Thermophysical Properties and Phase Equilibria of Materials Systems
National Research Council Canada - National Science Library
Reeber, R
2002-01-01
.... In those regions experiments are difficult and data is often marginally reliable. In a series of papers, we have developed models for predicting these properties for a wide range of metals, ceramics and semiconductors...
Energy Technology Data Exchange (ETDEWEB)
E. Jak; A. Kondratiev; S. Christie; P.C. Hayes [Centre for Coal in Sustainable Development (CCSD), Brisbane (Australia)
2003-07-01
A range of problems in coal utilisation technologies, including ash slag flow in slagging gasifiers, deposit formation, slagging, fouling, fusibility tests, fluxing, blending etc, are related to the melting behaviour of the mineral matter in the coal. To assist with solving these practical issues i) thermodynamic modelling of phase equilibria, and ii) viscosity modelling studies are being undertaken at the Pyrometallurgy Research Centre (The University of Queensland, Australia) with support from the Collaborative Research Centre for Coal in Sustainable Development (CCSD). The thermodynamic modelling has been carried out using the computer system FactSage, which is used for the calculation of multi-phase slag / solid / gas / matte / alloy / salt equilibria in multi-component systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New model optimisations have been carried out, which have significantly improved the accuracy of the thermodynamic models for coal combustion processes. Viscosity modelling, using a modified Urbain formalism, is carried out in conjunction with FactSage calculations to predict the viscosities of fully liquid as well as heterogeneous, partly crystallised slags. Custom designed software packages are developed using these fundamental models for wider use by industrial researchers and engineers, and for incorporation as process control modules. The new custom-designed computer software package can be used to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physico-chemical properties in complex slag systems. The approach is illustrated with calculations on the system SiO{sub 2}-Al{sub 2}O{sub 3}-FeO-Fe{sub 2}O{sub 3}-CaO at metallic iron saturation, slags produced in coal slagging gasifiers. 28 refs., 7 figs., 1 tab.
High temperature phase equilibria and phase diagrams
Kuo, Chu-Kun; Yan, Dong-Sheng
2013-01-01
High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature
International Nuclear Information System (INIS)
Strach, Michal
2015-01-01
Due to their physical and chemical properties, mixed uranium-plutonium oxides are considered for fuel in 4. generation nuclear reactors. In this frame, complementary experimental studies are necessary to develop a better understanding of the phenomena that take place during fabrication and operation in the reactor. The focus of this work was to study the U-Pu-O phase diagram in a wide range of compositions and temperatures to ameliorate our knowledge of the phase equilibria in this system. Most of experiments were done using in situ X-ray diffraction at elevated temperatures. The control of the oxygen partial pressure during the treatments made it possible to change the oxygen stoichiometry of the sample, which gave us an opportunity to study rapidly different compositions and the processes involved. The experimental approach was coupled with thermodynamic modeling using the CALPHAD method, to precisely plan the experiments and interpret the obtained results. This approach enabled us to enhance the knowledge of phase equilibria in the U-Pu-O system. (author) [fr
Phase equilibria basic principles, applications, experimental techniques
Reisman, Arnold
2013-01-01
Phase Equilibria: Basic Principles, Applications, Experimental Techniques presents an analytical treatment in the study of the theories and principles of phase equilibria. The book is organized to afford a deep and thorough understanding of such subjects as the method of species model systems; condensed phase-vapor phase equilibria and vapor transport reactions; zone refining techniques; and nonstoichiometry. Physicists, physical chemists, engineers, and materials scientists will find the book a good reference material.
Bratberg, Johan
2005-01-01
The recent development of tool steels and high-speed steels has led to a significant increase in alloy additions, such as Co, Cr, Mo, N, V, and W. Knowledge about the phase relations in these multicomponent alloys, that is, the relative stability between different carbides or the solubility of different elements in the carbides and in the matrix phase, is essential for understanding the behaviour of these alloys in heat treatments. This information is also the basis for improving the properti...
Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils
Energy Technology Data Exchange (ETDEWEB)
Gabitto, Jorge; Barrufet, Maria
2002-11-20
The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.
Energy Technology Data Exchange (ETDEWEB)
Zeiringer, I.; Chen Mingxing [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Bednar, I.; Royanian, E.; Bauer, E. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Podloucky, R.; Grytsiv, A. [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Rogl, P., E-mail: peter.franz.rogl@univie.ac.at [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Effenberger, H. [Institute of Mineralogy and Crystallography, University of Vienna, A-1090 Wien (Austria)
2011-04-15
In the Ag-Ba-Ge system the clathrate type-{Iota} solid solution, Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y}, extends at 800 deg. C from binary Ba{sub 8}Ge{sub 43{open_square}3} ({open_square} is a vacancy) to Ba{sub 8}Ag{sub 5.3}Ge{sub 40.7}. For the clathrate phase (1 {<=} x {<=} 5.3) the cubic space group Pm3-bar n was established by X-ray powder diffraction and confirmed by X-ray single-crystal analyses of the samples Ba{sub 8}Ag{sub 2.3}Ge{sub 41.9{open_square}1.8} and Ba{sub 8}Ag{sub 4.4}Ge{sub 41.3{open_square}0.3}. Increasing the concentration of Ag causes the lattice parameters of the solid solution to increase linearly from a value of a = 1.0656 (x = 0, y = 3) to a = 1.0842 (x = 4.8, y = 0) nm. Site preference determination using X-ray refinement reveals that Ag atoms preferentially occupy the 6d site randomly mixed with Ge and vacancies, which become filled in the compound Ba{sub 8}Ag{sub 4.8}Ge{sub 41.2} when the Ag content increases. At 600 {sup o}C the phase region of the clathrate solution Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} becomes separated from the Ba-Ge boundary and extends from 6.6 to 9.8 at.% Ag. The compound Ba{sub 6}Ge{sub 25} (clathrate type-{Iota}X) dissolves at 800 {sup o}C a maximum of 1.5 at.% Ag. The homogeneity regions of the two ternary compounds BaAg{sub 2-x}Ge{sub 2+x} (ThCr{sub 2}Si{sub 2}-type, 0.2 {<=} x {<=} 0.7) and Ba(Ag{sub 1-x}Ge{sub x}){sub 2} (AlB{sub 2}-type, 0.65 {<=} x {<=} 0.75) were established at 800 deg. C. Studies of transport properties for the series of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} compounds evidenced that electrons are the predominant charge carriers with the Fermi energy close to a gap. Its position can be fine-tuned by the substitution of Ge by Ag atoms and by mechanical processing of the starting material, Ba{sub 8}Ge{sub 43}. The proximity of the electronic structure at Fermi energy of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} to a gap is also corroborated by density
Modelling of phase equilibria and related properties of mixtures involving lipids
DEFF Research Database (Denmark)
Cunico, Larissa
Many challenges involving physical and thermodynamic properties in the production of edible oils and biodiesel are observed, such as availability of experimental data and realiable prediction. In the case of lipids, a lack of experimental data for pure components and also for their mixtures in open...
Bohnenstiehl, Scot David
In this work, the low temperature synthesis of MgB2 from Mg/B and MgH2/B powder mixtures was studied using Differential Scanning Calorimetry (DSC). For the Mg/B powder mixture, two exothermic reaction events were observed and the first reaction event was initiated by the decomposition of Mg(OH)2 on the surface of the magnesium powder. For the MgH 2/B powder mixture, there was an endothermic event at ˜375 °C (the decomposition of MgH2 into H2 and Mg) and an exothermic event ˜600 °C (the reaction of Mg and B). The Kissinger analysis method was used to estimate the apparent activation energy of the Mg and B reaction using DSC data with different furnace ramp rates. The limitations of MgB2 low temperature synthesis led to the development of a high pressure induction furnace that was constructed using a pressure vessel and an induction heating power supply. The purpose was to not only synthesize more homogeneous MgB2 samples, but also to determine whether MgB2 melts congruently or incongruently. A custom implementation of the Smith Thermal Analysis method was developed and tested on aluminum and AlB2, the closest analogue to MgB2. Measurements on MgB2 powder and a high purity Mg/B elemental mixture confirmed that MgB2 melts incongruently and decomposes into a liquid and MgB4 at ˜1445 °C at 10 MPa via peritectic decomposition. Another measurement using a Mg/B elemental mixture with impure boron suggested that ˜0.7 wt% carbon impurity in the boron raised the incongruent melting temperature to ˜1490-1500 °C. Lastly, the solubility limit for carbon in MgB2 was studied by making samples from B4C and Mg at 1530 °C, 1600 °C and 1700 °C in the high pressure furnace. All three samples had three phases: Mg, MgB2C2, and carbon doped MgB2. The MgB 2C2 and carbon doped MgB2 grain size increased with temperature and the 1700 °C sample had needle-like grains for both phases. The presence of the ternary phase, MgB2C2, suggested that the maximum doping limit for carbon in
Solid-phase equilibria on Pluto's surface
Tan, Sugata P.; Kargel, Jeffrey S.
2018-03-01
Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.
Phase equilibria and phase structures of polymer blends
International Nuclear Information System (INIS)
Chalykh, Anatolii E; Gerasimov, Vladimir K
2004-01-01
Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.
High-pressure fluid phase equilibria phenomenology and computation
Deiters, Ulrich K
2012-01-01
The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...
Energy Technology Data Exchange (ETDEWEB)
Domanska, Urszula, E-mail: ula@ch.pw.edu.p [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Thermodynamic Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001 (South Africa); Zawadzki, Maciej [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Zwolinska, Magdalena [Department of Ergonomics, Laboratory of Thermal Loads, Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw (Poland)
2011-05-15
Research highlights: We synthesized new ionic liquid, [HQuin][NTf{sub 2}] with low viscosity, and low density. We found high heat capacity, high enthalpy of melting and low melting temperature. HQuin][NTf{sub 2}] is proposed for possible use in the phase change materials (PCM). We examine phase equilibrium changes, SLE and LLE with hydrocarbons and alcohols. [HQuin][NTf{sub 2}] may be proposed as entrainer for the separation proceses. - Abstract: The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{l_brace}(trifluoromethyl)sulfonyl{r_brace}imide [HQuin][NTf{sub 2}] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf{sub 2}] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {l_brace}[HQuin][NTf{sub 2}]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol){r_brace} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical
International Nuclear Information System (INIS)
Ipser, H.; Richter, K.; Micke, K.
1997-01-01
In order to investigate the stability of ohmic contacts to compound semiconductors, it is necessary to know the phase equilibria in the corresponding multi-component systems. We are currently studying the phase equilibria and thermophysical properties of several ternary systems which are of interest in view of the use of nickel, palladium and platinum as contact materials for GaSb and InSb compound semiconductors: Ga-Ni-Sb, In-Ni-Sb, Ga-Pd-Sb and Ga-Pt-Sb. Phase equilibria are investigated by thermal analyses, X-ray powder diffraction methods as well as electron microprobe analysis. Thermodynamic properties are derived from vapour pressure measurements using an isopiestic method. It is planned to combine all information on phase equilibria and thermochemistry for the ternary and the limiting binary systems to perform an optimization of the ternary systems by computer calculations using standard software. (author)
Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.
2017-12-01
Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the
High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000-2004)
DEFF Research Database (Denmark)
Dohrn, Ralf; Peper, Stephanie; Fonseca, José
2010-01-01
As a part of a series of reviews, a compilation of systems for which high-pressure phase-equilibrium data were published between 2000 and 2004 is given. Vapor-liquid equilibria, liquid-liquid equilibria, vapor-liquid-liquid equilibria,solid-liquid equilibria, solid-vapor equilibria, solid-vapor-l...
Phase equilibria of carbohydrates in polar solvents
DEFF Research Database (Denmark)
Jonsdottir, Svava Osk; Rasmussen, Peter
1999-01-01
A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...
Gas hydrate phase equilibria measurement techniques and phase rule considerations
International Nuclear Information System (INIS)
Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip
2012-01-01
Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.
Field line diversion properties of finite β-helias equilibria
International Nuclear Information System (INIS)
Hayashi, Takaya; Schwenn, Ulrich; Strumberger, Erika.
1992-01-01
The diversion properties of the magnetic field outside the last closed magnetic surface of a Helias stellarator configuration are investigated for finite pressure equilibria. The results indicate that a divertor concept which has been developed from the diversion properties of the corresponding vacuum field can be maintained for finite pressure equilibria. Cross-field particle transport is simulated by a simplified scrape-off layer (SOL) model. (author)
Phase equilibria in chemical reactive fluid mixtures
International Nuclear Information System (INIS)
Maurer, Gerd
2011-01-01
Downstream processing is a major part of nearly all processes in the chemical industries. Most separation processes in the chemical (and related) industries for fluid mixtures are based on phase equilibrium phenomena. The majority of separation processes can be modelled assuming that chemical reactions are of no (or very minor) importance, i.e., assuming that the overall speciation remains unchanged during a separation process. However, there are also a large number of industrially important processes where the thermodynamic properties are influenced by chemical reactions. The phase equilibrium of chemical reactive mixtures has been a major research area of the author's group over nearly 40 years. In this contribution, three examples from that research are discussed. The first example deals with the vapour phase dimerisation of carboxylic acids and its consequences on phase equilibrium phenomena and phase equilibrium predictions. The second example deals with the solubility of sour gases (e.g., carbon dioxide and sulfur dioxide) in aqueous solutions of ammonia. That topic has been of interest for many years, e.g., in relation with the gasification and liquefaction of coal and, more recently, with the removal of carbon dioxide from flue gas in the 'chilled ammonia process'. The third example deals with phase equilibrium phenomena in aqueous solutions of polyelectrolytes. It deals with the phenomenon of 'counter ion condensation' and methods to model the Gibbs free energy of such solutions.
Stability of equilibria for a two-phase osmosis model
Lippoth, F.; Prokert, G.
2012-01-01
For a two-phase moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension, we prove that the manifold of equilibria is locally exponentially attractive. Our method relies on maximal regularity results for parabolic systems with relaxation type
Predicting phase equilibria in one-component systems
Korchuganova, M. R.; Esina, Z. N.
2015-07-01
It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.
Phase diagrams and heterogeneous equilibria a practical introduction
Predel, Bruno; Pool, Monte
2004-01-01
This graduate-level textbook provides an introduction to the practical application of phase diagrams. It is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. Heterogeneous equilibria are described by a minimum of theory illustrated by practical examples and realistic case discussions from the different fields of application. The treatment of the physical and energetic background of phase equilibria leads to the discussion of the thermodynamics of mixtures and the correlation between energetics and composition. Thus, tools for the prediction of energetic, structural, and physical quantities are provided. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Furthermore, the text also concisely presents the thermodynamics and composition of polymer systems.
Field line diversion properties of finite β Helias equilibria
International Nuclear Information System (INIS)
Hayashi, T.; Schwenn, U.; Strumberger, E.
1992-03-01
The diversion properties of the magnetic field outside the last closed magnetic surface of a Helias stellarator configuration are investigated for finite β-equilibria. The results support a divertor concept which has been developed from the diversion properties of the corresponding vacuum field. Cross-field transport is simulated by a simplified scrape-off layer (SOL) model. (author)
Energy Technology Data Exchange (ETDEWEB)
Aksenova, T.V.; Efimova, T.G. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Lebedev, O.I. [Laboratoire CRISMAT, ENSICAEN UMR6508, 6 Bd Maréchal Juin, Cedex 4, Caen 14050 (France); Elkalashy, Sh.I.; Urusova, A.S. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Cherepanov, V.A., E-mail: v.a.cherepanov@urfu.ru [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation)
2017-04-15
The phase equilibria in the ½Nd{sub 2}O{sub 3}–SrO–CoO system were systematically studied at 1373 K in air. The intermediate phases formed in the ½Nd{sub 2}O{sub 3}–SrO–CoO system at 1373 K in air are: Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.0≤x≤0.5 with orthorhombic structure, sp. gr. Pbnm and 0.6≤x≤0.95 whose structure was detected as cubic according to XRD sp. gr. Pm3m, but shown to be tetragonal by TEM due to the oxygen vacancy ordering), Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} (0.6≤y≤1.1 with tetragonal K{sub 2}NiF{sub 4}-type structure, sp. gr. I4/mmm) and Nd{sub 2-z}Sr{sub z}O{sub 3} (0.0≤z≤0.15 with hexagonal structure, sp. gr. P-3m1). The unit cell parameters for the single phase samples were refined by the Rietveld analysis. The changes of oxygen content in Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.6≤x≤0.95) and Ruddlesden-Popper oxide Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} were examined by TGA. All were found to be oxygen deficient phases. High-temperature dilatometry allows calculating the thermal expansion coefficient and evaluating the chemical expansion coefficient at high temperature. The projection of isothermal-isobaric phase diagram for the Nd–Sr–Co–O system at 1373 K in air to the compositional triangle of metallic components has been constructed. The phase equilibria in the studied Nd–Sr–Co–O system were compared to La–Sr–Co–O and Nd–M–Co–O (M=Ca and Ba). - Graphical abstract: Crystal structure of vacancy ordered supercell for Nd{sub 0.2}Sr{sub 0.8}CoO{sub 3-δ} and projection of phase diagram for the Nd–Sr–Co–O system onto the triangle edge of metallic components at 1373 K in air. - Highlights: • The diagram for the Nd–Sr–Co–O system at 1373 K in air has been constructed. • The crystal structure of Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} and Nd{sub 2-y}Sr{sub y}CoO{sub 4±δ} was refined. • The formation of superstructure due to the oxygen vacancy ordering was proved. • The changes of oxygen
Extended Group Contribution Model for Polyfunctional Phase Equilibria
DEFF Research Database (Denmark)
Abildskov, Jens
of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor......Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design......-liquid equilibria from data on binary mixtures, composed of structurally simple molecules with a single functional group. More complex is the situation with mixtures composed of structurally more complicated molecules or molecules with more than one functional group. The UNIFAC method is extended to handle...
On phase equilibria in duplex stainless steels
Energy Technology Data Exchange (ETDEWEB)
Wessman, S. [Swerea KIMAB AB, Stockholm (Sweden); Pettersson, R. [Outokumpu Stainless AB, Avesta Research Centre, Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Stockholm (Sweden)
2010-05-15
The equilibrium conditions of four duplex stainless steels; Fe-23Cr-4.5Ni-0.1N, Fe-22Cr-5.5Ni-3Mo-0.17N, Fe-25Cr-7Ni-4Mo-0.27N and Fe-25Cr-7Ni-4Mo-1W-1.5Cu-0.27N were studied in the temperature region from 700 to 1000 C. Phase compositions were determined with SEM EDS and the phase fractions using image analysis on backscattered SEM images. The results showed that below 1000 C the steels develop an inverse duplex structure with austenite and sigma phase, of which the former is the matrix phase. With decreasing temperature, the microstructure will be more and more complex and finely dispersed. The ferrite is, for the higher alloyed steels, only stable above 1000 C and at lower temperatures disappears in favour of intermetallic phases. The major intermetallic phase is sigma phase with small amounts of chi phase, the latter primarily in high Mo and W grades. Nitrides, not a focus in this investigation, were present as rounded particles and acicular precipitates at lower temperatures. The results were compared to theoretical predictions using the TCFE5 and TCFE6 databases. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Phase Equilibria Relationships of High-Tc Superconductors
International Nuclear Information System (INIS)
Wong-Ng, Winnie
2011-01-01
As an integral part of a R and D program partially supported by the Electricity Delivery and Energy Reliability Office of DOE, we have determined phase equilibria data and phase diagrams for the three generations of superconductor materials: 1st generation, (Bi,Pb)-Sr-Ca- Cu-O systems; 2nd generation, Ba-R-Cu-O systems (R=lanthanides and yttrium); and 3rd generation, MgB2 systems. Our studies involved bulk materials, single crystals and thin films. This report gives a summary of our accomplishments, a list of publications, and 15 selected journal publications.
High temperature interdiffusion and phase equilibria in U-Mo
International Nuclear Information System (INIS)
Lundberg, L.B.
1988-01-01
Experimental data for interdiffusion and phase equilibria in the U-Mo system have been obtained over the temperature range 1400 to 1525 K as a fallout from compatibility experiments in which UO 2 was decomposed by lithium in closed molybdenum capsules. Composition-position, x-ray diffraction and microstructural data from the interdiffusion zones indicate that the intermediate phase U 2 Mo is found in this temperature range, contrary to the currently accepted equilibrium U-Mo phase diagram. The U-Mo interdiffusion data are in good agreement with published values. Inclusion of the U 2 Mo phase in a theoretical correlation of interdiffusion and phase equilibria data using Darken's equation indicate that high temperature interdiffusion of uranium and molybdenum follows the usual thermodynamic rules. Significant changes in the value of the thermodynamic based Darken factor near the U 2 Mo phase boundary on the high uranium side are indicated from both the new and published interdiffusion data. 9 refs., 10 figs., 3 tabs
Phase equilibria of the Mo-Al-Ho ternary system
Energy Technology Data Exchange (ETDEWEB)
Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry
2017-08-15
Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.
Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria
Circone, S.; Kirby, S.H.; Stern, L.A.
2006-01-01
Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.
Phase equilibria in the niobium-vanadium-hydrogen system
Energy Technology Data Exchange (ETDEWEB)
Bethin, J. (Grumman Aerospace Corp., Bethpage, NY (USA)); Welch, D.O. (Brookhaven National Lab., Upton, NY (USA)); Pick, M.A. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking)
1990-01-01
The effect of vanadium additions to niobium on the metal-hydrogen phase equilibria has been studied. Measurements of the equilibrium H{sub 2}(D{sub 2}) pressure-composition-temperature isotherms for Nb{sub 1-x}V{sub x} alloys with 0{le}x<0.2 were used to determine the depression of the {alpha} - {alpha}' critical temperature with increasing vanadium concentration. A simple lattice-fluid model guided reduction of the data. Changes in the triple point temperature as well as the shift of the {zeta} {yields} {epsilon} phase transition were determined by differential scanning calorimetry measurements. A rapid overall depression was found, of the order of 7 K (at.% substituted V){sup -1}, for the metal-hydrogen (deuterium) phase boundary structure when compared with the Nb-H system in the hydrogen concentration range of interest. The results explain the enhanced terminal solubility of hydrogen in this system found previously by other authors. The changes in the phase equilibria are discussed in terms of the effect of hydrogen trapping and compared with the results of a cluster-variation calculation for random-field systems of previous authors, taking into account a distribution of H-site energies due to alloying. (author).
Electronic structure and phase equilibria in ternary substitutional alloys
International Nuclear Information System (INIS)
Traiber, A.J.S.; Allen, S.M.; Waterstrat, R.M.
1996-01-01
A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate abinitio calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr 0.5 (Ru, Pd) 0.5
Phase Equilibria and Compressibility of bastnaesite-(La)
Rowland, R. L., II; Burnley, P. C.
2015-12-01
Bastnaesite (Ce,La,Y)CO3(F,OH) is a rare earth element (REE) bearing ore mineral. REEs are more common in the Earth's crust than precious metals like gold or platinum, but are not commonly concentrated in economically viable ore deposits. For over a decade, China has been the world's leading supplier of REEs. Recent export restrictions from China have necessitated the search for new deposits. Determining basic material properties such as phase equilibria and the equation of state for bastnaesite helps in understanding the processes that form REE ore deposits and thereby assist in locating new deposits. For this study we focus on the lanthanum-fluoride variant of bastnaesite (LaCO3F) since it can be easily synthesized in the laboratory. Previous work by others determined that in both open and closed systems at atmospheric pressure bastnaesite decomposes to lanthanum oxyfluoride and carbon dioxide (LaOF + CO2) above 325°C; at 100 MPa bastnaesite decomposes above 860°C (Hsu, 1992). Using a Griggs-type modified piston cylinder apparatus, we pressurized samples of synthetic bastnaesite-(La) to conditions ranging from 250 MPa to 1.2 GPa, and then subjected each sample to constant temperatures ranging from 700°C to 1050°C for a minimum of five hours. We then analyzed the samples with X-ray powder diffraction to identify phases present and determined that bastnaesite-(La) is stable at 250 MPa up to approximately 800°C and at 1.0 GPa up to approximately 900°C. Reversal experiments are underway. In order to develop an equation of state for bastnaesite-(La), we studied single crystals via monochromatic synchrotron X-ray diffraction in the diamond anvil cell at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. Measurements were made at pressures ranging from ambient to nearly 4 GPa. From these diffraction patterns, we determine the structure of bastnaesite-(La), and the change in unit cell volume as a function of pressure can be fit to a Birch
International Nuclear Information System (INIS)
Cotterman, R.L.; Bender, R.; Prausnitz, J.M.
1984-01-01
For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time
Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria
Johnson, T. E.; Benedix, G. K.; Bland, P. A.
2016-01-01
Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile
Phase equilibria and molecular interaction studies on (naphthols + vanillin) systems
International Nuclear Information System (INIS)
Gupta, Preeti; Agrawal, Tanvi; Das, Shiva Saran; Singh, Nakshatra Bahadur
2012-01-01
Highlights: ► Phase equilibria of (naphthol + vanillin) systems have been studied for the first time. ► Eutectic type phase diagrams are obtained. ► Eutectic mixtures show nonideal behaviour. ► There is a weak molecular interaction between the components in the eutectic mixtures. ► α-Naphthol–vanillin eutectic is more stable as compared to β-naphthol–vanillin. - Abstract: Phase equilibria between (α-naphthol + vanillin) and (β-naphthol + vanillin) systems have been studied by thaw-melt method and the results show the formation of simple eutectic mixtures. Crystallization velocities of components and eutectic mixtures were determined at different stages under cooling. With the help of differential scanning calorimeter (DSC), the enthalpy of fusion of components and eutectic mixtures was determined and from the values excess thermodynamic functions viz., excess Gibbs free energy (G E ), excess entropy (S E ), excess enthalpy (H E ) of hypo-, hyper- and eutectic mixtures were calculated. Flexural strength measurements were made in order to understand the non-ideal nature of eutectics. FT-IR spectral studies indicate the formation of hydrogen bond in the eutectic mixture. Anisotropic and isotropic microstructural studies of components, hypo-, hyper- and eutectic mixtures were made. Jackson’s roughness parameter was calculated and found to be greater than 2 suggesting the faceted morphology with irregular structures. The overall results have shown that there is a weak molecular interaction between the components in the eutectic mixtures and the (α-naphthol + vanillin) eutectic is more stable as compared to the (β-naphthol + vanillin) eutectic system.
Thermodynamic calculation of phase equilibria of the U-Ga and U-W systems
International Nuclear Information System (INIS)
Wang, J.; Liu, X.J.; Wang, C.P.
2008-01-01
The thermodynamic assessments of the U-Ga and U-W systems have been carried out by using the CALPHAD (calculation of phase diagrams) method using experimental data including thermodynamic properties and phase equilibria. Gibbs free energies of the solution phases were described by the subregular solution models with the Redlich-Kister equation, and those of the intermetallic compounds were described by the sublattice models. A consistent set of thermodynamic parameters has been derived for the Gibbs free energy of each phase in the U-Ga and U-W binary systems, respectively. The calculated phase diagrams and thermodynamic properties in the U-Ga and U-W systems are in good agreement with experimental data
Phase Equilibria of Sn-Co-Cu Ternary System
Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih
2012-10-01
Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).
International Nuclear Information System (INIS)
Tan, K.B.; Chon, M.P.; Khaw, C.C.; Zainal, Z.; Taufiq Yap, Y.H.; Tan, P.Y.
2014-01-01
Highlights: • Novel BCT monoclinic zirconolite phase was prepared through solid state reaction. • Comprehensive study of reaction mechanism was performed by careful firing control. • Qualitative structural and phase analyses were conducted. • Electrical response in broad range of temperature and frequency was investigated. - Abstract: Synthesis of novel monoclinic zirconolite, Bi 1.92 Cu 0.08 (Cu 0.3 Ta 0.7 ) 2 O 7.06 (β-BCT) using solid state reaction had been finalised at the firing temperature of 900 °C over 24 h. The X–ray diffraction pattern of β-BCT was fully indexed on a monoclinic symmetry, space group, C2/c with lattice constants, a = 13.1052 (8), b = 7.6749 (5), c = 12.162 (6), α = γ = 90° and β = 101.32° (1), respectively. The reaction mechanism study indicated phase formation was greatly influenced by the reaction between intermediate bismuth tantalate binary phases and CuO at elevated temperatures. β-BCT was thermally stable up to a temperature of 900 °C and contained spherulite grains with sizes ranging from 1 to 14 μm. Electrical properties of this material were characterised over a broad temperature range covering temperatures from 10 K to 874 K. At the temperature of 304 K, two semicircles were discernible in complex Cole–Cole plot showing an insulating grain boundary with C gb = 6.63 × 10 −9 F cm −1 and a bulk response capacitance, C b = 6.74 × 10 −12 F cm −1 . The Power law frequency-dependent ac conductivity of β-BCT was apparent in three frequency regimes; a low–frequency plateau regime, a high-frequency plateau regime and a dispersive regime taking place in the temperature range of 220–576 K. The frequency-dependent ac conductivity of β-BCT with increasing temperature was attributed to the thermal activated electrical conduction mechanism within the structure
Experimental study of the Cu-Al-Sn phase equilibria, close to the copper zone
Directory of Open Access Journals (Sweden)
Soares D.F.
2017-01-01
Full Text Available The ternary Cu-Al-Sn phase diagram is the base for several important types of alloys, with relevant industrial interest and applications. The knowledge of the melting/solidification alloys characteristics are determinant for their preparation and properties control. However, there is a lack of experimental information on the ternary phase diagram, at high temperature. In this work, several alloys, with high copper content and additions of Al, up to 10%, and Sn, up to 14% (in wt%, were studied by thermal analysis and by isothermal phase equilibria determination. The alloys liquidus and solidus lines and the binary α + β phase field, at 800°C, are presented for the studied range of compositions.
International Nuclear Information System (INIS)
Byun, Hun-Soo
2016-01-01
Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method
Energy Technology Data Exchange (ETDEWEB)
Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)
2016-04-15
Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.
Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions
International Nuclear Information System (INIS)
Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay
2011-01-01
Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.
Phase equilibria constraints on models of subduction zone magmatism
Myers, James D.; Johnston, Dana A.
Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc
International Nuclear Information System (INIS)
Wan, Li; Li, Hengde; Huang, Cheng; Feng, Yuqing; Chu, Guoqiang; Zheng, Yuying; Tan, Wei; Qin, Yanlin; Sun, Dalei; Fang, Yanxiong
2017-01-01
Highlights: • Ternary LLEs containing linalool and geraniol are presented. • Distribution ratios of 1-propanol in the mixtures are examined. • Influence of the temperature on the LLE is studied. • The LLE data were correlated using the NRTL and UNIQUAC models. - Abstract: Linalool and geraniol are the primary components of rose oil, palmarosa oil, and citronella oil and many other essential oils, and two important compounds used in the flavour and fragrance, cosmetic or pharmaceutical industries. Phase equilibria (LLE, VLE, solubility, etc.) and related thermodynamic properties of a mixture are essential in the processes design and control of mass transfer process. In this work, experimental (liquid + liquid) equilibria data of the systems (water + 1-propanl + linalool) and (water + 1-propanl + geraniol) are presented. The (liquid + liquid) equilibria of both systems were determined with a tie-line method at T = (283.15, 298.15 and 313.15) K under atmospheric pressure. The well-known Hand, Bachman and Othmer–Tobias equations were used to test the reliability of the experimental values. The influence of the temperature on the (liquid + liquid) phase equilibria of the mixtures, the binodal curves and distribution ratios of 1-propanl are shown and discussed. Moreover, the NRTL and UNIQUAC models were applied to fit the data for both ternary systems. The interaction parameters obtained from both models successfully correlated the equilibrium compositions. Furthermore, the ternary systems could be represented using the binary parameters of the thermodynamic model with a function of temperature.
International Nuclear Information System (INIS)
Agafonova, Luba E.; Varushchenko, Raisa M.; Druzhinina, Anna I.; Polyakova, Olga V.
2012-01-01
Highlights: ► Heat capacities, fusion properties of CH 3 OC(O)C 3 H 7 measured by adiabatic calorimetry. ► The temperature dependence of vapour pressure determined by comparative ebulliometry. ► The thermodynamic functions derived from experiment and calculated by DFT method. ► Extending vapour pressure of moderate interval to entire region of liquid. ► An increment of the entropy of carbonyl group was defined from experimental data. - Abstract: The heat capacity of methyl n-butanoate in crystalline and liquid states was measured by vacuum adiabatic calorimetry over the temperature range from (8 to 372) K. The triple point temperature, the enthalpy and entropy of fusion, and the purity of the sample were determined. The saturated vapour pressure and the boiling temperatures were determined by comparative ebulliometry in the “atmospheric” pressure range 10.8 ⩽ (p/kPa) ⩽ 99.6. The normal boiling temperature, T n.b , and the enthalpy of vaporization at T = 298.15 K and T n.b were derived. The thermodynamic functions (absolute entropy and changes of the enthalpy, and Gibbs free energy) were derived for the solid and liquid states in the temperature range studied and for the ideal gas state at T = 298.15 K. The ideal gas heat capacities and the absolute entropies of methyl n-butanoate (MeBu) and ethyl propanoate (EtPr) were calculated by statistical thermodynamics on the basis of the molecular constants determined by the use of density functional theory on the B3LYP level. The experimental vapour pressure of MeBu and EtPr of moderate temperature intervals, Δ exp T = (59/65) K, were extended to the entire range of the liquids, Δ liq T = (364.7/345.7) K by the methods of the corresponding states law and simultaneous treatment of the pT-parameters and low-temperature heat capacities of the ideal gas and liquid, respectively. An additive contribution of the carbonyl group CO–(C, O) connected with C and O atoms was determined for calculation of the
Spectrum Allocation for Decentralized Transmission Strategies: Properties of Nash Equilibria
Directory of Open Access Journals (Sweden)
Peter von Wrycza
2009-01-01
Full Text Available The interaction of two transmit-receive pairs coexisting in the same area and communicating using the same portion of the spectrum is analyzed from a game theoretic perspective. Each pair utilizes a decentralized iterative water-filling scheme to greedily maximize the individual rate. We study the dynamics of such a game and find properties of the resulting Nash equilibria. The region of achievable operating points is characterized for both low- and high-interference systems, and the dependence on the various system parameters is explicitly shown. We derive the region of possible signal space partitioning for the iterative water-filling scheme and show how the individual utility functions can be modified to alter its range. Utilizing global system knowledge, we design a modified game encouraging better operating points in terms of sum rate compared to those obtained using the iterative water-filling algorithm and show how such a game can be imitated in a decentralized noncooperative setting. Although we restrict the analysis to a two player game, analogous concepts can be used to design decentralized algorithms for scenarios with more players. The performance of the modified decentralized game is evaluated and compared to the iterative water-filling algorithm by numerical simulations.
Phase equilibria in the BaUO3-BaZrO3-BaMoO3 system
International Nuclear Information System (INIS)
Kurosaki, Ken; Yamanaka, Shinsuke; Matsuda, Tetsushi; Uno, Masayoshi; Yamamoto, Kazuya; Namekawa, Takashi
2002-01-01
The phase equilibria in the pseudo-ternary BaUO 3 -BaZrO 3 -BaMoO 3 system were studied to understand the thermochemical properties of the perovskite type gray oxide phase in high burnup MOX fuel. Thermodynamic equilibrium calculation for the system was performed by using a Chem Sage program under the various oxygen potentials. Solid solutions existing in the system were treated by an ideal solution model. The present calculation results well agreed with the previous reported post irradiation examination results, showing that BaMoO 3 was scarcely included in the gray oxide phase. (author)
Phase equilibria and thermodynamic functions for Ag-Hg and Cu-Hg binary systems
Energy Technology Data Exchange (ETDEWEB)
Liu, Yajun, E-mail: yajunliu@gatech.edu [School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Guan [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Jiang [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Chen, Yang [Mining, Metallurgy and Materials Research Department, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Long, Zhaohui [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)
2012-11-10
Highlights: Black-Right-Pointing-Pointer The thermodynamic properties of Ag-Hg and Cu-Hg are explored in order to facilitate dental materials design. Black-Right-Pointing-Pointer A self-consistent set of thermodynamic parameters is obtained. Black-Right-Pointing-Pointer The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag-Hg and Cu-Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.
Phase equilibria and thermodynamic functions for Ag–Hg and Cu–Hg binary systems
International Nuclear Information System (INIS)
Liu, Yajun; Wang, Guan; Wang, Jiang; Chen, Yang; Long, Zhaohui
2012-01-01
Highlights: ► The thermodynamic properties of Ag–Hg and Cu–Hg are explored in order to facilitate dental materials design. ► A self-consistent set of thermodynamic parameters is obtained. ► The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag–Hg and Cu–Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.
Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.
2011-01-01
As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…
New investigation of phase equilibria in the system Al-Cu-Si.
Ponweiser, Norbert; Richter, Klaus W
2012-01-25
The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.
DEFF Research Database (Denmark)
Fonseca, José M.S.; von Solms, Nicolas
2012-01-01
A new apparatus for the study of high-pressure phase equilibria at low temperatures using an analytical method was designed, assembled and tested. The apparatus was specially developed for the study of multi-phase equilibria in systems containing hydrocarbons, water and hydrate inhibitors, at tem...
DEFF Research Database (Denmark)
Cismondi, Martin; Mollerup, Jørgen M.; Zabaloy, Marcelo S.
2010-01-01
for a great diversity of mixtures. Nevertheless, the models for representing phase equilibria and physico-chemical properties of asymmetric systems may require more flexible mixing rules than the classical quadratic van der Waals (vdW) mixing rules or their equivalent (with regard to the number of available...... interaction parameters) in modern equations of state.In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties...
Systematic identification method for data analysis and phase equilibria modelling for lipids systems
DEFF Research Database (Denmark)
Perederic, Olivia A.; Cunico, Larissa P.; Kalakul, Sawitree
2018-01-01
Industrial use of lipids has been increasing as a consequence of increased developments related to biobased economies. In addition to applications in food-products, lipids are used by many industrial sectors, for example, biodiesel, edible oil, health, and personal care. Phase equilibria...
Phase equilibria, phases and compounds in the Ti-C system
International Nuclear Information System (INIS)
Gusev, Aleksandr I
2002-01-01
The results of experimental and theoretical investigations of the phase equilibria in the titanium-carbon system are generalised. The generalised thermodynamic characteristics of disordered titanium carbide TiC y , are reported. Peculiarities of the crystal structures of all the known and hypothetical compounds of titanium with carbon are considered in detail. The X-ray diffraction patterns which allow identification of all these compounds are presented. The phase diagrams of the Ti-C system constructed with allowance for atomic ordering of non-stoichio metric carbide, TiC y , and for the existence of the molecular cluster-like compounds Ti 8 C 12 and Ti 13 C 22 (TiC 2 ) are discussed. The bibliography includes 142 references.
Phase equilibria, phases and compounds in the Ti-C system
International Nuclear Information System (INIS)
Gusev, A.I.
2002-01-01
The results of experimental and theoretical investigations related to the phase equilibria in the titanium-carbon system are generalized. The generalized thermodynamic characteristics of the disordered titanium carbide TiC y are given. The crystal structure of all the discovered and hypothetical compounds of titanium with carbon are considered in detail. The x-ray diffraction patterns which allow one to identify all these compounds are given. The phase diagrams of the Ti-C system constructed with allowance for atomic ordering of non-stoichiometric TiC y carbide and for the existence of the compounds Ti 8 C 12 and Ti 13 C 22 (TiC 2 ) of the molecule cluster type are discussed [ru
Experimental investigation of phase equilibria in the Ni-Nb-V ternary system
Energy Technology Data Exchange (ETDEWEB)
Liu, Xingjun; Yang, Shuiyuan; Wang, Cuiping [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Lab. of Materials Genome; Zhang, Xianjie; Jiang, Hengxing; Shi, Zhan [Xiamen Univ. (China). Dept. of Materials Science and Engineering
2017-09-15
The phase equilibria of the Ni-Nb-V ternary system at 1000 C and 1200 C were established using electron probe microanalysis, X-ray diffraction and differential scanning calorimetry. The results of the investigation revealed that: (1) The Nb solubility in (Ni) and σ{sup '} phases was less than 10 at.%; (2) A ternary compound τ (NiNbV) was confirmed, in which V had a large solubility; (3) A new liquid region was evident at 1200 C, but was absent at 1000 C; (4) The lattice constants of Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7} phase decreased with increase in V content in the Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7}. The phase equilibria of the Ni-Nb-V ternary system will contribute to its thermodynamic assessment.
Phase equilibria of Al3(Ti,V,Zr) intermetallic system
International Nuclear Information System (INIS)
Park, S.I.; Han, S.Z.; Choi, S.K.; Lee, H.M.
1996-01-01
Trialuminides such as DO 22 -structured Al 3 Ti are promising candidates as potential materials for elevated temperature applications because of their attractive high temperature strength and excellent oxidation resistance along with their low density. However, in the tetragonal structure, slip systems are restricted due to low symmetry and the primary deformation mode is twinning. And, therefore, monolithic trialuminide compounds have been very impractical to be used as structural materials. When transition elements such as Ti, V and Zr which constitute trialuminides are alloyed in aluminum, they have low solubilities and low diffusion coefficients in the Al matrix. If precipitated as trialuminide intermetallics, they maintain a small lattice mismatch with the Al matrix, which reduces the interfacial energy between matrix and precipitates. As a result, these precipitates would have a large coarsening resistance in the matrix. As most of the previous works have been concentrated on the microstructural stability and mechanical properties, thermochemical properties will be treated in this work. In this study, phase equilibria and diagrams of Al 3 (Ti,V,Zr) systems will be experimentally determined and then thermodynamically analyzed with a hope to extend to the Al-Al 3 (Ti,V,Zr) composite system. This approach will then be used as a guide for alloy design of Al-Al 3 (Ti,V,Zr) composite system
Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system
International Nuclear Information System (INIS)
Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun
2017-01-01
The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.
High-pressure phase equilibria in the (carbon dioxide + 1-hexanol) system
International Nuclear Information System (INIS)
Secuianu, Catinca; Feroiu, Viorel; Geana, Dan
2010-01-01
(Vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) data for the (carbon dioxide + 1-hexanol) system were measured at (293.15, 303.15, 313.15, 333.15, and 353.15) K. Phase behaviour measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between (0.6 and 14.49) MPa. The Soave-Redlich-Kwong (SRK) equation of state (EOS) with classical van der Waals mixing rules (two-parameters conventional mixing rule, 2PCMR), was used in a semi-predictive approach, in order to represent the complex phase behaviour (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behaviour is reasonably well predicted.
Phase equilibria constraints on the chemical and physical evolution of the campanian ignimbrite
Fowler, S.J.; Spera, F.J.; Bohrson, W.A.; Belkin, H.E.; de Vivo, B.
2007-01-01
The Campanian Ignimbrite is a > 200 km3 trachyte-phonolite pyroclastic deposit that erupted at 39.3 ?? 0.1 ka within the Campi Flegrei west of Naples, Italy. Here we test the hypothesis that Campanian Ignimbrite magma was derived by isobaric crystal fractionation of a parental basaltic trachyandesitic melt that reacted and came into local equilibrium with small amounts (5-10 wt%) of crustal rock (skarns and foid-syenites) during crystallization. Comparison of observed crystal and magma compositions with results of phase equilibria assimilation-fractionation simulations (MELTS) is generally very good. Oxygen fugacity was approximately buffered along QFM+1 (where QFM is the quartz-fayalite-magnetite buffer) during isobaric fractionation at 0.15 GPa (???6 km depth). The parental melt, reconstructed from melt inclusion and host clinopyroxene compositions, is found to be basaltic trachyandesite liquid (51.1 wt% SiO2, 9.3 wt% MgO, 3 wt% H2O). A significant feature of phase equilibria simulations is the existence of a pseudo-invariant temperature, ???883??C, at which the fraction of melt remaining in the system decreases abruptly from ???0.5 to point leads to abrupt changes in the composition, properties (density, dissolved water content), and physical state (viscosity, volume fraction fluid) of melt and magma. A dramatic decrease in melt viscosity (from 1700 Pa s to ???200 Pa s), coupled with a change in the volume fraction of water in magma (from ??? 0.1 to 0.8) and a dramatic decrease in melt and magma density acted as a destabilizing eruption trigger. Thermal models suggest a timescale of ??? 200 kyr from the beginning of fractionation until eruption, leading to an apparent rate of evolved magma generation of about 10-3 km3/year. In situ crystallization and crystal settling in density-stratified regions, as well as in convectively mixed, less evolved subjacent magma, operate rapidly enough to match this apparent volumetric rate of evolved magma production
Phase equilibria in Ca–Co–O system
Czech Academy of Sciences Publication Activity Database
Sedmidubský, D.; Jakeš, V.; Jankovský, O.; Leitner, J.; Šofer, Z.; Hejtmánek, Jiří
2012-01-01
Roč. 194, OCT (2012), s. 199-205 ISSN 0022-4596 R&D Projects: GA ČR GA203/09/1036 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ca–Co–O system , Misfit cobaltites, Thermodynamic data, Phase diagrams * misfit cobaltites * thermodynamic data * phase diagrams Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.040, year: 2012
Generalized thermodynamics of phase equilibria in scalar active matter
Solon, Alexandre P.; Stenhammar, Joakim; Cates, Michael E.; Kafri, Yariv; Tailleur, Julien
2018-02-01
Motility-induced phase separation (MIPS) arises generically in fluids of self-propelled particles when interactions lead to a kinetic slowdown at high densities. Starting from a continuum description of scalar active matter akin to a generalized Cahn-Hilliard equation, we give a general prescription for the mean densities of coexisting phases in flux-free steady states that amounts, at a hydrodynamics scale, to extremizing an effective free energy. We illustrate our approach on two well-known models: self-propelled particles interacting either through a density-dependent propulsion speed or via direct pairwise forces. Our theory accounts quantitatively for their phase diagrams, providing a unified description of MIPS.
Ab initio study of phase equilibria in TiCx
DEFF Research Database (Denmark)
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti...
Boron incorporation into rutile: phase equilibria and structural considerations
International Nuclear Information System (INIS)
Grey, I.E.; Li, C.; MacRae, C.M.; Bursill, L.A.
1997-01-01
Reduction of rutile in the presence of borate flux stabilised the rutile phase relative to reduced rutiles due to incorporation of boron from the flux. In the presence of borates the rutile phase is stabilised to oxygen fugacities that are lower by almost two orders of magnitude compared with fugacities at the limit of the single-phase rutile phase field in the pure Ti-O system. Boron incorporation is accompanied by reduction of titanium to the trivalent state, according to the charge compensation relation: 3Ti 4+ ≡ 3 Ti 3+ + B 3+ . Results of powder X-ray diffraction and transmission electron microscopy studies on samples prepared in the temperature range 1100 to 1300 deg C have been used to establish a model for boron incorporation. It is proposed that at the temperatures studied, local defects in boron doped rutile result from displacement of titanium atoms to adjacent interstitial sites coupled with occupation by boron of the triangular face of the vacated octahedral sites. This atomic grouping represents a small element of the TiBO 3 (calcite-type) structure. Annealing at a lower temperature results in ordering of the local defects to form (101) r planar intergrowths of rutile and calcite-type structures. 14 refs., 3 tabs., 8 figs
Boron incorporation into rutile: phase equilibria and structural considerations
Energy Technology Data Exchange (ETDEWEB)
Grey, I.E.; Li, C.; MacRae, C.M. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Melbourne, VIC (Australia). Div of Minerals; Bursill, L.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics
1997-06-01
Reduction of rutile in the presence of borate flux stabilised the rutile phase relative to reduced rutiles due to incorporation of boron from the flux. In the presence of borates the rutile phase is stabilised to oxygen fugacities that are lower by almost two orders of magnitude compared with fugacities at the limit of the single-phase rutile phase field in the pure Ti-O system. Boron incorporation is accompanied by reduction of titanium to the trivalent state, according to the charge compensation relation: 3Ti{sup 4+}{identical_to} 3 Ti{sup 3+} + B{sup 3+}. Results of powder X-ray diffraction and transmission electron microscopy studies on samples prepared in the temperature range 1100 to 1300 deg C have been used to establish a model for boron incorporation. It is proposed that at the temperatures studied, local defects in boron doped rutile result from displacement of titanium atoms to adjacent interstitial sites coupled with occupation by boron of the triangular face of the vacated octahedral sites. This atomic grouping represents a small element of the TiBO{sub 3} (calcite-type) structure. Annealing at a lower temperature results in ordering of the local defects to form (101){sub r} planar intergrowths of rutile and calcite-type structures. 14 refs., 3 tabs., 8 figs.
Thermal analysis and prediction of phase equilibria in ternary Pb-Zn-Ag system
Directory of Open Access Journals (Sweden)
Živković D.
2011-01-01
Full Text Available Ternary Pb-Zn-Ag system is typical for some physicochemical processes going on in refining phase in the extractive metallurgy of lead. Therefore, investigation of mentioned system is important from both theoretical and practical research of the phenomena occurring during the lead desilverizing process. The results of experimental investigation using differential thermal analysis (DTA and thermodynamic calculation of phase equilibria in Pb-Zn-Ag system according to CALPHAD method, in the sections with Zn:Ag mass ratio equal to 90:10, 70:30 and 50:50, are presented in this paper.
Corium phase equilibria based on MASCA, METCOR and CORPHAD results
Energy Technology Data Exchange (ETDEWEB)
Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I.; Mezentseva, L.P. [Grebenshikov Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Krushinov, E.V.; Kotova, S.Yu.; Kosarevsky, R.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Barrachin, M. [Institut de Radioprotection et Surete Nucleaire IRSN/DPAM, St Paul lez Durance (France); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fichot, F. [Institut de Radioprotection et Surete Nucleaire IRSN/DPAM, St Paul lez Durance (France); Fischer, M. [AREVA NP GmbH, Erlangen (Germany)], E-mail: Manfred.Fischer@areva.com
2008-10-15
Experimental data on component partitioning between suboxidized corium melt and steel in the in-vessel melt retention (IVR) conditions are compared. The data are produced within the OECD MASCA program and the ISTC CORPHAD project under close-to-isothermal conditions and in the ISTC METCOR project under thermal gradient conditions. Chemical equilibrium in the U-Zr-Fe(Cr,Ni,...)-O system is reached in all experiments. In MASCA tests the molten pool formed under inert atmosphere has two immiscible liquids, oxygen-enriched (oxidic) and oxygen-depleted (metallic), resulting of the miscibility gap of the mentioned system. Sub-system data of the U-Zr-Fe(Cr,Ni,...)-O phase diagram investigated within the ISTC CORPHAD project are interpreted in relation with the MASCA results. In METCOR tests the equilibrium is established between oxidic liquid and mushy metallic part of the system. Results of comparison are discussed and the implications for IVR noted.
MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR COMPLEX FLUIDS
Energy Technology Data Exchange (ETDEWEB)
Athanassios Z. Panagiotopoulos
2009-09-09
The general area of this project was the development and application of novel molecular simulation methods for prediction of thermodynamic and structural properties of complex polymeric, surfactant and ionic fluids. Over this project period, we have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong or long-range interactions in these systems and have generated data for well-defined mod-els that can be used to test theories and compare to experimental data. Overall, 42 archival papers and many invited and contributed presentations and lectures have been based on work supported by this project. 6 PhD, 1 M.S. and 2 postdoctoral students have been associated with this work, as listed in the body of the report.
Molecular Simulation Of Phase Equilibria For Complex Fluids
International Nuclear Information System (INIS)
Panagiotopoulos, Athanassios Z.
2009-01-01
The general area of this project was the development and application of novel molecular simulation methods for prediction of thermodynamic and structural properties of complex polymeric, surfactant and ionic fluids. Over this project period, we have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong or long-range interactions in these systems and have generated data for well-defined mod-els that can be used to test theories and compare to experimental data. Overall, 42 archival papers and many invited and contributed presentations and lectures have been based on work supported by this project. 6 PhD, 1 M.S. and 2 postdoctoral students have been associated with this work, as listed in the body of the report.
Thermodynamic analysis and phase equilibria investigation in Pb−Zn−Ag system
Directory of Open Access Journals (Sweden)
Mitovski Aleksandra M.
2010-01-01
Full Text Available Physico-chemical processes that take place during the refining process in the extractive metallurgy of lead, are connected with ternary Pb−Zn−Ag system, which is necessary to study from the theoretical practical and aspects. Such investigation is important from production point of view, because of the phenomena that occur during desilvering of lead which is one of the important stages during lead refining process. Process of lead desilvering binds to ternary system Pb−Zn−Ag, which was the reason for numerous investigations, both from thermodynamic point of view and in terms of testing and determining the phase diagram, bearing in mind the theoretical, and practical importance of knowledge about the processes which are going in investigated system. The paper presents the results of thermodynamic analysis and investigation of phase equilibria of the Pb−Zn−Ag ternary system using the method of thermodynamic predictions and phase diagrams calculations, respectively, and the experimental results of metalography obtained by optical microscopy. Phase diagram of the vertical section Pb−Zn80Ag20 is presented, obtained by CALPHAD calculation methodology, and using PANDAT thermodynamic software, compared to experimental results obtained by DTA analysis. The results show a pronounced break in solubility, which is characteristic for the whole ternary Pb−Zn−Ag system. Also, it can be noticed that the thermodynamic properties follow the behavior of this system, which is expressed through positive deviation of Raoult’s law, pointing to the lack of lead affinity compared to the other two components in the system. The optical microscopy results of the investigated system show the following: - Sample L1 (weight% Pb = 98: the structure of the observed section shows double eutectic (Pbsol+Zn−Agsol which lies in the base of the primary crystals of lead (Pbsol - Samples L2−L5: the structure consists of a dual eutectic (Pbsol+Zn−Agsol and
Prediction of phase equilibria in the In–Sb–Pb system
Directory of Open Access Journals (Sweden)
DUSKO MINIC
2008-03-01
Full Text Available Binary thermodynamic data, successfully used for phase diagram calculations of the binary systems In–Sb, Pb–Sb and In–Pb, were used for the prediction of the phase equilibria in the ternary In–Sb–Pb system. The predicted equilibrium phase diagram of the vertical Pb–InSb section was compared with the results of differential thermal analysis DTA and optical microscopy. The calculated phase diagram of the isothermal section at 300 °C was compared with the experimentally (SEM, EDX determined composition of phases in the chosen alloys after annealing. Very good agreement between the binary-based thermodynamic prediction and the experimental data was found in all cases. The calculated liquidus projection of the ternary In–Sb–Pb system is also presented.
Experimental investigation of phase equilibria in the Nb-Si-Ta ternary system
Energy Technology Data Exchange (ETDEWEB)
Li, Jian; Wang, Cuiping; Yao, Jun; Yang, Shuiyuan; Zhan Shi; Liu, Xingjun [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Laboratory of Materials Genome; Kang, Yongwang [Beijing Institute of Aeronautical Materials (China). Science and Technology on Advanced High Temperature Structural Materials Lab.
2016-12-15
The phase equilibria in the Nb-Si-Ta ternary system at 1 373 K, 1 473 K and 1 573 K were investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction. The isothermal sections at 1 373 K, 1 473 K and 1 573 K consist of two three-phase regions and seven two-phase regions, without any ternary compounds. The compounds of NbSi{sub 2} and TaSi{sub 2}, αNb{sub 5}Si{sub 3} and αTa{sub 5}Si{sub 3} form continuous solid solutions, respectively. The solubilities of Nb in Ta{sub 3}Si and Ta{sub 2}Si phases are extremely large, whereas the solubility of Si in the β(Nb, Ta) phase is relatively small.
Experimental investigation of phase equilibria in the Co-W-V ternary system
International Nuclear Information System (INIS)
Liu Xingjun; Zhu Yihong; Yu Yan; Wang Cuiping
2011-01-01
Highlights: → Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined. → No ternary compound was found in the Co-W-V ternary system. → A stable liquid miscibility gap is newly discovered in the Co-W-V ternary system. → This work is of great essence to establish the thermodynamic database for the Co-based alloys. - Abstract: The phase equilibria in the Co-W-V ternary system were experimentally investigated by optical microscopy (OM), electron probe microanalysis (EPMA) and X-ray diffraction (XRD) on the equilibrated alloys. Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined, and no ternary compound was found in this system. In addition, a novel phenomena induced by the liquid phase separation in the Co-W-V alloys was firstly discovered, suggesting that a stable liquid miscibility gap exists in the Co-W-V ternary system. The newly determined phase equilibria and firstly discovered phase separation phenomena in the Co-W-V system will provide important information for the development of Co-W based alloys.
Phases, phase equilibria, and phase rules in low-dimensional systems
International Nuclear Information System (INIS)
Frolov, T.; Mishin, Y.
2015-01-01
We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality
Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels
McMurray, J. W.; Hu, R.; Ushakov, S. V.; Shin, D.; Pint, B. A.; Terrani, K. A.; Navrotsky, A.
2017-08-01
Ferritic FeCrAl alloys are candidate accident tolerant cladding materials. There is a paucity of data concerning the melting behavior for FeCrAl and its oxides. Analysis tools have therefore had to utilize assumptions for simulations using FeCrAl cladding. The focus of this study is to examine in some detail the solid-liquid phase equilibria of FeCrAl alloys and spinels with the aim of improving the accuracy of severe accident scenario computational studies.
Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents
International Nuclear Information System (INIS)
Domanska, Urszula; Lugowska, Katarzyna; Pernak, Juliusz
2007-01-01
The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO 3 ], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO 3 ] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO 3 ] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO 3 ] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G Ex models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular
Energy Technology Data Exchange (ETDEWEB)
Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)
2009-03-31
Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.
Phase equilibria in Dy-Cu-Al system at 500 deg C
International Nuclear Information System (INIS)
Kuz'ma, Yu.B.; Milyan, V.V.
1989-01-01
Using the methods of X-ray diffraction analysis a diagram of phase equilibria in Dy-Cu-Al system at 500 deg C is plotted. Boundaries of solid solutions on the basis of DyCu 2 , DyCu and DyAl 2 compounds are determined and homogeneity regions of ternary compounds Dy 2 (Cu, Al) 7 and Dy(CuAl) 5 are ascertained. Compounds DyCuAl 3 , Dy 4 Cu 4 Al 11 and Dy 5 Cu 6 Al 9 have been detected for the first time
Phase equilibria and critical phenomena in the cesium nitrate-water-diethylamine ternary system
International Nuclear Information System (INIS)
Il'in, K.K.; Kurskij, V.F.; Cherkasov, D.G.
2008-01-01
Phase equilibria and critical events in ternary cesium nitrate-water-diethylamine system, where border binary liquid system is characterized by aliquation with lower critical temperature of solution (LCTS), have been investigated by visual-polythermal method in the 60-150 Deg C range. Interaction of cesium nitrate in the water-diethylamine system leads to lowering of its LCTS from 146.1 to 69.3 Deg C and decrease of mutual solubility. Distribution ratios of diethylamine between water and organic phases of monotectic equilibrium are calculated at different temperatures. Diethylamine salting out from aqueous solutions by cesium nitrates becomes stronger with rising temperature. Plotted isotherms of phase confirms generalized scheme of topological transformations of ternary systems phase diagrams: salt-binary solvent with salting out
Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system
Energy Technology Data Exchange (ETDEWEB)
Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome
2017-08-15
The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.
Evaluation of Thermodynamic Models for Predicting Phase Equilibria of CO2 + Impurity Binary Mixture
Shin, Byeong Soo; Rho, Won Gu; You, Seong-Sik; Kang, Jeong Won; Lee, Chul Soo
2018-03-01
For the design and operation of CO2 capture and storage (CCS) processes, equation of state (EoS) models are used for phase equilibrium calculations. Reliability of an EoS model plays a crucial role, and many variations of EoS models have been reported and continue to be published. The prediction of phase equilibria for CO2 mixtures containing SO2, N2, NO, H2, O2, CH4, H2S, Ar, and H2O is important for CO2 transportation because the captured gas normally contains small amounts of impurities even though it is purified in advance. For the design of pipelines in deep sea or arctic conditions, flow assurance and safety are considered priority issues, and highly reliable calculations are required. In this work, predictive Soave-Redlich-Kwong, cubic plus association, Groupe Européen de Recherches Gazières (GERG-2008), perturbed-chain statistical associating fluid theory, and non-random lattice fluids hydrogen bond EoS models were compared regarding performance in calculating phase equilibria of CO2-impurity binary mixtures and with the collected literature data. No single EoS could cover the entire range of systems considered in this study. Weaknesses and strong points of each EoS model were analyzed, and recommendations are given as guidelines for safe design and operation of CCS processes.
Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.
2012-04-01
The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde
Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases
International Nuclear Information System (INIS)
Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.
2010-01-01
Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.
Energy Technology Data Exchange (ETDEWEB)
Rosak, J; Mertl, I; Huml, M; Wichterle, I
1980-01-01
Available data on phase equilibria in binary mixtures pertaining to the system ethanol - water - impurities (7 compounds that represent the main impurities present in raw synthetic or fermentation ethanol) have been gathered for the computer calculation of a column to be used for the refining of ethanol. Missing experimental data on phase equilibria were supplied by simulation using the increment method UNIFAC which predicts phase equilibria on the basis of the chemical structure. All data about the behavior of binary mixtures were correlated by means of the NRTL method and the sets of constants thus obtained were then used in calculations of the column for the refining of ethanol. The results were compared with reality verified on industrial scale.
Epifano, Enrica; Guéneau, Christine; Belin, Renaud C; Vauchy, Romain; Lebreton, Florent; Richaud, Jean-Christophe; Joly, Alexis; Valot, Christophe; Martin, Philippe M
2017-07-03
In the frame of minor actinide transmutation, americium can be diluted in UO 2 and (U, Pu)O 2 fuels burned in fast neutron reactors. The first mandatory step to foresee the influence of Am on the in-reactor behavior of transmutation targets or fuel is to have fundamental knowledge of the Am-O binary system and, in particular, of the AmO 2-x phase. In this study, we coupled HT-XRD (high-temperature X-ray diffraction) experiments with CALPHAD thermodynamic modeling to provide new insights into the structural properties and phase equilibria in the AmO 2-x -AmO 1.61+x -Am 2 O 3 domain. Because of this approach, we were able for the first time to assess the relationships between temperature, lattice parameter, and hypostoichiometry for fcc AmO 2-x . We showed the presence of a hyperstoichiometric existence domain for the bcc AmO 1.61+x phase and the absence of a miscibility gap in the fcc AmO 2-x phase, contrary to previous representations of the phase diagram. Finally, with the new experimental data, a new CALPHAD thermodynamic model of the Am-O system was developed, and an improved version of the phase diagram is presented.
Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system
Energy Technology Data Exchange (ETDEWEB)
Manasijevic, Dragan [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Mitovski, Aleksandra, E-mail: amitovski@tf.bor.ac.rs [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Minic, Dusko [University of Pristina, Faculty of Technical Sciences, 38220 Kosovska Mitrovica (Serbia); Zivkovic, Dragana; Marjanovic, Sasa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Todorovic, Radisa [Institute of Mining and Metallurgy, Zeleni Bulevar 35, 19210 Bor (Serbia); Balanovic, Ljubisa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia)
2010-05-20
The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.
Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system
International Nuclear Information System (INIS)
Manasijevic, Dragan; Mitovski, Aleksandra; Minic, Dusko; Zivkovic, Dragana; Marjanovic, Sasa; Todorovic, Radisa; Balanovic, Ljubisa
2010-01-01
The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht
2011-01-01
In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid–liqu...
Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.
Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen
2009-04-23
In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.
Phase equilibria in TlX-Cd(Zn)X (X-S, Se, Te) systems
International Nuclear Information System (INIS)
Gusejnov, F.Kh.; Babanly, M.B.; Kuliev, A.A.
1982-01-01
The methods of DTA, RPA and measurement of the alloys microhardness have been used to investigate the phase equilibria in the TlX-Zn(Cd)X systems. It is established that the TlZn(Cd)X 2 compounds, the presence of which is mentioned in the literature earlier, do not form in these systems. The TlSe-Zn(Cd)Se systems apply to the simple eutectic type and characterized by digenerated eutectic near the TlSe. Thermodynamical analysis of the liquidus of the TlSe-CdSe and TlTe-Zn(Cd)Te systems in approximation of the regular solutions, taking into account the dissociation of tallium chalcogenides in liquid phase, is made
Experimental determination of the phase equilibria in the Co-Fe-Zr ternary system
International Nuclear Information System (INIS)
Wang, C.P.; Yu, Y.; Zhang, H.H.; Hu, H.F.; Liu, X.J.
2011-01-01
Research highlights: → We determined four isothermal sections of the Co-Fe-Zr system from 1000 o C to 1300 o C. → No ternary compound was found in the Co-Fe-Zr ternary system. → The solubility of Fe in the liquid phase at 1300 o C is extremely large. → The (Co, Fe) 2 Zr phase form the continuous solution from Co-Zr side to Fe-Zr side. → The solubility of Zr in the fcc (Co, Fe) phase is extremely small. - Abstract: The phase equilibria in the Co-Fe-Zr ternary system were investigated by means of optical microscopy (OM), electron probe microanalysis (EPMA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) on equilibrated ternary alloys. Four isothermal sections of the Co-Fe-Zr ternary system at 1300 o C, 1200 o C, 1100 o C and 1000 o C were experimentally established. The experimental results indicate that (1) no ternary compound was found in this system; (2) the solubility of Fe in the liquid phase of the Co-rich corner at 1300 o C is extremely large; (3) the liquid phase in the Zr-rich corner and the (Co,Fe) 2 Zr phase form the continuous solid solutions from the Co-Zr side to the Fe-Zr side; (4) the solubility of Zr in the fcc (Co, Fe) phase is extremely small.
Experimental investigation of the phase equilibria in the Co-Fe-Ti ternary system
Energy Technology Data Exchange (ETDEWEB)
Yuan, Chaohui; Chen, Chong; Peng, Yingbiao; Du, Yong; Li, Kun [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Lu, Xingxu [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Central South Univ., School of Materials Science and Engineering, Changsha (China)
2015-08-15
Phase equilibria in the Co-Fe-Ti ternary system were investigated by means of the equilibrated alloy method with X-ray powder diffraction and electron probe microanalysis. No ternary compounds were found. The experimental results indicated the existence of seven two-phase and one three-phase regions at 600 C, five two-phase and two three-phase regions at 800 C, and six two-phase and two three-phase regions at 950 C. The solubility of Co in TiFe{sub 2} was determined to be larger than 54 at.% at all investigated temperatures, and the solubilities of Fe in TiCo{sub 3} and Ti{sub 2}Co showed an appreciable increase with increasing temperature. The three-phase equilibrium in the Ti-rich corner at 800 C was revealed to be ((β-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) rather than ((α-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) reported in previous investigations. Based on the experimental data obtained in the present work, three isothermal sections at 600, 800 and 950 C were established.
Energy Technology Data Exchange (ETDEWEB)
Tan, K.B., E-mail: tankb@science.upm.my [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Chon, M.P. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Mechanical and Material Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zainal, Z.; Taufiq Yap, Y.H.; Tan, P.Y. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)
2014-04-01
Highlights: • Novel BCT monoclinic zirconolite phase was prepared through solid state reaction. • Comprehensive study of reaction mechanism was performed by careful firing control. • Qualitative structural and phase analyses were conducted. • Electrical response in broad range of temperature and frequency was investigated. - Abstract: Synthesis of novel monoclinic zirconolite, Bi{sub 1.92}Cu{sub 0.08}(Cu{sub 0.3}Ta{sub 0.7}){sub 2}O{sub 7.06} (β-BCT) using solid state reaction had been finalised at the firing temperature of 900 °C over 24 h. The X–ray diffraction pattern of β-BCT was fully indexed on a monoclinic symmetry, space group, C2/c with lattice constants, a = 13.1052 (8), b = 7.6749 (5), c = 12.162 (6), α = γ = 90° and β = 101.32° (1), respectively. The reaction mechanism study indicated phase formation was greatly influenced by the reaction between intermediate bismuth tantalate binary phases and CuO at elevated temperatures. β-BCT was thermally stable up to a temperature of 900 °C and contained spherulite grains with sizes ranging from 1 to 14 μm. Electrical properties of this material were characterised over a broad temperature range covering temperatures from 10 K to 874 K. At the temperature of 304 K, two semicircles were discernible in complex Cole–Cole plot showing an insulating grain boundary with C{sub gb} = 6.63 × 10{sup −9} F cm{sup −1} and a bulk response capacitance, C{sub b} = 6.74 × 10{sup −12} F cm{sup −1}. The Power law frequency-dependent ac conductivity of β-BCT was apparent in three frequency regimes; a low–frequency plateau regime, a high-frequency plateau regime and a dispersive regime taking place in the temperature range of 220–576 K. The frequency-dependent ac conductivity of β-BCT with increasing temperature was attributed to the thermal activated electrical conduction mechanism within the structure.
Experimental investigation of phase equilibria in the Co-Ni-Zr ternary system
Energy Technology Data Exchange (ETDEWEB)
Liu, Xingjun; Yang, Shuiyuan; Yu, Wenjie; Wang, Cuiping [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome; Xiong, Huaping; Cheng, Yaoyong; Wu, Xin [Beijing Institute of Aeronautical Materials (China). Div. of Welding and Forging
2016-10-15
The phase equilibria of the Co-Ni-Zr ternary system at 1 000 C, 1 100 C and 1 200 C were experimentally investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction on the equilibrated ternary alloys. In this study, no ternary compound is found. The (αCo, Ni) phase region extends from the Ni-rich corner to the Co-rich corner with small solubility of Zr at three sections. At 1 000 C and 1 100 C, Ni{sub 5}Zr, Co{sub 2}Zr and Ni{sub 10}Zr{sub 7} phases have large solid solution ranges, but Ni{sub 10}Zr{sub 7} phase disappears at 1 200 C. The Ni{sub 7}Zr{sub 2}, NiZr, Co{sub 11}Zr{sub 2}, Co{sub 23}Zr{sub 6} and CoZr phases exhibit nearly linear compounds in the studied sections, and have large composition ranges. Additionally, some differences in phase relationship exist among the above three isothermal sections.
Experimental investigation of phase equilibria in the Cu–Ni–Si ternary system
Energy Technology Data Exchange (ETDEWEB)
Liu, Xingjun; Xiang, Shulin; Yang, Shuiyuan; Shi, Rongpei; Wang, Cuiping, E-mail: wangcp@xmu.edu.cn
2013-11-25
Highlights: •Three isothermal sections of the Cu–Ni–Si system have been investigated. •The ternary compound τ{sub 1} and the liquid phase are confirmed at 1073 K. •The γ (Cu{sub 5}Si) and θ (Ni{sub 2}Si) phases can be stabilized at higher or lower temperatures. -- Abstract: The phase equilibria in the Cu–Ni–Si ternary system have been investigated experimentally by means of electron probe microanalysis (EPMA), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis on equilibrated ternary alloys. Three isothermal sections at 1073, 1173 and 1273 K are determined in the whole composition range. The existence of liquid phase and the ternary compound τ{sub 1} is confirmed at 1073 K. The binary γ (Cu{sub 5}Si), γ (Ni{sub 31}Si{sub 12}), δ (Ni{sub 2}Si) and θ (Ni{sub 2}Si) phases exhibit a considerable solubility of a third element. In addition, the γ (Cu{sub 5}Si) and θ (Ni{sub 2}Si) phases can be stabilized by the addition of Ni and Cu, respectively.
DEFF Research Database (Denmark)
Tybjerg, Peter Chr. V.; Kontogeorgis, Georgios; Michelsen, Michael Locht
2010-01-01
Proper representation at various conditions of phase equilibria of methanol-containing mixtures (with hydrocarbons, water, etc.) is Important for oil flow assurance purposes In this work two association equations of state. CPA and sPC-SAFT, are applied to methanol-containing mixtures The purpose ...
Modelling of phase equilibria for associating mixtures using an equation of state
International Nuclear Information System (INIS)
Ferreira, Olga; Brignole, Esteban A.; Macedo, Eugenia A.
2004-01-01
In the present work, the group contribution with association equation of state (GCA-EoS) is extended to represent phase equilibria in mixtures containing acids, esters, and ketones, with water, alcohols, and any number of inert components. Association effects are represented by a group-contribution approach. Self- and cross-association between the associating groups present in these mixtures are considered. The GCA-EoS model is compared to the group-contribution method MHV2, which does not take into account explicitly association effects. The results obtained with the GCA-EoS model are, in general, more accurate when compared to the ones achieved by the MHV2 equation with less number of parameters. Model predictions are presented for binary self- and cross-associating mixtures
Melt-gas phase equilibria and state diagrams of the selenium-tellurium system
Volodin, V. N.; Trebukhov, S. A.; Burabaeva, N. M.; Nitsenko, A. V.
2017-05-01
The partial pressures of saturated vapor of the components in the Se-Te system are determined and presented in the form of temperature-concentration dependences from which the boundaries of the melt-gas phase transition are calculated at atmospheric pressure and vacuums of 2000 and 100 Pa. The existence of azeotropic mixtures is revealed. It is found that the points of inseparably boiling melts correspond to 7.5 at % of Se and 995°C at 101325 Pa, 10.9 at % at 673°C and 19.5 at % at 522°C in vacuums of 2000 and 100 Pa, respectively. A complete state diagram is constructed, including the fields of gas-liquid equilibria at atmospheric and low pressures, the boundaries of which allow us to assess the behavior of selenium and tellurium upon distillation fractionation.
Urusova, A. S.; Cherepanov, V. A.; Aksenova, T. V.; Gavrilova, L. Y.; Kiselev, E. A.
2013-01-01
The phase equilibria in the Y-Ba-Co-O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y-Ba-Co-O system at 1373 K in air were: YBaCo2O5+δ, YBaCo4O 7 and BaCo1-yYyO3-δ (0.09≤y≤0.42). It was shown that YBaCo2O5+δ possesses tetragonal structure with the 3ap×3a p×2ap superstructure (sp. gr. P4/mmm). High-temperature X-ray diffraction analysis of the YBaCo2O 5+δ in the temperature range from 298 K up to 1073 K under Po2=0.21 atm has not shown any phase tra...
Solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K
International Nuclear Information System (INIS)
Ren Jing; Gu Zhengfei; Cheng Gang; Zhou Huaiying
2005-01-01
The solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K (Pr ≤ 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 13 single-phase regions, 22 two-phase regions and 10 three-phase regions. At 1173 K, we have observed that the maximum solid solubility of Pt in α-Fe is below 1.5 at.% and the solid solution region of Pt in γ-Fe is from 2 to 35 at.%; the maximum solid solubility of Fe in Pt is 18 at.%. The maximum solubility of Fe in PrPt 5 , PrPt 3 , PrPt 2 , Pr 3 Pt 4 , PrPt, Pr 3 Pt 2 and Pr 7 Pt 3 is below 1 at.%. The maximum solubility of Pr in α-(Fe, Pt), γ-(Fe, Pt), FePt, FePt 3 and (Pt, Fe) (the solid solution of Fe in Pt) is 6, 2, 4, 4.5 and 1.5 at.%, respectively. In this work, it is found that the phase Pr 3 Pt 4 does not exist in the ternary system. The binary compounds Fe 7 Pr and Fe 2 Pr and any new ternary compounds were not observed
Phase equilibria of the Al-Pr-Zr ternary system at 773 K
Energy Technology Data Exchange (ETDEWEB)
She, Jia [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); Zhan, Yongzhong, E-mail: zyzmatres@yahoo.com.c [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); Li, Chunliu [Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); Du, Yong; Xu, Honghui; He, Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)
2010-07-30
The phase equilibria of the Al-Pr-Zr ternary system at 773 K have been investigated mainly by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA). The 14 binary compounds, i.e. AlZr{sub 3}, AlZr{sub 2}, Al{sub 2}Zr{sub 3}, Al{sub 3}Zr{sub 4}, AlZr, Al{sub 3}Zr{sub 2}, Al{sub 2}Zr, Al{sub 3}Zr, {alpha}-Al{sub 11}Pr{sub 3}, Al{sub 3}Pr, Al{sub 2}Pr, {beta}-AlPr, AlPr{sub 2} and {beta}-AlPr{sub 3} were confirmed. No binary compound was found in the Pr-Zr binary system. The result shows that the isothermal section of the Al-Pr-Zr ternary system at 773 K consists of 17 single-phase regions, 31 two-phase regions and 15 three-phase regions. All the intermediate compounds phases in this system have not a remarkable solid solution at 773 K. No ternary compound is found in this work.
Phase equilibria of the Al-Pr-Zr ternary system at 773 K
International Nuclear Information System (INIS)
She, Jia; Zhan, Yongzhong; Li, Chunliu; Du, Yong; Xu, Honghui; He, Yuehui
2010-01-01
The phase equilibria of the Al-Pr-Zr ternary system at 773 K have been investigated mainly by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA). The 14 binary compounds, i.e. AlZr 3 , AlZr 2 , Al 2 Zr 3 , Al 3 Zr 4 , AlZr, Al 3 Zr 2 , Al 2 Zr, Al 3 Zr, α-Al 11 Pr 3 , Al 3 Pr, Al 2 Pr, β-AlPr, AlPr 2 and β-AlPr 3 were confirmed. No binary compound was found in the Pr-Zr binary system. The result shows that the isothermal section of the Al-Pr-Zr ternary system at 773 K consists of 17 single-phase regions, 31 two-phase regions and 15 three-phase regions. All the intermediate compounds phases in this system have not a remarkable solid solution at 773 K. No ternary compound is found in this work.
The calculation of phase equilibria of oxide core-concrete systems
International Nuclear Information System (INIS)
Ball, R.G.J.; Mignanelli, M.A.; Barry, T.I.; Gisby, J.A.
1993-01-01
Thermodynamic models have been developed to describe the phase equilibria of oxide solutions appropriate for the understanding of the chemical interactions between nuclear reactor core debris and concrete. For this purpose, the Gibbs energy of the liquid phase is described by the inclusion of associate species and nonideal interactions between the components and associate species. Assessments of the thermodynamic and phase equilibrium data for the subsystems of the CaO-Al 2 O 3 -SiO 2 -UO 2 -ZrO 2 system have been used to obtain a thermodynamic description of the crystalline and liquid phases in good agreement with published data. The data for the subsystems have then been combined, using well established principles, to predict the phase relationships in the ternary and quaternary sytsems and in the overall quinary system. The results show that he overall system cannot properly be treated as a pseudo-ideal liquid and solid solution, as used in some computer codes which attempt to model the physics and chemistry of core-concrete interactions. The limitations of the current model are discussed. (orig.)
Phase equilibria in the ternary In-Ni-Sn system at 700 °C.
Schmetterer, C; Zemanova, A; Flandorfer, H; Kroupa, A; Ipser, H
2013-04-01
The phase equilibria of the ternary system In-Ni-Sn were investigated experimentally at 700 °C using X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron micro probe analysis (EMPA) and energy dispersive X-ray spectroscopy (EDX). A corresponding isothermal section was established based on these results. This particular temperature was chosen because it allowed obtaining reliable results within reasonable time. The existence of the ternary phase InNi 6 Sn 5 was confirmed whereas the ternary compound In 2 NiSn, reported earlier in literature, was found to be part of a large solid solution field based on binary InNi. The ternary solubility of the binary phases was established, and continuous solid solutions were found between the isostructural phases Ni 3 Sn LT and InNi 3 as well as between Ni 3 Sn 2 HT and InNi 2 . In addition, this isothermal section could be well reproduced by CALPHAD modelling. The resulting calculated isotherm at 700 °C is presented, too, and compared with the experimental results.
The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O
Anovitz, Lawrence M.; Treiman, A.H.; Essene, E.J.; Hemingway, B.S.; Westrum, E.F.; Wall, V.J.; Burriel, R.; Bohlen, S.R.
1985-01-01
Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/(mol ?? K). Calculations from published experimental data on the reduction of ilmenite yield ??2980(I1) = -1153.9 kJ/(mol ?? K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of f{hook}O2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookitess and hematite-ilmenitess. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling. ?? 1985.
Survey of the calculation of phase equilibria with the aid of the UNIFAC-method
Energy Technology Data Exchange (ETDEWEB)
Gmehling, J.; Rasmussen, P.; Fredenslund, A.
1981-09-01
In the design of diffusional separation processes and for many other practical purposes one needs quantitative estimates of phase equilibrium compositions. These compositions can today be predicted with good results using modern, two-parameter models for the excess Gibbs energy. However, since the number of different multicomponent mixtures of interest in chemical technology is very large, it is in practise often not possible to find experimental data in the literature for all the possible binary combinations. In these cases it is necessary to use a predictive approach. Today, group-contribution methods such as ASOG and UNIFAC may be used with confidence to predict liquid phase excess Gibbs energies. In these methods, the mixture is assumed to consist not of molecules but of the functional groups which, when added form the parent molecules. This has the advantage that a large number of mixtures of interest in chemical technology can be described in terms of relatively few parameters characterizing the interactions between the groups. This review article demonstrates the application of the UNIFAC method to various practical problems within phase equilibria. The UNIFAC method applies to mixtures of nonelectrolytes in the temperature range of 275-425 K and at pressures up to 10 bar.
International Nuclear Information System (INIS)
Throop, G.J.; Rogl, P.; Rudy, E.
1978-01-01
A Fortran IV program was set up for the calculation of phase equilibria and tieline distributions in ternary systems of the type: transition metal-transition metal-nonmetal (interstitial type of solid solutions). The method offers the possibility of determining the thermodynamic values for unstable compounds through their influence upon ternary phase equilibria. The variation of the free enthalpy of formation of ternary solid solutions is calculated as a function of nonmetal content, thus describing the actual curvature of the phase boundaries. The integral and partial molar free enthalpies of formation of binary nonstoichiometric compounds and of phase solutions are expressed as analytical functions of the nonmetal content within their homogeneity range. The coefficient of these analytical expressions are obtained by the use either of the Wagner-Schottky vacancy model or polynomials second order in composition (parabolic approach). The free energy of formation, ΔGsub(f) has been calculated for the systems Ti-C, Zr-C, and Ta-C. Calculations of the ternary phase equilibria yielded the values for ΔGsub(f) for the unstable compounds Ti 2 C at 1500 0 C and Zr 2 C at 1775 0 C of -22.3 and 22.7 kcal g atom metal respectively. These values were used for the calculation of isothermal sections within the ternary systems Ti-Ta-C (at 1500 0 C) and Zr-Ta-C (at 1775 0 C). The ideal case of ternary phase solutions is extended to regular solutions. (author)
Some stable hydromagnetic equilibria
Energy Technology Data Exchange (ETDEWEB)
Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)
1958-07-01
We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)
Isothermal phase equilibria for the (HFC-32 + HFC-134a) mixed-gas hydrate system
International Nuclear Information System (INIS)
Miyauchi, Hiroshi; Yasuda, Kenjiro; Matsumoto, Yuuki; Hashimoto, Shunsuke; Sugahara, Takeshi; Ohgaki, Kazunari
2012-01-01
Highlights: ► Structural phase transition results in the heterogeneous azeotropic-like behaviour. ► HFC-134a molecules, in spite of an s-II former, occupy the large cages of s-I. ► Negative azeotropic-like behaviour becomes more remarkable at higher temperatures. - Abstract: Isothermal phase equilibria (pressure-composition relations in hydrate, gas, and aqueous phases) in the {difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a)} mixed-gas hydrate system were measured at the temperatures 274.15 K, 279.15 K, and 283.15 K. The heterogeneous azeotropic-like behaviour derived from the structural phase transition of (HFC-32 + HFC-134a) mixed-gas hydrates appears over the whole temperature range of the present study. In addition to the heterogeneous azeotropic-like behaviour, the isothermal phase equilibrium curves of the (HFC-32 + HFC-134a) mixed-gas hydrate system exhibit the negative homogeneous azeotropic-like behaviour at temperatures 279.15 K and 283.15 K. The negative azeotropic-like behaviour, which becomes more remarkable at higher temperatures, results in the lower equilibrium pressure of (HFC-32 + HFC-134a) mixed-gas hydrates than those of both simple HFC-32 and HFC-134a hydrates. Although the HFC-134a molecule forms the simple structure-II hydrate at the temperatures, the present findings reveal that HFC-134a molecules occupy a part of the large cages of the structure-I mixed-gas hydrate.
Energy Technology Data Exchange (ETDEWEB)
Haruki, Masashi; Yahiro, Yukihito; Higashi, Hidenori; Iwai, Yoshio; Arai, Yasuhiko [Kyushu University, FUkuoka (Japan). Graduate School of Engineering
1999-08-01
A modified-Soave-Redlich-Kwong (MSRK) equation of state with an exponent-type mixing rule for the energy parameter and a conventional rule for the size parameter is applied to correlate the phase equilibria for four binary mixtures of water + hydrocarbon (benzene, hexane, decane, and dodecane) systems at high temperatures and pressures. It is noted that good correlation results are obtained by using the mixing rules with interaction parameters between unlike molecules. (author)
Phase equilibria in the Ni–Al–Ga system at 700 °C
International Nuclear Information System (INIS)
Belyavina, N.; Markiv, V.; Nakonechna, O.; Lozovyi, F.
2014-01-01
Graphical abstract: - Highlights: • We study phase equilibria in ternary Ni–Al–Ga in the whole concentration range. • Ni(Al,Ga), Ni 2 (Al,Ga) 3 , Ni 5 (Al,Ga) 3 extended solid solutions exist in this system. • Isothermal section (700 °C) of the Ni–Al–Ga system has been constructed. • Small additions of Ga increase compressive strength of Ni 3 (Al,Ga) solid solution. - Abstract: Phase relations in the ternary Ni–Al–Ga system at 700 °C have been established by the X-ray powder diffraction methods. In addition to already known Ni 3 (Al,Ga) continuous solid solution, Ni(Al,Ga) continuous solid solution as well as Ni 2 (Al,Ga) 3 and Ni 5 (Al,Ga) 3 extended solid solutions were found to exist in this system. It was shown that the ternary Ni 2 (Al,Ga) 3 and Ni 5 (Al,Ga) 3 compounds do not belong to the continuous solid solutions because of two-phase gaps on the Ni 2 Al 3 –Ni 2 Ga 3 (∼30–50 at.% Ga) and Ni 5 Al 3 –Ni 5 Ga 3 (∼12–25 at.% Ga) isolines at 700 °C. Some crystal structure peculiarities such as atomic ordering–disordering and presence of structural vacancies have been revealed for all solid solutions existing in the Ni–Al–Ga system. It was found that the compressive strength of the Ni 3 (Al,Ga) solid solution increases with small additions of gallium (about 2.5 at.%). The isothermal section (700 °C) of the ternary Ni–Al–Ga system including four extended solid solutions (Ni 3 (Al,Ga), Ni 5 (Al,Ga) 3 , Ni(Al,Ga) and Ni 2 (Al,Ga) 3 ) has been constructed and plotted
Esina, Zoya; Miroshnikov, Aleksandr; Korchuganova, Margarita
2014-01-01
The PCEAS model was used to study the liquid-solid and liquid-vapor phase transitions at constant pressure in systems containing glycols and glycol ethers. This method is based on minimizing the excess Gibbs energy over the solvation parameter, which takes into account the processes of association of molecules in various phases. To compute the diagrams, the data on enthalpy and phase transition temperatures of pure components are required, while the information about the interactions in the b...
Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples
Fang, Gu; Chen, Chih-chi
2015-07-01
Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.
Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K
DEFF Research Database (Denmark)
Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.
2001-01-01
The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...
Modelling of phase equilibria of glycol ethers mixtures using an association model
DEFF Research Database (Denmark)
Garrido, Nuno M.; Folas, Georgios; Kontogeorgis, Georgios
2008-01-01
Vapor-liquid and liquid-liquid equilibria of glycol ethers (surfactant) mixtures with hydrocarbons, polar compounds and water are calculated using an association model, the Cubic-Plus-Association Equation of State. Parameters are estimated for several non-ionic surfactants of the polyoxyethylene ...
Thermodynamic modelling of phase equilibria in Al–Ga–P–As system
Indian Academy of Sciences (India)
A generalized thermodynamic expression of the liquid Al–Ga–P–As alloys is used in conjunction with the solid solution model in determining the solid–liquid equilibria at 1173 K and 1273 K. The liquid solution model contains thirtyseven parameters. Twentyfour of them pertain to those of the six constituent binaries, twelve ...
Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems
DEFF Research Database (Denmark)
Zuo, You-Xiang; Stenby, Erling Halfdan; Guo, Tian-Min
1996-01-01
The major objectives of this work are: (1) extend the modified Patel-Teja (MPT) equation of state proposed for aqueous electrolyte systems (Zuo and Guo, 1991) to describe the liquid-liquid and vapor-liquid-liquid equilibria of hydrocarbon-water/brine systems through introducing an unconventional...
Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12
Anovitz, Lawrence M.; Essene, E.J.; Metz, G.W.; Bohlen, S.R.; Westrum, E.F.; Hemingway, B.S.
1993-01-01
The heat capacity of a synthetic almandine, Fe3Al2Si3O12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ?? 1.4 J/mol ?? K and S298o = 342.60 J/mol ?? K. Mo??ssbauer characterizations show the almandine to contain less than 2 ?? 1% of the total iron as Fe3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ?? 0.001 A?? and V298o = 115.11 +- 0.01 cm3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ??Gf,298o = -4938.3 kJ/mol and ??Hf,298o= -5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T P for almandine and is metastably located at ca. 570??C at P = 1 bar, with a dP dT of +17 bars/??C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In {norm of matrix}O2-T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartz and almandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks. ?? 1993.
Energy Technology Data Exchange (ETDEWEB)
Michalis, Vasileios K.; Costandy, Joseph; Economou, Ioannis G., E-mail: ioannis.economou@qatar.tamu.edu [Chemical Engineering Program, Texas A and M University at Qatar, P.O. Box 23847, Doha (Qatar); Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K. [Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” Aghia Paraskevi, Attiki GR-15310 (Greece)
2015-01-28
The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal–isobaric ensemble in order to determine the coexistence temperature (T{sub 3}) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T{sub 3}, is treated with long simulations in the range of 1000–4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T{sub 3} predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T{sub 3} of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.
Fowler, S.; Spera, F.; Bohrson, W.; Belkin, H.; Devivo, B.
2005-12-01
discovery of a pseudo-invariant point at ~883°C (Tip) and 0.15 GPa. The fraction of melt changes abruptly from ~0.5 to ~0.1 at Tip due to the simultaneous crystallization of alkali feldspar, plagioclase, spinel, biotite and apatite. At Tip, there is a dramatic decrease in the viscosity of melt (by a factor of four) and magma density (~5%) and an increase in the dissolved H2O content of the melt (from 4.4-5.1 wt%) and in the volume fraction,θ, of supercritical fluid in the multiphase system. In particular, θ increases from ~0.05 at 885°C to ~0.6 at 882°C. The liquid composition also changes discontinuously at Tip with Si, Na, and H2O increasing and K and Al decreasing as temperature falls below Tip. The marked variations in composition and properties of volatile-saturated melt and magma were the trigger that led to the catastrophic eruption and formation of the compositionally-zoned CI magma. Because phase equilibria modeling provides information on the enthalpy changes associated with fractional crystallization and because the dimensions of the CI magma chamber and heat extraction rate can be approximated, a time scale for CI magmatic evolution can be derived. The estimated crystallization duration (τ) is10-100 ka and 75% of τ is spent at or near Tip.
Theory of phase equilibria and critical mixing points in binary lipid bilayers
DEFF Research Database (Denmark)
Risbo, Jens; Sperotto, Maria Maddalena; Mouritsen, Ole G.
1995-01-01
the transition is discussed in terms of the molecular properties of the lipid acyl chains. The results of the numerical model study are expected to have consequences for the interpretation of experimental measurements on lipid bilayer systems in terms of phase diagrams. (C) 1995 American Institute of Physics....
Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua
2016-01-01
In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick
Phase equilibria and crystalline structure of compounds in the Lu-Al and Lu-Cu-Al systems
International Nuclear Information System (INIS)
Kuz'ma, Yu.B.; Stel'makhovich, B.M.; Galamushka, L.I.
1992-01-01
Phase equilibria and crystal structure of compounds in Lu-Al and Lu-Cu-Al systems were studied. Existence of Lu 2 Al compound having the structure of the PbCl 2 type is ascertained. Diagram of phase equilibria of Lu-Cu-Al system at 870 K is plotted. Compounds Lu 2 (Cu,Al) 17 (the Th 2 Zn 17 type structure), Lu(Cu,Al) 5 (CaCu 5 type structure), Lu 6 (Cu,Al) 23 (Th 6 Mn 23 type structure) and ∼ LuCuAl 2 have been prepared for the first time. Investigation of component interaction in Lu-Cu-Al system shows that the system is similar to previously studied systems Dy-Cu-Al and Er-Cu-Al. The main difference consists in the absence of LuCuAl 3 compound with rhombic structure of the CeNi 2+x Sb 2-x type in the system investigated
Phase equilibria and stability of the B2 phase in the Ni-Mn-Al and Co-Mn-Al systems
International Nuclear Information System (INIS)
Kainuma, R.; Ise, M.; Ishikawa, K.; Ohnuma, I.; Ishida, K.
1998-01-01
The phase equilibria and ordering reactions in the composition region up to 50 at.% Al have been investigated in the Ni-Mn-Al and Co-Mn-Al systems at temperatures in the interval 850-1200 C mainly by the diffusion couple method. The compositions of the γ (A1: fcc-Ni, -Co, γ-Mn), γ' (L1 2 : Ni 3 Al), β (B2: NiAl, CoAl, NiMn), β-Mn (A13: β-Mn type), δ-Mn (A2: bcc-Mn) and ε (A3: hcp-(Mn, Al)) phases in equilibrium and the critical boundaries of the A2/B2 continuous ordering transition in the bcc phase region have been determined. It is shown that in the Mn-rich portion of the ternary systems both continuous and discontinuous A2 to B2 ordering transitions exist. The A2+B2 two-phase region in the isothermal sections has a lenticular shape and exists over a wide temperature range. The phase equilibria between the γ, γ', β, β-Mn, δ-Mn and ε phases are presented and the stability of the ordered bcc aluminides is discussed. (orig.)
Elastic energy and metastable phase equilibria for coherent mixtures in cubic systems
International Nuclear Information System (INIS)
Williams, R.O.
1979-02-01
Expressions were derived for the elastic energy due to coherency for cubic systems for an isotropic structure and for (100) or (111) habit planes for a lamellar structure. For the metastable equilibria the usual tangent compositions are replaced by compositions that are tangent to the elastic energy curve. For a loss of coherency there is an energy decrease due to the elastic effects and a further decrease associated with compositional changes. Information contained within this treatment permits calculation of the x-ray diffraction effects for such structures
Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300 °C
Energy Technology Data Exchange (ETDEWEB)
Wang, Jian, E-mail: jian.wang@polymtl.ca [Center for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, Montréal, Québec H3C 3A7 (Canada); Zhang, Yi-Nan [Department of Mechanical Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada); Hudon, Pierre; Jung, In-Ho [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5 (Canada); Medraj, Mamoun [Department of Mechanical Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada); Department of Mechanical and Materials Engineering, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi (United Arab Emirates); Chartrand, Patrice [Center for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, Montréal, Québec H3C 3A7 (Canada)
2015-08-05
Highlights: • The phase equilibria of Mg–Zn–Ag system at 300 °C were determined. • A bcc continuous ternary solid solution forms between MgAg (bcc-B2) and AgZn (bcc-A2) was determined. • The extended solid solubilities of the sub-binary compounds were also determined. - Abstract: The phase equilibria in the Mg–Zn–Ag ternary system at 300 °C were investigated using three diffusion couples and 35 key samples. Scanning electron microscopy (SEM) equipped with energy-dispersive spectroscope (EDS) and X-ray diffraction (XRD) techniques were used for homogeneity ranges and crystal structure determination. Large solid solubility limits, due to substitution among Mg, Zn and Ag atoms in Mg{sub 3}Ag and MgZn{sub 2} phases, were observed in the present work. Solid solubility limits of Ag and Zn in the hcp (Mg) phase were found to be less than 1 at.%. The extended solid solubilities of the Mg{sub 12}Zn{sub 13}, Mg{sub 2}Zn{sub 3}, MgZn{sub 2} (C14), Mg{sub 2}Zn{sub 11}, Ag{sub 5}Zn{sub 8} and hcp (AgZn{sub 3}) sub-binary compounds were also determined in the Mg–Zn–Ag ternary system. In addition, a bcc continuous ternary solid solution forms between MgAg (bcc-B2) and AgZn (bcc-A2) at 300 °C.
Phase equilibria of binary mixtures by molecular simulation and cubic equations of state
Directory of Open Access Journals (Sweden)
Cabral V.F.
2001-01-01
Full Text Available Molecular simulation data were used to study the performance of equations of state (EoS and combining rules usually employed in thermodynamic property calculations. The Monte Carlo method and the Gibbs ensemble technique were used for determining composition and densities of vapor and liquid phases in equilibrium for binary mixtures of Lennard-Jones fluids. Simulation results are compared to data in the literature and to those calculated by the t-PR-LJ EoS. The use of adequate combining rules has been shown to be very important for the satisfactory representation of molecular simulation data.
Energy Technology Data Exchange (ETDEWEB)
Martinez Reyes, Jose; Gonzalez Partida, Eduardo; Tinoco-Michel, Jorge A [Centro de Geociencias, Universidad Nacional Autonoma de Mexico Campo de Juriquilla, Qro., Mexico, apartado postal 76230 (Mexico); Perez, Renee J; Heidemann, Robert A [Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Calgary Alberta, T2N 1N4 (Canada)
2008-10-01
We present a thermodynamic model for the phase equilibria of gases and brines, which couples Henry's Law with the Soave-Redlich-Kwong equation of state to reproduce experimental data. In this communication we focus on the H{sub 2}S H{sub 2}O NaCl system.
Directory of Open Access Journals (Sweden)
Fuchs A.
2006-12-01
Full Text Available koWe briefly review the molecular simulation methods which can be used to predict thermophysical properties of fluids and fluid mixtures. It is shown in this paper, on the one hand, how the Gibbs Ensemble Monte Carlo Method allows phase behavior predictions for real fluids under conditions for which experimental data are difficult or impossible to obtain. On the other hand, the molecular dynamics methods used for predicting transport properties of molecular fluids are described. Finally we discuss possible future applications of these methods. Dans cet article, nous passons brièvement en revue les méthodes de simulation moléculaire applicables à la prédiction des propriétés thermophysiques des fluides et des mélanges. Nous montrons, d'une part, comment la méthode de Monte-Carlo dans l'ensemble de Gibbs permet de prédire le comportement de phase de fluides réels dans des conditions telles que l'acquisition de données expérimentales serait difficile, voire impossible. D'autre part, nous décrivons les méthodes de dynamique moléculaire utilisées pour prédire les propriétés de transport de fluides moléculaires. Enfin, nous discutons le potentiel de ces méthodes pour les applications futures.
Directory of Open Access Journals (Sweden)
N. Bender
2013-03-01
Full Text Available Cubic equations of state combined with excess Gibbs energy predictive models (like UNIFAC and equations of state based on applied statistical mechanics are among the main alternatives for phase equilibria prediction involving polar substances in wide temperature and pressure ranges. In this work, the predictive performances of the PC-SAFT with association contribution and Peng-Robinson (PR combined with UNIFAC (Do through mixing rules are compared. Binary and multi-component systems involving polar and non-polar substances were analyzed. Results were also compared to experimental data available in the literature. Results show a similar predictive performance for PC-SAFT with association and cubic equations combined with UNIFAC (Do through mixing rules. Although PC-SAFT with association requires less parameters, it is more complex and requires more computation time.
Thermodynamic Modeling of Multi-phase Solid–Liquid Equilibria in Industrial-Grade Oils and Fats
DEFF Research Database (Denmark)
Hjorth, Jeppe Lindegaard; Miller, Rasmus L.; Woodley, John M.
2015-01-01
Compositional thermodynamic phase separation is investigated for industrial-grade vegetable oils with complex compositions. Solid–liquid equilibria have been calculated by utilizing the Margules 2-suffix activity-coefficient model in combination with minimization of the Gibb’s free energy...... of the system. On the basis of quasi-equilibrium solid-fat content (SFC) measurements, a new approach to the estimation of the interaction parameters, needed for the activity-coefficient model, has been developed. The parameters are fitted by matching the SFC of two oils at various degrees of dilution...... and isothermal temperatures. Subsequently, the parameters are successfully validated against three oils, rich in asymmetric and symmetric triacylglycerols (TAG), respectively. The new approach developed is shown to be very flexible, allowing incorporation of additional TAG and polymorphic states. It thereby...
Loomans, M. E.; Chi, D. Z.; Chua, S. J.
2004-10-01
Bulk-phase equilibria in Ni-rich/Si-rich alloys of the Ni-Pt-Si and Ni-Pd-Si systems were investigated. Results suggest that a bulk monosilicide solid solution, containing up to at least 11 at. pct Pt, exists in the Ni-Pt-Si system. Monosilicides containing more than 11 at. pct Pt were not examined. Results from both ternary systems point convincingly to the existence of a NiSi+Si↔NiSi2 eutectoid reaction near 700 °C in the Ni-Si binary system; data from the Ni-Pt-Si system, which yield the more accurate determination of the eutectoid temperature, place it at roughly 710 °C. The Pt and Pd concentrations of monosilicide in equilibrium with disilicide and Si were measured using energy-dispersive spectrometry (EDS) and were found to increase with temperature.
International Nuclear Information System (INIS)
Kuz'ma, Yu.B.; Zakharchuk, N.P.; Maksimova, L.T.
1988-01-01
The methods of X-ray analysis are used to study the R-Mo-B (R-Tb, Dy, Ho) systems and isothermal sections of phase equilibria diagrams at 1273 K are plotted. A formation of RMoB 4 (structure of the YCrB 4 type) is confirmed and borides R 3 MoB 7 (structure of the Er 3 CrB 7 type) and ∼ RMo 4 B 8 (of the unknown structure) are obtained for the first time. Borides DyMoB 3 and HoMoB 3 are of the ErMoB 3 structure. Lattice periods of new compounds are indicated. Diffractogrammes of borides Dy 3 MoB 7 and DyMoB 3 are calculated. A peculiarity of components interaction in the systems rare-earth metal-molybdenum-boron is considered
Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system
De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.
1987-01-01
Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.
Kou, Jisheng
2016-02-25
In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick’s law of diffusion for multi-component fluids and the Peng-Robinson equation of state. The mobility is obtained from diffusion coefficients by relating the gradient of chemical potential to the gradient of molar density. The evolution equation for moles of each component is derived using the discretization of diffusion equations, while the volume evolution equation is constructed based on the mechanical mechanism and the Peng-Robinson equation of state. It is proven that the proposed evolution system can well model the VT-flash problem, and moreover, it possesses the property of total energy decay. By using the Euler time scheme to discretize this evolution system, we develop an energy stable algorithm with an adaptive choice strategy of time steps, which allows us to calculate the suitable time step size to guarantee the physical properties of moles and volumes, including positivity, maximum limits, and correct definition of the Helmhotz free energy function. The proposed evolution method is also proven to be energy-stable under the proposed time step choice. Numerical examples are tested to demonstrate efficiency and robustness of the proposed method.
A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases
Zyvoloski, G.; Lucia, A.; Lewis, K. C.
2011-12-01
, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.
α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 deg C
International Nuclear Information System (INIS)
Hayashi, S.; Ford, S.I.; Young, D.J.; Sordelet, D.J.; Besser, M.F.; Gleeson, B.
2005-01-01
The α-NiPt(Al) phase and its associated equilibria in the Ni-Al-Pt system at 1150 deg C were investigated by analyzing equilibrated bulk alloys and the interdiffusion zones of diffusion couples. Phase constitutions, tie-lines and microstructures were determined using a combination of techniques, including high-energy synchrotron X-ray diffraction, scanning electron microscopy and electron probe microanalysis. A large Pt solubility limit was found to exist in the β-NiAl, ∼42 at.%, and in γ'-Ni 3 Al, ∼32 at.%. The α-NiPt(Al) phase was found to have wide Pt solubility range of about 33-60 at.% and to skew along an almost constant Pt/Al ratio of 1.5. The α-NiPt(Al) has an ordered face-centered tetragonal L1 0 crystal structure, with the Al and Pt atoms found to be preferentially located in the corners and prismatic faces, respectively. The temperature dependence of the lattice parameters and unit cell volume of the α phase were also determined
International Nuclear Information System (INIS)
Phan, Anh Thu; Paek, Min-Kyu; Kang, Youn-Bae
2014-01-01
In order to provide an efficient tool to design alloy chemistry and processing conditions for high-strength, lightweight steel, an investigation of the Fe–Al–C ternary system was carried out by experimental phase diagram measurement and a CALPHAD thermodynamic analysis. Discrepancies between previously available experimental results and thermodynamic calculations were identified. The Fe–Al sub-binary system was re-optimized in order to obtain an accurate description of the liquid phase, while Gibbs energies of solid phases were mainly taken from a previous thermodynamic modeling. Phase equilibria among face-centered cubic (fcc)/body-centered cubic (bcc)/graphite/κ-carbide/liquid phases in the Fe–Al–C system in the temperature range from 1000 to 1400 °C were obtained by chemical equilibration followed by quenching, and subsequent composition analysis using electron probe microanalysis/inductively coupled plasma spectroscopy. By merging the revised Fe–Al binary description with existing Fe–C and Al–C binary descriptions, a complete thermodynamic description of the Fe–Al–C system was obtained in the present study. The modified quasi-chemical model in the pair approximation was used to model the liquid phase, while solid solutions were modeled using compound energy formalism. A2/B2 order/disorder transition in the bcc phase was taken into account. Compared with previously known experiments/thermodynamic modeling, a better agreement was obtained in the present study, regarding the stable region of fcc and the solidification thermal peak of a ternary alloy near the liquidus temperature. The obtained thermodynamic description also reproduced various types of experimental data in the Fe–Al–C system such as isothermal sections, vertical sections, liquidus projection, etc. The solidification of various steel grades was predicted and discussed
Directory of Open Access Journals (Sweden)
Richard M. Palin
2016-07-01
Full Text Available Pseudosection modelling is rapidly becoming an essential part of a petrologist's toolkit and often forms the basis of interpreting the tectonothermal evolution of a rock sample, outcrop, or geological region. Of the several factors that can affect the accuracy and precision of such calculated phase diagrams, “geological” uncertainty related to natural petrographic variation at the hand sample- and/or thin section-scale is rarely considered. Such uncertainty influences the sample's bulk composition, which is the primary control on its equilibrium phase relationships and thus the interpreted pressure–temperature (P–T conditions of formation. Two case study examples—a garnet–cordierite granofels and a garnet–staurolite–kyanite schist—are used to compare the relative importance that geological uncertainty has on bulk compositions determined via (1 X-ray fluorescence (XRF or (2 point counting techniques. We show that only minor mineralogical variation at the thin-section scale propagates through the phase equilibria modelling procedure and affects the absolute P–T conditions at which key assemblages are stable. Absolute displacements of equilibria can approach ±1 kbar for only a moderate degree of modal proportion uncertainty, thus being essentially similar to the magnitudes reported for analytical uncertainties in conventional thermobarometry. Bulk compositions determined from multiple thin sections of a heterogeneous garnet–staurolite–kyanite schist show a wide range in major-element oxides, owing to notable variation in mineral proportions. Pseudosections constructed for individual point count-derived bulks accurately reproduce this variability on a case-by-case basis, though averaged proportions do not correlate with those calculated at equivalent peak P–T conditions for a whole-rock XRF-derived bulk composition. The main discrepancies relate to varying proportions of matrix phases (primarily mica relative to
Thermodynamic calculation of Al-Gd and Al-Gd-Mg phase equilibria checked by key experiments
International Nuclear Information System (INIS)
Groebner, J.; Kevorkov, D.; Schmid-Fetzer, R.
2001-01-01
The binary Al-Gd and the ternary Al-Gd-Mg systems were calculated using the Calphad method. It is demonstrated that previous interpretation of ternary liquidus temperatures below 700 C must be related to other phase equilibria. The actual ternary liquidus temperatures are much higher, up to some 600 C above the previous interpretation in literature. They are widely governed by the high-melting compounds Al 2 Gd and Al 3 Gd with liquidus surfaces stretching far into the ternary system. A small number of key experiments in this work confirmed the calculated liquidus temperature and the phase relations. The available experimental data in literature fit excellently with the calculation in the binary Al-Gd system. In the ternary Al-Gd-Mg system, which is shown in several sections of the phase diagram, a good agreement can be observed too, considering the necessary reinterpretation of the liquidus temperatures suggested by Rokhlin et al. Ternary solubilities were not found experimentally. The ternary compound Al 4 GdMg (τ) forms in a ternary peritectic reaction at 761 C. (orig.)
Pettersson, Niklas; Wessman, Sten; Hertzman, Staffan; Studer, Andrew
2017-04-01
Duplex stainless steels are designed to solidify with ferrite as the parent phase, with subsequent austenite formation occurring in the solid state, implying that, thermodynamically, a fully ferritic range should exist at high temperatures. However, computational thermodynamic tools appear currently to overestimate the austenite stability of these systems, and contradictory data exist in the literature. In the present work, the high-temperature phase equilibria of four commercial duplex stainless steel grades, denoted 2304, 2101, 2507, and 3207, with varying alloying levels were assessed by measurements of the austenite-to-ferrite transformation at temperatures approaching 1673 K (1400 °C) using a novel in-situ neutron scattering approach. All grades became fully ferritic at some point during progressive heating. Higher austenite dissolution temperatures were measured for the higher alloyed grades, and for 3207, the temperature range for a single-phase ferritic structure approached zero. The influence of temperatures in the region of austenite dissolution was further evaluated by microstructural characterization using electron backscattered diffraction of isothermally heat-treated and quenched samples. The new experimental data are compared to thermodynamic calculations, and the precision of databases is discussed.
Kou, Jisheng; Sun, Shuyu
2017-01-01
Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently
Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G
2016-09-14
Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.
DEFF Research Database (Denmark)
Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn
2013-01-01
-cyclic guanidinium bromide on SBA-15 (HEPCGBr/SBA-15) as catalyst in the absence of any co-catalyst. It was found that the yield was strongly dependent on the amount of CO2 added to the system and that the phase behavior strongly changes along the reaction pathway. The Cubic-Plus-Association (CPA) equation of state...... was used to predict the phase behavior during the reaction and the number and composition of coexisting phases in the multicomponent reaction system were determined. In accordance with the experimental data, the maximum conversion was achieved in the transition region between the two- and the one-phase...... region where a CO2-expanded reactant/product phase (larger volume due to the dissolution of carbon dioxide in the liquid phase) is present. Optimal conditions for performing the reaction have been derived which requires consideration not only of the phase behavior of the starting phase but also...
International Nuclear Information System (INIS)
Domanska, Urszula; Marciniak, Malgorzata
2007-01-01
(Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation
Equilibres de phases dans les systèmes fluides petroliers-eau Phase Equilibria in Oil-Water Systems
Directory of Open Access Journals (Sweden)
Peneloux A.
2006-11-01
Full Text Available Nous présentons quelques résultats obtenus à partir du logiciel FHYD qui permet le traitement des mélanges eau-fluides pétroliers, avec la détermination de la nature des phases (huile-gaz-eau-hydrate thermodynamiquement stables dans des conditions données de température et de pression, ainsi que de la quantité, de la composition de ces différentes phases et de leurs propriétés. Ce logiciel permet le tracé automatique des diagrammes de phases et nous présentons des exemples, depuis les systèmes binaires (eau-éthane, ternaires (eau-méthane-propane jusqu'aux fluides les plus complexes. La présence de sels (chlorure de sodium dissous est envisagée, ainsi que le calcul des conditions de dépôt du sel solide. Des exemples de problèmes pétroliers sont cités (gaz de séparateur saturé en eau, huile saturée en eau dans les conditions de gisement, huile en présence d'eau salée. Les estimations sur les quantités d'hydrate formées et leurs compositions sont comparées à des données expérimentales et aux résultats obtenus par d'autres logiciels. Le programme FHYD pourrait permettre une représentation plus réaliste de l'évolution des fluides pétroliers et des propriétés de transport de leurs différentes phases dans les modèles de simulation des conduites polyphasiques. This article presents a selection of results obtained with the FHYD program. This software allows simulation of mixtures composed of petroleum fluids and water, with determination of the nature of thermodynamically stable phases (oil-gas-water-hydrate under given conditions of temperature and pressure, along with the quantity, composition and properties of these different phases. Additionally, the program can automatically produce phase diagrams. Several examples of these have been included here, ranging from binary systems (water-ethane and ternary systems (water-methane-propane to the most complex petroleum fluids. The presence of dissolved salts
Experimental study on the phase equilibria of the Ag-Ti system
International Nuclear Information System (INIS)
Fu Xiaoliang; Li Changrong; Wang Fuming; Li Mei; Zhang Weijing
2005-01-01
The Ag-Ti diffusion couples were prepared by small pure silver plates closely packed in pure titanium powder, sealed in quartz tube, and annealed at 750 deg. C, 980 deg. C, 1100 deg. C and 1200 deg. C, respectively. The phase equilibrium relationship and the conjugate phase compositions in the Ag-Ti system were determined by means of the metallographic microscope and the electron probe microanalysis. Partial liquidus and solidus for the two-phase equilibrium, liquid + (βTi), were obtained. The narrow solution range for the intermediate phase (TiAg) was determined
International Nuclear Information System (INIS)
Fitzner, K.; Musbah, O.; Hsieh Kerchang; Zhang Minxian; Chang, Y.A.
1993-01-01
The equilibrium oxygen potentials of four-phase equilibria (counting only the condensed phases) in the CuO-Cu 2 O-BaCuO 2 -Y 2 BaCuO 5 (211)-YBa 2 Cu 3 O 7-x (123) phase region were determined using the following solid-oxide electrolyte e.m.f. cell: Pt10Rh, air (psub(O 2 )=0.21 atm) vertical stroke ZrO 2 +Y 2 O 3 vertical stroke mixtures of oxides, Pt. The oxide mixtures whose oxygen potentials were measured were CuO-Cu 2 O-211-123, CuO-Cu 2 O-BaCuO 2 -123, Cu 2 O-BaCuO 2 -211-123 and CuO-BaCuO 2 -211-123. The phase in some of the mixtures were identified by X-ray diffraction. These data were analyzed and are presented using stability diagrams, i.e., oxygen potential as a function of the reciprocal of the temperature. Extrapolation of these data for the four four-phase equilibra to high temperatures yields a metastable five-phase equilibrium, i.e., 123=CuO+Cu 2 O+BaCuO 2 +211, at ∼1243 K (970 ) and log psub(O 2 ) ∼ -1.21 (psub(O 2 )∼0.062 atm). (orig.)
DEFF Research Database (Denmark)
Bjørner, Martin Gamel; Kontogeorgis, Georgios
2016-01-01
In this work, a quadrupolar cubic plus association (qCPA) equation of state is evaluated for its ability to predict the phase equilibria of multicomponent mixtures containing CO2 and alkanes, alcohols, and/or water. A single binary interaction parameter is employed in qCPA for all binary combinat...... CPA yields the best results of all the models for the prediction of dew point pressures....
Margon, V.; Agarwal, U.S.; Peters, C.J.; Wit, de G.; Bailly, C.M.E.; Kasteren, van J.M.N.; Lemstra, P.J.
2005-01-01
Vapor–liquid phase equilibrium is studied for the systems composed of phenol, diphenyl carbonate (DPC), bisphenol A (BPA) and CO2. Bubble point pressures and vapor-phase compositions are measured at various temperatures (343.15–473.15 K) for several compositions of the following systems: two binary
Influence of Adsorption and Capillary Pressure on Phase Equilibria Inside Shale Reservoirs
DEFF Research Database (Denmark)
Sandoval, Diego R.; Yan, Wei; Michelsen, Michael L.
2018-01-01
is moderate in comparison to the that at low pressure and high temperature. The adsorption effects are stronger for the gas bulk phase region, leading to bigger changes in the gas phase composition and the shift of the dew point curve. PVT simulations of two model reservoir fluid systems show significant...... envelope is different. In general, a much shrunk phase envelope with a shifted critical point is observed. The heavier components are preferentially adsorbed in the whole pressure and temperature range studied here. At high pressure and low temperature, the selectivity towards heavier components...
Gusev, Aleksandr I.
2000-01-01
Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.
Directory of Open Access Journals (Sweden)
A. Zuend
2010-08-01
Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six
Attractive evolutionary equilibria
Joosten, Reinoud A.M.G.; Roorda, Berend
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary
Phase Equilibria in the Bi-In-Sn-Zn System. Thermal Analysis vs. Calculations
Directory of Open Access Journals (Sweden)
Dębski A.
2017-12-01
Full Text Available With the use of the differential thermal analysis (DTA, studies of the phase transitions were conducted for 90 of alloys from the quaternary Bi-In-Sn-Zn system and for the constant ratio of Bi:In and Bi:Sn. The studies were conducted for the alloys prepared from the purity metals (Bi, In, Sn, Zn = 99.999 mas. % by way of melting in a graphite crucible in a glove-box filled with Ar, in which the impurities level was less than 0.1 ppm. After melting and thorough mixing, the liquid alloys were poured out into a graphite test mold. The phase transition temperature data obtained from the DTA investigations were next confronted with those determined from the calculations based on the binary and ternary optimized thermodynamic parameters available in the literature. It was found that the experimental and the calculated phase transition temperatures were in good agreement.
Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures
Institute of Scientific and Technical Information of China (English)
WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun
2011-01-01
Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.
Energy Technology Data Exchange (ETDEWEB)
Wall, T.F.; Gupta, R.P.; Gupta, S. [Univ. of Newcastle, New South Wales (Australia). Dept. of Chemical Engineering; Creelman, R.A. [R.A. Creelman and Associates, Epping, New South Wales (Australia); Coin, C. [ACIRL Ipswich, Booval, Queensland (Australia); Lowe, A. [Pacific Power, Sydney, New South Wales (Australia)
1996-12-31
The well-documented shortcomings of the standard technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined with laboratory ash prepared at about 800 C in crucibles, as well as combustion ash sampled from power stations. Sensitive shrinkage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of peaks in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash.
International Nuclear Information System (INIS)
Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.
1995-01-01
The distribution of rare earth metals (3) between aqueous and organic phases in the systems rare earth metal (3) (praseodymium-lutetium (3), yttrium (3)) nitrate-ammonium nitrate-water-trialkylmethylammonium (kerosene diluent nitrate has been studied. It is shown that in organic phase di- and trisolvates of metals (3) with tralkylmethylammonium nitrate are formed. The influence of concentration of rare earth metal (3) nitrate and ammonium nitrate on the values of extraction concentrational constants has been ascertained: they decrease with increase in the ordinal number of lanthanide (3). 11 refs., 4 figs. 1 tab
Giussi, Juan M; Gastaca, Belen; Albesa, Alberto; Cortizo, M Susana; Allegretti, Patricia E
2011-02-01
The study of tautomerics equilibria is really important because the reactivity of each compound with tautomeric capacity can be determined from the proportion of each tautomer. In the present work the tautomeric equilibria in some γ,δ-unsaturated β-hydroxynitriles and γ,δ-unsaturated β-ketonitriles were studied. The first family of compounds presents two possible theoretical tautomers, nitrile and ketenimine, while the second one presents four possible theoretical tautomers, keto-nitrile, enol (E and Z)-nitrile and keto-ketenimine. The equilibrium in gas phase was studied by gas chromatography-mass spectrometry (GC-MS). Tautomerization enthalpies were calculated by this methodology, and results were compared with those obtained by density functional theory (DFT) calculations, observing a good agreement between them. Nitrile tautomers were favored within the first family of compounds, while keto-nitrile tautomers were favored in the second family. Copyright Â© 2010 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios
2014-01-01
density data for both CO2 and CO2–water and for vapor–liquid equilibrium for mixtures of CO2 with various compounds present in transport systems. In all of these cases we consider various possibilities for modeling CO2 (inert, self-associating using two-, three-, and four sites) and the possibility......The CPA (cubic-plus-association) equation of state is applied in this work to a wide range of systems of relevance to CO2 transport. Both phase equilibria and densities over extensive temperature and pressure ranges are considered. More specifically in this study we first evaluate CPA against......” for applying CPA to acid gas mixtures. The overall conclusion is that CPA performs satisfactorily; the model in most cases correlates well binary data and predicts with good accuracy multicomponent vapor–liquid equilibria. Among the various approaches investigated, the best ones are when cross association...
Thermal analysis and prediction of phase equilibria in ternary Pb-Zn-Ag System
Czech Academy of Sciences Publication Activity Database
Živković, D.; Minić, D.; Manasijević, D.; Šesták, Jaroslav; Živković, Ž.
2011-01-01
Roč. 47, č. 1 (2011), 23-30 ISSN 1450-5339 Institutional research plan: CEZ:AV0Z10100521 Keywords : Pb-Zn-Ag system * thermal analysis * phase equilibrium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.317, year: 2011
Microstructure and phase equilibria in the Ni-Al-W system
Czech Academy of Sciences Publication Activity Database
Popovič, J.; Brož, P.; Buršík, Jiří
2008-01-01
Roč. 16, č. 7 (2008), s. 884-888 ISSN 0966-9795 R&D Projects: GA ČR(CZ) GA106/07/1078 Institutional research plan: CEZ:AV0Z20410507 Keywords : nickel aluminides * heat treatment * phase diagram Subject RIV: BJ - Thermodynamics Impact factor: 2.034, year: 2008
Phase equilibria in the ternary In–Ni–Sn system at 700 °C
Czech Academy of Sciences Publication Activity Database
Schmetterer, C.; Zemanová, Adéla; Flandorfer, H.; Kroupa, Aleš; Ipser, H.
2013-01-01
Roč. 35, APR (2013), s. 90-97 ISSN 0966-9795 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : intermatallics * miscellaneous * phase diagrams Subject RIV: BJ - Thermodynamics Impact factor: 2.119, year: 2013
Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations
DEFF Research Database (Denmark)
Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas
2010-01-01
using the TIP4P/ice potential and a united-atom Lennard-Jones potential. respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials. (ii) calculation of the chemical...
The phase equilibria in the Ti-Cu-Y ternary system at 773 K
Energy Technology Data Exchange (ETDEWEB)
Hu Zhaohua [Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); Zhan Yongzhong, E-mail: zyzmatres@yahoo.com.c [Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China); She Jia; Zhang Guanghua; Peng Dan [Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China)
2009-10-19
Physical-chemical analysis apparatuses, including X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA) were employed in constructing the isothermal section of the Ti-Cu-Y system at 773 K. The existences of 10 binary compounds, Ti{sub 2}Cu, TiCu, Ti{sub 3}Cu{sub 4}, Ti{sub 2}Cu{sub 3}, TiCu{sub 4}, Cu{sub 6}Y, Cu{sub 4}Y, Cu{sub 7}Y{sub 2}, Cu{sub 2}Y and CuY were confirmed. The isothermal section consists of 13 single-phase regions, 23 binary phase regions and 11 ternary phase regions. No ternary compound is found in this work. Except the binary compounds YCu{sub 6} and TiCu{sub 4} show homogeneity regions less than 1.5 at.%, none of the other phases in this system reveals a remarkable homogeneity range at 773 K.
Czech Academy of Sciences Publication Activity Database
Vřešťál, J.; Kroupa, Aleš; Šob, Mojmír
2006-01-01
Roč. 38, č. 11 (2006), s. 298-302 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GA106/03/1354; GA AV ČR(CZ) IBS2041105 Institutional research plan: CEZ:AV0Z20410507 Keywords : electronic structure * Phase diagrams * Steel Subject RIV: BJ - Thermodynamics Impact factor: 1.104, year: 2006
Synthetic methods in phase equilibria: A new apparatus and error analysis of the method
DEFF Research Database (Denmark)
Fonseca, José; von Solms, Nicolas
2014-01-01
of the equipment was confirmed through several tests, including measurements along the three phase co-existence line for the system ethane + methanol, the study of the solubility of methane in water, and of carbon dioxide in water. An analysis regarding the application of the synthetic isothermal method...
The system Ta-V-Si: Crystal structure and phase equilibria
Czech Academy of Sciences Publication Activity Database
Khan, A.U.; Brož, P.; Niu, H.Y.; Buršík, Jiří; Grytsiv, A.; Chen, X.-Q.; Giester, G.; Rogl, P.
2012-01-01
Roč. 187, - (2012), s. 114-123 ISSN 0022-4596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z20410507 Keywords : ternary alloy system * microstructure * phase diagram Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.040, year: 2012
International Nuclear Information System (INIS)
Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian
2017-01-01
Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).
International Nuclear Information System (INIS)
Jiang, Min; Su, Xiulan; Li, Hongxiao; Ren, Yuping; Qin, Gaowu
2014-01-01
Highlights: • 14H LPSO structure has been confirmed to be stable in the Mg–Cu–Y system. • Partial isothermal sections of the Mg–Cu–Y system from 300 to 450 °C have been established. • Reaction L + α-Mg ↔ 14H + Mg 2 Cu has been determined in the Mg–Cu–Y system. • The thermal stability of the 14H phase in the Mg–Cu–Y system has been well studied. - Abstract: Phase equilibria in the Mg-rich Mg–Cu–Y system at 300, 400 and 450 °C have been experimentally investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), electron probe micro-analyzer (EPMA) and transmission electron microscope (TEM). The results show that a long-period stacking ordered (LPSO) phase 14H is stable in the Mg–Cu–Y system, which is the only one ternary intermetallic compound that gets a thermodynamic equilibrium with the a-Mg phase. The equilibrium 14H phase has a very limited solid solution range, and can be nearly regarded as a ternary stoichiometric compound with a formulae as Mg 91 Cu 4 Y 5 . The thermal stability of the 14H phase in the Mg–Cu–Y system has been well studied, which shows that the 14H phase disappears varying from 442 °C to 490 °C depending on the alloy composition. The isothermal sections of the Mg-rich Mg–Cu–Y system at 300, 400 and 450 °C have been finally established, and moreover, a quasi-peritectic reaction L + α-Mg ↔ 14H + Mg 2 Cu has been determined occurring at 442 °C with an estimated liquid composition of Mg 77 Cu 18 Y 5
Pierce instability and bifurcating equilibria
International Nuclear Information System (INIS)
Godfrey, B.B.
1981-01-01
The report investigates the connection between equilibrium bifurcations and occurrence of the Pierce instability. Electrons flowing from one ground plane to a second through an ion background possess a countable infinity of static equilibria, of which only one is uniform and force-free. Degeneracy of the uniform and simplest non-uniform equilibria at a certain ground plan separation marks the onset of the Pierce instability, based on a newly derived dispersion relation appropriate to all the equilibria. For large ground plane separations the uniform equilibrium is unstable and the non-uniform equilibrium is stable, the reverse of their stability properties at small separations. Onset of the Pierce instability at the first bifurcation of equilibria persists in more complicated geometries, providing a general criterion for marginal stability. It seems probable that bifurcation analysis can be a useful tool in the overall study of stable beam generation in diodes and transport in finite cavities
Phase Equilibria and Ionic Solvation in the Lithium Tetrafluoroborate-Dimethylsulfoxide System
Gafurov, M. M.; Kirillov, S. A.; Gorobets, M. I.; Rabadanov, K. Sh.; Ataev, M. B.; Tretyakov, D. O.; Aydemirov, K. M.
2015-01-01
The phase diagram and electrical conductivity isotherms for the lithium tetrafluoroborate (LiBF4)-dimethylsulfoxide (DMSO) system and Raman spectra of DMSO and the LiBF4-DMSO solution were studied. Spectroscopic signatures of a H-bond between DMSO and BF4 - ions were found. The bonds of Li+ ions to the solvent were stronger than the bonds in DMSO dimers because formation of the solvate destroyed dimeric DMSO molecules. The τω values for DMSO molecules in the Li+-ion solvate shell of the LiBF4-DMSO system were similar to those for associated solvent molecules.
Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid
Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.
2013-05-01
The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.
Phase equilibria in the system Nd(PO3)3 - KPO3
International Nuclear Information System (INIS)
Znamierowska, T.; Mizer, D.
2002-01-01
The system Nd(PO 3 ) 3 - KPO 3 has been investigated by differential thermal analysis (during heating), thermogravimetric analysis, mass spectrometry, Raman spectroscopy and X-ray powder diffraction and its phase diagram was proposed. It was discovered that initial metaphosphates react at a 1:1 molar ratio forming intermediate compound KNd(PO 3 ) 4 . It was found that it melts incongruently at 854 o C giving Nd(po)3) 3 and a liquid rich in KPO 3 . Phosphate KNd(PO 3 ) 4 is stable down to room temperature and does not show any polymorphic transitions. (author)
Calculation of phase equilibria in the Na2SO4-K2SO4-Cs2SO4-H2O system at 25 deg C
International Nuclear Information System (INIS)
Filippov, V.K.; Kalinkin, A.M.; Vasin, S.K.
1990-01-01
Calculation results of solubility diagram and water activity in saturated solutions of Na 2 SO 4 -K 2 SO 4 -Cs 2 SO 4 -H 2 O system at 25 deg C are presented. It is shown that for the calculation of quaternary systems one can use the Pitzer equations. Solubility diagram for the system studied is plotted and data on composition and water activity of solutions saturated by two or three solid phases are given. Classification of nonvariant equilibria from the viewpoint of isomorphism of solubility and fusibility diagrams permits to depict the direction of phase processes during isothermal evaporation of water
Phase equilibria in the system As2-O5 - SrO
International Nuclear Information System (INIS)
Kasenov, B.K.; Ashlyaeva, I.V.
1993-01-01
T-x phase state diagram of As 2 O 5 -SrO system was investigated by the methods of physicochemical analysis. It was established that incongruently melting Sr(AsO 3 ) 2 (t mel 900 deg C), Sr 2 As 2 O 4 (t mel = 1140 deg C), Sr 4 As 2 O 9 (t mel = 1390 deg C) and congruently melting at 1635 deg C Sr 3 (AsO 4 ) 2 formed in the system. Eutectic points were revealed in the system: As 2 O 5 -Sr(AsO 3 ) 2 (15.0 mol % SrO, 700 deg C) and Sr 3 (AsO 4 ) 2 -Sr 4 As 2 O 9 (78 mol % SrO, 1370 deg C)
Phase equilibria in the system Li2O - MoO3 - Sc2O3
International Nuclear Information System (INIS)
Safonov, V.V.; Chaban, N.G.; Porotnikov, N.V.
1984-01-01
Using the methods of DTA and X-ray phase analysis, interaction of components in the system Li 2 O-MoO 3 -Sc 2 O 3 in concentration range, adjacent to the vertex of MoO 3 , has been studied. Projection of the Li 2 MoO 4 -MoO 3 -Sc 2 (MoO 4 ) 3 system liquidus on concentrational triangle of the compositions Li 2 O-MoO 3 -Sc 2 O 3 , which consists of the fields of primary separation of Li 2 MoO 4 , Li 2 Mo 5 O 17 , Li 2 Mo 4 O 13 , MoO 3 , Sc 2 (MoO 4 ) 3 , Li 3 Sc(MoO 4 ) 3 and LiSc(MoO 4 ) 2 , is built
Phase equilibria for mixtures containing nonionic surfactant systems: Modeling and experiments
International Nuclear Information System (INIS)
Shin, Moon Sam; Kim, Hwayong
2008-01-01
Surfactants are important materials with numerous applications in the cosmetic, pharmaceutical, and food industries due to inter-associating and intra-associating bond. We present a lattice fluid equation-of-state that combines the quasi-chemical nonrandom lattice fluid model with Veytsman statistics for (intra + inter) molecular association to calculate phase behavior for mixtures containing nonionic surfactants. We also measured binary (vapor + liquid) equilibrium data for {2-butoxyethanol (C 4 E 1 ) + n-hexane} and {2-butoxyethanol (C 4 E 1 ) + n-heptane} systems at temperatures ranging from (303.15 to 323.15) K. A static apparatus was used in this study. The presented equation-of-state correlated well with the measured and published data for mixtures containing nonionic surfactant systems
On Equilibria of the Two-fluid Model in Magnetohydrodynamics
International Nuclear Information System (INIS)
Frantzeskakis, Dimitri J.; Stratis, Ioannis G.; Yannacopoulos, Athanasios N.
2004-01-01
We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria
International Nuclear Information System (INIS)
Togo, Masaki; Inamori, Yoshiki; Shimoyama, Yusuke
2012-01-01
Highlights: ► Mixtures of (water + 1-methylnaphthalene + light aromatic hydrocarbon) are focused. ► Phase transition pressures on (liquid + liquid) equilibria were measured. ► Effects of aromatic hydrocarbons on phase transition pressure are investigated. ► Phase transition pressures are discussed using dielectric constants of hydrocarbons. - Abstract: Phase transitions for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems are observed at their (liquid + liquid) equilibria at T = (563, 573, and 583) K and (8.6 to 25.0) MPa. The phase transition pressures at T = (563, 573, and 583) K were measured for the five species of light aromatic hydrocarbons, o-, m-, p-xylenes, ethylbenzene, and mesitylene. The measurements of the phase transition pressures were carried out by changing the feed mole fraction of water and 1-methylnaphthalene in water free, respectively. Effects of the feed mole fraction of water on the phase transition pressures are very small. Increasing the feed mole fraction of 1-methylnaphthalene results in decreasing the phase transition pressures at constant temperature. The slopes depending on the feed mole fraction for 1-methylnaphthalene at the phase transition pressures are decreased with increasing temperature for (water + 1-methylnaphthalene + p-xylene), (water + 1-methylnaphthalene + o-xylene), and (water + 1-methylnaphthalene + mesitylene) systems. For xylene isomers, the highest and lowest of the phase transition pressures are obtained in the case of p- and o-xylenes, respectively. The phase transition pressures for ethylbenzene are lower than those in the case of p-xylene. The similar phase transition pressures are given for p-xylene and mesitylene.
Phase Equilibria of a S- and C-Poor Lunar Core
Righter, K.; Pando, K.; Go, B. M.; Danielson, L. R.; Habermann, M.
2016-01-01
The composition of the lunar core can have a large impact on its thermal evolution, possible early dynamo creation, and physical state. Geochemical measurements have placed better constraints on the S and C content of the lunar mantle. In this study we have carried out phase equilibrium studies of geochemically plausible S- and C-poor lunar core compositions in the Fe-Ni-S-C system, and apply them to the early history of the Moon. We chose two bulk core compositions, with differing S and C content based on geochemical analyses of S and C trapped melts in Apollo samples, and on the partitioning of S and C between metal and silicate. This approach allowed calculation of core S and C contents - 90% Fe, 9% Ni, 0.5% C, and 0.375% S by weight; a second composition contained 1% each of S and C. Experiments were carried out from 1473K to 1973K and 1 GPa to 5 GPa, in piston cylinder and multi- anvil apparatuses. Combination of the thermal model of with our results, shows that a solid inner core (and therefore initiation of a dynamo) may have been possible in the earliest history of the Moon (approximately 4.2 Ga ago), in agreement with. Thus a volatile poor lunar core may explain the thermal and magnetic history of the Moon.
International Nuclear Information System (INIS)
Newkirk, H.; Ryerson, F.; Coles, D.; Hoenig, C.; Rozsa, R.; Rossington, C.; Bazan, F.; Tewhey, J.
1980-01-01
The assemblage of coexisting phases in SYNROC D is perovskite, zirconolite, nepheline and spinel. Cesium from the supernate is to be immobilized in hollandite. In the current processing scheme, presynthesized granules of hollandite are added to calcined SYNROC D powders prior to hot procesing or sintering. The disposition of inert and radwaste components of Savannah River Plant (SRP) wastes in SYNROC D formulations has been determined by means of optical microscopy, XRD, XRF, SEM, STEM, electron microprobe analysis and autoradiography. A summary of results is presented. Leaching studies of SYNROC D have been done by means of static, high temperature experiments and continuous-flow experiments. The data reported are from high-temperature experiments (distilled water, powdered sample, 150 0 C, one day). The elements reported are the only ones observed in the leachate. Analysis was done by means of XRF. The flowsheet which depicts the current experimental methods that are being employed at LLNL to produce SYNROC D samples containing presynthesized Cs-bearing hollandite is presented. The starting material for SYNROC D (high Fe, high Al and composite compositions) is simulated sludge obtained in 55 gallon quantities from Southwestern Chemical Corporation. Hot pressing temperatures for SYNROC D are 1000 to 1150 0 C. Hot pressing temperatures for hollandite are 1200 to 1400 0 C
Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles
Energy Technology Data Exchange (ETDEWEB)
McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M
2004-10-20
Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.
International Nuclear Information System (INIS)
Kaesche, S.
1995-01-01
For the superconducting cuprates (Bi,Pb) 2+x Sr 2 Ca 2 Cu 3 O 10+y phase equilibria, the homogeneity region, and the phase formation has been studied in the temperture range 800 to 890 C. Sintered samples were prepared by a solid state reaction starting from Bi 2 O 3 , PbO, CuO and carbonates CaCO 3 and SrCO 3 in a three-stage calcination process. For the phase identification polarization microscopy, X-ray diffraction and susceptibility measurements have been applied. Multi-phase regions were determined in the cross section of the quasi-ternary system (Bi,Pb) 2 O 3 -SrO-CaO-CuO with constant Bi/(Bi+Pb) ratio 0.84 taking into account the 2223-phase. The homogeneity region was determined as function of Sr, Ca, Bi and Pb concentration. Its maximum size was found at 850 C
Shevchenko, M.; Jak, E.
2017-12-01
The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.
Phase equilibria in the MgMoO4-Ln2(MoO4)3 (Ln=La,Gd) systems
International Nuclear Information System (INIS)
Fedorov, N.F.; Ipatov, V.V.; Kvyatkovskij, O.V.
1980-01-01
Phase equilibria in the MgMoO 4 -Ln 2 (MoO 4 ) 3 systems (Ln=La, Gd) have been studied by static and dynamic methods of the physico-chemical analysis, using differential thermal, visual-polythermal, crystal-optical, X-ray phase, and infrared spectroscopic methods, and their phase diagrams have been constructed. Phase equilibria in the systems studied are characterized by limited solubility of components in the liquid state, formation of solid solutions on the base of α- and β-forms of Gd 2 (MoO 4 ) 3 . Eutectics in the MgMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=La, Gd) systems corresponds to the composition of 71 mode % La 2 (MoO 4 ) 3 -29 mole % MgMoO 4 , tsub(melt)--935+-5 deg C and 57 mole % Gd 2 (MoO 4 ) 3 -43 mole % MgMoO 4 , tsub(melt)=1020+-5 deg C. The region of glass formation has been established [ru
Kou, Jisheng
2017-09-30
Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.
DEFF Research Database (Denmark)
Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth
1996-01-01
In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where both translational and internal degrees of freedom are present and coupled through microscopic interactions, with a focus on the manner of the macroscopic coupling between the two types...... where the spin degrees of freedom are slaved by the translational degrees of freedom and develop a first-order singularity in the order-disorder transition that accompanies the lattice-melting transition. The internal degeneracy of the spin states in model III implies that the spin order...
Energy Technology Data Exchange (ETDEWEB)
Ruffine, L.
2005-10-15
The need to develop and improve natural gas treatment processes is real. The petroleum industry usually uses separation processes which require phase equilibrium phenomena. Yet, the complexity of the phase equilibria involved results in a lack of data, which in turn limits the development of thermodynamic models. The first part of this work is devoted to experimental investigations for systems containing light hydrocarbons, methanol, water and acid gases. We present a new apparatus that was developed to measure vapor-liquid and vapor-liquid-liquid equilibria. It allowed us to obtain new phase composition data for the methanol-ethane binary system and different mixtures, and also to determine a part of the three phases equilibrium envelope of the same systems. In the second part of this work, we have developed a thermodynamic model based on the CPA equation of state. This choice may be justified by the presence of associating components like methanol, hydrogen sulfide and water in the systems. Such model is necessary for the design of gas treatment plants. Our model provides good results for phase equilibrium calculations for binaries systems without binary interaction parameter in many cases, and describes correctly the vapour-liquid and vapor-liquid-liquid equilibria for complex mixtures. (author)
Xu, Jiulei; Zheng, Changqing; Tajcmanova, Lucie; Zhong, Xin; Xu, Xuechun; Han, Xiaomeng; Wang, Zhaoyuan
2017-04-01
Xinghuadukou Group, the basement metamorphic complex of Erguna Massif in NE China, is considered to be Mesoproterozoic with Sm-Nd age of 1157±32 Ma. However, the new zircon data from these metamorphic supracrustal rocks in Lvlin Forest show that they formed in Neoproterozoic with the age of 800 Ma. Old zircon age with 2.5 Ga, 2.0 Ga and 1.8 Ga, indicate that the Erguna Massif had an affinity to both Columbia and Rodinia continents. Furthermore, we also present 500 Ma metamorphic age in micashists and 500 Ma age of adjacent granitoids that might have thermally influenced its surrounding. No detailed studies have been undertaken on the metamorphic evolution of the Xinghuadukou Complex. The typical paragneissic mineral assemblage of garnet sillimanite mica schist is Grt+Sil+Bt+Mus+Qtz±Kfs. (Zhou et al., 2011) proposed that the Xinghuadukou Complex appears to have undergone similar granulite facies metamorphic conditions based on the similarity of mineral assemblages to the Mashan Complex in the Jiamusi Massif, NE China. However, the new phase equilibria modelling result shows that these rocks are high amphibolite facies product with 650℃. We can easily find K-feldspar formed by partial melting due to the consuming of muscovite. Also the remaining muscovite is directly connected with a fluid channel in thin sections which indicate that the remaining muscovite formed from retrograde with the existence of fluid. The zoned garnet has low MgO and high CaO content in rims and high MgO and low CaO content in core. It seems that this garnet has high pressure and low temperature (HP-LT) in rims and low pressure and high temperature (LP-HT) in core which would point to an anti-clockwise metamorphic evolution. Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Liu, F.L., Qiao, D.W., Ren, S.M. and Liu, J.H., 2011b. A> 1300km late Pan-African metamorphic belt in NE China: new evidence from the Xing'an block and its tectonic implications. Tectonophysics, 509(3): 280-292.
Directory of Open Access Journals (Sweden)
Span Roland
2012-04-01
Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.
Rusu, Aura; Tóth, Gergő; Szőcs, Levente; Kökösi, József; Kraszni, Márta; Gyéresi, Árpád; Noszál, Béla
2012-07-01
The complete macro- and microequilibrium analyses of six fluoroquinolone drugs - ciprofloxacin, enrofloxacin, norfloxacin, pefloxacin, ofloxacin and moxifloxacin - are presented. Previous controversial literature data are straightened up, the protonation centers are unambiguously identified, and the protonation macro- and microconstant values are reported. The macroconstants were determined by (1)H NMR-pH titrations while the microconstants were determined by a multi-modal spectroscopic-deductive methodology, in which methyl ester derivatives were synthesized and their NMR-pH titration data contributed to the evaluation of all the microconstants. The full (1)H, (13)C and (15)N NMR assignments, NMR-pH profiles, macro- and microprotonation schemes and species-specific diagrams are included. Our studies show that the fluoroquinolones have three protonation centers: the carboxylate group, the N-1' and N-4' piperazine nitrogens and concentration of the uncharged microspecies is way below the values published earlier. The results could be well interpreted in terms of structural properties. The protonation macro- and microconstant values allow the pre-planned method development in techniques such as capillary zone electrophoresis and also, the interpretation of fluoroquinolone mechanism of biological action, including the pharmacokinetic properties, and antibacterial activities that are all heavily influenced by the states of protonation. Copyright © 2012 Elsevier B.V. All rights reserved.
Harikrishnan, A R; Dhar, Purbarun; Gedupudi, Sateesh; Das, Sarit K
2018-04-12
We propose a comprehensive analysis and a quasi-analytical mathematical formalism to predict the surface tension and contact angles of complex surfactant-infused nanocolloids. The model rests on the foundations of the interaction potentials for the interfacial adsorption-desorption dynamics in complex multicomponent colloids. Surfactant-infused nanoparticle-laden interface problems are difficult to deal with because of the many-body interactions and interfaces involved at the meso-nanoscales. The model is based on the governing role of thermodynamic and chemical equilibrium parameters in modulating the interfacial energies. The influence of parameters such as the presence of surfactants, nanoparticles, and surfactant-capped nanoparticles on interfacial dynamics is revealed by the analysis. Solely based on the knowledge of interfacial properties of independent surfactant solutions and nanocolloids, the same can be deduced for complex surfactant-based nanocolloids through the proposed approach. The model accurately predicts the equilibrium surface tension and contact angle of complex nanocolloids available in the existing literature and present experimental findings.
Attractive evolutionary equilibria
Roorda, Berend; Joosten, Reinoud
2011-01-01
We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.
Thermal analysis and prediction of phase equilibria in the TiO2-Bi2O3 system
International Nuclear Information System (INIS)
Lopez-Martinez, Jaqueline; Romero-Serrano, Antonio; Hernandez-Ramirez, Aurelio; Zeifert, Beatriz; Gomez-Yanez, Carlos; Martinez-Sanchez, Roberto
2011-01-01
A thermodynamic study on the TiO 2 -Bi 2 O 3 system was carried out using differential thermal analysis (DTA) and X-Ray diffraction (XRD) techniques covering the composition range from 65 to 90 mol% Bi 2 O 3 . From the XRD results the only two intermediate compounds in the Bi 2 O 3 rich region were Bi 4 Ti 3 O 12 and Bi 12 TiO 20 . The Bi 4 Ti 3 O 12 phase presents the well known plate-like morphology. The experimentally determined phase transition temperatures with DTA technique were compared with thermodynamic calculated results and good agreement was obtained. The DTA results also showed that the limit of the peritectic reaction between liquid and Bi 4 Ti 3 O 12 occurs approximately at 90 mol% Bi 2 O 3 . The phase diagram of the TiO 2 -Bi 2 O 3 system was calculated using a quasichemical model for the liquid phase. The thermodynamic properties of the intermediate compounds were estimated from the data of TiO 2 and Bi 2 O 3 pure solids. In this manner, data for this binary system have been analysed and represented with a small adjustable parameter for the liquid phase.
International Nuclear Information System (INIS)
Yuan Xiaoming; Zhang Lijun; Du Yong; Xiong Wei; Tang Ying; Wang Aijun; Liu Shuhong
2012-01-01
Both two-sublattice (2SL) and four-sublattice (4SL) models in the framework of the compound energy formalism can be used to describe the fcc ordered/disordered transitions. When transferring the parameters of 2SL disregarding the metastable ordered states into those of 4SL, inconsistence in either stable or metastable phase diagrams could appear, as detected in both Al–Ni and Ni–Si systems. To avoid such a kind of drawback, this behavior was analyzed and investigated in the Ni–Si and Al–Ni systems with the aid of first–principle calculations. Furthermore, a new approach considering both the stable and metastable fcc ordered phase equilibria deduced from the first–principles calculations was proposed to perform a reliable thermodynamic modeling for the fcc ordered/disordered transition. The Ni–Si system was then thermodynamically assessed using the presently proposed approach. The good agreement between the calculation and experiments demonstrates the reliability of the proposed approach. It is expected that the approach is valid for other systems showing complex ordered/disordered transitions. - Highlights: ► We discuss the drawbacks of order/disorder modeling in the Ni–Si and Al–Ni systems. ► We perform ab initio calculation of thermodynamic properties in the Ni–Si system. ► A CALPHAD–type approach is proposed to model the fcc ordered/disordered transition. ► The Ni–Si system was thermodynamically assessed using the new approach.
Multiple equilibria in a simple elastocapillary system
Taroni, Michele; Vella, Dominic
2012-01-01
properties two stable equilibria may exist, and show via numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is ultimately reached. © 2012 Cambridge University Press.
Directory of Open Access Journals (Sweden)
Huatian Zhang
2012-09-01
Our phase equilibria modeling indicates two main stages during the metamorphic evolution of these rocks: 1 near-isobaric cooling from 975 °C to 875 °C around 8 kbar, represented by the formation of garnet porphyroblasts from spinel and quartz; and 2 cooling and decompression from 850 °C, 8 kbar to below 750 °C, 6.5 kbar, represented by the break-down of garnet. The spinel + quartz assemblage is considered to have been stable at peak metamorphism, formed through the break-down of cordierite, indicating a near isothermal compression process. Our study confirms the regional extent of UHT metamorphism within the IMSZ associated with the Paleoproterozoic subduction-collision process.
DEFF Research Database (Denmark)
Grenner, Andreas; Kontogeorgis, Georgios; von Solms, Nicolas
2007-01-01
The simplified PC-SAFT equation of state has been applied to liquid-liquid, vapor-liquid and solid-liquid equilibria for mixtures containing 1-or 2-alkanols with alkanes, aromatic hydrocarbons, CO2 and water. For the alkanols we use generalized pure compound parameters. This means that two...... of the physical pure compound parameters, in (segment number) and or (segment diameter), are obtained from linear extrapolations, since m and m sigma(3), increase linearly with respect to the molar mass, and moreover, the two association parameters (association energy and association volume) were assumed...... to be constant for all alkanols. Only the dispersion energy is fitted to experimental data. Thus it is possible to estimate parameters for several 1-and 2-alkanols. The final aim is to develop a group contribution approach for PC-SAFT which is suitable for complex compounds, considering that the motivation...
International Nuclear Information System (INIS)
Arce, Alberto; Francisco, Maria; Soto, Ana
2010-01-01
Suitability of a pyridinium ionic liquid as a solvent in desulfurization has been analyzed. (Liquid + liquid) equilibria for ternary systems composed by 1-hexyl-3,5-dimethyl pyridinium {bis[trifluoromethylsulfonyl]imide, thiophene, and three hydrocarbons representative of fuel (n-heptane, 2,2,4 trimethylpentane, and toluene) have been determined at T = 298.15 K and atmospheric pressure. High solubility of thiophene in the ionic liquid and also of toluene have been found, being this solvent practically immiscible with 2,2,4 trimethylpentane and heptane. Equilibrium data of these systems have been well correlated with UNIQUAC equations finding the highest deviations for the ternary system involving toluene. NRTL model drove to worse results being considered as not suitable model to correlate the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Lee, Chul Soo; Lee, Se Il; Sim, Yeon Sik; Park, Sung Bin; Yang, Sung Oh; Park, Ji Yong [Korea University, Seoul (Korea, Republic of)
1995-08-01
In various partitioning processes, rare earth elements and actinide elements are separated from other elements in the first stage. They are then separated into rare earth groups and actinde groups. The first stage is accomplished by solvent extraction using DEHPA, by precipitation using oxalic= acid, or by cation exchange. The second stage is carried out by selective back-extraction or by selective elution using DTPA. In these processes the equilibria is governed by the concentrations of nitric acid, of solvents, and of precipitants among others. In this study various distribution coefficients in partitioning processes were experimentally determined. And thermodynamic models were proposed to calculate distribution coefficients with experimentally determined equilibrium constants. 32 refs., 11 tabs., 23 figs. (author)
International Nuclear Information System (INIS)
Truphemus, Thibaut
2013-01-01
In the UO 2 -PuO 2 -Pu 2 O 3 section, a monophasic (U 1-y ,Pu y )O 2-x domain is stable for y≤0,20 at 25 C and up to solid-liquid equilibrium. At higher Pu content, phase equilibria are more unclear with a phase separation process. The main objective of this work consisted in upgrading the representation of this system for 0,15≤y≤0,65 and 25≤T(C)≤1500. At 25 C, a miscibility gap composed by two different (U 1-y ,Pu y )O 2-x phases has been observed for y≤0,45, with one very closed to stoichiometric state (Oxygen/Metal=2) and one other very reduced. For the first time, a triphasic domain has been characterized at higher Pu contents, with two (U 1-y ,Pu y )O 2-x phases near y=0,45 and one (U 1-y ,Pu y ) 2 O 3 phase with a low U content inside. Concerning the study in function of temperature, we have demonstrated that phase separation temperature increase when Pu content grows. Several representations have been established. At 200 C, the representation is closed to that at 25 C. At 400 C, the phase separation have been specified at a lower Pu content than that of literature: y=0,35. At 600 C, our results have clarified the section, until then very unclear, with a phase separation appearing at y=0,60.The microstructural analysis has clearly demonstrated the significant impact of the phase separation on the material. Indeed many cracks have been observed in our samples, and quantity of these defects increases when Pu content grows. (author) [fr
The Al-rich region of the Al-Mn-Ni alloy system. Part II. Phase equilibria at 620-1000 oC
International Nuclear Information System (INIS)
Balanetskyy, S.; Meisterernst, G.; Grushko, B.; Feuerbacher, M.
2011-01-01
Research highlights: → Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 deg. C by means of SEM, TEM, powder XRD and DTA. → Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P63/mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P63/m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P1121/a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (basecentered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. → The existence of a thermodynamically stable R-phase of stoichiometry Al 60 Mn 11 Ni 4 , reported earlier in literature, was not confirmed in the present study. - Abstract: Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 o C. Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P6 3 /mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P6 3 /m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P112 1 /a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (base-centered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. Their physicochemical behaviour in the Al-Mn-Ni alloy system was studied.
The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2
Sharp, Z.D.; Essene, E.J.; Anovitz, Lawrence M.; Metz, G.W.; Westrum, E.F.; Hemingway, B.S.; Valley, J.W.
1986-01-01
The heat capacity of a natural monticellite (Ca1.00Mg.09Fe.91Mn.01Si0.99O3.99) measured between 9.6 and 343 K using intermittent-heating, adiabatic calorimetry yields Cp0(298) and S2980 of 123.64 ?? 0.18 and 109.44 ?? 0.16 J ?? mol-1 K-1 respectively. Extrapolation of this entropy value to end-member monticellite results in an S0298 = 108.1 ?? 0.2 J ?? mol-1 K-1. High-temperature heat-capacity data were measured between 340-1000 K with a differential scanning calorimeter. The high-temperature data were combined with the 290-350 K adiabatic values, extrapolated to 1700 K, and integrated to yield the following entropy equation for end-member monticellite (298-1700 K): ST0(J ?? mol-1 K-1) = S2980 + 164.79 In T + 15.337 ?? 10-3 T + 22.791 ?? 105 T-2 - 968.94. Phase equilibria in the CaO-MgO-SiO2 system were calculated from 973 to 1673 K and 0 to 12 kbar with these new data combined with existing data for akermanite (Ak), diopside (Di), forsterite (Fo), merwinite (Me) and wollastonite (Wo). The location of the calculated reactions involving the phases Mo and Fo is affected by their mutual solid solution. A best fit of the thermodynamically generated curves to all experiments is made when the S0298 of Me is 250.2 J ?? mol-1 K-1 less than the measured value of 253.2 J ?? mol-1 K-1. A best fit to the reversals for the solid-solid and decarbonation reactions in the CaO-MgO-SiO2-CO2 system was obtained with the ??G0298 (kJ ?? mole-1) for the phases Ak(-3667), Di(-3025), Fo(-2051), Me(-4317) and Mo(-2133). The two invariant points - Wo and -Fo for the solid-solid reactions are located at 1008 ?? 5 K and 6.3 ?? 0.1 kbar, and 1361 ?? 10 K and 10.2 ?? 0.2 kbar respectively. The location of the thermodynamically generated curves is in excellent agreement with most experimental data on decarbonation equilibria involving these phases. ?? 1986.
International Nuclear Information System (INIS)
Kobayashi, Satoru; Schneider, Andre; Zaefferer, Stefan; Frommeyer, Georg; Raabe, Dierk
2005-01-01
In the context of the development of high-strength Fe 3 Al-based alloys, phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC phases in the Fe-Al-Cr-Ti-C quinary system and the formation of TiC were determined. A pseudo-eutectic trough (L α + L + TiC) exists at 1470 deg C at around Fe-26Al-5Cr-2Ti-1.7C on the vertical section between Fe-26Al-5Cr (α) and Ti-46C (TiC) in at.%. Large faceted TiC precipitates form from the melt after the formation of primary α phase even in hypoeutectic alloys. The TiC formation is thought to be due to the composition change of the liquid towards the hypereutectic compositions by solidification of the primary α. In order to remove the faceted TiC, which are unfavourable for strengthening the material, two different processing routes have been successfully tested: (i) solidification with an increased rate to reduce the composition variation of the liquid during solidification, and (ii) unidirectional solidification to separate the light TiC precipitates from the melt
Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih
2015-11-01
The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.
Energy Technology Data Exchange (ETDEWEB)
Zupanič, Franc, E-mail: franc.zupanic@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, SI-2000 Maribor (Slovenia); Markoli, Boštjan; Naglič, Iztok [University of Ljubljana, Faculty of Natural Sciences and Technologies, Askerceva 12, Ljubljana SI-1000 (Slovenia); Bončina, Tonica [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, SI-2000 Maribor (Slovenia)
2013-09-05
Highlights: •We investigated the constitution of the Al-rich corner of the Al–Mn–Be system. •Be{sub 4}AlMn is a thermodynamically stable phase in the Al-corner of the Al–Mn–Be system. •The T-phase (Al{sub 15}Mn{sub 3}Be{sub 2}) is not a stable phase in the Al-corner at 600 °C. •The λ-Al{sub 4}Mn phase is a stable phase in the Al-corner at 600 °C. •T-phase is a stable phase at 750 °C. -- Abstract: This work investigated the constitution of the Al-rich corner within the ternary Al–Mn–Be phase diagram using SEM + EDS, AES, XRD and DSC. With respect to the results, an isothermal cross-section at 600 °C was established, as well as a prediction of the apparent liquidus projection in the Al-corner. Be{sub 4}AlMn is a thermodynamically stable phase in the Al-rich corner of the ternary phase diagram. The other ternary T-phase, usually designated as Al{sub 15}Mn{sub 3}Be{sub 2}, formed during solidification in alloys with Be:Mn atomic ratios of less than 4:1, and having more than 1.5 at.% Mn. This phase is not a stable phase in the Al-rich corner at 600 °C. In contrast, the λ-Al{sub 4}Mn phase is a stable one. The T-phase is stable over a rather large part of the phase diagram at least within a temperature range close to 750 °C, where it is in equilibrium with the Al-rich liquid phase, and Be{sub 4}AlMn.
Guilmette, C.; Indares, A.; Hébert, R.
2011-05-01
Rare kyanite-bearing anatectic paragneisses are found as boudins within sillimanite-bearing paragneisses of the core of the Namche Barwa Antiform, Tibet. In the present study, we document an occurrence from the NW side of the Yarlung Zangbo River. These rocks mainly consist of the assemblage garnet + K-feldspar + kyanite ± biotite + quartz + rutile ± plagioclase with kyanite locally pseudomorphed by sillimanite. The documented textures are consistent with the rocks having undergone biotite-dehydration melting in the kyanite stability field, under high-P granulite facies conditions, and having experienced melt extraction. However textures related to melt crystallization are ubiquitous both in polymineralic inclusions in garnet and in the matrix, suggesting that a melt fraction had remained in these rocks. Phase equilibria modelling was undertaken in the NCKFMASTHO system with THERMOCALC. P-T pseudosections built with the bulk compositions of one aluminous and one sub-aluminous paragneiss samples predict a biotite-kyanite-garnet-quartz-plagioclase-K-feldspar-liquid-rutile ± ilmenite field, in which biotite-dehydration melting occurs, located in the P-T range of ~ 800-875 °C and ~ 10-17 kbar. In addition, the topologies of these pseudosections are consistent with substantial melt loss during prograde metamorphism. A second set of P-T pseudosections with melt-reintegrated model bulk compositions were thus constructed to evaluate the effect of melt loss. The integration of textural information, precise mineral modes, mineral chemistry, and phase equilibria modelling allowed to constrain a P-T path where the rocks are buried to lower crustal depths at peak P-T conditions higher than 14 kbar and 825 °C, possibly in the order of 15-16 kbar and 850 °C, followed by decompression and cooling to P-T conditions of around 9 kbar and 810 °C, under which the remaining melt was solidified. The implications for granite production at the NBA and for Himalayan tectonic models
Uniqueness of Nash equilibria in a quantum Cournot duopoly game
International Nuclear Information System (INIS)
Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi
2010-01-01
A quantum Cournot game whose classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties: (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.
DEFF Research Database (Denmark)
Kahl, Heike; Quitzsch, Konrad; Stenby, Erling Halfdan
1997-01-01
of multicomponent system is the coexistence of a highly structural liquid phase enriched with amphiphilic compounds and an excess water or an excess oil phase or both of them. The phase behaviour was studied experimentally by use of turbidity titration and HPLC measurements and theoretically by application...... of the UNIQUAC-equation and the UNIFAC-method. The UNIFAC-method is able to describe the phase behaviour in the quaternary system qualitatively, without fitting parameters. However, by applying the UNIQUAC-method, with adjustable parameters, it was only possible to model the ternary subsystems. The modelling......A systematic investigation of the phase behaviour involving microemulsions is presented with respect to experimental and calculated data for the four-component system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol and its corresponding ternaries at 25°C. The main feature of this kind...
Phase equilibria in the KFeS2-Fe-S system at 300-600 °C and bartonite stability
Osadchii, Valentin O.; Voronin, Mikhail V.; Baranov, Alexander V.
2018-05-01
The article deals with phase relations in the KFeS2-Fe-S system studied by the dry synthesis method in the range of 300-600 °C and at a pressure of 1 bar. At the temperature below 513 ± 3 °C, pyrite coexists with rasvumite and there are pyrite-rasvumite-KFeS2 and pyrite-rasvumite-pyrrhotite equilibria established. Above 513 ± 3 °C pyrite and rasvumite react to form KFeS2 and pyrrhotite, limiting the pyrite-rasvumite association to temperatures below this in nature. The experiments also outline the compositional stability range of the copper-free analog of murunskite (K x Fe2- y S2) and suggest that mineral called bartonite is not stable in the Cl-free system, at least at atmospheric pressure and the temperature in the experiments. Chlorbartonite could be easily produced after adding KCl in the experiment. Possible parageneses in the quaternary K-Fe-S-Cl system were described based on the data obtained in this research and found in the previous studies. The factors affecting the formation of potassium-iron sulfides in nature were discussed.
Learning efficient correlated equilibria
Borowski, Holly P.; Marden, Jason R.; Shamma, Jeff S.
2014-01-01
The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.
Learning efficient correlated equilibria
Borowski, Holly P.
2014-12-15
The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents\\' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.
Phase equilibria in the Cs-U-O system in the temperature range from 873 to 1273 K
International Nuclear Information System (INIS)
Fee, D.C.; Johnson, C.E.
1978-01-01
Portions of the cesium-uranium-oxygen system have been investigated between 873 and 1273 K and a phase diagram has been constructed using these data and the data of other workers in the field. A consistent set of measured and estimated thermodynamic data for cesium uranates has been used to calculate the equilibrium cesium partial pressure and the equilibrium oxygen partial pressure over two and three phase regions in the Cs-U-O system. For a given temperature, the equilibrium cesium partial pressure in a two phase region decreases as the equilibrium oxygen partial pressure increases. (author)
Experimental Investigation of Phase Equilibria in the Ho-Ti-Si Ternary System at 973 K (700 °C)
Han, Feng; Zhan, Yongzhong
2018-02-01
Phase equilibrium relations of the Ho-Ti-Si ternary system at 973 K (700 °C) were experimentally researched by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectrometer (EDS). The isothermal section of the system at 973 K (700 °C) consists of 14 three-phase regions, 27 two-phase regions, and 14 single-phase regions. The phases Ti5Si3, Ti5Si4, TiSi, TiSi2, Ho5Si3, Ho5Si4, HoSi, αHoSi2-b, and βHoSi2-a are proved to exist at 973 K (700 °C). Previously reported HoTiSi and Ho2Ti3Si4 ternary compounds were confirmed to exist at this temperature. The solubility of Ho in the intermediate phases (i.e., TiSi2, TiSi, Ti5Si4, and Ti5Si3) at the Ti-Si side is extremely small. The maximum solubilities of Ti in HoSi2-b, Ho5Si4, and Ho5Si3 are confirmed to be 8.0, 7.2, and 6.0 at. pct, respectively.
International Nuclear Information System (INIS)
Orkoulas, G.; Panagiotopoulos, A.Z.
1994-01-01
In this work, we investigate the liquid--vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T * c =0.053, ρ * c =0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids
DEFF Research Database (Denmark)
Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons
2012-01-01
Knowledge of the phase behaviour and composition is of paramount importance for understanding multiphase reactions. We have investigated the effect of the phase behaviour in the palladium-catalysed selective hydrogenation of 2-butenal to saturated butanal in dense carbon dioxide. The reactions were...... cell. The results of the catalytic experiments showed that small amounts of carbon dioxide added to the system significantly decrease the conversion, whereas at higher loadings of CO2 the reaction rate gradually increases reaching a maximum. The CPA calculations revealed that this maximum is achieved...... performed using a 5wt% Pd on activated carbon in custom-designed high pressure autoclaves at 323K. The Cubic-Plus-Association (CPA) equation of state was employed to model the phase behaviour of the experimentally studied systems. CPA binary interaction parameters were estimated based on the experimental...
Phase equilibria in the CdMoO4-Gd2(MoO4)3 system
International Nuclear Information System (INIS)
Tunik, T.A.; Fedorov, N.F.; Razumovskij, S.N.
1980-01-01
The constitutional diagram of the CdMoO 4 -Cd 2 (MoO 4 ) 3 system has been plotted using statistical and dynamic methods as well as a complex of instrumental analysis procedures. Three major phases have been found to occur in the systems, viz.: CdMoO 4 based solid solutions that crystallize in the range from 0 to 25 mol.percent of Cd 2 (MoO 4 ) 3 and pass in transit the two-phase narrow region becoming then solid solutions having a distorted scheelite structure and existing in concentrations from 40 to 65 mol.% of Cd 2 (MoO 4 ) 3 . The entire range, in which the Cd 2 (MoO 4 ) 3 solid solutions can exist, amounts to less than 5 mol.%. Certain crystallochemical constants of the phases that occur in the system have been determined [ru
Description of gas hydrates equilibria in sediments using experimental data of soil water potential
Energy Technology Data Exchange (ETDEWEB)
Istomin, V. [NOVATEK, Moscow (Russian Federation); Chuvilin, E. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology; Makhonina, N.; Kvon, V. [VNIIGAZ, Moscow (Russian Federation); Safonov, S. [Schlumberger Moscow Research, Moscow (Russian Federation)
2008-07-01
Analytical relationships have been developed between hydrate dissociation pressure and vapor pressure above the pore water surface. In addition, experiments have been discussed in numerous publications on the effect of narrow interconnected throats between pores on clathrate dissociation conditions in porous media. This paper presented an approach that improved upon the available thermodynamic methods for calculation of hydrate phase equilibria. The approach took into account the properties of pore water in natural sediments including three-phase equilibrium of gas-pore water-gas hydrate in a similar way as for unfrozen water in geocryology science. The purpose of the paper was to apply and adapt geocryology and soil physics method to the thermodynamic calculation of non-clathrated water content in sediments. It answered the question of how to estimate the non-clathrated water content if pore water potential was known. The paper explained the thermodynamics of water phase in porous media including the thermodynamic properties of supercooled water, the thermodynamic properties of pore water and pore ice in sediments, and the phase equilibria of pore water. The paper also discussed the quantitative techniques that were utilized for determination of unfrozen water content in sediments and its dependence on temperature variation. These included contact-saturation, calorimetric, dielectric, nuclear magnetic resonance, and others. The thermodynamic calculations of pore water phase equilibria were also presented. 30 refs., 5 tabs., 8 figs.
Van Pelt, A.
1992-01-01
I. INTRODUCTION AND THEORY This PhD research is mainly concerned with the global phase behaviour, that is calculated from the Simplified-Perturbed-Hard-Chain equation. This equation distinguishes itself from many other equations of state by a sound theoretical background. We enter the field of the
Liquid-liquid phase equilibria for ternary systems of several polyethers with NaCl and H2O
Milosevic, M.; Staal, K.J.J.; Schuur, Boelo; de Haan, A.B.
2014-01-01
Liquid–liquid extraction using polymers followed by induced phase separation is a potential energy reducing technology for water–salt separation. Ternary equilibrium data have been determined and reported for the (block co)poly ethers–sodium chloride–water systems at two different temperatures at
Collisionless current sheet equilibria
Neukirch, T.; Wilson, F.; Allanson, O.
2018-01-01
Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.
Institute of Scientific and Technical Information of China (English)
王琳; 曹丰璞; 刘珊珊; 杨浩
2011-01-01
High-pressure vapor-liquid phase equilibrium data for carbon dioxide＋ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state （PR-EOS） together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.
Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K.
2018-02-01
The chromatographic separation of ibuprofen enantiomers on a Nautilus-E chiral stationary phase with a grafted eremomycin antibiotic at high column loading is accompanied by distortion of the shape of chromatographic peaks. A model is proposed to explain this phenomenon. A number of factors are considered in the model: the ionization of ibuprofen in the mobile phase, the pH change in the mass transfer zone caused by ionization, and competitive adsorption involving buffer components. Simulations performed using this model within the theory of nonequilibrium chromatography allow the shape of chromatograms for large amounts of S- and R-ibuprofen samples to be predicted. The adsorption mechanism is found to be mainly ion-exchange. The contribution from the molecular adsorption of ibuprofen to the total retention is shown to be several percent.
2018-01-01
A binary ligand system composed of aliphatic carboxylic acids and primary amines of various chain lengths is commonly employed in diverse synthesis methods for CsPbBr3 nanocrystals (NCs). In this work, we have carried out a systematic study examining how the concentration of ligands (oleylamine and oleic acid) and the resulting acidity (or basicity) affects the hot-injection synthesis of CsPbBr3 NCs. We devise a general synthesis scheme for cesium lead bromide NCs which allows control over size, size distribution, shape, and phase (CsPbBr3 or Cs4PbBr6) by combining key insights on the acid–base interactions that rule this ligand system. Furthermore, our findings shed light upon the solubility of PbBr2 in this binary ligand system, and plausible mechanisms are suggested in order to understand the ligand-mediated phase control and structural stability of CsPbBr3 NCs. PMID:29381326
Ternary equilibria in bismuth--indium--lead alloys
International Nuclear Information System (INIS)
Liao, K.C.; Johnson, D.L.; Nelson, R.C.
1975-01-01
The liquidus surface is characterized by three binary equilibria. One binary extends from the Pb--Bi peritectic to the Pb--In peritectic. The other two extend from In--Bi eutectics, merge at 50 at. percent Bi and 30 at. percent Pb, and end at the Bi--Pb eutectic. Based on analysis of ternary liquidus contours and vertical sections, it is suggested that solidification for high lead and very high indium alloys occurs from two-phase equilibria. Solidification from all other alloys occurs from three-phase equilibria. Four-phase solidification does not occur in this system
DEFF Research Database (Denmark)
Grenner, Andreas; Schmelzer, Jürgen; von Solms, Nicolas
2006-01-01
, and water. Furthermore, the predictive capabilities of the models are investigated for four ternary systems composed of these components, which exhibit complex liquid-liquid(-liquid) equilibria (LLLE). Various aspects of association models which have an influence in the results are studied for the PC......, both models perform overall similarly for the binary systems, although ESD shows a remarkably good behavior despite its simplicity and the use of only the two-site scheme for all associating compounds. The prediction of the LLE in the ternary systems water + octane + aniline and water + CHA + aniline......Two Wertheim-based association models, the simplified PC-SAFT and the Elliott-Suresh-Donohue (ESD) equation of state, are compared in this work for the description of vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) in binary systems of aniline, cyclohexylamine (CHA), hydrocarbons...
International Nuclear Information System (INIS)
Kareem, Mukhtar A.; Mjalli, Farouq S.; Hashim, Mohd Ali; Hadj-Kali, Mohamed K.O.; Ghareh Bagh, Fatemeh Saadat; Alnashef, Inas M.
2013-01-01
Highlights: • Ionic liquid analogues are introduced as potential replacements for ionic liquids. • Deep eutectic solvents presented in this work were successful for extracting aromatics. • Hand correlation was applied to ascertain the experimental measurements. • The NRTL thermodynamic model was capable for correlating the LLE experimental data. -- Abstract: In this work, the liquid–liquid extraction of toluene from hydrocarbons mixtures (toluene/heptane) was investigated using deep eutectic solvents as solvents. Ethyltriphenylphosphonium iodide as a salt with either ethylene glycol or sulfolane as hydrogen-bond donors (HBDs) were utilized for synthesizing six DESs. (Liquid + liquid) equilibria data were determined experimentally for the ternary system (toluene + heptane + DES) at (30, 40, 50, and 60) °C and atmospheric pressure. Hand correlation was applied to establish the reliability of the experimental data. In many cases the correlation factor is found close to unity which indicates high reliability of the data. The selectivities and distribution coefficients were used to determine the suitability of these DESs as solvents for this extraction process. Higher selectivities than those published for sulfolane as a commercial solvent were observed. The DES made from ethyltriphenylphosphonium iodide and sulfolane at salt:HBD of 1:4 showed the best separation capability at 30 °C. Thus, it was further characterized by measuring its viscosity and refractive index at a range of temperatures to help understand its physical behaviour needed for process design. The non-random two-liquid (NRTL) model was applied successfully to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems. It has been found that the third non-randomness parameter varies linearly with the HBD number of moles
International Nuclear Information System (INIS)
Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.
2011-01-01
Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).
Energy Technology Data Exchange (ETDEWEB)
Prausnitz, J.M.
1980-05-01
This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.
Rapp, R. P.; Nishiyama, N.; Irifune, T.; Inoue, T.; Yamasaki, D.
2003-12-01
Ocean island basalts (OIBs) provide geochemical evidence for the presence of crustally-derived sedimentary material in the deep mantle plume source region for EM-type OIBs, and global seismic tomography provides us with dramatic images of subducted slabs, presumably carrying a sediment component, penetrating through the transition zone and into the lower mantle, in some cases to the core-mantle boundary. In an effort to better constrain the geochemical effects of deeply recycled sedimentary material in subduction zones, and their role in the petrogenesis of EM-type OIBs, we have undertaken a series of phase equlibria experiments in the multi-anvil apparatus at 10-25 GPa, using natural sediment lithologies as starting materials. The goal of these experiments is to identify the dominant phases in deeply subducted sediments, constrain their P-T stability limits, and to assess their role in crustal recycling and element redistribution in the deep mantle during subduction. The phase equilibria experiments were performed in a 2000-ton Kawai-type apparatus, using tungsten carbide cubes with 3 mm TEL and Cr-doped MgO and zirconia pressure media. A cylindrical lanthanum chromite heater was used, along with short (gold capsules to minimize thermal gradients and to retain the small amounts of water (< 1 wt%) present in the starting material, and long run-durations (12-48 hours) in order to facilitate future analyses of the dominant phases for key trace elements using the ion microprobe. Our preliminary results at 10-25 GPa indicate that K-hollandite (KalSi3O3) and stishovite are the primary high-pressure phases in the sediment composition, with subordinate garnet and an as-yet-unidentified (possibly hydrous) Al-silicate phase present as well. These results suggest that K-hollandite is the primary repository for incompatible elements (e.g., La, Ce, Sr, Ba, Rb, etc., and the heat-producing elements K, U and Th) in sedimentary material recycled into the deep mantle via
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios
2015-01-01
The thermodynamic properties of pure gaseous, liquid or supercritical CO2 and CO2 mixtures with hydrocarbons and other compounds such as water, alcohols, and glycols are very important in many processes in the oil and gas industry. Design of such processes requires use of accurate thermodynamic...... models, capable of predicting the complex phase behavior of multicomponent mixtures as well as their volumetric properties. In this direction, over the last several years, the cubic-plus-association (CPA) thermodynamic model has been successfully used for describing volumetric properties and phase...
Study of phase equilibria and glass formation in the CaO-WO3-P2O5 system
International Nuclear Information System (INIS)
Bielis, I.Ya.
1980-01-01
The method of quenching has been used to investigate the liquidus surface of a portion of the CaO-WO 3 -P 2 O 5 system limited by the Ca(PO 3 ) 2 -W 2 O 3 (PO 4 ) 2 and CaWO 4 -Ca 2 P 2 O 7 cross-sections. The primary crystallization fields on the compounds: WO 3 , W 2 O 3 (PO 4 ) 2 , CaWO 4 , Ca 2 P 7 O 7 , Ca(PO 3 ) 2 are separated. The liquidus surface isotherms at 900, 1000, 1100 and 1200 deg C have been plotted on the concentration triangle plane. It has been found that the cross-sections of W 2 O 3 (PO 4 ) 2 -Ca(PO 3 ) 2 , WO 3 -Ca(PO 3 ) 2 , WO 3 -Ca 2 P 2 O 7 and CaWO 4 -Ca 2 P 2 O 7 are eutectic-type quasi-binary systems. The position of the glass transition region in the CaO-WO 3 -P 2 O 5 system has been determined for the treatment temperatures of 1100, 1200 and 1300 deg C and a correlation between the configuration of the glass transition region and the phase diagram of the system has been demonstrated [ru
Wilczura-Wachnik, Hanna; Jónsdóttir, Svava Osk
2003-04-01
A method for calculating interaction parameters traditionally used in phase-equilibrium computations in low-molecular systems has been extended for the prediction of solvent activities of aromatic polymer solutions (polystyrene+methylcyclohexane). Using ethylbenzene as a model compound for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum chemical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction energies are determined for three molecular pairs, the solvent and the model molecule, two solvent molecules and two model molecules, and used to calculated UNIQUAC interaction parameters, a(ij) and a(ji). Using these parameters, the solvent activities of the polystyrene 90,000 amu+methylcyclohexane system, and the total vapor pressures of the methylcyclohexane+ethylbenzene system were calculated. The latter system was compared to experimental data, giving qualitative agreement. Figure Solvent activities for the methylcylcohexane(1)+polystyrene(2) system at 316 K. Parameters aij (blue line) obtained with the AM1 method; parameters aij (pink line) from VLE data for the ethylbenzene+methylcyclohexane system. The abscissa is the polymer weight fraction defined as y2(x1)=(1mx1)M2/[x1M1+(1mx1)M2], where x1 is the solvent mole fraction and Mi are the molecular weights of the components.
DEFF Research Database (Denmark)
Awan, Javeed; Tsivintzelis, Ioannis; Breil, Martin
2010-01-01
with the cubic-plus-association (CPA) equation of state. Useful remarks are presented about the application of Henry’s constant values to estimate binary interaction parameters of the CPA EoS for the description of whole vapor−liquid equilibria. The results using CPA EoS show that the cross association...
Tellinghuisen, Joel
2010-01-01
Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…
Czech Academy of Sciences Publication Activity Database
Teodorescu, M.; Barhala, A.; Wichterle, Ivan
2005-01-01
Roč. 49, č. 11 (2005), s. 927-934 ISSN 0035-3930 R&D Projects: GA ČR(CZ) GA104/03/1555; GA AV ČR(CZ) IAA4072102 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor liquid equilibria * description Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.226, year: 2005
MHD stability of vertically asymmetric tokamak equilibria
International Nuclear Information System (INIS)
Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.
1981-03-01
The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation
Santoso, Imam; Taskinen, Pekka
2016-08-01
Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.
Roth, R. S.; Ettlinger, L. D.; Parker, H. S.
1987-06-01
Four new compounds were found in the BaO-TiO 2-Nb 2O 5 system, each containing orth ≈ 9.9A˚, b mon ≈ a orth ≈ 17A˚). Ba 14Ti 40Nb 2O 99 is a 20-layer orthorhombic phase, Cmc*, withc ≈ 46.86A˚. Ba 10Ti 28Nb 2O 72 is a 7-layer monoclinic phase, C2m, c ≈ 16.72A˚, β ≈ 101.2°. Ba 18Ti 54Nb 2O 132 is a 13-layer monoclinic phase, C2m, c ≈ 30.65A˚, β ≈ 96°. The compositions were derived by analogy to the layers in Ba 4Ti 13 O 30 and Ba 6Ti 17O 40 and are consistent with limited phase equilibria data.
International Nuclear Information System (INIS)
Gusev, A.I.
1996-01-01
The data on phase equilibria in the M-X-X' and M-Al-X ternary systems (M-transition metal of 3 to 8 groups, X-B,C, N, Si) have been considered and summarized. modern oxygen-free advanced ceramics is based on these ternary systems. Phase diagrams of the 130 ternary systems have been discussed, more than two hundred ternary phases forming in these systems have been systematized and described. The typical crystal structures of ternary compounds and phase have been considered, the common and distinctive features of these structures have been analysed. It has been shown that the ternary compounds with octahedral atomic groups XM 6 have a regions of homogeneity. Refs. 240
Institutions, Equilibria and Efficiency
DEFF Research Database (Denmark)
Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such set...... in OLG, learning in OLG and in games, optimal pricing of derivative securities, the impact of heterogeneity...
Effect of temperature on acid–base equilibria in separation techniques. A review
International Nuclear Information System (INIS)
Gagliardi, Leonardo G.; Tascon, Marcos; Castells, Cecilia B.
2015-01-01
Studies on the theoretical principles of acid–base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid–base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid–liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simplified models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC. - Highlights: • The study of theoretical principles of acid–base equilibrium has been reviewed. • The proton transfer process is often present in the analytical separation practice. • The influence of temperature on secondary chemical equilibria is examined. • The focus is laid on liquid chromatography and capillary electrophoresis. • Temperature can be a useful variable to modify selectivity under predictable basis
International Nuclear Information System (INIS)
Holesinger, T.
1993-01-01
The solid solution region and reaction kinetics of the Bi 2 Sr 2 CaCu 2 O y (2212) superconductor were examined as a function of temperature and oxygen partial pressure. Crystallization studies from the glassy and molten states were undertaken to determine the phase transformation and kinetics associated with the formation of 2212 and other competing phases. Crystallization of nominal 2212 glasses was found to proceed in two steps with the formation of Bi 2 Sr 2-x Ca x CuO y (2201) and Cu 2 O followed by Bi 2 Sr 3-x Ca x O y , CaO, and SrO. The 2212 phase converts from the 2201 phase with increasing temperatures. However, its formation below 800 C was kinetically limited. At 800 C and above, a nearly full conversion to the 2212 phase was achieved after only one minute although considerably longer anneal times were necessary for the system to reach equilibrium. In low oxygen partial pressures, the solidus is reduced to approximately 750 C. Solidification studies revealed an eutectic structure separating the incongruently melting 2212/2201 phases at high oxygen partial pressures from the congruently melting Bi 2 Sr 3-x Ca x O y (23x) and Bi 2 Sr 2-x Ca x O y (22x) phases present at low oxygen partial pressures. During solidification in various oxygen partial pressures, the separation of CaO in the melt and the initial crystallization of alkaline-earth cuprates leaves behind a Bi-rich liquid from which it is impossible to form single-phase 2212. Hence, significant amounts of 2201 were also present in these samples. These problems could be reduced by melt processing in inert atmospheres. Bulk 2212 material produced in this manner was found to possess high transition temperatures, high intergranular critical current densities below 20K, and modest critical current densities at 77K
Physico-Chemical Properties and Phase Behaviour of Pyrrolidinium-Based Ionic Liquids
Directory of Open Access Journals (Sweden)
Urszula Domańska
2010-04-01
Full Text Available A review of the relevant literature on 1-alkyl-1-methylpyrrolidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-ethyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate [EMPYR][CF3SO3] + water, or + 1-butanol} and for the binary systems of {1-propyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate [PMPYR][CF3SO3] + water, or + an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol} have been determined at atmospheric pressure using a dynamic method. The influence of alcohol chain length was discussed for the [PMPYR][CF3SO3]. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and alcohols. The solubility of the ionic liquid increases as the alkyl chain length on the pyrrolidinium cation increases. The correlation of the experimental data has been carried out using the Wilson, UNIQUAC and the NRTL equations. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpyrrolidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e., melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique.
Some properties of the layer phase
International Nuclear Information System (INIS)
Fu, Y.K.; Nielsen, H.B.
1984-07-01
There exists a layer phase at least in the non-isotropic U(1) lattice gauge field model for lattice dimension D >= 5 and layer dimension d = D - 1. The authors analyze some of the main properties of the layer phase. These are as follows: the behaviour of massless gauge particles (photons); the behaviour of doubly-sign charged particles and the behaviour of Wilson loops. A non-isotropic O(N) model is suggested and analyzed too. It is proved that in this case there exists no layer phase. Finally a model involving a non-isotropic antisymmetric tensor gauge field of arbitrary order is studied and a criterion for the dimensionality of the layer phase is given. (Auth.)
Directory of Open Access Journals (Sweden)
Asselineau L.
2006-11-01
Full Text Available Pour concevoir et optimiser les principales opérations de séparation (particulièrement les distillations avec ou sans solvant et l'extraction liquide-liquide on doit disposer de méthodes de corrélation ou, mieux, de prédiction des équilibres entre phases. A basse pression, et pour les mélanges d'hydrocarbures, les résultats présentés permettent la prévision des coefficients d'équilibre, même pour les séparations les plus délicates. En présence de constituants polaires, les données expérimentales d'équilibre liquide-liquide et liquide-vapeur de mélanges binaires et ternaires peuvent être simultanément corrélées dans le but de simuler et d'optimiser les distillations azéotropiques ou extractives. Sous haute pression, et particulièrement aux abords immédiats du point critique, le choix d'une équation d'état conduit à un traitement unitaire des phases en présence et permet, en particulier, la prédiction du lieu des points critiques des mélanges d'hydrocarbures et la corrélation de ce lieu en présence de solvants polaires. To determine and optimize the main separation operations (in particular distillations with or without a solvent, and liquid-liquid extraction correlation methods must be available or, better yet, methods of predicting phase equilibria. At low pressure and for hydrocarbon mixtures, the results described make the prediction of equilibrium coefficients possible, even for the most delicate separation. In the presence of polar constituents, the experimental data for the liquid-liquid and liquid-vapor equilibrium of binary and ternary mixtures can be simultaneously correlaten so as to simulate and optimize azeotropic or extractive distillations. Under high pressure and especially in the immediate vicinityof the critical point, the choice of an equation of state leads ta a unit treatment of the phases present and, in particular, makes it possible to predict the location of critical points in hydrocarbon
Energy Technology Data Exchange (ETDEWEB)
Kayser, R.F.
1993-08-13
The measurement capabilities to be developed include new apparatus for transport properties, thermodynamic properties, phase equilibria, and dielectric properties. Specific capabilities are: Thermal conductivity apparatus, vibrating wire viscometer, dual-sinker densimeter, high-temperature vibrating tube densimeter, dynamic phase equilibria apparatus, apparatus for dilute solutions, total-enthalpy flow calorimeter. Benchmark measurements were made (no data given) on pure and mixed alternative refrigerants and their mixtures with lubricants, and other fluids.
International Nuclear Information System (INIS)
Scheffel, J.
1982-04-01
Ideal MHD-equilibria for the toroidal EXTRAP configuration have been computed with an equilibrium code. The free-boundary prob- lem is solved by using the condition that the current density is proportional to r on a flux surface. It is found that the toroidal Z-pinch, initially induced in the central zero-field region of a transverse octupole field, drifts radially outwards producing an inverse -D shaped cross-section. The plasma current of this high- beta equilibrium may be increased if the plasma is pushed back by altering the external confining magnetic field as demonstrated. (Author)
Resurrecting Equilibria Through Cycles
DEFF Research Database (Denmark)
Barnett, Richard C.; Bhattacharya, Joydeep; Bunzel, Helle
equilibria because they asymptotically violate some economic restriction of the model. The literature has always ruled out such paths. This paper studies a pure-exchange monetary overlapping generations economy in which real balances cycle forever between momentary equilibrium points. The novelty is to show...... that segments of the offer curve that have been previously ignored, can in fact be used to produce asymptotically valid cyclical paths. Indeed, a cycle can bestow dynamic validity on momentary equilibrium points that had erstwhile been classified as dynamically invalid....
Thermal analysis and prediction of phase equilibria in the TiO{sub 2}-Bi{sub 2}O{sub 3} system
Energy Technology Data Exchange (ETDEWEB)
Lopez-Martinez, Jaqueline, E-mail: jacky-411@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Romero-Serrano, Antonio, E-mail: romeroipn@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Hernandez-Ramirez, Aurelio, E-mail: aurelioh@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Zeifert, Beatriz, E-mail: bzeifert@yahoo.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Gomez-Yanez, Carlos, E-mail: cgomezy@ipn.mx [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Martinez-Sanchez, Roberto, E-mail: roberto.martinez@cimav.edu.mx [CIMAV, Av. Miguel de Cervantes 120, Chihuahua C.P.31109 (Mexico)
2011-03-20
A thermodynamic study on the TiO{sub 2}-Bi{sub 2}O{sub 3} system was carried out using differential thermal analysis (DTA) and X-Ray diffraction (XRD) techniques covering the composition range from 65 to 90 mol% Bi{sub 2}O{sub 3}. From the XRD results the only two intermediate compounds in the Bi{sub 2}O{sub 3} rich region were Bi{sub 4}Ti{sub 3}O{sub 12} and Bi{sub 12}TiO{sub 20}. The Bi{sub 4}Ti{sub 3}O{sub 12} phase presents the well known plate-like morphology. The experimentally determined phase transition temperatures with DTA technique were compared with thermodynamic calculated results and good agreement was obtained. The DTA results also showed that the limit of the peritectic reaction between liquid and Bi{sub 4}Ti{sub 3}O{sub 12} occurs approximately at 90 mol% Bi{sub 2}O{sub 3}. The phase diagram of the TiO{sub 2}-Bi{sub 2}O{sub 3} system was calculated using a quasichemical model for the liquid phase. The thermodynamic properties of the intermediate compounds were estimated from the data of TiO{sub 2} and Bi{sub 2}O{sub 3} pure solids. In this manner, data for this binary system have been analysed and represented with a small adjustable parameter for the liquid phase.
International Nuclear Information System (INIS)
Li, Hengde; Han, Yongtao; Huang, Cheng; Yang, Chufen
2015-01-01
Graphical abstract: (Liquid + liquid) equilibrium data for systems composed of β-citronellol and aqueous 1-propanol or acetone are presented. Distribution ratios of 1-propanol and acetone in the mixtures are examined. The effect of the temperature on the ternary (liquid + liquid) equilibria is evaluated and discussed. - Highlights: • Ternary (liquid + liquid) equilibria containing β-citronellol are presented. • Distribution ratios of 1-propanol and acetone in the mixtures are examined. • The effect on the temperature of the systems is evaluated and discussed. - Abstract: On this paper, experimental (liquid + liquid) equilibrium (LLE) results are presented for systems composed of β-citronellol and aqueous 1-propanol or acetone. To evaluate the phase separation properties of β-citronellol in aqueous mixtures, LLE values for the ternary systems (water + 1-propanol + β-citronellol) and (water + acetone + β-citronellol) were determined with a tie-line method at T = (283.15, 298.15, and 313.15 ± 0.02) K and atmospheric pressure. The reliability of the experimental tie-lines was verified by the Hand and Bachman equations. Ternary phase diagrams, distribution ratios of 1-propanol and acetone in the mixtures are shown. The effect of the temperature on the ternary (liquid + liquid) equilibria was examined and discussed. The experimental LLE values were satisfactorily correlated by extended UNIQUAC and modified UNIQUAC models
Institutions, Equilibria and Efficiency
DEFF Research Database (Denmark)
Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such set......Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria...... in such settings is proven under very general preference assumptions. The model is extended to include geographical location choice, a commodity space incorporating manufacturing imprecision and preferences for club-membership, schools and firms. Inefficiencies arising from household externalities or group...... membership are evaluated. Core equivalence is shown for bargaining economies. The theory of risk aversion is extended and the relation between risk taking and wealth is experimentally investigated. Other topics include: determinacy in OLG with cash-in-advance constraints, income distribution and democracy...
Goso, Xolisa; Nell, Johannes; Petersen, Jochen
The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.
A new transiently chaotic flow with ellipsoid equilibria
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
Gyrokinetic magnetohydrodynamics and the associated equilibria
Lee, W. W.; Hudson, S. R.; Ma, C. H.
2017-12-01
The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.
Multiple equilibria in a simple elastocapillary system
Taroni, Michele
2012-09-28
We consider the elastocapillary interaction of a liquid drop placed between two elastic beams, which are both clamped at one end to a rigid substrate. This is a simple model system relevant to the problem of surface-tension-induced collapse of flexible micro-channels that has been observed in the manufacture of microelectromechanical systems (MEMS). We determine the conditions under which the beams remain separated, touch at a point, or stick along a portion of their length. Surprisingly, we show that in many circumstances multiple equilibrium states are possible. We develop a lubrication-type model for the flow of liquid out of equilibrium and thereby investigate the stability of the multiple equilibria. We demonstrate that for given material properties two stable equilibria may exist, and show via numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is ultimately reached. © 2012 Cambridge University Press.
Adsorption analysis equilibria and kinetics
Do, Duong D
1998-01-01
This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such
Quantum equilibria for macroscopic systems
International Nuclear Information System (INIS)
Grib, A; Khrennikov, A; Parfionov, G; Starkov, K
2006-01-01
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
International Nuclear Information System (INIS)
Hicks, H.R.; Dory, R.A.; Holmes, J.A.
1983-01-01
We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J 0 (rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model
Phase coexistence properties of polarizable Stockmayer fluids
International Nuclear Information System (INIS)
Kiyohara, K.; Gubbins, K.E.; Panagiotopoulos, A.Z.
1997-01-01
We report the phase coexistence properties of polarizable Stockmayer fluids of reduced permanent dipoles |m 0 * |= 1.0 and 2.0 and reduced polarizabilities α * = 0.00, 0.03, and 0.06, calculated by a series of grand canonical Monte Carlo simulations with the histogram reweighting method. In the histogram reweighting method, the distributions of density and energy calculated in Grand Canonical Monte Carlo simulations are stored in histograms and analyzed to construct the grand canonical partition function of the system. All thermodynamic properties are calculated from the grand partition function. The results are compared with Wertheim close-quote s renormalization perturbation theory. Deviations between theory and simulation results for the coexistence envelope are near 2% for the lower dipole moment and 10% for the higher dipole moment we studied. copyright 1997 American Institute of Physics
Jump conditions in transonic equilibria
International Nuclear Information System (INIS)
Guazzotto, L.; Betti, R.; Jardin, S. C.
2013-01-01
In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.
International Nuclear Information System (INIS)
Hekayati, Javad; Roosta, Aliakbar; Javanmardi, Jafar
2016-01-01
Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na_2SO_4 + H_2O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.
Energy Technology Data Exchange (ETDEWEB)
Hekayati, Javad; Roosta, Aliakbar, E-mail: aa.roosta@sutech.ac.ir; Javanmardi, Jafar
2016-02-10
Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na{sub 2}SO{sub 4} + H{sub 2}O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.
Effect of temperature on acid-base equilibria in separation techniques. A review.
Gagliardi, Leonardo G; Tascon, Marcos; Castells, Cecilia B
2015-08-19
Studies on the theoretical principles of acid-base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid-base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid-liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simpliﬁed models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Foroutan, Masumeh [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Zarrabi, Mona [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)
2008-06-15
A quaternary (liquid + liquid) equilibrium study was performed to focus attention on the interaction parameters between poly-N-vinylcaprolactam (PVCL) and poly-ethylene glycol (PEG) as well as between other species. At first, the new experimental data of (liquid + liquid) equilibria for aqueous two-phase systems containing PEG, KH{sub 2}PO{sub 4}, and PVCL at T = 303.15 K have been determined. Then the Flory-Huggins theory with two electrostatic terms (the Debye-Huckel and the Pitzer-Debye-Huckel equations) has been generalized to correlate the phase behavior of the quaternary system. Good agreement has been found between experimental and calculated data from both models especially from the Pitzer-Debye-Huckel equation. Also an effort was done to compare the effect of temperature as well as addition of PVCL on the binodal curves of PEG, KH{sub 2}PO{sub 4}, and water. The effect of the type of salt on the binodals has been also studied, and the salting out power of the salts has been determined.
Czech Academy of Sciences Publication Activity Database
Majzlan, J.; Zittlau, A.H.; Grevel, K.-D.; Schliesser, J.; Woodfield, B. F.; Dachs, E.; Števko, M.; Chovan, M.; Plášil, Jakub; Sejkora, J.; Milovská, S.
2015-01-01
Roč. 53, č. 5 (2015), s. 937-960 ISSN 0008-4476 Institutional support: RVO:68378271 Keywords : secondary copper minerals * thermodynamics * pE–pH diagrams * Lippmann diagrams for solid solutions * infrared and Raman spectra Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.862, year: 2015
Energy Technology Data Exchange (ETDEWEB)
Tournier, H.
2000-10-13
The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic molecular sieves. The aim of this work is to study and model adsorption equilibria of C{sub 8} and C{sub 10} aromatics on X and Y zeolites. The experimental data are obtained by an entirely automated equipment allowing to work in a large range of temperature (50 deg. C - 250 deg. C). With this equipment, we can follow the evolution of the composition of the liquid phase and determine the composition of the adsorbed phase at equilibrium by a mass balance calculation and with an inert component. Two analytical techniques are used to determine the composition of the liquid phase: (1) a classical method using a gas chromatograph (GC) allowed to measure selectivities in the concentration range (3%-97%) in a component; (2) an original method based on the use and on the measure of {sup 13}C labelled xylenes was developed to investigate the ranges of strongly contrasting concentrations [0-3%] and [97%-100%] in a component, which are representative of high purity domains. Lastly, three thermodynamic models are used to describe the adsorption equilibria: the Langmuir-Freundlich model, the quasi-chemical model and the statistical model. The last model is the more interesting, because it is based on physical considerations. A new statistical model has been developed with taking into account some observations coming from adsorption phenomenon in zeolites. (author)
Cryptographically Blinded Games: Leveraging Players' Limitations for Equilibria and Profit
DEFF Research Database (Denmark)
Hubacek, Pavel; Park, Sunoo
2014-01-01
In this work we apply methods from cryptography to enable mutually distrusting players to implement broad classes of mediated equilibria of strategic games without trusted mediation. Our implementation uses a pre-play 'cheap talk' phase, consisting of non- binding communication between players...
Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems
International Nuclear Information System (INIS)
Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun
2015-01-01
Highlights: • A new model was established for the phase equilibria of C1–C2–C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases
Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State
Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi
Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.
International Nuclear Information System (INIS)
Valyashko, V.M.; Urusova, M.A.
1996-01-01
The paper studies the principal schemes of complete state diagram of volatile component-two non-volatile components three-component system with tricritical point and sequence of phase transformations at variation of temperature, pressure and composition of mixture. H 2 O-HgI 2 -PbI 2 system, solid phase dissolving process, stratification of solutions and critical phenomena under 200-400 deg C are studied experimentally. General nature of the system phase diagram and parameters of three-phase equilibrium critical point (tricritical point), that is, gas-liquid 1 -liquid 2 are determined. 17 refs., 8 figs., 3 tabs
International Nuclear Information System (INIS)
Boer, R. de; Haije, W.G.; Veldhuis, J.B.J.
2002-01-01
Structural, thermodynamic and phase properties in the Na 2 S-H 2 O system for application in a chemical heat pump have been investigated using XRD, TG/DTA and melting point and vapour pressure determinations. Apart from the known crystalline phases Na 2 S·9H 2 O, Na 2 S·5H 2 O and Na 2 S a new phase Na 2 S·2H 2 O has been proven to exist. Na 2 S·((1)/(2))H 2 O is not a phase but a 3:1 mixture of Na 2 S and Na 2 S·2H 2 O, presumably stabilised by very slow dehydration kinetics. The vapour pressure-temperature equilibria of the sodium sulphide hydrates have been determined and a consistent set of thermodynamic functions for these compounds has been derived. XRD measurements indicate the topotactic character of the transitions between the hydration states
Learning to Play Efficient Coarse Correlated Equilibria
Borowski, Holly P.; Marden, Jason R.; Shamma, Jeff S.
2018-01-01
The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However
Nash Equilibria in Symmetric Graph Games with Partial Observation
DEFF Research Database (Denmark)
Bouyer, Patricia; Markey, Nicolas; Vester, Steen
2017-01-01
We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria for qualitative objectives in this game model....
Nash Equilibria in Symmetric Games with Partial Observation
DEFF Research Database (Denmark)
Bouyer, Patricia; Markey, Nicolas; Vester, Steen
2014-01-01
We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria (for qualitative objectives) in this game model....
Partial Cooperative Equilibria: Existence and Characterization
Directory of Open Access Journals (Sweden)
Amandine Ghintran
2010-09-01
Full Text Available We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.
Path integrals over phase space, their definition and simple properties
International Nuclear Information System (INIS)
Tarski, J.; Technische Univ. Clausthal, Clausthal-Zellerfeld
1981-10-01
Path integrals over phase space are defined in two ways. Some properties of these integrals are established. These properties concern the technique of integration and the quantization rule isup(-I)deltasub(q) p. (author)
Phase relations, crystal structures and physical properties of nuclear fuels
International Nuclear Information System (INIS)
Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun
1975-07-01
Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)
Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza
2015-12-01
Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting
Directory of Open Access Journals (Sweden)
Stamataki S. K.
2006-11-01
Full Text Available The capabilities of cubic Equations of State (EoS in the correlation and the prediction of phase equilibria at hyperbaric conditions is examined. PVT data of pure compounds as well as VLE and volumetric data of binary mixtures up to 2000 bar are used. Correlation and prediction results are presented with the translated and modified Peng-Robinson (t - mPR EoS and EoS/GE models. The performance of cubic EoS with a single interaction parameter (kij in describing VLE is remarkable considering the level of pressures involved. The same is valid for the PVT results including the relative liquid volumes of the C1/nC24 system. With typical errors of about 10% deviations in pressure of 100 - 200 bar are, of course, encountered which can be eliminated by the use of second interaction coefficient in the covolume combining rule. Predicted kij values obtained from generalized correlations developed from low pressure VLE data provide reasonable results for systems with hydrocarbons up to nC16 even at high pressures, but fail for higher asymmetric ones. Volume translation is essential for PVT predictions. The temperature independent translation of t - mPR and that of Jhaveri and Yougren give very satisfactory results. LCVM provides the best results of the EoS/GE models studied and gives very good predictions for rather symmetric systems which become poorer with asymmetric ones at very high pressures. La capacité des équations d'état (EoS cubiques pour corréler et prédire les équilibres de phases en conditions hyperbares est analysée. Les données PVT de corps purs ainsi que les données d'équilibres liquide-vapeur (VLE et volumétriques pour des mélanges binaires, jusqu'à 2000 bar sont utilisées. Les résultats des corrélations et des prédictions sont présentés pour l'équation de Peng-Robinson translatée et modifiée (t - mPR, ainsi que pour les modèles EoS/GE. Les performances des EoS cubiques avec un paramètre d'interaction unique (kij pour
Stackelberg equilibria and horizontal differentiation
Lambertini, Luca
1993-01-01
This paper proposes a taxonomy of the Stackelberg equilibria emerging from a standard game of horizontal differentiation à la Hotelling in which the strategy set of the sellers in the location stage is the real axis. Repeated leadership appears the most advantageous position. Furthermore, this endogenously yields vertical differentiation between products at equilibrium.
Multiple equilibria of divertor plasmas
International Nuclear Information System (INIS)
Vu, H.X.; Prinja, A.K.
1993-01-01
A one-dimensional, two-fluid transport model with a temperature-dependent neutral recycling coefficient is shown to give rise to multiple equilibria of divertor plasmas (bifurcation). Numerical techniques for obtaining these multiple equilibria and for examining their stability are presented. Although these numerical techniques have been well known to the scientific community, this is the first time they have been applied to divertor plasma modeling to show the existence of multiple equilibria as well as the stability of these solutions. Numerical and approximate analytical solutions of the present one-dimensional transport model both indicate that there exists three steady-state solutions corresponding to (1) a high-temperature, low-density equilibrium, (2) a low-temperature, high-density equilibrium, and (3) an intermediate-temperature equilibrium. While both the low-temperature and the high-temperature equilibria are stable, with respect to small perturbations in the plasma conditions, the intermediate-temperature equilibrium is physically unstable, i.e., any small perturbation about this equilibrium will cause a transition toward either the high-temperature or low-temperature equilibrium
Phase equilibria in the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K
Energy Technology Data Exchange (ETDEWEB)
Han, Feng; Luo, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry
2017-10-15
The isothermal section of the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K has been experimentally determined. All equilibrated alloys were characterized via X-ray powder diffraction and scanning electron microscopy equipped with energy-dispersive X-ray analysis. A ternary phase Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} was found at 1 173 K. The experimental results show that the isothermal section consists of 11 single-phase regions, 26 two-phase regions and 13 three-phase regions. The existence of eight compounds, i.e. ZrSi{sub 2}, ZrSi, Zr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2}, Zr{sub 2}Si, ZrB, ZrB{sub 2} and Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} in this system has been confirmed in the Zr-Si-ZrB{sub 2} region at 1 173 K.
International Nuclear Information System (INIS)
Khalik, M.S.; Peters, C.J.
2006-01-01
The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)
Soustelle, Michel
2015-01-01
This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.
International Nuclear Information System (INIS)
Iskanderani, F.; Sobhi, K.M.; Ejaz, M.
1989-01-01
Normal heptane, xylene and a 0.01 molar solution of 4-(5-nonyl)pyridine in toluene were investigated as extractants for selenium(IV) from nitric acid media in potassium iodide. Various parameters affecting the distribution of the element are investigated. Extraction at high aqueous to organic phase volume ratio was studied, using a liquid-liquid extraction plant with a pulsation column. The results were employed to measure selenium in spiked water samples. (author) 24 refs.; 8 figs
Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David
2016-03-01
Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.
High-Pressure Phase Equilibria in Systems Containing CO2 and Ionic Liquid of the [Cnmim][Tf2N] Type
Sedláková, Z. (Zuzana); Wagner, Z. (Zdeněk)
2012-01-01
In this review, we present a comparison of the high-pressure phase behaviour of binary systems constituted of CO2 and ionic liquids of the [Cn(m)mim][Tf2N] type. The comparative study shows that the solubility of CO2 in ionic liquids of the [Cnmim][Tf2N] type generally increases with increasing pressure and decreasing temperature, but some peculiarities have been observed. The solubility of CO2 in ionic liquid solvents was correlated using the Soave–Redlich–Kwong equation of state. The result...
Study of phase equilibria in LiIn(MoO4)2 - MeIn(MoO4)2 (Me - K, Rb) systems
International Nuclear Information System (INIS)
Smirnyagina, N.N.; Kozhevnikova, N.M.; Alekseev, F.P.; Mokhosoev, M.V.
1983-01-01
To determine the possibilities of formation of ternary molybdates, containing two different alkali cations and a cation of trivalent element, the qUasibinary LiIn(MoO 4 ) 2 -MeIn(MoO 4 ) 2 cross-sections of quaternary Li 2 O-Me 2 O-In 2 O 3 -MoO 3 , (Me-K, Rb) systems have been studied. Methods of X-ray phase-, differential thermal- and crystal optical analyses were used. The studied systems are eutectics with segregation; ternary compounds are not formed in theM
A Systematic Identification Method for Thermodynamic Property Modelling
DEFF Research Database (Denmark)
Ana Perederic, Olivia; Cunico, Larissa; Sarup, Bent
2017-01-01
In this work, a systematic identification method for thermodynamic property modelling is proposed. The aim of the method is to improve the quality of phase equilibria prediction by group contribution based property prediction models. The method is applied to lipid systems where the Original UNIFAC...... model is used. Using the proposed method for estimating the interaction parameters using only VLE data, a better phase equilibria prediction for both VLE and SLE was obtained. The results were validated and compared with the original model performance...
Energy Technology Data Exchange (ETDEWEB)
Silva, Ciro Rodolfo Santos; Duarte, Lindemberg de Jesus Nogueira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Santos, Luiz Carlos Lobato [Universidade Federal da Bahia (UFBA), BA (Brazil)
2012-07-01
Through a thermodynamic approach of liquid-vapor separation it is possible to provide for a given load, of known composition and given temperature and pressure conditions, which are the volumes and the compositions of liquid and vapor phases in equilibrium. In this sense, the aim of this work is to analyze the separation conditions of the fluids produced in the well 1-FMO-001-BA, belonging to the Field School Project (ANP / UFBA), through a thermodynamic approach of phase equilibrium. This Well is characterized by being in an advanced stage of exploration with low oil and high gas production. Initially, the overall composition of the gas produced from the 1-FMO-001-BA was quantified by gas chromatography and its composition was similar to a typical natural gas found in the Reconcavo's basin. Then, the equilibrium constants were determined by Wilson empirical correlation, which could enable the determination of the dead oil composition. This oil showed low concentration of light hydrocarbons (e.g., methane, etc.) and moderate concentrations of heavy components (e.g., C{sub 10} {sub +}). Moreover, the original composition of the fluid that reaches the separator vessel had a similar chemical composition to the outlet gaseous stream of the separator vessel, proving that the Fazenda Mamoeiro's reservoir is classified as a gas reservoir. Finally, it was determined the relative density of the gas ({gamma} g = 0.8264), the specific gravity of the dead oil ({gamma} {sub o} = 0.7542), the API gravity (56.13) and gas-oil ratio (GOR 950.98 m{sup 3}std / m{sup 3}std), which are consistent with the data provided by PETROBRAS. (author)
Phase equilibria and crystal chemistry of the CaO-½Gd2O3-CoOz system at 885 °C in air
Wong-Ng, W.; Laws, W.; Lapidus, S. H.; Ribaud, L.; Kaduk, J. A.
2017-10-01
The CaO-½Gd2O3-CoOz system prepared at 885 °C in air consists of two thermoelectric calcium cobaltate compounds, namely, the 2D thermoelectric oxide solid solution, (Ca3-xGdx)Co4O9-z (0 ≤ x ≤ 0.42) which has a misfit layered structure, and the 1D Ca3Co2O6 compound which consists of chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound. In the peripheral binary systems, Gd was not present in the Ca site of CaO, while a small solid solution region was identified for (Gd1-xCax)O(3-z)/2 (0 ≤ x ≤ 0.075). A solid solution region of distorted perovskite, (Gd1-xCax)CoO3-z (0 ≤ x ≤ 0.24, space group Pnma) was established. The structure of a member of the solid solution, (Gd0.92Ca0.08)CoO3-z, was determined using high resolution synchrotron radiation. A ternary oxide compound CaGdCoO4-z which has an orthorhombic structure (Bmab) was found to be stable at this temperature. Five solid solution tie-line regions and six three-phase regions were determined in the CaO-½Gd2O3-CoOz system. A comparison of the phase diagrams of the CaO-½R2O3-CoOz (R = La, Sm and Gd) systems is provided.
MINTEQ, Geochemical Equilibria in Ground Water
International Nuclear Information System (INIS)
Krupka, K.M.
1990-01-01
1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the
Abdelkader, Hamdy; Abdallah, Ossama Y; Salem, Hesham; Alani, Adam W G; Alany, Raid G
2014-10-01
The solid-state interactions of fused mixtures nimesulide (ND) with polyethylene glycol (PEG) 4000, urea or mannitol were studied through constructing thaw-melt phase equilibrium diagrams. The solid-state characteristics were investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Various types of interactions were identified such as the formation of a eutectic system of ND-PEG 4000, monotectic system of ND-urea and complete solid immiscibility of ND with mannitol. The effects of carrier concentrations on the equilibrium solubility and in-vitro dissolution characteristics were studied. Linear increases (R(2) > 0.99) in the aqueous solubility of ND in various concentrations of PEG 4000 and urea were obtained, whereas mannitol did not exhibit any effect on the solubility of ND. Similar trends were obtained with the dissolution efficiency of the fused mixtures of ND with PEG 4000 and urea compared with the corresponding physical mixtures and untreated drug. The analgesic effects of untreated ND and the selected formulations were investigated by evaluating the drug's ability to inhibit the acetic acid-induced writhing response. The analgesic effect of ND in a eutectic mixture with PEG 4000 and a monotectic mixture with urea was potentiated by 3.2 and 2.7-fold respectively compared with the untreated drug. © 2014 Royal Pharmaceutical Society.
On Nash-Equilibria of Approximation-Stable Games
Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh
One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.
Nash Equilibria in Fisher Market
Adsul, Bharat; Babu, Ch. Sobhan; Garg, Jugal; Mehta, Ruta; Sohoni, Milind
Much work has been done on the computation of market equilibria. However due to strategic play by buyers, it is not clear whether these are actually observed in the market. Motivated by the observation that a buyer may derive a better payoff by feigning a different utility function and thereby manipulating the Fisher market equilibrium, we formulate the Fisher market game in which buyers strategize by posing different utility functions. We show that existence of a conflict-free allocation is a necessary condition for the Nash equilibria (NE) and also sufficient for the symmetric NE in this game. There are many NE with very different payoffs, and the Fisher equilibrium payoff is captured at a symmetric NE. We provide a complete polyhedral characterization of all the NE for the two-buyer market game. Surprisingly, all the NE of this game turn out to be symmetric and the corresponding payoffs constitute a piecewise linear concave curve. We also study the correlated equilibria of this game and show that third-party mediation does not help to achieve a better payoff than NE payoffs.
Vapor-liquid equilibria for the acetone-ethanol-n-propanol-tert-butanol-water system
Energy Technology Data Exchange (ETDEWEB)
Tochigi, K.; Uchida, K.; Kojima, K.
1981-12-01
This study deals with the measurement of vapor-liquid equilibria for the five-component system acetone-ethanol-n-propanol-tert-butanol-water at 760 mmHg and prediction of vapor-liquid equilibria by the ASOG group contribution method. The five-component system in this work is composed of a part of the components obtained during ethanol production by vapor-phase hydration of ethylene. 6 refs.
Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon
DEFF Research Database (Denmark)
Marcussen, Lis; Krøll, A.
1999-01-01
Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....
International Nuclear Information System (INIS)
Alvarez, Victor H.; Mattedi, Silvana; Aznar, Martin
2011-01-01
Research highlights: → We report density, refraction index, and VLE for (propionaldehyde or valeraldehyde) + [emim][EtSO 4 ]. → The Peng -Robinson + Wong -Sandler + COSMO-SAC model was used to predict density and VLE. → The densities were predicted with deviations below than 2.3%. → The experimental VLE was predicted with deviations below than 1.6%. - Abstract: This paper reports the density, refraction index, and (vapor + liquid) equilibria (VLE) for binary systems {aldehyde + 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO 4 ])}: {propionaldehyde + [emim][EtSO 4 ]} and {valeraldehyde + [emim][EtSO 4 ]}. The uncertainties for the temperature, pressure, and compositions measurements for the phase equilibria are ±0.1 K, ±0.01 kPa and ±0.0004, respectively. A qualitative analysis of the variation of the properties with changes in solvent and temperature was performed. The Peng-Robinson equation of state (PR EoS), coupled with the Wong-Sandler mixing rule (WS), is used to describe the experimental data. To calculate activity coefficients we used three different models: NRTL, UNIQUAC, and COSMO-SAC. Since the predictive liquid activity coefficient model COSMO-SAC is used in the Wong-Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the (vapor + liquid) equilibria have a deviation lower than 2.3% and 1.6%, respectively. The (vapor + liquid) equilibria predictions show a good description for the propionaldehyde system and only a qualitative description for the valeraldehyde system.
Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.
2018-03-01
The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem
International Nuclear Information System (INIS)
Pittion-Rossillon, Gerard
1982-01-01
The free energy for mixtures of about ten species which are chemically reacting is calculated. In order to have accurate results near the freezing line, excess properties are deduced from a modern statistical mechanics theory. Intermolecular potentials for like molecules are fitted to give good agreement with shock experiments in pure liquid samples, and mixture properties come naturally from the theory. The stationary Chapman-Jouguet detonation wave is calculated with a chemical equilibrium computer code and results are in good agreement with experiment for a lot of various explosives. One then study gas-gas equilibria in a binary mixture and show the extreme sensitivity of theoretical phase diagrams to the hypothesis of the model (author) [fr
Positivity properties of phase-plane distribution functions
Janssen, A.J.E.M.
1984-01-01
The aim of this paper is to compare the members of Cohen's class of phase-plane distributions with respect to positivity properties. It is known that certain averages (which are in a sense compatible with Heisenberg's uncertainty principle) of the Wigner distribution over the phase-plane yield
Magnetoacoustic heating and FCT-equilibria in the belt pinch
International Nuclear Information System (INIS)
Erckmann, V.
1983-02-01
In the HECTOR belt pinch of high β plasma is produced by magnetic compression in a Tokamak geometry. After compresseion the initial β value can be varied between 0.2 and 0.8. During 5 μs the plasma is further heated by a fast magnetoacoustic wave with a frequency near the first harmonic of the ion cyclotronfrequency. For the first time the β-value of a pinch plasma could be increased further from 0.34 after compression to 0.46 at the end of the rf-heating cycle. By proper selection of the final β-value the region for resonance absorption of the heating wave can be shifted. Strong heating (200 MW) has been observed in the cases, where the resonance region has been located in the center of the plasma. In deuterium discharges an increase in ion temperature is observed during the heating process, whereas the electrons are energetically decoupled, showing no temperature increase. Strong plasma losses are found in the 200 MW range after the rf-heating process. The dominant mechanisms are charge exchange collisions with neutral gas atoms. During rf-heating and the subsequent cooling phase the magnetic flux is frozen due to the high conductivity of the plasma. The observed equilibria could be identified as flux conserving Tokamak (FCT) equilibria. Based on a two-dimensional code the time-evolution of the equilibria has been calculated. The q-profiles are time-independent, with increasing β the magnetic axis of the plasma is shifted towards the outer boundary of the torus, and finally the linear relation between β and βsub(pol), which is characteristic for low-β-equilibria, is no longer valid. Thus for the first time the existence of FCT-equilibria at high β has been demonstrated experimentally together with a qualitative agreement with FCT-theory. (orig./AH) [de
Quantum field theoretic properties of nonabelian phase factors
International Nuclear Information System (INIS)
Wieczorek, E.
1984-01-01
The paper is concerned with quantum field theoretical properies of nonabelian phase factors. The phase factors defining parallel transport in fiber bundle space are the necessary tool for the construction of gauge invariant nonlocal operators describing bound states in QCD. General structures of such operators are discussed and renormalization properties as well as relations between meson and baryon operators are obtained from a study of the underlying phase factors
Phase Equilibria Prediction for Systems Containing Lipids
DEFF Research Database (Denmark)
Ana Perederic, Olivia; Cunico, Larissa; Sarup, Bent
]. Such developments have led to new challenges regarding the design anddevelopment of better performing processes and products. Despite the advances in propertymodelling and process design techniques available via different computeraidedmethods andtools for the chemical and petrochemical industries, the oleochemical...
Phase equilibria at the Zirconium metal purification
International Nuclear Information System (INIS)
Dwiretnani-Sudjoko; Busron-Masduki; Sunardjo; Budi-Sulistyo
1996-01-01
It was investigated the research in the purification of zirconium metal, which was results from the reduction process, by adding heat in the vacuum environment. The process was done in batch in the stainless steel reactor, equiped with vacuum pump and electric heater. The investigated variable were process temperature and pressure. From this research it was obtained that equilibrium constant for MgCl 2 and Mg were expressed in the equation K M g C l 2 = 0.9011 P 1 .3779 1.06552 T and K M g = 6.0115P + 1.35256T - 6.93912
Modeling of Phase Equilibria Containing Associating Fluids
DEFF Research Database (Denmark)
Derawi, Samer; Kontogeorgis, Georgios
. The background and main targets for this thesis are presented in Chapter 1. In Chapter 2, a comprehensive review of the application of group contribution (GC) models such as various forms of UNIFAC and the so-called AFC (Atom and Fragment Contributions) correlation model for Pow (octanol-water partition...
Phase Equilibria for Complex Polymer Solutions
DEFF Research Database (Denmark)
Lindvig, Thomas; Hestkjær, L. L.; Hansen, A. F.
2002-01-01
the content of organic solvents. This work presents an investigation of the three polymer models Entropic-FV (EFV). UNIFAC-FV (UFV) and GC-Flory (GCF) for their capability of predicting solvent activity coefficients in binary systems containing complex polymers. It is possible to obtain good predictions...... at finite concentrations and satisfactory predictions at infinite dilution, particularly with the EFV model. The investigation shows that EFV is the most robust and stable of the models, which indicates that it is the most well suited model for further development of methods for predicting the miscibility...
Stability of relative equilibria of three vortices
DEFF Research Database (Denmark)
Aref, Hassan
2009-01-01
Three point vortices on the unbounded plane have relative equilibria wherein the vortices either form an equilateral triangle or are collinear. While the stability analysis of the equilateral triangle configurations is straightforward, that of the collinear relative equilibria is considerably mor...
Strong Nash Equilibria and the Potential Maimizer
van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H.
1996-01-01
A class of non cooperative games characterized by a `congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class
Signaling equilibria in sensorimotor interactions.
Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A
2015-08-01
Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Elastic and Mechanical Properties of the MAX Phases
Barsoum, Michel W.; Radovic, Miladin
2011-08-01
The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.
Study of SmS properties in the low pressure phase (black phase)
International Nuclear Information System (INIS)
Bordier, G.
1986-01-01
SmS was studied for the transition from low pressure phase (black phase) to high pressure phase with an intermediate valence. But the study of the black phase is very rich. The variations of electron transport properties with pressure at low temperature show a semi-metal phase located, in the pressure-temperature diagram in the black phase for pressure over 4 kbars, corresponding to the phase B'of the doping-temperature diagram. Electron spin resonance shows a lack of sulfur and nearby this defect a samarium ion, magnetically coupled with the matrix, presents a divalent trivalent transition. Resonance lines are broadened with temperature. Conductivity relaxations occur at low pressure and low temperature by trapping a conduction electron, by magnetic exchange giving a bounded magnetic polaron. The relaxation time at null magnetic field is activated. An approximation of trapping barrier and critical field corresponding the maximum magnetoresistance is given by a model [fr
Brignole, Esteban Alberto
2013-01-01
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and
Thermodynamic properties of cesium in the gaseous phase
International Nuclear Information System (INIS)
Vargaftik, N.B.; Voljak, L.D.; Stepanov, V.G.
1985-01-01
Tables of the thermodynamic properties of caesium in the gaseous phase are presented for a wide range of temperature and pressure. The thermodynamic properties include: enthalpy, entropy, specific heat, specific volume, sound velocity and compressibility factor. The values have been calculated from pressure-volume-temperature measurements by various authors. Experimental apparatus to determine these measurements is described, together with an outline of the method employed to process the results, and the error estimates. (U.K.)
International Nuclear Information System (INIS)
Guillon, E.
2004-09-01
A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial
International Nuclear Information System (INIS)
Prikhodko, I.V.; Victorov, A.I.; Loos, Th.W.de
1995-01-01
A contract-site quasichemical equation of state has been used for the modeling of different kinds of fluid phase equilibria (between a gas phase and one or more liquids) over a wide range of conditions. Among the systems of interest are the ternary mixtures water + alkanols + hydrocarbons (alkanes or alkynes), water + alkanols (or acetone) + CO 2 , water + polyoxyethyleneglycol ethers + heavy alkanes. The model has been applied to describing the thermodynamic properties of the binary subsystems and to predict the phase behavior of the ternary systems. For longer-chain alkanols and hydrocarbons a group-contribution approach is implemented, which allows the modeling when no experimental data are available. The model gives reasonable predictions of phase behavior and the correct trends in the calculated phase diagrams in most cases. The concentrations of associates in liquid and gas phases are estimated by the model and compared with some experimental and computer simulation data. The predictive abilities of the model, its limitations, and possible ways of its improvement are discussed
Domínguez-Martín, Alicia; Johannsen, Silke; Sigel, Astrid; Operschall, Bert P; Song, Bin; Sigel, Helmut; Okruszek, Andrzej; González-Pérez, Josefa María; Niclós-Gutiérrez, Juan; Sigel, Roland K O
2013-06-17
The intrinsic acid-base properties of the hexa-2'-deoxynucleoside pentaphosphate, d(ApGpGpCpCpT) [=(A1∙G2∙G3∙C4∙C5∙T6)=(HNPP)⁵⁻] have been determined by ¹H NMR shift experiments. The pKa values of the individual sites of the adenosine (A), guanosine (G), cytidine (C), and thymidine (T) residues were measured in water under single-strand conditions (i.e., 10% D₂O, 47 °C, I=0.1 M, NaClO₄). These results quantify the release of H⁺ from the two (N7)H⁺ (G∙G), the two (N3)H⁺ (C∙C), and the (N1)H⁺ (A) units, as well as from the two (N1)H (G∙G) and the (N3)H (T) sites. Based on measurements with 2'-deoxynucleosides at 25 °C and 47 °C, they were transferred to pKa values valid in water at 25 °C and I=0.1 M. Intramolecular stacks between the nucleobases A1 and G2 as well as most likely also between G2 and G3 are formed. For HNPP three pKa clusters occur, that is those encompassing the pKa values of 2.44, 2.97, and 3.71 of G2(N7)H⁺, G3(N7)H⁺, and A1(N1)H⁺, respectively, with overlapping buffer regions. The tautomer populations were estimated, giving for the release of a single proton from five-fold protonated H₅(HNPP)(±) , the tautomers (G2)N7, (G3)N7, and (A1)N1 with formation degrees of about 74, 22, and 4%, respectively. Tautomer distributions reveal pathways for proton-donating as well as for proton-accepting reactions both being expected to be fast and to occur practically at no "cost". The eight pKa values for H₅(HNPP)(±) are compared with data for nucleosides and nucleotides, revealing that the nucleoside residues are in part affected very differently by their neighbors. In addition, the intrinsic acidity constants for the RNA derivative r(A1∙G2∙G3∙C4∙C5∙U6), where U=uridine, were calculated. Finally, the effect of metal ions on the pKa values of nucleobase sites is briefly discussed because in this way deprotonation reactions can easily be shifted to the physiological pH range. Copyright © 2013 WILEY
Learning to Play Efficient Coarse Correlated Equilibria
Borowski, Holly P.
2018-03-10
The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific coarse correlated equilibria. In this paper, we provide one such algorithm, which guarantees that the agents’ collective joint strategy will constitute an efficient coarse correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.
Computing Nash equilibria through computational intelligence methods
Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.
2005-03-01
Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.
Multiple Equilibria in Noisy Rational Expectations Economies
DEFF Research Database (Denmark)
Pálvölgyi, Dömötör; Venter, Gyuri
with a continuous price function. However, we also construct a tractable class of equilibria with discontinuous prices that have very different economic implications, including (i) jumps and crashes, (ii) significant revisions in uninformed belief due to small changes in the market price, (iii) “upward......-sloping” demand curves, (iv) higher prices leading to future returns that are higher in expectation (price drift) and (v) more positively skewed. Discontinuous equilibria can be arbitrarily close to being fully-revealing. Finally, discontinuous equilibria with the same construction also exist in Hellwig (1980)....
Inefficient equilibria in transition economy
Directory of Open Access Journals (Sweden)
Sergei Guriev
1999-01-01
Full Text Available The paper studies a general equilibrium in an economy where all market participants face a bid-ask spread. The spread may be caused by indirect business taxes, middlemen rent-seeking, delays in payments or liquidity constraints or price uncertainty. Wherever it comes from the spread causes inefficiency of the market equilibrium. We discuss some institutions that can decrease the inefficiency. One is second currency (barter exchange in the inter-firm transactions. It is shown that the general equilibrium in an economy with second currency is effective though is still different from Arrow–Debreu equilibrium. Another solution can be introduction of mutual trade credit. In the economy with trade credit there are multiple equilibria that are more efficient than original bid-ask spread but still not as efficient as Arrow–Debreu one, too. The implications for firms' integration and applicability to Russian economy are discussed.
Electronic properties and phase transitions in low-dimensional semiconductors
International Nuclear Information System (INIS)
Panich, A M
2008-01-01
We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX 2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX 2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)
(Liquid + liquid) equilibria of perfluorocarbons with fluorinated ionic liquids
International Nuclear Information System (INIS)
Martinho, S.; Araújo, J.M.M.; Rebelo, L.P.N.; Pereiro, A.B.; Marrucho, I.M.
2013-01-01
Highlights: • (Liquid + liquid) equilibria perfluorocarbons and fluorinated ionic liquids. • Non-Random Two Liquid model was successfully applied. • Thermodynamic functions that describe the solvation process were calculated. -- Abstract: In order to evaluate the feasibility of partially replace perfluorocarbons (PFCs) with fluorinated ionic liquids (FILs) in PFCs-in-water emulsions, usually used for biomedical purposes, herein the (liquid + liquid) phase equilibria of FILs containing fluorinated chains longer than four carbons with PFCs were carried out in a wide range of temperatures. With this goal in mind, two PFCs (perfluorooctane and perfluorodecalin) were selected and the (liquid + liquid) equilibria of the binary mixtures of these PFCs and FILs were studied at atmospheric pressure in a temperature range from T (293.15 to 343.15) K. For these studies, FILs containing ammonium, pyridinium and imidazolium cations and different anions with fluorocarbon alkyl chains between 4 and 8 were included. Additionally, Non-Random Two Liquid (NRTL) thermodynamic model was successfully applied to correlate the behaviour of the PFCs + FILs binary mixtures. Moreover, thermodynamic functions that describe the solvation process were calculated from the experimental data
Energy Technology Data Exchange (ETDEWEB)
Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)
2016-02-20
A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.
Neoclassical MHD equilibria with ohmic current
International Nuclear Information System (INIS)
Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.
1989-01-01
MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)
Directory of Open Access Journals (Sweden)
Čička R.
2012-01-01
Full Text Available The precipitation of secondary phases was investigated in the 0.17C-16Cr-11Mn-0.43N austenitic stainless steel during annealing at 800 and 850°C for times between 5 min and 100 h. Light microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and differential thermal analysis were used in experiments. Thermodynamic calculations were done by the ThermoCalc database software package. Cr2N and M23C6 were considered to be stable phases at the annealing temperatures. Cells consisting of alternating Cr2N and austenite lamellae were observed in the steel microstructure after sufficiently long annealing. The metastable chi phase was also found in all the annealed samples. After 100 h of annealing the equilibrium sigma started to precipitate. The thermodynamically predicted M6C was not confirmed experimentally in any of the annealed samples. DTA analysis showed the initial precipitation stage was followed by the phase dissolution. For the investigated steel the computational thermodynamics can be used only for qualitative interpretation of the experimental results as the measured endothermal peaks were found to be shifted of about 50 ÷ 70°C related to the computed results.
Thermodynamic Property Model of Wide-Fluid Phase Propane
Directory of Open Access Journals (Sweden)
I Made Astina
2007-05-01
Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.
International Nuclear Information System (INIS)
Marciniak, Andrzej; Królikowski, Marek
2012-01-01
Highlights: ► Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. ► The influence of ionic liquid structure on phase diagrams is discussed. ► High selectivity for separation of heptane/thiophene is observed. - Abstract: Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.
Thermodynamic and transport properties of uranium dioxide and related phases
International Nuclear Information System (INIS)
1965-01-01
The high melting point of uranium dioxide and its stability under irradiation have led to its use as a fuel in a variety of types of nuclear reactors. A wide range of chemical and physical studies has been stimulated by this circumstances and by the complex nature of the uranium dioxide phase itself. The boundaries of this phase widen as the temperature is increased; at 2000 deg. K a single, homogeneous phase exists from U 2.27 to a hypostoichiometric (UO 2-x ) composition, depending on the oxygen potential of the surroundings. Since there is often an incentive to operate a reactor at the maximum practicable heat rating and, therefore, maximum thermal gradient in the fuel, the determination of the physical properties of the UO 2-x phase becomes a matter of great technological importance. In addition a complex sequence of U-O phases may be formed during the preparation of powder feed material or during the sintering process; these affect the microstructure and properties of the final product and have also received much attention. 184 refs, 33 figs, 15 tabs
Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows
International Nuclear Information System (INIS)
Tasso, H.; Throumoulopoulos, G.N.
1997-12-01
It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)
Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip
2014-06-11
Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) 10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.
Ferroelectric properties of tungsten bronze morphotropic phase boundary systems
International Nuclear Information System (INIS)
Oliver, J.R.; Neurgaonkar, R.R.; Cross, L.E.; Pennsylvania State Univ., University Park, PA
1989-01-01
Tungsten bronze ferroelectrics which have a morphotropic phase boundary (MPB) can have a number or enhanced dielectric, piezoelectric, and electrooptic properties compared to more conventional ferroelectric materials. The structural and ferroelectric properties of several MPB bronze systems are presented, including data from sintered and hot-pressed ceramics, epitaxial thin films, and bulk single crystals. Included among these are three systems which had not been previously identified as morphotropic. The potential advantages and limitations of these MPB systems are discussed, along with considerations of the appropriate growth methods for their possible utilization in optical, piezoelectric, or pyroelectric device applications
Directory of Open Access Journals (Sweden)
Pedro Samuel Gomes Medeiros
2011-09-01
Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.
Phase change - memory materials - composition, structure, and properties
Czech Academy of Sciences Publication Activity Database
Frumar, M.; Frumarová, Božena; Wágner, T.; Hrdlička, M.
2007-01-01
Roč. 18, suppl.1 (2007), S169-S174 ISSN 0957-4522. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. Darwin, 16.06.2006-20.06.2006] R&D Projects: GA ČR GA203/06/0627 Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry Impact factor: 0.947, year: 2007
Photophysical properties of columnar phases formed by triphenylene derivatives
International Nuclear Information System (INIS)
Sigal, Herve
1997-01-01
This research thesis reports the study of the spectroscopic properties and of the migration of excitation energy in the singlet state in columnar phases formed by alkyloxy and alkylthio derivatives of triphenylene. First, the author studied the spectroscopic properties of chromophores in solutions, and characterized excited states by using computation codes (CS-INDO-CIPSI). Then, by using the excitonic theory in the case of the considered triphenylene derivatives, the author studied the influence of molecular movements and of the intra-columnar order on the spectroscopic properties. In some circumstances, the non-radiative transfer of excitation energy is governed by a mechanism displaying a random evolution. This stochastic movement is studied by using Monte Carlo simulations. The author shows that the energy migration is one-dimensional on short times, and then becomes three-dimensional. The evolution of excitation energy in space and in time is determined [fr
Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow
Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.
2018-02-01
We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.
Assessment of solid/liquid equilibria in the (U, Zr)O
Mastromarino, S.; Seibert, AF; Hashem, E.; Ciccioli, A.; Prieur, Damien; Scheinost, Andreas C.; Stohr, S.; Lajarge, P; Boshoven, JG; Robba, D.; Ernstberger, M; Bottomley, D.; Manara, D
2017-01-01
Solid/liquid equilibria in the system UO_{2}–ZrO_{2} are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the
Capabilities for measuring physical and chemical properties of rocks at high pressure
Energy Technology Data Exchange (ETDEWEB)
Durham, W.B. (comp.)
1990-01-01
The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.
Phase imaging of mechanical properties of live cells (Conference Presentation)
Wax, Adam
2017-02-01
The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.
(Liquid + liquid) equilibria of four alcohol–water systems containing 1,8-cineole at T = 298.15 K
International Nuclear Information System (INIS)
Li, Hengde; Feng, Zhangni; Wan, Li; Huang, Cheng; Zhang, Tianfei; Fang, Yanxiong
2016-01-01
Graphical abstract: (Liquid + liquid) equilibria of C_1–C_4 alcohol–water systems containing 1,8-cineole are presented. Distribution ratios of alcohol in the mixtures are examined. The immiscible region of the LLE systems is evaluated and discussed. - Highlights: • Ternary (liquid + liquid) equilibria containing 1,8-cineole are presented. • Distribution ratios of C_1–C_4 alcohol in the mixtures are examined. • The LLE values were correlated using the NRTL and UNIQUAC models. - Abstract: As an eco-friendly compound from essential oils, 1,8-cineole (cineole, eucalyptol) has the potential to replace the ozone depleting industrial solvents. This paper presents experimental (liquid + liquid) equilibrium (LLE) data for four alcohol–water systems containing 1,8-cineole. To evaluate the phase equilibrium properties of 1,8-cineole in aqueous alcohol mixtures, LLE values for the ternary systems (water + methanol or ethanol or 1-propanol or 1-butanol + 1,8-cineole) were determined with a tie-line method at T = 298.15 K under atmospheric pressure. The well-known Hand, Bachman and Othmer–Tobias equations were used to test the reliability of the experimental results. The binodal curves and distribution ratios of alcohol in the mixtures are shown and discussed. The experimental LLE values were satisfactorily correlated by the NRTL and UNIQUAC models.
Phase-field modelling of microstructural evolution and properties
Zhu, Jingzhi
As one of the most powerful techniques in computational materials science, the diffuse-interface phase-field model has been widely employed for simulating various meso-scale microstructural evolution processes. The main purpose of this thesis is to develop a quantitative phase-field model for predicting microstructures and properties in real alloy systems which can be linked to existing thermodynamic/kinetic databases and parameters obtained from experimental measurements or first-principle calculations. To achieve this goal; many factors involved in complicated real systems are investigated, many of which are often simplified or ignored in existing models, e.g. the dependence of diffusional atomic mobility and elastic constants on composition. Efficient numerical techniques must be developed to solve those partial differential equations that are involved in modelling microstructural evolutions and properties. In this thesis, different spectral methods were proposed for the time-dependent phase-field kinetic equations and diffusion equations. For solving the elastic equilibrium equation with the consideration of elastic inhomogeneity, a conjugate gradient method was utilized. The numerical approaches developed were generally found to be more accurate and efficient than conventional approach such as finite difference method. A composition-dependent Cahn-Hilliard equation was solved by using a semi-implicit Fourier-spectral method. It was shown that the morphological evolutions in bulk-diffusion-controlled coarsening and interface-diffusion-controlled developed similar patterns and scaling behaviors. For bulk-diffusion-controlled coarsening, a cubic growth law was obeyed in the scaling regime, whereas a fourth power growth law was observed for interface-diffusion-controlled coarsening. The characteristics of a microstructure under the influence of elastic energy depend on elastic properties such as elastic anisotropy, lattice mismatch, elastic inhomogeneity and
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Directory of Open Access Journals (Sweden)
Francesco Cordero
2015-12-01
Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Cordero, Francesco
2015-01-01
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707
Structural phase transition and electronic properties in samarium chalcogenides
Energy Technology Data Exchange (ETDEWEB)
Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)
2016-05-06
The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.
Crystallographic phases and magnetic properties of iron nitride films
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)
2015-08-31
Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.
Crystallographic phases and magnetic properties of iron nitride films
International Nuclear Information System (INIS)
Li, Guo-Ke; Liu, Yan; Zhao, Rui-Bin; Shen, Jun-Jie; Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian; Hou, Deng-Lu
2015-01-01
Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe 4 N, ε-Fe 3−x N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe 4 N, ε-Fe 3−x N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe
Directory of Open Access Journals (Sweden)
S.M. Moawad
Full Text Available In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Keywords: Magnetohydrodynamics, Axisymmetric plasma, Resistivity, Incompressible flows, Exact equilibria, Magnetic confinement devices
Phase formation in the Li2MoO4-Rb2MoO4-Ln2(MoO4)3 systems and the properties of LiRbLn2(MoO4)4
International Nuclear Information System (INIS)
Basovich, O.M.; Khajkina, E.G.; Vasil'ev, E.V.; Frolov, A.M.
1995-01-01
Phase equilibria within subsolidus range of ternary salt systems Li 2 MoO 4 -Rb 2 MoO 4 -Ln 2 (MoO 4 ) 4 (Ln - Nd, Er) are analyzed. Formation of ternary molybdate LiRbNd 2 (MoO 4 ) 4 is proved along LiNd(MoO 4 ) 2 -RbNd(MoO 4 )-2 cross-section. Phase diagram of this cross-section is plotted. Similar compounds are synthesized for Ln = La-Eu. The parameters of their monoclinic elementary cells are determined. Luminescent properties of LiRbLa 2 (MoO 4 ) 4 -Nd 3+ are studied. 17 refs., 4 figs., 2 tabs
Free-boundary perturbed MHD equilibria
International Nuclear Information System (INIS)
Nührenberg, C
2012-01-01
The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].
Two-fluid equilibria with flow
International Nuclear Information System (INIS)
Steinhauer, L.
1999-01-01
The formalism is developed for flowing two-fluid equilibria. The equilibrium system is governed by a pair of second order partial differential equations for the magnetic stream function and the ion stream function plus a Bernoulli-like equation for the density. There are six arbitrary surface function. There are separate characteristic surfaces for each species, which are the guiding-center surfaces. This system is a generalization of the familiar Grad-Shafranov system for a single-fluid equilibrium without flow, which has only one equation and two arbitrary surface functions. In the case of minimum energy equilibria, the six surface functions take on particular forms. (author)
Existence of pareto equilibria for multiobjective games without compactness
Shiraishi, Yuya; Kuroiwa, Daishi
2013-01-01
In this paper, we investigate the existence of Pareto and weak Pareto equilibria for multiobjective games without compactness. By employing an existence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto and weak Pareto equilibria for the multiobjective games are established in a similar way to Flores-B´azan.
Stability of the n = 1 internal kink mode in equilibria with flows
International Nuclear Information System (INIS)
Aydemir, A.Y.; Waelbroeck, F.L.
1996-01-01
Stabilizing influence of mass flows, either directly or through their shearing action, on various modes is now generally recognized. Here we examine linear and nonlinear stability of the n = 1 internal kink mode in equilibria with toroidal rotation, using our nonlinear, initial-value MHD code CTD, which can be used to generate self-consistent equilibria with flows in arbitrary geometries. It is well known that equilibrium mass flows introduce complications in determination of MHD equilibria and their stability properties, such as the loss of self-adjointness and an increase in the number of conditions required to uniquely determine the equilibria. Thus, even with purely toroidal flows, an implicit statement about the equation of state is needed, in addition to a knowledge of the magnetic field and velocity profiles; rotation in an adiabatic plasma leads to a different equilibrium than, for example, in an isothermal one, with possibly quite different stability properties. We find that the expected stabilizing influence of toroidal rotation on n = 1 is generally absent in adiabatically generated equilibria in which, of all the relevant thermodynamic variables, only the specific entropy is a flux function, s = s (ψ). Fortunately, physically more relevant isothermal case where the temperature is constant on flux surfaces, T = T(ψ), has more favorable stability characteristics. On the other hand, an inconsistent but common practice of ignoring density perturbations, a benign omission for static equilibria, leads to overly optimistic results when equilibrium flows axe present, predicting stability when there may not be any. The crucial role played by the equation of state in determining equilibrium raises questions regarding the role of parallel transport in stability calculations; this and other nonideal effects, along with the role of plasma β vs. the rotational β, and nonlinear stability when the mode is pushed beyond marginality, will be discussed
Kinetic description of linear theta-pinch equilibria
International Nuclear Information System (INIS)
Batchelor, D.B.; Davidson, R.C.
1975-01-01
Equilibrium properties of linear theta-pinch plasmas are studied within the framework of the steady-state (o/x=0) Vlasov-Maxwell equations. The analysis is carried out for an infinitely long plasma column aligned parallel to an externally applied axial magnetic field Bsub(z)sup(ext)esub(z). Equilibrium properties are calculated for the class of rigid-rotor Vlasov equilibria, in which the th component distribution function (Hsub(perpendicular), Psub(theta), upsilonsub(z) depends on perpendicular energy H and canonical angular momentum Psub(theta), exclusively through the linear combination Hsub(perpendicular)-ωsub(j)Psub(theta), where ω;=const.=angular velocity of mean rotation. General equilibrium relations that pertain to the entire class of rigid-rotor Vlasov equilibria are discussed; and specific examples of sharp- and diffuse-boundary equilibrium configurations are considered. Rigid-rotor density and magnetic field profiles are compared with experimentally observed profiles. A general prescription is given for determining the functional dependence of the equilibrium distribution function on Hsub(perpendicular)-ωsub(j)Psub(theta) in circumstances, where the density profile or magnetic field profile is specified. (author)
Structural phase transition and elastic properties of mercury chalcogenides
Energy Technology Data Exchange (ETDEWEB)
Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)
2012-08-15
Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.
Ideal MHD stability of high poloidal beta equilibria in TFTR
International Nuclear Information System (INIS)
Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Budny, R.V.; Chance, M.S.; Fredrickson, E.D.; Jardin, S.C.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Wieland, R.M.; Zarnstorff, M.C.; Phillips, M.W.; Hughes, M.H.; Kesner, J.
1991-01-01
Recent experiments in TFTR have expanded the operating space of the device to include plasmas with values of var-epsilon β p dia ≡ 2μ 0 var-epsilon perpendicular >/ p >> 2 as large as 1.6, and Troyon normalized diamagnetic beta β N dia ≡ β t perpendicular aB t /10 -8 I p as large as 4.7. At values of var-epsilon β p dia ≥ 1.3, a separatrix was observed to enter the vacuum vessel, producing a naturally diverted discharge. Plasmas with large values of var-epsilon β p dia were created with both the plasma current, I p , held constant and with I p decreased, or ramped down, before the start of neutral beam injection. A convenient characterization of the change in I p using experimental parameters can be defined by the ratio of I p before the ramp down, to I p during the neutral beam heating phase, F I p . The ideal MHD stability of these equilibria is investigated to determine their location in stability space, and to study the role of plasma current and pressure profile modification in the creation of these high var-epsilon β p and β N plasmas. The evolution of these plasmas is modelled from experimental data using the TRANSP code. Two-dimensional equilibria are computed from the TRANSP results and used as input to both high and low-n stability codes including PEST. The high var-epsilon β p equilibria, which generally have an oblate cross-sectional shape, are in the first stability region to high-n ballooning modes. At constant I p , these equilibria generally have maximum pressure gradients near the magnetic axis and are stable to n=1 modes without a stabilizing conducting wall. The effect of the current profile shape on the stability of low-n kink/ballooning modes and the requirements for these plasmas to access the second stability region are examined. 6 refs
Nash equilibria via duality and homological selection
Indian Academy of Sciences (India)
1Quantitative Methods and Information Systems Area, Indian Institute ... The original proof of existence of Nash equilibria [13] uses fairly ...... The fiber over a regular point a of the disk Di consists of three inverse images (labeled. A1,A2,A3 in ...
Equilibrator: Modeling Chemical Equilibria with Excel
Vander Griend, Douglas A.
2011-01-01
Equilibrator is a Microsoft Excel program for learning about chemical equilibria through modeling, similar in function to EQS4WIN, which is no longer supported and does not work well with newer Windows operating systems. Similar to EQS4WIN, Equilibrator allows the user to define a system with temperature, initial moles, and then either total…
Computation of tokamak equilibria with steady flow
International Nuclear Information System (INIS)
Kerner, W.; Tokuda, Shinji
1987-08-01
The equations for ideal MHD equilibria with stationary flow are reexamined and addressed as numerically applied to tokamak configurations with a free plasma boundary. Both the isothermal (purely toroidal flow) and the poloidal flow cases are treated. Experiment-relevant states with steady flow (so far only in the toroidal direction) are computed by the modified SELENE40 code. (author)
On the stability of dissipative MHD equilibria
International Nuclear Information System (INIS)
Teichmann, J.
1979-04-01
The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)
Intermediates and Generic Convergence to Equilibria
DEFF Research Database (Denmark)
Marcondes de Freitas, Michael; Wiuf, Carsten; Feliu, Elisenda
2017-01-01
Known graphical conditions for the generic and global convergence to equilibria of the dynamical system arising from a reaction network are shown to be invariant under the so-called successive removal of intermediates, a systematic procedure to simplify the network, making the graphical conditions...
On the stochastic stability of MHD equilibria
International Nuclear Information System (INIS)
Teichmann, J.
1979-07-01
The stochastic stability in the large of stationary equilibria of ideal and dissipative magnetohydrodynamics under the influence of stationary random fluctuations is studied using the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian systems are given. The destabilizing effect of stochastic fluctuations is demonstrated. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Tochigi, K. [Nihon Univ., Tokyo (Japan)
1998-08-05
The data on vapor-liquid equilibrium are basic data indispensable to the designing of a distillation process. The stage required for separation depends greatly upon the x-y curve, and the existence/nonexistence of an azeotropic point is also an important item to be checked. This paper describes the measurement of vapor-liquid equilibrium and liquid-liquid equilibrium, and then introduces reliable data on vapor-liquid equilibrium and parameters of an activity coefficient formula. For the prediction of vapor-liquid equilibrium, the ASOG, UNIFAC, and modified NIFAC, all being group contributive methods are utilized. The differences between these group contributive methods are based on the differences between the contributive items based on the differences in size of molecules influencing the activity coefficients and the expression of the group activity coefficient formula. The applicable number of groups of the ASOG is 43, while that of groups of the UNIFAC is 50. The modified UNIFAC covers 43 groups. The prediction of liquid-liquid equilibrium by using a group contributive method has little progressed since the of the results of the study of Magnussen et al. using the UNIFAC. 12 refs., 8 figs., 1 tab.
Microstructure and mechanical properties of Mg-Zn-Y alloy containing LPSO phase and I-phase
Ye, Zhijian; Teng, Xinying; Lou, Gui; Zhou, Guorong; Leng, Jinfeng
2017-08-01
Microstructure and mechanical properties of Mg-Zn-Y alloy including LPSO phase and I-phase was investigated. Transmission electron microscopy, x-ray diffraction analysis and differential scanning calorimeter analysis reveal that the LPSO (long period stacking ordered structure) phase and I-phase can co-exist within the α-Mg matrix. Wherein, the quasicrystal phases exist in the (I-phase + α-Mg) eutectic structures. In the Mg-Zn-Y alloy, it is also found that 14 H type LPSO phases consist of LPSO phase and I-phase. With the addition of quasicrystal master alloy content, the microstructures are refined, and the mechanical properties are enhanced.
Formation and 'self-healing' of magnetic islands in finite-β Helias equilibria
International Nuclear Information System (INIS)
Hayashi, T.; Sato, T.; Merkel, P.; Nuehrenberg, J.; Schwenn, U.
1994-01-01
The behaviour of finite-pressure-induced magnetic islands is numerically analyzed for three-dimensional magnetohydrodynamic equilibria of the Helias configuration by using a three-dimensional equilibrium code. It is found that an island chain is generated on the 5/6 rational surface, when such a surface appears in the plasma region of the finite-β equilibrium. The island chain, however, is not so dangerous as to destroy the plasma confinement even if it appears in a vanishingly small shear region. Thus, a high β equilibrium with clear magnetic surfaces can be realized. Moreover, it is definitely confirmed that the finite pressure effect sometimes exhibits an unexpectedly good aspect, namely, that the vacuum islands are removed as β increases, which can be called 'self-healing' of islands. This property can be explained by the numerically discovered fact that the phases of islands induced by the finite-pressure effect are always locked in the same phase regardless of β. (author)
Electronic structure, phase transitions and diffusive properties of elemental plutonium
Setty, Arun; Cooper, B. R.
2003-03-01
We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.
Phase transition and electrical properties of strontium orthovanadate
International Nuclear Information System (INIS)
Pati, Biswajit; Choudhary, R.N.P.; Das, Piyush R.
2013-01-01
Highlights: •Highly crystallized Sr 3 V 2 O 8 ceramic has a structural and micro-structural stability. •The low values of ε r and tan δ make this material useful for microwave applications. •The material exhibits good ferroelectric properties suitable for memory devices. •The dielectric relaxation is of non Debye-type and ac conductivity obeys Jonscher power law. •The small value of dc activation energy suggests the conduction initiates with a small energy. -- Abstract: The current research work reports the study of phase transition and transport mechanism in lead-free strontium orthovanadate (Sr 3 V 2 O 8 ), prepared using a high-temperature solid-state reaction technique. Preliminary X-rays diffraction studies exhibit the formation of a single-phase compound in the trigonal crystal system. Study of microstructure of gold-coated pellet by scanning electron microscopy (SEM) shows well-defined and homogeneous grains in the morphology. Detailed studies of dielectric parameters (ε r and tan δ) of the compound as a function of temperature at some selected frequencies reveal their independence for a wide range of temperatures. An anomaly in relative permittivity (ε r ) suggests the existence of a ferroelectric–paraelectric phase transition of diffuse-type in the material that confirms through the detailed studies of its electric polarization. Detailed studies of impedance and related parameters exhibit that the electrical properties of the material are strongly dependent on temperature, and bear a good correlation with its microstructure (i.e., bulk, grain boundary, etc.). The decrease in value of bulk resistance on increasing temperature suggests the negative temperature co-efficient of resistance (NTCR) behavior of the material. Studies of electric modulus indicate the presence of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The nature of variation of dc conductivity with temperature confirms the
Measurement of two phase flow properties using the nuclear reactor instruments
International Nuclear Information System (INIS)
Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.
1982-01-01
A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)
Phase stability and elastic properties of Cr-V alloys
Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.
2013-02-01
V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.
Phase stability and elastic properties of Cr-V alloys
Energy Technology Data Exchange (ETDEWEB)
Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M
2013-01-23
V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.
Phase transition and luminescence properties from vapor etched silicon
International Nuclear Information System (INIS)
Aouida, S.; Saadoun, M.; Ben Saad, K.; Bessais, B.
2006-01-01
In this work, we present a study on the structure and photoluminescence (PL) properties of a non-conventional ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 (white powder) obtained from HNO 3 /HF chemical vapor etching (CVE) of silicon wafers. The CVE method leads either to the formation of luminescent Porous Silicon (PS) or SiO x /Si-containing (NH 4 ) 2 SiF 6 depending on the experimental conditions. At specific conditions (i.e., HNO 3 / HF volume ratio > 1 / 4), the CVE technique can generate instead of PS, a (NH 4 ) 2 SiF 6 phase where SiO x /Si particles are embedded. The (NH 4 ) 2 SiF 6 marketed powder is not luminescent, while that obtained from silicon vapor-etching presents a noticeable intense and stable photoluminescence (PL), which was found to have mainly two shoulders at 1.98 and 2.1 eV. Two processes have been proposed to explain this PL property. First, the visible luminescence around 1.98 eV would come from silicon nanoparticles embedded in the powder, having a distribution size that does not allow SiO x species to influence their own PL. Second, the PL shoulder around 2.1 eV would originate from small silicon nanoparticles trapped in SiO x features, leading to oxide related states that may trap electrons or excitons, depending on the silicon nanoparticle size, wherein radiative recombination occurs. The PL shoulder could become broader at low temperatures suggesting the existence of radiative recombination in SiO x related defects
Dynamic data evaluation for solid-liquid equilibria
DEFF Research Database (Denmark)
Cunico, Larissa; Ceriani, Roberta; Kang, Jeong Won
The accuracy and reliability of the measured data sets to be used in regression of model parameters is an important issue related to modeling of phase equilibria. It is clear that good parameters for any model cannot be obtained from low quality data. A thermodynamic consistency test for solid...... and parameter regression. The paper will highlight the data collection, the data analysis for SLE data and the thermodynamic model performance (such as NRTL, UNIQUAC and original UNIFAC)....... studies considering the methodology proposed for SLE thermodynamic consistency tests and data from open literature and databases such as NIST-TDE®, DIPPR® and DECHEMA® are presented. The SLE consistency test and data evaluation is performed in a software containing option for data analysis, model analysis...
International Nuclear Information System (INIS)
Gonçalves, Daniel; Koshima, Cristina Chiyoda; Nakamoto, Karina Thiemi; Umeda, Thayla Karla; Aracava, Keila Kazue; Gonçalves, Cintia Bernardo; Rodrigues, Christianne Elisabete da Costa
2014-01-01
Highlights: • Fractionation of essential oil compounds. • Liquid + liquid equilibria of limonene, citronellal, ethanol and water were studied. • Distribution coefficients of limonene and citronellal were evaluated. • Densities and viscosities of the phases were experimentally determined. • Solvent selectivities and physical properties were dependent on citronellal and water mass fractions. -- Abstract: As the principal source in Brazil of eucalyptus essential oil extracts, Eucalyptus citriodora contains citronellal, an oxygenated compound responsible for the flavour characteristics. Deterpenation processes, consisting of the removal of terpenic hydrocarbons with the subsequent concentration of the oxygenated compounds, can be used to improve the aromatic characteristics of this essential oil. The purpose of this work was to perform a study of the technical feasibility of using a liquid + liquid extraction process to deterpenate eucalyptus essential oil. Model systems with various mixtures of limonene and citronellal (representing eucalyptus essential oil) as well as solvent (ethanol with various water mass fractions) were used to obtain liquid + liquid equilibrium data. The raffinate and extract phases were also analyzed to characterize the physical properties (density and viscosity). The equilibrium data were used to adjust the NRTL and UNIQUAC parameters. Two empirical models, the simple mixing rule and the Grunberg–Nissan model, were evaluated for use in the descriptions of the densities and viscosities, respectively, of the samples. Increasing the water content in the solvent resulted in decreases in the limonene and citronellal distribution coefficients, with consequential increases in the solvent selectivity values. Increasing values of the densities and viscosities, especially for the solvent-rich phases, were associated with systems using high amounts of hydrated ethanolic solvents
International Nuclear Information System (INIS)
Blawzdziewicz, J.; Wajnryb, E.
2005-01-01
Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-sphere suspension using a Monte-Carlo method to evaluate thermodynamic equations of state. Coexisting phases are determined for systems in constrained- and full-equilibrium states that correspond to different stages of film relaxation. We also evaluated the effective viscosity coefficients for two-dimensional compressional and shear flows of a film and the self and collective mobility coefficients of the stabilizing particles. The hydrodynamic calculations were performed using a multiple-reflection representation of Stokes flow between two free surfaces. In this approach, the particle-laden film is equivalent to a periodic system of spheres with a unit cell that is much smaller in the transverse direction than in the lateral direction. (author)
Social Interactions under Incomplete Information: Games, Equilibria, and Expectations
Yang, Chao
Interactions under Incomplete Information", is an application of the first chapter to censored outcomes, corresponding to the situation when agents" behaviors are subjected to some binding restrictions. In an interesting empirical analysis for property tax rates set by North Carolina municipal governments, it is found that there is a significant positive correlation among near-by municipalities. Additionally, some private information about its own residents is used by a municipal government to predict others' tax rates, which enriches current empirical work about tax competition. The third chapter, "Social Interactions under Incomplete Information with Multiple Equilibria", extends the first chapter by investigating effective estimation methods when the condition for a unique equilibrium may not be satisfied. With multiple equilibria, the previous model is incomplete due to the unobservable equilibrium selection. Neither conventional likelihoods nor moment conditions can be used to estimate parameters without further specifications. Although there are some solutions to this issue in the current literature, they are based on strong assumptions such as agents with the same observable characteristics play the same strategy. This paper relaxes those assumptions and extends the all-solution method used to estimate discrete choice games to a setting with both discrete and continuous choices, bounded and unbounded outcomes, and a general form of incomplete information, where the existence of a pure strategy equilibrium has been an open question for a long time. By the use of differential topology and functional analysis, it is found that when all exogenous characteristics are public information, there are a finite number of equilibria. With privately known exogenous characteristics, the equilbria can be represented by a compact set in a Banach space and be approximated by a finite set. As a result, a finite-state probability mass function can be used to specify a probability measure
Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas
Energy Technology Data Exchange (ETDEWEB)
Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry
2006-07-01
Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)
Oscillations and Multiple Equilibria in Microvascular Blood Flow.
Karst, Nathaniel J; Storey, Brian D; Geddes, John B
2015-07-01
We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.
International Nuclear Information System (INIS)
Cao, Hong-yu; Zhou, Huan; Bai, Xiao-qin; Ma, Ruo-xin; Tan, Li-na; Wang, Jun-min
2016-01-01
Graphical abstract: Solubility diagram of the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system at T = (323.15 and 298.15) K. - Highlights: • Phase diagrams of Ca 2+ -H 2 PO 2 − -Cl − -H 2 O, Ca 2+ -Na + -H 2 PO 2 − -H 2 O at 323.15 K were obtained. • Incompatible double salt of NaCa(H 2 PO 2 ) 3 in Ca 2+ -Na + -H 2 PO 2 − -H 2 O system was determined. • Density diagram of the corresponding liquid were simultaneously measured. - Abstract: Calcium hypophosphite has been widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating, and animal nutritional supplement. High purity calcium hypophosphite can be synthesized via the replacement reaction of sodium hypophosphite and calcium chloride. In this work, the (solid + liquid) phase equilibria of (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) and (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) ternary systems at T = 323.15 K were studied experimentally via the classical isothermal solubility equilibrium method, and the phase diagrams for these two systems were obtained. It was found that two solid salts of CaCl 2 ·2H 2 O and Ca(H 2 PO 2 ) 2 exist in the (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) system, and three salts of Ca(H 2 PO 2 ) 2 , NaH 2 PO 2 ·H 2 O and one incompatible double salt, NaCa(H 2 PO 2 ) 3 occur in the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system.
Computation of thermodynamic equilibria of nuclear materials in multi-physics codes
International Nuclear Information System (INIS)
Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.
2011-01-01
A new equilibrium thermodynamic solver is being developed with the primary impetus of direct integration into nuclear fuel performance and safety codes to provide improved predictions of fuel behavior. This solver is intended to provide boundary conditions and material properties for continuum transport calculations. There are several legitimate concerns with the use of existing commercial thermodynamic codes: 1) licensing entanglements associated with code distribution, 2) computational performance, and 3) limited capabilities of handling large multi-component systems of interest to the nuclear industry. The development of this solver is specifically aimed at addressing these concerns. In support of this goal, a new numerical algorithm for computing chemical equilibria is presented which is not based on the traditional steepest descent method or 'Gibbs energy minimization' technique. This new approach exploits fundamental principles of equilibrium thermodynamics, which simplifies the optimization equations. The chemical potentials of all species and phases in the system are constrained by the system chemical potentials, and the objective is to minimize the residuals of the mass balance equations. Several numerical advantages are achieved through this simplification, as described in this paper. (author)
A novel grid multiwing chaotic system with only non-hyperbolic equilibria
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-05-01
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.
Phase structure and critical properties of an abelian gauge theory
Energy Technology Data Exchange (ETDEWEB)
Mo, Sjur
2001-12-01
The main new results are presented in the form of three papers at the end of this thesis. The main topic is Monte-Carlo studies of the phase structure and critical properties of the phenomenological Ginzburg-Landau model, i.e. an abelian gauge theory. However, the first paper is totally different and deals with microscopic theory for lattice-fermions in a magnetic field. Paper I is about ''Fermion-pairing on a square lattice in extreme magnetic fields''. We consider the Cooper-problem on a two-dimensional, square lattice with a uniform, perpendicular magnetic field. Only rational flux fractions are considered. An extended (real-space) Hubbard model including nearest and next nearest neighbor interactions is transformed to ''k-space'', or more precisely, to the space of eigenfunctions of Harper's equation, which constitute basis functions of the magnetic translation group for the lattice. A BCS-like truncation of the interaction term is performed. Expanding the interactions in the basis functions of the irreducible representations of the point group C{sub 4{nu}} of the square lattice simplify calculations. The numerical results indicate enhanced binding compared to zero magnetic field, and thus re-entrant superconducting pairing at extreme magnetic fields, well beyond the point where the usual semi-classical treatment of the magnetic field breaks down. Paper II is about the ''Hausdorff dimension of critical fluctuations in abelian gauge theories''. Here we analyze the geometric properties of the line-like critical fluctuations (vortex loops) in the Ginzburg-Landau model in zero magnetic background field. By using a dual description, we obtain scaling relations between exponents of geometric arid thermodynamic nature. In particular we connect the anomalous scaling dimension {eta} of the dual matter field to the Hausdorff or fractal dimension D{sub H} of the critical fluctuations, in the original model
International Nuclear Information System (INIS)
Marciniak, Andrzej; Wlazło, Michał; Gawkowska, Joanna
2016-01-01
Highlights: • Ternary (liquid + liquid) equilibria for 3 ionic liquid + butanol + water systems. • The influence of ionic liquid structure on phase diagrams is discussed. • Influence of IL structure on S and β for butanol/water separation is discussed. - Abstract: Ternary (liquid + liquid) phase equilibria for 3 systems containing bis(trifluoromethylsulfonyl)-amide ionic liquids (1-buthyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, {1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluorylsulfonyl)-amide) + butan-1-ol + water} have been determined at T = 298.15 K. The selectivity and solute distribution ratio were calculated for investigated systems and compared with literature data for other systems containing ionic liquids. In each system total solubility of butan-1-ol and low solubility of water in the ionic liquid is observed. The experimental results have been correlated using NRTL model. The influence of the structure of ionic liquid on phase equilibria, selectivity and solute distribution ratio is shortly discussed.
Phase Transition and Physical Properties of InS
Wang, Hai-Yan; Li, Xiao-Feng; Xu, Lei; Li, Xu-Sheng; Hu, Qian-Ku
2018-02-01
Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases (Pnnm, C2/m and Pm-3m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the Pnnm phase and phase transformation of InS from Pnnm phase to Pm-3m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for InS with Pnnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and Pm-3m phase are metallic phases. Supported by the National Natural Science Foundation of China under Grant Nos. 11404099, 11304140, 11147167 and Funds of Outstanding Youth of Henan Polytechnic University, China under Grant No. J2014-05
Hermite Polynomials and the Inverse Problem for Collisionless Equilibria
Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.
2017-12-01
It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82
A Scanning Hologram Recorded by Phase Conjugate Property of Nonlinear Crystals
DEFF Research Database (Denmark)
Zi-Liang, Ping; Dalsgaard, Erik
1996-01-01
A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given.......A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given....
Dudebout, Nicolas; Shamma, Jeff S.
2014-01-01
This paper proves that exogenous empirical-evidence equilibria (xEEEs) in perfect-monitoring repeated games induce correlated equilibria of the associated one-shot game. An empirical-evidence equilibrium (EEE) is a solution concept for stochastic games. At equilibrium, agents' strategies are optimal with respect to models of their opponents. These models satisfy a consistency condition with respect to the actual behavior of the opponents. As such, EEEs replace the full-rationality requirement of Nash equilibria by a consistency-based bounded-rationality one. In this paper, the framework of empirical evidence is summarized, with an emphasis on perfect-monitoring repeated games. A less constraining notion of consistency is introduced. The fact that an xEEE in a perfect-monitoring repeated game induces a correlated equilibrium on the underlying one-shot game is proven. This result and the new notion of consistency are illustrated on the hawk-dove game. Finally, a method to build specific correlated equilibria from xEEEs is derived.
Dudebout, Nicolas
2014-12-15
This paper proves that exogenous empirical-evidence equilibria (xEEEs) in perfect-monitoring repeated games induce correlated equilibria of the associated one-shot game. An empirical-evidence equilibrium (EEE) is a solution concept for stochastic games. At equilibrium, agents\\' strategies are optimal with respect to models of their opponents. These models satisfy a consistency condition with respect to the actual behavior of the opponents. As such, EEEs replace the full-rationality requirement of Nash equilibria by a consistency-based bounded-rationality one. In this paper, the framework of empirical evidence is summarized, with an emphasis on perfect-monitoring repeated games. A less constraining notion of consistency is introduced. The fact that an xEEE in a perfect-monitoring repeated game induces a correlated equilibrium on the underlying one-shot game is proven. This result and the new notion of consistency are illustrated on the hawk-dove game. Finally, a method to build specific correlated equilibria from xEEEs is derived.
Directory of Open Access Journals (Sweden)
Martínez, F. J.
1989-12-01
Full Text Available In different areas of the Hercynian in the Iberian Peninsula some reactions are repeatedly observed in pelites, these reactions are: Staurolite + muscovite + quartz = Biotite+ Al2SiO5+ H2O Garnet + muscovite = Al2SiO5+ biotite+ quartzBiotite + Al2SiO5 + quartz = Cordierite + K feldspar+Hp In order to examinate the P-T stability fields of these, and other similar reactions, aH the univariant equilibria in multisystems with Gt-Cd-St-Bi-Mu-Als-Qz-HP, Gt-St-Bi-Mu-Fk-AIs-QzHp and Cd-St-Bi-Mu-Fk-AIs-Qz-H2O in Kp-FeO-AI2O r SiO2-H2O (KFASH system have been calculated, and their corresponding P-T grids have been constructed. The expansion of these reactions into divariant surfaces through the P-T-X (Fe-Mg space was made by studying the assemblage Gt-Cd-St-Bi-Mu-Fk-AIs-Qz-HP in K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH with a Fe/Fe+Mg relationship Gt > St > Bi > Cd such as observed in most of natural pelites. A resultant grid was obtained by combining those obtained in the aboye systerns. This grid has been P-T located for PH20 = P19 near QFM buffer, and excess muscovite and quartz conditions Reaction slopes in this grid were calculated within different P-T surroundings from thermodynamic data as weH as by considering the existing experimental data. In addition to the stability fields of reactions the P-T-XFe-Mg theoric relations for three univariant and thirteen divariant reactions have been obtained. The grid confirms the imposibility of staurolite-K feldspar and Garnet-Cordierite-Muscovite coexistence, as weH as the extension of the stability fields for Garnet-Staurolite, Cordierite-Staurolite and Garnet-Cordierite assemblages in muscovite-poor metapelites.En rocas metapelíticas de diversas áreas en el Hercínico de la Península Ibérica se observan a menudo las siguientes reacciones: Estaurolita + moscovita + cuarzo = biotita + Al2SiO5+ H2OGranate + moscovita = Al2SiO5 + biotita Â± cuarzo Biotita + Al2SiO5 + cuarzo = cordierita + feldespato pot
Oliynyk, Anton O; Lomnytska, Yaroslava F; Dzevenko, Mariya V; Stoyko, Stanislav S; Mar, Arthur
2013-01-18
Construction of the isothermal section in the metal-rich portion (ternary phases: (Mo(1-x)Fe(x))(2)P (x = 0.30-0.82) and (Mo(1-x)Fe(x))(3)P (x = 0.10-0.15). The occurrence of a Co(2)Si-type ternary phase (Mo(1-x)Fe(x))(2)P, which straddles the equiatomic composition MoFeP, is common to other ternary transition-metal phosphide systems. However, the ternary phase (Mo(1-x)Fe(x))(3)P is unusual because it is distinct from the binary phase Mo(3)P, notwithstanding their similar compositions and structures. The relationship has been clarified through single-crystal X-ray diffraction studies on Mo(3)P (α-V(3)S-type, space group I42m, a = 9.7925(11) Å, c = 4.8246(6) Å) and (Mo(0.85)Fe(0.15))(3)P (Ni(3)P-type, space group I4, a = 9.6982(8) Å, c = 4.7590(4) Å) at -100 °C. Representation in terms of nets containing fused triangles provides a pathway to transform these closely related structures through twisting. Band structure calculations support the adoption of these structure types and the site preference of Fe atoms. Electrical resistivity measurements on (Mo(0.85)Fe(0.15))(3)P reveal metallic behavior but no superconducting transition.
Ballooning stable high beta tokamak equilibria
International Nuclear Information System (INIS)
Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki
1981-04-01
The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)
Critical beta for analytical spheromak equilibria
International Nuclear Information System (INIS)
Freire, E.M.; Clemente, R.A.
1985-01-01
The Mercier criterion is applied to two analytical spheromak equilibria, one with a spherical separatrix and the other with a cylindrical one of variable elongation. The maximum beta, defined as the ratio between the plasma pressure and the magnetic pressure averaged over the plasma volume, for which the criterion is satisfied on every magnetic surface, has been obtained. In the spherical model the critical beta is 0.003, while in the cylindrical case it is a function of the elongation of the separatrix with a maximum of 0.083. (author)
Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Johnson, J.L.; Dalhed, H.E.; Greene, J.M.
1978-07-01
Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given
Guiding Center Equations in Toroidal Equilibria
International Nuclear Information System (INIS)
White, Roscoe; Zakharov, Leonid
2002-01-01
Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria
International Nuclear Information System (INIS)
O’Connor, William E.; Warzoha, Ronald; Weigand, Rebecca; Fleischer, Amy S.; Wemhoff, Aaron P.
2014-01-01
Highlights: • Liquid-phase thermal properties for five phase change materials were estimated. • Various liquid phase and phase transition thermal properties were measured. • The thermal diffusivity was found using a best path to prediction approach. • The thermal diffusivity predictive method shows 15% agreement for organic PCMs. - Abstract: Organic phase change materials (PCMs) are a popular choice for many thermal energy storage applications including solar energy, building envelope thermal barriers, and passive cooling of portable electronics. Since the extent of phase change during a heating or cooling process is dependent upon rapid thermal penetration into the PCM, accurate knowledge of the thermal diffusivity of the PCM in both solid and liquid phases is crucial. This study addresses the existing gaps in information for liquid-phase PCM properties by examining an approach that determines the best path to prediction (BPP) for the thermal diffusivity of both alkanes and unsaturated acids. Knowledge of the BPP will enable researchers to explore the influence of PCM molecular structure on bulk thermophysical properties, thereby allowing the fabrication of optimized PCMs. The BPP method determines which of the tens of thousands of combinations of 22 different available theoretical techniques provides best agreement with thermal diffusivity values based on reported or measured density, heat capacity, and thermal conductivity for each of five PCMs (heneicosane, tricosane, tetracosane, oleic acid, and linoleic acid) in the liquid phase near the melting point. Separate BPPs were calibrated for alkanes based on heneicosane and tetracosane, and for the unsaturated acids. The alkane and unsaturated acid BPPs were then tested on a variety of similar materials, showing agreement with reported/measured thermal diffusivity within ∼15% for all materials. The alkane BPP was then applied to find that increasing the length of alkane chains decreases the PCM thermal
A unifying approach to existence of Nash equilibria
Balder, E.J.
1997-01-01
An approach initiated in [4] is shown to unify results about the existence of (i) Nash equilibria in games with at most countably many players, (ii) Cournot-Nash equilibrium distributions for large, anonymous games, and (iii) Nash equilibria (both mixed and pure) for continuum games. A new, central
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
International Nuclear Information System (INIS)
Gutierrez, Jorge E.; Bejarano, Arturo; Fuente, Juan C. de la
2010-01-01
An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at 2 + 1-propanol), (CO 2 + 2-methyl-1-propanol), (CO 2 + 3-methyl-1-butanol), and (CO 2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO 2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.
Equilibria of perceptrons for simple contingency problems.
Dawson, Michael R W; Dupuis, Brian
2012-08-01
The contingency between cues and outcomes is fundamentally important to theories of causal reasoning and to theories of associative learning. Researchers have computed the equilibria of Rescorla-Wagner models for a variety of contingency problems, and have used these equilibria to identify situations in which the Rescorla-Wagner model is consistent, or inconsistent, with normative models of contingency. Mathematical analyses that directly compare artificial neural networks to contingency theory have not been performed, because of the assumed equivalence between the Rescorla-Wagner learning rule and the delta rule training of artificial neural networks. However, recent results indicate that this equivalence is not as straightforward as typically assumed, suggesting a strong need for mathematical accounts of how networks deal with contingency problems. One such analysis is presented here, where it is proven that the structure of the equilibrium for a simple network trained on a basic contingency problem is quite different from the structure of the equilibrium for a Rescorla-Wagner model faced with the same problem. However, these structural differences lead to functionally equivalent behavior. The implications of this result for the relationships between associative learning, contingency theory, and connectionism are discussed.
Fluid phases of hydrogen-bound states and thermodynamical properties
International Nuclear Information System (INIS)
Ebeling, W.; Kraeft, W.D.
1985-08-01
The fluid phases of hydrogen and especially the existence of two critical points, the density dependence of the two - particle states and the effective interactions are discussed. An effective Schroedinger equation and a Saha equation are given. (author)
Convergence of solutions of a non-local phase-field system
Czech Academy of Sciences Publication Activity Database
Londen, S.-O.; Petzeltová, Hana
2011-01-01
Roč. 4, č. 3 (2011), s. 653-670 ISSN 1937-1632 R&D Projects: GA AV ČR(CZ) IAA100190606 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-local phase-field systems * separation property * convergence to equilibria Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5698
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.
2016-01-01
to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed....... This work is the last part of a series of studies, which aim to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis et al., 2010, 2011...
International Nuclear Information System (INIS)
McKenzie, W.F.
1992-08-01
The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases
Structural phase transition and elastic properties of samarium monopnictides
International Nuclear Information System (INIS)
Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, Sankar P.
2011-01-01
In recent years the monopnictides and monochalcogenides of the rare-earth elements with rocksalt structure (B 1 ) have aroused intensive interest due to the presence of strongly correlated f electrons in them. Under pressure, the nature of f-electrons of these compounds can be changed from localized to itinerant leading to significant changes in physical and chemical properties. These unusual structural, electronic, and high-pressure properties make them candidates for advanced industrial applications. For these applications they provide unique physical properties which cannot be achieved with other materials
Edge stability and pedestal profile sensitivity of snowflake diverted equilibria in the TCV Tokamak
International Nuclear Information System (INIS)
Medvedev, S.Yu.; Ivanov, A.A.; Martynov, A.A.; Poshekhonov, Yu.Yu.; Behn, R.; Martin, Y.R.; Moret, J.M.; Piras, F.; Pitzschke, A.; Pochelon, A.; Sauter, O.; Villard, L.
2010-01-01
A second order null divertor (snowflake) has been successfully created and controlled in the TCV tokamak[1] (F. Piras et al., Plasma Phys. Control. Fusion, 2009). The results of ideal MHD edge stability computations show an enhancement of the edge stability properties of the snowflake equilibria compared to standard x-point configurations[2] (S. Yu. Medvedev et al., 36th EPS Conference on Plasma Physics, 2009). However, a sensitivity study of the stability limits to variations of the pedestal profiles is essential for making conclusions about possibilities of ELM control in snowflake plasmas. Variations of the edge stability and beta limits for several types of snowflake equilibria, different values of triangularity and various pedestal profiles are investigated (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Directory of Open Access Journals (Sweden)
Neau E.
2006-11-01
Full Text Available Une étude comparative de plusieurs équations d'état issues de la théorie de van der Waals a été effectuée dans le but de sélectionner des modèles capables de calculer les propriétés PVT d'hydrocarbures dans un large domaine de pression et température. 34 hydrocarbures de différentes tailles et structures ont été sélectionnés. Les données expérimentales d'équilibres liquide-vapeur (pressions de vapeur, volumes des liquides et les propriétés PVT de fluides comprimés ont été systématiquement comparées avec des résultats obtenus au moyen de différentes équations d'état. Il est apparu que seules les équations d'état complexes (notamment l'équation COR sont en mesure de représenter correctement les propriétés volumétriques dans un large domaine de température et de pression, le voisinage du point critique inclu. A comparative study of several equations of state (EOS derived from the van der Waals theory was performed. The aim was to select the models able to represent PVT properties of hydrocarbons in large pressure and temperature ranges. 34 hydrocarbons of various sizes and structures were selected. Experimental data of vapor liquid equilibria (vapor pressures and liquid volumes and PVT properties of compressed fluids were systematically compared with results obtained using selected EOS. It was shown that only the complex EOS (especially the COR equation are able to represent volumetric properties in wide temperature and presssure ranges, the critical region included.
Energy Technology Data Exchange (ETDEWEB)
Aboussatar, Mohamed [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Mbarek, Aïcha [Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP W3038, 3000 Sfax (Tunisia); Naili, Houcine [Laboratoire de Physico-Chimie de l’État Solide, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); El-Ghozzi, Malika [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Chadeyron, Geneviève [Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS/UBP/SIGMA, BP 10448, F-63000 Clermont-Ferrand (France); Avignant, Daniel [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France); Zambon, Daniel, E-mail: Daniel.Zambon@univ-bpclermont.fr [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS, BP 10448, F-63000 Clermont-Ferrand (France)
2017-04-15
Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO{sub 3} system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO{sub 4} side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na{sub 2}CdPO{sub 4}F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1), c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na{sub 2}CaPO{sub 4}F and the fluorosilicate Ca{sub 2}NaSiO{sub 4}F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na{sub 2}M{sup II}PO{sub 4}F (M{sup II}=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and {sup 19}F, {sup 23}Na, {sup 31}P MAS NMR characterizations of Na{sub 2}CdPO{sub 4}F have been investigated. - Graphical abstract: The structure of the compound Na{sub 2}CdPO{sub 4}F, discovered during the study of the phase relationships in the NaF-CdO-NaPO{sub 3} system, has been determined and compared with other Na{sub 2}M{sup II}PO{sub 4}F fluorophosphates. - Highlights: • XRD analysis of the isothermal section of the NaF-CdO-NaPO{sub 3} system at 923 K. • Rietveld refinement of the high temperature polymorph β-NaCdPO{sub 4}. • Crystal structure of the new Na{sub 2}CdPO{sub 4}F fluorophosphate determined from powder XRD. • Crystal structure - composition relationships of Na{sub 2}M{sup II}PO{sub 4}F compounds
Interfacial properties and phase behaviour of an ionic microemulsion system
Kegel, W.K.
1993-01-01
This thesis reports a study of a microemulsion model system composed of the ionic surfactant SDS (Sodium Dodecyl Sulfate), the cosurfactant pentanol and/or hexanol, water, salt and cyclohexane. Depending on the concentrations of the constituent parts, this system may form microemulsion phases and
Properties of heavy ion linacs with alternating phase focusing
International Nuclear Information System (INIS)
Deitinghoff, H.; Junior, P.; Klein, H.
1976-01-01
General aspects for the application of alternating phase focusing are discussed. The results demand necessary linac parameters. The possibility of their accomplishment by already existing or feasible linac structures with acceleration rates of 2 - 3 MV/m will be considered
Composition and property measurements for PHA Phase 4 glasses
International Nuclear Information System (INIS)
Edwards, T.B.
2000-01-01
The results presented in this report are for nine Precipitate Hydrolysis Aqueous (PHA) Phase 4 glasses. Three of the glasses contained HM sludge at 22, 26, and 30 wt% respectively, 10 wt% PHA and 1.25 wt% monosodium titanate (MST), all on an oxide basis. The remaining six glasses were selected from the Phase 1 and Phase 2 studies (Purex sludge) but with an increased amount of MST. The high-end target for MST of 2.5 wt% oxide was missed in Phases 1 and 2 due to ∼30 wt% water content of the MST. A goal of this Phase 4 study was to determine whether this increase in titanium concentration from the MST had any impact on glass quality or processibility. Two of the glasses, pha14c and pha15c, were rebatched and melted due to apparent batching errors with pha14 and pha15. The models currently in the Defense Waste Processing Facility's (DWPF) Product Composition Control System (PCCS) were used to predict durability, homogeneity, liquidus, and viscosity for these nine glasses. All of the HM glasses and half of the Purex glasses were predicted to be phase separated, and consequently prediction of glass durability is precluded with the cument models for those glasses that failed the homogeneity constraint. If one may ignore the homogeneity constraint, the measured durabilities were within the 95% prediction limits of the model. Further efforts will be required to resolve this issue on phase separation (inhomogeneity). The liquidus model predicted unacceptable liquidus temperatures for four of the nine glasses. The approximate, bounding liquidus temperatures measured for all had upper limits of 1,000 C or less. Given the fact that liquidus temperatures were only approximated, the 30 wt% loading of Purex may be near or at the edge of acceptability for liquidus. The measured viscosities were close to the predictions of the model. For the Purex glasses, pha12c and pha15c, the measured viscosities of 28 and 23 poise, respectively, indicate that DWPF processing may be compromised
International Nuclear Information System (INIS)
Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.
2016-01-01
Highlights: • CPA EoS was applied to predict the phase behaviour of multicomponent mixtures containing CO_2, glycols, water and alkanes. • Mixtures relevant to oil and gas, CO_2 capture and liquid or supercritical CO_2 transport applications were investigated. • Results are presented using various modelling approaches/association schemes. • The predicting ability of the model was evaluated against experimental data. • Conclusions for the best modelling approach are drawn. - Abstract: In this work the Cubic Plus Association (CPA) equation of state is applied to multicomponent mixtures containing CO_2 with alkanes, water, and glycols. Various modelling approaches are used i.e. different association schemes for pure CO_2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling mixtures of CO_2 with other hydrogen bonding fluids (only use of one interaction parameter k_i_j or assuming cross association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross association energy). Initially, new binary interaction parameters were estimated for (CO_2 + glycol) binary mixtures. Having the binary parameters from the binary systems, the model was applied in a predictive way (i.e. no parameters were adjusted to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO_2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed. This work is the last part of a series of studies, which aim to arrive in a single “engineering approach” for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis
Energy Technology Data Exchange (ETDEWEB)
Wang Shiqiang [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Deng Tianlong [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); College of Materials, Chemistry and Chemical Engineering, Chengdu University Technology, Chengdu 610059 (China)], E-mail: dtl@cdut.edu.cn
2008-06-15
The solubility and the density in the aqueous ternary system (Li{sub 2}SO{sub 4} + MgSO{sub 4} + H{sub 2}O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li{sub 2}SO{sub 4} . H{sub 2}O + MgSO{sub 4} . 7H{sub 2}O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li{sub 2}SO{sub 4} . H{sub 2}O) and epsomite (MgSO{sub 4} . 7H{sub 2}O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.
Kanoun, Mohammed; Goumri-Said, Souraya
2012-01-01
In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized
On Pure and (approximate) Strong Equilibria of Facility Location Games
DEFF Research Database (Denmark)
Hansen, Thomas Dueholm; Telelis, Orestis A.
2008-01-01
We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a non-negative weight per agent). Agents using the same facility share fairly its installation cost, but every...... agent pays individually a (weighted) connection cost to the chosen location. We study the Price of Stability (PoS) of pure Nash equilibria and the Price of Anarchy of strong equilibria (SPoA), that generalize pure equilibria by being resilient to coalitional deviations. For unweighted agents on metric...
Phase transition properties of a cylindrical ferroelectric nanowire
Indian Academy of Sciences (India)
Based on the transverse Ising model (TIM) and using the mean-field theory, we inves- ... workers [11–13] to study the static and dynamic properties of ferroelectric superlattices. ... The mean-field expressions is usually used for a qualitative.
Phase equilibrium and physical properties of biobased ionic liquid mixtures.
Toledo Hijo, Ariel A C; Maximo, Guilherme J; Cunha, Rosiane L; Fonseca, Felipe H S; Cardoso, Lisandro P; Pereira, Jorge F B; Costa, Mariana C; Batista, Eduardo A C; Meirelles, Antonio J A
2018-02-28
Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal. However, obtaining PILCs with higher thermal and mechanical stabilities for product and process design is in demand and studies on such approaches using this new IL generation are still scarce. In this context, this work discloses an alternative way for tuning the physicochemical properties of ILCs by mixing PILs. New binary mixtures of PILs derived from fatty acids and 2-hydroxy ethylamines have been synthesized here and investigated through the characterization of the solid-solid-[liquid crystal]-liquid thermodynamic equilibrium and their rheological and critical micellar concentration profiles. The mixtures presented a marked nonideal melting profile with the formation of solid solutions. This work revealed an improvement of the PILCs' properties based on a significant increase in the ILC temperature domain and the obtainment of more stable mesophases at high temperatures when compared to pure PILs. In addition, mixtures of PILs also showed significant changes in their non-Newtonian and viscosity profile up to 100 s -1 , as well as mechanical stability over a wide temperature range. The enhancement of the physicochemical properties of PILs here disclosed by such an approach leads to more new possibilities of their industrial application at high temperatures.
Transport properties and phase diagram of UNi2Si2
International Nuclear Information System (INIS)
Ning, Y.B.; Garrett, J.D.; Datars, W.R.; McMaster Univ., Hamilton, ON
1992-01-01
The resistivity and Hall coefficient of single-crystal UNi 2 Si 2 have been studied in detail for the temperature range 4.2-300 K. The resistivity of UNi 2 Si 2 is largely due to magnetic scattering and the phonon scattering contribution is estimated to be about 14% at room temperature. At low temperatures, the resistivity can be described by a gapped spin-wave model plus a T 2 term. The temperature dependence of the Hall coefficient is accounted for by a theoretical model invoking skew scattering of conduction electrons by localized magnetic moments. Among the three magnetic phase transition temperatures, the two lower ones are found to be magnetic field dependent and shift with the field applied along the tetragonal c axis. Using the resistivity measurement in an applied magnetic field, a field-temperature phase diagram of UNi 2 Si 2 is presented. (author)
International Nuclear Information System (INIS)
Bejarano, Arturo; Gutierrez, Jorge E.; Araus, Karina A.; Fuente, Juan C. de la
2011-01-01
Research highlights: → (Vapor + liquid) equilibria of three (CO 2 + C 5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO 2 + 3-methyl-2-butanol), (CO 2 + 2-pentanol), and (CO 2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO 2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.
Jahanbakhsh, F.; Honarasa, G.
2018-04-01
The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.
Water property lookup table (sanwat) for use with the two-phase computational code shaft
International Nuclear Information System (INIS)
Sherman, M.P.; Eaton, R.R.
1980-10-01
A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories
Phase space properties of charged fields in theories of local observables
International Nuclear Information System (INIS)
Buchholz, D.; D'Antoni, C.
1994-10-01
Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)
2008-07-01
Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.
Blok, M.C.; Neut-Kok, E.C.M. van der; Deenen, L.L.M. van; Gier, J. de
1975-01-01
This paper describes experiments showing the importance of the fatty acid chain length on the barrier properties of liposomal bilayers, prepared from saturated lecithins, under conditions of lateral phase separation. 1. 1.|Above the gel to liquid crystalline phase transition temperature,
2017-07-31
naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...prior to this research project, a fundamental understanding of the phase transformation behavior under the high heating and cooling rates associated...HAZ mechanical properties. Such a treatment is expensive, time consuming , and cannot be practically applied to large structures. However, the absence
Physical properties of kraft black liquor. Final report. Phase I
Energy Technology Data Exchange (ETDEWEB)
Fricke, A.L.
1983-12-01
Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.
2014 Enhanced LAW Glass Property-Composition Models, Phase 2
Energy Technology Data Exchange (ETDEWEB)
Muller, Isabelle [The Catholic Univ. of America, Washington, DC (United States); Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States); Joseph, Innocent [Energy Solutions, Salt Lake City, UT (United States); Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States)
2015-10-28
This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.
Analytic properties of the Ruelle ζ-function for mean field models of phase transition
International Nuclear Information System (INIS)
Hallerberg, Sarah; Just, Wolfram; Radons, Guenter
2005-01-01
We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition
First principles calculation of L21+A2 coherent equilibria in the Fe-Al-Ti system
International Nuclear Information System (INIS)
Alonso, Paula R.; Gargano, Pablo H.; Ramirez-Caballero, Gustavo E.; Balbuena, Perla B.; Rubiolo, Gerardo H.
2009-01-01
By combining first-principles density functional total energy calculations and statistical mechanics the ground state and the phase equilibria at finite temperatures of the ternary system Fe-Al-Ti have been investigated. Total energy calculations have been performed by means of the Wien 2k code to establish the ground state energetic. A cluster expansion method was therewith used to describe solid solutions. At several chosen finite temperatures the cluster variation method in the irregular tetrahedron approximation was employed in order to calculate the iron rich ternary bcc equilibria. It is confirmed that there are two kinds of phase separations of the bcc phase, A2+L2 1 and B2+L2 1 .
Retrieval of Ice Cloud Properties Using Variable Phase Functions
Heck, Patrick W.; Minnis, Patrick; Yang, Ping; Chang, Fu-Lung; Palikonda, Rabindra; Arduini, Robert F.; Sun-Mack, Sunny
2009-03-01
An enhancement to NASA Langley's Visible Infrared Solar-infrared Split-window Technique (VISST) is developed to identify and account for situations when errors are induced by using smooth ice crystals. The retrieval scheme incorporates new ice cloud phase functions that utilize hexagonal crystals with roughened surfaces. In some situations, cloud optical depths are reduced, hence, cloud height is increased. Cloud effective particle size also changes with the roughened ice crystal models which results in varied effects on the calculation of ice water path. Once validated and expanded, the new approach will be integrated in the CERES MODIS algorithm and real-time retrievals at Langley.
A non-destructive method to measure the thermal properties of frozen soils during phase transition
Directory of Open Access Journals (Sweden)
Bin Zhang
2015-04-01
Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.
Re-analysis of exponential rigid-rotor astron equilibria
International Nuclear Information System (INIS)
Lovelace, R.V.; Larrabee, D.A.; Fleischmann, H.H.
1978-01-01
Previous studies of exponential rigid-rotor astron equilibria include particles which are not trapped in the self-field of the configuration. The modification of these studies required to exclude untrapped particles is derived
A review on thermophysical properties of nanoparticle dispersed phase change materials
International Nuclear Information System (INIS)
Kibria, M.A.; Anisur, M.R.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C.
2015-01-01
Highlights: • Thermo physical properties of PCM could be enhanced by dispersing nanoparticles. • Surface/physical properties of nanoparticle could affect the thermal properties of PCM. • CNT and CNF showed better performance to enhance the thermal properties of PCM. • Some predictions in NePCM literature needs further investigations. - Abstract: A review of current experimental studies on variations in thermophysical properties of phase change material (PCM) due to dispersion of nanoparticles is presented in this article. Dispersed carbon nanotubes/fiber and different metal/metal oxide nano particles in paraffin and fatty acids might be a solution to improve latent heat thermal storage performance. Thermophysical properties such as thermal conductivity, latent heat, viscosity and super cooling of phase change materials (PCM) could be changed for different physical properties of dispersed nanoparticle such as size, shape, concentration and surface properties. Among the nano particles, comparatively carbon nanotubes and carbon nano fiber have shown better performance in enhancing the thermal properties of PCM for their unique properties. The present review will focus on the studies that describe how the surface, chemical and physical properties of nanoparticle could affect the thermal properties of PCM with the help of available explanations in the literature
Properties of high-density matter in the electroweak symmetric phase
International Nuclear Information System (INIS)
Chandra, D.; Goyal, A.
1992-01-01
We examine the bulk properties of matter at high densities and finite temperatures in the phase where electroweak symmetry is exact and fermions are massless, by taking the strong interactions into account perturbatively to lowest order in the quark-gluon chromodynamic coupling constant α c . We also discuss the possibility of a phase transition of strange quark matter into this high-density matter in the electroweak symmetric phase at densities likely to be present in the core of dense neutron stars or collapsing stars. Finally, we study the properties of finite-size chunks of this matter by taking surface effects into account and give an estimate of the surface tension
Nitrous oxide: Saturation properties and the phase diagram
International Nuclear Information System (INIS)
Ferreira, A.G.M.; Lobo, L.Q.
2009-01-01
The experimental values of the coordinates of the triple point and of the critical point of nitrous oxide registered in the literature were assessed and those judged as most reliable have been selected. Empirical equations have been found for the vapour pressure, sublimation and fusion curves. The virial coefficients and saturation properties as functions of temperature along the equilibrium curves are described by reduced equations. They were used in arriving at the molar enthalpies at the triple point and the normal boiling temperature. Equations for the sublimation and fusion curves resulting from the exactly integrated Clapeyron equation compare favourably with the results from the empirical treatment and the experimental data.
Surface current equilibria from a geometric point of view
International Nuclear Information System (INIS)
Kaiser, R.; Salat, A.
1993-04-01
This paper addresses the inverse problem of the existence of surface current MHD equilibria in toroidal geometry with vanishing magnetic field inside. Inverse means that the plasma-vacuum interface rather than the external wall or conductors are given and the latter remain to be determined. This makes a reformulation of the problem possible in geometric terms: What toroidal surfaces with analytic parameterization allow a simple analytic covering by geodesics? If such a covering by geodesics (field lines) exists, their orthogonal trajectories (current lines) also form a simple covering and are described by a function satisfying a nonlinear partial differential equation of the Hamilton-Jacobi type whose coefficients are combinations of the metric elements of the surface. All known equilibria - equilibria with zero and infinite rotational transform and the symmetric ones in the case of finite rotational transform - turn out to be solutions of separable cases of that equation and allow a unified description if the toroidal surface is parametrized in the moving trihedral associated with a closed curve. Analogously to volume current equilibria, the only continuous symmetries compatible with separability are plane, helical and axial symmetry. In the nonseparable case numerical evidence is presented for cases with chaotic behaviour of geodesics, thus restricting possible equilibria for these surfaces. For weak deviation from axisymmetry KAM-type behaviour is observed, i.e. destruction of geodesic coverings with a low rational rotational transform and preservation of those with irrational rotational transform. A previous attempt to establish three-dimensional surface current equilibria on the basis of the KAM theorem is rejected as incomplete, and a complete proof of the existence of equilibria in the weakly nonaxisymmetric case, based on the twist theorem for mappings, is given. Finally, for a certain class of strong deviations from axisymmetry an analytic criterion is
Computation of Stackelberg Equilibria of Finite Sequential Games
DEFF Research Database (Denmark)
Bosanski, Branislav; Branzei, Simina; Hansen, Kristoffer Arnsfelt
2015-01-01
The Stackelberg equilibrium is a solution concept that describes optimal strategies to commit to: Player~1 (the leader) first commits to a strategy that is publicly announced, then Player~2 (the follower) plays a best response to the leader's choice. We study Stackelberg equilibria in finite...... sequential (i.e., extensive-form) games and provide new exact algorithms, approximate algorithms, and hardness results for finding equilibria for several classes of such two-player games....
On the uniqueness of fully informative rational expectations equilibria
Peter DeMarzo; Costis Skiadas
1998-01-01
This paper analyzes two equivalent equilibrium notions under asymmetric information: risk neutral rational expectations equilibria (rn-REE), and common knowledge equilibria. We show that the set of fully informative rn-REE is a singleton, and we provide necessary and sufficient conditions for the existence of partially informative rn-REE. In a companion paper (DeMarzo and Skiadas (1996)) we show that equilibrium prices for the larger class of quasi-complete economies can be characterized as r...
Determination of 3D Equilibria from Flux Surface Knowledge Only
International Nuclear Information System (INIS)
Mynick, H.E.; Pomphrey, N.
2001-01-01
We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information
Hrubý Jan; Duška Michal
2014-01-01
We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated) and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics e...
Kaptay, George
2018-05-01
Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.
Reduction of Islands in Full-pressure Stellarator Equilibria
International Nuclear Information System (INIS)
Hudson, S.R.; Monticello, D.A.; Reiman, A.H.
2001-01-01
The control of magnetic islands is a crucial issue in designing Stellarators. Islands are associated with resonant radial magnetic fields at rational rotational-transform surfaces and can lead to chaos and poor plasma confinement. In this article, we show that variations in the resonant fields of a full-pressure stellarator equilibrium can be related to variations in the boundary via a coupling matrix, and inversion of this matrix determines a boundary modification for which the island content is significantly reduced. The numerical procedure is described and the results of island optimization are presented. Equilibria with islands are computed using the Princeton Iterative Equilibrium Solver, and resonant radial fields are calculated via construction of quadratic-flux-minimizing surfaces. A design candidate for the National Compact Stellarator Experiment [Phys. Plasmas 8, 2001], which has a large island, is used to illustrate the technique. Small variations in the boundary shape are used to reduce island size and to reverse the phase of a major island chain
Phase composition and magnetic properties in nanocrystalline permanent magnets based on misch-metal
Ma, Q.; Wang, J.; Zhang, Z. Y.; Zhang, X. F.; Liu, F.; Liu, Y. L.; Jv, X. M.; Li, Y. F.; Wang, G. F.
2017-09-01
The magnetic properties and phase composition of magnets based on misch-metal (MM) with nominal composition of MM13+xFe84-xB6.5 with x = 0.5, 1, 1.5, 2 and 2.5 using melt-spinning method were investigated. For x = 1.5, it could exhibit best magnetic properties (Hcj = 753.02 kA m-1, (BH)max = 70.77 kJ m-3). X-ray diffraction and energy dispersive spectroscopy show that the multi hard magnetic phase of RE2Fe14B (RE = La, Ce, Pr, Nd) existed in the magnets. The domain wall pinning effect and the exchange coupling interaction between grains are dependent on the abnormal RE-rich phase composition. Optimizing the phase constitution is necessary to improve magnetic properties in MM-Fe-B magnets for utilizing the rare earth resource in a balanced manner.
Energy Technology Data Exchange (ETDEWEB)
Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.
2010-12-15
Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.
Microstructures and mechanical properties of two-phase alloys based on NbCr{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Chen, K.C.; Kotula, P.G.; Cady, C.M.; Mauro, M.E.; Thoma, D.J.
1999-07-01
A two-phase, NbCrTi alloy (bcc + C15 Laves phase) has been developed using several alloy design methodologies. In efforts to understand processing-microstructure-property relationships, different processing routes were employed. The resulting microstructures and mechanical properties are discussed and compared. Plasma arc melted (PAM) samples served to establish baseline, as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.
The phase transition and elastic and optical properties of polymorphs of CuI
International Nuclear Information System (INIS)
Zhu Jiajie; Pandey, Ravindra; Gu Mu
2012-01-01
The high-pressure polymorphs of CuI have attracted much attention due to the somewhat contradictory identification of their structures by means of x-ray diffraction measurements and theoretical calculations. In this paper, we report the results of a theoretical investigation of polymorphs of CuI including zinc-blende, rhombohedral, tetragonal, rocksalt and orthorhombic phases. We find that CuI follows the high-pressure transition path from the zinc-blende phase to the orthorhombic phase via the tetragonal phase, and the rhombohedral phase shows mechanical instability under high pressure. The bulk moduli are almost isotropic but the shear moduli show large anisotropy in these polymorphs. A relatively strong hybridization of I p and Cu d states appears to determine the electronic properties of the CuI polymorphs. The zinc-blende and tetragonal CuI are direct gap semiconductors and their optical properties are similar, whereas the orthorhombic CuI is metallic.
Properties and Applications of the β Phase Poly(vinylidene fluoride
Directory of Open Access Journals (Sweden)
Liuxia Ruan
2018-02-01
Full Text Available Poly(vinylidene fluoride, PVDF, as one of important polymeric materials with extensively scientific interests and technological applications, shows five crystalline polymorphs with α, β, γ, δ and ε phases obtained by different processing methods. Among them, β phase PVDF presents outstanding electrical characteristics including piezo-, pyro-and ferroelectric properties. These electroactive properties are increasingly important in applications such as energy storage, spin valve devices, biomedicine, sensors and smart scaffolds. This article discusses the basic knowledge and character methods for PVDF fabrication and provides an overview of recent advances on the phase modification and recent applications of the β phase PVDF are reported. This study may provide an insight for the development and utilization for β phase PVDF nanofilms in future electronics.
International Nuclear Information System (INIS)
Rosencrance, S.
2003-01-01
The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing
Magnetic properties of anyonic systems in a normal phase
International Nuclear Information System (INIS)
Aronov, I.E.; Naftulin, S.A.
1992-08-01
We apply the concept of fractional statistics to the two-dimensional conductors. The effective Lagrangian of an external magnetic field in anyon medium at finite temperature and density is presented. The diamagnetic response to the external field is studied at temperatures above T c (i.e. in the normal phase) for various values of external parameters. Oscillations of both thermodynamic (the de Haas - van Alphen effect) and kinetic (the Shubnikov - de Haas effect) quantities are re-examined. Numerous peculiarities arise from the fact that anyon systems possess a non-zero ''statistical'' flux Φ (which is known to be a manifestation of the spontaneous parity breakdown). The cyclotron resonance is suggested as a direct test on possible parity violation (which is the key point of anyonics). The cyclotron mass dependences on external parameters reported in a series of experimental articles (H. Kublbeck and J.P. Kotthaus, Phys. Rev. Lett. 35, 1019 (1975); G. Abstreiter, J.P. Kotthaus, J.F. Koch and G. Dorda, Phys. Rev. B14, 2480 (1976)) may be attributed to an unusual behaviour or magnetic permeability in anyon medium. (author). 20 refs, 2 figs
International Nuclear Information System (INIS)
Chen, Lin; Wang, Ting; Zhao, Yan; Zhang, Xin-Rong
2014-01-01
Highlights: • Microencapsulated phase change slurry (MPCS) is reviewed and characterized for heat transfer and storage systems. • Basic formation, materials, properties are categorized and systematically analyzed. • Generalization and modelization of complex MPCS properties are made. • MPCS is identified to be one promising substitute in future energy systems. • Future research topics and applications are also specified. - Abstract: Microencapsulated phase change slurry (MPCS) is a new kind of multi-phase fluid that are proposed and utilized in heat transfer and heat storage systems. Different from traditional organic (paraffin or non-parafin) or inorganic phase change slurries, MPCS is able to maintain both high latent heat capacity and heat transfer rate under controlled volume changes and safe operation conditions. Consequently, in recent decade, MPCS has been widely proposed and tested in textile, building, cooling and heating, solar and thermal storage systems, etc. Based on those recent findings and application developments, characterizations of thermal and hydrodynamic properties for MPCS are made in this study. The basic objective of this paper is to summarize the features of MPCS properties and the establishment of models for MPCS properties and morphologies. The review and analysis are based on recent representative experimental studies, which are categorized into: properties, heat transfer characteristics, stability and applications. Due to the various materials and methods and carry fluids properties, no single model can cover the properties for all MPCS. In this study, each property is reviewed with its specific model and application regions. Basic trends are compared with other kinds of phase change materials. Finally, by investigating those results the future trends of MPCS are presented
Two-dimensional magnetohydrodynamic equilibria with flow and studies of equilibria fluctuations
International Nuclear Information System (INIS)
Agim, Y.Z.
1989-08-01
A set of reduced ideal MHD equations is derived to investigate equilibria of plasmas with mass flow in general two-dimensional geometry. These equations provide a means of investigating the effects of flow on self-consistent equilibria in a number of new two-dimensional configurations such as helically symmetric configurations with helical axis, which are relevant to stellarators, as well as axisymmetric configurations. It is found that as in the axisymmetric case, general two-dimensional flow equilibria are governed by a second-order quasi-linear partial differential equation for a magnetic flux function, which is coupled to a Bernoulli-type equation for the density. The equation for the magnetic flux function becomes hyperbolic at certain critical flow speeds which follow from its characteristic equation. When the equation is hyperbolic, shock phenomena may exist. As a particular example, unidirectional flow along the lines of symmetry is considered. In this case, the equation mentioned above is always elliptic. An exact solution for the case of helically symmetric unidirectional flow is found and studied to determine flow effects on the magnetic topology. In second part of this thesis, magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10
Thermodynamic Equilibria and Extrema Analysis of Attainability Regions and Partial Equilibria
Gorban, Alexander N; Kaganovich, Boris M; Keiko, Alexandre V; Shamansky, Vitaly A; Shirkalin, Igor A
2006-01-01
This book discusses mathematical models that are based on the concepts of classical equilibrium thermodynamics. They are intended for the analysis of possible results of diverse natural and production processes. Unlike the traditional models, these allow one to view the achievable set of partial equilibria with regards to constraints on kinetics, energy and mass exchange and to determine states of the studied systems of interest for the researcher. Application of the suggested models in chemical technology, energy and ecology is illustrated in the examples.
A New Method to Improve the Electrical Properties of KNN-based Ceramics: Tailoring Phase Fraction
Lv, Xiang; Wu, Jiagang; Zhu, Jianguo; Xiao, Dingquan; Zhang, Xixiang
2017-01-01
Although both the phase type and fraction of multi-phase coexistence can affect the electrical properties of (K,Na)NbO3 (KNN)-based ceramics, effects of phase fraction on their electrical properties were few concerned. In this work, through changing the calcination temperature of CaZrO3 powders, we successfully developed the 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.01CaZrO3-0.03Bi0.5Na0.5HfO3 ceramics containing a wide rhombohedral-tetragonal (R-T) phase coexistence with the variations of T (or R) phase fractions. It was found that higher T phase fraction can warrant a larger piezoelectric constant (d33) and d33 also showed a linear variation with respect to tetragonality ratio (c/a). More importantly, a number of domain patterns were observed due to high T phase fraction and large c/a ratio, greatly benefiting the piezoelectricity. In addition, the improved ferroelectric fatigue behavior and thermal stability were also shown in the ceramics containing high T phase fraction. Therefore, this work can bring a new viewpoint into the physical mechanism of KNN-based ceramics behind R-T phase coexistence.
A New Method to Improve the Electrical Properties of KNN-based Ceramics: Tailoring Phase Fraction
Lv, Xiang
2017-08-18
Although both the phase type and fraction of multi-phase coexistence can affect the electrical properties of (K,Na)NbO3 (KNN)-based ceramics, effects of phase fraction on their electrical properties were few concerned. In this work, through changing the calcination temperature of CaZrO3 powders, we successfully developed the 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.01CaZrO3-0.03Bi0.5Na0.5HfO3 ceramics containing a wide rhombohedral-tetragonal (R-T) phase coexistence with the variations of T (or R) phase fractions. It was found that higher T phase fraction can warrant a larger piezoelectric constant (d33) and d33 also showed a linear variation with respect to tetragonality ratio (c/a). More importantly, a number of domain patterns were observed due to high T phase fraction and large c/a ratio, greatly benefiting the piezoelectricity. In addition, the improved ferroelectric fatigue behavior and thermal stability were also shown in the ceramics containing high T phase fraction. Therefore, this work can bring a new viewpoint into the physical mechanism of KNN-based ceramics behind R-T phase coexistence.
Phase controlled synthesis and cathodoluminescence properties of ZnS nanobelts synthesized by PVD
Jin, Changqing; Zhu, Kexin; Peterson, George; Zhang, Zhihong; Jian, Zengyun; Wei, Yongxing; Zheng, Deshan
2018-01-01
Zinc sulfide (ZnS) nanobelts were synthesized via physical vapor deposition to explore the electronic properties of optoelectronic nano-devices. It was determined that the mass ratio of wurtzite (WZ) phase to zincblende (ZB) phase and the preferential orientation (100) are related to the carrier-gas flow rate. The high concentration of planar defects within the phase boundary enhances phase transition. Cathodoluminescence measurements show a red shift of the 337 nm band-gap emission due to stacking and twin faults. We find a direct correlation between the magnitude of the red shift and the mass ratio of ZB phase. With an increase in the ZB phase, there is an increase in the concentration of stacking and twin faults introduced by the phase transformation, as indicated by an increasing red shift in the data. The absorption peaks at 666 and 719 nm were found by UV-vis absorption spectrum, which is attributed to surface defects. This work would help to better understand the important roles of planar defects in the phase transition and also provide us with a feasible route to control phase ratio and cathodoluminescence properties of ZnS nanobelts and other II-VI semiconductor nanostructures.
Modeling of phase equilibria with CPA using the homomorph approach
DEFF Research Database (Denmark)
Breil, Martin Peter; Tsivintzelis, Ioannis; Kontogeorgis, Georgios
2011-01-01
For association models, like CPA and SAFT, a classical approach is often used for estimating pure-compound and mixture parameters. According to this approach, the pure-compound parameters are estimated from vapor pressure and liquid density data. Then, the binary interaction parameters, kij, are ...
A Metamodel for Crustal Magmatism: Phase Equilibria of Giant Ignimbrites
Fowler, Sarah J.; Spera, Frank J.
2017-01-01
Diverse explanations exist for the large-volume catastrophic eruptions that formed the Bishop Tuff of Long Valley in eastern California, the Bandelier Tuff in New Mexico, and the tuffs of Yellowstone, Montana, USA. These eruptions are among the largest on Earth within the last 2 Myr. A common factor in recently proposed petrogenetic scenarios for each system is multistage processing, in which a crystal mush forms by crystal fractionation and is then remobilized to liberate high-silica liquids...
Phase equilibria analysis in chromium-nickel steel
International Nuclear Information System (INIS)
Gurevich, Yu.G.; Frage, N.R.; Dudorova, T.A.
1982-01-01
Comparison of calculation results of nitrogen solubility in liquid multicomponent iron alloys containing essential concentrations of alloying transition metals is conducted. Nitrogen solubility has been calculated by the interaction parameters of the first order, by the interaction parameters of the first and second orders by the Schurmann-Kunze method; by the formula [% N]=[% N]sub(Fe)(Asub(Fe)/Asub(m)(1-1/6 μsub(j=3)sup(m)epsilonsub(N)sup(j)xsub(j))sup(6), where Asub(Fe) - mass of iron mol; Asub(m) - mass of alloy mol; xsub(j) - mol ratio of j-element; epsilonsub(N)sup(j) - Wagner parameter of interaction for nitrogen in iron base alloys. The calculation data have been compared with the experimental values of nitrogen solubility in iron alloys at 1600 deg C. Advantages of calculation by the formula in respect to other calculation methods of nitrogen solubility in iron base alloys are clarified. Approximately pointed out is the region of compositions for which accountancy of interaction parameters of the second and third orders is necessary
Phase equilibria in alloys of nickel with molybdenum and carbon
International Nuclear Information System (INIS)
Barash, O.M.; Gorskaya, R.V.; Legkaya, T.N.; Oshkaderov, S.P.
1990-01-01
Experimental methods in combination with thermodynamic calculation have been used to construct a portion of fusibility curve of the ternary Ni-Mo-C system, to determine concentration dependences of the temperature range and the temperature of the termination of eutectic transformation zh↔γ+Mo 2 C. Coordinates of the temperature peak of this eutectic transformation are determined
The properties of gas-phase multiply charged ions
International Nuclear Information System (INIS)
Newson, K.A.
1999-01-01
This thesis presents the results of a series of experiments investigating the reactivity of gas-phase molecular dications with various neutral collision partners, at collision energies between 3 and 13 eV in the laboratory frame, using a crossed-beam apparatus. The experiment involves the measurement of product ion intensities, which are determined by means of time-of-flight mass spectrometry. The experimental apparatus and methodology, together with the areas of theory important to ion chemistry, are described in the thesis. The product ions of greatest interest are those ions formed by bond-forming (chemical) reactivity. The relative intensities of such product ions, and those ions formed as a result of electron-transfer reactions, are, when recorded as a function of the collision energy, a powerful probe of the reaction mechanism. Additionally, where appropriate, the reactions are examined for isotope effects by using the isotopic analogue of the neutral collision partner. The results of the experiments indicate that no intermolecular isotope effects are present in the reactions of CF 2 2+ and CF 3 2+ with H 2 and D 2 neutral targets. In addition, the observed collision energy dependence is symptomatic of the absence of a barrier to reaction. These observations suggest that the reactions proceed via an impulsive direct reaction mechanism. Such a conclusion casts doubt on the applicability of the Landau-Zener model of H - /D - transfer reactivity. Other results presented in this thesis include the first reported observation of a bond-forming reaction between a molecular dication (CF2 2+ ) and a polyatomic neutral species (NH 3 ). Finally, the branching ratio of the products of bond-forming reactions between CF 2 2+ with HD indicates the operation of a strong intramolecular isotope effect, favouring the formation of the deuterated product. This observation points to a reaction mechanism in which the bond-formation is preceded by electron-transfer. (author)
Effects of Phytoplankton Growth Phase on the Formation and Properties of Marine Snow
Montgomery, Q. W.; Proctor, K. W.; Prairie, J. C.
2016-02-01
Marine snow aggregates often dominate carbon export from the upper mixed layer to the deep ocean. Thus, understanding the formation and the properties of these aggregates is essential to the study of the biological pump. Aggregate formation is determined by both the encounter rate and the stickiness of the particles that they are composed of. Stickiness of phytoplankton has been linked to production of transparent exopolymer particles (TEP), which has been previously shown to vary in concentration throughout different parts of the phytoplankton growth cycle. The objective of this study is to determine the effects of the growth phase of the diatom Thalassiosira weissflogii to both TEP production and the properties of the resulting aggregates produced. Cultures of T. weissflogii were stopped at separate phases of the phytoplankton growth curve and incubated in rotating cylindrical tanks to form aggregates. Aggregate properties such as size, density, and porosity were measured at the end of each period of roller incubation. Preliminary results describe little variation in the size of the aggregates formed from different parts of the growth phase, but show a significant effect of growth phase on aggregate density. Density is an important factor in the settling of marine aggregates. Therefore, variations in aggregate density during different growth phases may have large implications for the efficiency of the biological pump during different stages of a phytoplankton bloom. Further examination will be performed on the potential effects of TEP abundance on the properties of the aggregates formed at separate growth phases and the resulting implications for carbon flux.
Properties of hadronic matter near the phase transition
Energy Technology Data Exchange (ETDEWEB)
Noronha-Hostler, Jacquelyn
2010-12-08
According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M{approx}2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, {lambda}, or {omega}) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, {eta}/s, of hadronic matter near T{sub c} that is close to 1/(4/{pi}). We show how the measured particle ratios can be used to provide non-trivial information about T{sub c} of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states
Properties of hadronic matter near the phase transition
International Nuclear Information System (INIS)
Noronha-Hostler, Jacquelyn
2010-01-01
According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M∼2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, Λ, or Ω) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, η/s, of hadronic matter near T c that is close to 1/(4/π). We show how the measured particle ratios can be used to provide non-trivial information about T c of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, T H , and leads to a
Phase I remedial action of properties associated with the former Middlesex Sampling Plant Site
International Nuclear Information System (INIS)
1982-04-01
The Phase I Remedial Action Work on properties associated with the Middlesex Sampling Plant Site in Middlesex, New Jersey was completed during 1980. In addition to the two properties included in the original scope of work, three other properties were decontaminated. In the playground across the street from the Rectory, contaminated soil was discovered and subsequently removed. Later, at the request of the DOE, the Kays and Rosamilia properties were decontaminated. Decontamination of the properties included in Phase I has, in the judgment of NLO, been successfully achieved, as evidenced by the data presented in this and in the referenced Eberline Instrument Corporation reports. Final certification of the sites for unrestricted use will be by ASEP/OOS based upon all available data, of which this report is a part. Work completed at Middlesex, together with the lessons learned during the execution of the entire project, is indicative that future decontamination assignments can be accomplished with mutual benefits for the DOE, as well as the local citizens. Restoration of the Rectory and the William Street property exemplifies the excellence of work performed by the Remedial Action Subcontractors and is further evidence of the success of the Phase I work. A summary of the Phase I costs are tabulated
The CHEASE code for toroidal MHD equilibria
Energy Technology Data Exchange (ETDEWEB)
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
Unifying dynamical and structural stability of equilibria
Arnoldi, Jean-François; Haegeman, Bart
2016-09-01
We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.
The CHEASE code for toroidal MHD equilibria
International Nuclear Information System (INIS)
Luetjens, H.
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs
Axisymmetric plasma equilibria in a Kerr metric
Elsässer, Klaus
2001-10-01
Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.
Axisymmetric Plasma Equilibria in General Relativity
Elsässer, Klaus
Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.
Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems
International Nuclear Information System (INIS)
Gupta, A.R.
1979-01-01
Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables
Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.
1992-01-01
The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.
Energy Technology Data Exchange (ETDEWEB)
Matsunaga, Toshiyuki [Materials Science and Analysis Technology Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Yamada, Noboru [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Kojima, Rie [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Shamoto, Shinichi [Neutron Science Research Centre, Japan Atomic Energy Research Institute, Ibaraki (Japan); Sato, Masugu; Tanida, Hajime; Uruga, Tomoya; Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Hyogo (Japan); Takata, Masaki [SPring-8/RIKEN, Hyogo, Japan, Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, Chiba (Japan); Zalden, Peter; Bruns, Gunnar; Wuttig, Matthias [I. Physikalisches Institut und JARA-FIT, RWTH Aachen Univ. (Germany); Sergueev, Ilya [European Synchrotron Radiation Facility, Grenoble (France); Wille, Hans Christian [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Hermann, Raphael Pierre [Juelich Centre for Neutron Science JCNS and Peter Gruenberg, Institut PGI, JARA-FIT, Forschungszentrum Juelich GmbH (Germany); Faculte des Sciences, Universite de Liege (Belgium)
2011-06-21
Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase-change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Chen, L.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn [Central South University, State Key Laboratory of Powder Metallurgy (China)
2017-03-15
Molecular dynamic simulation is used to systematically find out the effects of the size and shape of nanoparticles on phase transition and mechanical properties of W nanomaterials. It is revealed that the body-centered cubic (BCC) to face-centered cubic (FCC) phase transition could only happen in cubic nanoparticles of W, instead of the shapes of sphere, octahedron, and rhombic dodecahedron, and that the critical number to trigger the phase transition is 5374 atoms. Simulation also shows that the FCC nanocrystalline W should be prevented due to its much lower tensile strength than its BCC counterpart and that the octahedral and rhombic dodecahedral nanoparticles of W, rather than the cubic nanoparticles, should be preferred in terms of phase transition and mechanical properties. The derived results are discussed extensively through comparing with available observations in the literature to provide a deep understanding of W nanomaterials.
Phase diagram and transport properties for hydrogen-helium fluid planets
International Nuclear Information System (INIS)
Stevenson, D.J.; Salpeter, E.E.
1977-01-01
Hydrogen and helium are the major constituents of Jupiter and Saturn, and phase transitions can have important effects on the planetary structure. In this paper, the relevant phase diagrams and microscopic transport properties are analyzed in detail. The following paper (Paper II) applies these results to the evolution and present dynamic structure of the Jovian planets.Pure hydrogen is first discussed, especially the nature of the molecular-metallic transition and the melting curves for the two phases. It is concluded that at the temperatures and pressures of interest (Tapprox. =10 4 K, Papprox. =1--10 Mbar), both phases are fluid, but the transition between them might nevertheless be first-order. The insulator-metal transition in helium occurs at a much higher pressure (approx.70 Mbars) and is not of interest.The phase diagrams for both molecular and metallic hydrogen-helium mixtures are discussed. In the metallic mixture, calculations indicate a miscibility gap for T9 or approx. =10 4 K. Immiscibility in the molecular mixture is more difficult to predict but almost certainly occurs at much lower temperatures. A fluid-state model is constructed which predicts the likely topology of the three-dimensional phase diagram. The greater solubility of helium in the molecular phase leads to the prediction that the He/H mass ratio is typically twice as large in the molecular phase as in the coexisting metallic phase. Under these circumstances a ''density inversion'' is possible in which the molecular phase becomes more dense than the metallic phase.The partitioning of minor constituents is also considered: The deuterium/hydrogen mass ratio is essentially the same for all coexisting hydrogen-helium phases, at least for T> or approx. =5000 K. The partitioning of H 2 O, CH 4 , and NH 3 probably favors the molecular (or helium-rich) phase. Substances with high conduction electron density (e.g., Al) may partition into the metallic phase
MOMCON: A spectral code for obtaining three-dimensional magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Hirshman, S.P.; Lee, D.K.
1986-01-01
A new code, MOMCON (spectral moments code with constraints), is described that computes three-dimensional ideal magnetohydrodynamic (MHD) equilibria in a fixed toroidal domain using a Fourier expansion for the inverse coordinates (R, Z) representing nested magnetic surfaces. A set of nonlinear coupled ordinary differential equations for the spectral coefficients of (R, Z) is solved using an accelerated steepest descent method. A stream function, lambda, is introduced to improve the mode convergence properties of the Fourier series for R and Z. The convergence rate of the R-Z spectra is optimized on each flux surface by solving nonlinear constraint equations relating the m>=2 spectral coefficients of R and Z. (orig.)
The synthesis and properties of the phases obtained by solid-solid reactions
Directory of Open Access Journals (Sweden)
Blonska-Tabero A.
2008-01-01
Full Text Available The presented work encompasses the subject of the studies and the results obtained over the last years by the research workers of the Department of Inorganic Chemistry. They include mainly the studies on the reactivity of metal oxides, searching for new phases in binary and ternary systems of metal oxides as well as describing phase relations establishing in such systems. They also encompass works on the extensive characteristics of physico-chemical properties of the newly obtained compounds.
Data supporting the prediction of the properties of eutectic organic phase change materials
Directory of Open Access Journals (Sweden)
Samer Kahwaji
2018-04-01
Full Text Available The data presented in this article include the molar masses, melting temperatures, latent heats of fusion and temperature-dependent heat capacities of fifteen fatty acid phase change materials (PCMs. The data are used in conjunction with the thermodynamic models discussed in Kahwaji and White (2018 [1] to develop a computational tool that calculates the eutectic compositions and thermal properties of eutectic mixtures of PCMs. The computational tool is part of this article and consists of a Microsoft Excel® file available in Mendeley Data repository [2]. A description of the computational tool along with the properties of nearly 100 binary mixtures of fatty acid PCMs calculated using this tool are also included in the present article. The Excel® file is designed such that it can be easily modified or expanded by users to calculate the properties of eutectic mixtures of other classes of PCMs. Keywords: Phase change materials, PCM, Eutectic, Thermal properties, Thermal energy storage
The effect warming time of mechanical properties and structural phase aluminum alloy nickel
International Nuclear Information System (INIS)
Husna Al Hasa, M.; Anwar Muchsin
2011-01-01
Ferrous aluminum alloys as fuel cladding will experience the process of heat treatment above the recrystallization temperature. Temperature and time of heat treatment will affect the nature of the metal. Heating time allows will affect change in mechanical properties, thermal and structure of the metal phase. This study aims to determine the effect of time of heat treatment on mechanical properties and phase metal alloys. Testing the mechanical properties of materials, especially violence done by the method of Vickers. Observation of microstructural changes made by metallographic-optical and phase structure were analyzed Based on the x-ray diffraction patterns Elemental analysis phase alloy compounds made by EDS-SEM. Test results show the nature of violence AlFeNiMg alloy by heating at 500°C with a warm-up time 1 hour, 2 hours and 3 hours respectively decreased range 94.4 HV, 87.6 HV and 85.1 HV. The nature of violence AlFeNi alloy showed a decrease in line with the longer heating time. Metallographic-optical observations show the microstructural changes with increasing heating time. Microstructure shows the longer the heating time trend equi axial shaped grain structure of growing and the results showed a trend analyst diffraction pattern formation and phase θ α phase (FeAl3) in the alloy. (author)
Comments on Thermal Physical Properties Testing Methods of Phase Change Materials
Directory of Open Access Journals (Sweden)
Jingchao Xie
2013-01-01
Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.
Huang, J.; Huang, F.; Hao, J.; Sverjensky, D. A.
2017-12-01
Diamonds are often associated with inclusions of garnet that are characteristically Cr-rich and Ca-poor, suggesting metasomatic reactions involving fluids [1]. To investigate these reactions, we developed a thermodynamic characterization of Cr-bearing minerals and integrated it with our database for the thermodynamic properties of aqueous Cr-species [2]. We retrieved thermodynamic properties of picrochromite (MgCr2O4), and knorringite (Mg3Cr2Si3O12) consistent with minerals in the Berman (1988) using calorimetric data and experimental phase equilibria involving the reactions: MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 [2] and MgCr2O4 + 4MgSiO3 = Mg3Cr2Si3O12 + Mg2SiO4 [3], respectively.At high temperatures and pressures, neutral pH and FMQ, the predicted solubilities of eskolaite and knorringite equilibrium with Cr2+ in a pure water system are very low. However, we found that complexes of Cr2+ and Cl- could increase the solubilities of chromium minerals significantly. At 500°C and 0.2 - 1.0 GPa, we retrieved the CrCl(OH)0 neutral complex from experiments on the solubility of Cr2O3 in HCl solutions [4]. At 1,000°C and 4.0 GPa, we retrieved the properties of a CrCl3- complex from experiments on the solubility of Cr2O3 in KCl solutions [5]. The predicted solubility of a garnet containing 23 mole% of knorringite in equilibrium with CrCl3- in a peridotitic diamond-forming fluid is 22 millimolal (1,144 ppm). This result suggests that a redox reaction relating to diamond formation might involveMg3Al2Si3O12 + 0.5CO2(aq) + 2 CrCl3- + 2H+ = Mg3Cr2Si3O12 + 0.5C-Diamond + 2Al3+ + 6Cl-. In this way, high temperature and pressure fluids containing Cr(II)-complexes might promote the mobility of chromium and be involved in metasomatic reactions and diamond formation.[1]Boyd et al. (1993)[2] Hao et al. (submitted to Geochem. Persp. Letters)[3] Berman (1988)[4] Klemme et al. (2000)[5] Klemme et al. (2004)[6] Watenphul et al. (2014)[7] Klein-BenDavid et al. (2011)
Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties
International Nuclear Information System (INIS)
Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.
1993-01-01
Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior
Final report: Properties of mixtures near a phase transition. February 1, 1992 - January 31, 1996
International Nuclear Information System (INIS)
Hanley, H.J.M.; Friend, D.G.
1999-01-01
This project emphasized the study of systems near phase transitions, and included scattering experiments, computer simulation, and theory of phase transitions. The scattering involved the use of neutrons as well as optical techniques, involved both equilibrium and sheared samples, and included conventional fluids as well as gels, micelles, colloids, and dispersions. Computer simulations and theoretical studies were completed to complement and interpret the microscopic information learned from scattering, and many successes were achieved in furthering our understanding of complex mixtures near the critical locus. The research has led to a number of technical publications and a refinement of our knowledge of phase transition phenomena which has led to improvements in available property databases
International Nuclear Information System (INIS)
Ostroushko, A.A.; Mikhalev, D.S.
2003-01-01
Phase relations were studied in the ammonium paratungstate - polyvinyl alcohol - water system, isothermal cross section of the phase diagram was obtained at room temperature. Visual and microscopic observations, as well as instrumental methods were used for the detection of lines of the homogeneous polymer-salt solutions existence. Concentration ratios of density of solutions, their dynamic viscosity and refractive index were studied. Area of polymer based solutions, area of salt crystallization, heterogeneous fields with two or three phases were separated. As compared with the ammonium heptamolybdate - polyvinyl alcohol - water system the increase of solubility of components under day lighting and ultraviolet radiation escaped detection. The studied system is provided properties indicative of the formation of mesomorphic phase, photochemical reduction of ions of d-metals for the occurrence of this phase is not requirement [ru
Study of the low pressure (Black Phase) SmS properties
International Nuclear Information System (INIS)
Bordier, G.
1987-03-01
SmS has been studied for its transition from the low pressure black phase to the high pressure intermediate valence phase; but the black phase properties seem to be very rich. The variations which pressure of the low-temperature electronic transport properties show the existence of a semi-metallic phase within the black phase domain in a pressure-temperature diagram, for a pressure above 4 kbar, which corresponds to the so-called B'phase. We study the insulating low pressure phase with a model involving acceptor like states. Using electronic paramagnetic resonance experiments we observe a square symmetry trivalent samarium ion neighbour of a sulfure defect, and magnetically coupled with the lattice. This defect exists in two nearly symmetric configurations and the resonance line broadens with temperature in an actived way. It gives rise to metastable effects yielding conductivity relaxations, analysed with stretched exponential laws, because the defect traps magnetically conduction electrons forming a bound magnetic polaron. The relaxation time at zero field is temperature actived. We develop a phenomenological model that gives the good orders of magnitude for the trapping barrier and for the critical field corresponding to the maximum of the low temperature magnetoresistance [fr
Energy Technology Data Exchange (ETDEWEB)
Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education
2016-11-01
Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.
Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data
DEFF Research Database (Denmark)
Marcussen, Lis
2000-01-01
A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...
International Nuclear Information System (INIS)
Ackermann, R.J.; Rauh, E.G.
1977-01-01
The thermodynamic properties of the lanthanide and actinide oxides are examined, compared, and associated with a variety of high temperature chemical behavior. Trends are cited resulting from a number of thermodynamic and spectroscopic correlations involving solid phases, species in aqueous solution, and molecules and ions in the vapor phase. Inadequacies in the data and alternative approaches are discussed. The characterization of nonstoichiometric phases stable only at high temperatures is related to a network of heterogeneous and homogeneous equilibria. A broad perspective of similarity and dissimilarity between the lanthanides and actinides emerges and forms the basis of the projected needs for further study
Han, Bumsoo; Bischof, John C
2004-04-01
Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present
International Nuclear Information System (INIS)
Kuksa, L.V.; Arzamaskova, L.M.
2000-01-01
The results of studies on elastic and plastic properties of the single- and two-phase polycrystalline materials in dependence on the choice of the consideration scale level are presented. The experimental and theoretical methods, making it possible to study the role of the scale factor by consideration on the micro- and macrolevel and the peculiarities of forming the physicomechanical properties of the material as a whole, are developed. The dependences, characterizing the change of the physicomechanical properties by different scales of consideration, are obtained [ru
Phase space properties of local observables and structure of scaling limits
International Nuclear Information System (INIS)
Buchholz, D.
1995-05-01
For any given algebra of local observables in relativistic quantum field theory there exists an associated scaling algebra which permits one to introduce renormalization group transformations and to construct the scaling (short distance) limit of the theory. On the basis of this result it is discussed how the phase space properties of a theory determine the structure of its scaling limit. Bounds on the number of local degrees of freedom appearing in the scaling limit are given which allow one to distinguish between theories with classical and quantum scaling limits. The results can also be used to establish physically significant algebraic properties of the scaling limit theories, such as the split property. (orig.)
Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound
Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.
2018-05-01
The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.
Ballooning mode second stability region for sequences of tokamak equilibria
International Nuclear Information System (INIS)
Sugiyama, L.; Mark, J.W.K.
A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln γ and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.
2017-01-01
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Numerical computation of FCT equilibria by inverse equilibrium method
International Nuclear Information System (INIS)
Tokuda, Shinji; Tsunematsu, Toshihide; Takeda, Tatsuoki
1986-11-01
FCT (Flux Conserving Tokamak) equilibria were obtained numerically by the inverse equilibrium method. The high-beta tokamak ordering was used to get the explicit boundary conditions for FCT equilibria. The partial differential equation was reduced to the simultaneous quasi-linear ordinary differential equations by using the moment method. The regularity conditions for solutions at the singular point of the equations can be expressed correctly by this reduction and the problem to be solved becomes a tractable boundary value problem on the quasi-linear ordinary differential equations. This boundary value problem was solved by the method of quasi-linearization, one of the shooting methods. Test calculations show that this method provides high-beta tokamak equilibria with sufficiently high accuracy for MHD stability analysis. (author)
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.
2017-01-16
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Numerical calculation of axisymmetric non-neutral plasma equilibria
International Nuclear Information System (INIS)
Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.
1993-01-01
Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy