Nonperturbative studies of quantum field theories on noncommutative spaces
Energy Technology Data Exchange (ETDEWEB)
Volkholz, J.
2007-11-16
This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the {lambda}{phi}{sup 4} model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized {lambda}{phi}{sup 4} model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted
Vortex operators in gauge field theories
International Nuclear Information System (INIS)
Polchinski, J.
1980-07-01
Several related aspects of the 't Hooft vortex operator are studied. The current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator are reviewed first. The Abelian vortex operator written in terms of elementary fields and the calculation of its Green's functions are considered. A two-dimensional solvable model of a Dirac string is presented. The expression of the Green's functions more neatly in terms of Wu and Yang's geometrical idea of sections is addressed. The renormalization of the Green's functions of two kinds of Abelian looplike operators, the Wilson loop and the vortex operator, is studied; for both operators only an overall multiplicative renormalization is needed. In the case of the vortex this involves a surprising cancellation. Next, the dependence of the Green's functions of the Wilson and 't Hooft operators on the nature of the vacuum is discussed. The cluster properties of the Green's functions are emphasized. It is seen that the vortex operator in a massive Abelian theory always has surface-like clustering. The form of Green's functions in terms of Feynman graphs is the same in Higgs and symmetric phases; the difference appears in the sum over all tadpole trees. Finally, systems having fields in the fundamental representation are considered. When these fields enter only weakly into the dynamics, a vortex-like operator is anticipated. Any such operator can no longer be local looplike, but must have commutators at long range. A U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint), is examined. When the fundamental field is weakly coupled, the expected phase transitions are found. When it is strongly coupled, the operator still appears to be a good order parameter, a discontinuous change in its behavior leads to a new phase transition. 18 figures
Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory. II
International Nuclear Information System (INIS)
Pinsky, S.S.; van de Sande, B.
1994-01-01
We discuss spontaneous symmetry breaking of (1+1)-dimensional φ 4 theory in light-front field theory using a Tamm-Dancoff truncation. We show that, even though light-front field theory has a simple vacuum state which is an eigenstate of the full Hamiltonian, the field can develop a nonzero vacuum expectation value. This occurs because the zero mode of the field must satisfy an operator-valued constraint equation. In the context of (1+1)-dimensional φ 4 theory we present solutions to the constraint equation using a Tamm-Dancoff truncation to a finite number of particles and modes. We study the behavior of the zero mode as a function of coupling and Fock space truncation. The zero mode introduces new interactions into the Hamiltonian which breaks the Z 2 symmetry of the theory when the coupling is stronger than the critical coupling. We investigate the energy spectrum in the symmetric and broken phases, show that the theory does not break down in the vicinity of the critical coupling, and discuss the connection to perturbation theory. Finally, we study the spectrum of the field φ and show that, in the broken phase, the field is localized away from φ=0 as one would expect from equal-time calculations. We explicitly show that tunneling occurs
Energy Technology Data Exchange (ETDEWEB)
Burrola-Gándara, L. A., E-mail: andres.burrola@gmail.com; Santillan-Rodriguez, C. R.; Rivera-Gomez, F. J.; Saenz-Hernandez, R. J.; Botello-Zubiate, M. E.; Matutes-Aquino, J. A. [Departamento de Física de Materiales, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico)
2015-05-07
Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled universal curve, Banerjee and mean field theory criteria were used to make a comparison for several magnetocaloric materials including pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, MnFeP{sub 0.46}As{sub 0.54}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3}. Pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3} present a collapse of the rescaled magnetic entropy change curves into a universal curve, which indicates a second order phase transition; applying Banerjee criterion to H/σ vs σ{sup 2} Arrot plots and the mean field theory relation |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3} for the same materials also determines a second order phase transition. However, in the MnFeP{sub 0.46}As{sub 0.54} sample, the Banerjee criterion applied to the H/σ vs σ{sup 2} Arrot plot indicates a first order magnetic phase transition, while the mean field theory prediction for a second order phase transition, |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3}, describes a second order behavior. Also, a mixture of first and second order behavior was indicated by the rescaled universal curve criterion. The diverse results obtained for each criterion in MnFeP{sub 0.46}As{sub 0.54} are apparently related to the magnetoelastic effect and to the simultaneous presence of weak and strong magnetism in Fe (3f) and Mn (3g) alternate atomic layers, respectively. The simultaneous application of the universal curve, the Banerjee and the mean field theory criteria has allowed a better understanding about the nature of the order of the phase transitions in different magnetocaloric materials.
Martínez-Veracoechea, Francisco J.
2009-03-10
A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber\\'s nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Conformal field theories and tensor categories. Proceedings
International Nuclear Information System (INIS)
Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph
2014-01-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Dynamic scattering theory for dark-field electron holography of 3D strain fields.
Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin
2014-01-01
Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Bergmann, P.G.
1980-01-01
A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion
Wilson loops in the Higgs phase of large N field theories on the conifold
International Nuclear Information System (INIS)
Caceres, E.; Hernandez, R.
2000-04-01
We study the quark-antiquark interaction in the large N limit of the superconformal field theory on D-3branes at a Calabi-Yau conical singularity. We compute the Wilson loop in the AdS 5 x T 11 supergravity background for the SU(2N) x SU(2N) theory. We also calculate the Wilson loop for the Higgs phase where the gauge group is broken to SU(N) x SU(N) x SU D (N). This corresponds to a two center configuration with some of the branes at the singularity and the rest of them at a smooth point. The calculation exhibits the expected Coulomb dependence for the interaction. The angular distribution of the BPS states is different than the one for a spherical horizon. (author)
A covariant canonical description of Liouville field theory
International Nuclear Information System (INIS)
Papadopoulos, G.; Spence, B.
1993-03-01
This paper presents a new parametrisation of the space of solutions of Liouville field theory on a cylinder. In this parametrisation, the solutions are well-defined and manifestly real functions over all space-time and all of parameter space. It is shown that the resulting covariant phase space of the Liouville theory is diffeomorphic to the Hamiltonian one, and to the space of initial data of the theory. The Poisson brackets are derived and shown to be those of the co-tangent bundle of the loop group of the real line. Using Hamiltonian reduction, it is shown that this covariant phase space formulation of Liouville theory may also be obtained from the covariant phase space formulation of the Wess-Zumino-Witten model. 19 refs
Topological BF field theory description of topological insulators
International Nuclear Information System (INIS)
Cho, Gil Young; Moore, Joel E.
2011-01-01
Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.
Phase structure of three- and four-dimensional φ4 field theory
International Nuclear Information System (INIS)
Efimov, G.V.
1991-01-01
Strong coupling regime of gφ theory in space-time R d for d=3,4 is investigated by the methods of canonical transformations and renormalization group. Comparison with the case d=2 shows a crucial influence of the renormalization structure of the theory of its phase structure. 19 refs.; 7 figs.; 1 tab
More effective field theory for non-relativistic scattering
International Nuclear Information System (INIS)
Kaplan, D.B.
1997-01-01
An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)
Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory
Bars, Itzhak
2010-01-01
In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.
Indices for 6 dimensional superconformal field theories
International Nuclear Information System (INIS)
Kim, Seok; Lee, Kimyeong
2017-01-01
We review some recent developments in the 6 dimensional (2, 0) superconformal field theories, focusing on their Bogomol’nyi–Prasad–Sommerfield (BPS) spectra in the Coulomb and symmetric phases computed by various Witten indices. We shall discuss the instanton partition function of 5d maximal super-Yang–Mills theory, and the 6d superconformal index. (topical review)
Topics in quantum field theory; Topicos em teoria quantica dos campos
Energy Technology Data Exchange (ETDEWEB)
Svaiter, N.F
2006-11-15
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method.
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Charged Compact Boson Stars in a Theory of Massless Scalar Field
Kumar, Sanjeev
2018-05-01
In this work we present some new results obtained in a study of the phase diagram of charged compact boson stars in a theory involving a complex scalar field with a conical potential coupled to a U(1) gauge field and gravity. We obtain new bifurcation points in this model. We present a detailed discussion of the various regions of the phase diagram with respect to the bifurcation points. The theory is seen to contain rich physics in a particular domain of the phase diagram.
A Kallosh theorem for BF-type topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Gibbs, R.; Mokhtari, S.
1991-01-01
A Kallosh theorem is established for the case of BF-type theories in three dimensions, including a coupling to Chern-Simons theory. The phase contribution to the one-loop off-shell effective action is computed for a two-parameter family of local covariant gauges. It is shown that the phase is independent of these parameters, and thus equals the 'no Vilkovisky-DeWitt' gauge result. The field space metric dependence of a corresponding calculation for generalized BF theory is briefly discussed. (orig.)
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels E.
2012-01-01
We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribut...... distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I. © 2012 American Institute of Physics....
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Phase structure of the SU(5) Coleman-Weinberg theory
International Nuclear Information System (INIS)
Tkachev, I.I.
1984-01-01
The phase structure of the SU(5) Coleman-Weinberg theory in the one-loop approximation is obtained with account of temperature and space-time curvature. We show that the most essential contribution is that from the interaction between 5 and 24 scalar fields which reflects the existence of two strongly different mass scales in the model. A stability boundary of the SU(3) x SU(2) x U(1) phase is found. It is shown that the SU(4) x U(1) phase in the Coleman-Weinberg theory is unstable. (orig.)
Symplectic manifolds, coadjoint orbits, and Mean Field Theory
International Nuclear Information System (INIS)
Rosensteel, G.
1986-01-01
Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit
Statistical mechanics and field theory
International Nuclear Information System (INIS)
Samuel, S.A.
1979-05-01
Field theory methods are applied to statistical mechanics. Statistical systems are related to fermionic-like field theories through a path integral representation. Considered are the Ising model, the free-fermion model, and close-packed dimer problems on various lattices. Graphical calculational techniques are developed. They are powerful and yield a simple procedure to compute the vacuum expectation value of an arbitrary product of Ising spin variables. From a field theorist's point of view, this is the simplest most logical derivation of the Ising model partition function and correlation functions. This work promises to open a new area of physics research when the methods are used to approximate unsolved problems. By the above methods a new model named the 128 pseudo-free vertex model is solved. Statistical mechanics intuition is applied to field theories. It is shown that certain relativistic field theories are equivalent to classical interacting gases. Using this analogy many results are obtained, particularly for the Sine-Gordon field theory. Quark confinement is considered. Although not a proof of confinement, a logical, esthetic, and simple picture is presented of how confinement works. A key ingredient is the insight gained by using an analog statistical system consisting of a gas of macromolecules. This analogy allows the computation of Wilson loops in the presence of topological vortices and when symmetry breakdown occurs in the topological quantum number. Topological symmetry breakdown calculations are placed on approximately the same level of rigor as instanton calculations. The picture of confinement that emerges is similar to the dual Meissner type advocated by Mandelstam. Before topological symmetry breakdown, QCD has monopoles bound linearly together by three topological strings. Topological symmetry breakdown corresponds to a new phase where these monopoles are liberated. It is these liberated monopoles that confine quarks. 64 references
A Kallosh theorem for BF-type topological field theory
Energy Technology Data Exchange (ETDEWEB)
Birmingham, D. (Theory Div., CERN, Geneva (Switzerland)); Gibbs, R.; Mokhtari, S. (Physics Dept., Louisiana Tech. Univ., Ruston, LA (United States))
1991-12-12
A Kallosh theorem is established for the case of BF-type theories in three dimensions, including a coupling to Chern-Simons theory. The phase contribution to the one-loop off-shell effective action is computed for a two-parameter family of local covariant gauges. It is shown that the phase is independent of these parameters, and thus equals the 'no Vilkovisky-DeWitt' gauge result. The field space metric dependence of a corresponding calculation for generalized BF theory is briefly discussed. (orig.).
Towards the theory of the electroweak phase transition
International Nuclear Information System (INIS)
Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.
1992-01-01
We investigate various problems related to the theory of the electroweak phase transition. This includes determination of the nature of the phase transition, discussion of the possible role of the higher-order radiative corrections, and the theory of the formation and evolution of bubbles of the new phase. We show, in particular, that no dangerous linear terms in the scalar field φ appear in the expression for the effective potential. We have found that, for the Higgs-boson mass smaller than the masses of W and Z bosons, the phase transition is of the first order. However, its strength is approximately 2/3 times less than what follows from the one-loop approximation. The phase transition occurs due to production and expansion of critical bubbles. Subcritical bubbles may be important only if the phase transition is very weakly first order. A general analytic expression for the probability of the bubble formation is obtained, which may be used for study of tunneling in a wide class of theories. The bubble-wall velocity depends on many factors, including the ratio of the mean free path of the particles to the thickness of the wall. Thin walls in the electroweak theory have a nonrelativistic velocity, whereas thick walls may be relativistic. A decrease of the cubic term by the factor 2/3 rules our baryogenesis in the minimal version of the electroweak theory. Even though we concentrate in this paper on the phase transition in this theory, most of our results can be applied to more general models as well, where baryogenesis is possible
International Nuclear Information System (INIS)
Eloranta, E.
2003-11-01
The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)
Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids
Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk
2018-03-01
The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
Franklin, Joel
2017-01-01
Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...
Coherent states field theory in supramolecular polymer physics
Fredrickson, Glenn H.; Delaney, Kris T.
2018-05-01
In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.
Kinetic theory in maximal-acceleration invariant phase space
International Nuclear Information System (INIS)
Brandt, H.E.
1989-01-01
A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)
Field theories with subcanonical fields
International Nuclear Information System (INIS)
Bigi, I.I.Y.
1976-01-01
The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de
Mean field theory of dynamic phase transitions in ferromagnets
International Nuclear Information System (INIS)
Idigoras, O.; Vavassori, P.; Berger, A.
2012-01-01
We have studied the second order dynamic phase transition (DPT) of the two-dimensional kinetic Ising model by means of numerical calculations. While it is well established that the order parameter Q of the DPT is the average magnetization per external field oscillation cycle, the possible identity of the conjugate field has been addressed only recently. In this work, we demonstrate that our entire set of numerical data is fully consistent with the applied bias field H b being the conjugate field of order parameter Q. For this purpose, we have analyzed the Q(H b )-dependence and we have found that it follows the expected power law behavior with the same critical exponent as the mean field equilibrium case.
The phase field technique for modeling multiphase materials
Singer-Loginova, I.; Singer, H. M.
2008-10-01
This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.
Phase transition in SO(3) gauge theory
International Nuclear Information System (INIS)
Datta, Saumen; Gavai, Rajiv V.
1998-01-01
The phase transition in SO(3) lattice gauge theory is investigated by Monte Carlo techniques with a view (i) to understand the relationship between the bulk transition and the deconfinement transition, and (ii) to resolve the current ambiguity about the nature of the high temperature phase. By introduction of a magnetic field, it was shown that the +ve and -ve values of a > correspond to the same phase. Studies on different sized lattices lead to the conclusion that in SO(3), there is only one transition, which is deconfining in nature. (author)
Self-consistent field theory of polymer-ionic molecule complexation.
Nakamura, Issei; Shi, An-Chang
2010-05-21
A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.
On the derivation of effective field theories
International Nuclear Information System (INIS)
Uzunov, Dimo I.
2004-12-01
A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the φ 4 -theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated. (author)
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
Dai, Jialiang; Fan, Engui
2018-04-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
Dual field theories of quantum computation
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N
Gauge-invariant charged, monopole and dyon fields in gauge theories
International Nuclear Information System (INIS)
Froehlich, J.; Marchetti, P.A.
1999-01-01
We propose explicit recipes to construct the Euclidean Green functions of gauge-invariant charged, monopole and dyon fields in four-dimensional gauge theories whose phase diagram contains phases with deconfined electric and/or magnetic charges. In theories with only either abelian electric or magnetic charges, our construction is an Euclidean version of Dirac's original proposal, the magnetic dual of his proposal, respectively. Rigorous mathematical control is achieved for a class of abelian lattice theories. In theories where electric and magnetic charges coexist, our construction of Green functions of electrically or magnetically charged fields involves taking an average over Mandelstam strings or the dual magnetic flux tubes, in accordance with Dirac's flux quantization condition. We apply our construction to 't Hooft-Polyakov monopoles and Julia-Zee dyons. Connections between our construction and the semiclassical approach are discussed
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
International Nuclear Information System (INIS)
Prasad, R.
1975-01-01
Results of researches into Unified Field Theory over the past seven years are presented. The subject is dealt with in chapters entitled: the choice of affine connection, algebraic properties of the vector fields, field laws obtained from the affine connection based on the path integral method, application to quantum theory and cosmology, interpretation of physical theory in terms of geometry. (U.K.)
The fixed point structure of lattice field theories
International Nuclear Information System (INIS)
Baier, R.; Reusch, H.J.; Lang, C.B.
1989-01-01
Monte-Carlo renormalization group methods allow to analyze lattice regularized quantum field theories. The properties of the quantized field theory in the continuum may be recovered at a critical point of the lattice model. This requires a study of the phase diagram and the renormalization flow structure of the coupling constants. As an example the authors discuss the results of a recent MCRG investigation of the SU(2) adjoint Higgs model, where they find evidence for the existence of a tricritical point at finite values of the inverse gauge coupling β
Mean field with corrections in lattice gauge theory
International Nuclear Information System (INIS)
Flyvbjerg, H.; Zuber, J.B.; Lautrup, B.
1981-12-01
A systematic expansion of the path integral for lattice gauge theory is performed around the mean field solution. In this letter the authors present the results for the pure gauge groups Z(2), SU(2) and SO(3). The agreement with Monte Carlo calculations is excellent. For the discrete group the calculation is performed with and without gauge fixing, whereas for the continuous groups gauge fixing is mandatory. In the case of SU(2) the absence of a phase transition is correctly signalled by mean field theory. (Auth.)
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
Topological Field Theory of Time-Reversal Invariant Insulators
Energy Technology Data Exchange (ETDEWEB)
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
Fedosov quantization and perturbative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Collini, Giovanni
2016-12-12
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (''phase space''). His algorithm gives a non-commutative, but associative, product (a so-called ''star-product'') between smooth phase space functions parameterized by Planck's constant ℎ, which is treated as a deformation parameter. In the limit as ℎ goes to zero, the star product commutator goes to ℎ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, a generalization of Fedosov's method is developed which applies to the infinite-dimensional symplectic ''manifolds'' that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of the method to more standard perturbative quantization schemes in quantum field theory.
Topics on field theories at finite temperature
International Nuclear Information System (INIS)
Eboli, O.J.P.
1985-01-01
The dynamics of a first order phase transition through the study of the decay rate of the false vacuum in the high temperature limit are analysed. An alternative approach to obtain the phase diagram of a field theory which is based on the study of the free energy of topological defects, is developed the behavior of coupling constants with the help of the Dyson-Schwinger equations at finite temperature, is evaluated. (author) [pt
Quantum field theory on discrete space-time. II
International Nuclear Information System (INIS)
Yamamoto, H.
1985-01-01
A quantum field theory of bosons and fermions is formulated on discrete Lorentz space-time of four dimensions. The minimum intervals of space and time are assumed to have different values in this paper. As a result the difficulties encountered in the previous paper (complex energy, incompleteness of solutions, and inequivalence between phase representation and momentum representation) are removed. The problem in formulating a field theory of fermions is solved by introducing a new operator and considering a theorem of translation invariance. Any matrix element given by a Feynman diagram is calculated in this theory to give a finite value regardless of the kinds of particles concerned (massive and/or massless bosons and/or fermions)
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
Energy Technology Data Exchange (ETDEWEB)
Shiozaki, Ken [Department of Physics, University of Illinois at Urbana Champaign,1110 West Green Street, Urbana, IL 61801 (United States); Ryu, Shinsei [James Franck Institute and Kadanoff Center for Theoretical Physics, University of Chicago,5640 South Ellis Ave, Chicago, IL 60637 (United States)
2017-04-18
Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases — symmetry-protected topological (SPT) phases in particular — defined in one dimensional lattices. On the other hand, it is natural to expect that gapped quantum phases in the limit of zero correlation length are described by topological quantum field theories (TFTs or TQFTs). In this paper, for (1+1)-dimensional bosonic SPT phases protected by symmetry G, we bridge their descriptions in terms of MPSs, and those in terms of G-equivariant TFTs. In particular, for various topological invariants (SPT invariants) constructed previously using MPSs, we provide derivations from the point of view of (1+1) TFTs. We also discuss the connection between boundary degrees of freedom, which appear when one introduces a physical boundary in SPT phases, and “open” TFTs, which are TFTs defined on spacetimes with boundaries.
On the general theory of quantized fields
International Nuclear Information System (INIS)
Fredenhagen, K.
1991-10-01
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)
2017-10-15
A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)
Noncommutative Geometry in M-Theory and Conformal Field Theory
International Nuclear Information System (INIS)
Morariu, Bogdan
1999-01-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U q (SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun q (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models
Noncommutative Geometry in M-Theory and Conformal Field Theory
Energy Technology Data Exchange (ETDEWEB)
Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)
1999-05-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U_{q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun_{q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
Some applications of renormalized RPA in bosonic field theories
International Nuclear Information System (INIS)
Hansen, H.; Chanfray, G.
2003-01-01
We present some applications of the renormalized RPA in bosonic field theories. We first present some developments for the explicit calculation of the total energy in Φ 4 theory and discuss its phase structure in 1 + 1 dimensions. We also demonstrate that the Goldstone theorem is satisfied in the O(N) model within the renormalized RPA. (authors)
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
International Nuclear Information System (INIS)
Velasco, E.S.
1986-01-01
This dissertation deals with several topics of field theory. Chapter I is a brief outline of the work presented in the next chapters. In chapter II, the Gauss-Bonnet-Chern theorem for manifolds with boundary is computed using the path integral representation of the Witten index for supersymmetric quantum mechanical systems. In chapter III the action of N = 2 (Poincare) supergravity is obtained in terms of N = 1 superfields. In chapter IV, N = 2 supergravity coupled to the (abelian) vector multiplet is projected into N - 1 superspace. There, the resulting set of constraints is solved in terms of unconstrained prepotential and the action in terms of N = 1 superfields is constructed. In chapter V the set of constraints for N = 2 conformal supergravity is projected into N = 1 superspace and solved in terms of N = 1 conformal supergravity fields a d matter prepotentials. In chapter VI the role of magnetic monopoles in the phase structure of the change one fixed length abelian Higgs model ins the latticer is investigated using analytic and numerical methods. The technique of monopole suppression is used to determine the phase transition lines that are monopole driven. Finally in chapter VII, the role of the charge of the Higgs field in the abelian Higgs model in the lattice is investigated
Universality of sparse d>2 conformal field theory at large N
Energy Technology Data Exchange (ETDEWEB)
Belin, Alexandre; Boer, Jan de; Kruthoff, Jorrit [Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,University of Amsterdam, Science Park 904, Amsterdam, 1098 XH The (Netherlands); Michel, Ben; Shaghoulian, Edgar; Shyani, Milind [Department of Physics, University of California,Santa Barbara, CA, 93106 (United States)
2017-03-13
We derive necessary and sufficient conditions for large N conformal field theories to have a universal free energy and an extended range of validity of the higher-dimensional Cardy formula. These constraints are much tighter than in two dimensions and must be satisfied by any conformal field theory dual to Einstein gravity. We construct and analyze symmetric product orbifold theories on T{sup d} and show that they only realize the necessary phase structure and extended range of validity if the seed theory is assumed to have a universal vacuum energy.
Fracture and healing of elastomers: A phase-transition theory and numerical implementation
Kumar, Aditya; Francfort, Gilles A.; Lopez-Pamies, Oscar
2018-03-01
A macroscopic theory is proposed to describe, explain, and predict the nucleation and propagation of fracture and healing in elastomers undergoing arbitrarily large quasistatic deformations. The theory, which can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (1998) to account for physical attributes innate to elastomers that have been recently unveiled by experiments at high spatio-temporal resolution, rests on two central ideas. The first one is to view elastomers as solids capable to undergo finite elastic deformations and capable also to phase transition to another solid of vanishingly small stiffness: the forward phase transition serves to model the nucleation and propagation of fracture while the reverse phase transition models the possible healing. The second central idea is to take the phase transition to be driven by the competition between a combination of strain energy and hydrostatic stress concentration in the bulk and surface energy on the created/healed new surfaces in the elastomer. From an applications point of view, the proposed theory amounts to solving a system of two coupled and nonlinear PDEs for the deformation field and an order parameter, or phase field. A numerical scheme is presented to generate solutions for these PDEs in N = 2 and 3 space dimensions. This is based on an efficient non-conforming finite-element discretization, which remains stable for large deformations and elastomers of any compressibility, together with an implicit gradient flow solver, which is able to deal with the large changes in the deformation field that can ensue locally in space and time from the nucleation of fracture. The last part of this paper is devoted to presenting sample simulations of the so-called Gent-Park experiment. Those are confronted with recent experimental results for various types of silicone elastomers.
International Nuclear Information System (INIS)
Remler, E.A.
1977-01-01
A gauge-invariant version of the Wigner representation is used to relate relativistic mechanics, statistical mechanics, and quantum field theory in the context of the electrodynamics of scalar particles. A unified formulation of quantum field theory and statistical mechanics is developed which clarifies the physics interpretation of the single-particle Wigner function. A covariant form of Ehrenfest's theorem is derived. Classical electrodynamics is derived from quantum field theory after making a random-phase approximation. The validity of this approximation is discussed
Phase transitions in field theory
International Nuclear Information System (INIS)
Carvalho, C.A.A. de; Bollini, C.G.; Giambiagi, J.J.
1984-01-01
By means of an example for which the effective potential is explicitly calculable (up to the one loop approximation), it is discussed how a phase transition takes place as the temperature is increased and pass from spontaneously broken symmetry to a phase in which the symmetry is restored. (Author) [pt
Discrete field theories and spatial properties of strings
International Nuclear Information System (INIS)
Klebanov, I.; Susskind, L.
1988-10-01
We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs
(Non-)decoupled supersymmetric field theories
International Nuclear Information System (INIS)
Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar
2014-01-01
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
Preheating in an asymptotically safe quantum field theory
DEFF Research Database (Denmark)
Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert
2016-01-01
. High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...
Microcanonical quantum field theory
International Nuclear Information System (INIS)
Strominger, A.
1983-01-01
Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1986-01-01
This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Mean-field theory of spin-glasses with finite coordination number
Kanter, I.; Sompolinsky, H.
1987-01-01
The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.
Hamiltonian lattice studies of chiral meson field theories
International Nuclear Information System (INIS)
Chin, S.A.
1998-01-01
The latticization of the non-linear sigma model reduces a chiral meson field theory to an O(4) spin lattice system with quantum fluctuations. The result is an interesting marriage between quantum many-body theory and classical spin systems. By solving the resulting lattice Hamiltonian by Monte Carlo methods, the dynamics and thermodynamics of pions can be determined non-perturbatively. In a variational 16 3 lattice study, the ground state chiral phase transition is shown to be first order. Moreover, as the chiral phase transition is approached, the mass gap of pionic collective modes with quantum number of the ω vector meson drops toward zero. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States); Penas, Victor A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)
2016-06-06
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic' dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
Noncommutative quantum field theory: attempts on renormalization
International Nuclear Information System (INIS)
Popp, L.
2002-05-01
Quantum field theory is the art of dealing with problems at small distances or, equivalently, large momenta. Although there are different approaches (string theory, for example), it is generally accepted that these principles cannot be extrapolated to arbitrarily small distances as can be shown by applying simple, heuristic arguments. Therefore, the concept of space-time as a differential manifold has to be replaced by something else at such scales, the road we have chosen to follow is noncommutative geometry. We start from the basic relation [ x μ , x ν ] = i θ { μν}, where θ is a (usually) constant, antisymmetric matrix. This relation amounts to a noncommutativity of position measurements, or, put differently, the points are somehow 'smeared' out, which should have a positive effect on field theory since infinities arise from point-like interactions. However, it was shown that the effects of the commutation relation (leading to the so-called Moyal product) do not necessarily cure the divergences but introduce a new kind of problem: whereas UV-divergent integrals are rendered finite by phase factors (that arise as a consequence of the Moyal product), this same kind of 'regularization' introduces IR-divergences which led to the name 'UV/IR-mixing' for this problem. In order to overcome this peculiarity, one expands the action in θ which is immediate for the phase factors but requires the so-called Seiberg-Witten map for the fields. In this thesis, we emphasize the derivation of the Seiberg-Witten map by using noncommutative Lorentz symmetries, which is more general than the original derivation. After that, we concentrate on a treatment of θ-expanded theories and their renormalization, where it can be shown that the photon self-energy of noncommutative Maxwell theory can be renormalized to all orders in hbar and θ when the freedom in the Seiberg-Witten map (there are ambiguities in the map) is exploited. Although this is very promising, it cannot be
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Morse theory interpretation of topological quantum field theories
International Nuclear Information System (INIS)
Labastida, J.M.F.
1989-01-01
Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)
(Non-)decoupled supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Pietro, Lorenzo Di [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel); Dine, Michael [Santa Cruz Institute for Particle Physics and Department of Physics,Santa Cruz CA 95064 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel)
2014-04-10
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS{sub 4} Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
String phase transitions in a strong magnetic field
Ferrara, Sergio; Ferrara, Sergio; Porrati, Massimo
1993-01-01
We consider open strings in an external constant magnetic field $H$. For an (infinite) sequence of critical values of $H$ an increasing number of (highest spin component) states lying on the first Regge trajectory becomes tachyonic. In the limit of infinite $H$ all these states are tachyons (with a common tachyonic mass) both in the case of the bosonic string and for the Neveu-Schwarz sector of the fermionic string. This result generalizes to extended object the same instability which occurs in ordinary non-Abelian gauge theories. The Ramond states have always positive square masses as is the case for ordinary QED. The weak field limit of the mass spectrum is the same as for a field theory with gyromagnetic ratio $g_S=2$ for all charged spin states. This behavior suggests a phase transition of the string as it has been argued for the ordinary electroweak theory.
Hamiltonian Anomalies from Extended Field Theories
Monnier, Samuel
2015-09-01
We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.
Effective field theory of an anomalous Hall metal from interband quantum fluctuations
Chua, Victor; Assawasunthonnet, Wathid; Fradkin, Eduardo
2017-07-01
We construct an effective field theory, a two-dimensional two-component metallic system described by a model with two Fermi surfaces ("pockets"). This model describes a translationally invariant metallic system with two types of fermions, each with its own Fermi surface, with forward scattering interactions. This model, in addition to the O (2 ) rotational invariance, has a U (1 )×U (1 ) symmetry of separate charge conservation for each Fermi surface. For sufficiently attractive interactions in the d -wave (quadrupolar) channel, this model has an interesting phase diagram that includes a spontaneously generated anomalous Hall metal phase. We derive the Landau-Ginzburg effective action of quadrupolar order parameter fields which enjoys an O (2 )×U (1 ) global symmetry associated to spatial isotropy and the internal U (1 ) relative phase symmetries, respectively. We show that the order parameter theory is dynamically local with a dynamical scaling of z =2 and perform a one-loop renormalization group analysis of the Landau-Ginzburg theory. The electronic liquid crystal phases that result from spontaneous symmetry breaking are studied and we show the presence of Landau damped Nambu-Goldstone modes at low momenta that is a signature of non-Fermi-liquid behavior. Electromagnetic linear response is also analyzed in both the normal and symmetry broken phases from the point of view of the order parameter theory. The nature of the coupling of electromagnetism to the order parameter fields in the normal phase is non-minimal and decidedly contains a precursor to the anomalous Hall response in the form of a order-parameter-dependent Chern-Simons term in the effective action.
Hamiltonian truncation approach to quenches in the Ising field theory
Directory of Open Access Journals (Sweden)
T. Rakovszky
2016-10-01
Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.
Inequivalent coherent state representations in group field theory
Kegeles, Alexander; Oriti, Daniele; Tomlin, Casey
2018-06-01
In this paper we propose an algebraic formulation of group field theory and consider non-Fock representations based on coherent states. We show that we can construct representations with an infinite number of degrees of freedom on compact manifolds. We also show that these representations break translation symmetry. Since such representations can be regarded as quantum gravitational systems with an infinite number of fundamental pre-geometric building blocks, they may be more suitable for the description of effective geometrical phases of the theory.
C*-algebraic scattering theory and explicitly solvable quantum field theories
International Nuclear Information System (INIS)
Warchall, H.A.
1985-01-01
A general theoretical framework is developed for the treatment of a class of quantum field theories that are explicitly exactly solvable, but require the use of C*-algebraic techniques because time-dependent scattering theory cannot be constructed in any one natural representation of the observable algebra. The purpose is to exhibit mechanisms by which inequivalent representations of the observable algebra can arise in quantum field theory, in a setting free of other complications commonly associated with the specification of dynamics. One of two major results is the development of necessary and sufficient conditions for the concurrent unitary implementation of two automorphism groups in a class of quasifree representations of the algebra of the canonical commutation relations (CCR). The automorphism groups considered are induced by one-parameter groups of symplectic transformations on the classical phase space over which the Weyl algebra of the CCR is built; each symplectic group is conjugate by a fixed symplectic transformation to a one-parameter unitary group. The second result, an analog to the Birman--Belopol'skii theorem in two-Hilbert-space scattering theory, gives sufficient conditions for the existence of Moller wave morphisms in theories with time-development automorphism groups of the above type. In a paper which follows, this framework is used to analyze a particular model system for which wave operators fail to exist in any natural representation of the observable algebra, but for which wave morphisms and an associated S matrix are easily constructed
Vacuum structure of the electroweak theory in high magnetic fields
International Nuclear Information System (INIS)
Olesen, P.
1991-05-01
In the electroweak theory one can reach the unbroken phase SU(2) x U y (1) by pumping enough magnetic energy into the system. The whole energy is then carried by the fields associated with U y (1), whereas the fields corresponding to SU(2) are in a vacuum state. We show that the vacuum is non-trivial in the sense that it consists of a condensate of zero-field twists which arise in a smooth way from a condensate of vortex lines existing in the broken phase. An explicit vacuum solution is constructed in terms of Weierstrass' elliptic function. (orig.)
Large N field theories, string theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)
2002-05-15
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
International Nuclear Information System (INIS)
Chung, Stephen-wei.
1993-01-01
The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint
Enforced Scale Selection in Field Theories of Mechanical and Biological Systems
DEFF Research Database (Denmark)
Tarp, Jens Magelund
The collective motion of driven or self-propelled interacting units is in many natural systems known to produce complex patterns. This thesis considers two continuum field theories commonly used in describing pattern formation and dynamics: The first one, the phase field crystal model, which...
Phase conjugation with random fields and with deterministic and random scatterers
International Nuclear Information System (INIS)
Gbur, G.; Wolf, E.
1999-01-01
The theory of distortion correction by phase conjugation, developed since the discovery of this phenomenon many years ago, applies to situations when the field that is conjugated is monochromatic and the medium with which it interacts is deterministic. In this Letter a generalization of the theory is presented that applies to phase conjugation of partially coherent waves interacting with either deterministic or random weakly scattering nonabsorbing media. copyright 1999 Optical Society of America
Worldline approach to noncommutative field theory
International Nuclear Information System (INIS)
Bonezzi, R; Corradini, O; Viñas, S A Franchino; Pisani, P A G
2012-01-01
The study of the heat-trace expansion in non-commutative field theory has shown the existence of Moyal non-local Seeley–DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We show that these models can be studied in a worldline approach implemented in phase space and arrive at a master formula for the n-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the non-commutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other non-local operators. (paper)
Introduction to string field theory
International Nuclear Information System (INIS)
Horowitz, G.T.
1989-01-01
A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)
Cosmology in Gauge Field Theory and String Theory
International Nuclear Information System (INIS)
Garcia Compean, H
2005-01-01
This new book is intended for students and researchers who want to go into the interplay between cosmology and high-energy physics. It assumes a prior knowledge of these subjects such as some of the topics contained in the previous books by the authors, Introduction to Gauge Field Theory (1993 Bristol: Institute of Physics Publishing) and Supersymmetric Gauge Field Theory and String Theory (1994 Bristol: Institute of Physics Publishing). However, the book is intended to be self-contained, explaining, from a modern perspective, some background material mainly in standard cosmology, topological defects, baryogenesis, inflationary cosmology and, at the end of the book, some of the basics of string theory. What is distinctively new about this book is that it lies in the interplay between cosmology and high-energy physics typically above 100 GeV (10 15 K). Often these subjects are presented in regular textbooks in a disconnected way, or in research papers, proceedings and review papers but usually not in a pedagogical style. Thus, in this sense, the book is unique and deserves a special place in the recent literature. The book starts by reviewing the standard material of the early universe. The standard model of cosmology from a modern perspective is revised in chapter 1. In chapter 2, phase transitions in different models are discussed, Higgs, electroweak, GUTs, supersymmetric GUTs and supergravity, by using quantum field theory at finite temperature. Chapter 3 is devoted to a general account of topological defects and discusses how they arise as possible remnants of these phase transitions in GUTs. Other relics, such as neutrinos and axions, are introduced in chapter 5 and their impact in cosmology is assessed. In chapter 4, some of the most relevant mechanisms of baryogenesis are discussed in the context of the different GUTs and the minimal supersymmetric standard model (MSSM). Inflation is also discussed in the context of GUTs. In chapter 6, the authors introduce
Further Development of HS Field Theory
Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud
2006-04-01
We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
Energy Technology Data Exchange (ETDEWEB)
Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory
2014-03-27
The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
The utility of quantum field theory
International Nuclear Information System (INIS)
Dine, Michael
2001-01-01
This talk surveys a broad range of applications of quantum field theory, as well as some recent developments. The stress is on the notion of effective field theories. Topics include implications of neutrino mass and a possible small value of sin(2β), supersymmetric extensions of the standard model, the use of field theory to understand fundamental issues in string theory (the problem of multiple ground states and the question: does string theory predict low energy supersymmetry), and the use of string theory to solve problems in field theory. Also considered are a new type of field theory, and indications from black hole physics and the cosmological constant problem that effective field theories may not completely describe theories of gravity. (author)
Scattering and short-distance properties in field theory models
International Nuclear Information System (INIS)
Iagolnitzer, D.
1987-01-01
The aim of constructive field theory is not only to define models but also to establish their general properties of physical interest. We here review recent works on scattering and on short-distance properties for weakly coupled theories with mass gap such as typically P(φ) in dimension 2, φ 4 in dimension 3 and the (renormalizable, asymptotically free) massive Gross-Neveu (GN) model in dimension 2. Many of the ideas would apply similarly to other (possibly non renormalizable) theories that might be defined in a similar way via phase-space analysis
Statistical approach to quantum field theory. An introduction
International Nuclear Information System (INIS)
Wipf, Andreas
2013-01-01
Based on course-tested notes and pedagogical in style. Authored by a leading researcher in the field. Contains end-of-chapter problems and listings of short, useful computer programs. Authored by a leading researcher in the field. Contains end-of-chapter problems and listings of short, useful computer programs. Contains end-of-chapter problems and listings of short, useful computer programs. Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an ''experimental'' tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems with discrete and continuous spins, where the ubiquitous Ising model serves as an ideal guide for introducing the fascinating area of phase transitions. As an alternative to the lattice formulation of quantum field theories, variants of the flexible renormalization group methods are discussed in detail. Since, according to our present-day knowledge, all fundamental interactions in nature are described by gauge theories, the remaining chapters of the book deal with gauge theories without and with matter. This text is based on course-tested notes for graduate students and, as
Theoretical physics. Field theory
International Nuclear Information System (INIS)
Landau, L.; Lifchitz, E.
2004-01-01
This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)
Sadovskii, Michael V
2013-01-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
International Nuclear Information System (INIS)
Radhakrishnan, B.; Gorti, S.B.; Clarno, K.; Tonks, M.R.
2015-01-01
In this work, the phase-field method and its application to microstructure evolution in reactor fuel and clad are discussed. The examples highlight the capability of the phase-field method to capture evolution processes that are influenced by both thermal and elastic stress fields that are caused by microstructural changes in the solid-state. The challenges that need to be overcome before the technique can become predictive and material-specific are discussed. (authors)
On the phase structure of lattice SU(2) Gauge-Higgs theory
International Nuclear Information System (INIS)
Gerdt, V.P.; Mitryushkin, V.K.; Zadorozhnyj, A.M.; Ilchev, A.S.
1985-01-01
The results on the phase structure of SU(2) gauge theory coupled with radially active Higgs fields are iscussed. It is shown that obtained results are not in contradiction with the known ones. The first order phase transitions observed are confirmed by the Monte Carlo calcUlations and by the analysis of an approximate effective potential
Sine-Gordon mean field theory of a Coulomb gas
Energy Technology Data Exchange (ETDEWEB)
Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan
1997-12-31
Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)
International Nuclear Information System (INIS)
Leite Lopes, J.
1981-01-01
The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Modular groups in quantum field theory
International Nuclear Information System (INIS)
Borchers, H.-J.
2000-01-01
The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)
Introduction to conformal field theory. With applications to string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Plauschinn, Erik
2009-01-01
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)
International Nuclear Information System (INIS)
Pokorski, S.
1987-01-01
Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry
Grand partition function in field theory with applications to sine-Gordon field theory
International Nuclear Information System (INIS)
Samuel, S.
1978-01-01
Certain relativistic field theories are shown to be equivalent to the grand partition function of an interacting gas. Using the physical insight given by this analogy many field-theoretic results are obtained, particularly for the sine-Gordon field theory. The main results are enumerated in the summary to which the reader is referred
International Nuclear Information System (INIS)
Hohm, Olaf; Zwiebach, Barton
2017-01-01
We review and develop the general properties of L_∞ algebras focusing on the gauge structure of the associated field theories. Motivated by the L_∞ homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L_∞ structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L_∞ algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L_∞ algebra for the interacting theory. The analysis suggests that L_∞ algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum mean-field theory of collective dynamics and tunneling
International Nuclear Information System (INIS)
Negele, J.W.
1981-01-01
A fundamental problem in quantum many-body theory is formulation of a microscopic theory of collective motion. For self-bound, saturating systems like finite nuclei described in the context of nonrelativistic quantum mechanics with static interactions, the essential problem is how to formulate a systematic quantal theory in which the relevant collective variables and their dynamics arise directly and naturally from the Hamiltonian and the system under consideration. Significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples are summarized. An exact expression for an observable of interest is written using a functional integral representation for the evolution operator, and tractable time-dependent mean field equations are obtained by application of the stationary-phase approximation (SPA) to the functional integral. Corrections to the lowest-order theory may be systematically enumerated. 6 figures
Phase transitions in nonequilibrium traffic theory
Energy Technology Data Exchange (ETDEWEB)
Zhang, H.M.
2000-02-01
This paper uses the center difference scheme of Lax-Friedrichs to numerically solve a newly developed continuum traffic flow theory and the kinematic theory of Lighthill and Whitham, and Richards, and it studies the flow-concentration phase transitions in flow containing both shock and rarefaction waves. A homogeneous road with finite length was modeled by both theories. Numerical simulations show that both theories yield nearly identical results for two representative Riemann problems--one has a shock solution and the other a rarefaction wave solution. Their phase transition curves, however, are different: those derived from the new theory have two branches--one for acceleration flow and one for deceleration flow, whereas those derived from the LWR theory comprise a single curve--the equilibrium curve. The phase transition curves in the shock case agree well with certain experimental observations but disagree with others. This disagreement may be resolved by studying transitions among nonequilibrium states, which awaits further development of a more accurate finite difference approximation of the nonequilibrium theory.
String field theory-inspired algebraic structures in gauge theories
International Nuclear Information System (INIS)
Zeitlin, Anton M.
2009-01-01
We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.
Covariant Noncommutative Field Theory
Energy Technology Data Exchange (ETDEWEB)
Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
International Nuclear Information System (INIS)
Cadavid, A.C.
1989-01-01
The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index
Extended BRST symmetries in the gauge field theory
International Nuclear Information System (INIS)
Babalean, Aurel; Constantinescu, Radu; Ionescu, Carmen
2001-01-01
The BRST procedure provides one of the most powerful methods for the quantum description of the gauge field theories. As already stated, the unphysical degrees of freedom that appear in this case can be easily canceled by the introduction of the ghost type variables. In the Hamiltonian formalism, the structure of the ghost that must be used mainly depends on two factors: - the type of the theory, that this the relations among the constraints of the theory; - the extension of the symmetry to be implemented. The paper presents the structure of the extended phase space suitable for the BRST canonical quantization of a 1- reducible gauge theory in the frame of a BRST symmetry of order three. The corresponding BRST charges and the extended Hamiltonian are also constructed. (authors)
Statistical mechanics and stability of random lattice field theory
International Nuclear Information System (INIS)
Baskaran, G.
1984-01-01
The averaging procedure in the random lattice field theory is studied by viewing it as a statistical mechanics of a system of classical particles. The corresponding thermodynamic phase is shown to determine the random lattice configuration which contributes dominantly to the generating function. The non-abelian gauge theory in four (space plus time) dimensions in the annealed and quenched averaging versions is shown to exist as an ideal classical gas, implying that macroscopically homogeneous configurations dominate the configurational averaging. For the free massless scalar field theory with O(n) global symmetry, in the annealed average, the pressure becomes negative for dimensions greater than two when n exceeds a critical number. This implies that macroscopically inhomogeneous collapsed configurations contribute dominantly. In the quenched averaging, the collapse of the massless scalar field theory is prevented and the system becomes an ideal gas which is at infinite temperature. Our results are obtained using exact scaling analysis. We also show approximately that SU(N) gauge theory collapses for dimensions greater than four in the annealed average. Within the same approximation, the collapse is prevented in the quenched average. We also obtain exact scaling differential equations satisfied by the generating function and physical quantities. (orig.)
Features of finite quantum field theories
International Nuclear Information System (INIS)
Boehm, M.; Denner, A.
1987-01-01
We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)
Stochastic field theory and finite-temperature supersymmetry
International Nuclear Information System (INIS)
Ghosh, P.; Bandyopadhyay, P.
1988-01-01
The finite-temperature behavior of supersymmetry is considered from the viewpoint of stochastic field theory. To this end, it is considered that Nelson's stochastic mechanics may be generalized to the quantization of a Fermi field when the classical analog of such a field is taken to be a scalar nonlocal field where the internal space is anisotropic in nature such that when quantized this gives rise to two internal helicities corresponding to fermion and antifermion. Stochastic field theory at finite temperature is then formulated from stochastic mechanics which incorporates Brownian motion in the external space as well as in the internal space of a particle. It is shown that when the anisotropy of the internal space is suppressed so that the internal time ξ 0 vanishes and the internal space variables are integrated out one has supersymmetry at finite temperature. This result is true for T = 0, also. However, at this phase equilibrium will be destroyed. Thus for a random process van Hove's result involving quantum mechanical operators, i.e., that when supersymmetry remains unbroken at T = 0 it will also remain unbroken at Tnot =0, occurs. However, this formalism indicates that when at T = 0 broken supersymmetry results, supersymmetry may be restored at a critical temperature T/sub c/
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1995-01-01
We review localization techniques for functional integrals which have recently been used to perform calculations in and gain insight into the structure of certain topological field theories and low-dimensional gauge theories. These are the functional integral counterparts of the Mathai-Quillen formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula respectively. In each case, we first introduce the necessary mathematical background (Euler classes of vector bundles, equivariant cohomology, topology of Lie groups), and describe the finite dimensional integration formulae. We then discuss some applications to path integrals and give an overview of the relevant literature. The applications we deal with include supersymmetric quantum mechanics, cohomological field theories, phase space path integrals, and two-dimensional Yang-Mills theory. (author). 83 refs
WORKSHOP: Thermal field theory
Energy Technology Data Exchange (ETDEWEB)
Anon.
1989-04-15
The early history of the Universe is a crucial testing ground for theories of elementary particles. Speculative ideas about the constituents of matter and their interactions are reinforced if they are consistent with what we suppose happened near the beginning of time and discarded if they are not. The cosmological consequences of these theories are usually deduced using a general statistical approach called thermal field theory. Thus, 75 physicists from thirteen countries met in Cleveland, Ohio, last October for the first 'Workshop on Thermal Field Theories and their Applications'.
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Quantum Yang-Mills theory of Riemann surfaces and conformal field theory
International Nuclear Information System (INIS)
Killingback, T.P.
1989-01-01
It is shown that Yang-Mills theory on a smooth surface, when suitably quantized, is a topological quantum field theory. This topological gauge theory is intimately related to two-dimensional conformal field theory. It is conjectured that all conformal field theories may be obtained from Yang-Mills theory on smooth surfaces. (orig.)
Magnetic Phase Transitions of CeSb. II: Effects of Applied Magnetic Fields
DEFF Research Database (Denmark)
Meier, G.; Fischer, P.; Hälg, W.
1978-01-01
For pt.I see ibid., vol.11, p.345 (1978). The metamagnetic phase transition and the associated phase diagram of the anomalous antiferromagnet CeSb were determined in a neutron diffraction study of the magnetic ordering of CeSb single crystals in applied magnetic fields parallel to the (001...... magnetic fields. The observed magnetic structures do not correspond to the stable configurations expected from the molecular field theory of the face-centred cubic lattice. The change from a first-order transition at the Neel temperature in zero field to second-order transition at high fields points...
A superstring field theory for supergravity
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
International Nuclear Information System (INIS)
Douglas, Michael R.; Nekrasov, Nikita A.
2001-01-01
This article reviews the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, on both the classical and the quantum level
The solutions of affine and conformal affine Toda field theory
International Nuclear Information System (INIS)
Papadopoulos, G.; Spence, B.
1994-02-01
We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs
The field theory approach to percolation processes
International Nuclear Information System (INIS)
Janssen, Hans-Karl; Taeuber, Uwe C.
2005-01-01
We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed, respectively, by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder
Energy Technology Data Exchange (ETDEWEB)
Sing, Charles E. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zwanikken, Jos W.; Olvera de la Cruz, Monica [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)
2015-01-21
Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.
International Nuclear Information System (INIS)
Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica
2015-01-01
Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers
A Navier-Stokes phase-field crystal model for colloidal suspensions.
Praetorius, Simon; Voigt, Axel
2015-04-21
We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.
On the construction of classical superstring field theories
Energy Technology Data Exchange (ETDEWEB)
Konopka, Sebastian Johann Hermann
2016-07-01
This thesis describes the construction of classical superstring field theories based on the small Hilbert space. First we describe the traditional construction of perturbative superstring theory as an integral over the supermoduli space of type II world sheets. The geometry of supermoduli space dictates many algebraic properties of the string field theory action. In particular it allows for an algebraisation of the construction problem for classical superstring field theories in terms of homotopy algebras. Next, we solve the construction problem for open superstrings based on Witten's star product. The construction is recursive and involves a choice of homotopy operator for the zero mode of the η-ghost. It turns out that the solution can be extended to the Neveu-Schwarz subsectors of all superstring field theories. The recursive construction involves a hierarchy of string products at various picture deficits. The construction is not entirely natural, but it is argued that different choices give rise to solutions related by a field redefinition. Due to the presence of odd gluing parameters for Ramond states the extension to full superstring field theory is non-trivial. Instead, we construct gauge-invariant equations of motion for all superstring field theories. The realisation of spacetime supersymmetry in the open string sector is highly non-trivial and is described explicitly for the solution based on Witten's star product. After a field redefinition the non-polynomial equations of motion and the small Hilbert space constraint become polynomial. This polynomial system is shown to be supersymmetric. Quite interestingly, the supersymmetry algebra closes only up to gauge transformations. This indicates that only the physical phase space realizes N=1 supersymmetry. Apart from the algebraic constraints dictated by the geometry of supermoduli space the equations of motion or action should reproduce the traditional string S-matrix. The S-matrix of a field
Aspects of affine Toda field theory
International Nuclear Information System (INIS)
Braden, H.W.; Corrigan, E.; Dorey, P.E.; Sasaki, R.
1990-05-01
The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E 8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2011-01-01
We investigate the thermodynamics of a combined Dicke and Ising model that exhibits a rich phenomenology arising from the second-order and quantum phase transitions from the respective models. The partition function is calculated using mean-field theory, and the free energy is analyzed in detail...... to determine the complete phase diagram of the system. The analysis reveals both first- and second-order Dicke phase transitions into a super-radiant state, and the cavity mean field in this regime acts as an effective magnetic field, which restricts the Ising chain dynamics to parameter ranges away from...... the Ising phase transition. Physical systems with first-order phase transitions are natural candidates for metrology and calibration purposes, and we apply filter theory to show that the sensitivity of the physical system to temperature and external fields reaches the 1/N Heisenberg limit....
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Topics in low-dimensional field theory
International Nuclear Information System (INIS)
Crescimanno, M.J.
1991-01-01
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density
Mean-field theory for the Tsub(c2)-minimum in the phase diagram of Ersub(1-x)Hosub(x)Rh4B4
International Nuclear Information System (INIS)
Schuh, B.; Grewe, N.
1981-01-01
The experimentally observed shape of the phase boundary between the superconducting and the ferromagnetically ordered state in the reentrant ferromagnetic superconductor compound Ersub(1-x)Hosub(x)Rh 4 B 4 is explained within a simple Ginsburg-Landau mean field theory as resulting from a competition of two order parameters corresponding to the magnetic Ho- and Er-moments respectively. (author)
Nonequilibrium quantum field theories
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)
Quantum field theory with infinite component local fields as an alternative to the string theories
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-05-01
We show that the introduction of the infinite component local fields with higher order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ 5 -anomalous theories the introduction of the infinite component field makes the theory renormalizable or superrenormalizable. (orig.)
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
International Nuclear Information System (INIS)
Cheng Hung; Tsai Ercheng
1986-01-01
We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)
Construction of spaces of kinematic quantum states for field theories via projective techniques
International Nuclear Information System (INIS)
Okołów, Andrzej
2013-01-01
We present a method of constructing a space of quantum states for a field theory: given phase space of a theory, we define a family of physical systems each possessing a finite number of degrees of freedom, next we define a space of quantum states for each finite system, finally using projective techniques we organize all these spaces into a space of quantum states which corresponds to the original phase space. This construction is kinematic in this sense that it bases merely on the structure of the phase space of a theory and does not take into account possible constraints on the space. The construction is a generalization of a construction by Kijowski—the latter one is limited to theories of linear phase spaces, while the former one is free of this limitation. The method presented in this paper enables to construct a space of quantum states for the teleparallel equivalent of general relativity. (paper)
The logarithmic conformal field theories
International Nuclear Information System (INIS)
Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.
1997-01-01
We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)
International Nuclear Information System (INIS)
Hueffel, H.
2004-01-01
The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)
Bell-type quantum field theories
International Nuclear Information System (INIS)
Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino
2005-01-01
In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49-54) John S Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a vertical bar Ψ vertical bar 2 -distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; we call such processes Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to 'second quantization'. As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field. (topical review)
BRST field theory of relativistic particles
International Nuclear Information System (INIS)
Holten, J.W. van
1992-01-01
A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs
Development of mean field theories in nuclear physics and in desordered media
International Nuclear Information System (INIS)
Orland, Henri.
1981-04-01
This work, in two parts, deals with the development of mean field theories in nuclear physics (nuclei in balance and collisions of heavy ions) as well as in disordered media. In the first part, two different ways of tackling the problem of developments around mean field theories are explained. Possessing an approach wave function for the system, the natural idea for including the correlations is to develop the exact wave function of the system around the mean field wave function. The first two chapters show two different ways of dealing with this problem: the perturbative approach - Hartree-Fock equations with two body collisions and functional methods. In the second part: mean field theory for spin glasses. The problem for spin glasses is to construct a physically acceptable mean field theory. The importance of this problem in statistical mechanics is linked to the fact that the mean field theory provides a qualitative description of the low temperature phase and is the starting point needed for using more sophisticated methods (renormalization group). Two approaches to this problem are presented, one based on the Sherrington-Kirkpatrick model and the other based on a model of spins with purely local disorder and competitive interaction between the spins [fr
On spin chains and field theories
International Nuclear Information System (INIS)
Roiban, Radu
2004-01-01
We point out that the existence of global symmetries in a field theory is not an essential ingredient in its relation with an integrable model. We describe an obvious construction which, given an integrable spin chain, yields a field theory whose 1-loop scale transformations are generated by the spin chain hamiltonian. We also identify a necessary condition for a given field theory to be related to an integrable spin chain. As an example, we describe an anisotropic and parity-breaking generalization of the XXZ Heisenberg spin chain and its associated field theory. The system has no nonabelian global symmetries and generally does not admit a supersymmetric extension without the introduction of more propagating bosonic fields. For the case of a 2-state chain we find the spectrum and the eigenstates. For certain values of its coupling constants the field theory associated to this general type of chain is the bosonic sector of the q-deformation of N = 4 SYM theory. (author)
On the UV renormalizability of noncommutative field theories
International Nuclear Information System (INIS)
Sarkar, Swarnendu
2002-01-01
UV/IR mixing is one of the most important features of noncommutative field theories. As a consequence of this coupling of the UV and IR sectors, the configuration of fields at the zero momentum limit in these theories is a very singular configuration. We show that the renormalization conditions set at a particular momentum configuration with a fixed number of zero momenta, renormalizes the Green's functions for any general momenta only when this configuration has same set of zero momenta. Therefore only when renormalization conditions are set at a point where all the external momenta are nonzero, the quantum theory is renormalizable for all values of nonzero momentum. This arises as a result of different scaling behaviors of Green's functions with respect to the UV cutoff (Λ) for configurations containing different set of zero momenta. We study this in the noncommutative φ 4 theory and analyse similar results for the Gross-Neveu model at one loop level. We next show this general feature using Wilsonian RG of Polchinski in the globally O(N) symmetric scalar theory and prove the renormalizability of the theory to all orders with an infrared cutoff. In the context of spontaneous symmetry breaking (SSB) in noncommutative scalar theory, it is essential to note the different scaling behaviors of Green's functions with respect to Λ for different set of zero momenta configurations. We show that in the broken phase of the theory the Ward identities are satisfied to all orders only when one keeps an infrared regulator by shifting to a nonconstant vacuum. (author)
Quantum field theory in spaces with closed time-like curves
International Nuclear Information System (INIS)
Boulware, D.G.
1992-01-01
Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Time independent mean-field theory
International Nuclear Information System (INIS)
Negele, J.W.
1980-02-01
The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
Finite temperature field theory
Das, Ashok
1997-01-01
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
On the background independence of string field theory
International Nuclear Information System (INIS)
Sen, A.
1990-01-01
Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)
Supersymmetric extensions of K field theories
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Controlling the sign problem in finite-density quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Garron, Nicolas; Langfeld, Kurt [University of Liverpool, Theoretical Physics Division, Department of Mathematical Sciences, Liverpool (United Kingdom)
2017-07-15
Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the ''telegraphic'' approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close - if not identical - to the full answer in the strong sign-problem regime. (orig.)
Controlling the sign problem in finite-density quantum field theory
Garron, Nicolas; Langfeld, Kurt
2017-07-01
Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the "telegraphic" approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close—if not identical—to the full answer in the strong sign-problem regime.
Introduction to quantum field theory
Alvarez-Gaumé, Luís
1994-01-01
The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
Mass corrections in string theory and lattice field theory
International Nuclear Information System (INIS)
Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo
2009-01-01
Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.
L{sub ∞} algebras and field theory
Energy Technology Data Exchange (ETDEWEB)
Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2017-03-15
We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
Fermion boson metamorphosis in field theory
International Nuclear Information System (INIS)
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered
N=1 field theory duality from M theory
International Nuclear Information System (INIS)
Schmaltz, M.; Sundrum, R.
1998-01-01
We investigate Seiberg close-quote s N=1 field theory duality for four-dimensional supersymmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory configuration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in type IIA string theory is given an elegant derivation from M theory. copyright 1998 The American Physical Society
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Phase field simulations of ice crystal growth in sugar solutions
Sman, Van Der R.G.M.
2016-01-01
We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Dualities among one-time field theories with spin, emerging from a unifying two-time field theory
International Nuclear Information System (INIS)
Bars, Itzhak; Quelin, Guillaume
2008-01-01
The relation between two-time physics (2T-physics) and the ordinary one-time formulation of physics (1T-physics) is similar to the relation between a 3-dimensional object moving in a room and its multiple shadows moving on walls when projected from different perspectives. The multiple shadows as seen by observers stuck on the wall are analogous to the effects of the 2T-universe as experienced in ordinary 1T spacetime. In this paper we develop some of the quantitative aspects of this 2T to 1T relationship in the context of field theory. We discuss 2T field theory in d+2 dimensions and its shadows in the form of 1T field theories when the theory contains Klein-Gordon, Dirac and Yang-Mills fields, such as the standard model of particles and forces. We show that the shadow 1T field theories must have hidden relations among themselves. These relations take the form of dualities and hidden spacetime symmetries. A subset of the shadows are 1T field theories in different gravitational backgrounds (different space-times) such as the flat Minkowski spacetime, the Robertson-Walker expanding universe, AdS d-k xS k , and others, including singular ones. We explicitly construct the duality transformations among this conformally flat subset, and build the generators of their hidden SO(d,2) symmetry. The existence of such hidden relations among 1T field theories, which can be tested by both theory and experiment in 1T-physics, is part of the evidence for the underlying d+2 dimensional spacetime and the unifying 2T-physics structure
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2016-11-28
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
BPS ZN string tensions, sine law and Casimir scaling, and integrable field theories
International Nuclear Information System (INIS)
Kneipp, Marco A. C.
2007-01-01
We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G→U(1) r →C G , with C G being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the two vacua the ratio of the tensions of the BPS Z N strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K ij and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Boundary effects on quantum field theories
International Nuclear Information System (INIS)
Lee, Tae Hoon
1991-01-01
Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)
Generalized Field Theory and Kasner universe
International Nuclear Information System (INIS)
Klotz, A.H.
1986-01-01
It is shown that the only Kasner-like solution of the Generalized Field Theory field equations with a nonzero electromagnetic field corresponds to an empty field geometry of the space-time. In this case, the electromagnetic field tensors of the theory coincide as could be expected from general considerations. 6 refs. (author)
Vortex operators in gauge field theories
International Nuclear Information System (INIS)
Polchinski, J.G.
1980-01-01
We study several related aspects of the t Hooft vortex operator. The first chapter reviews the current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator. The second chapter deals with the Abelian vortex operator written in terms of elementary fields and with the calculation of its Green's functions. The Dirac veto problem appears in a new guise. We present a two dimensional solvable model of a Dirac string. This leads us to a new solution of the veto problem; we discuss its extension to four dimensions. We then show how the Green's functions can be expressed more neatly in terms of Wu and Yang's geometrical idea of sections. In the third chapter we discuss the dependence of the Green's functions of the Wilson and t Hooft operators on the nature of the vacuum. In the fourth chapter we consider systems which have fields in the fundamental representation, so that there are no vortex operators. When these fields enter only weakly into the dynamics, as is the case in QCD and in real superconductors, we would expect to be able to define a vortex-like operator. We show that any such operator can no longer be local looplike, but must have commutators at long range. We can still find an operator with useful properties, its cluster property, though more complicated than that of the usual vortex operator, still appears to distinguish Higgs, confining and perturbative phases. To test this, we consider a U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint)
Luckhurst, G. R.; Saielli, G.
2000-03-01
Molecular field theory predicts the induction of a smectic A phase by the application of a field, either magnetic or electric, to a nematic phase. This intriguing behavior results from an enhancement of the orientational order which is coupled to the translational order and so shifts the smectic A-nematic transition. To test this prediction we have investigated a system of Gay-Berne mesogenic molecules subject to an applied field of second rank using isothermal-isobaric Monte Carlo simulations. The results of our calculations are compared with the Kventsel-Luckhurst-Zewdie molecular field theory of smectogens, modified to include the effect of an external field. We have also used the simulations to explore the possibility of inducing more ordered smectic phases with stronger fields.
International Nuclear Information System (INIS)
Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.
2007-01-01
A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured
On finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1984-01-01
The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Quaternionic quantum field theory
International Nuclear Information System (INIS)
Adler, S.L.
1986-01-01
In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Toward finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1986-01-01
The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)
On the phase of Chern-Simons theory with complex gauge group
Energy Technology Data Exchange (ETDEWEB)
Gibbs, R.; Mokhtari, S. [Dept. of Phys., Louisiana Tech. Univ., Ruston, LA (United States)
1995-10-07
We compute the eta function for Chern-Simons quantum field theory with complex gauge group. The calculation is performed using the Schwinger expansion technique. We discuss, in particular, the role of the metric on the field configuration space, and demonstrate that for a certain class of acceptable metrics the one-loop phase contribution to the effective action can be calculated explicitly. The result is found to be proportional to a gauge invariant part of the action. (author)
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Mean-field theory and solitonic matter
International Nuclear Information System (INIS)
Cohen, T.D.
1989-01-01
Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)
Phase structure and critical properties of an abelian gauge theory
Energy Technology Data Exchange (ETDEWEB)
Mo, Sjur
2001-12-01
The main new results are presented in the form of three papers at the end of this thesis. The main topic is Monte-Carlo studies of the phase structure and critical properties of the phenomenological Ginzburg-Landau model, i.e. an abelian gauge theory. However, the first paper is totally different and deals with microscopic theory for lattice-fermions in a magnetic field. Paper I is about ''Fermion-pairing on a square lattice in extreme magnetic fields''. We consider the Cooper-problem on a two-dimensional, square lattice with a uniform, perpendicular magnetic field. Only rational flux fractions are considered. An extended (real-space) Hubbard model including nearest and next nearest neighbor interactions is transformed to ''k-space'', or more precisely, to the space of eigenfunctions of Harper's equation, which constitute basis functions of the magnetic translation group for the lattice. A BCS-like truncation of the interaction term is performed. Expanding the interactions in the basis functions of the irreducible representations of the point group C{sub 4{nu}} of the square lattice simplify calculations. The numerical results indicate enhanced binding compared to zero magnetic field, and thus re-entrant superconducting pairing at extreme magnetic fields, well beyond the point where the usual semi-classical treatment of the magnetic field breaks down. Paper II is about the ''Hausdorff dimension of critical fluctuations in abelian gauge theories''. Here we analyze the geometric properties of the line-like critical fluctuations (vortex loops) in the Ginzburg-Landau model in zero magnetic background field. By using a dual description, we obtain scaling relations between exponents of geometric arid thermodynamic nature. In particular we connect the anomalous scaling dimension {eta} of the dual matter field to the Hausdorff or fractal dimension D{sub H} of the critical fluctuations, in the original model
A Variational Statistical-Field Theory for Polar Liquid Mixtures
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Non-perturbative field theory/field theory on a lattice
International Nuclear Information System (INIS)
Ambjorn, J.
1988-01-01
The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas
Cutkosky rules for superstring field theory
International Nuclear Information System (INIS)
Pius, Roji; Sen, Ashoke
2016-01-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
Self-consistent normal ordering of gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1987-01-01
Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
International Nuclear Information System (INIS)
Degiovanni, P.
1990-01-01
We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)
Relaxation theory of spin-3/2 Ising system near phase transition temperatures
International Nuclear Information System (INIS)
Canko, Osman; Keskin, Mustafa
2010-01-01
Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)
Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.
Chou, Yen-Liang; Ihle, Thomas
2015-02-01
Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields
International Nuclear Information System (INIS)
Anco, Stephen C.
2003-01-01
A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here
Group field theory with noncommutative metric variables.
Baratin, Aristide; Oriti, Daniele
2010-11-26
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.
International Nuclear Information System (INIS)
Ertaş, Mehmet; Kantar, Ersin; Keskin, Mustafa
2014-01-01
The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet; Kantar, Ersin, E-mail: ersinkantar@erciyes.edu.tr; Keskin, Mustafa
2014-05-01
The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior.
Perturbation theory and coupling constant analyticity in two-dimensional field theories
International Nuclear Information System (INIS)
Simon, B.
1973-01-01
Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Athreya, C. N.; Mukilventhan, A.; Suwas, Satyam; Vedantam, Srikanth; Subramanya Sarma, V.
2018-04-01
The influence of the mode of deformation on recrystallisation behaviour of Ti was studied by experiments and modelling. Ti samples were deformed through torsion and rolling to the same equivalent strain of 0.5. The deformed samples were annealed at different temperatures for different time durations and the recrystallisation kinetics were compared. Recrystallisation is found to be faster in the rolled samples compared to the torsion deformed samples. This is attributed to the differences in stored energy and number of nuclei per unit area in the two modes of deformation. Considering decay in stored energy during recrystallisation, the grain boundary mobility was estimated through a mean field model. The activation energy for recrystallisation obtained from experiments matched with the activation energy for grain boundary migration obtained from mobility calculation. A multi-phase field model (with mobility estimated from the mean field model as a constitutive input) was used to simulate the kinetics, microstructure and texture evolution. The recrystallisation kinetics and grain size distributions obtained from experiments matched reasonably well with the phase field simulations. The recrystallisation texture predicted through phase field simulations compares well with experiments though few additional texture components are present in simulations. This is attributed to the anisotropy in grain boundary mobility, which is not accounted for in the present study.
Semiclassical methods in field theories
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1986-01-01
Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)
Algebraic quantum field theory, perturbation theory, and the loop expansion
International Nuclear Information System (INIS)
Duetsch, M.; Fredenhagen, K.
2001-01-01
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)
Singularity theory and N = 2 superconformal field theories
International Nuclear Information System (INIS)
Warner, N.P.
1989-01-01
The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs
Phase field approaches of bone remodeling based on TIP
Ganghoffer, Jean-François; Rahouadj, Rachid; Boisse, Julien; Forest, Samuel
2016-01-01
The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adaptation process, in response to variations in external loads and chemical driving factors, involves three main types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new bone in a second phase; osteocytes, which are sensing cells embedded into the bone matrix, trigger the aforementioned sequence of events. The remodeling process involves mineralization of the bone in the diffuse interface separating the marrow, which contains all specialized cells, from the newly formed bone. The main objective advocated in this contribution is the setting up of a modeling and simulation framework relying on the phase field method to capture the evolution of the diffuse interface between the new bone and the marrow at the scale of individual trabeculae. The phase field describes the degree of mineralization of this diffuse interface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g. new bone), allowing the consideration of a diffuse moving interface. The modeling framework is the theory of continuous media, for which field equations for the mechanical, chemical, and interfacial phenomena are written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-potential of dissipation. The combination of the balance equations for the microforce associated to the phase field and the kinetic equations lead to the Ginzburg-Landau equation satisfied by the phase field with a source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are performed in a one-dimensional situation showing the evolution of
Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields
Kohlfürst, Christian
2018-05-01
Schwinger pair production in spatially and temporally inhomogeneous electric and magnetic fields is studied. The focus is on the particle phase-space distribution within a high-intensity few-cycle pulse. Accurate numerical solutions of a quantum kinetic theory (DHW formalism) are presented in momentum space and, with the aid of coarse-graining techniques, in a mixed spatial-momentum representation. Additionally, signatures of the carrier-envelope phase as well as spin-field interactions are discussed on the basis of a trajectory-based model taking into account instantaneous pair production and relativistic single-particle dynamics. Although our simple semi-classical single-particle model cannot describe every aspect of the particle production process (quantum interferences), essential features such as spin-field interactions are captured.
Higher-derivative boson field theories and constrained second-order theories
Energy Technology Data Exchange (ETDEWEB)
Urries, F.J. de [Departamento de Fisica, Universidad de Alcala de Henares, Madrid (Spain) and IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)]. E-mail: fernando.urries@uah.es; Julve, J. [IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)]. E-mail: julve@imaff.cfmac.csic.es; Sanchez, E.J. [IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (ES) and Departamento de Matematica, Universidad Europea, Madrid (Spain)]. E-mail: ejesus.sanchez@mat.ind.uem.es
2001-10-26
As an alternative to the covariant Ostrogradski method, we show that higher-derivative (HD) relativistic Lagrangian field theories can be reduced to second differential order by writing them directly as covariant two-derivative theories involving Lagrange multipliers and new fields. Despite the intrinsic non-covariance of the Dirac procedure used to deal with the constraints, the explicit Lorentz invariance is recovered at the end. We develop this new setting on the basis of a simple scalar model and then its applications to generalized electrodynamics and HD gravity are worked out. For a wide class of field theories this method is better suited than Ostrogradski's for a generalization to 2n-derivative theories. (author)
Wilson lines in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.
2014-07-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Wilson lines in quantum field theory
International Nuclear Information System (INIS)
Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der
2014-01-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Abelian Chern endash Simons theory. I. A topological quantum field theory
International Nuclear Information System (INIS)
Manoliu, M.
1998-01-01
We give a construction of the Abelian Chern endash Simons gauge theory from the point of view of a 2+1-dimensional topological quantum field theory. The definition of the quantum theory relies on geometric quantization ideas that have been previously explored in connection to the non-Abelian Chern endash Simons theory [J. Diff. Geom. 33, 787 endash 902 (1991); Topology 32, 509 endash 529 (1993)]. We formulate the topological quantum field theory in terms of the category of extended 2- and 3-manifolds introduced in a preprint by Walker in 1991 and prove that it satisfies the axioms of unitary topological quantum field theories formulated by Atiyah [Publ. Math. Inst. Hautes Etudes Sci. Pans 68, 175 endash 186 (1989)]. copyright 1998 American Institute of Physics
New theory of radiative energy transfer in free electromagnetic fields
International Nuclear Information System (INIS)
Wolf, E.
1976-01-01
A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon
Quantum field theory with infinite component local fields as an alternative to the string theories
Krasnikov, N. V.
1987-09-01
We show that the introduction of the infinite component local fields with higher-order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ5-anomalous theories the introduction of the infinite component field makes the theory renormalizable or even superrenormalizable. I am indebted to J. Ambjōrn, P. Di Vecchia, H.B. Nielsen and L. Rozhansky for useful discussions. It is a pleasure to thank the Niels Bohr Institute (Copenhagen) where this work was completed for kind hospitality.
Field theory and the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Dudas, E [Orsay, LPT (France)
2014-07-01
This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.
Effective theories of single field inflation when heavy fields matter
Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P
2012-01-01
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...
Euler-Poincare reduction for discrete field theories
International Nuclear Information System (INIS)
Vankerschaver, Joris
2007-01-01
In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed
Grassmann phase space theory and the Jaynes–Cummings model
International Nuclear Information System (INIS)
Dalton, B.J.; Garraway, B.M.; Jeffers, J.; Barnett, S.M.
2013-01-01
coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems
International Nuclear Information System (INIS)
Vollendorf, F.
1976-01-01
A theory is developed in which the gravitational as well as the electromagnetic field is described in a purely geometrical manner. In the case of a static central symmetric field Newton's law of gravitation and Schwarzschild's line element are derived by means of an action principle. The same principle leads to Fermat's law which defines the world lines of photons. (orig.) [de
Austerity and geometric structure of field theories
International Nuclear Information System (INIS)
Kheyfets, A.
1986-01-01
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories
Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Gusynin, V.P.
1987-01-01
The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
Density Functional Theory for Phase-Ordering Transitions
Energy Technology Data Exchange (ETDEWEB)
Wu, Jianzhong [Univ. of California, Riverside, CA (United States)
2016-03-30
Colloids display astonishing structural and dynamic properties that can be dramatically altered by modest changes in the solution condition or an external field. This complex behavior stems from a subtle balance of colloidal forces and intriguing mesoscopic and macroscopic phase transitions that are sensitive to the processing conditions and the dispersing environment. Whereas the knowledge on the microscopic structure and phase behavior of colloidal systems at equilibrium is now well-advanced, quantitative predictions of the dynamic properties and the kinetics of phase-ordering transitions in colloids are not always realized. Many important mesoscopic and off-equilibrium colloidal states remain poorly understood. The proposed research aims to develop a new, unifying approach to describe colloidal dynamics and the kinetics of phase-ordering transitions based on accomplishments from previous work for the equilibrium properties of both uniform and inhomogeneous systems and on novel concepts from the state-of-the-art dynamic density functional theory. In addition to theoretical developments, computational research is designed to address a number of fundamental questions on phase-ordering transitions in colloids, in particular those pertinent to a competition of the dynamic pathways leading to various mesoscopic structures, off-equilibrium states, and crystalline phases. By providing a generic theoretical framework to describe equilibrium, metastable as well as non-ergodic phase transitions concurrent with the colloidal self-assembly processes, accomplishments from this work will have major impacts on both fundamental research and technological applications.
On background-independent open-string field theory
International Nuclear Information System (INIS)
Witten, E.
1992-01-01
A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator
An introduction to conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge
2000-01-01
A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
An introduction to effective field theory
International Nuclear Information System (INIS)
Donoghue, John F.
1999-01-01
In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)
Transport properties of clean and disordered superconductors in matrix field theory
International Nuclear Information System (INIS)
Zhou Lubo; Kirkpatrick, T.R.
2004-01-01
A comprehensive field theory is developed for superconductors with quenched disorder. We first show that the matrix field theory, used previously to describe a disordered Fermi liquid and a disordered itinerant ferromagnet, also has a saddle-point solution that describes a disordered superconductor. A general gap equation is obtained. We then expand about the saddle point to Gaussian order to explicitly obtain the physical correlation functions. The ultrasonic attenuation, number density susceptibility, spin-density susceptibility, and the electrical conductivity are used as examples. Results in the clean limit and in the disordered case are discussed, respectively. This formalism is expected to be a powerful tool to study the quantum phase transitions between the normal-metal state and the superconductor state
Investigating heterogeneous nucleation in peritectic materials via the phase-field method
International Nuclear Information System (INIS)
Emmerich, Heike; Siquieri, Ricardo
2006-01-01
Here we propose a phase-field approach to investigate the influence of convection on peritectic growth as well as the heterogeneous nucleation kinetics of peritectic systems. For this purpose we derive a phase-field model for peritectic growth taking into account fluid flow in the melt, which is convergent to the underlying sharp interface problem in the thin interface limit (Karma and Rappel 1996 Phys. Rev. E 53 R3017). Moreover, we employ our new phase-field model to study the heterogeneous nucleation kinetics of peritectic material systems. Our approach is based on a similar approach towards homogeneous nucleation in Granasy et al (2003 Interface and Transport Dynamics (Springer Lecture Notes in Computational Science and Engineering vol 32) ed Emmerich et al (Berlin: Springer) p 190). We applied our model successfully to extend the nucleation rate predicted by classical nucleation theory for an additional morphological term relevant for peritectic growth. Further applications to understand the mechanisms and consequences of heterogeneous nucleation kinetics in more detail are discussed
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered
Nonlinear many-body reaction theories from nuclear mean field approximations
International Nuclear Information System (INIS)
Griffin, J.J.
1983-01-01
Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)
Remarks on the classical limit of quantum field theories
International Nuclear Information System (INIS)
Eckmann, J.P.
1977-01-01
Recently, there has been an increasing interest in computing quantum mechanical corrections to solutions of classical field equations. In this note, proceeding in the opposite way, theorems about the classical limit of relativistic quantum field models are summarized. These results are a byproduct of the so called 'constructive' approach to quantum field theory. Section 1 deals with generalities; in Section 2 the situation where no phase transitions occur is discussed in the limit h→0; and in Section 3 one result in the case where such a transition occurs is reformulated (Glimm et al). The validity of the loop expansion is discussed. It seems however that the tools to show the rigorous validity of soliton calculations are not yet prepared. (Auth.)
Knots, topology and quantum field theories
International Nuclear Information System (INIS)
Lusanna, L.
1989-01-01
The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks
An introduction to conformal field theory in two dimensions and string theory
International Nuclear Information System (INIS)
Wadia, S.R.
1989-01-01
This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields
UV/IR mixing and the Goldstone theorem in noncommutative field theory
International Nuclear Information System (INIS)
Ruiz Ruiz, F.
2002-01-01
Noncommutative IR singularities and UV/IR mixing in relation with the Goldstone theorem for complex scalar field theory are investigated. The classical model has two coupling constants, λ 1 and λ 2 , associated to the two noncommutative extensions phi*starphistarphi* starphi and phistarphi*starphistarphi of the interaction term vertical bar phi vertical bar 4 on commutative spacetime. It is shown that the symmetric phase is one-loop renormalizable for all λ 1 and λ 2 compatible with perturbation theory, whereas the broken phase is proved to exist at one loop only if λ 2 =0, a condition required by the Ward identities for global U(1) invariance. Explicit expressions for the noncommutative IR singularities in the 1PI Green functions of both phases are given. They show that UV/IR duality does not hold for any of the phases and that the broken phase is free of quadratic noncommutative IR singularities. More remarkably, the pion selfenergy does not have noncommutative IR singularities at all, which proves essential to formulate the Goldstone theorem at one loop for all values of the spacetime noncommutativity parameter θ
Path integral quantization of parametrized field theory
International Nuclear Information System (INIS)
Varadarajan, Madhavan
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory
Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors
Liarte, Danilo B.; Transtrum, Mark K.; Sethna, James P.
2016-10-01
We investigate the effects of material anisotropy on the superheating field of layered superconductors. We provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for κ =λ /ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the combination of our estimates with published results using a two-gap model for MgB2 suggests high anisotropy of the superheating field near zero temperature. On the other hand, within Ginzburg-Landau theory for a single gap, we see that the superheating field shows significant anisotropy only when the crystal anisotropy is large and the Ginzburg-Landau parameter κ is small. We then conclude that only small anisotropies in the superheating field are expected for typical unconventional superconductors near the critical temperature. Using a generalized form of Ginzburg Landau theory, we do a quantitative calculation for the anisotropic superheating field by mapping the problem to the isotropic case, and present a phase diagram in terms of anisotropy and κ , showing type I, type II, or mixed behavior (within Ginzburg-Landau theory), and regions where each asymptotic solution is expected. We estimate anisotropies for a number of different materials, and discuss the importance of these results for radio-frequency cavities for particle accelerators.
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Status of effective field theory of NN scattering
International Nuclear Information System (INIS)
Beane, S.R.
1998-06-01
There exist many nucleon-nucleon potentials which reproduce phase shifts and nuclear properties with remarkable accuracy. Three fundamental features are shared by these potential models: (1) pions are important at long distances, (2) there is a source of intermediate-range attraction, and (3) there is a source of short-distance repulsion. However, in general, distinct physical mechanisms in these models account for the same feature of the nuclear force. Agreement with experiment is maintained in spite of these differences because of the large number of fit parameters. Systematic approaches to the scattering of strongly interacting particles, such as chiral perturbation theory, are based on the ideas of effective field theory (EFT). The author reviews recent progress in developing a systematic power counting scheme for scattering processes involving more than one nucleon
Two-dimensional topological field theories coupled to four-dimensional BF theory
International Nuclear Information System (INIS)
Montesinos, Merced; Perez, Alejandro
2008-01-01
Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level
International Nuclear Information System (INIS)
Kimura, M.; Kawabe, H.; Nishikawa, K.; Aono, S.
1986-01-01
Ordered phases such as CDW, SDW, and the singlet superconductivity(SSC) are predicted by means of a mean field theory. The electronic Hamiltonian is linearized by introducing order parameters which are expected to arise, and these order parameters are determined self-consistently. The behaviors of gap, transition temperature, and condensation energy are greatly different from those of BCS theory. The coexistence of the various phases is discussed. Aside from a very special case the single phase is most stable
Fundamental problems of gauge field theory
International Nuclear Information System (INIS)
Velo, G.; Wightman, A.S.
1986-01-01
As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now provides the standard language for the description of Nature; QCD and the standard model of the electroweak interactions illustrate this point. It is a basic task of mathematical physics to provide a solid foundation for these developments by putting the theory in a physically transparent and mathematically rigorous form. The lecture notes collected in this volume concentrate on the many unsolved problems which arise here, and on the general ideas and methods which have been proposed for their solution. In particular, the use of rigorous renormalization group methods to obtain control over the continuum limit of lattice gauge field theories, the exploration of the extraordinary enigmatic connections between Kac-Moody-Virasoro algebras and string theory, and the systematic use of the theory of local algebras and indefinite metric spaces to classify the charged C* states in gauge field theories are mentioned
Far-field and Fresnel Liquid Crystal Geometric Phase Holograms via Direct-Write Photo-Alignment
Directory of Open Access Journals (Sweden)
Xiao Xiang
2017-12-01
Full Text Available We study computer-generated geometric-phase holograms (GPHs realized by photo-aligned liquid crystals, in both simulation and experiment. We demonstrate both far-field and Fresnel holograms capable of producing far-field and near-field images with preserved fidelity for all wavelengths. The GPHs are fabricated by patterning a photo-alignment layer (PAL using a direct-write laser scanner and coating the surface with a polymerizable liquid crystal (i.e., a reactive mesogen. We study various recording pixel sizes, down to 3 μm, that are easily recorded in the PAL. We characterize the fabricated elements and find good agreement with theory and numerical simulation. Because of the wavelength independent geometric phase, the (phase fidelity of the replay images is preserved for all wavelengths, unlike conventional dynamic phase holograms. However, governed by the diffraction equation, the size and location of a reconstructed image depends on the replay wavelength for far-field and near-field GPHs, respectively. These offer interesting opportunities for white-light holography.
Confining gauge theories and holographic entanglement entropy with a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dudal, David [KU Leuven Campus Kortrijk - KULAK, Department of Physics,Etienne Sabbelaan 51 bus 7800, Kortrijk, 8500 (Belgium); Ghent University, Department of Physics and Astronomy,Krijgslaan 281-S9, Gent, 9000 (Belgium); Mahapatra, Subhash [KU Leuven Campus Kortrijk - KULAK, Department of Physics,Etienne Sabbelaan 51 bus 7800, Kortrijk, 8500 (Belgium)
2017-04-06
We consider the soft wall model for a heuristic holographical modelling of a confining gauge theory and discuss how the introduction of a (constant) magnetic field influences the (de)confinement phase structure. We use the entanglement entropy as a diagnostic tool in terms of the length of an entangling strip geometry. Due to the anisotropy introduced by the magnetic field, we find that the results depend on the orientation of the strip relative to the field. This allows to identify a richer, anisotropic, interplay between confinement and a magnetic field than possibly can be extracted from a more standard order parameter as, for example, the Polyakov loop expectation value.
A novel string field theory solving string theory by liberating left and right movers
International Nuclear Information System (INIS)
Nielsen, Holger B.; Ninomiya, Masao
2014-01-01
We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model
Hidden gravity in open-string field theory
International Nuclear Information System (INIS)
Siegel, W.
1994-01-01
We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory
Field theory of relativistic strings: I. Trees
International Nuclear Information System (INIS)
Kaku, M.; Kikkawa, K.
1985-01-01
The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken
Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations
Riotto, Antonio
1998-01-01
The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...
Twistor-theoretic approach to topological field theories
International Nuclear Information System (INIS)
Ito, Kei.
1991-12-01
The two-dimensional topological field theory which describes a four-dimensional self-dual space-time (gravitational instanton) as a target space, which we constructed before, is shown to be deeply connected with Penrose's 'twistor theory'. The relations are presented in detail. Thus our theory offers a 'twistor theoretic' approach to topological field theories. (author)
The S-matrix of superstring field theory
International Nuclear Information System (INIS)
Konopka, Sebastian
2015-01-01
We show that the classical S-matrix calculated from the recently proposed superstring field theories give the correct perturbative S-matrix. In the proof we exploit the fact that the vertices are obtained by a field redefinition in the large Hilbert space. The result extends to include the NS-NS subsector of type II superstring field theory and the recently found equations of motions for the Ramond fields. In addition, our proof implies that the S-matrix obtained from Berkovits’ WZW-like string field theory then agrees with the perturbative S-matrix to all orders.
Self-consistent Random Phase Approximation applied to a schematic model of the field theory
International Nuclear Information System (INIS)
Bertrand, Thierry
1998-01-01
The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A unified field theory of mesons and their particle sources is proposed and considered in its classical aspects. The theory has static solutions of a singular nature, but finite energy, characterized by spin directions; the number of such entities is a rigorously conserved constant of motion; they interact with an external meson field through a derivative-type coupling with the spins, akin to the formalism of strong-coupling meson theory. There is a conserved current identifiable with isobaric spin, and another that may be related to hypercharge. The postulates include one constant of the dimensions of length, and another that is conjecture necessarily to have the value (h/2π)c, or perhaps 1/2(h/2π)c, in the quantized theory. (author). 5 refs
Kumar, S Santhosh; Shankaranarayanan, S
2017-11-17
In a bipartite set-up, the vacuum state of a free Bosonic scalar field is entangled in real space and satisfies the area-law- entanglement entropy scales linearly with area of the boundary between the two partitions. In this work, we show that the area law is violated in two spatial dimensional model Hamiltonian having dynamical critical exponent z = 3. The model physically corresponds to next-to-next-to-next nearest neighbour coupling terms on a lattice. The result reported here is the first of its kind of violation of area law in Bosonic systems in higher dimensions and signals the evidence of a quantum phase transition. We provide evidence for quantum phase transition both numerically and analytically using quantum Information tools like entanglement spectra, quantum fidelity, and gap in the energy spectra. We identify the cause for this transition due to the accumulation of large number of angular zero modes around the critical point which catalyses the change in the ground state wave function due to the next-to-next-to-next nearest neighbor coupling. Lastly, using Hubbard-Stratanovich transformation, we show that the effective Bosonic Hamiltonian can be obtained from an interacting fermionic theory and provide possible implications for condensed matter systems.
Geometry of Lagrangian first-order classical field theories
International Nuclear Information System (INIS)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N.
1996-01-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether's theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
International Nuclear Information System (INIS)
Deviren, Bayram; Polat, Yasin; Keskin, Mustafa
2011-01-01
The phase diagrams in the mixed spin-3/2 and spin-2 Ising system with two alternative layers on a honeycomb lattice are investigated and discussed by the use of the effective-field theory with correlations. The interaction of the nearest-neighbour spins of each layer is taken to be positive (ferromagnetic interaction) and the interaction of the adjacent spins of the nearest-neighbour layers is considered to be either positive or negative (ferromagnetic or anti-ferromagnetic interaction). The temperature dependence of the layer magnetizations of the system is examined to characterize the nature (continuous or discontinuous) of the phase transitions and obtain the phase transition temperatures. The system exhibits both second- and first-order phase transitions besides triple point (TP), critical end point (E), multicritical point (A), isolated critical point (C) and reentrant behaviour depending on the interaction parameters. We have also studied the temperature dependence of the total magnetization to find the compensation points, as well as to determine the type of behaviour, and N-type behaviour in Néel classification nomenclature existing in the system. The phase diagrams are constructed in eight different planes and it is found that the system also presents the compensation phenomena depending on the sign of the bilinear exchange interactions. (general)
A multi-species exchange model for fully fluctuating polymer field theory simulations.
Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H
2014-11-07
Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Conformal field theories and critical phenomena
International Nuclear Information System (INIS)
Xu, Bowei
1993-01-01
In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories
Local algebras in Euclidean quantum field theory
International Nuclear Information System (INIS)
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
Using field theory in hadron physics
International Nuclear Information System (INIS)
Abarbanel, H.D.I.
1978-03-01
Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
Finite-temperature field theory
International Nuclear Information System (INIS)
Kapusta, J.I.; Landshoff, P.V.
1989-01-01
Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Four-dimensional boson field theory. II. Existence
International Nuclear Information System (INIS)
Baker, G.A. Jr.
1986-01-01
The existence of the continuum, quantum field theory found by Baker and Johnson [G. A. Baker, Jr. and J. D. Johnson, J. Phys. A 18, L261 (1985)] to be nontrivial is proved rigorously. It is proved to satisfy all usual requirements of such a field theory, except rotational invariance. Currently known information is consistent with rotational invariance however. Most of the usual properties of other known Euclidean boson quantum field theories hold here, in a somewhat weakened form. Summability of the sufficiently strongly ultraviolet cutoff bare coupling constant perturbation series is proved as well as a nonzero radius of convergence for high-temperature expansions of the corresponding continuous-spin Ising model. The description of the theory by these two series methods is shown to be equivalent. The field theory is probably not asymptotically free
Mean-field theory for a ferroelectric transition
International Nuclear Information System (INIS)
Dobry, A.; Greco, A.; Stachiotti, M.
1990-01-01
For the treatment of anharmonic models of solids presenting structural transitions, a commonly used approximation is that of self-consistent phonons. Rather than the usual site decoupling, this mean-field theory is based on decoupling of modes in reciprocal space. A self-consistent phonon approximation for the non-linear polarizability model is developed in this work. The model describes the dynamical properties of ferroelectric materials. Phase diagrams as a function of relevant model parameters are presented. An analysis is made of critical behaviour and it is shown that the approximation leads to the same anomalies found in other models. (Author). 9 refs., 3 figs
Moduli spaces of unitary conformal field theories
International Nuclear Information System (INIS)
Wendland, K.
2000-08-01
We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces
A phase-field model for non-equilibrium solidification of intermetallics
International Nuclear Information System (INIS)
Assadi, H.
2007-01-01
Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1989-01-01
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
New results in topological field theory and Abelian gauge theory
International Nuclear Information System (INIS)
Thompson, G.
1995-10-01
These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs
New results in topological field theory and Abelian gauge theory
Energy Technology Data Exchange (ETDEWEB)
Thompson, G
1995-10-01
These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs.
Effective field theory, electric dipole moments and electroweak baryogenesis
International Nuclear Information System (INIS)
Balazs, Csaba; White, Graham; Yue, Jason
2017-01-01
Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.
Effective field theory, electric dipole moments and electroweak baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Balazs, Csaba; White, Graham [ARC Centre of Excellence for Particle Physics at the Terascale School of Physics and Astronomy,Monash University,Victoria 3800 (Australia); Yue, Jason [Department of Physics, National Taiwan Normal University,Taipei 116, Taiwan (China); ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Sydney,NSW 2006 (Australia)
2017-03-07
Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.
Statistical predictions from anarchic field theory landscapes
International Nuclear Information System (INIS)
Balasubramanian, Vijay; Boer, Jan de; Naqvi, Asad
2010-01-01
Consistent coupling of effective field theories with a quantum theory of gravity appears to require bounds on the rank of the gauge group and the amount of matter. We consider landscapes of field theories subject to such to boundedness constraints. We argue that appropriately 'coarse-grained' aspects of the randomly chosen field theory in such landscapes, such as the fraction of gauge groups with ranks in a given range, can be statistically predictable. To illustrate our point we show how the uniform measures on simple classes of N=1 quiver gauge theories localize in the vicinity of theories with certain typical structures. Generically, this approach would predict a high energy theory with very many gauge factors, with the high rank factors largely decoupled from the low rank factors if we require asymptotic freedom for the latter.
Phase Diagrams of Strongly Interacting Theories
DEFF Research Database (Denmark)
Sannino, Francesco
2010-01-01
We summarize the phase diagrams of SU, SO and Sp gauge theories as function of the number of flavors, colors, and matter representation as well as the ones of phenomenologically relevant chiral gauge theories such as the Bars-Yankielowicz and the generalized Georgi-Glashow models. We finally report...
Vacuum instability in scalar field theories
International Nuclear Information System (INIS)
McKane, A.J.
1978-09-01
Scalar field theories with an interaction of the form gphisup(N) have no stable vacuum state for some range of values of their coupling constant, g. This thesis reports calculations of vacuum instability in such theories. Using the idea that the tunnelling out of the vacuum state is described by the instanton solutions of the theory, the imaginary part of the vertex functions is calculated for the massless theory in the one-loop approximation, near the dimension dsub(c) = 2N/N-2, where the theory is just renormalisable. The calculation differs from previous treatments in that dimensional regularisation is used to control the ultra-violet divergences of the theory. In this way previous analytic calculations in conformally invariant field theories are extended to the case where the theory is almost conformally invariant, since it is now defined in dsub(c) - epsilon dimensions (epsilon > 0). (author)
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
Quantum field theory in a semiotic perspective
International Nuclear Information System (INIS)
Dosch, H.G.
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Field theories with multiple fermionic excitations
International Nuclear Information System (INIS)
Crawford, J.P.
1978-01-01
The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation
Effective field theories for correlated electrons
International Nuclear Information System (INIS)
Wallington, J.P.
1999-10-01
In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)
Quantum field theory of point particles and strings
Hatfield, Brian
1992-01-01
The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.
Flat holography: aspects of the dual field theory
Energy Technology Data Exchange (ETDEWEB)
Bagchi, Arjun [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Basu, Rudranil [Saha Institute of Nuclear Physics,Block AF, Sector 1, Bidhannagar, Kolkata 700068 (India); Kakkar, Ashish [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India); Mehra, Aditya [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India)
2016-12-29
Assuming the existence of a field theory in D dimensions dual to (D+1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk – 2d boundary case and then focus on the 4d bulk – 3d boundary example, where the symmetry in question is the infinite dimensional BMS{sub 4} algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under the conformal Carroll group in D=4. We explore the different sectors within these Carrollian gauge theories and investigate the symmetries of the equations of motion to find that an infinite ultra-relativistic conformal structure arises in each case.
Dispersion theory and sum rules for the non-minimum phase problem in optical spectroscopy
International Nuclear Information System (INIS)
Peiponen, Kai-Erik
2009-01-01
Dispersion relations and sum rules for integer powers of an optical response function are given in the case of the non-minimum phase problem. These relations were obtained using the concept of the Hilbert transform and Blaschke product. The theory presented in this paper is useful both in basic and applied studies of non-minimum phase functions in optics, and also other fields of physics such as high energy physics.
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A O
2015-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...
Pilot-wave approaches to quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Struyve, Ward, E-mail: Ward.Struyve@fys.kuleuven.be [Institute of Theoretical Physics, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Institute of Philosophy, K.U.Leuven, Kardinaal Mercierplein 2, B-3000 Leuven (Belgium)
2011-07-08
The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of deBroglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as 'measurement' and 'observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.
Fractional Quantum Field Theory: From Lattice to Continuum
Directory of Open Access Journals (Sweden)
Vasily E. Tarasov
2014-01-01
Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.
Quantum-field theories as representations of a single $^\\ast$-algebra
Raab, Andreas
2013-01-01
We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Geometry of Lagrangian first-order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica
1996-10-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Calculations in perturbative string field theory
International Nuclear Information System (INIS)
Thorn, C.B.
1987-01-01
The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules
Introduction to conformal field theory and string theory
International Nuclear Information System (INIS)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs
A simple proof of orientability in colored group field theory.
Caravelli, Francesco
2012-01-01
Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.
Quantum field theory in a nutshell
Zee, A
2010-01-01
Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading
Perspectives of Light-Front Quantized Field Theory: Some New Results
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P.
1999-08-13
A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found in the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.
A Yang-Mills structure for string field theory
International Nuclear Information System (INIS)
Tsousheung Tsun
1990-01-01
String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)
Fictive impurity approach to dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Fuhrmann, A.
2006-10-15
A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)
Fictive impurity approach to dynamical mean field theory
International Nuclear Information System (INIS)
Fuhrmann, A.
2006-10-01
A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)
Nonlinear mean field theory for nuclear matter and surface properties
International Nuclear Information System (INIS)
Boguta, J.; Moszkowski, S.A.
1983-01-01
Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)
International Nuclear Information System (INIS)
Vajskopf, V.F.
1982-01-01
The article deals with the history of the development of quantum electrodynamics since the date of publishing the work by P.A.M. Dirac ''The Quantum Theory of the Emission and Absorption of Radiation''. Classic ''before-Dirac'' electrodynamics related with the names of Maxwell, Lorenz, Hertz, is outlined. Work of Bohr and Rosenfeld is shown to clarify the physical sense of quantized field and to reveal the existence of uncertainties between the strengths of different fields. The article points to the significance of the article ''Quantum theory of radiation'' by E. Fermi which clearly describes the Dirac theory of radiation, relativistic wave equation and fundamentals of quantum electrodynamics. Shown is work on elimination of troubles related with the existence of states with negative kinetic energy or with negative mass. Hypothesis on the Dirac filled-in vacuum led to understanding of the existence of antiparticles and two unknown till then fundamental processes - pair production and annihilation. Ways of fighting against the infinite quantities in quantum electrodynamics are considered. Renormalization of the theory overcame all the infinities and gave a pattern for calculation of any processes of electron interactions with electromagnetic field to any desired accuracy
Two problems in thermal field theory
Indian Academy of Sciences (India)
In this talk, I review recent progress made in two areas of thermal field theory. In par- ticular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate. Keywords. Thermal field theory; quark-gluon plasma. PACS Nos 11.10.Wx; 12.38.
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
The space-time operator product expansion in string theory duals of field theories
International Nuclear Information System (INIS)
Aharony, Ofer; Komargodski, Zohar
2008-01-01
We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories
Directory of Open Access Journals (Sweden)
Gattringer Christof
2018-01-01
Full Text Available We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes, or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles. Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2 principal chiral model with chemical potential coupled to two of the Noether charges, SU(2 lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.
Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta
2018-03-01
We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Analytic aspects of rational conformal field theories
International Nuclear Information System (INIS)
Kiritsis, E.B.; Lawrence Berkeley Lab., CA
1990-01-01
The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)
Effect of multiple Higgs fields on the phase structure of the SU(2)-Higgs model
International Nuclear Information System (INIS)
Wurtz, Mark; Steele, T. G.; Lewis, Randy
2009-01-01
The SU(2)-Higgs model, with a single Higgs field in the fundamental representation and a quartic self-interaction, has a Higgs region and a confinement region which are analytically connected in the parameter space of the theory; these regions thus represent a single phase. The effect of multiple Higgs fields on this phase structure is examined via Monte Carlo lattice simulations. For the case of N≥2 identical Higgs fields, there is no remaining analytic connection between the Higgs and confinement regions, at least when Lagrangian terms that directly couple different Higgs flavors are omitted. An explanation of this result in terms of enhancement from overlapping phase transitions is explored for N=2 by introducing an asymmetry in the hopping parameters of the Higgs fields. It is found that an enhancement of the phase transitions can still occur for a moderate (10%) asymmetry in the resulting hopping parameters.
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Gauge field theories an introduction with applications
Guidry, Mike
1991-01-01
Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises
International Nuclear Information System (INIS)
Adler, S.L.; Wilczek, F.
1993-11-01
Areas of emphasis include acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, quaternionic generalizations of complex quantum mechanics and field theory, application of the renormalization group to the QCD phase transition, the quantum Hall effect, and black holes. Other work involved string theory, statistical properties of energy levels in integrable quantum systems, baryon asymmetry and the electroweak phase transition, anisotropies of the cosmic microwave background, and theory of superconductors
Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H
2018-05-28
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
On single-time reduction in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.
1984-01-01
It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory
Phenomenology of noncommutative field theories
International Nuclear Information System (INIS)
Carone, C D
2006-01-01
Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model
Low dimensional field theories and condensed matter physics
International Nuclear Information System (INIS)
Nagaoka, Yosuke
1992-01-01
This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the
Issues of effective field theories with resonances
International Nuclear Information System (INIS)
Gegelia, J.; Japaridze, G.
2014-01-01
We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)
Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.
2018-02-01
A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
String fields, higher spins and number theory
Polyakov, Dimitri
2018-01-01
The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.
Two field formulation of closed string field theory
International Nuclear Information System (INIS)
Bogojevic, A.R.
1990-09-01
A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)
Nilpotent weights in conformal field theory
Directory of Open Access Journals (Sweden)
S. Rouhani
2001-12-01
Full Text Available Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.
Schrodinger representation in renormalizable quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1983-01-01
The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward
An introduction to conformal field theory
International Nuclear Information System (INIS)
Zuber, J.B.
1995-01-01
The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.
2008-01-01
The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition
A general action for topological quantum field theories
International Nuclear Information System (INIS)
Dayi, O.F.
1989-03-01
Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs
On the interplay between string theory and field theory
International Nuclear Information System (INIS)
Brunner, I.
1998-01-01
In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)
On the interplay between string theory and field theory
Energy Technology Data Exchange (ETDEWEB)
Brunner, I.
1998-07-08
In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T{sup 6}, which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)
Brane configurations and 4D field theory dualities
International Nuclear Information System (INIS)
Brandhuber, A.; Sonnenschein, J.; Yankielowicz, S.
1997-01-01
We study brane configurations which correspond to field theories in four dimension with N=2 and N=1 supersymmetry. In particular we discuss brane motions that translate to Seiberg's duality in N=1 models recently studied by Elitzur, Giveon and Kutasov. We investigate, using the brane picture, the moduli spaces of the dual theories. Deformations of these models like mass terms and vacuum expectation values of scalar fields can be identified with positions of branes. The map of these deformations between the electric and dual magnetic theories is clarified. The models we study reproduce known field theory results and we provide an example of new dual pairs with N=1 supersymmetry. Possible relations between brane configurations and non-supersymmetric field theories are discussed. (orig.)
Lattice field theories: non-perturbative methods of analysis
International Nuclear Information System (INIS)
Weinstein, M.
1978-01-01
A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Characterization of Phase Transition in Heisenberg Fluids from Density Functional Theory
International Nuclear Information System (INIS)
Li Liangsheng; Li Li; Chen Xiaosong
2009-01-01
The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density ρ* = ρσ 3 = 0.224 and the reduced temperature T* = kT/ element of = 1.87 (σ is the diameter of Heisenberg hard sphere and element of is the coupling constant).
Spectral methods in quantum field theory
International Nuclear Information System (INIS)
Graham, Noah; Quandt, Markus; Weigel, Herbert
2009-01-01
This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)
Background Independent Open String Field Theory and Constant B-Field
Nemeschansky, D.; Yasnov, V.
2000-01-01
We calculate the background independent action for bosonic and supersymmetric open string field theory in a constant B-field. We also determine the tachyon effective action in the presence of constant B-field.
International Nuclear Information System (INIS)
Cooper, F.
1997-01-01
This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture
Energy Technology Data Exchange (ETDEWEB)
Cooper, F. [Los Alamos National Labs., NM (United States)
1997-09-22
This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.
2D conformal field theories and holography
International Nuclear Information System (INIS)
Freidel, Laurent; Krasnov, Kirill
2004-01-01
It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions
Zhang, Tao; Kamlah, Marc
2018-01-01
A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.
Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM
2007-12-15
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)
Experimental signature of scaling violation implied by field theories
International Nuclear Information System (INIS)
Tung, W.
1975-01-01
Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated
Realising effective theories of tribrid inflation: are there effects from messenger fields?
International Nuclear Information System (INIS)
Antusch, Stefan; Nolde, David
2015-01-01
Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale
Realising effective theories of tribrid inflation: are there effects from messenger fields?
Antusch, Stefan; Nolde, David
2015-09-01
Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.
Realising effective theories of tribrid inflation: are there effects from messenger fields?
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Nolde, David [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)
2015-09-22
Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.
Duality and braiding in twisted quantum field theory
International Nuclear Information System (INIS)
Riccardi, Mauro; Szabo, Richard J.
2008-01-01
We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality
International Nuclear Information System (INIS)
Sugama, H.
1999-08-01
The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)
Conformal invariant quantum field theory and composite field operators
International Nuclear Information System (INIS)
Kurak, V.
1976-01-01
The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
Orzalesi, C.A.
1975-01-01
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt
Using field theory in hadron physics
International Nuclear Information System (INIS)
Abarbanel, H.D.I.
1979-01-01
The author gives an introductory review about the development of applications of quantum field theory in hadron physics. Especially he discusses the renormalization group and the use of this group for the selection of a field theory. In this framework he compares quantum chromodynamics with quantum electrodynamics. Finally he discusses dynamic mass generation and quark confinement in the framework of quantum chromodynamics. (HSI) [de
Non-commutative field theory with twistor-like coordinates
International Nuclear Information System (INIS)
Taylor, Tomasz R.
2007-01-01
We consider quantum field theory in four-dimensional Minkowski spacetime, with the position coordinates represented by twistors instead of the usual world-vectors. Upon imposing canonical commutation relations between twistors and dual twistors, quantum theory of fields described by non-holomorphic functions of twistor variables becomes manifestly non-commutative, with Lorentz symmetry broken by a time-like vector. We discuss the free field propagation and its impact on the short- and long-distance behavior of physical amplitudes in perturbation theory. In the ultraviolet limit, quantum field theories in twistor space are generically less divergent than their commutative counterparts. Furthermore, there is no infrared-ultraviolet mixing problem
Twistors and four-dimensional conformal field theory
International Nuclear Information System (INIS)
Singer, M.A.
1990-01-01
This is a report (with technical details omitted) on work concerned with generalizations to four dimensions of two-dimensional Conformed Field Theory. Accounts of this and related material are contained elsewhere. The Hilbert space of the four-dimensional theory has a natural interpretation in terms of massless spinor fields on real Minkowski space. From the twistor point of view this follows from the boundary CR-manifold P being precisely the space of light rays in real compactified Minkowski space. All the amplitudes can therefore be regarded as defined on Hilbert spaces built from Lorentzian spinor fields. Thus the twistor picture provides a kind of halfway house between the Lorentzian and Euclidean field theories. (author)
Group field theories for all loop quantum gravity
Oriti, Daniele; Ryan, James P.; Thürigen, Johannes
2015-02-01
Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.
Phase-Field simulation of phase decomposition in Fe-Cr-Co alloy under an external magnetic field
Koyama, Toshiyuki; Onodera, Hidehiro
2004-07-01
Phase decomposition during isothermal aging of a Fe-Cr-Co ternary alloy under an external magnetic field is simulated based on the phase-field method. In this simulation, since the Gibbs energy available from the thermodynamic CALPHAD database of the equilibrium phase diagram is employed as a chemical free energy, the present calculation provides the quantitative microstructure changes directly linked to the phase diagram. The simulated microstructure evolution demonstrates that the lamella like microstructure elongated along the external magnetic field is evolved with the progress of aging. The morphological and temporal developments of the simulated microstructures are in good agreement with experimental results that have been obtained for this alloy system.
Superstring field theory equivalence: Ramond sector
International Nuclear Information System (INIS)
Kroyter, Michael
2009-01-01
We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Coadjoint orbits and conformal field theory
International Nuclear Information System (INIS)
Taylor, W. IV.
1993-08-01
This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Noncommutative time in quantum field theory
International Nuclear Information System (INIS)
Salminen, Tapio; Tureanu, Anca
2011-01-01
We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.
The effective field theory of nonsingular cosmology: II
Energy Technology Data Exchange (ETDEWEB)
Cai, Yong; Li, Hai-Guang [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Piao, Yun-Song [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)
2017-06-15
Based on the effective field theory (EFT) of cosmological perturbations, we explicitly clarify the pathology in nonsingular cubic Galileon models and show how to cure it in EFT with new insights into this issue. With the least set of EFT operators that are capable to avoid instabilities in nonsingular cosmologies, we construct a nonsingular model dubbed the Genesis-inflation model, in which a slowly expanding phase (namely, Genesis) with increasing energy density is followed by slow-roll inflation. The spectrum of the primordial perturbation may be simulated numerically, which shows itself a large-scale cutoff, as the large-scale anomalies in CMB might be a hint for. (orig.)
A multipole-expanded effective field theory for vortex ring-sound interactions
Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto
2018-02-01
The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.
Relaxation and kinetics in scalar field theories
International Nuclear Information System (INIS)
Boyanovsky, D.; Lawrie, I.D.; Lee, D.
1996-01-01
A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society
Supersymmetric field theories at finite temperature
International Nuclear Information System (INIS)
Dicus, D.A.; Tata, X.R.
1983-01-01
We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry
Topological defects in open string field theory
Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin
2018-04-01
We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.
Magnetic charge in an octonionic field theory
International Nuclear Information System (INIS)
Lassig, C.C.; Jashi, G.C.
1996-01-01
The violation of the Jacobi identity by the presence of magnetic charge is accommodated by using an explicitly nonassociative theory of octonionic fields. Lagrangian and Hamiltonian formalisms are constructed, and issues of the quantisation discussed. Finally an extension of these concepts to string theory is contemplated. The two main problems that seems to arise in this octonionic field theory are the difficulty of constructing an appropriate action to suit the desired equations of motion, and the failure to complete a Hamiltonian formalism and hence quantize the theory. 8 refs
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
International Nuclear Information System (INIS)
Johnson, C.R.
1985-01-01
We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field
Super-Galilei invariant field theories in 2+1 dimensions
International Nuclear Information System (INIS)
Bergman, O.; Thorn, C.B.
1995-01-01
The authors extend the Galilei group of space-time transformations by gradation, construct interacting field-theoretic representations of this algebra, and show that non-relativistic Super-Chern-Simons theory is a special case. They also study the generalization to matrix valued fields, which are relevant to the formulation of superstring theory as a 1/N c expansion of a field theory. The authors find that in the matrix case, the field theory is much more restricted by the supersymmetry
An extended topological Yang-Mills theory
International Nuclear Information System (INIS)
Deguchi, Shinichi
1992-01-01
Introducing infinite number of fields, we construct an extended version of the topological Yang-Mills theory. The properties of the extended topological Yang-Mills theory (ETYMT) are discussed from standpoint of the covariant canonical quantization. It is shown that the ETYMT becomes a cohomological topological field theory or a theory equivalent to a quantum Yang-Mills theory with anti-self-dual constraint according to subsidiary conditions imposed on state-vector space. On the basis of the ETYMT, we may understand a transition from an unbroken phase to a physical phase (broken phase). (author)
Lectures on classical and quantum theory of fields
International Nuclear Information System (INIS)
Arodz, Henryk; Hadasz, Leszek
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Lectures on Classical and Quantum Theory of Fields
Arodź, Henryk
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Possible higher order phase transition in large-N gauge theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Hiromichi
2017-08-07
We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically different behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical
Infrared problems in field perturbation theory
International Nuclear Information System (INIS)
David, Francois.
1982-12-01
The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr
Antisymmetric tensor Zp gauge symmetries in field theory and string theory
International Nuclear Information System (INIS)
Berasaluce-González, Mikel; Ramírez, Guillermo; Uranga, Angel M.
2014-01-01
We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality
Problems of an external field in non-Abelian gauge theory
International Nuclear Information System (INIS)
Gavrilov, S.P.; Gitman, D.M.
1992-01-01
In the Abelian gauge field theory QED the principal problems connected with an external field are the problems of exact keeping of an external field in a perturbation theory and appearing in this case the peculiarities of the theory such as the instability of the vacuum and so on. There is the problem of an external field introduction or its interpretation side by side with this problem in Non-Abelian gauge theory. The solution of both these problems in Non-Abelian theory can be considered by analogy with QED. In the present paper, the authors discuss on the example of the spontaneously broken SU(2) x U(1) electroweak theory both the problems of an external field introduction and the problem of exact keeping of this field in the perturbation theory. The Langrangian of this theory in covariant gauge is chosen in the BRST invariant form. In spite of concrete character of the theory studied, the method can be extended to any gauge theory
Quantum field theory and the standard model
Schwartz, Matthew D
2014-01-01
Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...
Irreversibility and higher-spin conformal field theory
Anselmi, D
2000-01-01
I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...
Energy Technology Data Exchange (ETDEWEB)
Ezzat, Magdy A., E-mail: maezzat2000@yahoo.com [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia); El-Karamany, Ahmed S., E-mail: qaramani@gmail.com [Department of Mathematical and Physical Sciences, Nizwa University, P.O. Box 1357, Nizwa 611 (Oman); Ezzat, Shereen M. [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia)
2012-11-15
Highlights: Black-Right-Pointing-Pointer We model fractional order dual-phase-lag heat conduction law. Black-Right-Pointing-Pointer We applied the model on a perfect conducting half-space of elastic material. Black-Right-Pointing-Pointer Some theories of generalized thermoelasticity follow as limit cases. Black-Right-Pointing-Pointer State space approach is adopted for the solution of one-dimensional problems. Black-Right-Pointing-Pointer The model will improve the efficiency of thermoelectric material. - Abstract: A new mathematical model of two-temperature magneto-thermoelasticity is constructed where the fractional order dual-phase-lag heat conduction law is considered. The state space approach developed in Ezzat (2008) is adopted for the solution of one-dimensional application for a perfect conducting half-space of elastic material, which is thermally shocked in the presence of a transverse magnetic field. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some theories of generalized thermoelasticity follow as limit cases. Some comparisons have been shown in figures to estimate effects of temperature discrepancy and fractional order parameter on all the studied fields.
Finite spatial volume approach to finite temperature field theory
International Nuclear Information System (INIS)
Weiss, Nathan
1981-01-01
A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid
2011-01-01
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F μν F μν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the
Density-functional theory for internal magnetic fields
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
International Nuclear Information System (INIS)
Naik, S.
1990-01-01
We have developed a mean field theory technique to study the confinement-deconfinement phase transition and chiral symmetry restoring phase transition with dynamical fermions and with finite chemical potential and finite temperature. The approximation scheme concerns the saddle point scenario and large space dimension. The static quark-antiquark potentials are identified from the Wilson loop correlation functions in both the fundamental and the adjoint representation of the gauge group with different temperatures. The difference between the responses of the chemical potential to the fermion number with singlet and non-singlet isospin configuration is found. We compare our results with recent Monte Carlo data. (orig.)
Teleparallel Lagrange geometry and a unified field theory
Energy Technology Data Exchange (ETDEWEB)
Wanas, M I [Department of Astronomy, Faculty of Science, Cairo University, CTP of the British University in Egypt (BUE) (Egypt); Youssef, Nabil L; Sid-Ahmed, A M, E-mail: wanas@frcu.eun.eg, E-mail: nyoussef@frcu.eun.e, E-mail: nlyoussef2003@yahoo.f, E-mail: amrs@mailer.eun.e, E-mail: amrsidahmed@gmail.co [Department of Mathematics, Faculty of Science, Cairo University (Egypt)
2010-02-21
In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geometry. The constructed field theory is a generalization of the generalized field theory (GFT) formulated by Mikhail and Wanas. The theory obtained is purely geometric. The horizontal (resp. vertical) field equations are derived by applying the Euler-Lagrange equations to an appropriate horizontal (resp. vertical) scalar Lagrangian. The symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Einstein's field equations in which the horizontal (resp. vertical) energy-momentum tensor is purely geometric. The skew-symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Maxwell equations in which the electromagnetic field is purely geometric. Some interesting special cases, which reveal the role of the nonlinear connection in the obtained field equations, are examined. Finally, the condition under which our constructed field equations reduce to the GFT is explicitly established.
Could reggeon field theory be an effective theory for QCD in the Regge limit?
Energy Technology Data Exchange (ETDEWEB)
Bartels, Jochen [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Contreras, Carlos [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. España 1680, Casilla 110-V, Valparaiso (Chile); Vacca, G.P. [INFN Sezione di Bologna, DIFA, Via Irnerio 46, I-40126 Bologna (Italy)
2016-03-30
In this paper we investigate the possibility whether, in the extreme limit of high energies and large transverse distances, reggeon field theory might serve as an effective theory of high energy scattering for strong interactions. We analyse the functional renormalization group equations (flow equations) of reggeon field theory and search for fixed points in the space of (local) reggeon field theories. We study in complementary ways the candidate for the scaling solution, investigate its main properties and briefly discuss possible physical interpretations.
Infrared behavior of massless field theories
International Nuclear Information System (INIS)
Sapirstein, J.R.
1979-01-01
Typical infrared effects in several gauge field theories with massless particles are investigated in perturbation theory. It is first shown that divergences occurring in individual Feynman graphs arising from integrations over the long-wavelength modes of the fields cancel when the graphs are grouped together in a particular way, in a generalization of the Bloch-Nordsieck treatment of QED. As one of the requirements of finiteness is renormalization of the vector propagator off shell, the charge in these theories is not directly related to classical experiment. In an effort to find the meaning of charge the low-energy theorem is considered. Although in lowest order the graphs reproduce the Thompson limit, it is found that loop corrections are singular in the low-energy limit; a simple definition of the charge is thus precluded. Finally, the behavior of the quark color magnetic moment is treated. An apparent infrared singularity of this moment is shown to be due to an improper use of perturbation theory, and is removed and replaced with a finite, field-dependent moment, by use of Furry picture propagators
Scaling theory and the classification of phase transitions
International Nuclear Information System (INIS)
Hilfer, R.
1992-01-01
In this paper, the recent classification theory for phase transitions and its relation with the foundations of statistical physics is reviewed. First it is outlined how Ehrenfests classification scheme can be generalized into a general thermodynamic classification theory for phase transitions. The classification theory implies scaling and multiscaling thereby eliminating the need to postulate the scaling hypothesis as a fourth law of thermodynamics. The new classification has also led to the discovery and distinction of nonequilibrium transitions within equilibrium statistical physics. Nonequilibrium phase transitions are distinguished from equilibrium transitions by orders less than unity and by the fact the equilibrium thermodynamics and statistical mechanics become inapplicable at the critical point. The latter fact requires a change in the Gibbs assumption underlying the canonical and grandcanonical ensembles in order to recover the thermodynamic description in the critical limit
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)
2017-04-10
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory
International Nuclear Information System (INIS)
Chung, S.; Tye, S.H.
1993-01-01
The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie
2017-03-01
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
Simple recursion relations for general field theories
International Nuclear Information System (INIS)
Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav
2015-01-01
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.
Quantum correlated cluster mean-field theory applied to the transverse Ising model.
Zimmer, F M; Schmidt, M; Maziero, Jonas
2016-06-01
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.
Smooth massless limit of field theories
International Nuclear Information System (INIS)
Fronsdal, C.
1980-01-01
The massless limit of Fierz-Pauli field theories, describing fields with fixed mass and spin interacting with external sources, is examined. Results are obtained for spins, 1, 3/2, 2 and 3 using conventional models, and then for all half-integral spins in a relatively model-independent manner. It is found that the massless limit is smooth provided that the sources satisfy certain conditions. In the massless limit these conditions reduce to the conservation laws required by internal consistency of massless field theory. Smoothness simply requires that quantities that vanish in the massless case approach zero in a certain well-defined manner. (orig.)
Solving topological field theories on mapping tori
International Nuclear Information System (INIS)
Blau, M.; Jermyn, I.; Thompson, G.
1996-05-01
Using gauge theory and functional integral methods, we derive concrete expressions for the partition functions of BF theory and the U(1 modul 1) model of Rozansky and Saleur on Σ x S 1 , both directly and using equivalent two-dimensional theories. We also derive the partition function on a certain non-abelian generalization of the U(1 modul 1) model on mapping tori and hence obtain explicit expressions for the Ray-Singer torsion on these manifolds. Extensions of these results to BF and Chern-Simons theories on mapping tori are also discussed. The topological field theory actions of the equivalent two- dimensional theories we find have the interesting property of depending explicitly on the diffeomorphism defining the mapping torus while the quantum field theory is sensitive only to its isomorphism class defining the mapping torus as a smooth manifold. (author). 20 refs
Renormalization of topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-11-01
One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs
Introduction to field theory of strings
International Nuclear Information System (INIS)
Kikkawa, K.
1987-01-01
The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed