WorldWideScience

Sample records for ph3 yields nh3

  1. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.

    Science.gov (United States)

    Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S

    2010-05-01

    The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.

  2. DFT investigation of NH_3, PH_3, and AsH_3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Buasaeng, Prayut; Rakrai, Wandee; Wanno, Banchob; Tabtimsai, Chanukorn

    2017-01-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH_3, PH_3 and AsH_3 molecules were investigated using a DFT method. • Adsorptions of NH_3, PH_3 and AsH_3 molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH_3), phosphine (PH_3), and arsine (AsH_3) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH_3, PH_3, and AsH_3 adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH_3 > PH_3 > AsH_3. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  3. DFT investigation of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Buasaeng, Prayut; Rakrai, Wandee [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand); Wanno, Banchob [Center of Excellence for Innovation in Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 (Thailand); Tabtimsai, Chanukorn, E-mail: tabtimsai.c@gmail.com [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand)

    2017-04-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules were investigated using a DFT method. • Adsorptions of NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH{sub 3}), phosphine (PH{sub 3}), and arsine (AsH{sub 3}) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH{sub 3} > PH{sub 3} > AsH{sub 3}. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  4. Parallel Changes in Intracellular Water Volume and pH Induced by NH3/NH4+ Exposure in Single Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Víctor M. Blanco

    2013-12-01

    Full Text Available Background: Increased blood levels of ammonia (NH3 and ammonium (NH4+, i.e. hyperammonemia, leads to cellular brain edema in humans with acute liver failure. The pathophysiology of this edema is poorly understood. This is partly due to incomplete understanding of the osmotic effects of the pair NH3/NH4+ at the cellular and molecular levels. Cell exposure to solutions containing NH3/NH4+ elicits changes in intracellular pH (pHi, which can in turn affect cell water volume (CWV by activating transport mechanisms that produce net gain or loss of solutes and water. The occurrence of CWV changes caused by NH3/NH4+ has long been suspected, but the mechanisms, magnitude and kinetics of these changes remain unknown. Methods: Using fluorescence imaging microscopy we measured, in real time, parallel changes in pHi and CWV caused by brief exposure to NH3/NH4+ of single cells (N1E-115 neuroblastoma or NG-108 neuroblastoma X glioma loaded with the fluorescent indicator BCECF. Changes in CWV were measured by exciting BCECF at its intracellular isosbestic wavelength (∼438 nm, and pHi was measured ratiometrically. Results: Brief exposure to isosmotic solutions (i.e. having the same osmolality as that of control solutions containing NH4Cl (0.5- 30 mM resulted in a rapid, dose-dependent swelling, followed by isosmotic regulatory volume decrease (iRVD. NH4Cl solutions in which either extracellular [NH3] or [NH4+] was kept constant while the other was changed by varying the pH of the solution, demonstrated that [NH3]o rather than [NH4+]o is the main determinant of the NH4Cl-induced swelling. The iRVD response was sensitive to the anion channel blocker NPPB, and partly dependent on external Ca2+. Upon removal of NH4Cl, cells shrank and displayed isosmotic regulatory volume increase (iRVI. Regulatory volume responses could not be activated by comparable CWV changes produced by anisosmotic solutions, suggesting that membrane stretch or contraction by themselves are

  5. Aquaporin 4 as a NH3 Channel

    DEFF Research Database (Denmark)

    Assentoft, Mette; Kaptan, Shreyas; Schneider, Hans-Peter

    2016-01-01

    -brain-interface, participate in the exchange of ammonia, which is required to sustain the glutamate-glutamine cycle. Here we observe that AQP4-expressing Xenopus oocytes display a reflection coefficient NH4Cl at pH 8.0, at which pH an increased amount of the ammonia occurs in the form of NH3 Taken together with an NH4......Cl-mediated intracellular alkalization (or lesser acidification) of AQP4-expressing oocytes, these data suggest that NH3 is able to permeate the pore of AQP4. Exposure to NH4Cl increased the membrane currents to a similar extent in uninjected oocytes and in oocytes expressing AQP4, indicating...... that the ionic NH4 (+) did not permeate AQP4. Molecular dynamics simulations revealed partial pore permeation events of NH3 but not of NH4 (+) and a reduced energy barrier for NH3 permeation through AQP4 compared with that of a cholesterol-containing lipid bilayer, suggesting AQP4 as a favored transmembrane...

  6. Rumen pH and NH3-N concentration of sheep fed temperate ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the effect of sorghum grain supplementation on ruminal pH and NH. 3-N concentration of wethers consuming a fresh temperate pasture (Lotus corniculatus) in metabolism cages. Sixteen Corriedale x Milchschaf wethers were fed temperate pastures ad libitum and were ...

  7. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    Science.gov (United States)

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  8. Ultrasonic irradiation-promoted one-pot synthesis of CH3NH3PbBr3 quantum dots without using flammable CH3NH2 precursor

    Science.gov (United States)

    Jiang, Han; Wang, Chunlei; Lv, Changgui; Xu, Shuhong; Zhu, Li; Zhang, Ruohu; Cui, Yiping

    2017-02-01

    At present, the CH3NH3PbBr3 quantum dots (QDs) reported in the literature usually contain two synthesis steps: the initial preparation of CH3NH3Br via the reaction of flammable CH3NH2 and HBr, together with the subsequent formation of CH3NH3PbBr3 QDs. To avoid the use of dangerous CH3NH2, this work develops a novel one-pot method for synthesizing CH3NH3PbBr3 QDs using safe and commercially available reactants (CH3NH3Cl, KBr and PbCl2). It is found that ultrasonic treatment plays a key role during the synthesis of CH3NH3PbBr3 QDs. Without ultrasonic irradiation, it is not possible to synthesize CH3NH3PbBr3 QDs under heating or vigorous stirring. Aliquots of samples taken at different ultrasonic irradiation time intervals show a time-dependent redshift in the emission wavelength. This suggests the formation of CH3NH3PbCl3 QDs first, followed by the formation of CH3NH3PbBr3 QDs through ultrasonically promoted halide exchange. Moreover, mixed CH3NH3PbCl x Br3-x QDs with a tunable emission wavelength can also be prepared through this one-pot method by controlling the ultrasonic irradiation time. In comparison to the previous two-step method, the current one-pot method is simpler, less time-consuming and does not use flammable CH3NH2. The as-prepared CH3NH3PbBr3 QDs show a comparable photoluminescence (PL) quantum yield (QY) to that of the literature. What is more, the ultrasonic time-controlled emission wavelength of CH3NH3PbCl x Br3-x QDs also provides an alternative way of tuning QD emission to the traditional way of controlling the halide ratios.

  9. PROTEKSI MINYAK IKAN LEMURU, MINYAK KELAPA SAWIT, DAN BUNGKIL SAWIT TERHADAP pH DAN NH3DALAM RUMEN SAPI PERANAKAN ONGOLE

    Directory of Open Access Journals (Sweden)

    Catur Suci Purwati

    2016-03-01

    Full Text Available The aimed of this research is to know the influence of protection lemuru oil, palm oil, and palm oil cake to pH and NH3in the rumen of the Ongole. The material were used in this study werecomulated rumenfemale cows with average body weight of 289.33 ± 28.34 kg as many as 3 heads. Latin square experiment design was applied on 3 treatments. Fermented rice straw (FRS, basal concentrate (BC, and protected materials of Indian sardine oil (ISO, palm oil (PO, and palmkernel cake (PKC were used as a feed ingredient.  Treatments were: P1 = FRS 40% + BC 60% (BC 95% + PO 5%; P2 = FRS 40% + BC 60% (BC 95% + ISO 5% ; P3 = FRS 40% + BC 60% (BC 90% + PKC 10%. Parameters measured were pH and NH3. Latin square experiment design was applied on 3 treatments.Conclusions of this study are pH and NH3remain stable, meaning lemuru addition of fish oil, palm oil, and palm oil cake is protected not disturb the digestive process in the cow rumen fistulated onggole breedparticular. (Key word: Indian sardine oil, NH3, Palm kernel cake, Palm oil, pH, Protection

  10. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants.

    Science.gov (United States)

    Ariz, Idoia; Cruz, Cristina; Moran, Jose F; González-Moro, María B; García-Olaverri, Carmen; González-Murua, Carmen; Martins-Loução, Maria A; Aparicio-Tejo, Pedro M

    2011-05-16

    In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4+ (aq) which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that transports N in the molecular form and is associated with

  11. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants

    Science.gov (United States)

    2011-01-01

    Background In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4+ (aq) which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. Results Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that transports N in the

  12. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    Science.gov (United States)

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  13. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes

    DEFF Research Database (Denmark)

    Holm, Lars M.; Jahn, Thomas Paul; Møller, Anders Laurell Blom

    2005-01-01

    We have shown recently, in a yeast expression system, that some aquaporins are permeable to ammonia. In the present study, we expressed the mammalian aquaporins AQP8, AQQP9, AQP3, AQP1 and a plant aquaporin TIP2;1 in Xenopus oocytes to study the transport of ammonia (NH3) and ammonium (NH4+) under...... inwards currents carried by NH4+. This conductivity increased as a sigmoid function of external [NH3]: for AQP8 at a bath pH (pH(e)) of 6.5, the conductance was abolished, at pH(e) 7.4 it was half maximal and at pH(e) 7.8 it saturated. NY4+ influx was associated with oocyte swelling. In comparison, native...... oocytes as well as AQP1 and tip2;1-expressing oocytes showed small currents that were associated with small and even negative volume changes. We conclude that AQP8, AQP9, AQP3, and TIP2;1, apart from being water channels, also support significant fluxes of NH3. These aquaporins could support NH4...

  14. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants

    Directory of Open Access Journals (Sweden)

    Martins-Loução Maria A

    2011-05-01

    Full Text Available Abstract Background In plants, nitrate (NO3- nutrition gives rise to a natural N isotopic signature (δ15N, which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+ nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g and NH4+ (aq which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. Results Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that

  15. [Analysis of H2S/PH3/NH3/AsH3/Cl2 by Full-Spectral Flame Photometric Detector].

    Science.gov (United States)

    Ding, Zhi-jun; Wang, Pu-hong; Li, Zhi-jun; Du, Bin; Guo, Lei; Yu, Jian-hua

    2015-07-01

    Flame photometric analysis technology has been proven to be a rapid and sensitive method for sulfur and phosphorus detection. It has been widely used in environmental inspections, pesticide detection, industrial and agricultural production. By improving the design of the traditional flame photometric detector, using grating and CCD sensor array as a photoelectric conversion device, the types of compounds that can be detected were expanded. Instead of a single point of characteristic spectral lines, full spectral information has been used for qualitative and quantitative analysis of H2S, PH3, NH3, AsH3 and Cl2. Combined with chemometric method, flame photometric analysis technology is expected to become an alternative fast, real-time on-site detection technology to simultaneously detect multiple toxic and harmful gases.

  16. Process-based modelling of NH3 exchange with grazed grasslands

    Science.gov (United States)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Milford, Celia; Nemitz, Eiko; Twigg, Marsailidh M.; Horváth, László; Sutton, Mark A.

    2017-09-01

    In this study the GAG model, a process-based ammonia (NH3) emission model for urine patches, was extended and applied for the field scale. The new model (GAG_field) was tested over two modelling periods, for which micrometeorological NH3 flux data were available. Acknowledging uncertainties in the measurements, the model was able to simulate the main features of the observed fluxes. The temporal evolution of the simulated NH3 exchange flux was found to be dominated by NH3 emission from the urine patches, offset by simultaneous NH3 deposition to areas of the field not affected by urine. The simulations show how NH3 fluxes over a grazed field in a given day can be affected by urine patches deposited several days earlier, linked to the interaction of volatilization processes with soil pH dynamics. Sensitivity analysis showed that GAG_field was more sensitive to soil buffering capacity (β), field capacity (θfc) and permanent wilting point (θpwp) than the patch-scale model. The reason for these different sensitivities is dual. Firstly, the difference originates from the different scales. Secondly, the difference can be explained by the different initial soil pH and physical properties, which determine the maximum volume of urine that can be stored in the NH3 source layer. It was found that in the case of urine patches with a higher initial soil pH and higher initial soil water content, the sensitivity of NH3 exchange to β was stronger. Also, in the case of a higher initial soil water content, NH3 exchange was more sensitive to the changes in θfc and θpwp. The sensitivity analysis showed that the nitrogen content of urine (cN) is associated with high uncertainty in the simulated fluxes. However, model experiments based on cN values randomized from an estimated statistical distribution indicated that this uncertainty is considerably smaller in practice. Finally, GAG_field was tested with a constant soil pH of 7.5. The variation of NH3 fluxes simulated in this way

  17. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  18. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2014-03-26

    Hybrid AMX3 perovskites (A = Cs, CH3NH3; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH3NH3PbI3/MAPb(I(1-x)Cl(x))3 perovskites have dominated the field, while the similar CH3NH3SnI3 has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH3NH3PbI3 material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH3NH3SnI3, due to the valence band energy downshift (~0.7 eV) being only partly compensated by the conduction band downshift (~0.2 eV).

  19. Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis

    Science.gov (United States)

    Xu, Yanmin; Wu, Chaoling; Chen, Yungui; Huang, Zhifen; Luo, Linshan; Wu, Haiwen; Liu, Peipei

    2014-09-01

    In this work, NH3BH3 (AB) is used to induce hydrogen generation during NaBH4 (SB) hydrolysis in order to reduce the use of catalysts, simplify the preparation process, reduce the cost and improve desorption kinetics and hydrogen capacity as well. xNaBH4-yNH3BH3 composites are prepared by ball-milling in different proportions (from x:y = 1:1 to 8:1). The experimental results demonstrate that all composites can release more than 90% of hydrogen at 70 °C within 1 h, and their hydrogen yields can reach 9 wt% (taking reacted water into account). Among them, the composites in the proportion of 4:1 and 5:1, whose hydrogen yields reach no less than 10 wt%, show the best hydrogen generation properties. This is due to the impact of the following aspects: AB additive improves the dispersibility of SB particles, makes the composite more porous, hampers the generated metaborate from adhering to the surface of SB, and decreases the pH value of the composite during hydrolysis. The main solid byproduct of this hydrolysis system is NaBO2·2H2O. By hydrolytic kinetic simulation of the composites, the fitted activation energies of the complexes are between 37.2 and 45.6 kJ mol-1, which are comparable to the catalytic system with some precious metals and alloys.

  20. Pressure induced polymorphism in ammonium azide (NH{sub 4}N{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S.A., E-mail: s.medvedev@mpic.de [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Eremets, M.I. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Evers, J.; Klapoetke, T.M. [Energetic Materials Research, Ludwig-Maximilian University Munich (LMU), Butenandtstrasse 5-13(D), D-81377 Munich (Germany); Palasyuk, T. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Trojan, I.A. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany)

    2011-07-28

    Graphical abstract: Polymorph phase transition is observed in NH{sub 4}N{sub 3} at {approx}3 GPa by pressure dependent Raman studies. The strength of hydrogen bond appears to be modified at the phase transition as illustrated by dependence of N-H stretching frequency on pressure shown on figure. Highlights: {yields} Ammonium azide (NH{sub 4}N{sub 3}) studied at high pressures by Raman spectroscopy. {yields} Phase transition is observed at pressure {approx}3 GPa. {yields} Strength of hydrogen bond appears to be modified at the phase transition. {yields} NH{sub 4}N{sub 3} remain in molecular form up to pressures above 50 GPa. - Abstract: Pressure-dependent Raman spectroscopy studies reveal polymorph phase transition in simple molecular ionic crystal NH{sub 4}N{sub 3} at pressure {approx}3 GPa unobserved by recent abinitio evolutionary structure searches. Hydrogen bonding is spectroscopically evident in both low- and high-pressure phases. The strength of hydrogen bond appears to be modified at the phase transition: in the low-pressure phase NH{sub 4}N{sub 3} behaves as system with very strong hydrogen bonding whereas changes of spectra with pressure in the high-pressure phase are indicative of weak or medium-strength hydrogen bonds. The high pressure phase is most likely thermodynamically stable at least up to pressure {approx}55 GPa contradicting the abinitio studies predicting transformation of NH{sub 4}N{sub 3} to nonmolecular hydronitrogen solid at 36 GPa.

  1. Reduction of RuVI≡N to RuIII-NH3 by Cysteine in Aqueous Solution.

    Science.gov (United States)

    Wang, Qian; Man, Wai-Lun; Lam, William W Y; Yiu, Shek-Man; Tse, Man-Kit; Lau, Tai-Chu

    2018-05-21

    The reduction of metal nitride to ammonia is a key step in biological and chemical nitrogen fixation. We report herein the facile reduction of a ruthenium(VI) nitrido complex [(L)Ru VI (N)(OH 2 )] + (1, L = N, N'-bis(salicylidene)- o-cyclohexyldiamine dianion) to [(L)Ru III (NH 3 )(OH 2 )] + by l-cysteine (Cys), an ubiquitous biological reductant, in aqueous solution. At pH 1.0-5.3, the reaction has the following stoichiometry: [(L)Ru VI (N)(OH 2 )] + + 3HSCH 2 CH(NH 3 )CO 2 → [(L)Ru III (NH 3 )(OH 2 )] + + 1.5(SCH 2 CH(NH 3 )CO 2 ) 2 . Kinetic studies show that at pH 1 the reaction consists of two phases, while at pH 5 there are three distinct phases. For all phases the rate law is rate = k 2 [1][Cys]. Studies on the effects of acidity indicate that both HSCH 2 CH(NH 3 + )CO 2 - and - SCH 2 CH(NH 3 + )CO 2 - are kinetically active species. At pH 1, the reaction is proposed to go through [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a), [(L)Ru III (NH 2 SCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (3), and [(L)Ru IV (NH 2 )(OH 2 )] + (4) intermediates. On the other hand, at pH around 5, the proposed intermediates are [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 )(OH 2 )] + (2b) and [(L)Ru IV (NH 2 )(OH 2 )] + (4). The intermediate ruthenium(IV) sulfilamido species, [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a) and the final ruthenium(III) ammine species, [(L)Ru III (NH 3 )(MeOH)] + (5) (where H 2 O was replaced by MeOH) have been isolated and characterized by various spectroscopic methods.

  2. Formation of nitrogen complexes when [Ru(NH3)5H2O]2+ ion reaction with diazo-acetic ester and aromatic salts of diazonium

    International Nuclear Information System (INIS)

    Shur, V.B.; Tikhonova, I.A.; Vol'pin, M.E.

    1978-01-01

    A possibility of formation of nitrogen complexes during transition metal compound interaction with aliphatic and aromatic diazo compounds is studied. It is shown that at the interaction of [Ru(NH 3 ) 5 H 2 O] 2+ with diazo-acetic ester in water (pH7) at 20 deg, quick splitting of the CN-bond in the ester molecule takes place with the formation of [Ru(NH 3 ) 5 N 2 ] 2+ and [(NH 3 ) 5 RuN 2 Ru(NH 3 ) 5 ] 4+ (NRRN) nitrogen complexes. The sum yield of complexes comprises 86% taking into acount diazo-acetic ester. Aromatic salts of diazonium, n-O 3 SC 6 H 4 N 2 and p-quinone diazide react with the [Ru(NH 3 ) 5 H 2 O] 2+ excess forming NRRN (the yield equals 40-53%). The reaction mechanism is discussed

  3. Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.

    Science.gov (United States)

    Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John

    2017-08-01

    A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .

  4. Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein.

    Science.gov (United States)

    Abdulnour-Nakhoul, Solange; Le, Trang; Rabon, Edd; Hamm, L Lee; Nakhoul, Nazih L

    2016-12-01

    Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH 3 /NH 4 + transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH 3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH 4 + We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH 3 /NH 4 + and methyl amine (MA)/methyl ammonium (MA + )-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H 2 O. In H183 and W230 mutants, NH 4 + -induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH 3 /NH 4 + - and MA/MA + -induced decrease in pHs to the level observed in H 2 O-injected oocytes. Mutations of F128 did not significantly affect transport of NH 3 or NH 4 + These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.

  5. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao

    2017-07-17

    Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3 NH3 PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3 NH3 PbI3 , it is noted that the photostriction of CH3 NH3 PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3 NH3 PbBr3 for applications in next-generation optical micro-electromechanical devices.

  6. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China

    Directory of Open Access Journals (Sweden)

    Tianqi Liu

    2018-03-01

    Full Text Available Tillage practices and nitrogen (N sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE, and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer and tillage practices (no-tillage [NT] and conventional intensive tillage [CT] on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China.

  7. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China.

    Science.gov (United States)

    Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang

    2018-01-01

    Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH 3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH 3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH 3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH 3 volatilization from basal fertilizer by 10-14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH 3 emissions and improving grain yield and NUE in paddy fields of central China.

  8. The reaction of TcCl3(Me2PhP)3 with dithio ligands. Synthesis, characterization and X-ray crystal structures of [TcCl2(Me2PhP)2(Me2dtp)]and [Tc(Me2PhP)(Etxan)3](Me2PhP=dimethylphenylphosphine, Me2dtp-=O,O'-dimethyldithiophosphate, Etxan-=ethylxanthate)

    International Nuclear Information System (INIS)

    Lorenz, B.; Schmidt, K.; Hiller, W.; Abram, U.; Huebener, R.

    1993-01-01

    Trichlorotris (dimethylphenylphosphine)technetium(III); [TcCl 3 (Me 2 PhP) 3 ], reacts with dithio ligands to form chelate complexes of different compositions and coordinations geometries. The reaction with ethylxanthate (Etxan - ) yields the diamagnetic seven-coordinate [Tc(Me 2 PhP)(Etxan) 3 ], which crystallizes monoclinic in the space group P2 2 /c with Z = 4 (a = 18.44(5), b = 9.2(1), c = 15.36(6) A, β = 104.3(2) ). The final R value is 0.029. The metal has a pentagonal-bipyramidal environment. With ammonium dimethyldithiophosphate, (NH 4 )Me 2 dtp, [TcCl 3 (Me 2 PhP) 3 ] forms the paramagnetic [TcCl 2 (Me 2 PhP) 2 (Me 2 dtp) in which the technetium atom has a distorted octahedral coordination sphere. The compound crystallizes orthorhombic, space group Pbcn, with Z = 4 (a = 16.20(1), b = 10.445(1), c 14.878(1)). The final R value is 0.031. The chloro ligands are in trans arrangement. (orig.)

  9. Investigation on thermal evaporated CH3NH3PbI3 thin films

    Directory of Open Access Journals (Sweden)

    Youzhen Li

    2015-09-01

    Full Text Available CH3NH3I, PbI2 and CH3NH3PbI3 films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD. The XPS results indicate that the PbI2 and CH3NH3PbI3 films are more uniform and stable than the CH3NH3I film. The atomic ratio of the CH3NH3I, PbI2 and CH3NH3PbI3 films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH3NH3PbI3 is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH3NH3PbI3 film is crystalline. The valence band maximum (VBM and work function (WF of the CH3NH3PbI3 film are about 0.85eV and 4.86eV, respectively.

  10. Irradiated NH3 and ND3 - two new target materials for polarized targets

    International Nuclear Information System (INIS)

    Meyer, W.

    1982-11-01

    A study of dynamic nuclear polarization (DNP) in NH 3 and ND 3 was made at the Bonn 2.5 GeV electron synchrotron. The paramagnetic radicals in the polycristalline ammonia beads were created by irradiation in the high intensity 20 MeV electron beam (> 10 14 electrons/sec) of the injection linac. During irradiation the ammonia beads, produced by dropping into liquid nitrogen, were cooled in liquid argon at approx.= 90 K. DNP measurements were performed at 1 K, 0.5 K and 0.2 K in a 2.5 T magnetic field. Samples of NH 3 , prepared in this way, yielded a maximum proton polarization of 66% at a temperature of 0.5 K with a short polarization build-up time of 9 minutes. ND 3 could be polarized at a temperature of 0.2 K up to 31%. The radiation resistance of the polarization of NH 3 is better than that of butanol. (orig.)

  11. Effective identification of (NH4)2CO3 and NH4HCO3 concentrations in NaHCO3 regeneration process from desulfurized waste.

    Science.gov (United States)

    Govindan, Muthuraman; Karunakaran, Kannan; Nallasamy, Palanisami; Moon, Il Shik

    2015-01-01

    This work describes the quantitative analysis of (NH4)2CO3 and NH4HCO3 using a simple solution phase titration method. Back titration results at various (NH4)2CO3-NH4HCO3 ratios demonstrated that 6:4 ratio caused a 3% error in their differentiation, but very high errors were found at other ratios. A similar trend was observed for the double indicator method, especially when strong acid HCl was used as a titrant, where still less errors (2.5%) at a middle ratio of (NH4)2CO3-NH4HCO3 was found. Remaining ratios with low (NH4)2CO3 (2:8, 4:6) show high +ve error (found concentration is less) and high (NH4)2CO3 (7:3, 8:2, and 9:1) show high -ve error (found concentration is higher) and vice versa for NH4HCO3. In replacement titration using Na2SO4, at both higher end ratios of (NH4)2CO3-NH4HCO3 (2:8 and 9:1), both -ve and +ve errors were minimized to 75% by partial equilibrium arrest between (NH4)2CO3 and NH2COONH4, instead of more than 100% observed in back titration and only double indicator methods. In the presence of (NH4)2SO4 both -ve and +ve error% are completely reduced to 3±1 at ratios 2:8, 4:6, and 6:4 of (NH4)2CO3-NH4HCO3, which demonstrates that the equilibrium transformation between NH2COONH4 and (NH4)2CO3 is completely controlled. The titration conducted at lower temperature (5 °C) in the presence of (NH4)2SO4 at higher ratios of (NH4)2CO3-NH4HCO3 (7:3, 8:2,and 9:1) shows complete minimization of both -ve and +ve errors to 2±1%, which explains the complete arresting of equilibrium transformation. Finally, the developed method shows 2±1% error in differentiation of CO3(2-) and HCO3(-) in the regeneration process of NaHCO3 from crude desulfurized sample. The developed method is more promising to differentiate CO3(2-) and HCO3(-) in industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Near room temperature approaches for the preparation of air-stable and crystalline CH{sub 3}NH{sub 3}PbI{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gujarathi, Yogini D.; Haram, Santosh K., E-mail: haram@chem.unipune.ac.in

    2016-04-15

    This work demonstrates an exotic role of CH{sub 2}Cl{sub 2} in a formation of stable phase of highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} perovskite, on a bulk scale. In the first method, a partially-reacted product obtained after co-grinding of precursors viz. CH{sub 3}NH{sub 3}I and PbI{sub 2}was sonicated in CH{sub 2}Cl{sub 2} to form pure phase of CH{sub 3}NH{sub 3}PbI{sub 3}. In second method, the precursors in γ-Butyrolactone were treated with CH{sub 2}Cl{sub 2} to form crystalline and phase-pure CH{sub 3}NH{sub 3}PbI{sub 3}. X-ray Diffraction analysis confirmed the formation of stable and highly crystalline tetragonal phase of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite having space group I4cm. Well-defined rhombo-hexagonal dodecahedron crystals were seen in SEM and TEM images. Exceptional air stability of CH{sub 3}NH{sub 3}PbI{sub 3} so forms are attributed to adsorption of CH{sub 2}Cl{sub 2}. Optical band gaps obtained from the diffused reflectance spectra (Kubelka–Munk analysis), matched very well with the one estimated from Cyclic Voltammetry (CV). Valence band and conduction band edge positions estimated from the CV analysis are in good agreement with the one reported from UV photoelectron spectroscopy. Both the samples gave steady state fluorescence at ca. 750 nm with quantum yields in the range 15–35.5%. - Highlights: • A role of CH{sub 2}Cl{sub 2} is brought out in formation of stable CH{sub 3}NH{sub 3}PbI{sub 3} perovskite. • Cyclic voltammetry has been used to estimate the band edge positions. • Excellent fluorescence quantum yield, underlines the minimal structural defects.

  13. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao; Wang, Hsin-Ping; Li, Ting-You; Lin, Chun-Ho; Hsieh, Ying-Hui; Chu, Ying-Hao; He, Jr-Hau

    2017-01-01

    .e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination

  14. Thin-Film Transformation of NH4 PbI3 to CH3 NH3 PbI3 Perovskite: A Methylamine-Induced Conversion-Healing Process.

    Science.gov (United States)

    Zong, Yingxia; Zhou, Yuanyuan; Ju, Minggang; Garces, Hector F; Krause, Amanda R; Ji, Fuxiang; Cui, Guanglei; Zeng, Xiao Cheng; Padture, Nitin P; Pang, Shuping

    2016-11-14

    Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH 4 PbI 3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH 3 NH 3 PbI 3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH 4 PbI 3 -to-CH 3 NH 3 PbI 3 transformation process. The chemical origins of this transformation are studied at various length scales. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    Science.gov (United States)

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  16. Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface.

    Science.gov (United States)

    Ji, Gengwu; Zheng, Guanhaojie; Zhao, Bin; Song, Fei; Zhang, Xiaonan; Shen, Kongchao; Yang, Yingguo; Xiong, Yimin; Gao, Xingyu; Cao, Liang; Qi, Dong-Chen

    2017-03-01

    The electronic structures of rubrene films deposited on CH 3 NH 3 PbI 3 perovskite have been investigated using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). It was found that rubrene molecules interacted weakly with the perovskite substrate. Due to charge redistribution at their interface, a downward 'band bending'-like energy shift of ∼0.3 eV and an upward band bending of ∼0.1 eV were identified at the upper rubrene side and the CH 3 NH 3 PbI 3 substrate side, respectively. After the energy level alignment was established at the rubrene/CH 3 NH 3 PbI 3 interface, its highest occupied molecular orbital (HOMO)-valence band maximum (VBM) offset was found to be as low as ∼0.1 eV favoring the hole extraction with its lowest unoccupied molecular orbital (LUMO)-conduction band minimum (CBM) offset as large as ∼1.4 eV effectively blocking the undesired electron transfer from perovskite to rubrene. As a demonstration, simple inverted planar solar cell devices incorporating rubrene and rubrene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTLs) were fabricated in this work and yielded a champion power conversion efficiency of 8.76% and 13.52%, respectively. Thus, the present work suggests that a rubrene thin film could serve as a promising hole transport layer for efficient perovskite-based solar cells.

  17. A new NH 3 orbital of the NH 3/Ni(110) surface observed by metastable quenching spectroscopy

    Science.gov (United States)

    Lee, Lihwa; Arias, Jose; Hanrahan, Ciaran; Martin, Richard M.; Metiu, Horia

    1986-01-01

    By using metastable quenching spectroscopy we have found a new NH 3 filled orbital (in the language of one electron theory) for NH 3/Ni(110), located at the Fermi level of the surface. The orbital is not observed when NH 3 is adsorbed on Ni(110), but it is detected for NH 3 adsorbed on polycrystalline Al.

  18. NMR Spectroscopic Characterization of Methylcobalt(III) Compounds with Classical Ligands. Crystal Structures of [Co(NH(3))(5)(CH(3))]S(2)O(6), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (en = 1,2-Ethanediamine), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(

    DEFF Research Database (Denmark)

    Kofod, Pauli; Harris, Pernille; Larsen, Sine

    1997-01-01

    magnetic resonance spectroscopy and by absorption spectroscopy. Single-crystal X-ray structure determinations at 122.0(5) K were performed on [Co(NH(3))(5)(CH(3))]S(2)O(6) (1), trans-[Co(en)(2)(NH(3))(CH(3))]S(2)O(6) (2), and [Co(NH(3))(6)]-mer,trans-[Co(NO(2))(3)(NH(3))(2)(CH(3))](2)-trans-[Co(NO(2...

  19. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Science.gov (United States)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  20. Effect of interactions between carbon dioxide enrichment and NH4+/NO3- ratio on pH of culturing nutrient solution,growth and vigor of tomato root system

    Institute of Scientific and Technical Information of China (English)

    Juan LI; Jianmin ZHOU

    2008-01-01

    A growth chamber experiment was conducted to investigate the influence of NH4+/NO3- ratio and elevated CO2 concentration on the pH in nutrient solution,growth and root vigor system of tomato seedling roots,which attempts to understand whether the elevated CO2 concentration can alleviate the harmful effects of higher NH4+-N concentration in nutrient solutions on the tomato root system.Tomato (Lycopersicon esculenturn Mill.var.Hezuo 906) was grown in pots with nutrient solutions varying in NH4+/NO3- ratio (0:1,1:3,1:1,3:1and 1:0) and the growth chambers were supplied with with the growth process and CO2 concentration increased.At both CO2 levels,pH increased when 100% NO3--N was supplied and decreased in other treatments.The pH decrease in the nutrient solution was directly correlated to the NH4+-N proportion.The pH value was more reduced in 100% NH4+-N nutrient solution than increased in the 100% NO3--N nutrient solution.CO2 enrichment increased the dry weight of shoots and roots,root vigor system,total absorbing area and active absorbing area of tomato seedlings.All the measurement indexes above were increased in the elevated CO2 concentration treatment with the NO3- proportion increase in the nutrient solutions.Thus,under the elevated CO2 concentration,the dry weights of shoots and roots,root vigor system,total root absorbing area and active absorbing area were found to be inversely correlated to NH4+/NO3- ratio,leading to about 65.8%,78.0%,18.9%,12.9% and 18.9% increase,respectively,compared with that under the ambient CO2 concentration.Our results indicated that tomato seedling roots may benefit mostly from CO2 enrichment when 100% NO3--N nutrient solutions was supplied,but the CO2 concentration elevation did not alleviate the harmful effects when 100% NHa+-N was supplied.

  1. Crystal structure of [UO2(NH35]NO3·NH3

    Directory of Open Access Journals (Sweden)

    Patrick Woidy

    2016-12-01

    Full Text Available Pentaammine dioxide uranium(V nitrate ammonia (1/1, [UO2(NH35]NO3·NH3, was obtained in the form of yellow crystals from the reaction of caesium uranyl nitrate, Cs[UO2(NO33], and uranium tetrafluoride, UF4, in dry liquid ammonia. The [UO2]+ cation is coordinated by five ammine ligands. The resulting [UO2(NH35] coordination polyhedron is best described as a pentagonal bipyramid with the O atoms forming the apices. In the crystal, numerous N—H...N and N—H...O hydrogen bonds are present between the cation, anion and solvent molecules, leading to a three-dimensional network.

  2. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin; Guo, Yanhui; Li, Shaofeng; Sun, Weiwei; Zhu, Yihan; Li, Qi; Yu, Xuebin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system

  3. Nitrogen-Utilization by Plant-Species from Acid Heathland Soils .2. Growth and Shoot/Root Partitioning of No3- Assimilation at Constant Low Ph and Varying No3-/Nh4+ Ratio

    NARCIS (Netherlands)

    Troelstra, S.R.; Wagenaar, R.; Smant, W.

    1995-01-01

    The growth of four heathland species, two grasses (D. flexuosa, M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix), was tested in solution culture at pH 4.0 with 2 mol m(-3) N, varying the NO3-/NH4+ ratio up to 40% nitrate. In addition, measurements of NRA, plant chemical composition, and

  4. UV photoprocessing of NH3 ice: photon-induced desorption mechanisms

    Science.gov (United States)

    Martín-Doménech, R.; Cruz-Díaz, G. A.; Muñoz Caro, G. M.

    2018-01-01

    Ice mantles detected on the surface of dust grains towards the coldest regions of the interstellar medium can be photoprocessed by the secondary ultraviolet (UV) field present in dense cloud interiors. In this work, we present UV-irradiation experiments under astrophysically relevant conditions of pure NH3 ice samples in an ultra-high vacuum chamber where solid samples were deposited on to a substrate at 8 K. The ice analogues were subsequently photoprocessed with a microwave-discharged hydrogen-flow lamp. The induced radiation and photochemistry led to the production of H2, N2 and N2H4. In addition, photodesorption to the gas phase of the original ice component, NH3, and two of the three detected photoproducts, H2 and N2, was observed thanks to a quadrupole mass spectrometer (QMS). Calibration of the QMS allowed quantification of the photodesorption yields, leading to Ypd (NH3) = 2.1^{+2.1}_{-1.0} × 10-3 molecules/{incident photon}, which remained constant during the whole experiments, while photodesorption of H2 and N2 increased with fluence, pointing towards an indirect photodesorption mechanism involving energy transfer for these species. Photodesorption yield of N2 molecules after a fluence equivalent to that experienced by ice mantles in space was similar to that of the NH3 molecules (Ypd (N2) = 1.7^{+1.7}_{-0.9} × 10-3 molecules/{incident photon}).

  5. Polymeric cobalt(ii) thiolato complexes - syntheses, structures and properties of [Co(SMes)2] and [Co(SPh)2NH3].

    Science.gov (United States)

    Eichhöfer, Andreas; Buth, Gernot

    2016-11-01

    Reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of MesSH (Mes = C 6 H 2 -2,4,6-(CH 3 ) 3 ) yield dark brown crystals of the one dimensional chain compound [Co(SMes) 2 ]. In contrast reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of PhSH result in the formation of a dark brown almost X-ray amorphous powder of 'Co(SPh) 2 '. Addition of aliquots of CH 3 OH to the latter reaction resulted in the almost quantitative formation of crystalline ammonia thiolato complexes either [Co(SPh) 2 (NH 3 ) 2 ] or [Co(SPh) 2 NH 3 ]. Single crystal XRD reveals that [Co(SPh) 2 NH 3 ] forms one-dimensional chains in the crystal via μ 2 -SPh bridges whereas [Co(SPh) 2 (NH 3 ) 2 ] consists at a first glance of isolated distorted tetrahedral units. Magnetic measurements suggest strong antiferromagnetic coupling for the two chain compounds [Co(SMes) 2 ] (J = -38.6 cm -1 ) and [Co(SPh) 2 NH 3 ] (J = -27.1 cm -1 ). Interestingly, also the temperature dependence of the susceptibility of tetrahedral [Co(SPh) 2 (NH 3 ) 2 ] shows an antiferromagnetic transition at around 6 K. UV-Vis-NIR spectra display d-d bands in the NIR region between 500 and 2250 nm. Thermal gravimetric analysis of [Co(SPh) 2 (NH 3 ) 2 ] and [Co(SPh) 2 NH 3 ] reveals two well separated cleavage processes for NH 3 and SPh 2 upon heating accompanied by the stepwise formation of 'Co(SPh) 2 ' and cobalt sulfide.

  6. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.

  7. Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands

    Directory of Open Access Journals (Sweden)

    Xin Fang

    2017-08-01

    Full Text Available Organic-inorganic halide perovskite CH3NH3PbX3 (X= I, Br, Cl quantum dots (QDs possess the characters of easy solution-process, high luminescence yield, and unique size-dependent optical properties. In this work, we have improved the nonaqueous emulsion method to synthesize halide perovskite CH3NH3PbBr3 QDs with tunable sizes. Their sizes have been tailored from 5.29 to 2.81 nm in diameter simply by varying the additive amount of surfactant, n-octylamine from 5 to 120 μL. Correspondingly, the photoluminescence (PL peaks shift markedly from 520 nm to very deep blue, 436 nm due to quantum confinement effect. The PL quantum yields exceed 90% except for the smallest QDs. These high-quality QDs have potential to build high-performance optoelectronic devices.

  8. Optical monitoring of CH3NH3PbI3 thin films upon atmospheric exposure

    International Nuclear Information System (INIS)

    Ghimire, Kiran; Zhao, Dewei; Cimaroli, Alex; Ke, Weijun; Yan, Yanfa; Podraza, Nikolas J

    2016-01-01

    CH 3 NH 3 PbI 3 perovskite films of interest for photovoltaic (PV) devices have been prepared by (i) vapor deposition and (ii) solution processing. Complex dielectric function ( ε   =   ε 1   +  i ε 2 ) spectra and structural parameters of the films have been extracted using near infrared to ultraviolet spectroscopic ellipsometry. In situ real time spectroscopic ellipsometry (RTSE) over a 48 h period has been performed on vapor deposited CH 3 NH 3 PbI 3 after the deposition in normal atmospheric laboratory ambient conditions. Analysis of RTSE data for vapor deposited CH 3 NH 3 PbI 3 film prepared under un-optimized conditions identifies phase segregated PbI 2 and CH 3 NH 3 I at the substrate/film interface and unreacted PbI 2 and CH 3 NH 3 I on the film surface. This analysis also provides the time dependence of the effective thicknesses of perovskite film, unreacted components, and phase segregated layers to track CH 3 NH 3 PbI 3 decomposition. (paper)

  9. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    Science.gov (United States)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  10. CH3NH3Pb1-xMgxI3 perovskites as environmentally friendly photovoltaic materials

    Science.gov (United States)

    Zhang, Y. D.; Feng, J.

    2018-01-01

    In an effort to reduce the toxicity of Pb in perovskite solar cells, the band structures, electron and hole effective masses, and electronic and optical properties of the novel perovskites CH3NH3Pb1-xMgxI3 were predicted using density functional theory with the scalar relativistic generalized gradient approximation. The calculation results indicated that the introduction of the Mg component caused the band gaps of the CH3NH3Pb1-xMgxI3 compounds to exceed that of CH3NH3PbI3. The calculated absorption coefficients of the CH3NH3PbI3 and CH3NH3Pb1-xMgxI3 perovskites revealed that substituting 12.5 mol % of the Pb in CH3NH3PbI3 with Mg had little effect on the absorption ability. Surprisingly, it was also found that CH3NH3Pb0.75Mg0.25I3 retained up to 83% of the absorption performance relative to CH3NH3PbI3. This indicates that the amount of toxic Pb used in perovskite solar cells could be reduced by a quarter while retaining over 80% of the light-absorbing ability. In general, these novel CH3NH3Pb1-xMgxI3 (x ≤ 0.25) perovskites represent promising candidates for environmentally friendly light-harvesting materials for use in solar cells.

  11. CH3NH3PbI3 based solar cell: Modified by antisolvent treatment

    Science.gov (United States)

    Nandi, Pronoy; Giri, Chandan; Bansode, Umesh; Topwal, D.

    2017-05-01

    Solar cells based on new class of organic inorganic hybrid perovskite CH3NH3PbI3 were prepared by Ethyl acetate (EA); antisolvent treatment for the first time. This treatment results in new morphology for CH3NH3PbI3 thin film. FESEM image shows microrod type structures of CH3NH3PbI3 after EA antisolvent treatment. Energy band diagram was constructed using photoluminescence and photoemission studies. A better power conversion efficiency was achieved in EA treated film compare to without EA treated film.

  12. Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.

    Science.gov (United States)

    Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu

    2009-03-26

    The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.

  13. Low Temperature Catalyst for NH3 Removal

    Science.gov (United States)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  14. Synthesis of 15N-enriched urea (CO(15NH22 from 15NH3, CO, and S in a discontinuous process

    Directory of Open Access Journals (Sweden)

    C. R. Sant Ana Filho

    2012-12-01

    Full Text Available CO(15NH22 enriched with the stable isotope 15N was synthesized based on a reaction involving CO, 15NH3, and S in the presence of CH3OH. The method differs from the industrial method; a stainless steel reactor internally lined with polytetrafluoroethylene (PTFE was used in a discontinuous process under low pressure and temperature. The yield of the synthesis was evaluated as a function of the parameters: the amount of reagents, reaction time, addition of H2S, liquid solution and reaction temperature. The results showed that under optimum conditions (1.36, 4.01, and 4.48 g of 15NH3, CO, and S, respectively, 40 ml CH3OH, 40 mg H2S, 100 ºC and 120 min of reaction 1.82 g (yield 76.5% of the compound was obtained per batch. The synthesized CO(15NH22 contained 46.2% N, 0.55% biuret, melting point of 132.55 ºC and did not exhibit isotopic fractionation. The production cost of CO(15NH22 with 90.0 at. % 15N was US$ 238.60 per gram.

  15. On the growth of CH3NH3PbI3-xClx single crystal and characterization

    Science.gov (United States)

    Su, J.; Wang, W. F.; Lei, Y.; Zhang, L.; Xu, L. H.; Wang, D.; Lu, D.; Bai, Y.

    2018-05-01

    In this paper, CH3NH3PbI3-xClx crystal was grown by solution cooling method with CH3NH3I and PbCl2 as raw materials. Lead compounds and CH3NH3PbI3-xClx crystal with size about 6 mm × 4 mm × 2 mm were obtained. The chemical reactions with different CH3NH3I/PbCl2 ratios were analyzed. XPS shows the content of chlorine in CH3NH3PbI3-xClx is about 0.91%. PXRD, FT-IR, Raman and absorbance spectra were used to study the structure and optical properties of CH3NH3PbI3-xClx by comparing with CH3NH3PbI3 crystal. The CH3NH3PbI3-xClx crystal grown is of tetragonal structure with the lattice constants a = b = 8.8165 Å, c = 12.7920 Å and the bandgap value of 1.57 eV.

  16. Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Sørensen, Rasmus Zink; Kostova, M.Y.

    2006-01-01

    It is shown that nanopores are formed during desorption of NH3 from Mg(NH3)6Cl2, which has been proposed as a hydrogen storage material. The system of nanopores facilitates the transport of desorbed ammonia away from the interior of large volumes of compacted storage material. DFT calculations sh...

  17. The energy level alignment at the CH_3NH_3PbI_3/pentacene interface

    International Nuclear Information System (INIS)

    Ji, Gengwu; Zhao, Bin; Song, Fei; Zheng, Guanhaojie; Zhang, Xiaonan; Shen, Kongchao; Yang, Yingguo; Chen, Shi; Gao, Xingyu

    2017-01-01

    Highlights: • The Energy Level Alignment at the CH_3NH_3PbI_3/Pentacene Interface was resolved experimentally. • The downward band bending and the dipole found at the pentacene side would favorably drive holes away from the interface into pentacene. • A ∼0.7 eV offset between pentacene HOMO and CH_3NH_3PbI_3 VBM would be in favor of hole transfer whereas a ∼1.35 eV offset between pentacene LUMO and CH_3NH_3PbI_3 CBM should efficiently block the unwanted electron transfer from perovskite to pentacene. • Pentacene could be a viable hole transfer material candidate on perovskite to be explored in perovskite devices. - Abstract: Pentacene thin film on CH_3NH_3PbI_3 was studied by in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy to determine their interfacial energy level alignment. A 0.2 eV downward band bending together with a 0.1 eV interfacial dipole was found at the pentacene side, whereas there was no band bending found at the CH_3NH_3PbI_3 side. The offset between CH_3NH_3PbI_3 Valance Band Maximum (VBM) and pentacene Highest Occupied Molecular Orbital (HOMO) and that between CH_3NH_3PbI_3 Conduction Band Minimum (CBM) and pentacene Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 0.7 and 1.35 eV, respectively. The band alignment at this interface is favor of efficient hole transfer, which suggests pentacene as a viable HTL candidate to be explored in perovskite solar cells.

  18. CH3NH3Pb1−xMgxI3 perovskites as environmentally friendly photovoltaic materials

    Directory of Open Access Journals (Sweden)

    Y. D. Zhang

    2018-01-01

    Full Text Available In an effort to reduce the toxicity of Pb in perovskite solar cells, the band structures, electron and hole effective masses, and electronic and optical properties of the novel perovskites CH3NH3Pb1−xMgxI3 were predicted using density functional theory with the scalar relativistic generalized gradient approximation. The calculation results indicated that the introduction of the Mg component caused the band gaps of the CH3NH3Pb1−xMgxI3 compounds to exceed that of CH3NH3PbI3. The calculated absorption coefficients of the CH3NH3PbI3 and CH3NH3Pb1−xMgxI3 perovskites revealed that substituting 12.5 mol % of the Pb in CH3NH3PbI3 with Mg had little effect on the absorption ability. Surprisingly, it was also found that CH3NH3Pb0.75Mg0.25I3 retained up to 83% of the absorption performance relative to CH3NH3PbI3. This indicates that the amount of toxic Pb used in perovskite solar cells could be reduced by a quarter while retaining over 80% of the light-absorbing ability. In general, these novel CH3NH3Pb1−xMgxI3 (x ≤ 0.25 perovskites represent promising candidates for environmentally friendly light-harvesting materials for use in solar cells.

  19. Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells

    KAUST Repository

    Etgar, Lioz

    2012-10-24

    We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH 3NH 3PbI 3) perovskite/TiO 2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH 3NH 3I and PbI 2 in γ-butyrolactone on a 400 nm thick film of TiO 2 (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH 3NH 3PbI 3 as a back contact. Importantly, the CH 3NH 3PbI 3 nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH 3NH 3PbI 3/TiO 2 heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J sc= 16.1 mA/cm 2, open-circuit photovoltage V oc = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m 2 intensity. At a lower light intensity of 100W/m 2, a PCE of 7.3% was measured. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost, high-efficiency solar cells. © 2012 American Chemical Society.

  20. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.

    Science.gov (United States)

    Zhang, Mingming; Fan, Jianfen; Xu, Jian; Weng, Peipei; Lin, Huifang

    2016-10-01

    Two water-filled transmembrane cyclic peptide nanotubes (CPNTs) of 8×cyclo-(WL)n=4,5/POPE were chosen to investigate the dependences of the transport properties of the positive NH4 (+) and neutral NH3 on the channel radius. Molecular dynamic simulations revealed that molecular charge, size, ability to form H-bonds and channel radius all significantly influence the behaviors of NH4 (+) and NH3 in a CPNT. Higher electrostatic interactions, more H-bonds, and water-bridges were found in the NH4 (+) system, resulting in NH4 (+) meeting higher energy barriers, while NH3 can enter, exit and permeate the channels effortlessly. This work sheds a first light on the differences between the mechanisms of NH4 (+) and NH3 moving in a CPNT at an atomic level. Graphical Abstract Snapshot of the simulation system of NH4 (+)_octa-CPNT with an NH4 (+) initially positioned at one mouth of the tube, PMF profiles for single NH4 (+) ion and NH3 molecule moving through water-filled transmembrane CPNTs of 8×cyclo-(WL)n=4,5/POPE and sketch graphs of the possible H-bond forms of NH3 and NH4 (+) with the neighboring water.

  1. In vitro growth of Brassocattleya orchid hybrid in different concentrations of KNO3, NH4NO3 and benzylaminopurine Cultivo in vitro de Brassocattleya (Orchidaceae em diferentes concentrações de KNO3, NH4NO3 e benzilaminopurina

    Directory of Open Access Journals (Sweden)

    Jean C Cardoso

    2011-09-01

    Full Text Available One of the most important applications of plant tissue culture is mass propagation of ornamental plants. This experiment evaluated the effect of different concentrations of NH4NO3 and KNO3 and BAP on the in vitro growth of orchid hybrid Brassocattleya 'Pastoral'. Seedlings of this orchid hybrid were used as explants and cultivated in medium with mineral salts and vitamins from the MS medium (Murashige & Skoog, 1962, with the macronutrients P, Ca and Mg reduced by half, and with an addition of 25 g L-1 of sucrose, 0.1 g L-1 of myo-inositol and 1.5 g L-1 of activated charcoal. Agar-agar was added (6.5 g L-1 and the pH was adjusted to 5.8. As treatments, four concentrations of the NH4NO3 and KNO3 (2x; 1x; ½ and ¼ MS medium and three concentrations of BAP (0.0; 0.5 and 1.0 mg L-1 were assayed. The multiplication, growth in height, fresh and dry weight and sugar level in dry weight of sprouts were evaluated. There occurred a higher growth in height with 0.25x NH4NO3 and KNO3 salts concentrations of MS medium and higher rate of multiplication with combination of NH4NO3 and KNO3 reduced by half of the MS medium concentration and 1.0 mg L-1 BAP.Entre as maiores aplicações da cultura de tecidos de plantas está a propagação massal de mudas de plantas ornamentais. O objetivo deste trabalho foi avaliar o cultivo in vitro de um híbrido de orquídea Brassocattleya em diferentes concentrações de NH4NO3, KNO3 e BAP. Foram utilizadas sementes do híbrido de orquídea Brassocattleya 'Pastoral' e as plantas foram cultivadas em meio MS com redução pela metade das fontes de P, Mg e Ca e adição de 25 g L-1 de sacarose, 100 mg L-1 de mio-inositol, 1,5 g L-1 de carvão ativo e 6,5 g L-1 de ágar-ágar, sendo o pH ajustado para 5,8. Como tratamentos foram usados quatro concentrações dos sais NH4NO3 e KNO3 (2x; 1x; ½ e ¼ do meio MS e três concentrações de BAP (0,0; 0,5 e 1,0 mg L-1. Avaliou-se a multiplicação, o crescimento em altura, massa fresca

  2. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air

    International Nuclear Information System (INIS)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki

    2016-01-01

    Low stability of organic-inorganic perovskite (CH 3 NH 3 PbI 3 ) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH 3 NH 3 PbI 3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH 3 NH 3 PbI 3 degradation in humid air proceeds by two competing reactions of (i) the PbI 2 formation by the desorption of CH 3 NH 3 I species and (ii) the generation of a CH 3 NH 3 PbI 3 hydrate phase by H 2 O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH 3 NH 3 PbI 3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH 3 NH 3 PbI 3 layer is converted completely to hexagonal platelet PbI 2 /hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH 3 NH 3 PbI 3 in humid air.

  3. Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: A theoretical study

    Science.gov (United States)

    Hu, Jisong; Ji, Gepeng; Ma, Xinguo; He, Hua; Huang, Chuyun

    2018-05-01

    Interfacial interactions and electronic properties of graphene/CH3NH3PbI3 heterojunctions were investigated by first-principles calculations incorporating semiempirical dispersion-correction scheme to describe van der Waals interactions. Two lattice match configurations between graphene and CH3NH3PbI3(0 0 1) slab were constructed in parallel contact and both of them were verified to form remarkable van der Waals heterojunctions with similar work functions. Our calculated energy band structures show that the Dirac-cone of graphene and the direct band gap of CH3NH3PbI3 are still preserved in the heterojunctions, thus graphene can be a promising candidate either as a capping or supporting layer for encapsulating CH3NH3PbI3 layer. It is identified that the Schottky barrier of graphene/CH3NH3PbI3 heterojunctions can be controlled by the interlayer distance and affected by the stacking pattern of graphene and CH3NH3PbI3. The 3D charge density differences present the build-in internal electric field from graphene to CH3NH3PbI3 after interface equilibrium and thus, a low n-type Schottky barrier is needed for high efficient charge transferring in the interface. The possible mechanism of the band edge modulations in the heterojunctions and corresponding photoinduced charge transfer processes are also described.

  4. NH (X 3 summation -, v=1--3) formation and vibrational relaxation in electron-irradiated Ar/N2/H2 mixtures

    International Nuclear Information System (INIS)

    Dodd, J.A.; Lipson, S.J.; Flanagan, D.J.; Blumberg, W.A.M.; Person, J.C.; Green, B.D.

    1991-01-01

    Measurements of the dynamics of NH(X 3 summation - , v =1--3), created in electron-irradiated N 2 /H 2 and Ar/N 2 /H 2 mixtures, have been performed. Time-resolved Fourier spectroscopy was used to observe NH(v→v--1) vibrational fundamental band emission. Time-dependent populations were then determined by spectral fitting. Subsequent kinetic fitting of these populations using a single-quantum relaxation model and a power-law dependence of k v on v yielded the following NH(v =1--3) relaxation rate constants (units of 10 -14 cm 3 s -1 ): k v=1 (N 2 )=1.2±0.5, k v=2 (N 2 )=3.8±1.5, k v=3 (N 2 )=7.5±2.5; k v=1 (Ar)=0.2±0.1, k v=2 (Ar)=0.5±0.2, k v=3 (Ar)=0.8±0.3; k v=1 (H 2 )≤50, k v=2 (H 2 )≤100, k v=3 (H 2 )≤150. In addition, the N 2 /H 2 data provided a measurement of the nascent excited vibrational state distribution resulting from the reaction N( 2 D)+H 2 →NH(X,v)+H. The ratio NH(1):NH(2):NH(3) was found to be 1.0:0.97:0.81 (±0.28 in each value). Comparison of the observed nascent distribution with that of a statistical model suggests that the ratio NH(0):NH(1)=0.47. Using this derived distribution, we find the average product level left-angle v right-angle =1.6, and the fraction of the available product energy in vibration left-angle f v right-angle =0.44

  5. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    Science.gov (United States)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  6. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    Science.gov (United States)

    Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan

    2015-01-01

    In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy. PMID:28793517

  7. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    Directory of Open Access Journals (Sweden)

    Li-Min Chao

    2015-08-01

    Full Text Available In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy.

  8. Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite

    Directory of Open Access Journals (Sweden)

    Shiqiang Luo

    2016-02-01

    Full Text Available Inorganic-organic hydride perovskites bring the hope for fabricating low-cost and large-scale solar cells. At the beginning of the research, two open questions were raised: the hysteresis effect and the role of chloride. The presence of chloride significantly improves the crystallization and charge transfer property of the perovskite. However, though the long held debate over of the existence of chloride in the perovskite seems to have now come to a conclusion, no prior work has been carried out focusing on the role of chloride on the electronic performance and the crystallization of the perovskite. Furthermore, current reports on the crystal structure of the perovskite are rather confusing. This article analyzes the role of chloride in CH3NH3PbI3-xClx on the crystal orientation and provides a new explanation about the (110-oriented growth of CH3NH3PbI3 and CH3NH3PbI3-xClx.

  9. Order-disorder phase transition in the peroxidovanadium complex NH4[VO(O2)2(NH3)].

    Science.gov (United States)

    Schwendt, Peter; Gyepes, Róbert; Chrappová, Jana; Němec, Ivan; Vaněk, Přemysl

    2018-07-05

    Complex NH 4 [VO(O 2 ) 2 (NH 3 )] (1) undergoes an order-disorder phase transition at T c ~258K. This transition is accompanied by change in the space group of the orthorhombic lattice and also by significant structural rearrangements of the constituent molecules, which are pertinent mostly to their NH 4 + ions and their ammonia ligands. The low-temperature solid state IR and Raman spectra of 1 were corroborated by solid-state computations that employed Gaussian functions as the basis set. Results of these computations yielded excellent agreement with experimental data. On the curves of temperature dependence of vibrational modes, the phase transition is expressed by an abrupt change of the slope above T c . Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Shape-Evolution Control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis

    Science.gov (United States)

    Zhang, Baohua; Guo, Fuqiang; Yang, Lianhong; Jia, Xiuling; Liu, Bin; Xie, Zili; Chen, Dunjun; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2017-02-01

    We systematically synthesized CH3NH3PbI3 crystals using solvothermal process, and the reaction conditions such as concentration of the precursor, temperature, time, and lead source have been comprehensively investigated to obtain shape-controlled CH3NH3PbI3 crystals. The results showed that the CH3NH3PbI3 crystals exhibit tetragonal phase and the crystals change from nanoparticles to hopper-faced cuboids. Photoluminescence spectra of the crystals obtained with different lead sources show a blue shift due to the presence of defects in the crystals, and the peak intensity is very sensitive to the lead sources. Moreover, impurities (undesirable byproducts and excess components like HI or CH3NH2) presented during crystal growth can result in hopper growth.

  11. Transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/Al-ZnO p-n heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil, E-mail: skbgudha@gmail.com; Ansari, Mohd Zubair; Khare, Neeraj [Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi, Delhi-110016 (India)

    2016-05-23

    A p-type Organic inorganic tin chloride (CH{sub 3}NH{sub 3}SnCl{sub 3}) perovskite thin film has been synthesized by solution method. An n-type 1% Al doped ZnO (AZO) film has been deposited on FTO substrate by ultrasonic assisted chemical vapor deposition technique. A transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction diode has been fabricated by spin coating technique. CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows 75% transparency in the visible region. I-V characteristic of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows rectifying behavior of the diode. The diode parameters calculated as ideality factor η=2.754 and barrier height Φ= 0.76 eV. The result demonstrates the potentiality of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction for transparent electronics.

  12. MARVEL analysis of the measured high-resolution spectra of 14NH3

    International Nuclear Information System (INIS)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-01-01

    Accurate, experimental rotational–vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14 NH 3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7–17 000 cm −1 region, with a large gap between 7000 and 15 000 cm −1 . The MARVEL (Measured Active Rotational–Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para- 14 NH 3 , respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14 NH 3 , 8 for ortho- and 22 for para- 14 NH 3 . The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para- 14 NH 3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14 NH 3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14 NH 3 ; these lines are also deposited in the Supporting Information to this paper

  13. MARVEL analysis of the measured high-resolution spectra of 14NH3

    Science.gov (United States)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-08-01

    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  14. Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH 3 NH 3 ) 3 Bi 2 I 9

    KAUST Repository

    Abulikemu, Mutalifu

    2016-07-14

    Lead halide perovskite materials have shown excellent optoelectronic as well as photovoltaic properties. However, the presence of lead and the chemical instability relegate lead halide perovskites to research applications only. Here, we investigate an emerging lead-free and air stable compound (CH3NH3)3Bi2I9 as a non-toxic potential alternative to lead halide perovskites. We have synthesized thin films, powders and millimeter-scale single crystals of (CH3NH3)3Bi2I9 and investigated their structural and optoelectronic properties. We demonstrate that the degree of crystallinity strongly affects the optoelectronic properties of the material, resulting in significantly different band gaps in polycrystalline thin films and single crystals. Surface photovoltage spectroscopy reveals outstanding photocharge generation in the visible (<700 nm), while transient absorption spectroscopy and space charge limited current measurements point to a long exciton lifetime and a high carrier mobility, respectively, similar to lead halide perovskites, pointing to the remarkable potential of this semiconductor. Photovoltaic devices fabricated using this material yield low power conversion efficiency (PCE) to date, but the PCE is expected to rise with improvements in thin film processing and device engineering.

  15. General working principles of CH3NH3PbX3 perovskite solar cells.

    Science.gov (United States)

    Gonzalez-Pedro, Victoria; Juarez-Perez, Emilio J; Arsyad, Waode-Sukmawati; Barea, Eva M; Fabregat-Santiago, Francisco; Mora-Sero, Ivan; Bisquert, Juan

    2014-02-12

    Organometal halide perovskite-based solar cells have recently realized large conversion efficiency over 15% showing great promise for a new large scale cost-competitive photovoltaic technology. Using impedance spectroscopy measurements we are able to separate the physical parameters of carrier transport and recombination in working devices of the two principal morphologies and compositions of perovskite solar cells, viz. compact thin films of CH3NH3PbI(3-x)Clx and CH3NH3PbI3 infiltrated on nanostructured TiO2. The results show nearly identical spectral characteristics indicating a unique photovoltaic operating mechanism that provides long diffusion lengths (1 μm). Carrier conductivity in both devices is closely matched, so that the most significant differences in performance are attributed to recombination rates. These results highlight the central role of the CH3NH3PbX3 semiconductor absorber in carrier collection and provide a new tool for improved optimization of perovskite solar cells. We report for the first time a measurement of the diffusion length in a nanostructured perovskite solar cell.

  16. Study of the structural phase transitions of (CH 3NH 3) 3Sb 2Cl 9 (MACA) and (CH 3NH 3) 3Bi 2Cl 9 (MACB) by infrared spectroscopy

    Science.gov (United States)

    Bator, G.; Jakubas, R.; Malarski, Z.

    1991-06-01

    Infrared spectra of polycrystalline (CH 3NH 3) 3Sb 2Cl 9 and (CH 3NH 3) 3Bi 2Cl 9 have been studied in the temperature range 90-300 K. A systematic temperature dependence study of the internal modes has been carried out. We discuss the effects of the dynamic state of methylammonium (MA) cations on their vibrational spectra. The results show that the dynamics of MA cations in both compounds is similar in higher (about 300 K) and lower temperature (in the vicinity of 100 K) regions. Substantial differences are revealed in the intermediate temperature interval. The results are in good agreement with earlier dielectric, calorimetric and 1H NMR studies.

  17. Comparative genomic and physiological analysis of nutrient response to NH4+, NH4+:NO3- and NO3- in barley seedlings.

    Science.gov (United States)

    Lopes, Marta S; Araus, José L

    2008-09-01

    Long-term differences in photosynthesis, respiration and growth of plants receiving distinct nitrogen (N) sources imply that N metabolism generates signals that regulate metabolism and development. The molecular basis of these signals remains unclear. Here we studied the gene expression profiles of barley (Hordeum vulgare L. cv. Graphic) seedlings fertilized either with ammonium (NH4+), with ammonium and nitrate (NH4+:NO3-), or with nitrate (NO3-) only. Our transcriptome analysis after 48 h of growth in these N sources showed major changes in the expression of genes involved in N metabolism (nitrate reductase), signalling (protein kinases and protein phosphatases), photosynthesis (chlorophyll a/b-binding protein and a PsbQ domain), where increases in NO3- as compared with NH4+ were observed. Moreover, NH4+ assimilation induced genes participating in C and sugars metabolism (phosphoglycerate kinase, glucosyltranferase and galactokinase), respiration (cytochrome c oxidase), protein fate (heat shock proteins) and development (MTN3-like protein). These changes in gene expression could well explain the long-term growth depression observed in NH4+ plants. Even if a few genes participating in protein fate (proteases) and development (OsNAC5) were upregulated in NH4+ as compared with NH4+:NO3-, the general pattern of expression was quite similar between these two N sources. Taken together, these results indicated that other downstream mechanisms should be involved in the synergetic long-term response of NH4+:NO3-.

  18. Dissociation of NH3 and NH2D by high power CO2 laser radiation

    International Nuclear Information System (INIS)

    Jacobs, R.R.

    1976-08-01

    Multiquantum dissociation of polyatomics using intense CO 2 lasers resulting in isotopic enrichment has been demonstrated for several molecules. In this presentation, the possibility of selective dissociation of NH 3 and NH 2 D by high power laser radiation at 10 μm will be considered. Relevant work performed at the Lawrence Livermore Laboratory and elsewhere will be summarized. In this review, attention will be given to four distinct mechanisms that can play varying degrees of importance in such investigations. Discussion will deal with the usefulness of two-resonant-frequency molecular excitation, the role of buffer gases, and the need to monitor the yields into the ground and excited electronic states of the dissociated fragments

  19. Role of NH3 and NH4+ transporters in renal acid-base transport.

    Science.gov (United States)

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  20. Deuterium isotope effects on the dipole moment and polarizability of HCl and NH3

    International Nuclear Information System (INIS)

    Scher, C.; Ravid, B.; Halevi, E.A.

    1982-01-01

    A previously described adaptation of the conventional Debye procedure for the direct determination of small dipole moment and polarizability differences between two polar gases is applied to the isotopic pairs DCl-HCl and ND 3 -NH 3 . The dipole moment difference obtained for the first isotopic pair, by using the Debye-Van Vleck equation for electric susceptibility, μ(DCl) - μ(HCl) = 0.005 5 +/- 0.0002 D, is consistent with published spectroscopically determined values of μ 00 (DCl) and μ 00 (HCl), while that obtained by using the classical Debye equation is not. For the second pair, use of the Debye-Van Vleck equation, along with a correction for thermal population of vibrationally excited levels, is shown to be essential and yields μ(ND) 3 - μ(NH 3 ) = +0.013 5 +/- 0.001 D and α(ND 3 ) - α(NH 3 ) = -(2.2 +/- 1.7) x 10 -26 cm 3

  1. Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process

    International Nuclear Information System (INIS)

    Li, Kangkang; Yu, Hai; Qi, Guojie; Feron, Paul; Tade, Moses; Yu, Jingwen; Wang, Shujuan

    2015-01-01

    Highlights: • A rigorous, rate-based model for an NH 3 –CO 2 –SO 2 –H 2 O system was developed. • Model predictions are in good agreement with pilot plant results. • >99.9% of SO 2 was captured and >99.9% of slipped ammonia was reused. • The process is highly adaptable to the variations of SO 2 /NH 3 level, temperatures. - Abstract: To reduce the costs of controlling emissions from coal-fired power stations, we propose an advanced and effective process of combined SO 2 removal and NH 3 recycling, which can be integrated with the aqueous NH 3 -based CO 2 capture process to simultaneously achieve SO 2 and CO 2 removal, NH 3 recycling and flue gas cooling in one process. A rigorous, rate-based model for an NH 3 –CO 2 –SO 2 –H 2 O system was developed and used to simulate the proposed process. The model was thermodynamically and kinetically validated by experimental results from the open literature and pilot-plant trials, respectively. Under typical flue gas conditions, the proposed process has SO 2 removal and NH 3 reuse efficiencies of >99.9%. The process is strongly adaptable to different scenarios such as high SO 2 levels in flue gas, high NH 3 levels from the CO 2 absorber and high flue gas temperatures, and has a low energy requirement. Because the process simplifies flue gas desulphurisation and resolves the problems of NH 3 loss and SO 2 removal, it could significantly reduce the cost of CO 2 and SO 2 capture by aqueous NH 3

  2. The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/pentacene interface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Gengwu [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhao, Bin; Song, Fei [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Zheng, Guanhaojie; Zhang, Xiaonan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); University of Chinese Academy of Science, Beijing 100049 (China); Shen, Kongchao [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Yang, Yingguo [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Chen, Shi, E-mail: ChenShi@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Xingyu, E-mail: gaoxingyu@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2017-01-30

    Highlights: • The Energy Level Alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/Pentacene Interface was resolved experimentally. • The downward band bending and the dipole found at the pentacene side would favorably drive holes away from the interface into pentacene. • A ∼0.7 eV offset between pentacene HOMO and CH{sub 3}NH{sub 3}PbI{sub 3} VBM would be in favor of hole transfer whereas a ∼1.35 eV offset between pentacene LUMO and CH{sub 3}NH{sub 3}PbI{sub 3} CBM should efficiently block the unwanted electron transfer from perovskite to pentacene. • Pentacene could be a viable hole transfer material candidate on perovskite to be explored in perovskite devices. - Abstract: Pentacene thin film on CH{sub 3}NH{sub 3}PbI{sub 3} was studied by in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy to determine their interfacial energy level alignment. A 0.2 eV downward band bending together with a 0.1 eV interfacial dipole was found at the pentacene side, whereas there was no band bending found at the CH{sub 3}NH{sub 3}PbI{sub 3} side. The offset between CH{sub 3}NH{sub 3}PbI{sub 3} Valance Band Maximum (VBM) and pentacene Highest Occupied Molecular Orbital (HOMO) and that between CH{sub 3}NH{sub 3}PbI{sub 3} Conduction Band Minimum (CBM) and pentacene Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 0.7 and 1.35 eV, respectively. The band alignment at this interface is favor of efficient hole transfer, which suggests pentacene as a viable HTL candidate to be explored in perovskite solar cells.

  3. Synthesis and properties of ternary (K, NH4, H3O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions

    International Nuclear Information System (INIS)

    Sandy Jones, F.; Bigham, Jerry M.; Gramp, Jonathan P.; Tuovinen, Olli H.

    2014-01-01

    The purpose of this study was to synthesize a series of solid solution jarosites by biological oxidation of ferrous iron at pH 2.2–4.4 and ambient temperature in media containing mixtures of K + (0, 1, 4, 6, 12, 31 mM) and NH 4 + (6.1, 80, 160, 320 mM). The starting material was a liquid medium for Acidithiobacillus ferrooxidans comprised of 120 mM FeSO 4 solution and mineral salts at pH 2.2. Following inoculation with A. ferrooxidans, the cultures were incubated in shake flasks at 22 °C. As bacteria oxidized ferrous iron, ferric iron hydrolyzed and precipitated as jarosite-group minerals (AFe 3 (SO 4 ) 2 (OH) 6 ) and/or schwertmannite (idealized formula Fe 8 O 8 (OH) 6 (SO 4 )·nH 2 O). The precipitates were characterized by X-ray diffraction (XRD), elemental analysis, and Munsell color. Schwertmannite was the dominant mineral product at low combinations of K + (≤ 4 mM) and NH 4 + (≤ 80 mM) in the media. At higher single or combined concentrations, yellowish jarosite phases were produced, and Munsell hue provided a sensitive means of detecting minor schwertmannite in the oxidation products. Although the hydrated ionic radii of K + and NH 4 + are similar, K + greatly facilitated the formation of a jarosite phase compared to NH 4 + . Unit cell and cell volume calculations from refinements of the powder XRD patterns indicated that the jarosite phases produced were mostly ternary (K, NH 4 , H 3 O)-solid solutions that were also deficient in structural Fe, especially at low NH 4 contents. Thus, ferric iron precipitation from the simulated bioleaching systems yielded solid solutions of jarosite with chemical compositions that were dependent on the relative concentrations of K + and NH 4 + in the synthesis media. No phase separations involving discrete, end-member K-jarosite or NH 4 -jarosite were detected in the un-aged precipitates. - Highlights: • Fe(III) precipitates formed in A. ferrooxidans culture solutions were characterized. • The monovalent cation

  4. Electrochemical and SEM studies of tetra-ammine platinum (II) (Pt(NH3)4)(OH)2 solution

    International Nuclear Information System (INIS)

    Wan Jeffrey Basirun

    2002-01-01

    Electrochemical studies include cyclic voltammetry with microelectrodes were done on a solution of tetra-ammine platinum (II) (Pt(NH 3 ) 4 )(OH) 2 at pH 13 and showed that the electrochemical reduction of this compound was no different from the tetra-ammine platinum (II) (Pt(NH 3 ) 4 )(HPO 4 ) at pH 10.4. The solution was instable to high temperatures and results have shown that electroplating can be done at a limited temperature range for longer periods of time or at higher temperatures for short periods of time. Scanning electron microscopy was done on some of the constant current electrodeposited samples at high temperatures and result obtained was satisfactory. (Authors)

  5. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite under Ambient Conditions

    KAUST Repository

    Huang, Weixin; Manser, Joseph S.; Kamat, Prashant V.; Ptasinska, Sylwia

    2016-01-01

    © 2015 American Chemical Society. The surface composition and morphology of CH3NH3PbI3 perovskite films stored for several days under ambient conditions were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Chemical analysis revealed the loss of CH3NH3 + and I- species from CH3NH3PbI3 and its subsequent decomposition into lead carbonate, lead hydroxide, and lead oxide. After long-term storage under ambient conditions, morphological analysis revealed the transformation of randomly distributed defects and cracks, initially present in the densely packed crystalline structure, into relatively small grains. In contrast to PbI2 powder, CH3NH3PbI3 exhibited a different degradation trend under ambient conditions. Therefore, we propose a plausible CH3NH3PbI3 decomposition pathway that explains the changes in the chemical composition of CH3NH3PbI3 under ambient conditions. In addition, films stored under such conditions were incorporated into photovoltaic cells, and their performances were examined. The chemical changes in the decomposed films were found to cause a significant decrease in the photovoltaic efficiency of CH3NH3PbI3.

  6. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite under Ambient Conditions

    KAUST Repository

    Huang, Weixin

    2016-01-12

    © 2015 American Chemical Society. The surface composition and morphology of CH3NH3PbI3 perovskite films stored for several days under ambient conditions were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Chemical analysis revealed the loss of CH3NH3 + and I- species from CH3NH3PbI3 and its subsequent decomposition into lead carbonate, lead hydroxide, and lead oxide. After long-term storage under ambient conditions, morphological analysis revealed the transformation of randomly distributed defects and cracks, initially present in the densely packed crystalline structure, into relatively small grains. In contrast to PbI2 powder, CH3NH3PbI3 exhibited a different degradation trend under ambient conditions. Therefore, we propose a plausible CH3NH3PbI3 decomposition pathway that explains the changes in the chemical composition of CH3NH3PbI3 under ambient conditions. In addition, films stored under such conditions were incorporated into photovoltaic cells, and their performances were examined. The chemical changes in the decomposed films were found to cause a significant decrease in the photovoltaic efficiency of CH3NH3PbI3.

  7. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    Science.gov (United States)

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  8. The electronic and optical properties of CH3NH3MoI3 perovskite

    Science.gov (United States)

    Kansara, Shivam; Sonvane, Yogesh; Gupta, Sanjeev K.

    2018-05-01

    In this work, a first-principles theoretical study of hybrid perovskite CH3NH3MoI3 is performed using PBE exchange-correlation approximations in density functional theory. The results of electronic band structure are 0.90 eV (M-point: Direct) and 0.60 eV (R-X point: Indirect), respectively. We have also calculated the dielectric properties such as real, imaginary, extension coefficient (K) and reflectivity (R) properties of hybrid perovskite CH3NH3MoI3. The low-bandgap molecules are used to absorb near-IR range and typically having a bandgap smaller than 1.6 eV. This is particularly attractive in organic photovoltaics (OPV), photodetectors (PDs), and ambipolar field-effect transistors (FETs).

  9. Surface modification of pitch-based spherical activated carbon by CVD of NH3 to improve its adsorption to uric acid

    International Nuclear Information System (INIS)

    Liu Chaojun; Liang Xiaoyi; Liu Xiaojun; Wang Qin; Zhan Liang; Zhang Rui; Qiao Wenming; Ling Licheng

    2008-01-01

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3 -CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3 -CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3 -CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC , surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature

  10. Surface modification of pitch-based spherical activated carbon by CVD of NH 3 to improve its adsorption to uric acid

    Science.gov (United States)

    Liu, Chaojun; Liang, Xiaoyi; Liu, Xiaojun; Wang, Qin; Zhan, Liang; Zhang, Rui; Qiao, Wenming; Ling, Licheng

    2008-08-01

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.

  11. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal

    2016-07-14

    The lack of optical constants information for hybrid perovskite of CH3NH3PbBr3 in thin films form can delay the progress of efficient LED or laser demonstration. Here, we report on the optical constants (complex refractive index and dielectric function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained from photoluminescence and spectrophotometry spectra, and calculated from the SE analysis. The precise measurement of optical constants will be useful in designing optical devices using CH3NH3PbBr3 thin films.

  12. [UO2(NH3)5]Br2·NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    Science.gov (United States)

    Woidy, Patrick; Bühl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2·NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2·NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å(3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength.

  13. Meteorite impacts on ancient oceans opened up multiple NH3 production pathways.

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2017-05-10

    A recent series of shock experiments by Nakazawa et al. starting in 2005 (e.g. [Nakazawa et al., Earth Planet. Sci. Lett., 2005, 235, 356]) suggested that meteorite impacts on ancient oceans would have yielded a considerable amount of NH 3 to the early Earth from atmospheric N 2 and oceanic H 2 O through reduction by meteoritic iron. To clarify the mechanisms, we imitated the impact events by performing multi-scale shock technique-based ab initio molecular dynamics in the framework of density functional theory in combination with multi-scale shock technique (MSST) simulations. Our previous simulations with impact energies close to that of the experiments revealed picosecond-order rapid NH 3 production during shock compression [Shimamura et al., Sci. Rep., 2016, 6, 38952]. It was also shown that the reduction of N 2 took place with an associative mechanism as seen in the catalysis of nitrogenase enzymes. In this study, we performed an MSST-AIMD simulation to investigate the production by meteorite impacts with higher energies, which are closer to the expected values on the early Earth. It was found that the amount of NH 3 produced further increased. We also found that the increased NH 3 production is due to the emergence of multiple reaction mechanisms at increased impact energies. We elucidated that the reduction of N 2 was not only attributed to the associative mechanism but also to a dissociative mechanism as seen in the Haber-Bosch process and to a mechanism through a hydrazinium ion. The emergence of these multiple production mechanisms capable of providing a large amount of NH 3 would support the suggestions from recent experiments much more strongly than was previously believed, i.e., shock-induced NH 3 production played a key role in the origin of life on Earth.

  14. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J

    2013-12-01

    Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.

  15. The Luminescence of CH3 NH3 PbBr3 Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced.

    Science.gov (United States)

    Gonzalez-Carrero, Soranyel; Francés-Soriano, Laura; González-Béjar, María; Agouram, Saïd; Galian, Raquel E; Pérez-Prieto, Julia

    2016-10-01

    CH 3 NH 3 PbBr 3 perovskite nanoparticles (P AD ) are prepared with a photoluminescence quantum yield of ≈100% in air atmosphere by using the quasi-spherical shaped 2-adamantylammonium bromide (ADBr) as the only capping ligand. The photostability under wet conditions of this kind of nanoparticles is enhanced by using cucurbit[7]uril-adamantylammonium (AD@CB) host-guest complexes as the capping ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparative study of wheat utilization of NH4 and NO3 as sources of N-fertilizer using N15 technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.

    1993-05-01

    Two field experiments were conducted separately on wheat (Cultivar ACSAD-65) in 1987/1988 at the Research Station of Arabic Center for the Studies of Arid Zones and Dry Lands (ACSAD) in Deir-Ezzor, Using N 15 methodology to compare the efficient utilization of N 15 -NO 3 and N 15 -N H 4 radicals as sources of nitrogen applied in three different levels (50, 100 and 200 Kg N/ha and two placement methods (Top-dressed and Side-dressed). The results indicate that Ndff % in the from of N 15 -NH 4 was higher than N 15 -NO 3 in both placements, at different growth stages, consequently, when using N-NH 4 form, N-uptake was higher than N-NO 3 form; the efficiency of N-NH 4 was higher than N-NO 3 in most cases regardless of the method of placement; the rate of applied nitrogen in both forms (N-NH 4 and N-NO 3 ) had higher effect on yield more than the placements; side-dressed placement had higher effect on the efficiency of the utilization of N-NO 3 and N-NH 4 as well as on crop yield than the Top-dressed; using N-NO 3 , A-values in the three growth stages of crop at the nitrogen levels used, were higher than using N-NH 4 in both placements; and finally using N-NO 3 in the second and third stages of crop growth, the yield was higher than using N-NH 4 and almost similar in the first stages. (author). 9 refs., 26 tabs

  17. [Ag(NH3)2]Ag(OsO3N)2: a new nitridoosmate(VIII)

    International Nuclear Information System (INIS)

    Wickleder, M.S.; Pley, Martin

    2004-01-01

    Dark brown single crystals of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 were obtained from the reaction of Ag 2 CO 3 , OsO 4 , and NH 3 in aqueous solution. The crystal structure was solved in the monoclinic space group C2/m, with the following unit-cell dimensions: a=1962.5(3), b=633.1(1), c=812.6(1) pm, β=96.71(1) deg. The final reliability factor was R=0.0256 for 1034 reflections with I>2σ(I). Linear [Ag(NH 3 ) 2 ] + ions are present oriented perpendicular to the [010] direction, leading to short Ag + -Ag + distances of 316 pm. A second type of Ag + ions in the crystal structure present coordination number '6+1' and are surrounded by oxygen and nitrogen atoms of the nitridoosmate groups. Within the first of the two crystallographically distinguishable anions one can clearly differentiate between oxygen and nitrogen atoms while the second one exhibits a N/O disorder over two positions. The infrared spectrum of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 shows the typical absorptions which can be attributed to the complex anions and the NH 3 ligands

  18. Observation of lower defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cells by admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Minlin; Lan, Fei; Tao, Quan; Li, Guangyong, E-mail: gaod@pitt.edu, E-mail: gul6@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Zhao, Bingxin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wu, Jiamin; Gao, Di, E-mail: gaod@pitt.edu, E-mail: gul6@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

    2016-06-13

    The introduction of Cl into CH{sub 3}NH{sub 3}PbI{sub 3} precursors is reported to enhance the performance of CH{sub 3}NH{sub 3}PbI{sub 3} solar cell, which is attributed to the significantly increased diffusion lengths of carriers in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell. It has been assumed but never experimentally approved that the defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell should be reduced according to the higher carrier lifetime observed from photoluminescence (PL) measurement. We have fabricated CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell by adding a small amount of Cl source into CH{sub 3}NH{sub 3}PbI{sub 3} precursor. The performance of CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell is significantly improved from 15.39% to 18.60%. Results from scanning electron microscopy and X-ray diffraction indicate that the morphologies and crystal structures of CH{sub 3}NH{sub 3}PbI{sub 3} and CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} thin films remain unchanged. Open circuit voltage decay and admittance spectroscopy characterization jointly approve that Cl plays an extremely important role in suppressing the formation of defects in perovskite solar cells.

  19. Degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite materials upon exposure to humid air

    Energy Technology Data Exchange (ETDEWEB)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-03-21

    Low stability of organic-inorganic perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH{sub 3}NH{sub 3}PbI{sub 3} layers prepared by a laser evaporation technique is studied. We present evidence that the CH{sub 3}NH{sub 3}PbI{sub 3} degradation in humid air proceeds by two competing reactions of (i) the PbI{sub 2} formation by the desorption of CH{sub 3}NH{sub 3}I species and (ii) the generation of a CH{sub 3}NH{sub 3}PbI{sub 3} hydrate phase by H{sub 2}O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH{sub 3}NH{sub 3}PbI{sub 3} layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH{sub 3}NH{sub 3}PbI{sub 3} layer is converted completely to hexagonal platelet PbI{sub 2}/hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} in humid air.

  20. Preparation of silver chloride nanoparticles by a mechanical treatment of the system NH4Cl−AgNO3NH4NO3

    Directory of Open Access Journals (Sweden)

    Farit Urakaev

    2014-08-01

    Full Text Available Silver chloride nanoparticles dispersed within ammonium nitrate matrix have been prepared though displacement mechanochemical reaction NH4Cl + AgNO3 + z NH4NO3 = (z+1 NH4 NO3 + AgCl at various z coefficients z1 = 7.22 and z2 = 3.64. The intermediate compound of NH4Ag(NO32 were recorded after mechanochemical processing of studied system. By using simultaneous TG and DSC measurements possibilities to prepare silver chloride in its free form have been discussed by using thermal treatment.

  1. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  2. Two-center three-electron bonding in ClNH{sub 3} revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH{sub 3} → ClNH{sub 2} + H reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Christopher P.; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States); Xie, Changjian; Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Kaufmann, Matin [Department of Physical Chemistry II, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-04-28

    Pyrolytic dissociation of Cl{sub 2} is employed to dope helium droplets with single Cl atoms. Sequential addition of NH{sub 3} to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH{sub 3} → ClNH{sub 2} + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C{sub 3v} symmetric top. Frequency shifts from NH{sub 3} and dipole moment measurements are consistent with a ClNH{sub 3} complex containing a relatively strong two-center three-electron (2c–3e) bond. The nature of the 2c–3e bonding in ClNH{sub 3} is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH{sub 3}Cl and Cl–HNH{sub 2}, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH{sub 3} → HCl + NH{sub 2}.

  3. MINERAL NITROGEN SOURCES (N-NO3- AND N-NH4+ ON GROWTH OF GRÁPIA (Apuleia leiocarpa (Vog. Macbride SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira Nicoloso

    2010-08-01

    Full Text Available Grápia (Apuleia leiocarpa (Vog. Macbride is an important native forest species that has been in extinction process. The aim of this study was to evaluate the effect of mineral nitrogen source on growth of grápia seedlings. Five variations in the concentration of N-NO3- and N-NH4+ (5:0, 4:1, 2,5:2,5, 1:4, and 0:5 mM of N were tested in an entirely random statistical design with 16 replicates. The experimental unity consisted of a vessel containing 3,0 kg of a Paleudalf soil and two plants, under glasshouse conditions. From 60 to 150 days after fertilization (DAF, the plant growth and soil pH were monthly analyzed from four replicates randomly taken. Independently of the nitrogen source used, the soil pH decreased, and on 150 DAF the smallest pH variation was 0.33 and the largest one was 0.47 pH units, respectively, on treatments with 5 N-NO3-:0 N-NH4+ and 0 N-NO3-:5 N-NH4+ ratios. The presence of N-NH4+, from 1 to 5 mM, induced necrosis in old leaves and their ulterior abscission. To 150 DAF, in the presence of 5 mM N-NH4+, the plant survival was reduced to 31%. The effect of nitrogen sources on plant growth appeared to be depended on plant age and/or of their transformations in the soil. To 120 DAF, the presence of N-NH4+ from 2,5 to 5 mM reduced the number of stalk nodes, plant height, stem diameter, dry weight of leaves, of stem, of roots, and of the whole plant. However, to 150 DAF, because of the regain on the growth rate, these differences were not observed, with exception of the root/shoot dry weight ratio that was reduced on the exclusive presence of N-NH4+. The suitable N-NO3-:N-NH4+ ratio in the fertilization to grow grápia seedlings, can not exceed, respectively, 4:1.

  4. The sensitivity of particle pH to NH3: Can high NH3 cause London Fog conditions?

    Science.gov (United States)

    Weber, R. J.; Guo, H.; Nenes, A.

    2017-12-01

    High ammonia emissions from agriculture or other sources have been suggested to elevate ambient particle pH levels to near neutral acidity (pH=7), a condition that promotes rapid SO2 oxidation by NO2 to form aerosol sulfate concentration consistent with "London fog" levels. This mechanism has been used to explain pollution haze events in China. Predicted pH for locations in the US and Europe show fine particles are highly acidic with pH typically less than 2. The results are consistent with measured ammonia and nitric acid gas-particle partitioning, validating predicted pH levels. Using these data sets from representative sites around the world we conduct a thermodynamic analysis of aerosol pH and its sensitivity to ammonia levels. We find that particle pH, regardless of ammonia levels, is always acidic even for the unusually high ammonia levels found in highly polluted Asian cities, Beijing (pH=4.5) and Xi'an (pH=5), locations where sulfate production from NOx is proposed. These results indicate that sulfur dioxide oxidation through a NO2-mediated pathway is not likely in China, nor any other region of the world (e.g., US, Mediterranean) since the fine aerosol is consistently acidic. The mildly acidic conditions would, however, permit rapid oxidation of sulfur dioxide through transition metal chemistry. The limited alkalinity from the carbonate buffer in dust and seasalt can provide the only likely set of conditions where NO2-mediated oxidation of SO2 outcompetes with other well-established pathways.

  5. Herschel/HIFI deepens the circumstellar NH3 enigma

    NARCIS (Netherlands)

    Menten, K. M.; Wyrowski, F.; Alcolea, J.; De Beck, E.; Decin, L.; Marston, A. P.; Bujarrabal, V.; Cernicharo, J.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schoier, F. L.; Szczerba, R.; Teyssier, D.; Waters, L. B. F. M.; Edwards, K.; Olberg, M.; Phillips, T. G.; Morris, P.; Salez, M.; Caux, E.

    2010-01-01

    Context. Circumstellar envelopes (CSEs) of a variety of evolved stars have been found to contain ammonia (NH3) in amounts that exceed predictions from conventional chemical models by many orders of magnitude. Aims. The observations reported here were performed in order to better constrain the NH3

  6. Rietveld refinement of the crystal structure of perovskite solar cells using CH3NH3PbI3 and other compounds

    Science.gov (United States)

    Ando, Yuji; Ohishi, Yuya; Suzuki, Kohei; Suzuki, Atsushi; Oku, Takeo

    2018-01-01

    The crystal structures of perovskite thin films including CH3NH3PbI3, CH3NH3Pb1-xSbxI3, and CH3NH3PbI3-yCly in the solar cell configuration were studied by using Rietveld refinement. For the CH3NH3PbI3 and CH3NH3Pb1-xSbxI3 samples, satisfactory agreement with the measured profiles was obtained with a weighted profile R-factor (Rwp) of as low as 3%. It was shown that the site occupancy of methylammonium (MA) was decreased in the antimonized cell due to the compensation effect of an increased positive charge brought about by replacing Pb2+ with Sb3+. Photovoltaic measurements showed that the power conversion efficiency was enhanced by adding a small amount of Sb to the CH3NH3PbI3 cell, but it was monotonically decreased as the mole fraction of Sb exceeded 0.03. This variation of the conversion efficiency was considered as a result of suppressed crystallization of PbI2 and carrier recombination via MA vacancies in the antimonized cells. In the case of CH3NH3PbI2.88Cl0.12 sample, the agreement with the measured profile with an Rwp of as high as 7% suggested the co-existence of cubic and tetragonal phases in the chlorinated cell.

  7. Effects of CsBr addition on the performance of CH3NH3PbI3-xClx-based solar cells

    Science.gov (United States)

    Ueoka, Naoki; Oku, Takeo; Ohishi, Yuya; Tanaka, Hiroki; Suzuki, Atsushi; Sakamoto, Hiroki; Yamada, Masahiro; Minami, Satoshi; Tsukada, Shinichiro

    2018-01-01

    Perovskite-type photovoltaic devices were prepared by a spin-coating method using a precursor solution of CH3NH3I and lead(II) chloride in N,N-dimethylformamide. Effects of cesium bromide (CsBr) addition on the photovoltaic properties and microstructures of the perovskite phase were investigated. The fill factor was increased by adding the CsBr to the CH3NH3PbI3-xClx precursor solution, which resulted in increase of the conversion efficiency. The crystallinity of the CH3NH3PbI3-xClx perovskite phase was also improved by adding the CsBr to the H3NH3PbI3-xClx precursor solution.

  8. Synthesis and structural characterization of two cobalt phosphites: 1-D (H3NC6H4NH3)Co(HPO3)2 and 2-D (NH4)2Co2(HPo3)3

    International Nuclear Information System (INIS)

    Cheng, C.-C.; Chang, W.-K.; Chiang, R.-K.; Wang, S.-L.

    2010-01-01

    Two new cobalt phosphites, (H 3 NC 6 H 4 NH 3 )Co(HPO 3 ) 2 (1) and (NH 4 ) 2 Co 2 (HPO 3 ) 3 (2), have been synthesized and characterized by single-crystal X-ray diffraction. All the cobalt atoms of 1 are in tetrahedral CoO 4 coordination. The structure of 1 comprises twisted square chains of four-rings, which contain alternating vertex-shared CoO 4 tetrahedra and HPO 3 groups. These chains are interlinked with trans-1,4-diaminocyclohexane cations by hydrogen bonds. The 2-D structure of 2 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by Co 2 O 9 to form complex layers. Magnetic susceptibility measurements of 1 and 2 showed that they have a weak antiferromagnetic interaction. - Graphical abstract: The 2-D structure of (NH 4 ) 2 Co 2 (HPO 3 ) 3 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by dimmeric Co 2 O 9 to form complex layers.

  9. Enhanced photovoltaic performance of CH3NH3PbBrXI3-X-based perovskite solar cells via anti-solvent extraction

    Science.gov (United States)

    Jiang, Zhaoyi; Zhang, Weijia; Lu, Chaoqun; Ma, Denghao; Liu, Haixu; Yu, Wei; Zhang, Yu; Ma, Qiang; Zhang, Yulong

    2018-06-01

    In this paper, the two-step sequential deposition method was used to prepare the CH3NH3PbBrXI3-X films by introducing CH3NH3Br in the precursors. The surface morphology of the PbI2 films was controlled by anti-solvent extraction (ASE) to improve the microstructure and photo-physical properties of the perovskite films. It was noteworthy that, compared to the compact PbI2 films, the porous PbI2 films facilitated the growth of crystals and bromine incorporation in films, and the prepared perovskite films exhibited enlarged grain size, increased light absorption, enhanced Br incorporation and prolonged carrier lifetime, which resulted in excellent photo-electrical properties of the CH3NH3PbBrXI3-X films. With porous PbI2 templates, the inverted planar perovskite solar cells based on films with appropriate Br incorporation (CH3NH3Br/CH3NH3I mole ratio = 3/7) showed a photovoltaic conversion efficiency (PCE) of 14.9%, and the stability of the devices in air was elevated. Consequently, the high-quality CH3NH3PbBrXI3-X films can be obtained with porous PbI2 templates for improving the performance of the perovskite solar cells.

  10. Effects of acute NH3 air pollution on N-sensitive and N-tolerant lichen species.

    Science.gov (United States)

    Paoli, Luca; Maslaňáková, Ivana; Grassi, Alice; Bačkor, Martin; Loppi, Stefano

    2015-12-01

    Lichens are sensitive to the presence of ammonia (NH3) in the environment. However, in order to use them as reliable indicators in biomonitoring studies, it is necessary to establish unequivocally the occurrence of certain symptoms following the exposure to NH3 in the environment. In this paper, we simulated an episode of acute air pollution due to the release of NH3. The biological effects of acute air pollution by atmospheric NH3 have been investigated using N-sensitive (Flavoparmelia caperata) and N-tolerant (Xanthoria parietina) species. Lichen samples were exposed to ecologically relevant NH3 concentrations for 8 weeks, simulating three areas of impact: a control area (2 μg/m(3)), an area of intermediate impact (2-35 μg/m(3)) and an area of high impact (10-315 μg/m(3)), with a peak of pollution reached between the fourth and fifth week. Ammonia affected both the photobiont and the mycobiont in F. caperata, while in X. parietina only the photosynthetic performance of the photobiont was altered after exposure to the highest concentration. In the photobiont of F. caperata we recorded chlorophyll degradation as indicated by OD435/415 ratio, decrease of the photosynthetic performance (as reflected by the maximum quantum yield of primary photochemistry FV/FM and the performance index PIABS); in the mycobiont, ergosterol reduction, membrane lipid peroxidation (as reflected by the increase of thiobarbituric acid reactive substances), alteration (decrease) of the secondary metabolite usnic acid. No effects were detected on caperatic acid and dehydrogenase activity. In X. parietina, the only signal determined by NH3 was the alteration of FV/FM and the performance index PIABS. The results suggest that physiological parameters in N-sensitive lichens well reflect the effects of NH3 exposure and can be applied as early indicators in monitoring studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Surface-exchange of NOx and NH3 above a winter wheat field in the Yangtze Delta, China

    Institute of Scientific and Technical Information of China (English)

    FANG Shuan-gxi; ZHANG Yi; MU Yu-jing

    2006-01-01

    A four-dynamic-chamber system was constructed to measure NOx and NH3 surface-exchange between a typical wheat field and the fluxes of NO2 and NH3 were negatively correlated with their ambient concentrations during the investigated period. The compensation point of NO2 between the wheat field and the atmosphere was 11.9 μg/m3. The emissions of NO-N and NH3-N from the urea applied to the wheat field were 2.3% and 0.2%, respectively, which indicated that the main pathway of N loss from the investigated winter wheat field was NO. Application of a mixture of urea and lignin increased the emissions of NO, but also greatly increased the yield of the winter wheat.

  12. Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH3)3SnX3(X = Cl, Br)

    KAUST Repository

    Dang, Yangyang

    2016-10-11

    The hybrid perovskites with special optoelectronic properties have attracted more attention to the scientific and industrial applications. However, because of the toxicity and instability of lead complexes, there is interest in finding a nontoxic substitute for the lead in the halides perovskites and solving the ambiguous crystal structures and phase transition of NH(CH3)3SnX3 (X = Cl, Br). Here, we report the bulk crystal growths and different crystal morphologies of orthorhombic hybrid perovskites NH(CH3)3SnX3 (X = Cl, Br) in an ambient atmosphere by bottom-seeded solution growth (BSSG) method. More importantly, detailed structural determination and refinements, phase transition, band gap, band structure calculations, nonlinear optical (NLO) properties, XPS, thermal properties, and stability of NH(CH3)3SnX3 (X = Cl, Br) single crystals are demonstrated. NH(CH3)3SnCl3 single crystal undergoes reversible structural transformation from orthorhombic space group Cmc21 (no. 36) to monoclinic space group Cc (no. 9) and NH(CH3)3SnBr3 belongs to the orthorhombic space group Pna21 (no. 33) by DSC, single-crystal X-ray diffraction and temperature-dependent SHG measurements, which clarify the former results. These results should pave the way for further studies of these materials in optoelectronics.

  13. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-01

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  14. Field-effect transistors with high mobility and small hysteresis of transfer characteristics based on CH3NH3PbBr3 films

    Science.gov (United States)

    Aleshin, A. N.; Shcherbakov, I. P.; Trapeznikova, I. N.; Petrov, V. N.

    2017-12-01

    Field-effect transistor (FET) structures based on soluble organometallic perovskites, CH3NH3PbBr3, were obtained and their electrical properties were studied. FETs made of CH3NH3PbBr3 films possess current- voltage characteristics (IVs) typical for ambipolar FETs with saturation regime. The transfer characteristics of FETs based on CH3NH3PbBr3 have an insignificant hysteresis and slightly depend on voltage at the source-drain. Mobilities of charge carriers (holes) calculated from IVs of FETs based on CH3NH3PbBr3 at 300 K in saturation and weak field regimes were 5 and 2 cm2/V s, respectively, whereas electron mobility is 3 cm2/V s, which exceeds the mobility value 1 cm2/V s obtained earlier for FETs based on CH3NH3PbI3.

  15. New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH 2 ) 3 )(CH 3 NH 3 ) n Pb n I 3n+1 : Structure, Properties, and Photovoltaic Performance

    Energy Technology Data Exchange (ETDEWEB)

    Soe, Chan Myae Myae; Stoumpos, Constantinos C.; Kepenekian, Mikaël; Traoré, Boubacar; Tsai, Hsinhan; Nie, Wanyi; Wang, Binghao; Katan, Claudine; Seshadri, Ram; Mohite, Aditya D.; Even, Jacky; Marks, Tobin J.; Kanatzidis, Mercouri G. (UCSB); (NWU); (LANL); (CNRS-UMR)

    2017-11-01

    We present the new homologous series (C(NH2)3)(CH3NH3)nPbnI3n+1 (n = 1, 2, 3) of layered 2D perovskites. Structural characterization by single-crystal X-ray diffraction reveals that these compounds adopt an unprecedented structure type, which is stabilized by the alternating ordering of the guanidinium and methylammonium cations in the interlayer space (ACI). Compared to the more common Ruddlesden–Popper (RP) 2D perovskites, the ACI perovskites have a different stacking motif and adopt a higher crystal symmetry. The higher symmetry of the ACI perovskites is expressed in their physical properties, which show a characteristic decrease of the bandgap with respect to their RP perovskite counterparts with the same perovskite layer thickness (n). The compounds show a monotonic decrease in the optical gap as n increases: Eg = 2.27 eV for n = 1 to Eg = 1.99 eV for n = 2 and Eg = 1.73 eV for n = 3, which show slightly narrower gaps compared to the corresponding RP perovskites. First-principles theoretical electronic structure calculations confirm the experimental optical gap trends suggesting that the ACI perovskites are direct bandgap semiconductors with wide valence and conduction bandwidths. To assess the potential of the ACI perovskites toward solar cell applications, we studied the (C(NH2)3)(CH3NH3)3Pb3I10 (n = 3) compound. Compact thin films from the (C(NH2)3)(CH3NH3)3Pb3I10 compound with excellent surface coverage can be obtained from the antisolvent dripping method. Planar photovoltaic devices from optimized ACI perovskite films yield a power-conversion-efficiency of 7.26% with a high open-circuit voltage of ~1 V and a striking fill factor of ~80%.

  16. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers

    Science.gov (United States)

    Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2017-03-01

    Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH3NH3PbBr3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH3NH3PbBr3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.

  17. Electron paramagnetic resonance of gamma irradiated (CH3)3NHClO4 and CH3NH3ClO4 single crystals

    International Nuclear Information System (INIS)

    Yavuz, Metin; Koeksal, Fevzi

    1999-01-01

    Gamma irradiation damage centers in (CH 3 ) 3 NHClO 4 and CH 3 NH 3 ClO 4 single crystals have been investigated at room temperature by the electron paramagnetic resonance (EPR) technique. It has been found that γ-irradiation produces the (CH 3 ) 3 N + radical in the first, and NH + 3 and ClO 3 radicals in the second compound. The EPR parameters of the observed radicals have been determined and discussed

  18. Formation of simple nitrogen hydrides NH and NH2 at cryogenic temperatures through N + NH3NH + NH2 reaction: dark cloud chemistry of nitrogen.

    Science.gov (United States)

    Nourry, Sendres; Krim, Lahouari

    2016-07-21

    Although NH3 molecules interacting with ground state nitrogen atoms N((4)S) seem not to be a very reactive system without providing additional energy to initiate the chemical process, we show through this study that, in the solid phase, at very low temperature, NH3 + N((4)S) reaction leads to the formation of the amidogen radical NH2. Such a dissociation reaction previously thought to occur exclusively through UV photon or energetic particle irradiation is in this work readily occurring just by stimulating the mobility of N((4)S)-atoms in the 3-10 K temperature range in the solid sample. The N((4)S)-N((4)S) recombination may be the source of metastable molecular nitrogen N2(A), a reactive species which might trigger the NH3 dissociation or react with ground state nitrogen atoms N((4)S) to form excited nitrogen atoms N((4)P/(2)D) through energy transfer processes. Based on our obtained results, it is possible to propose reaction pathways to explain the NH2 radical formation which is the first step in the activation of stable species such as NH3, a chemical induction process that, in addition to playing an important role in the origin of molecular complexity in interstellar space, is known to require external energy supplies to occur in the gas phase.

  19. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH 2CH=NH 2SnI 3and Related Systems

    Science.gov (United States)

    Mitzi, D. B.; Liang, K.

    1997-12-01

    Combining concentrated hydriodic acid solutions of tin(II) iodide and formamidine acetate in an inert atmosphere results in the precipitation of a new conducting organic-inorganic compound, NH 2CH=NH 2SnI 3, which at room temperature adopts a cubic perovskite structure. The lattice constant for NH 2CH=NH 2SnI 3is found to be a=6.316(1) Å, which is approximately 1.2% larger than that for the isostructural compound CH 3NH 3SnI 3. The electrical resistivity of a pressed pellet of the new compound exhibits semimetallic temperature dependence from 10 to 300 K, with evidence of a structural transition at approximately 75 K. NH 2CH=NH 2SnI 3begins to slowly decompose in an inert atmosphere at temperatures as low as 200°C, with bulk decomposition/melting occurring above 300°C. The properties of the formamidinium-based perovskite are compared with those of the related cubic (at room temperature) perovskite CH 3NH 3SnI 3and the mixed-cation system (CH 3NH 3) 1- x(NH 2CH=NH 2) xSnI 3.

  20. LPG and NH3 sensing characteristics of DC electrochemically deposited Co3O4 films

    Science.gov (United States)

    Shelke, P. N.; Khollam, Y. B.; Gunjal, S. D.; Koinkar, P. M.; Jadkar, S. R.; Mohite, K. C.

    2015-03-01

    Present communication reports the LPG and NH3 sensing properties of Co3O4 films prepared on throughly cleaned stainless steel (SS) and copper (CU) substrates by using DC electrochemical deposition method followed by air annealing at 350°C/2 h. The resultant films are characterized by using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The LPG and NH3 gas sensing properties of these films are measured at room temperature (RT) by using static gas sensing system at different concentrations of test gas ranging from 25 ppm to 350 ppm. The XRD and Raman spectroscopy studies clearly indicated the formation of pure cubic spinel Co3O4 in all films. The LPG and NH3 gas sensing properties of films showed (i) the increase in sensitivity factor (S.F.) with gas concentrations and (ii) more sensibility to LPG as compared to NH3 gas. In case of NH3 gas (conc. 150 ppm) and LPG gas (conc. 60 ppm) sensing, the maximum S.F. = 270 and 258 are found for the films deposited on CU substrates, respectively. For all films, the response time (3-5 min.) is found to be much higher than the recovery time (30-50 sec). For all films, the response and recovery time are found to be higher for LPG as compared to NH3 gas. Further, repeatability-reproducibility in gas sensing properties is clearly noted by analysis of data for number of cycles recorded for all films from different set of depositions.

  1. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review

    International Nuclear Information System (INIS)

    Krupa, S.V.

    2003-01-01

    A review of atmospheric ammonia (NH 3 ) and ammonium (NH 4 + ) deposition and their effects on plants. - At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH 3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH 3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH 3 can result in visible foliar injury on vegetation. NH 3 is deposited rapidly within the first 4-5 km from its source. However, NH 3 is also converted in the atmosphere to fine particle NH 4 + (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH 3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH 3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH 3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO 2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH 3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH 3 with other air pollutants such as all-pervasive O 3 or

  2. X-ray and NQR studies of bromoindate(III) complexes. [C2H5NH3]4InBr7, [C(NH2)3]3InBr6, and [H3NCH2C(CH3)2CH2NH3]InBr5

    International Nuclear Information System (INIS)

    Iwakiri, Takeharu; Ishihara, Hideta; Terao, Hiromitsu; Lork, Enno; Gesing, Thorsten M.

    2017-01-01

    The crystal structures of [C 2 H 5 NH 3 ] 4 InBr 7 (1), [C(NH 2 ) 3 ] 3 InBr 6 (2), and [H 3 NCH 2 C(CH 3 ) 2 CH 2 NH 3 ]InBr 5 (3) were determined at 100(2) K: monoclinic, P2 1 /n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2 1 2 1 2 1 , a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr 6 ] 3- ion and a Br - ion. The structure of 2 contains three different isolated octahedral [InBr 6 ] 3- ions. The structure of 3 has a corner-shared double-octahedral [In 2 Br 11 ] 5- ion and an isolated tetrahedral [InBr 4 ] - ion. The 81 Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The 81 Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr 6 ] 3- of 1 and for [In 2 Br 11 ] 5- and [InBr 4 ] - of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of 81 Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  3. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4(+)), nitrate (NO3(-)), and phosphate (PO4(3-)).

    Science.gov (United States)

    Wang, Zhanghong; Guo, Haiyan; Shen, Fei; Yang, Gang; Zhang, Yanzong; Zeng, Yongmei; Wang, Lilin; Xiao, Hong; Deng, Shihuai

    2015-01-01

    A series of biochars were prepared by pyrolyzing oak sawdust with/without LaCl3 involvement at temperature of 300-600 °C, and approximate and ultimate analyses were carried out to check their basic characteristics. Meanwhile, the releases of readily soluble NH4(+), NO3(-) and PO4(3-) from biochars and the adsorption of NH4(+), NO3(-) and PO4(3-) by biochars were investigated. Results indicated that the involvement of LaCl3 in pyrolysis could advance the temperature of maximum mass loss by 10 °C compared with oak sawdust (CK), and potentially promoted biochar yield. Overall, the releases of readily soluble NH4(+), NO3(-) and PO4(3-) from biochars were negatively related to pyrolysis temperature, and the releases were greatly weakened by La-biochars. Additionally, the adsorption to NH4(+) can be promoted by the biochars produced at low temperature. On the contrary, the NO3(-) adsorption can be improved by increasing pyrolysis temperature. The highest PO4(3-) adsorption was achieved by the biochars produced at 500 °C. According to the results of adsorption isotherms, the maximum adsorption capacity of NH4(+), NO3(-) and PO4(3-) can be significantly promoted by 1.9, 11.2, and 4.5 folds using La-biochars. Based on the observations of FT-IR, SEM-EDS, and surface functional groups, the improvement of NH4(+) adsorption was potentially associated with the existing acidic function groups (phenolic-OH and carboxyl C=O). The increased basic functional groups on La-biochars were beneficial to improve NO3(-) and PO4(3-) adsorption. Besides, PO4(3-) adsorption was also potentially related to the formed La2O3. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    Science.gov (United States)

    Khazeni, Naasser

    This study explores the potential of Zn(NH3)(CO3) for selective CO2 separation. It develops a novel, highly controllable, single-pot synthesis approach based on urea hydrolysis and solvothermal aging to increase the feasibility of synthesizing Zn(NH3)(CO3), determines the structure of Zn(NH3)(CO3) in detail through single crystal X-ray diffraction and powder X-ray diffraction analyses, and performs adsorption analyses for the compound using CO2, N 2, H2, O2, and CH4 as adsorptives. Through adsorptive characterization, a systematic adsorbent selection screening is performed to assess the potential application of Zn(NH3)(CO 3) for adsorptive separation of CO2 from an upstream gas mixture of power generation, hydrogen production, and natural gas industries. Structural analysis shows Zn(NH3)(CO3) to have an inorganic helical framework that consists of a small helix of (ZnOCO) 2 and a large helix of (ZnOCO)4 with two ammines (NH 3) pendant from every other zinc. In terms of adsorption capacity and CO2 selectivity, Zn(NH3)(CO3) adsorbed 0.550 mmole/g CO2 at 293 K and 4500 mmHg, but only 0.047 mmole/g N 2, 0.084 mmole/g H2, 0.207 mmole/g 02, and 0.060 mmole/g CH4 at the same temperature and pressure. This behavior demonstrates considerable equilibrium selectivities - 36, 31, 63, and 11 - for separating CO2 from CH4, CO2 from H 2, CO2 from N2, and CO2 from 02, respectively. During adsorption, the pendant ammines act as the gates of check-valves: applied pressure opens the gates for adsorption; and during desorption, the gates are closed, trapping the adsorbates, until a reduction of pressure to near-atmospheric levels. Therefore, Zn(NH3)(CO3) exhibits low-pressure H3 or H4 hysteresis, indicating that the Zn(NH3)(CO3) framework can achieve gas storage at near-atmospheric pressures. Additionally, the compound proves structurally stable, with an adsorption decrease of 0.8% after 20 adsorption/desorption cycles - a factor that, considered with the other characteristics of Zn(NH

  5. Crystal structure of (NH4)2[Fe(II) 5(HPO3)6], a new open-framework phosphite.

    Science.gov (United States)

    Berrocal, Teresa; Mesa, Jose Luis; Larrea, Edurne; Arrieta, Juan Manuel

    2014-11-01

    Di-ammonium hexa-phosphito-penta-ferrate(II), (NH4)2[Fe5(HPO3)6], was synthesized under mild hydro-thermal conditions and autogeneous pressure, yielding twinned crystals. The crystal structure exhibits an [Fe(II) 5(HPO3)6](2-) open framework with NH4 (+) groups as counter-cations. The anionic skeleton is based on (001) sheets of [FeO6] octa-hedra (one with point-group symmetry 3.. and one with .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å in which the disordered NH4 (+) cations are located. The IR spectrum shows vibrational bands typical for phosphite and ammonium groups.

  6. Synthesis and properties of ternary (K, NH{sub 4}, H{sub 3}O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sandy Jones, F.; Bigham, Jerry M. [School of Environment and Natural Resources, Ohio State University, 2021 Coffey Road, Columbus, OH 43210 (United States); Gramp, Jonathan P. [Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 (United States); Tuovinen, Olli H., E-mail: tuovinen.1@osu.edu [Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 (United States)

    2014-11-01

    The purpose of this study was to synthesize a series of solid solution jarosites by biological oxidation of ferrous iron at pH 2.2–4.4 and ambient temperature in media containing mixtures of K{sup +} (0, 1, 4, 6, 12, 31 mM) and NH{sub 4}{sup +} (6.1, 80, 160, 320 mM). The starting material was a liquid medium for Acidithiobacillus ferrooxidans comprised of 120 mM FeSO{sub 4} solution and mineral salts at pH 2.2. Following inoculation with A. ferrooxidans, the cultures were incubated in shake flasks at 22 °C. As bacteria oxidized ferrous iron, ferric iron hydrolyzed and precipitated as jarosite-group minerals (AFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) and/or schwertmannite (idealized formula Fe{sub 8}O{sub 8}(OH){sub 6}(SO{sub 4})·nH{sub 2}O). The precipitates were characterized by X-ray diffraction (XRD), elemental analysis, and Munsell color. Schwertmannite was the dominant mineral product at low combinations of K{sup +} (≤ 4 mM) and NH{sub 4}{sup +} (≤ 80 mM) in the media. At higher single or combined concentrations, yellowish jarosite phases were produced, and Munsell hue provided a sensitive means of detecting minor schwertmannite in the oxidation products. Although the hydrated ionic radii of K{sup +} and NH{sub 4}{sup +} are similar, K{sup +} greatly facilitated the formation of a jarosite phase compared to NH{sub 4}{sup +}. Unit cell and cell volume calculations from refinements of the powder XRD patterns indicated that the jarosite phases produced were mostly ternary (K, NH{sub 4}, H{sub 3}O)-solid solutions that were also deficient in structural Fe, especially at low NH{sub 4} contents. Thus, ferric iron precipitation from the simulated bioleaching systems yielded solid solutions of jarosite with chemical compositions that were dependent on the relative concentrations of K{sup +} and NH{sub 4}{sup +} in the synthesis media. No phase separations involving discrete, end-member K-jarosite or NH{sub 4}-jarosite were detected in the un-aged precipitates

  7. Interfacial Charge-Carrier Trapping in CH3NH3PbI3-Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy.

    Science.gov (United States)

    Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-06-02

    The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

  8. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review.

    Science.gov (United States)

    Krupa, S V

    2003-01-01

    At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4

  9. CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition

    Science.gov (United States)

    Yao, Zhibo; Wang, Wenli; Shen, Heping; Zhang, Ye; Luo, Qiang; Yin, Xuewen; Dai, Xuezeng; Li, Jianbao; Lin, Hong

    2017-12-01

    Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.

  10. Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4+ Toxicity in Plant Roots1[C][W

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T.; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J.

    2013-01-01

    Futile transmembrane NH3/NH4+ cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4+ toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4+) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope 13N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4+ ion. Influx of 13NH3/13NH4+, which exceeded 200 µmol g–1 h–1, was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4+), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g–1 h–1). Efflux of 13NH3/13NH4+ responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions. PMID:24134887

  11. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3. The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  12. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods: 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3 .The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  13. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H(-)(NH3) and NH4 (.).

    Science.gov (United States)

    Hu, Qichi; Song, Hongwei; Johnson, Christopher J; Li, Jun; Guo, Hua; Continetti, Robert E

    2016-06-28

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4 (-) represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H(-)(NH3) ion-dipole complex and the NH4 (-) DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  14. Room temperature solution processed low dimensional CH3NH3PbI3 NIR detector

    Science.gov (United States)

    Besra, N.; Paul, T.; Sarkar, P. K.; Thakur, S.; Sarkar, S.; Das, A.; Chanda, K.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Metal halide perovskites have recently drawn immense research interests among the worldwide scientific community due to their excellent light harvesting capabilities and above all, cost effectiveness. These new class of materials have already been used as efficient optoelectronic devices e.g. solar cells, photo detectors, etc. Here in this work, room temperature NIR (near infra red) response of organic-inorganic lead halide perovskite CH3NH3PbI3 (Methylammonium lead tri iodide) nanorods has been studied. A very simple solution process technique has been adopted to synthesize CH3NH3PbI3 nanostructures at room temperature. The NIR exposure upon the sample resulted in a considerable hike in its dark current with very good responsivity (0.37 mA/W). Along with that, a good on-off ratio (41.8) was also obtained when the sample was treated under a pulsed NIR exposure with operating voltage of 2 V. The specific detectivity of the device came in the order of 1010 Jone.

  15. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    Science.gov (United States)

    Esmaili, Sasan

    2015-08-01

    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  16. Atmospheric NH3 as plant nutrient: A case study with Brassica oleracea

    International Nuclear Information System (INIS)

    Castro, Ana; Stulen, Ineke; De Kok, Luit J.

    2008-01-01

    Nutrient-sufficient and nitrate- or sulfate-deprived plants of Brassica oleracea L. were exposed to 4 μl l -1 NH 3 (2.8 mg m -3 ), and effects on biomass production and allocation, N-compounds and root morphology investigated. Nitrate-deprived plants were able to transfer to atmospheric NH 3 as nitrogen source, but biomass allocation in favor of the root was not changed by exposure to NH 3 . NH 3 reduced the difference in total root length between nitrate-sufficient and nitrate-deprived plants, and increased the specific root length in the latter. The internal N status, therefore, might be involved in controlling root length in B. oleracea. Root surface area, volume and diameter were unaffected by both nitrate deprivation and NH 3 exposure. In sulfate-deprived plants an inhibitory effect of NH 3 on root morphological parameters was observed. These plants, therefore, might be more susceptible to atmospheric NH 3 than nitrate-deprived plants. The relevance of the present data under field conditions is discussed. - Atmospheric NH 3 can serve as sole N source for Brassica oleracea, but does not change root biomass allocation in nitrate-deprived plants

  17. Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater.

    Science.gov (United States)

    Sun, Haijun; Min, Ju; Zhang, Hailin; Feng, Yanfang; Lu, Kouping; Shi, Weiming; Yu, Min; Li, Xuewen

    2017-07-11

    Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH 3 ) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha -1 from either urea or N-rich wastewater. One treatment received 10 t ha -1 biochar with the basal fertilization, and the other received same total amount of biochar but split applied with the three split N applications with same ratio as N fertilizer split ratio (40%, 30% and 30%). Results showed that N leaching loads were 4.20-6.22 kg ha -1 . Biochar one-time application reduced N leaching by 23.1%, and biochar split application further reduced N leaching by 32.4%. Total NH 3 volatilization loss was 15.5-24.5 kg ha -1 . Biochar one-time application did not influence the NH 3 volatilization, but biochar split application stimulated the cumulative NH 3 volatilization by 57.7%. Both biochar treatments had no influence on NUE and rice grain yield. In conclusion, biochar application mode indeed influences the N leaching and NH 3 volatilization in rice paddy soils, and biochar one-time application should be recommended for reducing N leaching without increasing NH 3 volatilization.

  18. mer-Triammine trifluorido vanadium(III), mer-[VF{sub 3}(NH{sub 3}){sub 3}]. Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Woidy, Patrick [Technische Univ. Muenchen, Garching (Germany). Zentrale Technisch-Wissenschaftliche Betriebseinheit Radiochemie Muenchen RCM; Kraus, Florian [Marburg Univ. (Germany). Anorganische und Fluorchemie

    2015-07-01

    Vanadium trifluoride reacts with dry liquid ammonia under the formation of lilac plate-shaped crystals of mer-triammine trifluorido vanadium(III) (1), mer-[VF{sub 3}(NH{sub 3}){sub 3}]. Single-crystal X-ray analysis was carried out at low temperature to elucidate the structure. The compound crystallizes in the monoclinic space group P2{sup 1}/c with a = 5.7284(4), b = 9.2033(5), c = 10.5271(6) Aa, beta = 91.795(6)°, and V = 554.72(6) Aa{sup 3} at 123 K with Z = 4. The discrete [VF{sub 3}(NH{sub 3}){sub 3}] molecules are interconnected by hydrogen bonds.

  19. Moessbauer study of 57Fe isolated in NH3 and NH3/Xe matrices

    International Nuclear Information System (INIS)

    Saitovitch, E.M.B.; Litterst, F.J.; Micklitz, H.

    1981-01-01

    Moessbauer studies on 57 Fe isolated in solid ammonia and ammonia/xenon mixtures were perfomed at 4.2 K and 77 K. They show clearly that atomic iron reacts only with one ammonia molecule forming FeNH 3 which is stable in an ammonia matrix up to 77 K. In addition a compound is formed which is attributed to an iron (II) hexammine. (Author) [pt

  20. Room temperature atomic layer deposited Al2O3 on CH3NH3PbI3 characterized by synchrotron-based X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kot, Małgorzata; Das, Chittaranjan; Henkel, Karsten; Wojciechowski, Konrad; Snaith, Henry J.; Schmeisser, Dieter

    2017-11-01

    An ultrathin Al2O3 film deposited on methylammonium lead triiodide (CH3NH3PbI3) perovskite has the capability to suppress the carrier recombination process and improve the perovskite solar cells efficiency and stability. However, annealing at temperatures higher than 85 °C degrades the CH3NH3PbI3 perovskite film. The X-ray photoelectron spectroscopy study performed in this work indicates that it is possible to grow Al2O3 by atomic layer deposition on the perovskite at room temperature, however, besides pure Al2O3 some OH groups are found and the creation of lead and iodine oxides at the Al2O3/CH3NH3PbI3 interface takes place.

  1. Urban NH3 levels and sources in six major Spanish cities.

    Science.gov (United States)

    Reche, Cristina; Viana, Mar; Karanasiou, Angeliki; Cusack, Michael; Alastuey, Andrés; Artiñano, Begoña; Revuelta, M Aranzazu; López-Mahía, Purificación; Blanco-Heras, Gustavo; Rodríguez, Sergio; Sánchez de la Campa, Ana M; Fernández-Camacho, Rocío; González-Castanedo, Yolanda; Mantilla, Enrique; Tang, Y Sim; Querol, Xavier

    2015-01-01

    A detailed spatial and temporal assessment of urban NH3 levels and potential emission sources was made with passive samplers in six major Spanish cities (Barcelona, Madrid, A Coruña, Huelva, Santa Cruz de Tenerife and Valencia). Measurements were conducted during two different periods (winter-autumn and spring-summer) in each city. Barcelona showed the clearest spatial pattern, with the highest concentrations in the old city centre, an area characterised by a high population density and a dense urban architecture. The variability in NH3 concentrations did not follow a common seasonal pattern across the different cities. The relationship of urban NH3 with SO2 and NOX allowed concluding on the causes responsible for the variations in NH3 levels between measurement periods observed in Barcelona, Huelva and Madrid. However, the factors governing the variations in A Coruña, Valencia and Santa Cruz de Tenerife are still not fully understood. This study identified a broad variability in NH3 concentrations at the city-scale, and it confirms that NH3 sources in Spanish urban environments are vehicular traffic, biological sources (e.g. garbage containers), wastewater treatment plants, solid waste treatment plants and industry. The importance of NH3 monitoring in urban environments relies on its role as a precursor of secondary inorganic species and therefore PMX. Further research should be addressed in order to establish criteria to develop and implement mitigation strategies for cities, and to include urban NH3 sources in the emission inventories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Improvement of photovoltaic performance of the inverted planar perovskite solar cells by using CH3NH3PbI3-xBrx films with solvent annealing

    Science.gov (United States)

    Wang, Shan; Zhang, Weijia; Ma, Denghao; Jiang, Zhaoyi; Fan, Zhiqiang; Ma, Qiang; Xi, Yilian

    2018-01-01

    In this paper, the CH3NH3PbI3-xBrx films with various Br-doping contents were successfully prepared by solution processed deposition and followed by annealing process. This method simultaneously modified the morphology and composition of the CH3NH3PbI3 film. The effects of annealing treatment of CH3NH3PbI3-xBrx films under N2 and DMSO conditions on the microstructure of films and photoelectric properties of the solar cells were systematically investigated. The relationship of the component ratio of RBr/I= CH3NH3PbI3-xBrx/CH3NH3PbI3 in the resulting perovskite versus CH3NH3Br concentration also was explored. The results revealed that the CH3NH3PbI3-xBrx films annealed under DMSO exhibited increased grain sizes, enhanced crystallinity, enlarged bandgap and reduced defect density compared with that of the N2 annealing. It also was found that the RBr/I linearly increased in the resulting perovskite with the increased of CH3NH3Br concentration in the methylammonium halide mixture solutions. Furthermore, the photovoltaic performances of devices fabricated using DMSO precursor solvent were worse than that of DMF under N2 annealing atmosphere. When CH3NH3Br concentration was 7.5 mg ml-1, the planar perovskite solar cell based on CH3NH3PbI3-xBrx annealed under DMSO showed the best efficiency of 13.7%.

  3. Effects of CuBr addition to CH3NH3PbI3(Cl) perovskite photovoltaic devices

    Science.gov (United States)

    Oku, Takeo; Ohishi, Yuya; Tanaka, Hiroki

    2018-01-01

    Effects of CuBr addition to perovskite CH3NH3PbI3(Cl) precursor solutions on photovoltaic properties were investigated. The CH3NH3Pb(Cu)I3(Cl,Br)-based photovoltaic devices were fabricated by a spin-coating technique, and the microstructures of the devices were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Current density-voltage characteristics were improved by a small amount of CuBr addition, which resulted in improvement of the conversion efficiencies of the devices. The structure analysis showed decrease of unit cell volume and increase of Cu/Br composition by the CuBr addition, which would indicate the Cu/Br substitution at the Pb/I sites in the perovskite crystal, respectively.

  4. Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes

    Science.gov (United States)

    Ito, Yusuke; Kato, Akira; Hirata, Taku; Hirose, Shigehisa

    2014-01-01

    Zebrafish Na+/H+ exchanger 3b (zNHE3b) is highly expressed in the apical membrane of ionocytes where Na+ is absorbed from ion-poor fresh water against a concentration gradient. Much in vivo data indicated that zNHE3b is involved in Na+ absorption but not leakage. However, zNHE3b-mediated Na+ absorption has not been thermodynamically explained, and zNHE3b activity has not been measured. To address this issue, we overexpressed zNHE3b in Xenopus oocytes and characterized its activity by electrophysiology. Exposure of zNHE3b oocytes to Na+-free media resulted in significant decrease in intracellular pH (pHi) and intracellular Na+ activity (aNai). aNai increased significantly when the cytoplasm was acidified by media containing CO2-HCO3− or butyrate. Activity of zNHE3b was inhibited by amiloride or 5-ethylisopropyl amiloride (EIPA). Although the activity was accompanied by a large hyperpolarization of ∼50 mV, voltage-clamp experiments showed that Na+/H+ exchange activity of zNHE3b is electroneutral. Exposure of zNHE3b oocytes to medium containing NH3/NH4+ resulted in significant decreases in pHi and aNai and significant increase in intracellular NH4+ activity, indicating that zNHE3b mediates the Na+/NH4+ exchange. In low-Na+ (0.5 mM) media, zNHE3b oocytes maintained aNai of 1.3 mM, and Na+-influx was observed when pHi was decreased by media containing CO2-HCO3− or butyrate. These results provide thermodynamic evidence that zNHE3b mediates Na+ absorption from ion-poor fresh water by its Na+/H+ and Na+/NH4+ exchange activities. PMID:24401990

  5. Improvement of CH3NH3PbI3 thin film using the additive 1,8-diiodooctane for planar heterojunction perovskite cells

    Science.gov (United States)

    Abdulrahman, Solh; Wang, Chunhua; Cao, Chenghao; Zhang, Chujun; Yang, Junliang; Jiang, Li

    2017-10-01

    The thin-film quality is critical for obtaining high-performance perovskite solar cells (PSCs). The additive 1,8-diiodooctane (DIO) was used to control the morphology and structure of CH3NH3PbI3 perovskite thin films, and planar heterojunction (PHJ) PSCs with an architecture of ITO/PEDOT: PSS/CH3NH3PbI3/PCBM/Al was fabricated. It was found that the DIO played an important role on CH3NH3PbI3 thin-film quality and the performance of PHJ-PSCs. With the optimal volume ratio of 2%, the compact and uniform high-quality CH3NH3PbI3 thin films with enhanced crystallinity and less roughness were achieved, resulting in the great improvement of power conversion efficiency (PCE) from about 4.5% to over 9.0%. The research results indicate that the additive DIO is a simple and effective method to produce high-quality perovskite thin film and accordingly develop high-performance PHJ-PSCs.

  6. Interactions of nickel(II) with histones. Stability and solution structure of complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3.

    Science.gov (United States)

    Bal, W; Lukszo, J; Jezowska-Bojczuk, M; Kasprzak, K S

    1995-01-01

    Nickel(II) compounds are established human carcinogens, but the molecular mechanisms underlying their activity are only partially known. One mechanism may include mediation by nickel of promutagenic oxidative DNA damage that depends on Ni(II) binding to chromatin. To characterize such binding at the histone moiety of chromatin, we synthesized the peptide CH3CO-Cys-Ala-Ile-His-NH2 (L), a model of the evolutionarily conserved motif in histone H3 with expected affinity for transition metals, and evaluated its reactivity toward Ni(II). Combined spectroscopic (UV/vis, CD, NMR) and potentiometric measurements showed that, at physiological pH, mixtures of Ni(II) and L yielded unusual macrochelate complexes, NiL and NiL2, in which the metal cation was bound through Cys and His side chains in a square-planar arrangement. Above pH 9, a NiH-3L complex was formed, structurally analogous to typical square-planar nickel complexes. These complexes are expected to catalyze oxidation reactions, and therefore, coordination of Ni(II) by the L motif in core histone H3 may be a key event in oxidative DNA base damage observed in the process of Ni(II)-induced carcinogenesis.

  7. Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate (PMMA

    Directory of Open Access Journals (Sweden)

    Celline Awino

    2017-08-01

    Full Text Available Studies have shown that perovskites have a high potential of outdoing silicon based solar cells in terms of solar energy conversion, but their rate of degradation is also high. This study reports on improvement on the stability of CH3NH3PbI3 by passivating it with polymethylmethacrylate (PMMA. Structural and electronic properties of CH3NH3PbI3 stabilized by polymethylmethacrylate (PMMA were investigated by varying concentrations of PMMA in the polymer solutions. Stability tests were performed over a period of time using modulated surface photovoltage (SPV spectroscopy, X-ray diffraction (XRD, and photoluminescence (PL measurements. The XRD patterns confirm the tetragonal structure of the deposited CH3NH3PbI3 for every concentration of PMMA. Furthermore, CH3NH3PbI3 coated with 40 mg/mL of PMMA did not show any impurity phase even after storage in air for 43 days. The Tauc gap (ETauc determined on the basis of the in-phase SPV spectra was found in the range from 1.585 to 1.62 eV for the samples stored during initial days, but shifted towards lower energies as the storage time increased. This can be proposed to be due to different chemical reactions between CH3NH3PbI3/PMMA interfaces and air. PL intensity increased with increasing concentration of PMMA except for the perovskite coated with 40 mg/mL of PMMA. PL quenching in the perovskite coated with 40 mg/mL of PMMA can be interpreted as fast electron transfer towards the substrate in the sample. This study shows that, with an optimum concentration of PMMA coating on CH3NH3PbI3, the lifetime and hence stability on electrical and structural behavior of CH3NH3PbI3 is improved.

  8. Dendrimer ligands-capped CH3NH3PbBr3 perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water

    Science.gov (United States)

    Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei

    2018-06-01

    CH3NH3PbBr3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH3NH3PbBr3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH3NH3PbBr3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).

  9. Dendrimer ligands-capped CH3NH3PbBr3 perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water.

    Science.gov (United States)

    Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei

    2018-06-08

    CH 3 NH 3 PbBr 3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH 3 NH 3 PbBr 3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH 3 NH 3 PbBr 3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).

  10. Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx.

    Science.gov (United States)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2014-04-17

    The organic-inorganic hybrid perovskites methylammonium lead iodide (CH3NH3PbI3) and the partially chlorine-substituted mixed halide CH3NH3PbI3-xClx emit strong and broad photoluminescence (PL) around their band gap energy of ∼1.6 eV. However, the nature of the radiative decay channels behind the observed emission and, in particular, the spectral broadening mechanisms are still unclear. Here we investigate these processes for high-quality vapor-deposited films of CH3NH3PbI3-xClx using time- and excitation-energy dependent photoluminescence spectroscopy. We show that the PL spectrum is homogenously broadened with a line width of 103 meV most likely as a consequence of phonon coupling effects. Further analysis reveals that defects or trap states play a minor role in radiative decay channels. In terms of possible lasing applications, the emission spectrum of the perovskite is sufficiently broad to have potential for amplification of light pulses below 100 fs pulse duration.

  11. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3).

    Science.gov (United States)

    Albertí, Francisca M; Rodríguez-Santiago, Luis; Sodupe, Mariona; Mirats, Andrea; Kaitsiotou, Helena; Sanz Miguel, Pablo J; Lippert, Bernhard

    2014-03-17

    Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton

  12. First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1- x I3 mixed perovskites

    Science.gov (United States)

    Huang, H. M.; Zhu, Z. W.; Zhang, C. K.; He, Z. D.; Luo, S. J.

    2018-04-01

    The structural, electronic and magnetic properties of organic-inorganic hybrid mixed perovskites CH3NH3Cr x Pb1- x I3 ( x = 0.25, 0.50, 0.75, 1.00) in cubic, tetragonal and orthorhombic phases have been investigated by first-principles calculation. The results indicate that the tetragonal CH3NH3Cr0.75Pb0.25I3 is a spin gapless semiconductor with Curie temperature of 663 K estimated using mean field approximation. All other CH3NH3Cr x Pb1- x I3 mixed perovskites are half-metallic ferromagnets together with 100% spin polarization, and their total magnetic moment are 4.00, 8.00, 12.00 and 16.00 µB per unit cell for x = 0.25, 0.50, 0.75 and 1.00, respectively. The effect of , and orientation of organic cation CH3NH3 + on the electronic properties of CH3NH3Cr0.50Pb0.50I3 was investigated. The results show that the CH3NH3 + in different orientations have a slight effect on the lattice constants, the energy gap in minority-spin states, half-metallic gap, local magnetic moment, and Curie temperature.

  13. Towards validation of ammonia (NH3) measurements from the IASI satellite

    Science.gov (United States)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2015-03-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  14. THE KINETICS OF NH(4)+ AND NO3(-) UPTAKE BY DOUGLAS-FIR FROM SINGLE N-SOLUTIONS AND FROM SOLUTIONS CONTAINING BOTH NH(4)+ AND NO3(-)

    NARCIS (Netherlands)

    KAMMINGAVANWIJK, C; PRINS, HBA

    The kinetics of NH4+ and NO3- uptake in young Douglas fir trees (Pseudotsuga menziesii [Mirb.] Franco) were studied in solutions, containing either one or both N species. Using solutions containing a single N species, the V(max) of NH4+ uptake was higher than that of NO3- uptake. The K(m) of NH4+

  15. Appropriate NH4+: NO3- ratio improves low light tolerance of mini Chinese cabbage seedlings.

    Science.gov (United States)

    Hu, Linli; Liao, Weibiao; Dawuda, Mohammed Mujitaba; Yu, Jihua; Lv, Jian

    2017-01-23

    In northwest of China, mini Chinese cabbage (Brassica pekinensis) is highly valued by consumers, and is widely cultivated during winter in solar-greenhouses where low light (LL) fluence (between 85 and 150 μmol m -2 s -1 in day) is a major abiotic stress factor limiting plant growth and crop productivity. The mechanisms with which various NH 4 + : NO 3 - ratios affected growth and photosynthesis of mini Chinese cabbage under normal (200 μmol m -2 s -1 ) and low (100 μmol m -2 s -1 ) light conditions was investigated. The four solutions with different ratios of NH 4 + : NO 3 - applied were 0:100, 10:90, 15:85 and 25:75 with the set up in a glasshouse in hydroponic culture. The most appropriate NH 4 + : NO 3 - ratio that improved the tolerance of mini Chinese cabbage seedlings to LL was found in our current study. Under low light, the application of NH 4 + : NO 3 - (10:90) significantly stimulated growth compared to only NO 3 - by increasing leaf area, canopy spread, biomass accumulation, and net photosynthetic rate. The increase in net photosynthetic rate was associated with an increase in: 1) maximum and effective quantum yield of PSII; 2) activities of Calvin cycle enzymes; and 3) levels of mRNA relative expression of several genes involved in Calvin cycle. In addition, glucose, fructose, sucrose, starch and total carbohydrate, which are the products of CO 2 assimilation, accumulated most in the cabbage leaves that were supplied with NH 4 + : NO 3 - (10:90) under LL condition. Low light reduced the carbohydrate: nitrogen (C: N) ratio while the application of NH 4 + : NO 3 - (10:90) alleviated the negative effect of LL on C: N ratio mainly by increasing total carbohydrate contents. The application of NH 4 + :NO 3 - (10:90) increased rbcL, rbcS, FBA, FBPase and TK expression and/or activities, enhanced photosynthesis, carbohydrate accumulation and improved the tolerance of mini Chinese cabbage seedlings to LL. The results of this study would provide

  16. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  17. Infrared spectra of the ammonium ion in ammonium metavanadate NH 4VO 3

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.; Range, K.-J.; Eglmeier, C.

    The ND stretching modes of isotopically dilute NH 3D + ions in NH 4VO 3 are in agreement with the predicted splitting into C s, C s and C1(2) components under C s site symmetry for the NH +4 ion. The three bands observed represent the three NH bonding distances in the crystal, and the position, shape and low temperature behaviour of each band confirms the existence of two types of hydrogen bonding in NH 4VO 3. The low temperature infrared modes of NH +4 and ND +4 in NH 4VO 3 and ND 4VO 3, respectively, can be assigned under space group Pbcm. Temperature dependence of these modes also reflects the presence of both normal and bifurcated hydrogen bonds in NH 4VO 3.

  18. Wet Mechanochemical Processing of Celestine using (NH42CO3

    Directory of Open Access Journals (Sweden)

    Deniz Bingöl

    2017-06-01

    Full Text Available In this study, traditional (univariate method of processing to the wet mechanochemical treatment were applied to obtain both SrCO3 and (NH42SO4 from celestite (SrSO4-(NH42CO3-H2O mixtures in a planetary ball mill. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis were used to analyze products formed during wet milling. A hydrometallurgical process was carried out to examine milling time, ball to grinding material mass ratio, (NH42CO3 to SrSO4 mole ratio and rotational speed of the mill in a planetary mill. Under optimum conditions, a conversion approaching 100% of SrCO3 was obtained.

  19. Effects of atmospheric ammonia (NH{sub 3}) on terrestrial vegetation: a review

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, S.V

    2003-07-01

    A review of atmospheric ammonia (NH{sub 3}) and ammonium (NH{sub 4}{sup +}) deposition and their effects on plants. - At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH{sub 3} (ammonia) is considered to be the foremost. The major sources for atmospheric NH{sub 3} are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH{sub 3} can result in visible foliar injury on vegetation. NH{sub 3} is deposited rapidly within the first 4-5 km from its source. However, NH{sub 3} is also converted in the atmosphere to fine particle NH{sub 4}{sup +} (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH{sub 3} on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH{sub 3} is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH{sub 3} are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO{sub 2} (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH{sub 3} on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint

  20. [Effect of NH4(+) -N/NO3(-)-N ratio in applied supplementary fertilizer on nitrogen metabolism and main chemical composition of Pinellia ternata].

    Science.gov (United States)

    Hu, Long-Jiao; Wang, Kang-Cai; Li, Can-Wen

    2013-07-01

    To study the effect of nitrogen forms on nitrogen metabolism and main chemical composition of Pinellia ternate. Through the soilless cultivation experiment and based at the same nitrogen level and different NH4(+) -N/NO3(-) -N ratios, nitrate reductase (NR) activity, glutamine synthetase (GS) activity, the content of nitrate nitrogen and ammonium nitrogen in different parts of P. ternate were determined. The contents of total alkaloid, free total organic acids and guanosine in the tuber were determined. The yield of bulbil and tuber was calculated. The test results showed that, with the NH4(+) -N/NO3(-) -N ratio increasing, the activity of nitrate reductase decreased, the content of nitrate nitrogen in the leaves, petioles and tuber increasing initially, then decreased, and the content of nitrate nitrogen in the root decreased. Meanwhile, with the NH4(+) -N/NO3(-) -N ratio increasing, the activity of glutamine synthetase in the leaves, petioles and root increased, the activity of glutamine synthetase in the tuber increasing initially, then decreased. The contents of ammonium nitrogen in the leaves, tuber and root increased initially, then decreased, and the contents of ammonium nitrogen in the petioles increased with the NH4(+)(-N/NO3(-)-N ratio increasing. The yield of bulbil and tuber were the highest at the NH4(+)-N/NO3(-) -N ratio of 75: 25. The content of total alkaloid and guanosine in the tuber were the highest at the NH4(+)-N/NO3(-) -N ratio of 0: 100, and the contents were 0.245% and 0.0197% respectively. With the NH4(+)-N/NO3(-) -N ratio of 50: 50, the content of free total organic acids was the highest, it reached 0.7%, however, the content of free total organic acids was the lowest at the NH4(+) -N/NO3(-) -N ratio of 0: 100. Nitrogen fertilization significant influences the nitrogen metabolism, the yield and main chemical composition of P. ternate.

  1. NO3-/NH4+ proportions affect cadmium bioaccumulation and tolerance of tomato.

    Science.gov (United States)

    Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio; de Souza Junior, João Cardoso; Azevedo, Ricardo Antunes

    2018-05-01

    With the growth of the world population, cadmium (Cd) concentration in the environment has increased considerably as a result of human activities such as foundry, battery disposal, mining, application of fertilizers containing toxic elements as impurities, and disposal of metal-containing waste. Higher plants uptake N as ammonium (NH 4 + ), nitrate (NO 3 - ), and many other water-soluble compounds such as urea and amino acids, and nourishing plants with N, providing part of it as NH 4 + , is an interesting alternative to the supply of this nutrient in the exclusive form of NO 3 - under Cd toxicity. The objective was to evaluate the influence of NO 3 - /NH 4 + proportions on the development and tolerance of tomato plants grown under the presence of Cd in the culture medium. The experiment was conducted in a completely randomized block design in a 3 × 3 factorial arrangement consisting of three Cd rates (0, 50, and 100 μmol L -1 ) and three NO 3 - /NH 4 + proportions (100/0, 70/30, and 50/50) in the nutrient solution. To this end, we quantified the responses of the antioxidant enzymatic system and productive and functional changes in Solanum lycopersicum var. esculentum (Calabash Rouge). Shoot biomass production decreased with the maximum Cd rate (100 μmol L -1 ) tested in the growth medium, whereas the NO 3 - /NH 4 + proportions and other Cd rates did not significantly influence this variable. The lowest SPAD values were observed at the 100/0 NO 3 - /NH 4 + proportion and in plants exposed to Cd. The largest accumulation of the metal occurred in the shoots at the NO 3 - /NH 4 + proportion of 70/30 and at 100 μmol L -1 Cd and in the roots at 100/0 NO 3 - /NH 4 + and with 50 and 100 μmol L -1 Cd. The concentration and accumulation of NO 3 - were highest at the NO 3 - /NH 4 + proportion of 100/0 in the shoots and at 50/50 NO 3 - /NH 4 + in the roots, whereas for NH 4 + , values were higher as the proportion of N supplied in the form of NH 4 + was

  2. CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector

    KAUST Repository

    Maculan, Giacomo; Sheikh, Arif D.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; Haque, Mohammed; Banavoth, Murali; Alarousu, Erkki; Mohammed, Omar F.; Wu, Tao; Bakr, Osman

    2015-01-01

    a new method of sizeable CH3NH3PbCl3 single crystal growth based on retrograde solubility behavior of hybrid perovskites. We show, for the first time, the energy band structure, charge-carrier recombination and transport properties of single crystal

  3. Mechanical response of CH3NH3PbI3 nanowires

    Science.gov (United States)

    Ćirić, L.; Ashby, K.; Abadie, T.; Spina, M.; Duchamp, M.; Náfrádi, B.; Kollár, M.; Forró, L.; Horváth, E.

    2018-03-01

    We report a systematic study of the mechanical response of methylammonium lead triiodide CH3NH3PbI3 nanowires by employing bending measurements using atomic force microscope on suspended wires over photo-lithographically patterned channels. Force-deflection curves measured at room temperature give a Young's modulus between 2 and 14 GPa. This broad range of values is attributed to the variations in the microcrystalline texture of halide perovskite nanowires. The mechanical response of a highly crystalline nanowire is linear with force and has a brittle character. The braking modulus of 48 ± 20 MPa corresponds to 100 μm of radius of curvature of the nanowires, rendering them much better structures for flexible devices than spin coated films. The measured moduli decrease rapidly if the NW is exposed to water vapor.

  4. Rotational spectrum of the NH3–He van der Waals complex

    Directory of Open Access Journals (Sweden)

    Surin L.

    2017-01-01

    Full Text Available The interaction between ammonia and helium has attracted considerable interest over many years, partly because of the observation of interstellar ammonia. The rate coefficients of NH3–He scattering are an important ingredient for numerical modeling of astrochemical environments. Another, though quite different application in which the NH3–He interaction can play an important role is the doping of helium clusters with NH3 molecules to perform high-resolution spectroscopy. Such experiments are directed on the detection of non-classical response of molecular rotation in helium clusters addressing fundamental questions related to the microscopic nature of superfluidity. High-resolution spectroscopy on the NH3–He complex is an important tool for increasing our understanding of intermolecular forces between NH3 and He.

  5. CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector

    KAUST Repository

    Maculan, Giacomo

    2015-09-02

    Single crystals of hybrid perovskites have shown remarkably improved physical properties compared to their polycrystalline film counterparts, underscoring their importance in the further development of advanced semiconductor devices. Here we present a new method of sizeable CH3NH3PbCl3 single crystal growth based on retrograde solubility behavior of hybrid perovskites. We show, for the first time, the energy band structure, charge-carrier recombination and transport properties of single crystal CH3NH3PbCl3. The chloride-based perovskite crystals exhibit trap-state density, charge carriers concentration, mobility and diffusion length comparable with the best quality crystals of methylammonium lead iodide or bromide perovskites reported so far. The high quality of the crystal along with its suitable optical bandgap enabled us to design and build an efficient visible-blind UV-photodetector, demonstrating the potential of this material to be employed in optoelectronic applications.

  6. Structural study on cubic-tetragonal transition of CH3NH3PbI3

    International Nuclear Information System (INIS)

    Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko

    2002-01-01

    The cubic-tetragonal phase transition of CH 3 NH 3 PbI 3 was investigated by single crystal X-ray diffractometry. The crystal structure was refined at five temperatures in the tetragonal phase. The PbI 6 octahedron rotates around the c-axis alternatively to construct the SrTiO 3 -type tetragonal structure. A methylammonium ion is partially ordered; 24 disordered states in the cubic phase are reduced to 8. With decreasing temperature, the rotation angle of the octahedron increases monotonically, which indicates it is an order parameter of the cubic-tetragonal transition. (author)

  7. Carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells studied by electroluminescence spectroscopy

    Science.gov (United States)

    Handa, Taketo; Okano, Makoto; Tex, David M.; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-02-01

    Organic-inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I and Br), are considered as promising candidates for emerging thin-film photovoltaics. For practical implementation, the degradation mechanism and the carrier dynamics during operation have to be clarified. We investigated the degradation mechanism and the carrier injection and recombination processes in perovskite CH3NH3PbI3 solar cells using photoluminescence (PL) and electroluminescence (EL) imaging spectroscopies. By applying forward bias-voltage, an inhomogeneous distribution of the EL intensity was clearly observed from the CH3NH3PbI3 solar cells. By comparing the PL- and EL-images, we revealed that the spatial inhomogeneity of the EL intensity is a result of the inhomogeneous luminescence efficiency in the perovskite layer. An application of bias-voltage for several tens of minutes in air caused a decrease in the EL intensity and the conversion efficiency of the perovskite solar cells. The degradation mechanism of perovskite solar cells under bias-voltage in air is discussed.

  8. O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells

    Institute of Scientific and Technical Information of China (English)

    En-Dong Jia; Xi Lou; Chun-Lan Zhou; Wei-Chang Hao; Wen-Jing Wang

    2017-01-01

    We demonstrate a simple and fast post-deposition treatment with high process compatibility on the hole transport material (HTM) Spiro-MeOTAD in vapor-assisted solution processed methylammonium lead triiodide (CH3NH3PbI3)-based solar cells.The prepared Co-doped p-type Spiro-MeOTAD films are treated by O3 at room temperature for 5 min,10 min,and 20 min,respectively,prior to the deposition of the metal electrodes.Compared with the traditional oxidation of Spiro-MeOTAD films overnight in dry air,our fast O3 treatment of HTM at room temperature only needs just 10 min,and a relative 40.3% increment in the power conversion efficiency is observed with respect to the result of without-treated perovskite solar cells.This improvement of efficiency is mainly attributed to the obvious increase of the fill factor and short-circuit current density,despite a slight decrease in the open-circuit voltage.Ultraviolet photoelectron spectroscopy (UPS) and Hall effect measurement method are employed in our study to determine the changes of properties after O3 treatment in HTM.It is found that after the HTM is exposed to O3,its p-type doping level is enhanced.The enhancement of conductivity and Hall mobility of the film,resulting from the improvement in p-doping level of HTM,leads to better performances of perovskite solar cells.Best power conversion efficiencies (PCEs) of 13.05% and 16.39% are achieved with most properly optimized HTM via CH3NH3I vapor-assisted method and traditional single-step method respectively.

  9. Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent

    International Nuclear Information System (INIS)

    Hao, Qiuyan; Chu, Yixia; Zheng, Xuerong; Liu, Zhenya; Liang, Liming; Qi, Jiakun; Zhang, Xin; Liu, Gang; Liu, Hui; Chen, Hongjian; Liu, Caichi

    2016-01-01

    Recently, planar perovskite solar cells based on CH 3 NH 3 PbI 3 have attracted many researcher's interest due to their unique advantages such as simple cell architecture, easy fabrication and potential multijunction construction comparing to the initial mesoporous structure. However, the preparation of planar perovskite films with high quality is still in challenge. In this paper, we developed a vapor-assisted solution process using a novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) instead of the traditional N, N-dimethylformamide (DMF) to construct a high-quality perovskite CH 3 NH 3 PbI 3 thin film with pure phase, high compactness, small surface roughness and controlled size. The phase evolution and growth mechanism of the perovskite films are also discussed. Utilizing the NEP of low volatility and moderate boiling point as solvent, we dried the PbI 2 -NEP precursor films at different temperature under vacuum and then obtained PbI 2 thin films with different crystalline degree from amorphous to highly crystalline. The perovskite films with crystal size ranged from hundreds of nanometers to several micrometers can be prepared by reacting the PbI 2 films of different crystalline degree with CH 3 NH 3 I vapor. Moreover, planar-structured solar cells combining the perovskite film with TiO 2 and spiro-OMeTAD as the electron and holes transporting layer achieves a power conversion efficiency of 10.2%. - Highlights: • A novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) was used to construct high-quality perovskite CH 3 NH 3 PbI 3 thin film. • The CH 3 NH 3 PbI 3 grain with different sizes ranged from hundreds of nanometers to several micrometers can be obtained. • Planar-structured perovskite CH 3 NH 3 PbI 3 solar cells using NEP as solvent achieves a power conversion efficiency of 10.2%.

  10. A Low Temperature Infrared Study Of Deuterated NH4VO3

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.

    1989-12-01

    The existence of (NH4)2V6016 as an intermediate in the thermal decomposition of NH4V03 to V205 has been confirmed by vibrational spectroscopy, resulting in the following reaction in an open systeml: NH4VO3 1 bar, air, 50-200°C/(1) (NH4)2v6o16 1 bar, air, ca.360°C/(2) V205 The kinetics of reaction (1) was studied by means of Raman spectroscopy, and structural information on NH4V03 and (N114)V60 16 was required to obtain an accurate description of the reaction mechanism2. Information on the site symmetry of an ammonium ion and hydrogen bonding in a crystal can be obtained by considering the infrared spectra of isotopically dilute NH3D+ ions in the lattice at liquid nitrogen temperatures3, especially as the position of hydrogen atoms in (NHO2V6016 could not be determined by X-ray methods.

  11. Effect of Different CH3NH3PbI3 Morphologies on Photovoltaic Properties of Perovskite Solar Cells

    Science.gov (United States)

    Chen, Lung-Chien; Lee, Kuan-Lin; Wu, Wen-Ti; Hsu, Chien-Feng; Tseng, Zong-Liang; Sun, Xiao Hong; Kao, Yu-Ting

    2018-05-01

    In this study, the perovskite layers were prepared by two-step wet process with different CH3NH3I (MAI) concentrations. The cell structure was glass/FTO/TiO2-mesoporous/CH3NH3PbI3 (MAPbI3)/spiro-OMeTAD/Ag. The MAPbI3 perovskite films were prepared using high and low MAI concentrations in a two-step process. The perovskite films were optimized at different spin coating speed and different annealing temperatures to enhance the power conversion efficiency (PCE) of perovskite solar cells. The PCE of the resulting device based on the different perovskite morphologies was discussed. The PCE of the best cell was up to 17.42%, open circuit voltage of 0.97 V, short current density of 24.06 mA/cm2, and fill factor of 0.747.

  12. Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes

    Science.gov (United States)

    Nguyen, Van-Cao; Katsuki, Hiroyuki; Sasaki, Fumio; Yanagi, Hisao

    2018-04-01

    In this study, electroluminescence from single crystals of CH3NH3PbBr3 perovskite is explored. The cast capping method was applied to fabricate simple devices with an ITO/CH3NH3PbBr3/ITO structure. The devices showed a low operation voltage of 2 V and a pure green luminescence with full width at half maximum of ∼20 nm. However, the emission occurring at the crystal edges demonstrated blinking with a subsecond time interval, which is similar to the previously reported photoluminescence behavior of nanocrystal perovskites. This electroluminescence blinking may provide new insight into the recombination processes depending on the carrier traps and defects of emission layers in perovskite light-emitting devices.

  13. First principles study of NH3 molecular adsorption on LiH (100) surfaces

    International Nuclear Information System (INIS)

    Lu Xiaoxia; Chen Yuhong; Dong Xiao

    2012-01-01

    The adsorption of NH 3 on LiH (100) crystal surfaces was studied by first principles method. The preferred adsorption sites, adsorption energy, dissociation energy and electronic structure of the LiH (100)/NH 3 systems were calculated separately. It is found that chemical adsorption happened mainly when NH 3 molecules are on the LiH (100) crystal surfaces. When NH 3 is adsorbed on the Li top site, NH 2 is formed on the LiH (100) crystal surfaces after loss of H atom, the calculated adsorption energy, 0.511 eV, belongs to strong chemical adsorption, then the interaction is strongest. The interaction between NH 2 and the neighboring Li, H are ionic. The covalent bonds are formed between N and H atoms in NH 2 . One H 2 molecule is formed by another H atom in NH 3 and H atom from LiH (100) crystal sur- faces. The covalent bonds are formed between H and H atoms in H 2 . (authors)

  14. A novel method of simultaneous NH4+ and NO3- removal using Fe cycling as a catalyst: Feammox coupled with NAFO.

    Science.gov (United States)

    Li, Xiang; Yuan, Yan; Huang, Yong; Liu, Heng-Wei; Bi, Zhen; Yuan, Yi; Yang, Peng-Bin

    2018-08-01

    The feasibility of using Feammox coupled with nitrate-dependent Fe(II) oxidizing (NAFO) to cause the simultaneous conversion of NH 4 + and NO 3 - was explored by inoculation with Feammox sludge and the use Fe cycling as catalyst. After 61days operation, the simultaneous conversion of NO 3 - and NH 4 + occurred with the presence of interconversion between Fe(III) and Fe(II). The conversion ratio of NH 4 + to NO 3 - stabilized at 0.9-1. The results of isotopic tracing and microbial diversity analysis indicated that NH 4 + was first oxidized to NO 2 - by Fe(III), then NO 3 - was reduced to NO 2 - and N 2 by the Fe(II) produced in Feammox process, and finally, the NO 2 - produced in NAFO process underwent an Anammox process with the remaining NH 4 + to yield N 2 . The results showed the simultaneous continuous conversion process of NO 3 - and NH 4 + with limited Fe as a catalyst was a coupled process of Feammox, Anammox, and NAFO under the anaerobic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation

    Directory of Open Access Journals (Sweden)

    Khaoula Jemli

    2016-07-01

    Full Text Available Investigating the stability and evaluating the quality of the CH3NH3PbI3 perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH3NH3PbI3 degrades producing some PbI2. We show here that low temperature Photoluminescence (PL spectroscopy is a powerful tool to detect PbI2 traces in hybrid perovskite layers and single crystals. Because PL spectroscopy is a signal detection method on a black background, small PbI2 traces can be detected, when other methods currently used at room temperature fail. Our study highlights the extremely high stability of the single crystals compared to the thin layers and defects and grain boundaries are thought to play an important role in the degradation mechanism.

  16. Effects of GeI2 or ZnI2 addition to perovskite CH3NH3PbI3 photovoltaic devices

    Science.gov (United States)

    Tanaka, Hiroki; Ohishi, Yuya; Oku, Takeo

    2018-01-01

    CH3NH3PbI3 added with GeI2 or ZnI2 perovskite photovoltaic devices were fabricated characterized. The surface coverages of the perovskite layers were improved by the addition of GeI2 or ZnI2. Formation of PbI2 observed for the pristine CH3NH3PbI3 was suppressed by the GeI2 or ZnI2 addition, which resulted in the improvement of the conversion efficiencies of the perovskite photovoltaic devices.

  17. Catalysts for selective hydrogenation of furfural derived from the double complex salt [Pd(NH 3 ) 4 ](ReO 4 ) 2 on γ-Al 2 O 3

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Simon T.; Lamb, H. Henry

    2017-06-01

    The double complex salt [Pd(NH3)4](ReO4)2 was employed as precursor of supported bimetallic catalysts for selective hydrogenation of furfural. Direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 in flowing H2 at 400 °C yields bimetallic nanoparticles 1–2 nm in size that exhibit significant interaction between the metals, as evidenced by temperature-programmed hydride decomposition (complete suppression of β-PdHx formation), extended X-ray absorption fine structure spectroscopy at the Pd K and Re LIII edges (PdRe distance = 2.72 Å), and scanning transmission electron microscopy with energy dispersive X-ray analysis. In contrast, calcination of [Pd(NH3)4](ReO4)2 on γ-Al2O3 at 350 °C in air and subsequent reduction in H2 at 400 °C results in metal segregation and formation of large (>50 nm) supported Pd particles; Re species cover the Pd particles and γ-Al2O3 support. A PdRe 1:2 catalyst prepared by sequential impregnation and calcination using HReO4 and [Pd(NH3)4](NO3)2 has a similar morphology. The catalyst derived by direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 exhibits remarkably high activity for selective hydrogenation of furfural to furfuryl alcohol (FAL) at 150 °C and 1 atm. Suppression of H2 chemisorption via elimination of Pd threefold sites, as evidenced by CO diffuse-reflectance infrared Fourier transform spectroscopy, correlates with increased FAL selectivity.

  18. NH{sub 4}-doped anodic WO{sub 3} prepared through anodization and subsequent NH{sub 4}OH treatment for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Wook; Kim, Sunkyu; Seong, Mijeong; Yoo, Hyeonseok; Choi, Jinsub, E-mail: jinsub@inha.ac.kr

    2015-01-01

    Highlights: • NN{sub 4}-doped WO{sub 3} was successfully fabricated by a wet-based method using ammonium hydroxide (NH{sub 4}OH). • (NH{sub 4}){sub 10}W{sub 12}O{sub 41} phase was formed during the NH{sub 4}OH treatment. • Over-doped NH{sub 4} in WO{sub 3} led to reduced photo-electrochemical performance for OER. • The optimized surface was achieved by thermal treatment of anodic WO{sub 3} with 2 g of NH{sub 4}OH solution. - Abstract: Tungsten trioxide (WO{sub 3}) prepared by anodization of a W foil was doped with NH{sub 4} through NH{sub 4}OH treatment at 450 °C. Since aqueous NH{sub 4}OH was used during doping instead of NH{sub 3} gas, the treatment step does not require complicated annealing facilities. Moreover, the state of doped N is a form of NH{sub 3}-W instead of W{sub 2}N, which lowers the bandgap but increases photocorrosion. We found that incorporation of NH{sub 4} into WO{sub 3} leads to reduction of the bandgap from 2.9 eV to 2.2 eV, regardless of the amount of NH{sub 4}OH treatment, lowering the onset potential and increasing the current density at fixed potential for oxygen evolution reaction under illumination. Scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy were employed to investigate the surface morphologies, crystallinities of tungsten oxides and existence of NH{sub 4} doping, respectively. The bandgap energy was determined by UV–Vis spectroscopy to measure the transmittance and refraction. The water splitting performance of each sample was measured by electrochemical linear sweep voltammetry in a 3-electrode configuration under illumination.

  19. Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles

    Science.gov (United States)

    Jeon, Young Pyo; Woo, Sung Jun; Kim, Tae Whan

    2018-03-01

    Transparent and flexible photodetectors (PDs) based on CH3NH3PbI3 perovskite nanoparticles (NPs) were fabricated by using co-evaporation of methyl ammonium iodide and lead iodide. X-ray diffraction patterns and high-resolution transmission electron microscopy images demonstrated the formation of perovskite NPs. The optical transmittance of the perovskite NPs/glass was above 80% over the entire range of visible wavelengths, indicative of high transparency. The PDs based on CH3NH3PbI3 perovskite NPs were sensitive to a broad range of visible light from 450 to 650 nm. The currents in the PDs under exposure to red, green, and blue light-emitting diodes were enhanced to 5, 10, and 20 times that of the PD in the dark, respectively. The rise and the decay times of the PDs were 50 and 120 μs. The current in the perovskite NP PD on a polyethylene terephthalate substrate was enhanced by approximately 69% when the NP PD was exposed to a blue LED emitting at a wavelength of 459 nm. Despite multiple bending, the transparent and flexible PDs based on methyl ammonium iodide and lead iodide NPs showed reproducibility and high stability in performance.

  20. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Saidaminov, Makhsud I.; Diallo, Elhadj Marwane; Mishra, Pawan; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained

  1. Effects of N source concentration and NH4(+)/NO3(-) ratio on phenylethanoid glycoside pattern in tissue cultures of Plantago lanceolata L.: a metabolomics driven full-factorial experiment with LC-ESI-MS(3.).

    Science.gov (United States)

    Gonda, Sándor; Kiss-Szikszai, Attila; Szűcs, Zsolt; Máthé, Csaba; Vasas, Gábor

    2014-10-01

    Tissue cultures of a medicinal plant, Plantago lanceolata L. were screened for phenylethanoid glycosides (PGs) and other natural products (NPs) with LC-ESI-MS(3). The effects of N source concentration and NH4(+)/NO3(-) ratio were evaluated in a full-factorial (FF) experiment. N concentrations of 10, 20, 40 and 60mM, and NH4(+)/NO3(-) ratios of 0, 0.11, 0.20 and 0.33 (ratio of NH4(+) in total N source) were tested. Several peaks could be identified as PGs, of which, 16 could be putatively identified from the MS/MS/MS spectra. N source concentration and NH4(+)/NO3(-) ratio had significant effects on the metabolome, their effects on individual PGs were different despite these metabolites were of the same biosynthethic class. Chief PGs were plantamajoside and acteoside (verbascoside), their highest concentrations were 3.54±0.83% and 1.30±0.40% of dry weight, on media 10(0.33) and 40(0.33), respectively. NH4(+)/NO3(-) ratio and N source concentration effects were examined on a set of 89 NPs. For most NPs, high increases in abundance were observed compared to Murashige-Skoog medium. Abundances of 42 and 10 NPs were significantly influenced by the N source concentration and the NH4(+)/NO3(-) ratio, respectively. Optimal media for production of different NP clusters were 10(0), 10(0.11) and 40(0.33). Interaction was observed between NH4(+)/NO3(-) ratio and N source concentration for many NPs. It was shown in simulated experiments, that one-factor at a time (OFAT) experimental designs lead to sub-optimal media compositions for production of many NPs, and alternative experimental designs (e.g. FF) should be preferred when optimizing medium N source for optimal yield of NPs. If using OFAT, the N source concentration is to be optimized first, followed by NH4(+)/NO3(-) ratio, as this reduces the likeliness of suboptimal yield results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-01-01

    . M. Bakr, and B. S. Ooi, "The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites", Applied Physics Letters, 106, 081902, 2015. DOI: 10.1063/1.4913463

  3. PENGARUH TEPUNG DAUN GAMAL DAN DAUN KELOR DALAM UREA CASSAVA BLOK (UCB TERHADAP KECERNAAN, KADAR VFA, DAN NH3 IN-VITRO

    Directory of Open Access Journals (Sweden)

    N M. WITARIADI

    2012-09-01

    Full Text Available ABSTRAK Penelitian telah dilakukan dengan tujuan untuk mendapatkan informasi tentang pengaruh tepung daun gamal dan daun kelor sebagai sumber protein dalam urea cassava blok (UCB terhadap kecernaan bahan kering, bahan organik, kadar VFA, dan NH3 cairan rumen pakan jerami padi secara invitro. Penelitian dilaksanakan dengan mempergunakan rancangan acak lengkap (RAL dengan 3 perlakuan dan 5 ulangan. Sehingga secara keseluruhan terdapat 15 unit penelitian. Adapun ketiga perlakuan tersebut adalah: Perlakuan A (jerami padi + UCB yang ditambah tepung daun kelor; B (jerami padi + UCB yang ditambah tepung daun gamal, dan C (jerami padi + UCB yang ditambah tepung daun kelor dan daun gamal. Varibel yang diamati adalah kecernaan bahan kering (KCBK , kecernaan bahan organik (KCBO in-vitro, produksi vollatile fatty acid (VFA, produksi NH3, dan pH supernatan. Hasil penelitian mendapatkan bahwa KCBK, KCBO invitro, VFA, NH3, dan pH supernatan pada ketiga perlakuan berbeda nyata (P<0,05. Penggunaan daun gamal sebagai sumber protein pada UCB menghasilkan KCBK, KCBO, VFA, NH3, tertinggi dibandingkan dengan daun kelor maupun kombinasi antara daun gamal dan daun kelor. EFFECT OF USING GLIRICIDIA (Gliricidia sepium AND MORINGA (Moringa oleifera LEAVES MEALS IN UREA CASSAVA BLOCK (UCB ON DIGESTIBILITY, VOLLATILE FATTY ACID, AND NH3 IN-VITRO. ABSTRACT The experiment has been conducted in order to now the effect of Gliricidia sepium and Moringa oleifera leaves meal a source of protein in urea cassava block (UCB to the digestibility dray matter and organic matter , VFA and ammonia concentration with rice straw diet. The experiment set in completely randomized design using three treatment. The treatment are: A (rise straw + UCB with Moringa; B (rise straw + UCB with Gliricidia sepium, and C (rise straw + UCB with Moringa and Gliricidia sepium. The observed variable are: dry matter, organic matter digestibility, volatile fatty acid, ammonia concentration, and pH rumen juice

  4. The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2017-04-01

    Full Text Available The properties of perovskite solar cells (PSCs fabricated using various solvents was studied. The devices had an indium tin oxide (ITO/poly(3,4-ethylenedioxythiophene: poly(styrenesulfonate (PEDOT:PSS/CH3NH3PbI3 (fabricated by using various solvents/fullerene (C60/bathocuproine (BCP/silver (Ag structure. The solvents used were dimethylformamide (DMF, γ-butyrolactone (GBL, dimethyl sulfoxide (DMSO, a mixture of DMSO and DMF (1:1 v/v, and a mixture of DMSO and GBL (DMSO: GBL, 1:1 v/v, respectively. The power conversion efficiency (PCE of the device fabricated using DMF is zero, which is attributed to the poor coverage of CH3NH3PbI3 film on the substrate. In addition, the PCE of the device made using GBL is only 1.74% due to the low solubility of PbI2 and CH3NH3I. In contrast, the PCE of the device fabricated using the solvents containing DMSO showed better performance. This is ascribed to the high solubilization properties and strong coordination of DMSO. As a result, a PCE of 9.77% was obtained using a mixed DMSO:GBL solvent due to the smooth surface, uniform film coverage on the substrate and the high crystallization of the perovskite structure. Finally, a mixed DMSO: DMF:GBL (5:2:3 v/v/v solvent that combined the advantages of each solvent was used to fabricate a device, leading to a further improvement of the PCE of the resulting PSC to 10.84%.

  5. Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3

    Science.gov (United States)

    Guo, Yinsheng; Yaffe, Omer; Paley, Daniel W.; Beecher, Alexander N.; Hull, Trevor D.; Szpak, Guilherme; Owen, Jonathan S.; Brus, Louis E.; Pimenta, Marcos A.

    2017-09-01

    Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here, we compare and contrast the evolution of the structure and dynamics of hybrid CH3NH3PbBr3 and inorganic CsPbBr3 lead-halide perovskites with temperature, using Raman spectroscopy and single-crystal x-ray diffraction. Results reveal a stark contrast between their order-disorder transitions, which are abrupt for the hybrid whereas smooth for the inorganic perovskite. X-ray diffraction observes an intermediate incommensurate phase between the ordered and the disordered phases in CH3NH3PbBr3 . Low-frequency Raman scattering captures the appearance of a sharp soft mode in the incommensurate phase, ascribed to the theoretically predicted amplitudon mode. Our work highlights the interaction between the structural dynamics of organic cation CH3NH3+ and the lead-halide framework, and unravels the competition between tendencies for the organic and inorganic moieties to minimize energy in the incommensurate phase of the hybrid perovskite structure.

  6. THE c2d SPITZER SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH3 AND CH3OH

    International Nuclear Information System (INIS)

    Bottinelli, Sandrine; Van Dishoeck, Ewine F.; Lahuis, Fred; Boogert, A. C. Adwin; Bouwman, Jordy; Beckwith, Martha; Oeberg, Karin I.; Linnartz, Harold; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.

    2010-01-01

    NH 3 and CH 3 OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH 3 CN and CH 3 OCH 3 . Despite a number of recent studies, little is known about their abundances in the solid state. This is particularly the case for low-mass protostars, for which only the launch of the Spitzer Space Telescope has permitted high-sensitivity observations of the ices around these objects. In this work, we investigate the ∼8-10 μm region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 μm silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH 3 - and CH 3 OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ∼9 μm in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH 3 ν 2 umbrella mode and derive abundances with respect to water between ∼2% and 15%. Simultaneously, we also revisited the case of CH 3 OH ice by studying the ν 4 C-O stretch mode of this molecule at ∼9.7 μm in 16 objects, yielding abundances consistent with those derived by Boogert et al. based on a simultaneous 9.75 and 3.53 μm data analysis. Our study indicates that NH 3 is present primarily in H 2 O-rich ices, but that in some cases, such ices are insufficient to explain the observed narrow FWHM. The laboratory data point to CH 3 OH being in an almost pure methanol ice, or mixed mainly with CO or CO 2 , consistent with its formation through hydrogenation on grains. Finally, we use our derived NH 3 abundances in combination with previously published abundances of other solid N-bearing species to find that up to 10%-20% of

  7. GRP1 PH Domain, Like AKT1 PH Domain, Possesses a Sentry Glutamate Residue Essential for Specific Targeting to Plasma Membrane PI(3,4,5)P3

    Science.gov (United States)

    Pilling, Carissa; Landgraf, Kyle E.; Falke, Joseph J.

    2011-01-01

    During the appearance of the signaling lipid PI(3,4,5)P3, an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P3-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P2 and bind the rare PI(3,4,5)P3 target lipid with sufficiently high affinity. Our previous study of the E17K mutant of protein kinase B (AKT1) PH domain, together with evidence from Carpten et al (1), revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P2, thereby playing an essential role in specific PI(3,4,5)P3 targeting (2). The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P3-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P2 affinity and constitutive plasma membrane targeting. To test this hypothesis the present study investigates the E345 residue, a putative sentry glutamate, of General Receptor for Phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into GRP1 PH domain enhances PI(4,5)P2 affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P2 releases E345K GRP1 PH domain into the cytoplasm and the efficiency of this release increases when target Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K (1, 3). Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P3-specific binding

  8. Orthorhombic fulleride (CH3NH2)K3C60 close to Mott-Hubbard instability: Ab initio study

    Science.gov (United States)

    Potočnik, Anton; Manini, Nicola; Komelj, Matej; Tosatti, Erio; Arčon, Denis

    2012-08-01

    We study the electronic structure and magnetic interactions in methylamine-intercalated orthorhombic alkali-doped fullerene (CH3NH2)K3C60 within the density functional theory. As in the simpler ammonia intercalated compound (NH3)K3C60, the orthorhombic crystal-field anisotropy Δ lifts the t1u triple degeneracy at the Γ point and drives the system deep into the Mott-insulating phase. However, the computed Δ and conduction electron bandwidth W cannot alone account for the abnormally low experimental Néel temperature, TN=11 K, of the methylamine compound, compared to the much higher value TN=40 K of the ammonia one. Significant interactions between CH3NH2 and C603- are responsible for the stabilization of particular fullerene-cage distortions and the ensuing low-spin S=1/2 state. These interactions also seem to affect the magnetic properties, as interfullerene exchange interactions depend on the relative orientation of deformations of neighboring C603- molecules. For the ferro-orientational order of CH3NH2-K+ groups we find an apparent reduced dimensionality in magnetic exchange interactions, which may explain the suppressed Néel temperature. The disorder in exchange interactions caused by orientational disorder of CH3NH2-K+ groups could further contribute to this suppression.

  9. [CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B

    2003-10-20

    The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.

  10. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Chaudhary, Dhirendra K.; Kumar, Pankaj; Kumar, Lokendra

    2017-10-01

    We report here the impact of CH3NH3PbI3-PCBM bulk heterojunction (BHJ) active layer on the photovoltaic performance of perovskite solar cells. The solar cells were prepared in normal architecture on FTO coated glass substrates with compact TiO2 (c-TiO2) layer on FTO as electron transport layer (ETL) and poly(3-hexylthiophene) (P3HT) as hole transport layer (HTL). For comparison, a few solar cells were also prepared in planar heterojunction structure using CH3NH3PbI3 only as the active layer. The bulk heterojunction CH3NH3PbI3-PCBM active layer exhibited very large crystalline grains of 2-3 μm compared to ∼150 nm only in CH3NH3PbI3 active layer. Larger grains in bulk-heterojunction solar cells resulted in enhanced power conversion efficiency (PCE) through enhancement in all the photovoltaic parameters compared to planar heterojunction solar cells. The bulk-heterojunction solar cells exhibited ∼9.25% PCE with short circuit current density (Jsc) of ∼18.649 mA/cm2, open circuit voltage (Voc) of 0.894 V and Fill Factor (FF) of 0.554. There was ∼36.9% enhancement in the PCE of bulk-heterojunction solar cells compared to that of planar heterojunction solar cells. The larger grains are formed as a result of incorporation on PCBM in the active layer.

  11. Hexamethylenetetramine-mediated growth of grain-boundary-passivation CH3NH3PbI3 for highly reproducible and stable perovskite solar cells

    Science.gov (United States)

    Zheng, Yan-Zhen; Li, Xi-Tao; Zhao, Er-Fei; Lv, Xin-Ding; Meng, Fan-Li; Peng, Chao; Lai, Xue-Sen; Huang, Meilan; Cao, Guozhong; Tao, Xia; Chen, Jian-Feng

    2018-02-01

    Simultaneously achieving the long-term device stability and reproducibility has proven challenging in perovskite solar cells because solution-processing produced perovskite film with grain boundary is sensitive to moisture. Herein, we develop a hexamethylenetetramine (HMTA)-mediated one-step solution-processing deposition strategy that leads to the formation of high-purity and grain-boundary-passivation CH3NH3PbI3 film and thereby advances cell optoelectronic performance. Through morphological and structural characterizations and theoretical calculations, we demonstrate that HMTA fully occupies the moisture-exposed surface to build a bridge across grain boundary and coordinates with Pb ions to inhibit the formation of detrimental PbI2. Such HMTA-mediated grown CH3NH3PbI3 films achieves a decent augmentation of power conversion efficiency (PCE) from 12.70% to 17.87%. A full coverage of PbI2-free CH3NH3PbI3 surface on ZnO also boosts the device's stability and reproducibility.

  12. Polarisation properties of irradiated ammonia (NH3 and ND3) at 1 K and 25 kG

    International Nuclear Information System (INIS)

    Riechert, H.

    1982-11-01

    Dynamic Nuclear Polarisation (DNP) of irradiated ammonia was examined in some detail at 1 K and 25 kG. In continuation of earlier studies conducted in Bonn, it was attempted to gain information about the prevailing mechanism of DNP in this material. Therefore the frequency dependence of DNP in NH 3 , of deuterons and unsubstituted protons in ND 3 , as well as the polarising time tau and the relaxation time T 1 in NH 3 were measured. Also the shape of the deuteron polarisation signal observed in ND 3 is discussed. The polarisation measurements in ND 3 rule out the equal spin temperature (EST) behaviour of proton and deuteron DNP that is observed in most of the currently used target materials. It is attempted to explain the observations with a differential solid state effect model. Results of calculations for NH 3 and ND 3 incorporating the measured EPR-spectra are presented. (orig.)

  13. Performance evaluation of poly-urethane foam packed-bed chemical scrubber for the oxidative absorption of NH3 and H2S gases.

    Science.gov (United States)

    Nisola, Grace M; Valdehuesa, Kris Niño G; Anonas, Alex V; Ramos, Kristine Rose M; Lee, Won-Keun; Chung, Wook-Jin

    2018-01-02

    The feasibility of open-pore polyurethane (PU) foam as packing material for wet chemical scrubber was tested for NH 3 and H 2 S removals. The foam is inexpensive, light-weight, highly porous (low pressure drop) and provides large surface area per unit volume, which are desirable properties for enhanced gas/liquid mass transfer. Conventional HCl/HOCl (for NH 3 ) and NaOH/NaOCl (for H 2 S) scrubbing solutions were used to absorb and oxidize the gases. Assessment of the wet chemical scrubbers reveals that pH and ORP levels are important to maintain the gas removal efficiencies >95%. A higher re-circulation rate of scrubbing solutions also proved to enhance the performance of the NH 3 and H 2 S columns. Accumulation of salts was confirmed by the gradual increase in total dissolved solids and conductivity values of scrubbing solutions. The critical elimination capacities at >95% gas removals were found to be 5.24 g NH 3 -N/m 3 -h and 17.2 g H 2 S-S/m 3 -h at an empty bed gas residence time of 23.6 s. Negligible pressure drops (scrubbers for NH 3 and H 2 S removals from high-volume dilute emissions.

  14. Molecular beam epitaxy of GaN(0001) utilizing NH3 and/or NH+x ions: Growth kinetics and defect structure

    International Nuclear Information System (INIS)

    Lee, N.; Powell, R.C.; Kim, Y.; Greene, J.E.

    1995-01-01

    Gas-source molecular beam epitaxy (GS-MBE), utilizing Ga and NH 3 , and reactive-ion MBE (RIMBE), incorporating both thermal NH 3 and low-energy NH + x ions, were used to grow single crystal GaN(0001) layers on Al 2 O 3 (0001) at temperatures T s between 700 and 850 degree C with deposition rates of 0.2--0.5 μm h -1 . The RIMBE experiments were carried out with incident NH + x /Ga flux ratios J NH + x /J Ga =1.9--3.2 and NH + x acceleration energies E NH + x =45--90 eV. Plan-view and cross-sectional transmission electron microscopy analyses showed that the primary defects in the GS-MBE films were threading dislocations having either pure edge or mixed edge/screw characteristics with Burgers vectors bar b=1/3 left-angle 2 bar 1 bar 10 right-angle, basal-plane stacking faults with displacement vectors bar R=1/6 left-angle 02 bar 23 right-angle, and prismatic stacking faults with bar R=1/2 left-angle bar 1101 right-angle. In the case of RIMBE films, no stacking faults or residual ion-induced defects were observed with E NH + x =45 eV and T s ≥800 degree C. However, increasing E NH + x to ≥60 eV at T s =800 degree C gave rise to the formation of residual ion-induced point-defect clusters observable by transmission electron microscopy (TEM). Increasing T s to 850 degree C with E NH + x ≥60 eV resulted in the ion-induced defects aggregating to form interstitial basal and prismatic dislocation loops, whose number densities depended upon the ion flux, with Burgers vectors 1/2 left-angle 0001 right-angle and 1/3 left-angle 2 bar 1 bar 10 right-angle, respectively. (Abstract Truncated)

  15. Facile And Reversible Co Insertion Into The Ir-ch3 Bond Of [ir4(ch3)(co)8(μ4- η3-ph2pccph)(μ-pph2)

    OpenAIRE

    Vargas M.D.; Pereira R.M.S.; Braga D.; Grepioni F.

    1993-01-01

    Reaction of [Ir4H(CO)10(mu-PPh2)) with BuLi, Ph2PC=CPh and then Mel gives [Ir4(CH3)(CO)8(mu4-eta3-Ph2PCCPh)(mu-PPh2)], which undergoes a reversible two-step CO insertion under extremely mild conditions to yield Ir4{(CH3C(O)}(CO)8-(mu4:eta3-Ph2PCCPh)(mu-PPh2)] as the final product; the structures of both species have been established by X-ray diffraction studies.

  16. NH3 Abatement in Fluidized Bed Co-Gasification of RDF and Coal

    Science.gov (United States)

    Gulyurtlu, I.; Pinto, Filomena; Dias, Mário; Lopes, Helena; André, Rui Neto; Cabrita, I.

    Gasification of wastes may come out as an alternative technology to produce a gas with many potential applications, from direct burning in a boiler or motor to the production of synthetic chemicals and hydrogen. High tar production and high operational costs are preventing gasification wider dissemination. Besides these problems, the presence of NH3 in the syngas may have a negative impact as it can be converted into nitrogen oxides if the gas is further burnt. To reduce NH3 formation it is required a full understanding of how operational parameters contribute to the formation/reduction of this pollutant. A full studyon the effect of fuel composition, temperature and equivalence ratio on the formation of NH3 is given. Experimental results are compared to theoretical ones obtained with FactSage software. It is also analyzed the effect of feedstock mineral matterin NH3 release during gasification. Toaccomplish a significant decrease in the release of NH3, different catalysts and sorbents were tested with the aim of achieving high energy conversions and low environmental impact.

  17. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3

    Science.gov (United States)

    Ma, Jie; Wang, Lin-Wang

    2015-03-01

    Perovskite-based solar cells have achieved high solar-energy conversion efficiencies and attracted wide attentions nowadays. Despite the rapid progress in solar-cell devices, many fundamental issues of the hybrid perovskites have not been fully understood. Experimentally, it is well known that in CH3NH3PbI3, the organic molecules CH3NH3 are randomly orientated at the room temperature, but the impact of the random molecular orientation has not been investigated. Using linear-scaling ab-initiomethods, we have calculated the electronic structures of the tetragonal phase of CH3NH3PbI3 with randomly orientated organic molecules in large supercells up to ~20,000 atoms. Due to the dipole moment of the organic molecule, the random orientation creates a novel system with long-range potential fluctuations unlike alloys or other conventional disordered systems. We find that the charge densities of the conduction-band minimum and the valence-band maximum are localized separately in nanoscales due to the potential fluctuations. The charge localization causes electron-hole separation and reduces carrier recombination rates, which may contribute to the long carrier lifetime observed in experiments. We have also proposed a model to explain the charge localization.

  18. The loss of NH2O from the N-hydroxyacetamide radical cation CH3C(O)NHOH+

    Science.gov (United States)

    Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. A.; Terlouw, Johan K.

    2006-08-01

    A previous study [Ch. Lifshitz, P.J.A. Ruttink, G. Schaftenaar, J.K. Terlouw, Rapid Commun. Mass Spectrom. 1 (1987) 61] shows that metastable N-hydroxyacetamide ions CH3C(O)NHOH+ (HA-1) do not dissociate into CH3CO+ + NHOH by direct bond cleavage but rather yield CH3CO+ + NH2OE The tandem mass spectrometry based experiments of the present study on the isotopologue CH3C(O)NDOD+ reveal that the majority of the metastable ions lose the NH2O radical as NHDO rather than ND2O. A mechanistic analysis using the CBS-QB3 model chemistry shows that the molecular ions HA-1 rearrange into hydrogen-bridged radical cations [OCC(H2)H...N(H)OH]+ whose acetyl cation component then catalyses the transformation NHOH --> NH2O prior to dissociation. The high barrier for the unassisted 1,2-H shift in the free radical, 43 kcal mol-1, is reduced to a mere 7 kcal mol-1 for the catalysed transformation which can be viewed as a quid-pro-quo reaction involving two proton transfers.

  19. Conductivity of CH{sub 3}NH{sub 3}PbI{sub 3} thin film perovskite stored in ambient atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gebremichael, Bizuneh, E-mail: bizunehme@gmail.com [Physics Department, Addis Ababa University, Addis Ababa, P.O. Box 1176 (Ethiopia); Alemu, Getachew [Physics Department, Addis Ababa University, Addis Ababa, P.O. Box 1176 (Ethiopia); Tessema Mola, Genene [School of Chemistry & Physics, University of KwaZulu-Nat al, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209 (South Africa)

    2017-06-01

    Time dependent conductivity loss in CH{sub 3}NH{sub 3}PbI{sub 3} thin film perovskite stored in ambient atmosphere were studied based on electrical and optical measurements. Recent investigations on thin film perovskite solar cell suggest that in the steady state operation of the device, the V{sub oc} is unchanged by continuous illumination of light. Rather the reduction in the power conversion efficiency is caused by significant reduction of the short circuit current (J{sub sc}). In this paper, the effect of light on the optical absorption and electrical conductivity of the CH{sub 3}NH{sub 3}PbI{sub 3} thin film which is deposited on a glass substrate is investigated. The temperature dependent conductivity measurements indicated that the dominant conduction mechanism in the film perovskite is electronic rather than ionic.

  20. Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure.

    Science.gov (United States)

    Wang, Ziyi; Yuan, Sijian; Li, Dahai; Jin, Feng; Zhang, Rongjun; Zhan, Yiqiang; Lu, Ming; Wang, Songyou; Zheng, Yuxiang; Guo, Junpeng; Fan, Zhiyong; Chen, Liangyao

    2016-10-31

    Organic-inorganic perovskites were fabricated through a one-step procedure with different levels of hydration water in precursor solutions. The optical properties of CH3NH3PbI3 films were investigated through spectroscopic ellipsometry and photoluminescence measurements. With the measured optical constants, the efficiency limit of perovskite solar cells is predicted with a detailed balance model. By comparing the optical measurement to that of planar heterojunction solar cells, we conclude that the radiative efficiency and porosity of the perovskite film significantly influence the performance of perovskite solar cells. An optimized hydration-water concentration is obtained for the 3CH3NH3I:1PbAc2•xH2O precursor solution. The results can provide guidance for further optimization of the device performance of perovskite solar cells by utilizing hydration water.

  1. Chlorine Incorporation in the CH3NH3PbI3 Perovskite: Small Concentration, Big Effect.

    Science.gov (United States)

    Quarti, Claudio; Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo

    2017-01-03

    The role of chlorine doping in CH 3 NH 3 PbI 3 represents an important open issue in the use of hybrid perovskites for photovoltaic applications. In particular, even if a positive role of chlorine doping on perovskite film formation and on material morphology has been demonstrated, an inherent positive effect on the electronic and photovoltaic properties cannot be excluded. Here we carried out periodic density functional theory and Car-Parrinello molecular dynamics simulations, going down to ∼1% doping, to investigate the effect of chlorine on CH 3 NH 3 PbI 3 . We found that such a small doping has important effects on the dynamics of the crystalline structure, both with respect to the inorganic framework and with respect to the cation libration motion. Together, we observe a dynamic spatial localization of the valence and conduction states in separated spatial material regions, which takes place in the 10 -1 ps time scale and which could be the key to ease of exciton dissociation and, likely, to small charge recombination in hybrid perovskites. Moreover, such localization is enhanced by chlorine doping, demonstrating an inherent positive role of chlorine doping on the electronic properties of this class of materials.

  2. Synthesis, P-31 NMR data and X-ray analysis of a ruthenium(II) dimethylphenylphosphine complex with dimerized phenylacetylene: The structure of [(PhMe(2)P)(4)Ru(eta(3)-PhC(3)CHPh)](PF6)

    CSIR Research Space (South Africa)

    Liles, DC

    1996-09-06

    Full Text Available Treatment of [RuHL (5)] (+) (L = PMe (2) Ph) with phenylacetylene in ethanol yielded the dimerization of HC=CPh to (Z)-1, 4-diphenylbut-3-en-1-yne. The molecular structure of [Ru(eta(3)-PhC(3)CHPh)L(4)](PF6) (L = PMe(2)Ph) (2) shows a seven...

  3. Prediction on electronic structure of CH3NH3PbI3/Fe3O4 interfaces

    Science.gov (United States)

    Hou, Xueyao; Wang, Xiaocha; Mi, Wenbo; Du, Zunfeng

    2018-01-01

    The interfacial electronic structures of CH3NH3PbI3(MAPbI3)/Fe3O4 heterostructures are predicted by density functional theory. Four models (MAI/FeBO, PbI2/FeBO, MAI/FeA and PbI2/FeA) are included. Especially, a half-metal to semiconductor transition of Fe3O4 appears in PbI2/FeA model. A series of electric field is added to PbI2/FeA model, and a direct-indirect bandgap transition of Fe3O4 appears at a 500-kV/cm field. The electric field can control the bandgap of Fe3O4 in PbI2/FeA model by modulating the hybridization. The prediction of spin-related bandgap characteristic in MAPbI3/Fe3O4 is meaningful for further study.

  4. Electron transport in NH3/NO2 sensed buckled antimonene

    Science.gov (United States)

    Srivastava, Anurag; Khan, Md. Shahzad; Ahuja, Rajeev

    2018-04-01

    The structural and electronic properties of buckled antimonene have been analysed using density functional theory based ab-initio approach. Geometrical parameters in terms of bond length and bond angle are found close to the single ruffle mono-layer of rhombohedral antimony. Inter-frontier orbital analyses suggest localization of lone pair electrons at each atomic centre. Phonon dispersion along with high symmetry point of Brillouin zone does not signify any soft mode. With an electronic band gap of 1.8eV, the quasi-2D nano-surface has been further explored for NH3/NO2 molecules sensing and qualities of interaction between NH3/NO2 gas and antimonene scrutinized in terms of electronic charges transfer. A current-voltage characteristic has also been analysed, using Non Equilibrium Green's function (NEGF), for antimonene, in presence of incoming NH3/NO2 molecules.

  5. CH3NH3I treatment temperature of 70 °C in low-pressure vapor-assisted deposition for mesoscopic perovskite solar cells

    Science.gov (United States)

    Jin, Wenbin; Zou, Xiaoping; Bai, Xiao; Yang, Ying; Chen, Dan

    2018-01-01

    Herein, we report a modified vapor-assisted deposition method to fabricate CH3NH3PbI3 film at 70 °C in a vacuum drying oven. The modified method has excellent operability and expandability in preparing perovskite solar cells. The CH3NH3I treatment temperature is 130 °C or 150 °C in conventional method, but we reduced the temperature to 70 °C in the modified vapor-assisted method. Meanwhile, the quality of CH3NH3PbI3 films prepared via the modified method is superior to that of CH3NH3PbI3 films of solution-processed method.

  6. The phytotoxic effects of present NH3 immissions

    International Nuclear Information System (INIS)

    Adaros, G.; Daemmgen, U.

    1994-01-01

    The phytotoxic effects of NH 3 have been known since the end of the previous century. The significance of ammonia as harmful substance or stressor even in ambient concentrations has been only realized and investigated during the last decades. This volume is aimed at accounting the effects produced by ambient doses of NH 3 . The entities relevant for the description of potential dose response relationships are discussed. The major source of potential dose response relationships are discussed. The major source of atmospheric pollution of ammonia and ammonium is intensive agriculture, in particular intensive cattle production. However, sources and transmission processes are not dealt with in this paper. Potential pathways of ammonia into the plants and the respective reaction mechanisms are discussed in detail. (orig./MG) [de

  7. Study of various NH4+/NO3- mixtures for enhancing growth of potatoes

    Science.gov (United States)

    Cao, W.; Tibbitts, T. W.

    1993-01-01

    Two experiments were conducted to determine the effects of various NH4(+)-N/NO3(-)-N percentages on growth and mineral concentrations in potato (Solanum tuberosum L.) plants using a non-recirculating nutrient film system in a controlled environment. The first experiment included six NH4(+)-N/NO3(-)-N percentages at 0/100, 20/80, 40/60, 60/40, 80/20, and 100/0 with the same total N concentration of 4 mM. The second experiment included six NH4(+)-N/NO3(-)-N percentages at 0/100, 4/96, 8/92, 12/88, 16/84, and 20/80 again with the same total N of 4 mM. In each experiment, plants were harvested 35 days after transplanting when tubers had been initiated and started to enlarge. Dry weights of shoots, tubers, and whole plant at the harvest were increased significantly with all mixed nitrogen treatments as compared with single NH4+ or NO3- form. The enhanced growth with mixed nitrogen was greatest at 8% to 20% NH4(+)-N. Also, the concentrations and accumulation of total N in the shoots and roots were greater with mixed nitrogen than with separate NH4+ or NO3- nutrition. With NH4+ present in the solutions, the concentrations of P and Cl in the shoots were increased compared to NO3- alone, whereas the tissue concentrations of Ca and Mg were decreased. It was concluded that nitrogen fertilization provided with combined NH4+ and NO3- forms, even at small proportions of NH4+, can enhance nitrogen uptake and productivity in potato plants.

  8. Thermal properties and phase transition in the fluoride, (NH4)3SnF7

    International Nuclear Information System (INIS)

    Kartashev, A.V.; Gorev, M.V.; Bogdanov, E.V.; Flerov, I.N.; Laptash, N.M.

    2016-01-01

    Calorimetric, dilatometric and differential thermal analysis studies were performed on (NH 4 ) 3 SnF 7 for a wide range of temperatures and pressures. Large entropy (δS 0 =22 J/mol K) and elastic deformation (δ(ΔV/V) 0 =0.89%) jumps have proven that the Pa-3↔Pm-3m phase transition is a strong first order structural transformation. A total entropy change of ΔS 0 =32.5 J/mol K is characteristic for the order–disorder phase transition, and is equal to the sum of entropy changes in the related material, (NH 4 ) 3 TiF 7 , undergoing transformation between the two cubic phases through the intermediate phases. Hydrostatic pressure decreases the stability of the high temperature Pm-3m phase in (NH 4 ) 3 SnF 7 , contrary to (NH 4 ) 3 TiF 7 , characterised by a negative baric coefficient. The effect of experimental conditions on the chemical stability of (NH 4 ) 3 SnF 7 was observed. - Graphical abstract: Strong first order structural transformation Pa-3↔Pm-3m in (NH 4 ) 3 SnF 7 is associated with very large total entropy change of ΔS 0 =32.5 J/mol K characteristic for the ordering processes and equal to the sum of entropy changes in the related (NH 4 ) 3 TiF 7 undergoing transformation between the same two cubic phases through the intermediate phases. - Highlights: • (NH 4 ) 3 SnF 7 undergoes strong first order Pa-3↔Pm-3m phase transition. • Anomalous behaviour of ΔC p and ΔV/V exists far below phase transition temperature. • Structural distortions are accompanied by huge total entropy change ΔS≈Rln50. • High pressure strongly increases the stability of Pa-3 phase in (NH 4 ) 3 SnF 7 . • Entropy of the Pa-3↔Pm-3m phase transition does not depend on pressure.

  9. Fabrication and characterization of perovskite-based CH{sub 3}NH{sub 3}Pb{sub 1-x}Ge{sub x}I{sub 3}, CH{sub 3}NH{sub 3}Pb{sub 1-x}Tl{sub x}I{sub 3} and CH{sub 3}NH{sub 3}Pb{sub 1-x}In{sub x}I{sub 3} photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuya; Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Perovskite-type CH{sub 3}NH{sub 3}PbI{sub 3}-based photovoltaic devices were fabricated and characterized. Doping effects of thallium (Tl), indium (In), or germanium (Ge) element on the photovoltaic properties and surface structures of the perovskite phase were investigated. The open circuit voltage increased by Ge addition, and fill factors were improved by adding a small amount of Ge, Tl or In. In addition, the wavelength range of incident photon conversion efficiencies was expanded by the Tl addition.

  10. A straightforward and efficient synthesis of 3-(pyrimidinyl)propanoates from levulinic acid

    International Nuclear Information System (INIS)

    Flores, Alex F.C.; Malavolta, Juliana L.; Souto, Alynne A.; Goularte, Rayane B.; Flores, Darlene C.

    2013-01-01

    The cyclocondensation of methyl 7,7,7-trifluoro-4-methoxy-6-oxo-4-heptenoate and methyl 7,7,7-trichloro-4-methoxy-6-oxo-4-heptenoate, derived from levulinic acid with amidines [NH 2 CONH 2 , NH 2 CR(NH) (R = H, Me, Ph, NH 2 , SMe and 1H-pyrazol-1-yl), 5-amino-3-methyl-1H-pyrazol and 2-aminothiazole] into pyrimidine and pyrimidine-like derivatives as a new type of glutamate-like 3-(trihalomethylatedpyrimidinyl)propanoate is reported. Preparation of 3-(trihalomethylatedpyrimidinyl) propanohydrazides is also described. The synthetic potential of this straightforward protocol was established by the synthesis of fourteen new 3-(pyrimidinyl) propanoates in regular to good yields (38-92%). The structural assignments were based on the analysis of their 1 H and 13 C nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) data. (author)

  11. Efficiency enhancement of perovskite solar cells using structural and morphological improvement of CH3NH3PbI3 absorber layers

    Science.gov (United States)

    Alidaei, Maryam; Izadifard, Morteza; Ghazi, Mohammad E.; Ahmadi, Vahid

    2018-01-01

    Perovskite solar cells have been heavily investigated due to their unique properties such as high power conversion efficiency (PCE), low-cost fabrication by solution processes, high diffusion length, large absorption coefficient, and direct and tunable band gap. PCE of perovskite devices is strongly dependent on the absorber layer properties such as morphology, crystallinity, and compactness, which are required to be optimized. In this work, the CH3NH3PbI3 (170-480 nm) absorber layers with various methylammonium iodine (MAI) concentrations (7, 10, 20 and 40 mg ml-1) and perovskite solar cells with the fluorine-doped tin oxide (400 nm)/C-TiO2 (30 nm)/Meso-TiO2 (400 nm)/CH3NH3PbI3 (170-480 nm)/P3HT (30 nm)/Au (100 nm) structure were fabricated. A two-step solution process was used for deposition of the CH3NH3PbI3 absorber layers. The morphology, crystal structure, and optical properties of the perovskite layer grown on glass and also the photovoltaic properties of the fabricated solar cells were studied. The results obtained showed that by controlling the deposition conditions, due to the reduction in charge recombination, PCE enhancement of the perovskite solar cell (up to 11.6%) was accessible.

  12. Ph effect on tricalcium phosphate (Ca3(PO4)2) thermoluminescence

    International Nuclear Information System (INIS)

    Barrera V, A.; Zarate M, J.; Lemus R, J.; Sanchez, A.; Rivera M, T.

    2015-10-01

    The study of the ph effect is presented on thermoluminescent response of calcium phosphates synthesized by precipitation process. For the synthesis by precipitation, were used: calcium nitrate (Ca(NO 3 ) 2 and ammonium phosphate dibasic ((NH 4 ) 2 HPO 4 ) as precursors. Samples were obtained at ph 7, 8, 9 and 10 and subjected to a calcination s temperature of 1100 C. Samples were also irradiated with X rays of 6 MV to a dose of 2 Gy. Samples prior to irradiation showed no luminescence, the irradiated samples displayed a luminescent curve which is due to the X-ray response. Powders synthesized at ph 7 showed a well-defined peak centered at 267 grades C. The rest of the prepared samples showed a luminescent curve composed of several peaks. By analyzing the curve at ph 7 by the method of the shape of the curve, was found to have an order of 1.7, with an activation energy, E = 1.44 ± 0.04 eV. (Author)

  13. Sequence of phase transitions in (NH4)3SiF7.

    Science.gov (United States)

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Pogoreltsev, E I; Misyul, S V; Flerov, I N

    2017-02-21

    Single crystals of silicon double salt (NH 4 ) 3 SiF 7 = (NH 4 ) 2 SiF 6 ·NH 4 F = (NH 4 ) 3 [SiF 6 ]F were grown and studied by the methods of polarization optics, X-ray diffraction and calorimetry. A sequence of symmetry transformations with the temperature change was established: P4/mbm (Z = 2) (G 1 ) ↔ Pbam (Z = 4) (G 2 ) ↔ P2 1 /c (Z = 4) (G 3 ) ↔ P1[combining macron] (Z = 4) (G 4 ) ↔ P2 1 /c (Z = 8) (G 5 ). Crystal structures of different phases were determined. The experimental data were also interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions.

  14. Study of NH3 Line Intensities in the THz and Far-IR Region

    Science.gov (United States)

    Yu, Shanshan

    Ammonia (NH3) exists in the interstellar medium, late-type stars and giant planets of our solar system. Its temperature and abundance profiles in these environments, which are derived with its line parameters as fixed input , are commonly used to provide constraints on retrieving minor species. Therefore NH3 line parameters are essential for interpreting astrophysical and planetary spectra from Herschel, SOFIA, ALMA and JWST. However, our work under a predecessor grant with the APRA program revealed significant deficiencies in NH3 intensities in the terahertz and FIR region, including some weak Delta(K)=3 forbidden transitions predicted to be 100 times stronger. The Delta(K)=3 transitions are the ones connecting levels with different K values and therefore the only way other than collisions and l-doubled states to excite NH3 to K>0 levels. Their intensities have to be corrected to explain the observed high K excitation, such as the detection of NH3 (J,K) = (1,1), (2,2)&(14,14) and (18,18) transitions toward the galactic center star forming region Sgr B2, and to provide insights into the radiative- transfer vs. collision excitation mechanics of interstellar NH3. This proposal will remedy the serious deficiencies in the current databases involving NH3 line parameters in the terahertz and FIR region. We will target transitions with intensities greater than 10^{-23} cm-1/ (molecule/cm2) at 296 K, which will be among new astrophysical detections made by SOFIA, ALMA and JWST, and are 1000 times weaker than the strongest ground state transitions. We will retrieve new positions and intensities from existing laboratory spectra, use them to evaluate the current databases and ab initio calculations, and repair the line positions and intensities by replacing poorly calculated values with our new measurements. The proposed research will result in (1) a validated linelist containing the positions, intensities and lower state energies for the very important Delta(K)=3 NH3 FIR

  15. Synthesis and structure of a 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Xiong Ming; Lin Jianhua

    2007-01-01

    A new 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, and β=90.42(3) deg. The anionic [B 7 O 10 (OH) 3 ] n 2n- layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H 3 N(CH 2 ) 6 NH 3 ] 2+ cations are located. - Graphical abstract: A layered 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ], was solvothermally synthesized at 150 deg. C. It is a layer borate and crystallized in monoclinic space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, β=90.42(3) deg

  16. A Highly Selective Room Temperature NH3 Gas Sensor based on Nanocrystalline a-Fe2O3

    Directory of Open Access Journals (Sweden)

    Priyanka A. PATIL

    2017-05-01

    Full Text Available Nanocrystalline a-Fe2O3 powder was synthesized by simple, inexpensive sol-gel method. The obtained powder was calcined at 700 0C in air atmosphere for 2 hours. The structural and morphological properties of calcined powder were studied by X-ray diffraction (XRD and Field Emission Scanning Electron Microscopy (FESEM respectively. Thermal properties of dried gel were studied by Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC. The XRD pattern of the powder confirmed the a-Fe2O3 (hematite phase of iron oxide with average crystalline size of 30.87 nm calculated from Scherrer equation. The FESEM images showed uniform wormlike morphology of a-Fe2O3 powder. TGA result indicated that a-Fe2O3 is thermodynamically stable. Room temperature NH3 sensing characteristics of a-Fe2O3 were studied for various concentration levels (250-2500 ppm of NH3 at various humid conditions. The sensor based on a-Fe2O3 exhibited good selectivity and excellent sensitivity (S=92 towards 1000 ppm of NH3 with quick response of 4 sec and fast recovery of 9 sec. Room temperature sensing mechanism is also discussed.

  17. Creation and annealing of metastable defect states in CH3NH3PbI3 at low temperatures

    Science.gov (United States)

    Lang, F.; Shargaieva, O.; Brus, V. V.; Rappich, J.; Nickel, N. H.

    2018-02-01

    Methylammonium lead iodide (CH3NH3PbI3), an organic-inorganic perovskite widely used for optoelectronic applications, is known to dissociate under illumination with light at photon energies around 2.7 eV and higher. Here, we show that photo-induced dissociation is not limited to ambient temperatures but can be observed even at 5 K. The photo-induced dissociation of N-H bonds results in the formation of metastable states. Photoluminescence (PL) measurements reveal the formation of defect states that are located 100 meV within the bandgap. This is accompanied by a quenching of the band-to-band PL by one order of magnitude. Defect generation is reversible and annealing at 30 K recovers the band-to-band PL, while the light-induced defect states disappear concurrently.

  18. Comparison of NH4+-N and NO3--N nutrition in hybrid and conventional rice at the late growth stage

    International Nuclear Information System (INIS)

    Yang Xiaoe; Sun Xi

    1990-01-01

    The difference of NH 4 + -N/NO 3 - -N nutrition between hybrid and conventional rice varieties at the late growth stage was studied by using 15 N-tracer technique. The results showed that the nitrate fertilizer utilization efficiency by the hybrid rice after anthesis was 7.8% higher than that by the ordinary rice variety, and the nitrate fertilizer recovery fraction by the former was 13.2% greater than that by the latter. The varietal difference in NO 3 - -N uptake and utilization was almost twice as that in NH 4 + -N. It was also showed that 15 N distribution in ear of the hybrid rice was about 20% greater than that of the conventional variety, but there were no obvious differences between NO 3 - -N and NH 4 + -N. However, 15 N distribution in the lower node leaves and root was found to be significant higher with NO 3 - -N than that with NH 4 + -N in both rice varieties, particularly in the hybrid rice. Compared with NH 4 + -N, NO 3 - -N top-dressing before anthesis was observed to have much greater positive effects on the uptake of calcium and magnesium and the growth of the superficial root and the grain yield of the tested rice varieties, especially of the hybrid rice

  19. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH3

    International Nuclear Information System (INIS)

    Gwo, Dz-Hung; California Univ., Berkeley, CA

    1989-11-01

    Hyperfine resolved vibration-rotation-tunneling spectra of Ar--NH 3 and (NH 3 ) 2 , generated in a planar supersonic jet, have been measured with the Berkeley tunable far infrared laser spectrometer. Among the seven rotationally assigned bands, one band belongs to Ar--NH 3 , and the other six belong to (NH 3 ) 2 . To facilitate the intermolecular vibrational assignment for Ar--NH 3 , a dynamics study aided by a permutation-inversion group theoretical treatment is performed on the rovibrational levels. The rovibrational quantum number correlation between the free internal rotor limit and the semi-rigid limit is established to provide a basic physical picture of the evolution of intermolecular vibrational component states. An anomalous vibronically allowed unique Q branch vibrational band structure is predicted to exist for a near prolate binary complex containing an inverting subunit. According to the model developed in this work, the observed band of Ar--NH 3 centered at 26.470633(17) cm -1 can correlate only to either the fundamental dimeric stretching band for the A 2 states with the NH 3 inversional quantum number v i = 1, or the K a = 0 left-arrow 0 subband of the lowest internal-rotation-inversion difference band. Although the estimated nuclear quadrupole coupling constant favors a tentative assignment in terms of the first possibility, a definitive assignment will require far infrared data and a dynamical model incorporating a potential surface

  20. The international research progress of Ammonia(NH3) emissions and emissions reduction technology in farmland ecosystem

    Science.gov (United States)

    Yang, W. Z.; Jiao, Y.

    2017-03-01

    NH3 is the important factor leading to the grey haze, and one of the main causes of environmental problems of serious ecological imbalance, such as acid rain and air quality deterioration. The fertilizer excessive application of the current farmland results NH3 emissions intensity greatly. In order to clear the farmland NH3 emissions research status and achievements, the literature of farmland NH3 emission related were retrievaled by the SCI journals and Chinese science citation database. Some factors of NH3 emission were analyzed such as soil factors, climate factors and farmland management measures. The research progress was inductived on farmland NH3 emission reduction technology. The results will help to clarify farmland NH3 emissions research progress. The theoretical guidance was provided on the future of farmland NH3 emissions research.

  1. Theoretical study on the mechanism of CH3NH2 and O3 ...

    Indian Academy of Sciences (India)

    CH3NH + OH + O2 adducts with one transition state is the most favoured path. Keywords. Ozone; calculation; reaction mechanism; potential energy profile; transition state. 1. Introduction ..... University of. Applied Science, Bielefeld, Germany.

  2. Sterically crowded monomeric neutral bis(benzamidinato) compounds of aluminium, [PhC(NSiMe(3))(2)](2)AlX (X=Cl, H); X-ray crystal structure of [PhC(NSiMe(3))(2)]2AlH

    NARCIS (Netherlands)

    Duchateau, R; Meetsma, A; Teuben, JH

    1996-01-01

    AlCl3 reacts with [PhC(NSiMe(3))(2)]Li(OEt(2)) to afford the bis(N,N'-bis(trimethylsilyl)benzamidinato)aluminium chloro compound which, on treatment with KBEt(3)H, yields the structurally characterized monomeric hydride derivative, [PhC(NSiMe(3))(2)]2AlH, whose reactivity towards unsaturated

  3. Trends of NO-, NO 2-, and NH 3-emissions from gasoline-fueled Euro-3- to Euro-4-passenger cars

    Science.gov (United States)

    Heeb, Norbert V.; Saxer, Christian J.; Forss, Anna-Maria; Brühlmann, Stefan

    Vehicular emissions of reactive nitrogen compounds (RNCs) such as nitric oxide (NO), nitrogen dioxide (NO 2), and ammonia (NH 3) have a substantial impact on urban air quality. NO and NO 2 support the photochemical formation of ozone, and NH 3 is involved in the atmospheric formation of secondary aerosols. Vehicular NO is mainly formed during combustion, whereas NO 2 and NH 3 are both secondary pollutants of the catalytic converter systems. Herein we report on tail-pipe RNC emissions of gasoline-fueled Euro-3- and Euro-4-passenger cars at transient driving from 0 to 150 km h -1. Two sets of 10 in-use vehicles with comparable engine size and mileage were studied with time-resolved chemical ionization-mass spectrometry (CI-MS). Each vehicle was tested in 7 different driving cycles including the legislative European (EDC) and the US FTP-75 driving cycles. Mean emission factors (EFs) for different traffic situations are reported and effects of cold start, velocity, acceleration, and deceleration are discussed. Furthermore, critical operating conditions supporting the de novo formation of NH 3 have been identified. In the EDC, mean NO- and NH 3-EFs of 57±26 and 16±12 mg km -1 were obtained for Euro-3-vehicles; those of the Euro-4-technology were lower by about 25% and 33% at the levels of 43±46 and 10±7 mg km -1, respectively. NO 2 emissions of the investigated three-way catalyst (TWC) vehicles accounted for exhaust. Velocity and acceleration had pronounced effects on the RNC emission characteristics. Mean velocity-dependent EFs for NO and NH 3 varied by about one order of magnitude from 10 to 74 and 15 to 161 mg km -1 for Euro-3-vehicles and from 12 to 44 and 7 to 144 mg km -1 for the Euro-4 fleet. We conclude that the investigated Euro-3- and Euro-4-vehicles are mainly operated under slightly reducing conditions, where the NH 3 emissions dominate over those of the NO. Under these conditions, both vehicle fleets on an average fulfilled the valid Euro-3 and Euro-4

  4. High-Performance CH3NH3PbI3-Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide.

    Science.gov (United States)

    Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin

    2017-10-18

    The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH 3 NH 3 I; MAI), formamidinium iodide (CH(NH 2 ) 2 I; FAI), and cesium iodide (CsI)) in CH 3 NH 3 PbI 3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH 3 NH 3 PbI 3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI 3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI 3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm 2 ).

  5. Heterogeneous reactions between ions NH3+and NH+andhydrocarbons adsorbed on a tungsten surface.Formation of HCN+in NH+-surface hydrocarbon collisions

    Czech Academy of Sciences Publication Activity Database

    Harnisch, M.; Scheier, P.; Herman, Zdeněk

    2015-01-01

    Roč. 392, DEC 2015 (2015), s. 139-144 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : ion-surface collisions * NH3+ and NH+projectiles * surface hydrocarbons Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015

  6. Lead-free Perovskite Materials (NH4 )3 Sb2 Ix Br9-x.

    Science.gov (United States)

    Zuo, Chuantian; Ding, Liming

    2017-06-01

    A family of perovskite light absorbers (NH 4 ) 3 Sb 2 I x Br 9-x (0≤x≤9) was prepared. These materials show good solubility in ethanol, a low-cost, hypotoxic, and environmentally friendly solvent. The light absorption of (NH 4 ) 3 Sb 2 I x Br 9-x films can be tuned by adjusting I and Br content. The absorption onset for (NH 4 ) 3 Sb 2 I x Br 9-x films changes from 558 nm to 453 nm as x changes from 9 to 0. (NH 4 ) 3 Sb 2 I 9 single crystals were prepared, exhibiting a hole mobility of 4.8 cm 2  V -1  s -1 and an electron mobility of 12.3 cm 2  V -1  s -1 . (NH 4 ) 3 Sb 2 I 9 solar cells gave an open-circuit voltage of 1.03 V and a power conversion efficiency of 0.51 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High yielding mutants of blackgram variety 'PH-25'

    International Nuclear Information System (INIS)

    Misra, R.C.; Mohapatra, B.D.; Panda, B.S.

    2001-01-01

    Seeds of blackgram (Vigna mungo L.) variety 'PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN 3 ), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M 4 generation. The mutants showed wide variation in most of the traits and multivariante D 2 analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M 5 . Yield and other productive traits of five high yielding mutants in M 4 and M 5 are presented

  8. Molecular modelling of the decomposition of NH{sub 3} over CoO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Shojaee, Kambiz; Haynes, Brian S.; Montoya, Alejandro, E-mail: alejandro.montoya@sydney.edu.au

    2015-04-15

    Spin-polarised density functional theory using the PBE + U approach are used to determine reaction pathways of successive NH{sub 3} dehydrogenation on the CoO(100) surface. NH{sub 3} dehydrogenation promotes noticeable displacements of the surface CoO sites, in particular due to the binding of NH{sub 2} and H species. Surface lattice O has low activity towards dehydrogenation, reflected in energy barriers that are in the range of 292 kJ mol{sup −1} to 328 kJ mol{sup −1}. There is a preference of surface NH{sub 3} dehydrogenation to N{sub 2} rather than towards NO, due to a high-energy penalty of surface O vacancy formation. The presence of CoO in cobalt oxide catalysts not only may decline the ammonia conversion but also alter the selectivity towards N{sub 2} rather than NO. - Highlights: • Minimum reactions pathways of ammonia decomposition were studied using density functional theory. • The bonding characteristics of NH{sub x} and H on the CoO(100) surface were analysed using Layer-projected density of states. • Dehydrogenations of NH{sub 3}, NH{sub 2} and NH are highly activated. • The presence of strongly bound lattice oxygen favours the ammonia decomposition towards N{sub 2}.

  9. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  10. Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2004-01-01

    Full Text Available A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd, canopy resistances (Rc and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3 fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+] of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.

  11. Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl

    Science.gov (United States)

    Nemitz, E.; Sutton, M. A.; Wyers, G. P.; Jongejan, P. A. C.

    2004-07-01

    A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.

  12. Preparation of planar CH{sub 3}NH{sub 3}PbI{sub 3} thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Qiuyan; Chu, Yixia [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Zheng, Xuerong [Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Zhenya; Liang, Liming [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Qi, Jiakun [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Xin [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu, Gang [School of Chemical Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu, Hui, E-mail: liuhuihebut@163.com [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Chen, Hongjian [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu, Caichi, E-mail: ccliu@hebut.edu.cn [Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China)

    2016-06-25

    Recently, planar perovskite solar cells based on CH{sub 3}NH{sub 3}PbI{sub 3} have attracted many researcher's interest due to their unique advantages such as simple cell architecture, easy fabrication and potential multijunction construction comparing to the initial mesoporous structure. However, the preparation of planar perovskite films with high quality is still in challenge. In this paper, we developed a vapor-assisted solution process using a novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) instead of the traditional N, N-dimethylformamide (DMF) to construct a high-quality perovskite CH{sub 3}NH{sub 3}PbI{sub 3} thin film with pure phase, high compactness, small surface roughness and controlled size. The phase evolution and growth mechanism of the perovskite films are also discussed. Utilizing the NEP of low volatility and moderate boiling point as solvent, we dried the PbI{sub 2}-NEP precursor films at different temperature under vacuum and then obtained PbI{sub 2} thin films with different crystalline degree from amorphous to highly crystalline. The perovskite films with crystal size ranged from hundreds of nanometers to several micrometers can be prepared by reacting the PbI{sub 2} films of different crystalline degree with CH{sub 3}NH{sub 3}I vapor. Moreover, planar-structured solar cells combining the perovskite film with TiO{sub 2} and spiro-OMeTAD as the electron and holes transporting layer achieves a power conversion efficiency of 10.2%. - Highlights: • A novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) was used to construct high-quality perovskite CH{sub 3}NH{sub 3}PbI{sub 3} thin film. • The CH{sub 3}NH{sub 3}PbI{sub 3} grain with different sizes ranged from hundreds of nanometers to several micrometers can be obtained. • Planar-structured perovskite CH{sub 3}NH{sub 3}PbI{sub 3} solar cells using NEP as solvent achieves a power conversion efficiency of 10.2%.

  13. Electron motion in high-pressure polar gases: NH3

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Carter, J.G.; Maxey, D.V.

    1982-01-01

    Drift velocities w for slow electrons in NH 3 vapor have been measured and are reported as a function of the density-reduced electric field E/N ( -17 V cm 2 ), density N (2.43--292 x 10 18 molecule cm -3 ), and temperature T (300--650 K). The w decreases with increasing N considerably and this decrease varies with T; for a fixed N it is higher the lower the T. Use is made of the T- and N-dependence of w to assess the role of the various processes which delay the electron drift. The density range above approx.2.5 x 10 19 molecules cm -3 seems (anionic) electron state. The number density N/sub L/ at which complete electron localization occurs, has been estimated at various T. At T = 300 K, N/sub L/approx. =3.3 x 10 20 molecule cm -3 or approx.0.01 g cm 3 . Estimates have also been made of the binding energy of the electron to the trapping species (possibly NH 3 clusters) which, depending on T, range from 0.11 to 0.15 eV

  14. [Seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value in rainwater in Yangtze River Delta].

    Science.gov (United States)

    Xie, Ying-Xin; Zhang, Shu-Li; Zhao, Xu; Xiong, Zheng-Qin; Xing, Guang-Xi

    2008-09-01

    By using a customized manual rainwater sampler made of polyvinyl chloride plastic, the molar ratio of NH4(+) -N/NO3(-) -N and the natural 15N abundance of NH4(+) (delta 15 NH4(+) in rainwater was monitored all year round from June 2003 to July 2005 at three observation sites (Changshu, Nanjing, and Hangzhou) in the Yangtze River Delta. The results indicated that at the three sites, the NH4(+) -N/NO3(-) -N ratio and the delta 15 NH4(+) value in rainwater had the similar seasonal variation trend, being more obvious in Changshu (rural monitoring type) site than in Nanjing (urban monitoring type) and Hangzhou (urban-rural monitoring type) sites. The NH4(+) -N/NO3(-) -N ratio peaked from early June to early August, declined gradually afterwards, and reached the bottom in winter; while the delta 15 NH4(+) value was negative from late June to mid-August, turned positive from late August to mid or late November, became negative again when winter dominated from December to March, but turned positive again in next May and negative again in next July. These seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value were found in relation to the application of chemical nitrogen fertilizers during different crop growth periods, and also, the alternation of seasons and the NH3 volatilization from other NH3 emission sources (including excrements of human and animals, nitrogen- polluted water bodies, and organic nitrogen sources, etc.), which could be taken as an indicator of defining the sources and form composition of NH4(+) in atmospheric wet deposition and the intensity of various terrestrial NH3 emission sources.

  15. Surface chemistry of PH 3, PF 3 and PCl 3 on Ru(0001)

    Science.gov (United States)

    Tao, H.-S.; Diebold, U.; Shinn, N. D.; Madey, T. E.

    1994-06-01

    The adsorption, desorption and decomposition of PH 3, PF 3 and PCl 3 on Ru(0001) have been studied by soft X-ray photoelectron spectroscopy (SXPS) using synchrotron radiation. Due to large chemical shifts in the P 2p core levels, different phosphorus containing surface species can be identified. We find that PF 3 adsorbs molecularly on Ru(0001) at 80 and 300 K. At 80 K, PH 3 saturates the surface with one layer of atomic hydrogen, elemental phosphorus, subhydride (i.e., PHx (0 PH 3, with a total phosphorus coverage of 0.4 ML. At 300 K, PH 3 decomposes into atomic hydrogen and elemental phosphorus with a phosphorus coverage of 0.8 ML. At 80 K, PCl 3 adsorbs dissociatively into atomic chlorine, elemental phosphorus, PCl and possibly PCl 2 and PCl 3 in the first monolayer. Formation of multilayers of PCl 3 is observed at 80 K. At 300 K, PCl 3 adsorbs dissociatively as atomic chlorine and elemental phosphorus with a saturation phosphorus coverage of 0.1 ML. The variation in total phosphorus uptake at 300 K from PX3 ( X = H, FandCl) adsorption is a result of competition between site blocking by dissociation fragments and displacement reactions. Annealing surfaces with adsorbed phosphorus to 1000 K results in formation of RuzP ( z = 1 or 2), which is manifested by the chemical shifts in the P2p core level, as well as the P LVV Auger transition. The recombination of adsorbed phosphorus and adsorbed X ( = H, FandCl) from decomposition is also observed, but is a minor reaction channel on the surface. Thermochemical data are used to analyze the different stabilities of PX 3 at 300 K, namely, PF 3 adsorbs molecularly and PH 3 and PCl 3 dissociate completely. First, we compare the heat of molecular adsorption and the heat of dissociative adsorption of PX 3 on Ru(0001), using an enthalpy approach, and find results consistent with experimental observations. Second, we compare the total bond energy difference between molecular adsorption and complete dissociation of PX 3 on Ru

  16. Preparation and Study of NH3 Gas Sensing Behavior of Fe2O3 Doped ZnO Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. R. Patil

    2006-08-01

    Full Text Available The preparation, characterization and gas sensing properties of pure and Fe2O3-ZnO mixed oxide semiconductors have been investigated. The mixed oxides were obtained by mixing ZnO and Fe2O3 in the proportion 1:1, 1:0.5 and 0.5:1. Pure ZnO was observed to be insensitive to NH3 gas. However, mixed oxides (with ZnO: Fe2O3 =1:0.5 were observed to be highly sensitive to ammonia gas. Upon exposure to NH3 gas, the barrier height of Fe2O3-ZnO intergranular regions decreases markedly due to the chemical transformation of Fe2O3 into well conducting ferric ammonium hydroxide leading to a drastic decrease in resistance. The crucial gas response was found to NH3 gas at 3500C and no cross response was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of NH3 gas were studied and discussed.

  17. Nature of phase transitions in ammonium oxofluorovanadates, a vibrational spectroscopy study of (NH4)3VO2F4 and (NH4)3VOF5.

    Science.gov (United States)

    Gerasimova, Yu V; Oreshonkov, A S; Laptash, N M; Vtyurin, A N; Krylov, A S; Shestakov, N P; Ershov, A A; Kocharova, A G

    2017-04-05

    Two ammonium oxofluorovanadates, (NH 4 ) 3 VO 2 F 4 and (NH 4 ) 3 VOF 5 , have been investigated by temperature-dependent infrared and Raman spectroscopy methods to determine the nature of phase transitions (PT) in these compounds. Dynamics of quasioctahedral groups was simulated within the framework of semi-empirical approach, which justified the cis-conformation of VO 2 F 4 3- (C 2v ) and the C 4v geometry of VOF 5 3- . The observed infrared and Raman spectra of both compounds at room temperature (RT) revealed the presence at least of two crystallographically independent octahedral groups. The first order PT at elevated temperatures is connected with a complete dynamic disordering of these groups with only single octahedral state. At lower temperatures, the octahedra are ordered and several octahedral states appear. This PT is the most pronounced in the case of (NH 4 ) 3 VOF 5 , when at least seven independent VOF 5 3- octahedra are present in the structure below 50K, in accordance with the Raman spectra. Ammonium groups do not take part in PTs at higher and room temperatures but their reorientational motion freezes at lower temperatures. Copyright © 2017. Published by Elsevier B.V.

  18. Effects of two litter amendments on air NH3 levels in broiler closed-houses

    Science.gov (United States)

    Atapattu, N. S. B. M; Lakmal, L. G. E.; Perera, P. W. A.

    2017-01-01

    Objective High NH3 emissions from poultry houses are reported to have negative impacts on health, welfare and safety of birds and humans, and on the environment. Objective of the present study was to determine the effects of two litter amendments on the NH3 levels in broiler closed houses under hot-humid conditions. Methods Giving a completely randomize design, nine closed houses, each housed 32,500 birds on paddy husk litter, were randomly allocated into two treatment (Mizuho; a bacterial culture mix and Rydall OE; an enzymatic biocatalyst) and control groups. NH3 levels were determined thrice a day (0600, 1200, and 1800 h), at three heights from the litter surface (30, 90, and 150 cm), at 20 predetermined locations of a house, from day 1 to 41. Results Rydall significantly reduced the NH3 level compared to control and Mizuho. NH3 levels at 30 cm were significantly higher than that of 90 and 150 cm. The NH3 levels at 30 cm height were higher than 25 ppm level from day 9, 11, and 13 in Mizuho, control, and Rydall groups, respectively to day 41. NH3 levels at 150 cm height were higher than maximum threshold limit of 50 ppm for human exposure from day 12, 14, and 15 in Mizuho, control, and Rydall groups, respectively to day 33. Being significantly different among each other, the NH3 level was highest and lowest at 0600 and 1800 h. Litter amendments had no significant effects on growth performance. Rydall significantly increased the litter N content on day 24. Conclusion It was concluded that the NH3 levels of closed house broiler production facilities under tropical condition are so high that both birds and workers are exposed to above recommended levels during many days of the growing period. Compared to microbial culture, the enzymatic biocatalyst was found to be more effective in reducing NH3 level. PMID:28423888

  19. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH2)3]CdI3 and [4-ClC6H5NH3]3CdBr5

    International Nuclear Information System (INIS)

    Gesing, Thorsten M.; Lork, Enno; Terao, Hiromitsu; Ishihara, Hideta

    2016-01-01

    The crystal structures of [C(NH 2 ) 3 ]CdI 3 (1) and [4-ClC 6 H 5 NH 3 ] 3 CdBr 5 (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2 1 /c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI 4 ] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr 6 ] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three 127 I (m = ±1/2 <-> m = ±3/2), five 81 Br, and three 35 Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd 5 I 16 ] 6- for 1 and [Cd 3 Br 16 ] 10- for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  20. A straightforward and efficient synthesis of 3-(pyrimidinyl)propanoates from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Alex F.C.; Malavolta, Juliana L.; Souto, Alynne A.; Goularte, Rayane B.; Flores, Darlene C., E-mail: alex.fcf@ufsm.br [Universidade Federal de Santa Maria (UFSM/NUQUIMHE), RS (Brazil). Departamento de Quimica. Nucleo de Quimica de Heterociclos

    2013-04-15

    The cyclocondensation of methyl 7,7,7-trifluoro-4-methoxy-6-oxo-4-heptenoate and methyl 7,7,7-trichloro-4-methoxy-6-oxo-4-heptenoate, derived from levulinic acid with amidines [NH{sub 2}CONH{sub 2}, NH{sub 2}CR(NH) (R = H, Me, Ph, NH{sub 2}, SMe and 1H-pyrazol-1-yl), 5-amino-3-methyl-1H-pyrazol and 2-aminothiazole] into pyrimidine and pyrimidine-like derivatives as a new type of glutamate-like 3-(trihalomethylatedpyrimidinyl)propanoate is reported. Preparation of 3-(trihalomethylatedpyrimidinyl) propanohydrazides is also described. The synthetic potential of this straightforward protocol was established by the synthesis of fourteen new 3-(pyrimidinyl) propanoates in regular to good yields (38-92%). The structural assignments were based on the analysis of their {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) data. (author)

  1. Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH3)3SnX3(X = Cl, Br)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    substitute for the lead in the halides perovskites and solving the ambiguous crystal structures and phase transition of NH(CH3)3SnX3 (X = Cl, Br). Here, we report the bulk crystal growths and different crystal morphologies of orthorhombic hybrid perovskites

  2. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeok Im

    2014-08-01

    Full Text Available Perovskite CH3NH3PbI3 light absorber is deposited on the mesoporous TiO2 layer via one-step and two-step coating methods and their photovoltaic performances are compared. One-step coating using a solution containing CH3NH3I and PbI2 shows average power conversion efficiency (PCE of 7.5%, while higher average PCE of 13.9% is obtained from two-step coating method, mainly due to higher voltage and fill factor. The coverage, pore-filling, and morphology of the deposited perovskite are found to be critical in photovoltaic performance of the mesoporous TiO2 based perovskite solar cells.

  3. Surface study of platinum decorated graphene towards adsorption of NH_3 and CH_4

    International Nuclear Information System (INIS)

    Rad, Ali Shokuhi; Pazoki, Hossein; Mohseni, Soheil; Zareyee, Daryoush; Peyravi, Majid

    2016-01-01

    To distinguish the potential of graphene sensors, there is a need to recognize the interaction between graphene sheet and adsorbing molecules. We used density functional theory (DFT) calculations to study the properties of pristine as well as Pt-decorated graphene sheet upon adsorption of NH_3 and CH_4 on its surface to exploit its potential to be as gas sensors for them. We found much higher adsorption, higher charge transfer, lower intermolecular distance, and higher orbital hybridizing upon adsorption of NH_3 and CH_4 gas molecules on Pt-decorated graphene compared to pristine graphene. Also our calculations reveal that the adsorption energies on Pt-decorated graphene sheet are in order of NH_3 >CH_4 which could be corresponded to the order of their sensitivity on this modified surface. We used orbital analysis including density of states as well as frontier molecular orbital study for all analyte-surface systems to more understanding the kind of interaction (physisorption or chemisorption). Consequently, the Pt-decorated graphene can transform the existence of NH_3 and CH_4 molecules into electrical signal and it may be potentially used as an ideal sensor for detection of NH_3 and CH_4 in ambient situation. - Highlights: • Pt-decorated graphene was investigated as an adsorbent for NH_3 and CH_4. • Much higher adsorption of NH_3 and CH_4 on Pt-decorated graphene than pristine graphene. • Higher adsorption of NH_3 compared to CH_4 on Pt-decorated graphene. • Pt influences the electronic structure of graphene.

  4. Rotational Spectroscopy of the NH{sub 3}–H{sub 2} Molecular Complex

    Energy Technology Data Exchange (ETDEWEB)

    Surin, L. A.; Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, D-50937 Cologne (Germany); Tarabukin, I. V. [Institute of Spectroscopy of Russian Academy of Sciences, Fizicheskaya Str. 5, 108840 Troitsk, Moscow, Russia (Russian Federation); Breier, A. A.; Giesen, T. F. [Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); McCarthy, M. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Avoird, A. van der, E-mail: surin@ph1.uni-koeln.de, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2017-03-20

    We report the first high resolution spectroscopic study of the NH{sub 3}–H{sub 2} van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH{sub 3}–H{sub 2} in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, ( o )-NH{sub 3}–( o )-H{sub 2} and ( p )-NH{sub 3}–( o )-H{sub 2}, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH{sub 3}–H{sub 2} PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  5. Selective Catalytic Reduction of NO with NH3 Over V-MCM-41 Catalyst.

    Science.gov (United States)

    Kwon, Woo Hyun; Park, Sung Hoon; Kim, Ji Man; Park, Su Bin; Jung, Sang-Chul; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon

    2016-02-01

    V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.

  6. Reactions of 11C recoil atoms in the systems H2O-NH3, H2O-CH4 and NH3-CH4

    International Nuclear Information System (INIS)

    Nebeling, B.

    1988-11-01

    In this study the chemical reactions of recoil carbon 11 in the binary gas mixtures H 2 O-NH 3 , H 2 O-CH 4 and NH 3 -CH 4 in different mixing ratios as well as in solid H 2 O and in a solid H 2 O-NH 3 mixture were analyzed in dependence of the dose. The analyses were to serve e.g. the simulation of chemical processes caused by solar wind, solar radiation and cosmic radiation in the coma and core of comets. They were to give further information about the role of the most important biogeneous element carbon, i.e. carbon, in the chemical evolution of the solar system. Besides the actual high energy processes resulting in the so-called primary products, also the radiation-chemical changes of the primary products were also observed in a wide range of dosing. The generation of the energetic 11 C atoms took place according to the target composition by the nuclear reactions 14 N(p,α) 11 C, 12 C( 3 He,α) 11 C or the 16 O(p,αpn) 11 C reaction. The identification of the products marked with 11 C was carried out by means of radio gas chromatography or radio liquid chromatography (HPLC). (orig./RB) [de

  7. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions.

    Science.gov (United States)

    Ranathunge, Kosala; El-Kereamy, Ashraf; Gidda, Satinder; Bi, Yong-Mei; Rothstein, Steven J

    2014-03-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.

  8. AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions

    Science.gov (United States)

    Rothstein, Steven J.

    2014-01-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4 +). The NH4 + uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4 + transport in rice plants. However, little is known about its involvement in NH4 + uptake in rice roots and subsequent effects on NH4 + assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4 + permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4 + content in the shoots and roots than the WT. Direct NH4 + fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4 + contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4 + levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions. PMID:24420570

  9. Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3−yXy single crystals and photodetector applications

    Directory of Open Access Journals (Sweden)

    L. Wang

    2016-04-01

    Full Text Available We report the synthesis of CH3NH3Pb(Br3−yXy (X=Cl and I single crystals via a stepwise temperature control approach. High-quality CH3NH3Pb(Br3−yXy crystals with a tunable bandgap from 1.92eV to 2.53eV have been prepared successfully in this way. And further experiments revealed the influence of halogen content and preparation temperature on the structural and optical properties of these crystals. It is observed that chlorine can lower the critical nucleation energy, which results in crystallizing at lower temperature with the chlorine content increasing, while the nucleation energy increases slowly with increasing iodine content. Moreover, in contrast to Frank–van der Merwe growth with low heating rate, high heating rate leads to a mass of small size single crystals and Stranski-Krastanov growth. The single crystals with tunable band gap and impressive characteristics enable us to fabricate high performance photodetectors for different wavelengths.

  10. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3).

    Science.gov (United States)

    Pilling, Carissa; Landgraf, Kyle E; Falke, Joseph J

    2011-11-15

    During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al

  11. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, Dz-Hung (Lawrence Berkeley Lab., CA (USA) California Univ., Berkeley, CA (USA). Dept. of Chemistry)

    1989-11-01

    Hyperfine resolved vibration-rotation-tunneling spectra of Ar--NH{sub 3} and (NH{sub 3}){sub 2}, generated in a planar supersonic jet, have been measured with the Berkeley tunable far infrared laser spectrometer. Among the seven rotationally assigned bands, one band belongs to Ar--NH{sub 3}, and the other six belong to (NH{sub 3}){sub 2}. To facilitate the intermolecular vibrational assignment for Ar--NH{sub 3}, a dynamics study aided by a permutation-inversion group theoretical treatment is performed on the rovibrational levels. The rovibrational quantum number correlation between the free internal rotor limit and the semi-rigid limit is established to provide a basic physical picture of the evolution of intermolecular vibrational component states. An anomalous vibronically allowed unique Q branch vibrational band structure is predicted to exist for a near prolate binary complex containing an inverting subunit. According to the model developed in this work, the observed band of Ar--NH{sub 3} centered at 26.470633(17) cm{sup {minus}1} can correlate only to either the fundamental dimeric stretching band for the A{sub 2} states with the NH{sub 3} inversional quantum number v{sub i} = 1, or the K{sub a} = 0 {l arrow} 0 subband of the lowest internal-rotation-inversion difference band. Although the estimated nuclear quadrupole coupling constant favors a tentative assignment in terms of the first possibility, a definitive assignment will require far infrared data and a dynamical model incorporating a potential surface.

  12. Increase in Ice Nucleation Efficiency of Feldspars, Kaolinite and Mica in Dilute NH3 and NH4+-containing Solutions

    Science.gov (United States)

    Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.

    2017-12-01

    Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially

  13. In situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH4+ on Pd/Al2O3 and Pt/Al2O3.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2008-01-01

    In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on

  14. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of 177Lu-Glu-Nh-CO-Nh-Lys membrane

    International Nuclear Information System (INIS)

    Ortega S, D.

    2015-01-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in 177 Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of 177 Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical 177 Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of 177 LuCl 3 , 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  15. CH3NH3PbI3 and CsPbI3 Supramolecular Clusters in 1D: Do They Evolve with the Same Principle of Cooperative Binding?

    Science.gov (United States)

    Varadwaj, Arpita; Varadwaj, Pradeep R.; Yamashita, Koichi

    Development of novel semiconductor-based photo-catalytic and -voltaic systems is a major area of research in nanoscience and technologies, and engineering. The process can be either direct or indirect in converting the light energy into electricity. Some of the photovoltaics include the organic, dye-sensitized, and halide perovskite solar cells, among others. Methylammonium lead iodide (CH3NH3PbI3) inorganic-organic hybrid perovskite is one among the many highly valued semiconductors reported till date, comparable with the inorganic cesium lead iodide (CsPbI3) perovskite. These are competitive candidates in the solar energy race. Nevertheless, this study was concentrated on the fundamental understanding of the rational designs of the CH3NH3PbI3 and CsPbI3 supramolecular materials using first-principles calculations, emerged though the self-assembly of the respective building blocks. It therefore addresses the question whether the (CH3NH3PbI3)n and (CsPbI3)n (n =1-10) supramolecular clusters are the consequences of additivity, or non-additive cooperative binding? For addressing this question, the supramolecular properties such as the polarizability, the intermolecular charge transfer, and the binding energy, etc., all w.r.t the cluster size n, are exploited. CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076.

  16. Theoretical study of the properties of BH3NH3

    International Nuclear Information System (INIS)

    Binkley, J.S.; Thorne, L.R.

    1983-01-01

    Borane monoammoniate (BH 3 NH 3 ) has been studied using several ab initio electronic structure methods and Gaussian basis sets. Equilibrium geometries have been computed at the Hartree--Fock level and, using the electron-correlated Moller--Plesset perturbation method, carried out to third order (MP3) with double-zeta polarized quality basis sets. The computed MP3 geometry is in close agreement with recent microwave data; electron correlation is found to be necessary for a proper description of the B--N distance. Hartree--Fock dipole moments and harmonic vibrational frequencies are presented and discussed. Moller--Plesset perturbation theory carried out to fourth order with triple-zeta plus polarization basis sets is used to compute a B--N dissociation energy of 34.7 kcal mol -1 and a (Hartree--Fock zero-point corrected) rotational barrier of 2.065 kcal mol -1 , which is in excellent agreement with the experimental value. Analysis of the dissociation energy as a function of perturbation order indicates that terms involving triple and quadruple substitutions are required in the dissociation energy

  17. Encapsulation of a trinuclear silver(I) cluster by two imido-nitrido metalloligands [{Ti(eta5-C5Me5)(micro-NH)}3(micro3-N)].

    Science.gov (United States)

    Martín, Avelino; Martínez-Espada, Noelia; Mena, Miguel; Yélamos, Carlos

    2007-07-28

    Treatment of the metalloligand [{Ti(eta(5)-C(5)Me(5))(micro-NH)}(3)(micro(3)-N)] with silver(i) trifluoromethanesulfonate in different molar ratios gives the ionic compounds [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)][O(3)SCF(3)] and [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}][O(3)SCF(3)] or the triangular silver cluster [(CF(3)SO(2)O)(3)Ag(3){(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)] in which each face is capped by a metalloligand.

  18. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, Davide; Dursun, Ibrahim; Alias, M. S.; Shi, Dong; Melnikov, V. A.; Ng, Tien Khee; Mohammed, Omar F.; Bakr, Osman; Ooi, Boon S.

    2015-01-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative

  19. Kinetics of gas to particle conversion in the NH/sub 3/-Chl system

    Energy Technology Data Exchange (ETDEWEB)

    Luria, M; Cohen, B

    1980-01-01

    Particle formation in the reaction of NH/sub 3/ and Chl under 1 atm of N/sub 2/ and at 25/sup 0/C was studied in a flow reactor. The critical concentration below which NO particle can be formed was found to be 3.5 x 10/sup +14/ molecule/CM/sup 3/ for (NH/sub 3/)=(HCl). Above this concentration, gas-particle conversion percentage increases rapidly to approach 100%.

  20. Stability and carrier mobility of organic-inorganic hybrid perovskite CH3NH3PbI3 in two-dimensional limit

    Science.gov (United States)

    Huang, Kui; Lai, Kang; Yan, Chang-Lin; Zhang, Wei-Bing

    2017-10-01

    Recently, atomically thin organic-inorganic hybrid perovskites have been synthesized experimentally, which opens up new opportunities for exploring their novel properties in the 2D limit. Based on the comparative density functional theory calculation with and without spin-orbit coupling effects, the stability, electronic structure, and carrier mobility of the two-dimensional organic-inorganic hybrid perovskites MAPbI3 (MA = CH3NH3) have been investigated systemically. Two single-unit-cell-thick 2D MAPbI3 terminated by PbI2 and CH3NH3I are constructed, and their thermodynamic stabilities are also evaluated using the first-principles constrained thermodynamics method. Our results indicate that both 2D MAPbI3 with different terminations can be stable under certain conditions and have a suitable direct bandgap. Moreover, they are also found to have termination-dependent band edge and carrier mobility. The acoustic-phonon-limited carrier mobilities estimated using the deformation theory and effective mass approximation are on the order of thousands of square centimeters per volt per second and also highly anisotropic. These results indicate that 2D MAPbI3 are competitive candidates for low-dimensional photovoltaic applications.

  1. Electron pairing analysis of the Fischer-type chromium-carbene complexes (CO){sub 5}Cr=C(X)R (X=H, OH, OCH{sub 3}, NH{sub 2}, NHCH{sub 3} and R=H, CH{sub 3}, CH=CH{sub 2}, Ph, C-CH )

    Energy Technology Data Exchange (ETDEWEB)

    Poater, Jordi; Cases, Montserrat; Fradera, Xavier; Duran, Miquel; Sola, Miquel

    2003-10-15

    The electron-pair density distributions of a series of 25 Fischer carbene complexes of the type (CO){sub 5}Cr=C(X)R (X=H, OH, OCH{sub 3}, NH{sub 2}, NHCH{sub 3} and R=H, CH{sub 3}, CH=CH{sub 2}, Ph, C-CH) are analyzed using the Atoms in Molecules theory. Localization and delocalization indices are used to characterize the electron pairing taking place in the Cr=C---X moiety in these complexes. Electron delocalization between the Cr and C atoms and between the C atom and the X group are related to the {pi}-donor strength of the X group and the degree of back-donation between the chromium pentacarbonyl and the carbene fragments. The results obtained with the Atoms in Molecules theory complement those obtained in a previous study by means of energy and charge decomposition analyses. Electron delocalization between the Cr atom and the X group is consistent with the hypothesis of a weak 3-center 4-electron bonding interaction in the Cr=C-X group of atoms. Except for X=H, {delta}(Cr,X) increases with the decrease of the {pi}-donor character of the X group.

  2. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3

    OpenAIRE

    Lee, Paul David; Bristowe, Nicholas C; Bristowe, Paul D; Cheetham, Anthony Kevin

    2015-01-01

    First principles calculations on the hybrid perovskite CH3NH3PbI3 predict strong hydrogen-bonding which influences the structure and dynamics of the methylammonium cation and reveal its interaction with the tilting of the PbI6 octahedra. The calculated atomic coordinates are in excellent agreement with neutron diffraction results. [Image - see article] Funding from the Winton Programme for the Physics of Sustainability at the University of Cambridge is gratefully acknowledged. NCB acknowle...

  3. Extractability of plutonium-238 and curium-242 from a contaminated soil as a function of pH and certain soil components. CH3COOH-NH4OH system

    International Nuclear Information System (INIS)

    Nishita, H.

    1978-01-01

    Extractability of 238 Pu and 242 Cm from an artificially contaminated soil as a function of pH and certain soil components was examined with an equilibrium batch technique by the use of a CH 3 COOH--NH 4 OH extracting system. The influence of various soil components on 238 Pu and 242 Cm extractability was determined indirectly by selective removal of the components from the soil. The soil organic matter appeared to have a major influence on the extractability of these radionuclides. Though to a lesser extent, free iron oxides exerted an influence also. Before removal of soil organic matter, the extractability curves for these radionuclides were qualitatively similar in general form. The nature of this form is discussed. Within the contaminated, untreated soil, the 238 Pu and 242 Cm extractability ranged from 0.60 to 30.8% and 0.11 to 14.83% of dose, respectively, depending on the pH of the extracting solution. The liquid-to soild-phase ratio (K'/sub d/) values ranged from 3.5 x 10 -4 to 2.7 x 10 -2 for 238 Pu and 0.9 x 10 -4 to 1.4 x 10 -2 for 242 Cm. Very low extractability occurred in the pH range from approx. 8.6 to approx. 9.7 for 238 Pu and from 7.6 to approx. 9.7 for 242 Cm

  4. Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.

    Science.gov (United States)

    Kang, Byungkyun; Biswas, Koushik

    2017-10-18

    There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.

  5. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    Science.gov (United States)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  6. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, Davide

    2015-02-23

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  7. Isotopically decoupled vibrational spectra and proton exchange rates for crystalline NH3 and ammonia hydrate

    Science.gov (United States)

    Thornton, Cynthia; Khatkale, M. S.; Devlin, J. Paul

    1981-12-01

    Codeposits of NH3 with ND3 or D2O have been prepared at liquid nitrogen temperatures in the absence of proton exchange. Vibrational data for the anhydrous cubic crystalline ammonia, containing isolated NH3 or ND3, confirm that, relative to water ice, intermolecular coupling in ammonia ice exerts a relatively minor influence on the infrared and Raman spectra. Nevertheless, sizeable decoupling shifts, particularly for ν1, have been observed and attributed to a combination of factors including correlation field and Fermi resonance effects. The Raman polarization data has also affirmed long standing assignments of ν1 and ν3 for ammonia ice. Warming of the ammonia thin films resulted in limited isotopic scrambling at 130 K, apparently possible only through the agency of trace concentrations of water. The vibrational coupling pattern for the resultant NHD2 and NH2D molecules suggest that proton (deuteron) migration away from the exchange centers is impossible at temperatures up to 150 K. By contrast, isotopic scrambling was rapid and complete at 140 K for amorphous ammonia hydrate films (˜35% NH3, ˜65% D2O) which were also prepared without exchange at ˜90 K. The proton (deuteron) exchange rate is much greater for the amorphous ammonia hydrate at 140 K than for pure water ice. Such exchange requires both ion-pair defect formation and proton mobility. Since the NH3 suppresses the H3O+ concentration via formation of NH+4, a suppression the likes of which has been shown to stop proton exchange in water ice, the evidence strongly suggests that NH4+ in ammonia, like H3O+ in water, is an effective proton transfer agent, probably acting through a tunneling mechanism (i.e., H3N+-HṡṡṡNH3→H3NṡṡṡH-N+H3 etc.) to render the proton mobile in the ammonia hydrate. This mobility combined with the greater NH4+ concentration, relative to the H3O+ concentration in H2O ice Ic, results in isotopic scrambling at the reduced temperature.

  8. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection

    Science.gov (United States)

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.

    2017-02-01

    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  9. First detection of ammonia (NH3 in the Asian summer monsoon upper troposphere

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2016-11-01

    Full Text Available Ammonia (NH3 has been detected in the upper troposphere by the analysis of averaged MIPAS (Michelson Interferometer for Passive Atmospheric Sounding infrared limb-emission spectra. We have found enhanced amounts of NH3 within the region of the Asian summer monsoon at 12–15 km altitude. Three-monthly, 10° longitude  ×  10° latitude average profiles reaching maximum mixing ratios of around 30 pptv in this altitude range have been retrieved, with a vertical resolution of 3–8 km and estimated errors of about 5 pptv. These observations show that loss processes during transport from the boundary layer to the upper troposphere within the Asian monsoon do not deplete the air entirely of NH3. Thus, ammonia might contribute to the so-called Asian tropopause aerosol layer by the formation of ammonium aerosol particles. On a global scale, outside the monsoon area and during different seasons, we could not detect enhanced values of NH3 above the actual detection limit of about 3–5 pptv. This upper bound helps to constrain global model simulations.

  10. X-ray and NQR studies of bromoindate(III) complexes. [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}, [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}, and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Takeharu; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Lork, Enno; Gesing, Thorsten M. [Bremen Univ. (Germany). Inst. of Inorganic Chemistry and Crystallography

    2017-03-01

    The crystal structures of [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}(1), [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}(2), and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}(3) were determined at 100(2) K: monoclinic, P2{sub 1}/n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2{sub 1}2{sub 1}2{sub 1}, a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr{sub 6}]{sup 3-} ion and a Br{sup -} ion. The structure of 2 contains three different isolated octahedral [InBr{sub 6}]{sup 3-} ions. The structure of 3 has a corner-shared double-octahedral [In{sub 2}Br{sub 11}]{sup 5-} ion and an isolated tetrahedral [InBr{sub 4}]{sup -} ion. The {sup 81}Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The {sup 81}Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr{sub 6}]{sup 3-} of 1 and for [In{sub 2}Br{sub 11}]{sup 5-} and [InBr{sub 4}]{sup -} of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of {sup 81}Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  11. NH{sub 3} adsorption on the Lewis and Bronsted acid sites of MoO{sub 3} (0 1 0) surface: A cluster DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Fan, Junyan [Foundation Department, Shanxi Police Academy, No. 27 Second Section of Old Jinci Road, Taiyuan 030021, Shanxi (China); Zuo, Zhijun [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Zhe, E-mail: lizhe@tyut.edu.cn [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhang, Jinshan [College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2014-01-01

    The adsorption of NH{sub 3} on the Lewis and Bronsted acid sites of MoO{sub 3} (0 1 0) surface has been investigated based on the density functional theory (DFT) method using the clusters models. The calculated results indicate that NH{sub 3} could strongly adsorb on both the Lewis and Bronsted acid sites in the form of NH{sub 3} species and NH{sub 4}{sup +} respectively, whereas the adsorption on the Lewis acid site is found to be more favorable energetically than that on the Bronsted acid site. For the Lewis acid site Mulliken population analysis shows a donation of lone pairs from NH{sub 3} to the surface and activation of N–H bond. The overlaps of N-s, N-p and Mo-d orbitals suggest the strong interaction between N and Mo atoms. For the Bronsted acid site N–H bond is also activated by the formation of NH{sub 4}{sup +} species. The hybridizations between H and O atoms as well as N and H atoms are the major reasons for strong chemical adsorption of NH{sub 3} and the existence of NH{sub 4}{sup +} species, which partly attributed to the presence of N–H… O hydrogen bonds. Furthermore, the formation of a second Lewis acid site at adjacent or diagonal site results in slight changes of adsorption stability, structural changes and charge redistributions, suggesting its small influence on NH{sub 3} adsorption.

  12. Characterizing the influence of highways on springtime NO2 and NH3 concentrations in regional forest monitoring plots

    International Nuclear Information System (INIS)

    Watmough, Shaun A.; McDonough, Andrew M.; Raney, Shanel M.

    2014-01-01

    Highways are major sources of nitrogen dioxide (NO 2 ) and ammonia (NH 3 ). In this study, springtime NO 2 and NH 3 concentrations were measured at 17 Ontario Forest Biomonitoring Network (OFBN) plots using passive samplers. Average springtime NO 2 concentrations were between 1.3 μg m −3 and 27 μg m −3 , and NH 3 concentrations were between 0.2 μg m −3 and 1.7 μg m −3 , although concentrations measured in May (before leaf out) were typically twice as high as values recorded in June. Average NO 2 concentrations, and to a lesser extent NH 3 , could be predicted by road density at all radii (around the plot) tested (500 m, 1000 m, 1500 m). Springtime NO 2 concentrations were predicted for a further 50 OFBN sites. Normalized plant/lichen N concentrations were positively correlated with estimated springtime NO 2 and NH 3 concentrations. Epiphytic foliose lichen richness decreased with increasing NO 2 and NH 3 , but vascular plant richness was positively related to estimated springtime NO 2 and NH 3 . - Highlights: • Springtime concentrations of NO 2 and NH 3 in Ontario forest plots vary greatly. • Concentrations of NO 2 and NH 3 can be predicted by surrounding road density. • Plant and lichen N concentrations are positively related to predicted NO 2 and NH 3 . • Epiphytic lichen richness in negatively related to NO 2 and NH 3 . • Vascular plant richness is positively related to NO 2 and NH 3 . - “Springtime concentrations of NO 2 and NH 3 at Ontario forest monitoring plots vary greatly and can be predicted by road density surrounding the plot”

  13. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  14. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoscale structural characterization of Mg(NH3)6Cl2 during NH3 desorption

    DEFF Research Database (Denmark)

    Jacobsen, Hjalte Sylvest; Hansen, Heine Anton; Andreasen, Jens Wenzel

    2007-01-01

    Complex metal hydrides progressively display improved hydrogen storage capacity, but they are still far from fulfilling the requirements of the transport sector. Recently, indirect storage of hydrogen as ammonia in Mg(NH3)(6)Cl-2 has shown impressive capacity and reversibility. Here, we present...

  16. A Feasible and Effective Post-Treatment Method for High-Quality CH3NH3PbI3 Films and High-Efficiency Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxiao Jiang

    2018-01-01

    Full Text Available The morphology control of CH3NH3PbI3 (MAPbI3 thin-film is crucial for the high-efficiency perovskite solar cells, especially for their planar structure devices. Here, a feasible and effective post-treatment method is presented to improve the quality of MAPbI3 films by using methylamine (CH3NH2 vapor. This post-treatment process is studied thoroughly, and the perovskite films with smooth surface, high preferential growth orientation and large crystals are obtained after 10 s treatment in MA atmosphere. It enhances the light absorption, and increases the recombination lifetime. Ultimately, the power conversion efficiency (PCE of 15.3% for the FTO/TiO2/MAPbI3/spiro-OMeTAD/Ag planar architecture solar cells is achieved in combination with this post-treatment method. It represents a 40% improvement in PCE compared to the best control cell. Moreover, the whole post-treatment process is simple and cheap, which only requires some CH3NH2 solution in absolute ethanol. It is beneficial to control the reaction rate by changing the volume of the solution. Therefore, we are convinced that the post-treatment method is a valid and essential approach for the fabrication of high-efficiency perovskite solar cells.

  17. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4 ][M(HCOO)3 ] by solid-state NMR spectroscopy.

    Science.gov (United States)

    Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining

    2015-10-05

    The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. INTERACTIONS OF ELEVATED CO2, NH3 AND O-3 ON MYCORRHIZAL INFECTION, GAS-EXCHANGE AND N-METABOLISM IN SAPLINGS OF SCOTS PINE

    NARCIS (Netherlands)

    PEREZSOBA, M; DUECK, TA; PUPPI, G; KUIPER, PJC

    Four-year-old saplings of Scots pine (Pinus sylvestris L.) were exposed for 11 weeks in controlled-environment chambers to charcoal-filtered air, or to charcoal-filtered air supplemented with NH3 (40 mu g m(-3)), O-3 (110 mu g m(-3) during day/ 40 mu g m(-3) during night) or NH3 + O-3. All

  19. Photogeneration of metastable side-on N2 linkage isomers in [Ru(NH3)5N2]Cl2, [Ru(NH3)5N2]Br2 and [Os(NH3)5N2]Cl2.

    Science.gov (United States)

    Schaniel, Dominik; Woike, Theo; Delley, Bernard; Boskovic, Colette; Güdel, Hans-Ueli

    2008-09-28

    Photogeneration of side-on N2 linkage isomers in [Ru(NH3)5N2]2+ and [Os(NH3)5N2]2+ is achieved by irradiation with lambda = 325 nm of powder samples at T = 80 K and detected by the downshift of the nu(N-N) vibration and by the heat release at elevated temperature due to the back switching of the side-on configuration to the ground state. The concentration of the transferred molecules is evaluated by the decrease of the area of the nu(N-N) or 2nu(N-N) vibrational bands. All characteristic changes between the linear Ru-N-N and side-on configuration are predicted by DFT calculations: the structure of the anion, shifts of the vibrations, electronic excitation energy, energetic position and sequence of the electronic orbitals, the potentials of the ground and relaxed metastable state with the activation energy, saddle points and energetic position of the minimum.

  20. Comparative 4-E analysis of a bottoming pure NH3 and NH3-H2O mixture based power cycle for condenser waste heat recovery

    Science.gov (United States)

    Khankari, Goutam; Karmakar, Sujit

    2017-06-01

    This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable

  1. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of {sup 177}Lu-Glu-Nh-CO-Nh-Lys membrane; Formulacion de un radiofarmaco inhibidor del antigeno prostatico de membrana {sup 177}Lu-Glu-NH-CO-NH-Lys

    Energy Technology Data Exchange (ETDEWEB)

    Ortega S, D.

    2015-07-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in {sup 177}Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of {sup 177}Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical {sup 177}Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of {sup 177}LuCl{sub 3}, 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  2. 13N-NH3 PET dynamic imaging in the diagnosis of hypopituitarism: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu; Qiao Suixian

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing hypopituitarism with 13N-NH3 PET dynamic imaging. Methods: Eight volunteers (2 male, 6 female, age from 23 to 53 years old) for control and 7 patients (6 female, 20-42 years old, 1 male, 21 year old) were enrolled in this study. 13N-NH3 PET dynamic imaging was performed under 3-D acquisition on the ECAT HR+ PET scanner (Siemens/CTI) with 5-minute transmission scan. The emission protocol was a 20-minute dynamic scan (10s x 12, 30s x 6, 900s x 1) triggered simultaneously with a bolus injection of 444 to 592 MBq of 13N-NH3. The radioactivity - time curves of pituitary and internal carotid artery were generated by setting regions of interest (ROIs) on the transaxial planes of the frames of 13N-NH3 PET sequences. The first-pass uptake rate of 13N-NH3 (R) and standard uptake, rate (SUV) in pituitary on the last frame were calculated. Results: In control studies, the radioactivity in pituitary demonstrated within 10 seconds after the internal carotid artery showed up, and the pituitary highly uptake 13N-NH3, the size of pituitary was (1.07±0.17) cm x (1.09±0.15) cm x (1.14 ± 0.17) cm, SUV was 3.84 ± 1.75, R was 0.75 ± 0.13. In hypopituitarism studies, the radioactivity in pituitary showed up slowly, the pituitary did not show up in two cases with serious hypopituitarism, the size of pituitary was (0.82±0.07) cm x (0.81±0.05) cm x(0.91±0.07) cm, SUV was 1.25±0.08, R was 0.35±0.09. Conclusion: 13N-NH3 PET dynamic imaging is valuable in the diagnosis of hypopituitarism. (authors)

  3. The development of a material for uranium sorption in NH_3/N environment

    International Nuclear Information System (INIS)

    Chen Xiaotong; He Linfeng; Liu Bing; Tang Yaping

    2014-01-01

    An efficient hybrid silica (TD-silica) bifunctionalized with trimethyl ammonium (TMAP) and phosphonate (DPTS) for Uranium (VI) extraction in NH_3/N media has been developed in this study. The hybrid silica was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at large-pore silica. The resulting TD-modified silica were observed to possess a good stability and high efficiency for uranium (VI) sorption from solution in coexist with NH_3/N. The adsorbed uranium (VI) can be easily desorbed by using 0.05 mol/L HNO_3 and reused for at least 4 times. It is suggested that TD-silica could be a promising solid phase sorbent for highly-efficient removal of U(VI) from solution in coexist with NH_3/N. (author)

  4. Time-resolved photoemission spectroscopy of electronic cooling and localization in CH3NH3PbI3 crystals

    Science.gov (United States)

    Chen, Zhesheng; Lee, Min-i.; Zhang, Zailan; Diab, Hiba; Garrot, Damien; Lédée, Ferdinand; Fertey, Pierre; Papalazarou, Evangelos; Marsi, Marino; Ponseca, Carlito; Deleporte, Emmanuelle; Tejeda, Antonio; Perfetti, Luca

    2017-09-01

    We measure the surface of CH3NH3PbI3 single crystals by making use of two-photon photoemission spectroscopy. Our method monitors the electronic distribution of photoexcited electrons, explicitly discriminating the initial thermalization from slower dynamical processes. The reported results disclose the fast-dissipation channels of hot carriers (0.25 ps), set an upper bound to the surface-induced recombination velocity (PbI3 samples is consistent with the progressive reduction of photoconversion efficiency in operating devices. Minimizing the density of shallow traps and solving the aging problem may boost the macroscopic efficiency of solar cells to the theoretical limit.

  5. Solvothermal indium fluoride chemistry: Syntheses and crystal structures of K5In3F14, β-(NH4)3InF6 and [NH4]3[C6H21N4]2[In4F21

    International Nuclear Information System (INIS)

    Jayasundera, Anil C.A.; Goff, Richard J.; Li Yang; Finch, Adrian A.; Lightfoot, Philip

    2010-01-01

    The solvothermal syntheses and crystal structures of three indium fluorides are presented. K 5 In 3 F 14 (1) and β-(NH 4 ) 3 InF 6 (2) are variants on known inorganic structure types chiolite and cryolite, respectively, with the latter exhibiting a complex and apparently novel structural distortion. [NH 4 ] 3 [C 6 H 21 N 4 ] 2 [In 4 F 21 ] (3) represents a new hybrid composition displaying a unique trimeric metal fluoride building unit. - Graphical abstract: Solvothermal synthesis has been used to prepare three indium fluorides, including a novel hybrid material containing a unique [In 3 F 15 ] trimer templated by tren.

  6. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-08-01

    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  7. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H{sup −}(NH{sub 3}) and NH{sub 4}{sup −}

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Johnson, Christopher J.; Continetti, Robert E., E-mail: hguo@umn.edu, E-mail: rcontinetti@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340 (United States); Song, Hongwei; Guo, Hua, E-mail: hguo@umn.edu, E-mail: rcontinetti@ucsd.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-28

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH{sub 4} and the double Rydberg anion NH{sub 4}{sup −} represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H{sup −}(NH{sub 3}) ion-dipole complex and the NH{sub 4}{sup −} DRA probes different regions on the neutral NH{sub 4} PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH{sub 4} Rydberg radical occurs to H + NH{sub 3} with a peak kinetic energy of 0.13 eV, showing the ground state of NH{sub 4} to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  8. Centrosymmetric [N(CH3)4]2TiF6 vs. noncentrosymmetric polar [C(NH2)3]2TiF6: A hydrogen-bonding effect on the out-of-center distortion of TiF6 octahedra

    International Nuclear Information System (INIS)

    Kim, Eun-ah; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    The syntheses, structures, and characterization of organically templated zero-dimensional titanium fluoride materials, A 2 TiF 6 (A=[N(CH 3 ) 4 ] or [C(NH 2 ) 3 ]), are reported. Phase pure samples of A 2 TiF 6 were synthesized by either solvothermal reaction method or a simple mixing method. While [N(CH 3 ) 4 ] 2 TiF 6 crystallizes in a centrosymmetric space group, R-3, [C(NH 2 ) 3 ] 2 TiF 6 crystallizes in a noncentrosymmetric polar space group, Cm. The asymmetric out-of-center distortion of TiF 6 octahedra in polar [C(NH 2 ) 3 ] 2 TiF 6 are attributable to the hydrogen-bonding interactions between the fluorine atoms in TiF 6 octahedra and the nitrogen atoms in the [C(NH 2 ) 3 ] + cation. Powder second-harmonic generation (SHG) measurements on the [C(NH 2 ) 3 ] 2 TiF 6 , using 1064 nm radiation, indicate the material has SHG efficiency of 25× that of α-SiO 2 , which indicates an average nonlinear optical susceptibility, 〈d eff 〉 exp of 2.8 pm/V. Additional SHG measurements reveal that the material is not phase-matchable (Type 1). The magnitudes of out-of-center distortions and dipole moment calculations for TiF 6 octahedra will be also reported. - Graphical abstract: The out-of-center distortion of TiF 6 octahedron in the polar noncentrosymmetric [C(NH 2 ) 3 ] 2 TiF 6 is attributable to the hydrogen-bonding interactions between the F in TiF 6 octahedron and the H–N in the [C(NH 2 ) 3 ] + . Highlights: ► Two titanium fluorides materials have been synthesized in high yields. ► Hydrogen-bonds are crucial for the out-of-center distortion of TiF 6 octahedra. ► [C(NH 2 ) 3 ] 2 TiF 6 has a SHG efficiency of 25× that of α-SiO 2 .

  9. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    Science.gov (United States)

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of hot airflow during spin-coating process on CH3NH3PbI3-xClx perovskite solar cells

    Science.gov (United States)

    Tanaka, Hiroki; Ohishi, Yuya; Oku, Takeo

    2018-01-01

    CH3NH3PbI3-xClx photovoltaic devices were fabricated, and the effects of hot airflow during spin-coating were investigated. Cubic perovskite crystals that is a high temperature phase were obtained by the hot airflow method. The conversion efficiencies of the devices prepared by the hot airflow were remained even after 56 days.

  11. Expression of characteristics of ammonium nutrition as affected by pH of the root medium

    Science.gov (United States)

    Chaillou, S.; Vessey, J. K.; Morot-Gaudry, J. F.; Raper, C. D. Jr; Henry, L. T.; Boutin, J. P.

    1991-01-01

    To study the effect of root-zone pH on characteristic responses of NH4+ -fed plants, soybeans (Glycine max inverted question markL. inverted question mark Merr. cv. Ransom) were grown in flowing solution culture for 21 d on four sources of N (1.0 mol m-3 NO3-, 0.67 mol m-3 NO3- plus 0.33 mol m-3 NH4+, 0.33 mol m-3 NO3- plus 0.67 mol m-3 NH4+, and 1.0 mol m-3 NH4+) with nutrient solutions maintained at pH 6.0, 5.5, 5.0, and 4.5. Amino acid concentration increased in plants grown with NH4+ as the sole source of N at all pH levels. Total amino acid concentration in the roots of NH4+ -fed plants was 8 to 10 times higher than in NO3(-)-fed plants, with asparagine accounting for more than 70% of the total in the roots of these plants. The concentration of soluble carbohydrates in the leaves of NH4+ -fed plants was greater than that of NO3(-)-fed plants, but was lower in roots of NH4+ -fed plants, regardless of pH. Starch concentration was only slightly affected by N source or root-zone pH. At all levels of pH tested, organic acid concentration in leaves was much lower when NH4+ was the sole N source than when all or part of the N was supplied as NO3-. Plants grown with mixed NO3- plus NH4+ N sources were generally intermediate between NO3(-)- and NH4+ -fed plants. Thus, changes in tissue composition characteristic of NH4+ nutrition when root-zone pH was maintained at 4.5 and growth was reduced, still occurred when pH was maintained at 5.0 or above, where growth was not affected. The changes were slightly greater at pH 4.5 than at higher pH levels.

  12. Jet-Cooled Infrared Laser Spectroscopy in the Umbrella νb{2} Vibration Region of NH_3: Improving the Potential Energy Surface Model of the NH_3-Ar Van Der Waals Complex

    Science.gov (United States)

    Asselin, Pierre; Jabri, Atef; Potapov, Alexey; Loreau, Jérome; van der Avoird, Ad

    2017-06-01

    Taking advantage of our sensitive laser spectrometer coupled to a pulsed slit jet, we recorded near the νb{2} vibration a series of rovibrational transitions of the NH_3-Ar van der Waals (vdW) complex. These transitions involve in the ground vibrational state several internal rotor states corresponding to the ortho{NH_3} and para{NH_3} spin modifications of the complex. They are labeled by Σ_{a}(j,k), Σ_{s}(j,k), Π_{a}(j,k) and Π_{s}(j,k) where Σ(K=0) and Π(K=1) indicate the projection K of the total rotational angular momentum J on the vdW axis, the superscripts s and a designate a symmetric or antisymmetric NH_3 inversion wave function, and j, k quantum numbers indicate the correlation between the internal-rotor state of the complex and the j, k rotational state of the free NH_3 monomer. Five bands have been identified, only one of which was partly observed before. They include transitions starting from the Σ_{a}(j=0 or j=1) state without any internal angular momentum, consequently they can be assigned from the band contour of a linear-molecule-like K=0, ΔJ=1 transition. The energies and splittings of the rovibrational levels of the νb{2}=1←0 spectrum derived from the analysis of the Π_{s}, Σ_{s}(j=1)← Σ_{a}(j=0), k=0 bands and mostly of the Σ_{s}, Π_{s} and Σ_{a}(j=1)←Σ_{a}(j=1), k=1 bands bring relevant information about the νb{2} dependence of the NH_3-Ar interaction, the rovibrational dynamics of the NH_3-Ar complex and provide a sensitive test of a recently developed 4D potential energy surface that includes explicitly its dependence on the umbrella motion. P. Asselin, Y. Berger, T. R. Huet, R. Motiyenko, L. Margulès, R. J. Hendricks, M. R. Tarbutt, S. Tokunaga, B. Darquié, PCCP 19, 4576 (2017), G. T. Fraser, A.S. Pine and W. A. Kreiner, J. Chem. Phys. 94, 7061 (1991). J. Loreau, J. Liévin, Y. Scribano and A. van der Avoird, J. Chem. Phys. 141, 224303 (2014).

  13. The efficiency limit of CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Sha, Wei E. I.; Ren, Xingang; Chen, Luzhou; Choy, Wallace C. H.

    2015-01-01

    With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH 3 NH 3 PbI 3 ) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics

  14. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  15. Fabrication and Characterization of CH3NH3PbI3−x−yBrxCly Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Suzuki

    2016-05-01

    Full Text Available Fabrication and characterization of CH3NH3PbI3−x−yBrxCly perovskite solar cells using mesoporous TiO2 as electron transporting layer and 2,2′,7,7′-tetrakis-(N,N-di-4-methoxyphenylamino-9,9′-spirobifluorene as a hole-transporting layer (HTL were performed. The purpose of the present study is to investigate role of halogen doping using iodine (I, bromine (Br and chlorine (Cl compounds as dopant on the photovoltaic performance and microstructures of CH3NH3PbI3−x−yBrxCly perovskite solar cells. The X-ray diffraction identified a slight decrease of crystal spacing in the perovskite crystal structure doped with a small amount of I, Br, and Cl in the perovskite compounds. Scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX showed the perovskite crystal behavior depended on molar ratio of halogen of Pb, I, Br and Cl. Incorporation of the halogen doping into the perovskite crystal structure improved photo generation, carrier diffusion without carrier recombination in the perovskite layer and optimization of electronic structure related with the photovoltaic parameters of open-circuit voltage, short-circuit current density and conversion efficiency. The energy diagram and photovoltaic mechanisms of the perovskite solar cells were discussed in the context of the experimental results.

  16. First-principles study on the initial decomposition process of CH3NH3PbI3

    Science.gov (United States)

    Xue, Yuanbin; Shan, Yueyue; Xu, Hu

    2017-09-01

    Hybrid perovskites are promising materials for high-performance photovoltaics. Unfortunately, hybrid perovskites readily decompose in particular under humid conditions, and the mechanisms of this phenomenon have not yet been fully understood. In this work, we systematically studied the possible mechanisms and the structural properties during the initial decomposition process of MAPbI3 (MA = CH3NH3+) using first-principles calculations. The theoretical results show that it is energetically favorable for PbI2 to nucleate and crystalize from the MAPbI3 matrix ahead of other decomposition products. Additionally, the structural instability is an intrinsic property of MAPbI3, regardless of whether the system is exposed to humidity. We find that H2O could facilitate the desorption of gaseous components, acting as a catalyst to transfer the H+ ion. These results provide insight into the cause of the instability of MAPbI3 and may improve our understanding of the properties of hybrid perovskites.

  17. Process for uranium separation and preparation of UO4.2NH3.2HF

    International Nuclear Information System (INIS)

    Dokuzoguz, H.Z.

    1976-01-01

    A process for treating the aqueous effluents that are produced in converting gaseous UF 6 (uranium hexafluoride) into solid UO 2 (uranium dioxide) by way of an intermediate (NH 4 ) 4 UO 2 (CO 3 ) 3 (''AUC'' Compound) is disclosed. These effluents, which contain large amounts of NH 4 + , CO 3 2- , F - , and a small amount of U are mixed with H 2 SO 4 (sulfuric acid) in order to expel CO 2 (carbon dioxide) and thereby reduce the carbonate concentration. The uranium is precipitated through treatment with H 2 O 2 (hydrogen peroxide) and the fluoride is easily recovered in the form of CaF 2 (calcium fluoride) by contacting the process liquid with CaO (calcium oxide). The presence of SO 4 2- (sulfate) in the process liquid during CaO contacting seems to prevent the development of a difficult-to-filter colloid. The process also provides for NH 3 recovery and recycling. Liquids discharged from the process, moreover, are essentially free of environmental pollutants. The waste treatment products, i.e., CO 2 , NH 3 , and U are economically recovered and recycled back into the UF 6 → UO 2 conversion process. The process, moreover, recovers the uranium as a precipitate in the second stage. This precipitate is a new inorganic chemical compound UO 4 .2NH 3 .2HF [uranyl peroxide-2-ammonia-2-(hydrogen fluoride)

  18. In situ IR studies of Co and Ce doped Mn/TiO{sub 2} catalyst for low-temperature selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Lu; Pang, Dandan; Zhang, Changliang; Meng, Jiaojiao; Zhu, Rongshu; Ouyang, Feng, E-mail: ouyangfh@hit.edu.cn

    2015-12-01

    Highlights: • A SCR mechanistic pathway over Mn–Co–Ce/TiO{sub 2} is proposed. • The cobalt oxide produces lots of Brønsted acid sites, which favor to the adsorption of coordinated NH{sub 3} through NH{sub 3} migration. • Ce addition improves amide ions formation to reach best NO reduction selectivity. • At low-temperature coordinated NH{sub 3} reacts with NO{sub 2}{sup −}, or amide reacts with NO (ad) or NO (g) to form N{sub 2}. At high temperature, the reaction also occurs between coordinated NH{sub 3} and nitrate species. - Abstract: The Mn–Co–Ce/TiO{sub 2} catalyst was prepared by wet co-impregnation method for selective catalytic reduction of NO by NH{sub 3} in the presence of oxygen. The adsorption and co-adsorption of NH{sub 3}, NO and O{sub 2} on catalysts were investigated by in situ FTIR spectroscopy. The results suggested that addition of cobalt and cerium oxides increased the numbers of acid and redox sites. Especially, the cobalt oxide produced lots of Brønsted acid sites, which favor to the adsorption of coordinated NH{sub 3} through NH{sub 3} migration. Ce addition improved amide ions formation to reach best NO reduction selectivity. A mechanistic pathway over Mn–Co–Ce/TiO{sub 2} was proposed. At low-temperature SCR reaction, coordinated NH{sub 3} reacted with NO{sub 2}{sup −}, and amide reacted with NO (ad) or NO (g) to form N{sub 2}. NO{sub 2} was related to the formation of nitrite on Co-contained catalysts and the generation of −NH{sub 2}{sup −} on Ce-contained catalysts. At high temperature, the other branch reaction also occurred between the coordinated NH{sub 3} and nitrate species, resulting in N{sub 2}O yield increase.

  19. Synthesis and crystal structure of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Sebastian A.; Kraus, Florian [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany); Lozinsek, Matic [Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2013-07-01

    [Sr(HF){sub 3}(TaF{sub 6}){sub 2}] reacts with liquid ammonia under the formation of colorless crystals of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}] (1). The structure was elucidated by low-temperature X-ray structure analysis. Compound 1 crystallizes in the monoclinic space group P2{sub 1}/c with a = 5.1525(6), b = 11.736(1), c = 10.171(1) Aa, β = 94.843(9) , V = 612.8(1) Aa{sup 3} at 123 K with Z = 4. Its structure displays discrete TaF{sub 5}(NH{sub 3}){sub 3} molecules, which are interconnected by N-H..F hydrogen bonds to form a complex three-dimensional network. The title compound is a rare example of a neutral, molecular, eight-coordinate tantalum species. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...... temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  1. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios.

    Science.gov (United States)

    Xu, Peng; Koloutsou-Vakakis, Sotiria; Rood, Mark J; Luan, Shengji

    2017-12-31

    China's rapid urbanization, large population, and increasing consumption of calorie-and meat-intensive diets, have resulted in China becoming the world's largest source of ammonia (NH 3 ) emissions from livestock production. This is the first study to use provincial, condition-specific emission factors based on most recently available studies on Chinese manure management and environmental conditions. The estimated NH 3 emission temporal trends and spatial patterns are interpreted in relation to government policies affecting livestock production. Scenario analysis is used to project emissions and estimate mitigation potential of NH 3 emissions, to year 2030. We produce a 1km×1km gridded NH 3 emission inventory for 2008 based on county-level activity data, which can help identify locations of highest NH 3 emissions. The total NH 3 emissions from manure generated by livestock production in 2008 were 7.3TgNH 3 ·yr -1 (interquartile range from 6.1 to 8.6TgNH 3 ·yr -1 ), and the major sources were poultry (29.9%), pigs (28.4%), other cattle (27.9%), and dairy cattle (7.0%), while sheep and goats (3.6%), donkeys (1.3%), horses (1.2%), and mules (0.7%) had smaller contributions. From 1978 to 2008, annual NH 3 emissions fluctuated with two peaks (1996 and 2006), and total emissions increased from 2.2 to 7.3Tg·yr -1 increasing on average 4.4%·yr -1 . Under a business-as-usual (BAU) scenario, NH 3 emissions in 2030 are expected to be 13.9TgNH 3 ·yr -1 (11.5-16.3TgNH 3 ·yr -1 ). Under mitigation scenarios, the projected emissions could be reduced by 18.9-37.3% compared to 2030 BAU emissions. This study improves our understanding of NH 3 emissions from livestock production, which is needed to guide stakeholders and policymakers to make well informed mitigation decisions for NH 3 emissions from livestock production at the country and regional levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3

    Science.gov (United States)

    Lu, Ying-Bo; Kong, Xianghua; Chen, Xiaobin; Cooke, David G.; Guo, Hong

    2017-01-01

    Carrier mobility is one of the most important parameters for semiconducting materials and their use in optoelectronic devices. Here we report a systematic first principles analysis of the acoustic phonon scattering mechanism that limits the mobility of CH3NH3PbI3 (MAPbI3) perovskites. Due to the unique hybrid organic-inorganic structure, the mechanical, electronic and transport properties are dominated by the same factor, i.e. the weak interatomic bond and the easy rotation of methylammonium (MA) molecules under strain. Both factors make MAPbI3 soft. Rotation of MA molecule induces a transverse shift between Pb and I atoms, resulting in a very low deformation potential and a strong piezoelectricity in MAPbI3. Hence the carrier mobility of pristine MAPbI3 is limited by the piezoelectric scattering, which is consistent to the form of its temperature dependence. Our calculations suggest that in the pristine limit, a high mobility of about several thousand cm2 V−1 S−1 is expected for MAPbI3. PMID:28150743

  3. H2 dilution effect in the Cat-CVD processes of the SiH4/NH3 system

    International Nuclear Information System (INIS)

    Ansari, S.G.; Umemoto, Hironobu; Morimoto, Takashi; Yoneyama, Koji; Izumi, Akira; Masuda, Atsushi; Matsumura, Hideki

    2006-01-01

    Gas-phase diagnostics in the catalytic chemical vapor deposition processes of the SiH 4 /NH 3 /H 2 system were carried out to examine the effect of H 2 dilution. The decomposition efficiency of NH 3 showed a sharp decrease with the introduction of a small amount of SiH 4 , but this decrease was recovered by the addition of H 2 when the NH 3 pressure was low. On the other hand, at higher NH 3 pressures, the decomposition efficiency showed a minor dependence on the H 2 partial pressure. The addition of SiH 4 to the NH 3 system decreases the H-atom density by one order of magnitude, but this decrease is also recovered by H 2 addition. H atoms produced from H 2 must re-activate the catalyzer surfaces poisoned by SiH 4 when the NH 3 pressure is low

  4. Role of phase composition for electronic states in CH{sub 3}NH{sub 3}PbI{sub 3} prepared from CH{sub 3}NH{sub 3}I/PbCl{sub 2} solution

    Energy Technology Data Exchange (ETDEWEB)

    Naikaew, Atittaya; Prajongtat, Pongthep [Helmholtz-Center Berlin for Energy and Materials, Institute of Heterogeneous Materials, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Lux-Steiner, Martha Ch.; Dittrich, Thomas, E-mail: dittrich@helmholtz-berlin.de [Helmholtz-Center Berlin for Energy and Materials, Institute of Heterogeneous Materials, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Arunchaiya, Marisa [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2015-06-08

    Modulated surface photovoltage (SPV) spectra have been correlated with the phase composition in layers of CH{sub 3}NH{sub 3}PbI{sub 3} (MAPbI{sub 3}) prepared from MAI and PbCl{sub 2} and annealed at 100 °C. Depending on the annealing time, different compositions of MAPbI{sub 3}, MAPbCl{sub 3}, MACl, PbI{sub 2}, and an un-identified phase were found. It has been demonstrated that evaporation of MAI and HI is crucial for the development of electronic states in MAPbI{sub 3} and that only the appearance and evolution of the phase PbI{sub 2} has an influence on electronic states in MAPbI{sub 3}. With ongoing annealing, (i) a transition from p- to n-type doping was observed with the appearance of PbI{sub 2}, (ii) shallow acceptor states were distinguished and disappeared in n-type doped MAPbI{sub 3}, and (iii) a minimum of the SPV response related to deep defect states was found at the transition from p- to n-type doping. The results are discussed with respect to the further development of highly efficient and stable MAPbI{sub 3} absorbers for solar cells.

  5. Millimeter/submillimeter spectroscopy of PH{sub 2}CN ( X-tilde {sup 1}A') and CH{sub 3}PH{sub 2} ( X-tilde {sup 1}A'): probing the complexity of interstellar phosphorus chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Halfen, D. T.; Ziurys, L. M. [Department of Chemistry and Biochemistry, Department of Astronomy, Arizona Radio Observatory, and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Clouthier, D. J., E-mail: halfendt@as.arizona.edu [Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States)

    2014-11-20

    Millimeter/submillimeter spectra of PH{sub 2}CN ( X-tilde {sup 1}A') and CH{sub 3}PH{sub 2} ( X-tilde {sup 1}A') have been recorded for the first time using direct absorption techniques. This work extends previous measurements of both molecules beyond the 10-50 GHz range. Both species were created in the presence of an AC discharge by the reaction of phosphorus vapor and either cyanogen and hydrogen (PH{sub 2}CN) or methane (CH{sub 3}PH{sub 2}). Twelve rotational transitions of PH{sub 2}CN were recorded over the region 305-422 GHz for asymmetry components K{sub a} = 0 through 8. For CH{sub 3}PH{sub 2}, eight rotational transitions were measured from 210-470 GHz with K{sub a} = 0 through 16; these spectra exhibited greater complexity due to the presence of internal rotation, which splits the K{sub a} = 1, 2, and 3 asymmetry components into A and E states. Combined analyses of the millimeter/submillimeter and previous microwave data were performed for both molecules. For PH{sub 2}CN, the spectra were fit with a Watson S-reduced asymmetric top Hamiltonian, resulting in more accurate rotational and centrifugal distortion constants. In the case of CH{sub 3}PH{sub 2}, an asymmetric top internal-rotation Hamiltonian was employed in the analysis, significantly improving the rotational and torsional parameters over previous microwave estimates. Searches for both molecules were subsequently conducted toward Sgr B2(N), using the 12 m telescope of the Arizona Radio Observatory (ARO). Neither species was identified, with abundance upper limits, relative to H{sub 2}, of f (PH{sub 2}CN/H{sub 2}) < 7.0 × 10{sup –12} and f (CH{sub 3}PH{sub 2}/H{sub 2}) < 8.4 × 10{sup –12}. The nitrogen analogs NH{sub 2}CN and CH{sub 3}NH{sub 2} are therefore more abundant in Sgr B2(N) by factors of >2 and >200, respectively.

  6. Observations of HC5N and NH3 in Taurus

    International Nuclear Information System (INIS)

    Myers, P.C.; Ho, P.T.P.; Benson, P.J.

    1979-01-01

    Observations of HC 5 N lines toward TMC-2 indicate that it is a small (Lapprox.0.1 pc), dense (napprox.4 x 10 4 cm -3 ), low-mass (Mapprox.1 M/sub sun/) fragment in the Taurus complex, with velocity dispersion at the emission peak only about twice thermal (Δvapprox.0.2 km s -1 ). The HC 5 N emission region in TMC-2 has roughly half the projected area of that in TMC-1, and is more round than filamentary. The HC 5 N and NH 3 emission regions in TMC-2 are coincident, with N (HC 5 N)/N (NH 3 ) approx.0.1. The line width is much smaller than the free-fall width; the deduced values of L, n, and T satisfy the virial-theorem requirement for stable equilibrium. The temporary equilibrium of such fragments may serve to lengthen the time scales for formation of low-mass stars and long-chain molecules

  7. Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting

    Directory of Open Access Journals (Sweden)

    Govindhasamy Murugadoss

    2014-08-01

    Full Text Available In order to analyze the crystal transformation from hexagonal PbI2 to CH3NH3PbI3 by the sequential (two-step deposition process, perovskite CH3NH3PbI3 layers were deposited on flat and/or porous TiO2 layers. Although the narrower pores using small nanoparticles prohibited the effective transformation, the porous-TiO2 matrix was able to help the crystal transformation of PbI2 to CH3NH3PbI3 by sequential two-step deposition. The resulting PbI2 crystals in porous TiO2 electrodes did not deteriorate the photovoltaic effects. Moreover, it is confirmed that the porous TiO2 electrode had served the function of prohibiting short circuits between working and counter electrodes in perovskite solar cells.

  8. Role of bromine doping on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo

    2016-01-01

    Organic-inorganic hybrid heterojunction solar cells containing CH 3 NH 3 PbI 3 perovskite compound were fabricated using mesoporous TiO 2 as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH 3 NH 3 PbI 3 perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystal structure on the TiO 2 mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of V oc , J sc and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results

  9. Surface study of platinum decorated graphene towards adsorption of NH{sub 3} and CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Rad, Ali Shokuhi, E-mail: a.shokuhi@gmail.com [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Pazoki, Hossein; Mohseni, Soheil [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Zareyee, Daryoush [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Peyravi, Majid [Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2016-10-01

    To distinguish the potential of graphene sensors, there is a need to recognize the interaction between graphene sheet and adsorbing molecules. We used density functional theory (DFT) calculations to study the properties of pristine as well as Pt-decorated graphene sheet upon adsorption of NH{sub 3} and CH{sub 4} on its surface to exploit its potential to be as gas sensors for them. We found much higher adsorption, higher charge transfer, lower intermolecular distance, and higher orbital hybridizing upon adsorption of NH{sub 3} and CH{sub 4} gas molecules on Pt-decorated graphene compared to pristine graphene. Also our calculations reveal that the adsorption energies on Pt-decorated graphene sheet are in order of NH{sub 3} >CH{sub 4} which could be corresponded to the order of their sensitivity on this modified surface. We used orbital analysis including density of states as well as frontier molecular orbital study for all analyte-surface systems to more understanding the kind of interaction (physisorption or chemisorption). Consequently, the Pt-decorated graphene can transform the existence of NH{sub 3} and CH{sub 4} molecules into electrical signal and it may be potentially used as an ideal sensor for detection of NH{sub 3} and CH{sub 4} in ambient situation. - Highlights: • Pt-decorated graphene was investigated as an adsorbent for NH{sub 3} and CH{sub 4}. • Much higher adsorption of NH{sub 3} and CH{sub 4} on Pt-decorated graphene than pristine graphene. • Higher adsorption of NH{sub 3} compared to CH{sub 4} on Pt-decorated graphene. • Pt influences the electronic structure of graphene.

  10. Polarization tunable photogenerated carrier transfer of CH3NH3PbI3/polyvinylidene fluoride heterostructure

    Science.gov (United States)

    Yang, Kang; Deng, Zun-Yi; Feng, Hong-Jian

    2017-10-01

    The integration of ferroelectrics and organic-inorganic halide perovskites could be a promising way to facilitate the separation of electron-hole pairs and charge extraction for the application of solar cells. To explore the effect of the external ferroelectric layer on the CH3NH3PbI3 (MAPbI3) side, we perform first-principles calculations to study the charge transfer properties of the MAPbI3/polyvinylidene fluoride (PVDF) heterostructure. Our calculations demonstrate that the ferroelectric polarization pointing to the PVDF side can clearly facilitate the separation of photo-induced carriers and enhance charge extraction from MAPbI3, while opposite polarization direction hinders the charge extraction and collection. Notably, the carrier behavior at the interface is strongly tuned by the electric field associated with the ferroelectric polarization. In addition, excited state simulation confirms the tunable charge transfer of the MAPbI3/PVDF heterojunction. Therefore, the polarization-driven charge transfer mechanism provides a route for fabricating the ferroelectrics-based high-efficiency photovoltaics and switchable diode devices.

  11. The removal of COD and NH3-N from atrazine production wastewater treatment using UV/O3: experimental investigation and kinetic modeling.

    Science.gov (United States)

    Jing, Liang; Chen, Bing; Wen, Diya; Zheng, Jisi; Zhang, Baiyu

    2018-01-01

    In this study, a UV/O 3 hybrid advanced oxidation system was used to remove chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), and atrazine (ATZ) from ATZ production wastewater. The removal of COD and NH 3 -N, under different UV and O 3 conditions, was found to follow pseudo-first-order kinetics with rate constants ranging from 0.0001-0.0048 and 0.0015-0.0056 min -1 , respectively. The removal efficiency of ATZ was over 95% after 180 min treatment, regardless the level of UV power. A kinetic model was further proposed to simulate the removal processes and to quantify the individual roles and contributions of photolysis, direct O 3 oxidation, and hydroxyl radical (OH·) induced oxidation. The experimental and kinetic modeling results agreed reasonably well with deviations of 12.2 and 13.1% for the removal of COD and NH 3 -N, respectively. Photolysis contributed appreciably to the degradation of ATZ, while OH· played a dominant role for the removal of both COD and NH 3 -N, especially in alkaline environments. This study provides insights into the treatment of ATZ containing wastewater using UV/O 3 and broadens the knowledge of kinetics of ozone-based advanced oxidation processes.

  12. Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions

    Directory of Open Access Journals (Sweden)

    Christoph Häni

    2018-04-01

    Full Text Available A controlled ammonia (NH3 release experiment was performed at a grassland site. The aim was to quantify the effect of dry deposition between the source and the receptors (NH3 measurement locations on emission rate estimates by means of inverse dispersion modelling. NH3 was released for three hours at a constant rate of Q = 6.29 mg s−1 from a grid of 36 orifices spread over an area of 250 m2. The increase in line-integrated NH3 concentration was measured with open-path optical miniDOAS devices at different locations downwind of the artificial source. Using a backward Lagrangian stochastic (bLS dispersion model (bLSmodelR, the fraction of the modelled release rate to the emitted NH3 ( Q bLS / Q was calculated from the measurements of the individual instruments. Q bLS / Q was found to be systematically lower than 1, on average between 0.69 and 0.91, depending on the location of the receptor. We hypothesized that NH3 dry deposition to grass and soil surfaces was the main factor responsible for the observed depletion of NH3 between source and receptor. A dry deposition algorithm based on a deposition velocity approach was included in the bLS modelling. Model deposition velocities were evaluated from a ‘big-leaf’ canopy resistance analogy. Canopy resistances (generally termed R c that provided Q bLS / Q = 1 ranged from 75 to 290 s m−1, showing that surface removal of NH3 by dry deposition can plausibly explain the original underestimation of Q bLS / Q . The inclusion of a dry deposition process in dispersion modelling is crucial for emission estimates, which are based on concentration measurements of depositing tracers downwind of homogeneous area sources or heterogeneously-distributed hot spots, such as, e.g., urine patches on pastures in the case of NH3.

  13. Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells.

    Science.gov (United States)

    Handa, Taketo; Tex, David M; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-05-16

    We investigate the performance degradation mechanism of CH3NH3PbI3 perovskite solar cells under bias voltage in air and nitrogen atmospheres using photoluminescence and electroluminescence techniques. When applying forward bias, the power conversion efficiency of the solar cells decreased significantly in air, but showed no degradation in nitrogen atmosphere. Time-resolved photoluminescence measurements on these devices revealed that the application of forward bias in air accelerates the generation of non-radiative recombination centers in the perovskite layer buried in the device. We found a negative correlation between the electroluminescence intensity and the injected current intensity in air. The irreversible change of the perovskite grain surface in air initiates the degradation of the perovskite solar cells.

  14. Thermal properties and phase transition in the fluoride, (NH{sub 4}){sub 3}SnF{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Kartashev, A.V. [Kirensky Institute of Physics, Siberian Department of the Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk (Russian Federation); Gorev, M.V. [Kirensky Institute of Physics, Siberian Department of the Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Bogdanov, E.V. [Kirensky Institute of Physics, Siberian Department of the Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Krasnoyarsk State Agrarian University, 660049 Krasnoyarsk (Russian Federation); Flerov, I.N. [Kirensky Institute of Physics, Siberian Department of the Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Laptash, N.M. [Institute of Chemistry, Far Eastern Department of the Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)

    2016-05-15

    Calorimetric, dilatometric and differential thermal analysis studies were performed on (NH{sub 4}){sub 3}SnF{sub 7} for a wide range of temperatures and pressures. Large entropy (δS{sub 0}=22 J/mol K) and elastic deformation (δ(ΔV/V){sub 0}=0.89%) jumps have proven that the Pa-3↔Pm-3m phase transition is a strong first order structural transformation. A total entropy change of ΔS{sub 0}=32.5 J/mol K is characteristic for the order–disorder phase transition, and is equal to the sum of entropy changes in the related material, (NH{sub 4}){sub 3}TiF{sub 7}, undergoing transformation between the two cubic phases through the intermediate phases. Hydrostatic pressure decreases the stability of the high temperature Pm-3m phase in (NH{sub 4}){sub 3}SnF{sub 7}, contrary to (NH{sub 4}){sub 3}TiF{sub 7}, characterised by a negative baric coefficient. The effect of experimental conditions on the chemical stability of (NH{sub 4}){sub 3}SnF{sub 7} was observed. - Graphical abstract: Strong first order structural transformation Pa-3↔Pm-3m in (NH{sub 4}){sub 3}SnF{sub 7} is associated with very large total entropy change of ΔS{sub 0}=32.5 J/mol K characteristic for the ordering processes and equal to the sum of entropy changes in the related (NH{sub 4}){sub 3}TiF{sub 7} undergoing transformation between the same two cubic phases through the intermediate phases. - Highlights: • (NH{sub 4}){sub 3}SnF{sub 7} undergoes strong first order Pa-3↔Pm-3m phase transition. • Anomalous behaviour of ΔC{sub p} and ΔV/V exists far below phase transition temperature. • Structural distortions are accompanied by huge total entropy change ΔS≈Rln50. • High pressure strongly increases the stability of Pa-3 phase in (NH{sub 4}){sub 3}SnF{sub 7}. • Entropy of the Pa-3↔Pm-3m phase transition does not depend on pressure.

  15. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets

    International Nuclear Information System (INIS)

    Li, Pengfei; Shivananju, B N; Li, Shaojuan; Bao, Qiaoliang; Zhang, Yupeng

    2017-01-01

    In this work, a high performance vertical-type photodetector based on two-dimensional (2D) CH 3 NH 3 PbI 3 perovskite nanosheets was fabricated. The low trap density of the perovskite nanosheets and their short carrier diffusion distance result in a significant performance enhancement of the perovskite-based photodetector. The photoresponsivity of this vertical-type photodetector is as high as 36 mA W −1 at visible wavelength, which is much better than traditional perovskite photodetectors (0.34 mA W −1 ). Compared with traditional planar-type perovskite-based photodetectors, this vertical-type photodetector also shows the advantages of low-voltage operation and large responsivity. These results may pave the way for exploiting high performance perovskite-based photodetectors with an ingenious device design. (paper)

  16. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  17. The Green Bank Ammonia Survey: First Results of NH3 Mapping of the Gould Belt

    Science.gov (United States)

    Friesen, Rachel K.; Pineda, Jaime E.; co-PIs; Rosolowsky, Erik; Alves, Felipe; Chacón-Tanarro, Ana; How-Huan Chen, Hope; Chun-Yuan Chen, Michael; Di Francesco, James; Keown, Jared; Kirk, Helen; Punanova, Anna; Seo, Youngmin; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Offner, Stella S. R.; Singh, Ayushi; Arce, Héctor G.; Caselli, Paola; Goodman, Alyssa A.; Martin, Peter G.; Matzner, Christopher; Myers, Philip C.; Redaelli, Elena; The GAS Collaboration

    2017-07-01

    We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with {A}{{V}}≳ 7 mag visible from the northern hemisphere in emission from NH3 and other key molecular tracers. This first release includes the data for four regions in the Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH3 emission to dust continuum emission from Herschel and find that the two tracers correspond closely. We find that NH3 is present in over 60% of the lines of sight with {A}{{V}}≳ 7 mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH3 is detected toward ∼40% of the lines of sight with {A}{{V}}≳ 7 mag. Moreover, we find that the NH3 emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH3 column densities through forward modeling of the hyperfine structure of the NH3 (1, 1) and (2, 2) lines. We show that the NH3 velocity dispersion, {σ }v, and gas kinetic temperature, T K, vary systematically between the regions included in this release, with an increase in both the mean value and the spread of {σ }v and T K with increasing star formation activity. The data presented in this paper are publicly available (https://dataverse.harvard.edu/dataverse/GAS_DR1).

  18. Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method

    International Nuclear Information System (INIS)

    Xu, Guofeng; Li, Jianling; Xue, Qingrui; Dai, Yu; Zhou, Hongwei; Wang, Xindong; Kang, Feiyu

    2014-01-01

    A novel wet method of (NH 4 ) 3 AlF 6 coating was explored to enhance the electrochemical performance of Mn-based solid-solution cathode material 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 . The X-ray powder diffraction patterns show that the coating material is pure-phase (NH 4 ) 3 AlF 6 and both pristine and coated samples can be indexed to hexagonal α-NaFeO 2 layered structure with space group of R-3 m. The field-emission scanning electron microscope images and the energy dispersive X-ray spectroscopy show that (NH 4 ) 3 AlF 6 is successfully coated on the surface of active particle. The (NH 4 ) 3 AlF 6 coated electrodes exhibit improved electrochemical performance, for instance, the initial charge-discharge efficiency was promoted by 5% (NH 4 ) 3 AlF 6 coating, the 1 wt.% and 3 wt.% coated electrodes deliver elevated cycling ability which is ascribed to the lower resistance between electrode and electrolyte as indicated by AC impedance measurement at different cycles. In addition, the coated-electrodes also give enhanced rate capability particularly for 1 wt.% NAF-coated electrode performing surprising capacity of 143.4 mAh g −1 at 5 C higher than that of 109.4 mAh g −1 for pristine electrode. Furthermore, the 1 wt.% NAF-coated electrode also shows improved cycle and rate performance at 55°C

  19. Quantifying local traffic contributions to NO2 and NH3 concentrations in natural habitats

    International Nuclear Information System (INIS)

    Gadsdon, Sally R.; Power, Sally A.

    2009-01-01

    NO 2 and NH 3 concentrations were measured across a Special Area for Conservation in southern England, at varying distances from the local road network. Exceedances of the critical levels for these pollutants were recorded at nearly all roadside locations, extending up to 20 m away from roads at some sites. Further, paired measurements of NH 3 and NO 2 concentrations revealed differences between ground and tree canopy levels. At 'background' sites, away from the direct influence of roads, concentrations were higher within tree canopies than at ground level; the reverse pattern was, however, seen at roadside locations. Calculations of pollutant deposition rates showed that nitrogen inputs are dominated by NH 3 at roadside sites. This study demonstrates that local traffic emissions contribute substantially to the exceedance of critical levels and critical loads, and suggests that on-site monitoring is needed for sites of nature conservation value which are in close proximity to local transport routes. - NO x and NH 3 concentrations exceed vegetation critical levels up to 20 m from roadsides, both at ground level and in tree canopies.

  20. Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Yingguo; Feng, Shanglei; Xu, Weidong; Li, Meng; Li, Li; Zhang, Xingmin; Ji, Gengwu; Zhang, Xiaonan; Wang, Zhaokui; Xiong, Yimin; Cao, Liang; Sun, Baoquan; Gao, Xingyu

    2017-07-12

    Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d (110) ) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH 3 NH 3 PbI 3-x Cl x perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH 3 NH 3 PbI 3-x Cl x g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO 2 -based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH 3 NH 3 PbI 3-x Cl x perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

  1. Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH 3NH 3SnI 3

    Science.gov (United States)

    Mitzi, D. B.; Feild, C. A.; Schlesinger, Z.; Laibowitz, R. B.

    1995-01-01

    A low-temperature ( T ≤ 100°C) solution technique is described for the preparation of polycrystalline and single crystal samples of the conducting halide perovskite, CH 3NH 3SnI 3. Transport, Hall effect, magnetic, and optical properties are examined over the temperature range 1.8-300 K, confirming that this unusual conducting halide perovskite is a low carrier density p-type metal with a Hall hole density, 1/ RHe ≃ 2 × 10 19 cm -3. The resistivity of pressed pellet samples decreases with decreasing temperature with resistivity ratio ρ(300 K)/ρ(2 K) ≃ 3 and room temperature resistivity ρ(300 K) ≃ 7 mΩ-cm. A free-carrier infrared reflectivity spectrum with a plasma edge observed at approximately 1600 cm -1 further attests to the metallic nature of this compound and suggests a small optical effective mass, m* ≃ 0.2.

  2. Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films

    Directory of Open Access Journals (Sweden)

    Yong Chan Choi

    2017-02-01

    Full Text Available We develop antisolvent-assisted powder engineering for the controlled growth of hybrid inorganic-organic CH3NH3PbI3 (MAPbI3 perovskite thin films. The powders, which are used as the precursors for solution processing, are synthesized by pouring a MAPbI3 precursor solution into various antisolvents, such as dichloromethane, chloroform, diethyl ether, and toluene. Two types of powders having different colors are obtained, depending on the antisolvent used. The choice of the antisolvent used for synthesizing the powders strongly influences not only the phases of the powders but also the morphology and structure of the thin films subsequently fabricated by solution processing. This, in turn, affects the photovoltaic performance.

  3. Elimination of NO/sub x/ by selective reduction with NH3

    International Nuclear Information System (INIS)

    Bruggeman, A.; Meynendonckx, L.; Gossens, W.R.A.

    1979-01-01

    In nuclear reprocessing plants the nitrogen oxides generated during the dissolution of the fuel are only partially removed in the primary off-gas treatments. Further reduction to the ppM level is necessary as a preliminary step to the cryogenic retention and separation of the noble gases. If simultaneous oxygen removal is not required, selective reduction of NO (and NO 2 ) to N 2 and H 2 O by NH 3 is a preferable method. Laboratory experiments have confrmed the feasibility of eliminating NO from air beyond the ppM level by adding NH 3 over a hydrogen mordenite catalyst. At atmospheric pressure and with air (water content 0.5% V/V) as a carrier gas selective catalytic reduction of NO to N 2 is easily achieved at temperatures up to 500 0 C. Under the same conditions dimensioning of the reactor for destruction of the excess NH 3 by the O 2 of the air is made possible. The activity of the catalyst remains rather constant even when large concentrations of I 2 are present. On the basis of the laboratory results a pilot installation has been designed and constructed which will demonstrate the process in an integrated gas purification loop at a pressure of 8 x 10 5 Pa during the next months

  4. Asymmetric Baylis-Hillman Reaction between Chiral Activated Alkenes and Aromatic Aldehydes in Me3N/H2O/Solvent Medium

    Institute of Scientific and Technical Information of China (English)

    Ke HE; Zheng Hong ZHOU; Hong Ying TANG; Guo Feng ZHAO; Chu Chi TANG

    2005-01-01

    Chiral activated alkene, L-menthyl acrylate and (+)-N-α-phenylethyl acrylamide,induced asymmetric Baylis-Hillman reaction of aromatic aldehydes was realized at 25℃ for 7 days in Me3N/H2O/solvent homogeneous medium. The corresponding Baylis-Hillman adducts were obtained in good chemical yield with moderate to excellent diastereoselectivity (up to 99% de).

  5. DFT analysis and FDTD simulation of CH3NH3PbI3-x Cl x mixed halide perovskite solar cells: role of halide mixing and light trapping technique

    Science.gov (United States)

    Saffari, Mohaddeseh; Mohebpour, Mohammad Ali; Rahimpour Soleimani, H.; Bagheri Tagani, Meysam

    2017-10-01

    Since perovskite solar cells have attracted a great deal of attention over the past few years, the enhancement of their optical absorption and current density are among the basic upcoming challenges. For this reason, first, we have studied the structural and optical properties of organic-inorganic hybrid halide perovskite CH3NH3PbI3 and the compounds doped by chlorine halogen CH3NH3PbI3-x Cl x in the cubic phase by using a density functional theory (DFT). Then, we model a single-junction perovskite solar cell based on a full solution to Maxwell’s equations, using a finite difference time domain (FDTD) technique, which helps us to investigate the light absorption efficiency and optical current density of the cell with CH3NH3PbI3-x Cl x (x  =  0, 1, 2, 3) as the active layer. The results suggest that increasing the amount of chlorine in CH3NH3PbI3-x Cl x compound leads to an increase in the bandgap energy, as well as a decrease in the lattice constants and optical properties, like the refractive index and extinction coefficient of the structure. Also, the results obtained by the simulation express that by taking advantage of the light trapping techniques of SiO2, a remarkable increase of light absorption will be achieved to the magnitude of 83.13%, which is noticeable.

  6. The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH3(CH2)3NH3CdBr4 compound

    Science.gov (United States)

    Staśkiewicz, Beata; Staśkiewicz, Anna

    2017-07-01

    Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.

  7. Performance Improvement of CH3NH3PbI3 Perovskite Solar Cell by CH3SH Doping

    Directory of Open Access Journals (Sweden)

    Hong Li

    2016-03-01

    Full Text Available Organometal halide perovskites have recently emerged as an appealing candidate in photovoltaic devices due to their excellent properties. Therefore, intense efforts have been devoted to find the ideal organics for perovskite solar cells. In response, we investigate the doping effect of CH3SH organic on the structure and related performance of a CH3NH3PbI3 perovskite solar cell, via in situ synchrotron- based grazing incidence X-ray diffraction (GIXRD, together with scanning electron microscopy (SEM. In situ GIXRD investigations clearly illustrated the transformation and modification of the perovskite structure induced by the organic dopant, which subsequently led to the enhance‐ ment of the power conversion efficiency of fabricated solar cells. Notably, nanoporous morphology and nanocrystal‐ line structures were discovered in the perovskite film by SEM; they were also confirmed by the increase in broad‐ ening peaks/features in the GIXRD measurements. Overall, our study may ultimately result in an attractive strategy for the fabrication of high performance perovskite solar cells.

  8. Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces

    Science.gov (United States)

    Teng, Qiang; Shi, Ting-Ting; Tian, Ren-Yu; Yang, Xiao-Bao; Zhao, Yu-Jun

    2018-02-01

    Organic-inorganic hybrid halide perovskite CH3NH3PbI3 (MAPbI3) has received rapid progress in power conversion efficiency as promising photovoltaic materials, yet the surface structures and the role of MA cations are not well understood. In this work, we investigated the structural stability and electronic properties of (001) surface of cubic, (001) and (110) surfaces of tetragonal and orthorhombic phases of MAPbI3 with considering the orientation of MA cations, by density functional theory calculations. We demonstrate that the orientation of MA cations has profound consequences on the structural stability and the electronic properties of the surfaces, in contrast to the bulk phases. Compared with the MA-I terminated surfaces, the Pb-I2 terminated ones generally have smaller band gaps and the advantage to enable the photo-excited holes to transfer to the hole-transport materials in both tetragonal and orthorhombic phases. Overall, we suggest that the films with Pb-I2 terminated surfaces would prevail in high performance solar energy absorbers.

  9. Ph effect on tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) thermoluminescence; Efecto del pH en la termoluminescencia de fosfato tricalcico (Ca{sub 3}(PO{sub 4}){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Barrera V, A.; Zarate M, J.; Lemus R, J. [Universidad Michoacaca de San Nicolas de Hidalgo, Instituto de Investigacion en Metalurgia y Materiales, Ciudad Universitaria, Edif. U, 58060 Morelia, Michoacan (Mexico); Sanchez, A. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, 07738 Mexico D. F. (Mexico); Rivera M, T., E-mail: antonibar.v@gmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The study of the ph effect is presented on thermoluminescent response of calcium phosphates synthesized by precipitation process. For the synthesis by precipitation, were used: calcium nitrate (Ca(NO{sub 3}){sub 2} and ammonium phosphate dibasic ((NH{sub 4}){sub 2}HPO{sub 4}) as precursors. Samples were obtained at ph 7, 8, 9 and 10 and subjected to a calcination s temperature of 1100 C. Samples were also irradiated with X rays of 6 MV to a dose of 2 Gy. Samples prior to irradiation showed no luminescence, the irradiated samples displayed a luminescent curve which is due to the X-ray response. Powders synthesized at ph 7 showed a well-defined peak centered at 267 grades C. The rest of the prepared samples showed a luminescent curve composed of several peaks. By analyzing the curve at ph 7 by the method of the shape of the curve, was found to have an order of 1.7, with an activation energy, E = 1.44 ± 0.04 eV. (Author)

  10. Graphene assisted effective hole-extraction on In2O3:H/CH3NH3PbI3 interface: Studied by modulated surface spectroscopy

    Science.gov (United States)

    Vinoth Kumar, Sri Hari Bharath; Muydinov, Ruslan; Kol'tsova, Tat‘yana; Erfurt, Darja; Steigert, Alexander; Tolochko, Oleg; Szyszka, Bernd

    2018-01-01

    Charge separation in CH3NH3PbI3 (MAPbI3) films deposited on a hydrogen doped indium oxide (In2O3:H) photoelectrode was investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. It was found that In2O3:H reproducibly extracts photogenerated-holes from MAPbI3 films. The oxygen-plasma treatment of the In2O3:H surface is suggested to be a reason for this phenomenon. Introducing graphene interlayer increased charge separation nearly 6 times as compared to that on the In2O3:H/MAPbI3 interface. Furthermore, it is confirmed by SPV spectroscopy that the defects of the MAPbI3 interface are passivated by graphene.

  11. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    Science.gov (United States)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  12. Solid-phase synthesis of NH-1,2,3-triazoles using 4,4′- bismethoxybenzhydryl azide

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon; Le Quement, Sebastian Thordal; Nielsen, Thomas Eiland

    2014-01-01

    Readily available 4,4′-bismethoxybenzhydryl azide was found to be a useful building block for the synthesis of NH-1,2,3-triazoles through copper(I)-catalyzed cycloaddition reactions with solid-supported terminal alkynes, followed by acid-mediated deprotection. Peptide-containing NH-1,2,3-triazole...

  13. Synthesis and structure of [(NH2)2CSSC(NH2)2]2[OsBr6]Br2 . 3H2O

    International Nuclear Information System (INIS)

    Rudnitskaya, O. V.; Kultyshkina, E. K.; Stash, A. I.; Glukhova, A. A.; Venskovskii, N. U.

    2008-01-01

    The complex [(NH 2 ) 2 CSSC(NH 2 ) 2 ] 2 [OsBr 6 ]Br 2 . 3H 2 O is synthesized by the reaction of K 2 OsBr 6 with thiocarbamide in concentrated HBr and characterized using electronic absorption and IR absorption spectroscopy. Its crystal structure is determined by X-ray diffraction. The crystals are orthorhombic, a = 11.730(2) A, b = 14.052(3) A, c = 16.994(3) A, space group Cmcm, and Z = 4. The [OsBr 6 ] 2- anionic complex has an octahedral structure. The Os-Br distances fall in the range 2.483-2.490 A. The α,α'-dithiobisformamidinium cation is a product of the oxidation of thiocarbamide. The S-S and C-S distances are 2.016 and 1.784 A, respectively. The H 2 O molecules, Br - ions, and NH 2 groups of the cation are linked by hydrogen bonds.

  14. Electropolymerization of 3-aminophenol on carbon graphite surface: Electric and morphologic properties

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Diego L.; Afonso, Andre S.; Vieira, Sabrina N.; Ferreira, Lucas F. [Institute of Chemistry, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil); Goncalves, Rafael A. [School of Mechanical Engineering, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil); Brito-Madurro, Ana G. [Institute of Chemistry, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil); Madurro, Joao M. [Institute of Chemistry, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil)], E-mail: jmadurro@ufu.br

    2008-02-15

    This paper reports the formation of electropolymerized films derived from 3-aminophenol on graphite electrode by cyclic voltammetry, prepared in different pH conditions. With increase of pH values, a shift of the oxidation potential of 3-aminophenol to more cathodic potentials was observed. 3-Aminophenol electrooxidation, in acid and basic media, yielded polymeric films onto graphite surface. In ferrocyanide/ferricyanide solution, the polymer produced in acid medium showed higher electron transfer efficiency. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and FT-IR were used to investigate some properties of the graphite electrode modified with poly(3-aminophenol). Scanning electron microscopy showed that the morphology of the films is strongly dependent on the pH of the electropolymerization medium. FT-IR spectra of polymer films produced for either acid or basic media suggest that the monomer is polymerized by NH{sub 2} group.

  15. Electropolymerization of 3-aminophenol on carbon graphite surface: Electric and morphologic properties

    International Nuclear Information System (INIS)

    Franco, Diego L.; Afonso, Andre S.; Vieira, Sabrina N.; Ferreira, Lucas F.; Goncalves, Rafael A.; Brito-Madurro, Ana G.; Madurro, Joao M.

    2008-01-01

    This paper reports the formation of electropolymerized films derived from 3-aminophenol on graphite electrode by cyclic voltammetry, prepared in different pH conditions. With increase of pH values, a shift of the oxidation potential of 3-aminophenol to more cathodic potentials was observed. 3-Aminophenol electrooxidation, in acid and basic media, yielded polymeric films onto graphite surface. In ferrocyanide/ferricyanide solution, the polymer produced in acid medium showed higher electron transfer efficiency. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and FT-IR were used to investigate some properties of the graphite electrode modified with poly(3-aminophenol). Scanning electron microscopy showed that the morphology of the films is strongly dependent on the pH of the electropolymerization medium. FT-IR spectra of polymer films produced for either acid or basic media suggest that the monomer is polymerized by NH 2 group

  16. CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.

    Science.gov (United States)

    Filipič, Miha; Löper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Krč, Janez; Ballif, Christophe; Topič, Marko

    2015-04-06

    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

  17. Total scattering cross-sections for the systems nH2 + nH2, pH2 + pH2, nD2 + nD2, oD2 + oD2 and HD + HD for relative energies below ten milli-electron volts

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1979-01-01

    Relative total scattering cross sections for nH 2 + nH 2 , pH 2 + pH 2 , nD 2 + nD 2 , oD 2 + oD 2 , and HD + HD were measured with inclined nozzle beams derived from nozzle sources and intersecting at 21 0 . Both nozzles could be varied in temperature from 4.2K to 300K to provide the velocity range for the cross sections. The use of a parahydrogen converter allowed the measurement of the pH 2 + pH 2 and oD 2 + oD 2 cross sections. Cross sections for the H 2 + H 2 were measured over a relative velocity range of 200 m/s to 1450 m/s. The nH 2 + nH 2 results show an undulation in the velocity range between 350 m/s and 400 m/s that corresponds to a l = 3 orbiting resonance. Analysis of the pH 2 + pH 2 cross section indicates a l = 4 orbiting resonance near 586 m/s. This resonance has a peak energy of 1.79 meV and a measured energy width of 1.05 meV, both which agree well with theoretical predictions. The D 2 + D 2 cross sections have been measured in the velocity range between 190 m/s and 1000 m/s. No orbiting resonances have been observed, but in the oD 2 + oD 2 cross section a deep minimum between the l = 4 and the l = 5 resonances at low velocities is clearly suggested. Initial measurements of the HD + HD cross section suggests the presence of the l = 4 orbiting resonance near a relative velocity of 300 m/s. The experimental results for each system were normalized to the total cross sections, which were convoluted to account for experimental velocity and angular dispersions. Three different potentials were considered, but a chi-square fit of the data indicates that the Schaefer and Meyer potential, which has been theoretically obtained from first principles, provides the best overall description of the hydrogen systems in the low collisional energy range

  18. THIN FILM-BASED SENSOR FOR MOTOR VEHICLE EXHAUST GAS, NH3, AND CO DETECTION

    Directory of Open Access Journals (Sweden)

    S. Sujarwata

    2016-10-01

    Full Text Available A copper phthalocyanine (CuPc thin film based gas sensor with FET structure and channel length 100 μm has been prepared by VE method and lithography technique to detect NH3, motor cycle exhaust gases and CO. CuPc material layer was deposited on SiO2 by the vacuum evaporator (VE method at room temperature and pressure of 8 x10-4 Pa. The stages of manufacturing gas sensor were Si/SiO2 substrate blenching with ethanol in an ultrasonic cleaner, source, and drain electrodes deposition on the substrate by using a vacuum evaporator, thin film deposition between the source/drain and gate deposition. The sensor response times to NH3, motorcycle exhaust gases and CO were 75 s, 135 s, and 150, respectively. The recovery times were 90 s, 150 s and 225, respectively. It is concluded that the CuPc thin film-based gas sensor with FET structure is the best sensor to detect the NH3 gas.Sensor gas berbasis film tipis copper phthalocyanine (CuPc berstruktur FET dengan panjang channel 100 μm telah dibuatdengan metode VE dan teknik lithography untuk mendeteksi NH3 gas buang kendaraan bermotor dan CO. Lapisan bahan CuPc dideposisikan pada permukaan silikon dioksida (SiO2 dengan metode vacuum evaporator (VE pada temperatur ruang dengan tekanan 8 x10-4 Pa. Tahapan pembuatan sensor gas adalah pencucian substrat Si/SiO2 dengan etanol dalam ultrasonic cleaner, deposisi elektroda source dan drain di atas substrat dengan metode vacuum evaporator, deposisi film tipis diantara source/drain dan deposisi gate. Waktu tanggap sensor terhadap NH3, gas buang kendaraan bermotor dan CO berturut-turut adalah 75 s, 135 s,dan 150 s. Waktu pemulihan berturut-turut adalah 90 s, 150 s,dan 225 s. Disimpulkan bahwa sensor gas berstruktur FET berbasis film tipis CuPc merupakan sensor paling baik untuk mendeteksi adanya gas NH3.

  19. Effects of NO3(-) and NH4(+) and urea on each other's uptake and incorporation

    Science.gov (United States)

    Huffaker, R. C.; Ward, M. R.

    1986-01-01

    The purpose was to determine the optimal use by wheat plants of the N sources expected from processing biological waste products, NO3(-),NO2(-)NH4(+), and urea. The approach was to determine the uptake and metabolic products of each N source (from single and multiple component solutions), inhibitory effects of each, feedback inhibition, and overall in vivo regulation of the rates of assimilation of each by wheat plants. Previously, researchers determined the interactions of NO3(-),NO2(-),NH4(+) on each other's uptake and incorporation. The assimilation and some of its effects on NO3(-) and NH4(+) assimilation which have been completed to data are discussed.

  20. On-road measurement of NH3 emissions from gasoline and diesel passenger cars during real world driving conditions

    Science.gov (United States)

    Suarez-Bertoa, Ricardo; Mendoza-Villafuerte, Pablo; Riccobono, Francesco; Vojtisek, Michal; Pechout, Martin; Perujo, Adolfo; Astorga, Covadonga

    2017-10-01

    NH3 is a precursor of PM2.5 which deteriorates urban air quality, affects human health and impacts the global radiation budget. Since vehicles are important sources of NH3 in urban areas, we have satisfactorily studied the possibility of measuring NH3 emissions from gasoline and SCR-equipped diesel light-duty vehicles during real driving on-road operation using a portable FTIR. The performance of the portable FTIR resulted to be comparable to that of a laboratory-based FTIR during a series of experiments performed in the Vehicle Emission Laboratory (VELA) using the World-harmonized Light-duty Test Cycle (WLTC). Higher on-road NH3 emission factors were obtained for the gasoline vehicle than for the diesel. High NOx emissions were measured from the diesel vehicle, indicating a low efficiency of the DeNOx system, SCR. On-road NH3 emission factors were ∼2 times lower than during the laboratory tests at 23 °C for both vehiclesNH3 emissions were not observed for the diesel vehicle during cold start operation. However, NH3 cold start emissions from the gasoline vehicle were up to 2 orders of magnitude higher than during the entire road trips, ranging from 45 to 134 mg km-1. Cold start emissions are of paramount importance as they commonly take place in urban areas. Hence, future urban reductions in PM2.5 might need to take into consideration the introduction of NH3 emissions limits for passenger cars.

  1. Characteristics of NH4+ and NO3- fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique.

    Science.gov (United States)

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-12-05

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO 3 - and NH 4 + fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO 3 - were much lower than those of NH 4 + , suggesting a preference for NH 4 + in tea. With the increase in N concentration, the influx rate of NO 3 - increased more than that of NH 4 + . The NH 4 + influx rates in a solution without NO 3 - were much higher than those in a solution with NO 3 - , while the NO 3 - influx rates in a solution without NH 4 + were much lower than those in a solution with NH 4 + . We concluded that (1) tea roots showed a preference for NH 4 + , (2) presence of NO 3 - had a negative effect on NH 4 + influx, and (3) NH 4 + had a positive effect on NO 3 - influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future.

  2. The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    In addition to high activity in hydrocarbon-SCR, Ag/Al2O3 catalysts show excellent activity for NOx reduction for H2-assisted NH3-SCR already at 200°C. Here, we study the influence of different gas compositions on the activity of a pre-sulfated 6wt% Ag/Al2O3 catalyst for NOx reduction, and oxidat...

  3. Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium.

    Science.gov (United States)

    Gu, Xingyan; Li, Keqiang; Pang, Kai; Ma, Yunpeng; Wang, Xiulin

    2017-11-30

    Ocean acidification (OA) and eutrophication intensifies in coastal sea under anthropogenic impact. OA coupled with the NH 4 -N source effect in coastal water is likely to affect the planktonic ecosystem. In this work, Skeletonema costatum and Nitzschia closterium were chosen as typical species of diatom in Chinese coastal ecosystems to test the potential effect of OA and NH 4 -N. Results showed that the growth and NH 4 -N uptake of S. costatum and N. closterium were significantly inhibited by pH decline. The maximum uptake rate is higher than the maximum growth rate, implying that NH 4 -N was assimilated faster for S. costatum and N. closterium with decreasing pH. Therefore, the inhibition rate of the growth of the two diatoms by the coupling effect of OA and eutrophication (pH7.45) is higher that than in the coastal sea by the end of the 21st century (pH7.71). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    Science.gov (United States)

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753

  5. The spatial distribution of C2, C3, and NH in comet 2P/Encke

    International Nuclear Information System (INIS)

    Dorman, Garrett; Pierce, Donna M.; Cochran, Anita L.

    2013-01-01

    We examine the spatial distribution of C 2 , C 3 , and NH radicals in the coma of comet Encke in order to understand their abundances and distributions in the coma. The observations were obtained from 2003 October 22-24, using the 2.7 m telescope at McDonald Observatory. Building on our original study of CN and OH, we have used our modified version of the vectorial model, which treats the coma as one large cone, in order to reproduce Encke's highly aspherical and asymmetric coma. Our results suggest that NH can be explained by the photodissociation of NH 2 , assuming that NH 2 is produced rapidly from NH 3 in the innermost coma. Our modeling of C 2 and C 3 suggests a multi-generational photodissociation process may be required for their production. Using the results of our previous study, we also obtain abundance ratios with respect to OH and CN. Overall, we find that Encke exhibits typical carbon-chain abundances, and the results are consistent with other studies of comet Encke.

  6. The Spatial Distribution of C2, C3, and NH in Comet 2P/Encke

    Science.gov (United States)

    Dorman, Garrett; Pierce, Donna M.; Cochran, Anita L.

    2013-12-01

    We examine the spatial distribution of C2, C3, and NH radicals in the coma of comet Encke in order to understand their abundances and distributions in the coma. The observations were obtained from 2003 October 22-24, using the 2.7 m telescope at McDonald Observatory. Building on our original study of CN and OH, we have used our modified version of the vectorial model, which treats the coma as one large cone, in order to reproduce Encke's highly aspherical and asymmetric coma. Our results suggest that NH can be explained by the photodissociation of NH2, assuming that NH2 is produced rapidly from NH3 in the innermost coma. Our modeling of C2 and C3 suggests a multi-generational photodissociation process may be required for their production. Using the results of our previous study, we also obtain abundance ratios with respect to OH and CN. Overall, we find that Encke exhibits typical carbon-chain abundances, and the results are consistent with other studies of comet Encke.

  7. NH3/O2 mixed gas plasmas alter the interaction of blood components with stainless steel.

    Science.gov (United States)

    Chen, Meng; Zamora, Paul O; Peña, Louis; Som, Prantika; Osaki, Shigemasa

    2003-12-01

    Stainless steel treated with a mixed gas plasma of NH(3) plus O(2) had chemical and biologic characteristics distinct from untreated stainless steel or stainless steel treated with NH(3) or O(2) plasmas used separately. NH(3)/O(2) plasmas deposited nitrogen as both -CN (organic) and -NO (nitrate, nitrite)--materials not found on untreated stainless steel--and the contact angle changed from 44 degrees to 23 degrees. Treatment of stainless steel (and titanium) resulted in surfaces with enhanced resistance to platelet and leukocyte attachment. A gas plasma of N(2)O/O(2) also was found to reduce platelet and leukocyte attachment, suggesting that these properties may be common to surfaces coated with oxynitrites (nitrides). Upon subcutaneous implantation, no inflammation, hemolysis, or untoward thrombosis was noted in the tissue surrounding the wafers treated with the NH(3)/O(2) plasmas, although the cellular density was considerably reduced by 2 weeks after implant. Collectively, the results suggest that NH(3)/O(2) plasmas impart a unique character to stainless steel that may be useful in the construction of medical devices. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 994-1000, 2003

  8. Crystal structure and phase transitions in perovskite-like C(NH2)3SnCl3

    International Nuclear Information System (INIS)

    Szafranski, Marek; Stahl, Kenny

    2007-01-01

    X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH 2 ) 3 SnCl 3 . At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) A, b=12.0958(4) A and c=17.8049(6) A, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl 6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) A, b=8.8590(2) A and c=8.0175(1) A, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl 3 - part. The space group symmetry is maintained as Pnma, with a=12.1786(2) A, b=8.8642(2) A and c=8.0821(2) A. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described. - Graphical abstract: The perovskite-like crystals of C(NH 2 ) 3 SnCl 3 undergo two successive first-order phase transitions at 400 and 419 K, both accompanied by an essential order-disorder contribution. The p-T phase diagram exhibits a singular point at 219 MPa and 443 K

  9. Ammonia Uptake and Release in the MnX2–NH3 (X = Cl, Br Systems and Structure of the Mn(NH3nX2 (n = 6, 2 Ammines

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2012-04-01

    Full Text Available Hexa-ammine complexes, Mn(NH36X2 (X = Cl, Br, have been synthesized by ammoniation of the corresponding transition metal halide and characterized by Powder X-ray diffraction (PXRD and Raman spectroscopy. The hexa-ammine complexes are isostructural (Cubic, Fm-3m, Z = 4; a = 10.2742(6 Å and 10.527(1 Å for X = Cl, Br respectively. Temperature programmed desorption (TPD demonstrated that ammonia release from Mn(NH36X2 complexes occurred in three stages corresponding to the release of 4, 1 and 1 NH3 equivalents respectively. The chloride and bromide both exhibit a deammoniation onset temperature below 323 K. The di-ammoniates from the first desorption step were isolated during TPD measurements and their crystal structures determined by Rietveld refinement against PXRD data (X = Cl: orthorhombic Cmmm, a = 8.1991(9 Å, b = 8.2498(7 Å, c = 3.8212(4 Å, Z = 2; X = Br: orthorhombic Pbam, a = 6.0109(5 Å, b = 12.022(1 Å, c = 4.0230(2 Å, Z = 2.

  10. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    Science.gov (United States)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  11. Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons

    Science.gov (United States)

    Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.

    2018-04-01

    Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C—C or C—N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

  12. H{sub 2} assisted NH{sub 3}-SCR over Ag/Al{sub 2}O{sub 3} for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Fogel, S.

    2013-05-15

    The up-coming strict emission legislation demands new and improved catalysts for diesel vehicle deNO{sub x}. The demand for low-temperature activity is especially challenging. H{sub 2}-assisted NH{sub 3}-SCR over Ag/Al{sub 2}O{sub 3} has shown a very promising low-temperature activity and a combination of Ag/Al{sub 2}O{sub 3} and Fe-BEA can give a high NO{sub x} conversion in a broad temperature window without the need to dose H{sub 2} at higher temperatures. The aim of this study has been to investigate the combined Ag/Al{sub 2}O{sub 3} and Fe-BEA catalyst system both at laboratory-scale and in full-scale engine bench testing. The catalysts were combined both in a sequential dual-bed layout and a dual-layer layout where the catalysts were coated on top of each other. The Ag/Al{sub 2}O{sub 3} catalyst was also investigated with the aim of improving the sulphur tolerance and low-temperature activity by testing different alumina-supports. A large focus of this study has been the preparation of monolithic catalyst bricks for the catalyst testing. A high SBET and higher Ag loading gave a high sulphur tolerance and activity. It was believed that the high S{sub BET} is needed to give a higher NH{sub 3} adsorption capacity, necessary for the SCR reaction. A higher Ag loading gives more Ag sites and probably a favourable Ag dispersion. Testing with sulphur gave an increased activity of the catalysts. Testing of monolithic catalysts showed a similar activity enhancement after a few standard test cycles. A change in the dispersion or state of Ag can be possible reasons for the activation seen and the activation was believed to be related to Ag and not the alumina. Small-scale laboratory testing showed that it was preferred to have Ag/Al{sub 2}O{sub 3} either upstream or as the outer layer of Fe-BEA. This was attributed to complete NH{sub 3} oxidation over Fe-BEA giving a deficit of NH{sub 3} over the Ag/Al{sub 2}O{sub 3} if it was placed downstream or as the inner layer

  13. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.

    Science.gov (United States)

    Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy

    2017-04-06

    Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH 3 NH 3 PbI 3 -based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

  14. Synthesis of binuclear rhodacarboranes from dianions 1,4- and 1,3-C6H4(CH2-9-C2H2B9H9-7,8-nido)22- and (Ph3P)3RhCl

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Zhigareva, G.G.

    1996-01-01

    Dianions 1,4 and 1,3-C 6 H 4 (CH 2 -9-C 2 H 2 B 9 H 9 -7,8-nido) 2 2- obtained from nido 7,8-dicarbollide-ion and 1,4-bis(bromomethyl) and 1,3-bis(bromomethyl)benzenes react with (Ph 3 P) 3 RhCl to give binuclear rhodacarboranes, 1,4- and 1,3-[3,3-(Ph 3 P) 2 -3-H-3,1,2-RhC 2 B 9 H 10 -4-CH 2 ] 2 C 6 H 6 with chemical reaction yield 85% and 87% respectively. 7 refs., 1 fig., 1 tab

  15. Co-adsorption of NH3 and SO2 on quartz : Formation of a stabilized complex

    NARCIS (Netherlands)

    Grecea, M.L.; Gleeson, M.A.; van Schaik, W.; Kleyn, A.W.; Bijkerk, Frederik

    2011-01-01

    We have investigated the co-adsorption of NH3 and SO2 on the quartz(0 0 0 1) surface by TPD and RAIRS. A surface complex is formed as a result of various relative exposures of NH3 and SO2, irrespective of dosage order. However, the relative molecular composition of the complex is dependent on the

  16. NO3-/NH4+ ratios affect nutritional homeostasis and production of Tanzania guinea grass under Cu toxicity.

    Science.gov (United States)

    de Souza Junior, João Cardoso; Nogueirol, Roberta Corrêa; Monteiro, Francisco Antonio

    2018-05-01

    Nitrogen (N) can alleviate metal toxicity. However, as of yet, there have been no studies showing the efficacy of NO 3 - /NH 4 + in mitigating Cu toxicity. The objective of this study was to evaluate the Cu toxicity on the nutritional and productive attributes of Panicum maximum cv. Tanzania as well as the role of NO 3 - and NH 4 + ratios in nutritional homeostasis. The experiment was conducted using 3 × 4 factorial treatments arranged in a randomized complete block design with three replicates. The treatments were three NO 3 - /NH 4 + ratios (100/0, 70/30, and 50/50) and four Cu rates (0.3, 250, 500, and 1000 μmol L -1 ) in nutrient solution. Copper concentrations in the diagnostic leaves (DL) were highest in plants grown under 70/30 NO 3 - /NH 4 + ratios and a Cu rate of 1000 μmol L -1 . In this combination, it was observed that DL had higher concentrations of NH 4 + , greater glutamine synthetase activity, lower chlorophyll concentration (SPAD value), and lower shoot dry mass, suggesting high disorders of nutritional homeostasis. Plants receiving N in the form of NO 3 - and 1000 Cu μmol L -1 showed that DL had lower concentrations of Cu, higher concentration of chlorophyll, higher NO 3 - concentration, higher nitrate reductase activity, and higher NO 3 - accumulation in the roots, suggesting a reduction in disorders of nutritional homeostasis. The disorders on mineral uptake, N assimilation, and biomass production caused by Cu toxicity are shown to be affected by NO 3 - /NH 4 + ratios, and N supply via NO 3 - allowed for better homeostasis of the forage grass.

  17. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3NH4Cl Solutions: Implications for Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-09-01

    Full Text Available CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2–NH3NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq and NH3(aq. We further quantified the reaction kinetic constant of the CO2–NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥ 2 mol · L − 1 leads to the precipitation of roguinite [ ( NH 4 2 Mg ( CO 3 2 · 4 H 2 O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.

  18. Reversible flexible structural changes in multidimensional MOFs by guest molecules (I{sub 2}, NH{sub 3}) and thermal stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Li, Libo; Yang, Jiangfeng; Wang, Shuang; Li, Jinping, E-mail: Jpli211@hotmail.com

    2015-03-15

    Three metal–organic frameworks (MOFs), [Cu(INA){sub 2}], [Cu(INA){sub 2}I{sub 2}] and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}], were synthesized with 3D, 2D, and 0D structures, respectively. Reversible flexible structural changes of these MOFs were reported. Through high temperature (60–100 °C) stimulation of I{sub 2} or ambient temperature stimulation of NH{sub 3}, [Cu(INA){sub 2}] (3D) converted to [Cu(INA){sub 2}I{sub 2}] (2D) and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}] (0D); as the temperature increased to 150 °C, the MOFs changed back to their original form. In this way, this 3D MOF has potential application in the capture of I{sub 2} and NH{sub 3} from polluted water and air. XRD, TGA, SEM, NH{sub 3}-TPD, and the measurement of gas adsorption were used to describe the changes in processes regarding the structure, morphology, and properties. - Graphical abstract: Through I{sub 2}, NH{sub 3} molecules and thermal stimulation, the three MOFs can achieve reversible flexible structural changes. Different methods were used to prove the flexible reversible changes. - Highlights: • [Cu(INA){sub 2}] can flexible transform to [Cu(INA){sub 2}I{sub 2}] and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}] by adsorbing I{sub 2} or NH{sub 3}. • The reversible flexible transformation related to material source, temperature and concentration. • Potential applications for the capture of I{sub 2} and NH{sub 3} from polluted water or air.

  19. Structure-controlled synthesis and electrochemical properties of NH_4V_3O_8 as cathode material for Lithium ion batteries

    International Nuclear Information System (INIS)

    Cheng, Yayi; Huang, Jianfeng; Li, Jiayin; Cao, Liyun; Xu, Zhanwei; Wu, Jianpeng; Cao, Shanshan; Hu, Hailing

    2016-01-01

    NH_4V_3O_8 flower, nanobelt, lath and sheet were synthesized using a facile microwave hydrothermal method. The formation mechanism of NH_4V_3O_8 with various structures was proposed. As an cathode in Li-ion battery, the NH_4V_3O_8 nanobelt with one-dimensional structure as well as nanosized morphology, presents excellent cycling stability and enhanced rate capability when comparing with other NH_4V_3O_8 structures. Further study finds that the NH_4V_3O_8 nanobelt could provide high Li ion diffusion, excellent structural stability and good reversibility during the charge/discharge process, indicating a strong connection between the morphology and the electrochemical performance of NH_4V_3O_8 cathode.

  20. Increasing Hydrogen Density with the Cation-Anion Pair BH4−-NH4+ in Perovskite-Type NH4Ca(BH43

    Directory of Open Access Journals (Sweden)

    Pascal Schouwink

    2015-08-01

    Full Text Available A novel metal borohydride ammonia-borane complex Ca(BH42·NH3BH3 is characterized as the decomposition product of the recently reported perovskite-type metal borohydride NH4Ca(BH43, suggesting that ammonium-based metal borohydrides release hydrogen gas via ammonia-borane-complexes. For the first time the concept of proton-hydride interactions to promote hydrogen release is applied to a cation-anion pair in a complex metal hydride. NH4Ca(BH43 is prepared mechanochemically from Ca(BH42 and NH4Cl as well as NH4BH4 following two different protocols, where the synthesis procedures are modified in the latter to solvent-based ball-milling using diethyl ether to maximize the phase yield in chlorine-free samples. During decomposition of NH4Ca(BH43 pure H2 is released, prior to the decomposition of the complex to its constituents. As opposed to a previously reported adduct between Ca(BH42 and NH3BH3, the present complex is described as NH3BH3-stuffed α-Ca(BH42.

  1. Near-Band-Edge Optical Responses of CH3NH3PbCl3 Single Crystals: Photon Recycling of Excitonic Luminescence

    Science.gov (United States)

    Yamada, Takumi; Aharen, Tomoko; Kanemitsu, Yoshihiko

    2018-02-01

    The determination of the band gap and exciton energies of lead halide perovskites is very important from the viewpoint of fundamental physics and photonic device applications. By using photoluminescence excitation (PLE) spectra, we reveal the optical properties of CH3NH3PbCl3 single crystals in the near-band-edge energy regime. The one-photon PLE spectrum exhibits the 1 s exciton peak at 3.11 eV. On the contrary, the two-photon PLE spectrum exhibits no peak structure. This indicates photon recycling of excitonic luminescence. By analyzing the spatial distribution of the excitons and photon recycling, we obtain 3.15 eV for the band gap energy and 41 meV for the exciton binding energy.

  2. VizieR Online Data Catalog: MSX high-contrast IRDCs with NH3 (Chira+,

    Science.gov (United States)

    Chira, R.-A.; Beuther, H.; Linz, H.; Walmsley, C. M.; Menten, K. M.; Bonfman, L.

    2013-02-01

    Based on MSX data, a catalogue of more than 10,000 candidate IRDCs was compiled. From this catalogue we selected a complete sample of northern hemisphere high-contrast IRDCs with Galactic longitudes >=19.27° (and nine exceptions with Galactic longitudes <19°). The sample was observed in ammonia (1,1) and (2,2) inversion transitions with the Effelsberg 100-m telescope. NH3 parameters are derived for 109 sample sources. For each source galactic coordinates, brightness temperatures, line width FWHMs and optical depths of (1,1) and (2,2) inversion lines and LSR velocity of (1,1) inversion line are given. Furthermore, we derived the rotation and kinetic temperatures, ammonia column densities, kinematic distances and virial masses using the NH3 data. In addition, notes about whether the sources being associated with Spitzer sources or not are given. Using ATLASGAL data, the 870 micron flux densities gas masses, virial parameters, H2 column densities and NH3 abundances are given. In addition, we listed the sample sources where no ammonia which did not fulfil our selection criteria. (4 data files).

  3. NH3 (10-00) in the pre-stellar core L1544

    DEFF Research Database (Denmark)

    Caselli, P.; Bizzocchi, L.; Keto, E.

    2017-01-01

    GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas......Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores....... The NH3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH3(10-00) line at 572...

  4. Temperature dependence of the effective mass of the hybrid organic-inorganic perovskites CH3NH3PbI3

    Science.gov (United States)

    Lu, Ying-Bo; Yang, Haozhi; Cong, Wei-Yan; Zhang, Peng; Guo, Hong

    2017-12-01

    The material of methylammonium lead iodide, CH3NH3PbI3 (MAPbI3), has shown significant promise in solar cell applications. A way to infer the microscopic scattering mechanism(s) in MAPbI3 is through the measured temperature dependence of carrier mobility. To this end, how does the carrier effective mass depend on temperature, m* = m*(T), is a useful information since the mobility is a function of m*. By atomistic first principles, we report the calculated m*(T) due to the thermal expansion of MAPbI3 materials, in the experimentally relevant range of 130 K to room temperature. The calculated results suggest m* = m*(T) to be linear in T. The increase of m* versus temperature is predominantly due to the expansion of the longitudinal atomic spacing that weakens the s/p hybridization between the I/Pb atoms.

  5. Metal extraction from Cetraria islandica (L. Ach. lichen using low pH solutions

    Directory of Open Access Journals (Sweden)

    ANA A. CUCULOVIC

    2008-04-01

    Full Text Available Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr from dry Cetraria islandica (L. Ach. lichen was performed using solutions similar to acid rain (solution A – H2SO4–HNO3–(NH42SO4 and solution B – H2SO4–HNO3–(NH42SO4–NH4NO3. The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centres of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues.

  6. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH{sub 2}){sub 3}]CdI{sub 3} and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gesing, Thorsten M.; Lork, Enno [Bremen Univ. (Germany). MAPEX Center for Material and Processes; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education

    2016-05-01

    The crystal structures of [C(NH{sub 2}){sub 3}]CdI{sub 3} (1) and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5} (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2{sub 1}/c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI{sub 4}] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr{sub 6}] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three {sup 127}I (m = ±1/2 <-> m = ±3/2), five {sup 81}Br, and three {sup 35}Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd{sub 5}I{sub 16}]{sup 6-} for 1 and [Cd{sub 3}Br{sub 16}]{sup 10-} for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  7. Intrinsic and extrinsic photoluminescence in the NH sub 4 MnCl sub 3 cubic perovskite: a spectroscopic study

    CERN Document Server

    Hernandez, I

    2003-01-01

    This work investigates the photoluminescence (PL) properties of the cubic chloroperovskite NH sub 4 MnCl sub 3. Like in most concentrated materials, the Mn sup 2 sup + PL which is located at 2.10 eV at T = 10 K strongly depends on the temperature. Optical absorption (OA), emission, and excitation spectroscopy, as well as lifetime measurements, performed on NH sub 4 MnCl sub 3 indicate that the PL is mainly intrinsic at T = 10 K and consists of a broad band located at 2.10 eV. Above this temperature, the PL gradually transforms to extrinsic PL due to exciton migration and subsequent trapping. Further temperature increase above 100 K yields transfer to killers of excitation which are responsible for the PL quenching, and hence the absence of PL at ambient conditions. The exciton traps are identified with perturbed Mn sup 2 sup + sites with the effective activation energy of 52 meV, whilst the activation energy for energy transfer is 47 meV. The existence of these traps has been directly revealed by time-resolve...

  8. Dispersive analysis of {omega}{yields}3{pi} and {phi}{yields}3{pi} decays

    Energy Technology Data Exchange (ETDEWEB)

    Niecknig, Franz; Kubis, Bastian; Schneider, Sebastian P. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany)

    2012-05-15

    We study the three-pion decays of the lightest isoscalar vector mesons, {omega} and {phi}, in a dispersive framework that allows for a consistent description of final-state interactions between all three pions. Our results are solely dependent on the phenomenological input for the pion-pion P-wave scattering phase shift. We predict the Dalitz plot distributions for both decays and compare our findings to recent measurements of the {phi}{yields}3{pi} Dalitz plot by the KLOE and CMD-2 collaborations. Dalitz plot parameters for future precision measurements of {omega}{yields}3{pi} are predicted. We also calculate the {pi}{pi} P-wave inelasticity contribution from {omega}{pi} intermediate states. (orig.)

  9. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.

    Science.gov (United States)

    Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison

    2017-05-01

    In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of bromine doping on the photovoltaic properties and microstructures of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Organic-inorganic hybrid heterojunction solar cells containing CH{sub 3}NH{sub 3}PbI{sub 3} perovskite compound were fabricated using mesoporous TiO{sub 2} as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystal structure on the TiO{sub 2} mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of V{sub oc}, J{sub sc} and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results.

  11. Heterolytic cleavage of ammonia N-H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance

    KAUST Repository

    Gouré, Eric

    2011-01-01

    Ammonia N-H bond is cleaved at room temperature by the silica-supported tantalum imido amido complex [(≡SiO)2Ta(NH)(-NH2)], 2, if excess ammonia is present, but requires 150 °C to achieve the same reaction if only one equivalent NH3 is added to 2. MAS solid-state 15N NMR and in situ IR spectroscopic studies of the reaction of either 15N or 2H labeled ammonia with 2 show that initial coordination of the ammonia is followed by scrambling of either 15N or 2H among ammonia, amido and imido groups. Density functional theory (DFT) calculations with a cluster model [{(μ-O)[(H3SiO) 2SiO]2}Ta(NH)(-NH2)(NH3)], 2 q·NH3, show that the intramolecular H transfer from Ta-NH2 to TaNH is ruled out, but the H transfers from the coordinated ammonia to the amido and imido groups have accessible energy barriers. The energy barrier for the ammonia N-H activation by the Ta-amido group is energetically preferred relative to the Ta-imido group. The importance of excess NH3 for getting full isotope scrambling is rationalized by an outer sphere assistance of ammonia acting as proton transfer agent, which equalizes the energy barriers for H transfer from coordinated ammonia to the amido and imido groups. In contrast, additional coordinated ammonia does not favor significantly the H transfer. These results rationalize the experimental conditions used. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011.

  12. Raman study of molecular motions in relation to phase transitions in [Ni(NH3)6](NO3)2

    International Nuclear Information System (INIS)

    Janik, J.M.; Pick, R.M.; Le Postollec, M.

    1987-01-01

    A Raman band at 710 cm -1 has been used for the study of the NO 3 - ions reorientation and of the phase transitions in [Ni(NH 3 ) 6 ](NO 3 ) 2 . The strong temperature dependence of the width of this band in phase 1 gives evidence for the NO 3 - reorientations in this phase. The reorientations stop in phase 2. The same band was used for studying the phase 2/phase 3 transition. The large thermal hysteresis of this transition has ben confirmed. 16 refs., 4 figs. (author)

  13. Identification of forbidden vibration-rotation transitions in 15NH3

    Science.gov (United States)

    Urban, Š.; D'Cunha, Romola; Narahari Rao, K.

    1984-07-01

    Forbidden Δk - l = 3 vibration-rotation transitions have been observed in the ν4 band of 15NH3. The analysis of these transitions, together with previously published data on the allowed transitions, has made it possible to determine a set of molecular parameters, including for the first time the rotational constant C as well as the centrifugal distortion constants DK and HKKK, which are necessary for the calculation of energy levels. Some weak forbidden transitions in the ν2 band have also been observed.

  14. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  15. Fast self-diffusion of ions in CH 3 NH 3 PbI 3 : the interstiticaly mechanism versus vacancy-assisted mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2016-01-01

    The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms. We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.

  16. Characteristics of NH4+ and NO3− fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique

    Science.gov (United States)

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-01-01

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO3− and NH4+ fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO3− were much lower than those of NH4+, suggesting a preference for NH4+ in tea. With the increase in N concentration, the influx rate of NO3− increased more than that of NH4+. The NH4+ influx rates in a solution without NO3− were much higher than those in a solution with NO3−, while the NO3− influx rates in a solution without NH4+ were much lower than those in a solution with NH4+. We concluded that (1) tea roots showed a preference for NH4+, (2) presence of NO3− had a negative effect on NH4+ influx, and (3) NH4+ had a positive effect on NO3− influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future. PMID:27918495

  17. Reconstructive phase transition in (NH4)3TiF7 accompanied by the ordering of TiF6 octahedra.

    Science.gov (United States)

    Molokeev, Maxim; Misjul, S V; Flerov, I N; Laptash, N M

    2014-12-01

    An unusual phase transition P4/mnc → Pa\\bar 3 has been detected after cooling the (NH4)3TiF7 compound. Some TiF6 octahedra, which are disordered in the room-temperature tetragonal structure, become ordered in the low-temperature cubic phase due to the disappearance of the fourfold axis. Other TiF6 octahedra undergo large rotations resulting in huge displacements of the F atoms by 1.5-1.8 Å that implies a reconstructive phase transition. It was supposed that phases P4/mbm and Pm\\bar 3m could be a high-temperature phase and a parent phase, respectively, in (NH4)3TiF7. Therefore, the sequence of phase transitions can be written as Pm\\bar 3m → P4/mbm → P4/mnc → Pa\\bar 3. The interrelation between (NH4)3TiF7, (NH4)3GeF7 and (NH4)3PbF7 is found, which allows us to suppose phase transitions in relative compounds.

  18. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4.

    Science.gov (United States)

    Schrapers, Katharina T; Sponder, Gerhard; Liebe, Franziska; Liebe, Hendrik; Stumpff, Friederike

    2018-01-01

    Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.

  19. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4+

    Science.gov (United States)

    Liebe, Franziska; Liebe, Hendrik

    2018-01-01

    Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia. PMID:29494673

  20. Optical absorption enhancement in NH2CH=NH2PbI3 lead halide perovskite solar cells with nanotextures

    Science.gov (United States)

    Xie, Ziang; Sun, Shuren; Xie, Xixi; Hou, Ruixiang; Xu, Wanjin; Li, Yanping; Qin, G. G.

    2018-01-01

    This article reports, for the first time to our knowledge, that the power conversion efficiencies (PCEs) of planar NH2CH=NH2PbI3 (FAPbI3) lead halide perovskite solar cells (SCs) can be largely improved by fabricating nanotextures on the SC surface. Four kinds of nanotextures are investigated and compared with each other: column hollow (CLH) nanoarrays, cone hollow (CNH) nanoarrays, square prism hollow (SPH) nanoarrays, and pyramid hollow (PYH) nanoarrays. Compared with the PCEs of the planar SCs with the same layer depth d, it is found that when d is in the range of 125-500 nm and when the array period, as well as the filling fraction of the nanotexture, are optimized, the ultimate efficiency increased 29%-50% for the CLH and SPH textured FAPbI3 SCs relative to the planar ones, and 20%-41% for the CNH and PYH textured FAPbI3 SCs relative to the planar ones. When d < 250 nm, the optimized ultimate efficiencies of the CLH and SPH textured FAPbI3 SCs with optimized nanotextures are higher than those of the CNH and PYH ones, and vice versa. The reasons why fabricating nanotextures on SC surfaces can largely improve the PCE of the FAPbI3 SCs are discussed.

  1. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes

    2009-01-01

    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...... and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied....

  2. Behavior of sheet-like crystalline ammonium trivanadate hemihydrate (NH4V3O8×0.5H2O) as a novel ammonia sensing material

    International Nuclear Information System (INIS)

    Leonardi, S.G.; Primerano, P.; Donato, N.; Neri, G.

    2013-01-01

    This work reports the use of ammonium trivanadate hemihydrate (NH 4 V 3 O 8 ×0.5H 2 O) as a novel sensing material for ammonia resistive sensors. It was prepared by a simple and fast hydrothermal method from V 2 O 5 as a precursor and characterized by SEM, FT-IR, XRD and TG techniques. The as-synthesized material showed a sheet-like morphology and was found thermally stable up to 250–280 °C. It reacted promptly and irreversibly when exposed to ammonia at room temperature. A full reversibility was instead registered undergoing the formed ammonia adduct at a temperature higher than 200 °C. A NH 4 V 3 O 8 ×0.5H 2 O-based resistive gas sensor was fabricated and its sensing properties were evaluated. Experimental results obtained have given a preliminary demonstration of the feasibility of using NH 4 V 3 O 8 ×0.5H 2 O as a novel ammonia sensing material since it yields several advantages including easy synthesis of the sensing layer, good sensitivity and reproducibility and fast response. - Graphical abstract: Sheet-like morphology of the synthesized trivanadate hemihydrate (NH 4 V 3 O 8 ×0.5H 2 O). Inset: Its electrical response to different ammonia concentrations in air. - Highlights: • A simple hydrothermal method for the fast synthesis of trivanadate hemihydrate (NH 4 V 3 O 8 ×0.5H 2 O) is reported. • Sheet particles could be obtained. • A preliminary demonstration of the feasibility of using NH 4 V 3 O 8 ×0.5H 2 O as a novel ammonia sensing material is presented

  3. Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH3NH3PbI3 to Phase-Pure CH3NH3PbCl3 via Hydrochloric Acid Vapor Annealing Post-Treatment.

    Science.gov (United States)

    Zhou, Weiran; Zhou, Pengcheng; Lei, Xunyong; Fang, Zhimin; Zhang, Mengmeng; Liu, Qing; Chen, Tao; Zeng, Hualing; Ding, Liming; Zhu, Jun; Dai, Songyuan; Yang, Shangfeng

    2018-01-17

    Organometal halide CH 3 NH 3 PbI 3 (MAPbI 3 ) has been commonly used as the light absorber layer of perovskite solar cells (PSCs), and, especially, another halide element chlorine (Cl) has been often incorporated to assist the crystallization of perovskite film. However, in most cases, a predominant MAPbI 3 phase with trace of Cl - is obtained ultimately and the role of Cl involvement remains unclear. Herein, we develop a low-cost and facile method, named hydrochloric acid vapor annealing (HAVA) post-treatment, and realize a rapid conversion of MAPbI 3 to phase-pure MAPbCl 3 , demonstrating a new concept of phase engineering of perovskite materials toward efficiency enhancement of PSCs for the first time. The average grain size of perovskite film after HAVA post-treatment increases remarkably through an Ostwald ripening process, leading to a denser and smoother perovskite film with reduced trap states and enhanced crystallinity. More importantly, the generation of MAPbCl 3 secondary phase via phase engineering is beneficial for improving the carrier mobility with a more balanced carrier transport rate and enlarging the band gap of perovskite film along with optimized energy level alignment. As a result, under the optimized HAVA post-treatment time (2 min), we achieved a significant enhancement of the power conversion efficiency (PCE) of the MAPbI 3 -based planar heterojunction-PSC device from 14.02 to 17.40% (the highest PCE reaches 18.45%) with greatly suppressed hysteresis of the current-voltage response.

  4. Detection of the HC3NH+ and HCNH+ ions in the L1544 pre-stellar core

    Science.gov (United States)

    Quénard, D.; Vastel, C.; Ceccarelli, C.; Hily-Blant, P.; Lefloch, B.; Bachiller, R.

    2017-09-01

    The L1544 pre-stellar core was observed as part of the ASAI (Astrochemical Surveys At IRAM) Large Program. We report the first detection in a pre-stellar core of the HCNH+ and HC3NH+ ions. The high spectral resolution of the observations allows us to resolve the hyperfine structure of HCNH+. Local thermodynamic equilibrium (LTE) analysis leads to derive a column density equal to (2.0 ± 0.2) × 1013 cm-2 for HCNH+ and (1.5 ± 0.5) × 1011 cm-2 for HC3NH+. We also present non-LTE analysis of five transitions of HC3N, three transitions of H13CN and one transition of HN13C, all of them linked to the chemistry of HCNH+ and HC3NH+. We computed for HC3N, HCN and HNC a column density of (2.0 ± 0.4) × 1013 cm-2, (3.6 ± 0.9) × 1014 cm-2 and (3.0 ± 1.0) × 1014 cm-2, respectively. We used the gas-grain chemical code nautilus to predict the abundances of all these species across the pre-stellar core. Comparison of the observations with the model predictions suggests that the emission from HCNH+ and HC3NH+ originates in the external layer where non-thermal desorption of other species was previously observed. The observed abundance of both ionic species ([HCNH+] ≃ 3 × 10-10 and [HC3NH+] ≃ [1.5 - 3.0] × 10-12, with respect to H2) cannot be reproduced at the same time by the chemical modelling within the error bars of the observations only. We discuss the possible reasons for the discrepancy and suggest that the current chemical models are not fully accurate or complete. However, the modelled abundances are within a factor of 3, consistent with the observations, considering a late stage of the evolution of the pre-stellar core, compatible with previous observations.

  5. Intracellular pH in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I; Hug, M; Greger, R

    1997-01-01

    In order to study the mechanism of H+ and HCO3- transport in a HCO3- secreting epithelium, pancreatic ducts, we have measured the intracellular pH (pHi) in this tissue using the pH sensitive probe BCECF. We found that exposures of ducts to solutions containing acetate/acetic acid or NH4+/NH3...... buffers (20 mmol/l) led to pHi changes in accordance with entry of lipid-soluble forms of the buffers, followed by back-regulation of pHi by duct cells. In another type of experiment, changes in extracellular pH of solutions containing HEPES or HCO3-/CO2 buffers led to significant changes in pHi that did....... Under some conditions, these exchangers can be invoked to regulate cell pH....

  6. Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis.

    Science.gov (United States)

    Kugler, K; Ohs, B; Scholz, M; Wessling, M

    2014-04-07

    Ammonia is exclusively synthesized by the Haber-Bosch process starting from precious carbon resources such as coal or CH4. With H2O, H2 is produced and with N2, NH3 can be synthesized at high pressures and temperatures. Regrettably, the carbon is not incorporated into NH3 but emitted as CO2. Valuable carbon sources are consumed which could be used otherwise when carbon sources become scarce. We suggest an alternative process concept using an electrochemical membrane reactor (ecMR). A complete synthesis process with N2 production and downstream product separation is presented and evaluated in a multi-scale model to quantify its energy consumption. A new micro-scale ecMR model integrates mass, species, heat and energy balances with electrochemical conversions allowing further integration into a macro-scale process flow sheet. For the anodic oxidation reaction H2O was chosen as a ubiquitous H2 source. Nitrogen was obtained by air separation which combines with protons from H2O to give NH3 using a hypothetical catalyst recently suggested from DFT calculations. The energy demand of the whole electrochemical process is up to 20% lower than the Haber-Bosch process using coal as a H2 source. In the case of natural gas, the ecMR process is not competitive under today's energy and resource conditions. In future however, the electrochemical NH3 synthesis might be the technology-of-choice when coal is easily accessible over natural gas or limited carbon sources have to be used otherwise but for the synthesis of the carbon free product NH3.

  7. The coordination chemistry of the neutral tris-2-pyridyl silicon ligand [PhSi(6-Me-2-py)3].

    Science.gov (United States)

    Plajer, Alex J; Colebatch, Annie L; Enders, Markus; García-Romero, Álvaro; Bond, Andrew D; García-Rodríguez, Raúl; Wright, Dominic S

    2018-05-22

    Difficulties in the preparation of neutral ligands of the type [RSi(2-py)3] (where 2-py is an unfunctionalised 2-pyridyl ring unit) have thwarted efforts to expand the coordination chemistry of ligands of this type. However, simply switching the pyridyl substituents to 6-methyl-pyridyl groups (6-Me-2-py) in the current paper has allowed smooth, high-yielding access to the [PhSi(6-Me-2-py)3] ligand (1), and the first exploration of its coordination chemistry with transition metals. The synthesis, single-crystal X-ray structures and solution dynamics of the new complexes [{PhSi(6-Me-2-py)3}CuCH3CN][PF6], [{PhSi(6-Me-2-py)3}CuCH3CN][CuCl2], [{PhSi(6-Me-2-py)3}FeCl2], [{PhSi(6-Me-2-py)3}Mo(CO)3] and [{PhSi(6-Me-2-py)3}CoCl2] are reported. The paramagnetic Fe2+ and Co2+ complexes show strongly shifted NMR resonances for the coordinated pyridyl units due to large Fermi-contact shifts. However, magnetic anisotropy also leads to considerable pseudo-contact shifts so that both contributions have to be included in the paramagnetic NMR analysis.

  8. [Co(NH3)6]3[Cu4(OH)(CO3)8].2H2O--a new carbonato-copper(II) anion stabilized by extensive hydrogen bonding.

    Science.gov (United States)

    Abrahams, Brendan F; Haywood, Marissa G; Robson, Richard

    2004-04-21

    Addition of Co(NH3)6(3+) to aqueous solutions of Cu(II) in excess carbonate promotes the assembly of a new highly charged carbonato-copper(II) anion, [Cu4(OH)(CO3)8](9-), which contains an unusual mu4 hydroxo-bridged square Cu4 arrangement, stabilised in the crystal by no less than forty hydrogen bonds (< 3 Angstrom) to hexammine cations.

  9. Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells.

    Science.gov (United States)

    Chen, Lung-Chien; Lin, Yu-Shiang; Tang, Po-Wen; Tai, Chao-Yi; Tseng, Zong-Liang; Lin, Ja-Hon; Chen, Sheng-Hui; Kuo, Hao-Chung

    2017-11-23

    Comprehensive studies were carried out to understand the origin of the current hysteresis effects in highly efficient C 60 -CH 3 NH 3 PbI 3 (MAPbI 3 ) heterojunction solar cells, using atomic-force microscopy, transmittance spectra, photoluminescence spectra, X-ray diffraction patterns and a femtosecond time-resolved pump-probe technique. The power conversion efficiency (PCE) of C 60 -MAPbI 3 solar cells can be increased to 18.23% by eliminating the point (lattice) defects in the MAPbI 3 thin film which is fabricated by using the one-step spin-coating method with toluene washing treatment. The experimental results show that the point defects and surface defects of the MAPbI 3 thin films can be minimized by varying the dropping time of the washing solvent. The point defects (surface defects) can be reduced with an (a) increase (decrease) in the dropping time, resulting in an optimized dropping time for obtaining the defect-minimized MAPbI 3 thin film deposited on top of the C 60 thin film. Consequently, the formation of the defect-minimized MAPbI 3 thin film allows for high-efficiency MAPbI 3 solar cells.

  10. Towards validation of ammonia (NH3) measurements from the IASI satellite

    NARCIS (Netherlands)

    van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J.; Clerbaux, C.; Flechard, C.; Galy-Lacaux, C.; Xu, W.W.; Neuman, J.; Tang, Y.; Sutton, M.; Erisman, J.W.; Coheur, P.F.

    2015-01-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007,

  11. Update to Millstone 3 elevated pH tests

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, C.A.; Perock, J.D. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Hudson, M.J.B.; King, R.W.; Macklin, S. [Northeast Utilities, Hartford, CT (United States)

    1995-03-01

    In view of the potential radiological benefits of elevated coolant pH operation, Northwest Utilities (NU), in support of an EPRI-Westinghouse program, agreed to operate the Millstone 3 plant at the start of its second fuel cycle as a demonstration of the effect of elevated coolant pH on out-of-core radiation fields. Operating with an elevated pH is defined as operating with an average lithium concentration of 3.35 ppm, until reaching an end of cycle pH of 7.2 or 7.4. The plant operated during its second and third cycles with an elevated coolant pH. The end of cycle pH during the second cycle was 7.4, and 7.2 during the third cycle. (During the first cycle, operation was with a coordinated pH of 7.0). Evaluation of the dose rate trends in Millstone 3 after two cycles of elevated coolant pH operation concluded that an elevated coolant pH resulted in a 15 percent lower component dose rate compared to other plants that operated with coordinated pH 6.9. However, due to a possible increase in fuel clad corrosion, operation during cycle 4 was restricted to pH 6.9 coordinated chemistry, with the exception of the last two months during which the pH increased to 7.35. At the end of cycle 4 (EOC4), there was a greater increase in component and crud trap dose rates than expected. This paper reviews the radiological trends in the plant and discusses the potential causes for the increase in the dose rates at EOC4.

  12. Effect of NaCl-Stress on Metabolism of NO3-, NH4+ and NO2- at Several Rice Varieties

    Directory of Open Access Journals (Sweden)

    M Zulman Harja Utama

    2010-09-01

    Full Text Available This study was conducted to evaluate the effect of NaCl-stress on metabolism of NO3-, NH4+ and NO2- at several rice varieties. The results showed that an addition of NaCl had lesser effect on NaCl-tolerant varieties as compared to NaCl-sensitive in term of reduction in NO3-, NH4+, and NO2- uptake. Rice adaptation ability to NaCl stress occurred through the mechanism of NO3-, NH4+, and N02- metabolism physiology. It was indicated by the difference concentration of NO3-, NH4+ and N02- between the tolerant (Cisadane, moderate (Batang Lembang, Rendah Kuning, and Batang Piaman and sensitive (IR 66 varieties. Concentration of NH4+ and N02- of tolerant rice (Cisadane at NaCl treatment were about 1.16 and 2.6 times higher than that at control, respectively, while concentration of NO3- was only 0.03 times lower than control. In contrast, concentration of NO3-, NH4+, and N02- of sensitive rice (IR 66, were about 0.09, 0.27, and 0.41 times lower than that in control respecting at NaCl treatment, respectively.

  13. Characterization and application of a new pH sensor based on magnetron sputtered porous WO3 thin films deposited at oblique angles

    International Nuclear Information System (INIS)

    Salazar, Pedro; Garcia-Garcia, Francisco J.; Yubero, Francisco; Gil-Rostra, Jorge; González-Elipe, Agustín R.

    2016-01-01

    Highlights: • A solid-state pH sensor based on WO 3 amorphous thin film electrode is reported. • Cyclic voltammetry and XRD confirmed the amorphous nature of tungsten. • Potentiometric response of the WO 3 electrode revealed a quasi-Nernstian behavior. • The interference of the most common ions (Li + , Na + , K + and NH 4 + ) was negligible. • A full solid state pH sensor is developed. - Abstract: In this communication we report about an outstanding solid-state pH sensor based on amorphous nanocolumnar porous thin film electrodes. Transparent WO 3 thin films were deposited by reactive magnetron sputtering in an oblique angle configuration to enhance their porosity onto indium tin oxide (ITO) and screen printed electrodes (SPE). The potentiometric pH response of the nanoporous WO 3 -modified ITO electrode revealed a quasi-Nernstian behaviour, i.e. a linear working range from pH 1 to 12 with a slope of about −57.7 mV/pH. pH detection with this electrode was quite reproducible, displayed excellent anti-interference properties and a high stable response that remained unaltered over at least 3 months. Finally, a pH sensor was developed using nanoporous WO 3 -modified screen printed electrode (SPE) using a polypyrrole-modified Ag/AgCl electrode as internal reference electrode. This full solid state pH sensor presented a Nernstian behaviour with a slope of about −59 mV/pH and offered important analytical and operation advantages for decentralized pH measurements in different applications.

  14. Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process.

    Science.gov (United States)

    Yokoyama, Takamichi; Cao, Duyen H; Stoumpos, Constantinos C; Song, Tze-Bin; Sato, Yoshiharu; Aramaki, Shinji; Kanatzidis, Mercouri G

    2016-03-03

    The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvin probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.

  15. Struvite recovery from swine waste biogas digester effluent through a stainless steel device under constant pH conditions.

    Science.gov (United States)

    Perera, P W Anton; Wu, Wei-Xiang; Chen, Ying-Xu; Han, Zhi-Ying

    2009-06-01

    To investigate the struvite precipitation under constant and non-constant pH conditions and to test a stainless steel device under different operating regimes to maximize the recovery of struvite. The molar ratio of NH4+: Mg2+: PO4(3-) was adjusted to 1: 1.2: 1.2 and pH was elevated to 9.0. The absorbance measurement was used to trace the process of struvite crystallization. Wastewater and precipitate analysis was done by standard analytical methods. The pH constant experiment reported a significantly higher struvite precipitation (24.6 +/- 0.86 g) than the non-constant pH experiment (19.8 +/- 1.86 g). The SAR ranged from 5.6 to 8.2 g m(-2) h(-1) to 3.6-4.8 g m(-2) h(-1) in pH constant and non-constant experiments, respectively. The highest struvite deposit on the device was found in regime 3 followed by in regimes 2 and 4. The highest PO4(3-) (97.2%) and NH4+ (71%) removal was reported in the R1 regime. None of the influent Cu2+ or Zn2+ was precipitated on the device. A higher struvite yield is evident in pH constant experiments. Moreover, the stainless steel device facilitates the isolation of heavy metal free pure (around 96%) struvite from swine waste biogas digester effluent contaminated with cu2+ and Zn2+ and the highest yield is attainable with the device operating at 50 rpm with agitation by a magnetic stirrer.

  16. DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: A search for highly sensitive molecular sensor

    Science.gov (United States)

    Mehdi Aghaei, Sadegh; Monshi, M. M.; Torres, I.; Zeidi, S. M. J.; Calizo, I.

    2018-01-01

    The adsorption behaviors of toxic gas molecules (NO, CO, NO2, and NH3) on the graphene-like boron carbide (BC3) are investigated using first-principle density functional theory. The graphene-like BC3 monolayer is a semiconductor with a band gap of 0.733 eV. It is discovered that all the above gas molecules are chemisorbed on the BC3 sheet while they retain their molecular forms. It is also revealed that the NO2 gas molecule could be dissociated into NO and O species through the adsorption process. The amounts of charge transfer upon adsorption of CO and NH3 gas molecules on the BC3 are found to be small. The band gap changes in BC3 as a result of interactions with CO and NH3 are only 4.63% and 16.7%, indicating that the BC3-based sensor has a low and moderate sensitivity to CO and NH3, respectively. Contrariwise, upon adsorption of NO or NO2 on the BC3, significant charges are transferred from the molecules to the BC3 sheet, causing a semiconductor-metal and semiconductor-p type semiconductor transition. Our study suggests that the BC3-based sensor has a high potential for NO and NO2 detection due to the significant conductance changes, moderate adsorption energy, and short recovery time. More excitingly, the BC3 is a likely catalyst for dissociation of the NO2 gas molecule.

  17. Adsorption behavior of NH3 and NO2 molecules on stanene and stanane nanosheets - A density functional theory study

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-03-01

    Using density functional theory method, we investigate the adsorption properties of NH3 and NO2 molecules on stanene and stanane nanosheets. The adsorption of molecules is explored based on the charge transfer, energetics, energy band gap and average energy gap variation. Moreover, the optimal adsorption sites of NH3 and NO2 molecules are identified on stanene and stanane nanosheets. Besides, the state-of-the-art provides the key features for the development of chemi-resistive nanosensor based on stanene and stanane nanosheets upon adsorption of NH3 and NO2 molecules. Furthermore, the study shows that adsorption of NO2 molecules is more prominent rather than NH3 molecules.

  18. Photoacoustic detection of NH3 in power plant emissions

    International Nuclear Information System (INIS)

    Rassmussen, O.

    1991-01-01

    The paper describes a photoacoustic spectrometer initially designed for detection of NH 3 in power plant emission with a detection limit below 1 ppm. The radiation source is a high tunable CO 2 waveguide laser emitting its own frequency standard in one of 90 laserlines. The detection is performed at reduced pressure where the vibration-rotation transitions give an unambiguous fingerprint for each trace gas. Immunity against interference is ensured by recording this characteristic spectral fingerprint over the tuning range of the laser, and problems associated with the high concentration of CO 2 or other interfering molecules are further eliminated by utilizing the effect of kinetic cooling in the photoacoustic phase. The use of a CO 2 laser as radiation source combined with the highly sensitive photoacoustic detection provides a great possibility of measuring a wide range of air pollutants in the range down to ppt concentrations. Experimental measurements have been carried out on gases like sulfur dioxide, ethylene, sulfur hexafluoride, vinylchloride, ozone, etc., and many others have been theoretically examined to give a high response in the CO 2 laser frequency range. A computerized NH 3 spectrometer has been constructed and tested under realistic conditions at a Danish power plant operating a test facility for selective non-catalytic reduction of NO x . Results of this test will be presented

  19. Investigation of the molecular motions in Cd(NH/sub 3/)/sub 6/Cl/sub 2/ by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pislewski, N [Polska Akademia Nauk, Poznan. Inst. Fizyki Molekularnej; Ferris, L T.H. [University Coll., London (UK). Dept. of Chemistry

    1981-07-01

    NMR results are reported for intramolecular motion in Cd(NH/sub 3/)/sub 6/Cl/sub 2/. Below the 180 K phase transition, the motion of the NH/sub 3/ groups is well described by the Hilt-Hubbard theory with an activation energy of 9.63 kJ/mol. The inter-proton distance in NH/sub 3/ determined from relaxational measurements is 0.161 nm. Several K below and above the transition point, two phases with different spin-lattice relaxation times coexist.

  20. Reduced loss of NH 3 by coating urea with biodegradable polymers ...

    African Journals Online (AJOL)

    In agricultural lands, the loss of NH3 from surface-applied urea and micronutrient deficiencies are the two most common problems, which can be solved by using coated urea with micronutrients and biodegradable natural materials. These coatings can improve the nutrient status in the soil and simultaneously reduce ...

  1. Comparisons of 13NH3, 18FDG PET and MRS in the presurgical evaluation of intractable epilepsy

    International Nuclear Information System (INIS)

    Cai Li; Gao Shuo; Li Dacheng; Li Zugui

    2004-01-01

    Purpose: Surgery offers a high chance of seizure-free outcome in patients with intractable epilepsy. Other than EEG, several functional and morphologic imaging Methods are used to define the spatial seizure origin. Blood flow perfusion and metabolic abnormalities in those patients are well described respectively. Proton MR spectroscopy (MRS) is still in the early stages in the evaluation of epilepsy. Comparisons with 13NH3 perfusion, 18FDG metabolic PET imaging and MRS in the same patients have rarely been documented. The present study was undertaken to compare the merits of 13NH3 PET, 18FDG PET, magnetic resonance imaging (MRI) and MRS for the lateralization of seizure foci. Methods: Preoperative long-term-EEG, Video-EEG, 13NH3 perfusion PET, 18FDG metabolic PET, MRI, MRS and neuropsychological assessment were performed in 15 patients with intractable epilepsy within 2 weeks(mean age=24.8 years, range 4 to 44 years; mean epilepsy duration=11 years, range 2 to 36 years), who received electrocorticography (ECoG). Antiepileptic drug (AED) was stopped taking at least 2 days before PET scanning. 13NH3 and FDG PET was performed in one day and analyzed with a region of interest template. An absolute asymmetry index, |AI|, greater than 0.15 was considered abnormal. 13 subjects were underwent MRS obtained from the hippocampus bilaterally, who had a presumptive temporal seizure focus based on seizure semiology, video-EEG and MRI. Metabolite ratio of NAA/Cho+Cr was calculated from the relative peak height measurements. An NAA/Cho+Cr ratio of 0.72 or less was regarded as abnormal. All the examination Results were compared with EcoG to evaluate their values of seizure foci lateraliaztion. Results: 1. The results were divided into ictal (n=4) and interictal (n= 11) groups. In the ictal group, the sensitivity of 13NH3 PET and 18FDG PET were both 100%(4/4), and 13NH3 PET showed bilateral hippocampus hyperfusion foci in one case. In the interictal group, 13NH3 PET correctly

  2. Controllable synthesis of Co3O4/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH3 gas sensing at room temperature

    International Nuclear Information System (INIS)

    Lin, Yufei; Kan, Kan; Song, Wanzhen; Zhang, Guo; Dang, Lifang; Xie, Yu; Shen, Peikang; Li, Li; Shi, Keying

    2015-01-01

    Graphical abstract: Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co 3 O 4 and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co 3 O 4 nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co 3 O 4 nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH 3 ) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors

  3. In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature

    Science.gov (United States)

    Hada, Masaki; Hasegawa, Yoichi; Nagaoka, Ryota; Miyake, Tomoya; Abdullaev, Ulugbek; Ota, Hiromi; Nishikawa, Takeshi; Yamashita, Yoshifumi; Hayashi, Yasuhiko

    2018-02-01

    We have developed a vacuum-compatible chamber for in-situ X-ray diffraction (XRD) studies and have used it to characterize the changing crystal structure of an inorganic-organic hybrid perovskite material, CH3NH3PbI3 (MAPbI3), during interactions with water vapor at room temperature. In the XRD spectra, we have observed the degradation of MAPbI3 and the creation of MAPbI3 hydrates, which follow simple rate equations. The time constant for the degradation of MAPbI3 during accelerated aging suggests that multiple collisions of water molecules with the MAPbI3 crystal trigger the degradation of the crystal.

  4. Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China: a 15 N tracer study.

    Science.gov (United States)

    Liu, Jun; Peng, Bo; Xia, Zongwei; Sun, Jianfei; Gao, Decai; Dai, Weiwei; Jiang, Ping; Bai, Edith

    2017-06-01

    Increasing atmospheric reactive nitrogen (N) deposition due to human activities could change N cycling in terrestrial ecosystems. However, the differences between the fates of deposited NH4+ and NO3- are still not fully understood. Here, we investigated the fates of deposited NH4+ and NO3-, respectively, via the application of 15 NH 4 NO 3 and NH 4 15 NO 3 in a temperate forest ecosystem. Results showed that at 410 days after tracer application, most 15NH4+ was immobilized in litter layer (50 ± 2%), while a considerable amount of 15NO3- penetrated into 0-5 cm mineral soil (42 ± 2%), indicating that litter layer and 0-5 cm mineral soil were the major N sinks of NH4+ and NO3-, respectively. Broad-leaved trees assimilated more 15 N under NH 4 15 NO 3 treatment compared to under 15 NH 4 NO 3 treatment, indicating their preference for NO3--N. At 410 days after tracer application, 16 ± 4% added 15 N was found in aboveground biomass under 15NO3- treatment, which was twice more than that under 15NH4+ treatment (6 ± 1%). At the same time, approximately 80% added 15 N was recovered in soil and plants under both treatments, which suggested that this forest had high potential for retention of deposited N. These results provided evidence that there were great differences between the fates of deposited NH4+ and NO3-, which could help us better understand the mechanisms and capability of forest ecosystems as a sink of reactive nitrogen. © 2016 John Wiley & Sons Ltd.

  5. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    Science.gov (United States)

    Liu, Tengyu; Wang, Xinming; Wang, Boguang; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli

    2014-05-01

    Ammonia (NH3) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L-1 and a mileage-based emission factor of 229.5 ± 14.1 mg km-1. These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L-1 or 0.56 ± 0.05 g km-1) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH3 emission factors from this study, on-road vehicles accounted for 8.1% of NH3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States.

  6. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    International Nuclear Information System (INIS)

    Liu, Tengyu; Wang, Xinming; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli; Wang, Boguang

    2014-01-01

    Ammonia (NH 3 ) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH 3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH 3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH 3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L −1 and a mileage-based emission factor of 229.5 ± 14.1 mg km −1 . These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L −1 or 0.56 ± 0.05 g km −1 ) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH 3 emission factors from this study, on-road vehicles accounted for 8.1% of NH 3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States. (letter)

  7. Copper-Substituted Lead Perovskite Materials Constructed with Different Halides for Working (CH3NH3)2CuX4-Based Perovskite Solar Cells from Experimental and Theoretical View.

    Science.gov (United States)

    Elseman, Ahmed Mourtada; Shalan, Ahmed Esmail; Sajid, Sajid; Rashad, Mohamed Mohamed; Hassan, Ali Mostafa; Li, Meicheng

    2018-04-11

    Toxicity and chemical instability issues of halide perovskites based on organic-inorganic lead-containing materials still remain as the main drawbacks for perovskite solar cells (PSCs). Herein, we discuss the preparation of copper (Cu)-based hybrid materials, where we replace lead (Pb) with nontoxic Cu metal for lead-free PSCs, and investigate their potential toward solar cell applications based on experimental and theoretical studies. The formation of (CH 3 NH 3 ) 2 CuX 4 [(CH 3 NH 3 ) 2 CuCl 4 , (CH 3 NH 3 ) 2 CuCl 2 I 2 , and (CH 3 NH 3 ) 2 CuCl 2 Br 2 ] was discussed in details. Furthermore, it was found that chlorine (Cl - ) in the structure is critical for the stabilization of the formed compounds. Cu-based perovskite-like materials showed attractive absorbance features extended to the near-infrared range, with appropriate band gaps. Green photoluminescence of these materials was obtained because of Cu + ions. The power conversion efficiency was measured experimentally and estimated theoretically for different architectures of solar cell devices.

  8. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    Science.gov (United States)

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  9. Molecular Self-Assembly Fabrication and Carrier Dynamics of Stable and Efficient CH3 NH3 Pb(1-x) Snx I3 Perovskite Solar Cells.

    Science.gov (United States)

    Fan, Jiandong; Liu, Chong; Li, Hongliang; Zhang, Cuiling; Li, Wenzhe; Mai, Yaohua

    2017-10-09

    The Sn-based perovskite solar cells (PSCs) provide the possibility of swapping the Pb element toward developing toxic-free PSCs. Here, we innovatively employed a molecular self-assembly approach to obtain a series CH 3 NH 3 Pb (1-x) Sn x I 3 (0≤x≤1) perovskite thin films with full coverage. The optimized planar CH 3 NH 3 Pb 0.75 Sn 0.25 I 3 PSC with inverted structure was consequently realized with a maximum power conversion efficiency (PCE) over 14 %, which displayed a stabilized power output (SPO) over 12 % within 200 s at 0.6 V forward bias. Afterward, we investigated the factors that limited the efficiency improvement of hybrid Sn-Pb PSCs, and analyzed the possible reason of the hysteresis effect occurred even in the inverted structure cell. Particularly, the oxidation of hybrid Sn-Pb perovskite thin film was demonstrated to be the main reason that limited its further efficiency improvement. The imbalance of charge transport was intensified, which was associated with the increased hole defect-state density and decreased electron defect-state density after Sn was introduced. This study helps tackle the intractable issue regarding the toxic Pb in perovskite devices and is a step forward toward realizing lead-free PSCs with high stability and efficiency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A straightforward and efficient synthesis of 3-(pyrimidinyl)propanoates from levulinic acid

    OpenAIRE

    Flores,Alex F. C.; Malavolta,Juliana L.; Souto,Alynne A.; Goularte,Rayane B.; Flores,Darlene C.; Piovesan,Luciana A.

    2013-01-01

    The cyclocondensation of methyl 7,7,7-trifluoro-4-methoxy-6-oxo-4-heptenoate and methyl 7,7,7-trichloro-4-methoxy-6-oxo-4-heptenoate, derived from levulinic acid with amidines [NH2CONH2, NH2CR(NH) (R = H, Me, Ph, NH2, SMe and 1H-pyrazol-1-yl), 5-amino-3-methyl1H-pyrazol and 2-aminothiazole] into pyrimidine and pyrimidine-like derivatives as a new type of glutamate-like 3-(trihalomethylatedpyrimidinyl)propanoate is reported. Preparation of 3-(trihalomethylatedpyrimidinyl) propanohydrazides is ...

  11. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna; Currier, Neal; Peden, Charles H. F.; Yezerets, Aleksey

    2017-04-01

    In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposed an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements

  12. Electronic transport in organometallic perovskite CH{sub 3}NH{sub 3}PbI{sub 3}: The role of organic cation orientations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G. R., E-mail: gberdiyorov@qf.org.qa; El-Mellouhi, F.; Madjet, M. E.; Rashkeev, S. N. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar); Alharbi, F. H. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar)

    2016-02-01

    Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.

  13. Composition-dependent emission linewidth broadening in lead bromide perovskite (APbBr3, A = Cs and CH3NH3) nanoparticles.

    Science.gov (United States)

    Ham, Sujin; Chung, Heejae; Kim, Tae-Woo; Kim, Jiwon; Kim, Dongho

    2018-02-01

    Lead halide perovskite nanoparticles (NPs) are attractive as they exhibit excellent color purity and have a tunable band gap, and can thus be applied in highly efficient photovoltaic and light-emitting diodes. Fundamental studies of emission linewidth broadening due to spectral shifts in perovskite NPs may suggest a way to improve their color purity. However, the carrier-induced Stark shift that causes spectral diffusion still requires investigation. In this study, we explore composition-related emission linewidth broadening by comparing CsPbBr3 and CH 3 NH 3 PbBr 3 (MAPbBr3) perovskite NPs. We find that the MAPbBr3 NPs are more sensitive to fluctuations in the local electric fields than the CsPbBr3 NPs due to an intrinsic difference in the dipole moment between the two A cations (Cs and MA), which shows a carrier-induced Stark shift. The results indicate that the compositions of perovskite NPs are closely associated with emission linewidth broadening and they also provide insights into the development of NP-based devices with high color purity.

  14. B40 fullerene as a highly sensitive molecular device for NH3 detection at low bias: a first-principles study

    International Nuclear Information System (INIS)

    Lin, Bin; Dong, Huilong; Du, Chunmiao; Hou, Tingjun; Lin, Haiping; Li, Youyong

    2016-01-01

    The adsorption of small molecules (NH 3 , N 2 , H 2 and CH 4 ) on all-boron fullerene B 40 is investigated by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) for its potential application in the field of single-molecular gas sensors. The high adsorption energies (−1.09 to −0.75 eV) of NH 3 on different adsorption sites of the B 40 surface indicate that NH 3 strongly chemisorbs to B 40 . The charge transfer induced by the NH 3 adsorption results in a modification of the density of states (DOS) of B 40 near the Fermi level, and therefore changes its electronic transport properties. For all possible adsorption sites, the adsorption of NH 3 exclusively leads to a decrease of the conductance of B 40 . Taking into consideration that the non-polar gas molecules (e.g. N 2 , H 2 and CH 4 ) are only physisorbed and show negligible effect on the conductance properties of B 40 , we would expect that B 40 can be used as a single-molecular gas sensor to distinguish NH 3 from non-polar gas molecules at low bias. (paper)

  15. Improved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6

    Directory of Open Access Journals (Sweden)

    Shujun Qiu

    2017-01-01

    Full Text Available Doping with additives in a Li-Mg-N-H system has been regarded as one of the most effective methods of improving hydrogen storage properties. In this paper, we prepared Li3AlH6 and evaluated its effect on the dehydrogenation properties of 2LiNH2-MgH2. Our studies show that doping with Li3AlH6 could effectively lower the dehydrogenation temperatures and increase the hydrogen content of 2LiNH2-MgH2. For example, 2LiNH2-MgH2-0.1Li3AlH6 can desorb 6.43 wt % of hydrogen upon heating to 300 °C, with the onset dehydrogenation temperature at 78 °C. Isothermal dehydrogenation testing indicated that 2LiNH2-MgH2-0.1Li3AlH6 had superior dehydrogenation kinetics at low temperature. Moreover, the release of byproduct NH3 was successfully suppressed. Measurement of the thermal diffusivity suggests that the enhanced dehydrogenation properties may be ascribed to the fact that doping with Li3AlH6 could improve the heat transfer for solid–solid reaction.

  16. NH{sub 3} decomposition and simultaneous H{sub 2} separation with a commercial Pd-Cu-Ag/V membrane

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakelleropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Centre for Research and Technology, Hellas, Thermis, Thessaloniki (Greece). Chemical Process Research Inst.; Kaldis, S. [Centre for Research and Technology, Hellas, Thermis, Thessaloniki (Greece). Chemical Process Research Inst.; Topis, S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab; Koutsonikolas, D. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab; Grammelis, P. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications

    2006-07-01

    The potential for integrated gasification combined cycle (IGCC) technology to emerge as an efficient and environmentally clean technology for power generation from coal gas was discussed. Ammonia (NH{sub 3}) is formed during gasification of coal. The concentration in coal gas depends on temperature, pressure, residence time and coal rank. In the gas turbine as much as 50 per cent of the NH{sub 3} in the fuel gas can be converted to NOx when the gas is combusted to produce power. A catalyst is required to bring NH{sub 3} levels down to acceptable levels for a gas turbine. This study examined the simultaneous ammonia (NH{sub 3}) decomposition and hydrogen (H{sub 2}) separation via a commercial Pd-Cu-Ag/V catalytic membrane reactor with 100 per cent H{sub 2} selectivity. A 16 per cent Ni/Al{sub 2}O{sub 3} catalyst was prepared and 88 per cent NH{sub 3} conversion was achieved with 20 per cent H{sub 2} in the feed stream. Increase of temperature and prolongation of residence time resulted in higher conversions. However, pressure increase lowered the decomposition due to the high H{sub 2} partial pressure. In order to develop kinetic equations, experiments at differential conversions were also performed. H{sub 2} diffusion was found to be the rate limiting step of H{sub 2} transport through the membrane. As such, H{sub 2} permeance increased exponentially with temperature. Mathematical model were then developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. It was concluded that the conversion of NH{sub 3} can be increased significantly using the Pd-Cu-Ag/V membrane. 14 refs., 3 tabs., 7 figs.

  17. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices

    International Nuclear Information System (INIS)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-01-01

    Irradiation at 239 ± 20 nm of a p-H 2 matrix containing methoxysulfinyl chloride, CH 3 OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν 1 , CH 2 antisymmetric stretching), 2999.5 (ν 2 , CH 3 antisymmetric stretching), 2950.4 (ν 3 , CH 3 symmetric stretching), 1465.2 (ν 4 , CH 2 scissoring), 1452.0 (ν 5 , CH 3 deformation), 1417.8 (ν 6 , CH 3 umbrella), 1165.2 (ν 7 , CH 3 wagging), 1152.1 (ν 8 , S=O stretching mixed with CH 3 rocking), 1147.8 (ν 9 , S=O stretching mixed with CH 3 wagging), 989.7 (ν 10 , C-O stretching), and 714.5 cm -1 (ν 11 , S-O stretching) modes of syn-CH 3 OSO. When CD 3 OS(O)Cl in a p-H 2 matrix was used, lines at 2275.9 (ν 1 ), 2251.9 (ν 2 ), 2083.33 ), 1070.3 (ν 4 ), 1056.0 (ν 5 ), 1085.5 (ν 6 ), 1159.7 (ν 7 ), 920.1 (ν 8 ), 889.0 (ν 9 ), 976.9 (ν 10 ), and 688.9 (ν 11 ) cm -1 appeared and are assigned to syn-CD 3 OSO; the mode numbers correspond to those used for syn-CH 3 OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH 3 OSO near 2991, 2956, 1152, and 994 cm -1 to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD 3 OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H 2 such that the Cl atom, produced via UV photodissociation of CH 3 OS(O)Cl in situ, might escape from the original cage to yield isolated CH 3 OSO radicals.

  18. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices.

    Science.gov (United States)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-03-28

    Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.

  19. Nd(NH2SO3)(SO4) . 1.5 H2O: a non-centrosymmetric amidosulfate-sulfate of neodymium

    International Nuclear Information System (INIS)

    Wickleder, M.S.

    2005-01-01

    The thermal decomposition of Nd(NH 2 SO 3 ) 3 . 2 H 2 O in a closed tube leads to violet single crystals of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O. The compound crystallizes with the space group P1 (Z = 2, a = 689.2, b = 691.4, c = 962.0 pm, α = 109.64, β = 97.00, γ = 109.62 ). The triclinic unit cell can be transformed into the respective bodycentered setting I1 (Z = 2, a = 977.9, b = 795.6, c = 1113.0 pm, α = 90.69, β = 115.06, γ = 88.98 ) leading to a nearly monoclinic unit cell for the compound. In the crystal structure of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O two Nd 3+ ions are present. Nd(1) 3+ is coordinated by four NH 2 SO 3 - and two SO 4 2- ions, and one H 2 O molecule. Owing to the chelating attack of the sulfate groups, the CN is nine. Nd(2) 3+ is surrounded by four monodentate SO 4 2- and two NH 2 SO 3 - groups. Two H 2 O ligands fill up the coordination sphere and lead to a CN of eight. The linkage of the polyhedra leads to a three-dimensional network. (orig.)

  20. Interfacial Interactions in Monolayer and Few-Layer SnS/CH3 NH3 PbI3 Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties.

    Science.gov (United States)

    Li, Jian-Cai; Wei, Zeng-Xi; Huang, Wei-Qing; Ma, Li-Li; Hu, Wangyu; Peng, Ping; Huang, Gui-Fang

    2018-02-05

    A high light-absorption coefficient and long-range hot-carrier transport of hybrid organic-inorganic perovskites give huge potential to their composites in solar energy conversion and environmental protection. Understanding interfacial interactions and their effects are paramount for designing perovskite-based heterostructures with desirable properties. Herein, we systematically investigated the interfacial interactions in monolayer and few-layer SnS/CH 3 NH 3 PbI 3 heterostructures and their effects on the electronic and optical properties of these structures by density functional theory. It was found that the interfacial interactions in SnS/CH 3 NH 3 PbI 3 heterostructures were van der Waals (vdW) interactions, and they were found to be insensitive to the layer number of 2D SnS sheets. Interestingly, although their band gap decreased upon increasing the layer number of SnS, the near-gap electronic states and optical absorption spectra of these heterostructures were found to be strikingly similar. This feature was determined to be critical for the design of 2D layered SnS-based heterostructures. Strong absorption in the ultraviolet and visible-light regions, type II staggered band alignment at the interface, and few-layer SnS as an active co-catalyst make 2D SnS/CH 3 NH 3 PbI 3 heterostructures promising candidates for photocatalysis, photodetectors, and solar energy harvesting and conversion. These results provide first insight into the nature of interfacial interactions and are useful for designing hybrid organic-inorganic perovskite-based devices with novel properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  2. Fourier transform infrared study of the phase transitions in (NH4)3VO2FO4

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.

    1994-01-01

    Ammonium oxofluorovanadate compounds are known to show some potential as ferroelectric materials. The whole series of ammonium and sodium oxofluorovanadate compounds including Na3VO2F4 have already been prepared and investigated by means of various techniques including x-ray diffraction, EPR, and vibrational spectroscopy. It was established that the pure ammonium compound shows the two above mentioned transitions from phase A (below 200 K) to phase B (between 200 and 400 K) and phase C (above 400 K) while Na(NH4)2VO2F4 has only one transition from phase A to phase B around 400 K4. In the present study various aspects regarding the nature of the structures of (NH4)3VO2F3 and Na(NH4)2VO2F4 and its influence on the phase transitions have been investigated.

  3. Dechlorination of PCBs, CAHs, herbicides and pesticides neat and in soils at 25 degrees C using Na/NH3.

    Science.gov (United States)

    Pittman, Charles U; He, Jinbao

    2002-05-03

    Na/NH3 reductions have been used to dehalogenate polychlorinated biphenyls (PCBs), chlorinated aliphatic hydrocarbons (CAHs) and pesticides at diffusion controlled rates at room temperature in model compound studies in both dry NH3 and when water was added. The rate ratio of dechlorination (aliphatic and aromatic compounds) versus reaction of the solvated electron with water is very large, allowing wet soils or sludges to be remediated without an unreasonable consumption of sodium. Several soils, purposely contaminated with 1,1,1-trichloroethane, 1-chlorooctane and tetrachloroethylene, were remediated by slurring the soils in NH3 followed by addition of sodium. The consumption of sodium per mole of chlorine removed was examined as a function of both the hazardous substrate's concentration in the soil and the amount of water present. The Na consumption per Cl removed increases as the amount of water increases and as the substrate concentration in soil decreases. However, remediation was still readily accomplished from 5000 to 3000ppm to sub ppm levels of RCl in the presence of substantial amounts of water. PCB- and dioxin-contaminated oils were remediated with Na/NH3 as were PCB-contaminated soils and sludges from contaminated sites. Ca/NH3 treatments also successfully remediated PCB-contaminated clay, sandy and organic soils but laboratory studies demonstrated that Ca was less efficient than Na when substantial amounts of water were present. The advantages of solvated electron reductions using Na/NH3 include: (1) very rapid dehalogenation rates at ambient temperature, (2) soils (even clay soils) break down into particles and slurry nicely in NH3, (3) liquid ammonia handling technology is well known and (4) removal from soils, recovery and recycle of ammonia is easy due to its low boiling point. Finally, dechlorination is extremely fast even for the 'corner' chlorines in the substrate Mirex (structure in Eq. (5)).

  4. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  5. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  6. Structure, phonon properties, and order-disorder transition in the metal formate framework of [NH4][Mg(HCOO)3].

    Science.gov (United States)

    Mączka, Mirosław; Pietraszko, Adam; Macalik, Bogusław; Hermanowicz, Krzysztof

    2014-01-21

    We report the synthesis, crystal structure, thermal, dielectric, IR, and Raman studies of [NH4][Mg(HCOO)3] formate. Single-crystal X-ray diffraction shows that it crystallizes in the hexagonal space group P6322, with orientationally disordered NH4(+) ions located in the cages of the network. Upon cooling, [NH4][Mg(HCOO)3] undergoes a phase transition at around 255 K to the ferroelectric P63 structure. Raman and IR spectra show a strong increase in intensity of the N-H stretching bands as well as narrowing of the bands related to the NH4(+) ions upon cooling. These changes indicate that the phase transition is due to orientational ordering of the NH4(+) ions. Analysis of the Raman data show, however, that the rotational and translational motions of NH4(+) do not freeze completely at the phase transition but exhibit further slowing down below 255 K, and the motional freezing becomes nearly complete below 140 K.

  7. CH 3 NH 3 PbI 3 /GeSe bilayer heterojunction solar cell with high performance

    Science.gov (United States)

    Hou, Guo-Jiao; Wang, Dong-Lin; Ali, Roshan; Zhou, Yu-Rong; Zhu, Zhen-Gang; Su, Gang

    2018-01-01

    Perovskite (CH3NH3PbI3) solar cells have made significant advances recently. In this paper, we propose a bilayer heterojunction solar cell comprised of a perovskite layer combining with a IV-VI group semiconductor layer, which can give a conversion efficiency even higher than the conventional perovskite solar cell. Such a scheme uses a property that the semiconductor layer with a direct band gap can be better in absorption of long wavelength light and is complementary to the perovskite layer. We studied the semiconducting layers such as GeSe, SnSe, GeS, and SnS, respectively, and found that GeSe is the best, where the optical absorption efficiency in the perovskite/GeSe solar cell is dramatically increased. It turns out that the short circuit current density is enhanced 100% and the power conversion efficiency is promoted 42.7% (to a high value of 23.77%) larger than that in a solar cell with only single perovskite layer. The power conversion efficiency can be further promoted so long as the fill factor and open-circuit voltage are improved. This strategy opens a new way on developing the solar cells with high performance and practical applications.

  8. Experimental Microkinetic Approach of De-NO x by NH 3 on V 2 O 5 /WO 3 /TiO 2 Catalysts. 4. Individual Heats of Adsorption of Adsorbed H 2 O Species on Sulfate-Free and Sulfated TiO 2 Supports

    KAUST Repository

    Giraud, Franç ois; Couble, Julien; Geantet, Christophe; Guilhaume, Nolven; Puzenat, Eric; Gros, Sé bastien; Porcheron, Lynda; Kanniche, Mohamed; Bianchi, Daniel

    2015-01-01

    © 2015 American Chemical Society. The present study is a part of an experimental microkinetic approach of the removal of NOx from coal-fired power plants by reduction with NH3 on V2O5/WO3/TiO2 catalysts (NH3-selective catalytic reduction, NH3-SCR). It is dedicated to the characterization of the heats of adsorption of molecularly adsorbed H2Oads species formed on sulfate-free and sulfated TiO2 supports. Water, which is always present during the NH3-SCR, may be in competition and/or react (formation of NH4+) with the adsorbed NH3 species controlling the coverage of the adsorbed intermediate species of the reaction. Mainly, an original experimental procedure named adsorption equilibrium infrared spectroscopy (AEIR) previously used for the adsorption of NH3 species on the same solids is adapted for the adsorption of H2O. At Ta = 300 K and for PH2 O ≤ 1 kPa, three main H2Oads species are formed (associated with a minor amount of dissociated H2O species) on the two TiO2 solids. The species are identified by the positions of their IR bands in the 3750-3000 cm-1 range. Considering the decreasing order of stability, they are (a) coordinated to strong (L2) and weak (L1) Lewis sites and denoted H2O ads-L2 and H2Oads-L1, respectively, and (b) hydrogen bonded to the H2Oads-L species and on O2-/OH sites of the solids (denoted H2Owads). The three species have a common well-defined δH2O IR band at a position in the range 1640-1610 cm-1 according to the total coverage of the surface. According to the AEIR method, the evolution of the intensity of this IR band during the increase in the adsorption temperature Ta in isobaric condition provides the evolution of the average coverage of the three species and then to their individual heats of adsorption as a function of their coverage. It is shown that there are no significant differences on the two TiO2 solids. In particular, the heat of adsorption of the H2Oads-L2 species varies from

  9. Experimental Microkinetic Approach of De-NO x by NH 3 on V 2 O 5 /WO 3 /TiO 2 Catalysts. 4. Individual Heats of Adsorption of Adsorbed H 2 O Species on Sulfate-Free and Sulfated TiO 2 Supports

    KAUST Repository

    Giraud, François

    2015-07-16

    © 2015 American Chemical Society. The present study is a part of an experimental microkinetic approach of the removal of NOx from coal-fired power plants by reduction with NH3 on V2O5/WO3/TiO2 catalysts (NH3-selective catalytic reduction, NH3-SCR). It is dedicated to the characterization of the heats of adsorption of molecularly adsorbed H2Oads species formed on sulfate-free and sulfated TiO2 supports. Water, which is always present during the NH3-SCR, may be in competition and/or react (formation of NH4+) with the adsorbed NH3 species controlling the coverage of the adsorbed intermediate species of the reaction. Mainly, an original experimental procedure named adsorption equilibrium infrared spectroscopy (AEIR) previously used for the adsorption of NH3 species on the same solids is adapted for the adsorption of H2O. At Ta = 300 K and for PH2 O ≤ 1 kPa, three main H2Oads species are formed (associated with a minor amount of dissociated H2O species) on the two TiO2 solids. The species are identified by the positions of their IR bands in the 3750-3000 cm-1 range. Considering the decreasing order of stability, they are (a) coordinated to strong (L2) and weak (L1) Lewis sites and denoted H2O ads-L2 and H2Oads-L1, respectively, and (b) hydrogen bonded to the H2Oads-L species and on O2-/OH sites of the solids (denoted H2Owads). The three species have a common well-defined δH2O IR band at a position in the range 1640-1610 cm-1 according to the total coverage of the surface. According to the AEIR method, the evolution of the intensity of this IR band during the increase in the adsorption temperature Ta in isobaric condition provides the evolution of the average coverage of the three species and then to their individual heats of adsorption as a function of their coverage. It is shown that there are no significant differences on the two TiO2 solids. In particular, the heat of adsorption of the H2Oads-L2 species varies from

  10. Nitrogen fertilization (15NH4NO3 of palisadegrass and residual effect on subsequent no-tillage corn

    Directory of Open Access Journals (Sweden)

    Emerson Borghi

    2014-10-01

    Full Text Available Nitrogen is required in large amounts by plants and their dinamics in corn and perennial forages intercropped is little known. This study analyzed the efficiency of nitrogen fertilization (15NH4NO3 applied after corn grain harvest to palisadegrass (Brachiaria brizantha cv. Marandu in intercrops sown at two times, as well as the N residual effect on the subsequent corn crop. The field experiment was performed in Botucatu, São Paulo State, in southeastern Brazil, on a structured Alfisol under no-tillage. The experiment was arranged in a randomized block design in a split plot scheme with four replications. The main plots consisted of two intercropping systems (corn and palisadegrass sown together and palisadegrass sown later, at corn top-dressing fertilization. The subplots consisted of four N rates (0, 30, 60, and 120 kg ha-1 N. The subplots contained microplots, in which enriched ammonium nitrate (15NH4NO3 was applied at the same rates. The time of intercrop sowing affected forage dry matter production, the amount of fertilizer-derived N in and the N use efficiency by the forage plants. Nitrogen applied in autumn to palisadegrass intercropped with corn, planted either at corn sowing or at N top-dressing fertilization, increased the forage yield up to a rate of 60 kg ha-1. The amount of fertilizer-derived N by the forage plants and the fertilizer use efficiency by palisadegrass were highest 160 days after fertilization for both intercrop sowing times, regardless of N rates. Residual N did not affect the N nutrition of corn plants grown in succession to palisadegrass, but increased grain yield at rates of 60 and 120 kg ha-1 N, when corn was grown on palisadegrass straw from the intercrop installed at corn fertilization (top-dressing. Our results indicated that the earlier intercropping allowed higher forage dry matter production. On the other hand, the later intercrop allowed a higher corn grain yield in succession to N-fertilized palisadegrass.

  11. Effect of Annealing Process on CH3NH3PbI3-XClX Film Morphology of Planar Heterojunction Perovskite Solar Cells with Optimal Compact TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2017-01-01

    Full Text Available The morphology of compact TiO2 film used as an electron-selective layer and perovskite film used as a light absorption layer in planar perovskite solar cells has a significant influence on the photovoltaic performance of the devices. In this paper, the spin coating speed of the compact TiO2 is investigated in order to get a high-quality film and the compact TiO2 film exhibits pinhole- and crack-free films treated by 2000 rpm for 60 s. Furthermore, the effect of annealing process, including annealing temperature and annealing program, on CH3NH3PbI3-XClX film morphology is studied. At the optimal annealing temperature of 100°C, the CH3NH3PbI3-XClX morphology fabricated by multistep slow annealing method has smaller grain boundaries and holes than that prepared by one-step direct annealing method, which results in the reduction of grain boundary recombination and the increase of Voc. With all optimal procedures, a planar fluorine-doped tin oxide (FTO substrate/compact TiO2/CH3NH3PbI3-XClX/Spiro-MeOTAD/Au cell is prepared for an active area of 0.1 cm2. It has achieved a power conversion efficiency (PCE of 14.64%, which is 80.3% higher than the reference cell (8.12% PCE without optimal perovskite layer. We anticipate that the annealing process with optimal compact TiO2 layer would possibly become a promising method for future industrialization of planar perovskite solar cells.

  12. Response to Comment on "Synthesis and characterization of the pentazolate anion cyclo-N5- in (N5)6(H3O)3(NH4)4Cl".

    Science.gov (United States)

    Jiang, Chao; Zhang, Lei; Sun, Chengguo; Zhang, Chong; Yang, Chen; Chen, Jun; Hu, Bingcheng

    2018-03-16

    Huang and Xu argue that the cyclo -N 5 - ion in (N 5 ) 6 (H 3 O) 3 (NH 4 ) 4 Cl we described in our report is theoretically unfavorable and is instead protonated. Their conclusion is invalid, as they use an improper method to assess the proton transfer in a solid crystal structure. We present an in-depth experimental and theoretical analysis of (N 5 ) 6 (H 3 O) 3 (NH 4 ) 4 Cl that supports the results in the original paper. Copyright © 2018, American Association for the Advancement of Science.

  13. Stability and charge separation of different CH3NH3SnI3/TiO2 interface: A first-principles study

    Science.gov (United States)

    Yang, Zhenzhen; Wang, Yuanxu; Liu, Yunyan

    2018-05-01

    Interface has an important effect on charge separation of perovskite solar cells. Using first-principles calculations, we studied several different interfaces between CH3NH3SnI3 and TiO2. The interfacial structure and electronic structure of these interfaces are thoroughly explored. We found that the SnI2/anatase (SnI2/A) system is more stable than the other three systems, because an anatase surface can make Snsbnd I bond faster restore to the pristine value than a rutile surface, and SnI2/A system has a smaller standard deviation. The calculated plane-averaged electrostatic potential and the density of states suggest that SnI2/anatase interface has a better separation of photo-generated electron-hole pairs.

  14. Kinetics and thermochemistry of the reversible gas phase reaction HONO+NH3->3N-HONO studied by infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, P.; Ratajczak, E.; Sillesen, A.

    1994-01-01

    The kinetics of the reversible reaction HONO+NH3 reversible H3N-HONO (1) was studied by monitoring trans-HONO relaxation kinetics. The rate of approach towards equilibrium was studied as a function of the ammonia concentration to obtain values of the rate constants for the forward and reverse rea...

  15. Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2012-07-01

    Full Text Available Summer cyanobacterial blooms caused an elevation in pH (9 to ~10.5 that lasted for weeks in the shallow and tidal-fresh region of the Sassafras River, a tributary of Chesapeake Bay (USA. Elevated pH promoted desorption of sedimentary inorganic phosphorus and facilitated conversion of ammonium (NH4+ to ammonia (NH3. In this study, we investigated pH effects on exchangeable NH4+ desorption, pore water diffusion and the flux rates of NH4+, soluble reactive phosphorus (SRP and nitrate (NO3, nitrification, denitrification, and oxygen consumption. Elevated pH enhanced desorption of exchangeable NH4+ through NH3 formation from both pore water and adsorbed NH4+ pools. Progressive penetration of high pH from the overlying water into sediment promoted the mobility of SRP and the release of total ammonium (NH4+ and NH3 into the pore water. At elevated pH levels, high sediment-water effluxes of SRP and total ammonium were associated with reduction of nitrification, denitrification and oxygen consumption rates. Alkaline pH and the toxicity of NH3 may inhibit nitrification in the thin aerobic zone, simultaneously constraining coupled nitrification–denitrification with limited NO3 supply and high pH penetration into the anaerobic zone. Geochemical feedbacks to pH elevation, such as enhancement of dissolved nutrient effluxes and reduction in N2 loss via denitrification, may enhance the persistence of cyanobacterial blooms in shallow water ecosystems.

  16. The influence of H2O and CO2 on the reactivity of limestone for the oxidation of NH3

    DEFF Research Database (Denmark)

    Zijlma, G. J.; Jensen, Anker Degn; Johnsson, Jan Erik

    2000-01-01

    Although it is known that both H2O and CO2 reduce the catalytic activity of CaO, the kinetics of NO formation catalysed by CaO are often obtained without the presence of H2O or CO2. In this work, the catalytic activity for NH3 oxidation with three types of calcined limestone was tested under...... fluidised bed combustion conditions by adding H2O (0-12 vol%) and CO2 (0-16 vol%). All three types of limestones are active catalysts for the oxidation of NH3. When water is added the activity decreases sharply and already at 3 vol% water the NH3 conversion is reduced by 50%. When the water addition...... is stopped the water desorbs and the activity is restored. Addition of CO2 did not result in a decrease in the oxidation of NH3. Blocking of the active sites by adsorption of H2O is the main cause of the deactivation. A model with a Langmuir adsorption type was developed and both NO and NH3 exit...

  17. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process

    Science.gov (United States)

    Zhang, Zongbao; Zhou, Yang; Cai, Yangyang; Liu, Hui; Qin, Qiqi; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming

    2018-02-01

    Planar perovskite solar cells (PSCs) based on CH3NH3PbI3-x(SCN)x (SCN: thiocyanate) active layer and low-temperature processed TiO2 films are fabricated by a sequential two-step method in ambient air. Here, alkali thiocyanates (NaSCN, KSCN) are added into Pb(SCN)2 precursor to improve the microstructure of CH3NH3PbI3-x(SCN)x perovskite layers and performance of the as-prepared PSCs. At the optimum concentrations of alkali thiocyanates as additives, the as-prepared NaSCN-modified and KSCN-modified PSCs demonstrate the efficiencies of 16.59% and 15.63% respectively, being much higher than 12.73% of the reference PSCs without additives. This improvement is primarily ascribed to the enhanced electron transport, reduced recombination rates and much improved microstructures with large grain size and low defect density at grain boundaries. Importantly, it is revealed that the modified PSCs at the optimized concentrations of alkali thiocyanates additives exhibit remarkably improved stability than the reference PSCs against humid circumstance, and a continuous exposure to humid air without encapsulation over 45 days only records about 5% degradation of the efficiency. These findings provide a facile approach to fabricate efficient and stable PSCs by low processing temperature in ambient air, both of which are highly preferred for future practical applications of PSCs.

  18. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111 via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Directory of Open Access Journals (Sweden)

    Tsokkou Demetra

    2009-01-01

    Full Text Available Abstract Indium oxide (In2O3 nanocrystals (NCs have been obtained via atmospheric pressure, chemical vapour deposition (APCVD on Si(111 via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl which is incorporated into the In under a gas flow of nitrogen (N2. Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forT G < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111 where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111. The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111 with an average diameter of 300 nm.

  19. Synthesis and Structural Characterisation of [Ir4(CO8(CH3(m4-h3-Ph2PCCPh(m-PPh2] and of the Carbonylation Product [Ir4(CO8{C(OCH3}(m4-h3-Ph2PCCPh(m-PPh2]; First Evidence for the Formation of a CO Cluster Adduct before CO Insertion

    Directory of Open Access Journals (Sweden)

    Braga Dario

    1999-01-01

    Full Text Available Deprotonation of [(mu-HIr4(CO10(mu-PPh2], 1, gives [Ir4(CO10(mu-PPh2]- that reacts with Ph2PCCPh and CH3I to afford [Ir4(CO8(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2], 2 (34%, besides [Ir4(CO9(mu3-eta³-Ph2PC(HCPh(mu-PPh2] and [(mu-HIr4(CO9(Ph2PCºCPh(mu-PPh2]. Compound 2 was characterised by a single crystal X-ray diffraction analysis and exhibits a flat butterfly of metal atoms, with the Ph2PCCPh ligand interacting with all four Ir atoms and the methyl group bonded terminally to a wingtip Ir atom. Carbonylation of 2 yields initially (25 °C, 20 min a CO addition product that, according to VT 31P{¹H} and 13C{¹H} studies, exists in solution in the form of two isomers 4A and 4B (8:1, and then (40 °C, 7 h, the CO insertion product [Ir4(CO8{C(OCH3}(mu4-eta³-Ph2PCCPh(mu-PPh2], 5. The molecular structure of 5, established by an X-ray analysis, is similar to that of 2, except for the acyl group that remains bound to the same Ir atom. The process is reversible at both stages. Treatment of 2 with PPh3 and P(OMe3 affords the CO substitution products [Ir4(CO7L(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2] (L = PPh3, 6 and P(OMe3, 7, instead of the expected CO inserted products. According to the ¹H and 31P{¹H} NMR studies, the PPh3 derivative 6 exists in the form of two isomers (1:1 that differ with respect to the position of this ligand.

  20. The preliminary study of the blood perfusion and ammonia metabolism of pituitary using dynamic 13N-NH3 PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; Tang Anwu; Qiao Suixian; Chen Liguang; Luo Yaowu; Liu Bin; Xu Weiping

    2002-01-01

    Objective: To preliminarily study the blood perfusion and ammonia metabolism of pituitary using dynamic 13 N-NH 3 PET imaging. Methods: 13 N-NH 3 PET imaging was performed on 21 subjects without pituitary diseases, 6 of them underwent dynamic PET imaging, and 8 of them underwent brain MRI in addition to PET. PET images were registered with MRI. Results: The pituitary could be clearly seen in 13 N-NH 3 PET images, and being confirmed by PET/MRI image fusion. The size of pituitary was (1.07 +- 0.17) cm x (1.09 +- 0.15) cm x (1.14 +- 0.17) cm, the standard uptake value (SUV) was 3.84 +- 1.75, and the radioactivity ratio of pituitary to thalamus was 1.35 +- 0.63. Pituitary image was seen at 10 s after the internal carotid was seen in dynamic 13 N-NH 3 PET imaging. 13 N-NH 3 was retained in pituitary, and was hardly cleaned out within 20 min. The radioactivity ratio of pituitary to internal carotid was 0.75 +- 0.13 when the radioactivity of internal carotid was at its highest level. Conclusions: The blood flow and ammonia metabolism of pituitary can be observed with dynamic 13 N-NH 3 PET imaging. Ammonia is highly extracted by pituitary, and metabolized in pituitary cells

  1. The influence of NO3- and NH4+ on the sites of nitrogen assimilation of F1 hybrid cauliflower (Brassica oleracea. L. botrytis)

    International Nuclear Information System (INIS)

    Asiah Ahmad; Parsons, R.; Md Razi Ismail

    2002-01-01

    The sites of Nitrogen assimilation of Fl hybrid cauliflower (Brassica oleracea L.) grown in vermiculite: pearlite on either NO 3 or NH 4 nutrition was investigated using 15 N techniques. Labelling studies using 15 NO 3 Or 15 NH 4 alone to follow a time course of 15 NO 3 or 15 NH 4 incorporated into amino compounds in Fl hybrid cauliflower was conducted over periods of up to 24 hours. The 15 N enrichment of amino compounds in various plant parts was measured using GC-MS and isotopic abundance mass spectrometry techniques. In roots of 15 NH 4 -N fed plant, the 15 N label rapidly appears in glutamate at high enrichment within 30 minutes and increased substantially up to 6 hours after feeding. The labelled glutamate appears to decrease slowly after 6 hours. In leaves, the glutamate shows much lower labelling within 30 minutes than in the roots and became slowly enriched 6 hours after feeding. Labelled glutamate was only detected in the curd 6 hours later. This may indicate that in NH 4 -N fed plants, most NH 4 is assimilated in the roots and translocated as amino acids to the leaves and curd. In contrast to 15 NO 3 -N fed plant, both the roots and leaves showed significant label in glutamate within 30 minutes and subsequently increased in labelled enrichment over the time period of 6 hours. The leaves contained higher labelled glutamate than the roots. The labelled glutamate in the leaves decreased significantly at 24 hours after feeding. Label was incorporated in glutamate at low level in the curd after 2 hours and became highly enriched at 6 and 24 hours after feeding. Thus in NO 3 -N fed plants, NO 3 reduction and assimilation occurred both in root and leaf which mainly occur in the leaf. Therefore differences in the response of plant growth to NO3 - and NH 4 + nutrition observed in other studies could be due to the fact that NO 3 is primarily assimilated in the leaf whereas NH 4 is root based. No significant labelling was found in serine in both roots of 15 NH 4 -N

  2. Effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Tianjin Li; Yuqun Zhuo; Yufeng Zhao; Changhe Chen; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

    2009-04-15

    The effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen was investigated to evaluate the potential of simultaneous SO{sub 2} and NO removal at the temperature range of 700-850{sup o}C. The physical and chemical properties of the CaO sulfation products were analyzed to investigate the NO reduction mechanism. Experimental results showed that sulfated CaO had a catalytic effect on NO reduction by NH{sub 3} in the presence of excess O{sub 2} after the sulfation reaction entered the transition control stage. With the increase of CaO sulfation extent in this stage, the activity for NO reduction first increased and then decreased, and the selectivity of NH{sub 3} for NO reduction to N{sub 2} increased. The byproduct (NO{sub 2} and N{sub 2}O) formation during NO reduction experiments was negligible. X-ray photoelectron spectroscopy (XPS) analysis showed that neither CaSO{sub 3} nor CaS was detected, indicating that the catalytic activity of NO reduction by NH{sub 3} in the presence of excess O{sub 2} over sulfated CaO was originated from the CaSO{sub 4} product. These results revealed that simultaneous SO{sub 2} and NOx control by injecting NH{sub 3} into the dry flue gas desulfurization process for NO reduction might be achieved. 38 refs., 6 figs., 1 tab.

  3. Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3

    Directory of Open Access Journals (Sweden)

    Jingkun Wu

    2018-01-01

    Full Text Available Bayer red mud was selected, and the NH3-SCR activity was tested in a fixed bed in which the typical flue gas atmosphere was simulated. Combined with XRF, XRD, BET, SEM, TG and NH3-Temperature Programmed Desorption (TPD characterization, the denitration characteristics of Ce-doped red mud catalysts were studied on the basis of alkali-removed red mud. The results showed that typical red mud was a feasible material for denitration catalyst. Acid washing and calcining comprised the best treatment process for raw red mud, which reduced the content of alkaline substances, cleared the catalyst pore and optimized the particle morphology with dispersion. In the temperature range of 300–400 °C, the denitrification efficiency of calcined acid washing of red mud catalyst (ARM was more than 70%. The doping of Ce significantly enhanced NH3 adsorption from weak, medium and strong acid sites, reduced the crystallinity of α-Fe2O3 in ARM, optimized the specific surface area and broadened the active temperature window, which increased the NOx conversion rate by an average of nearly 20% points from 250–350 °C. The denitration efficiency of Ce0.3/ARM at 300 °C was as high as 88%. The optimum conditions for the denitration reaction of the Ce0.3/ARM catalyst were controlled as follows: Gas Hourly Space Velocity (GHSV of 30,000 h−1, O2 volume fraction of 3.5–4% and the NH3/NO molar ratio ([NH3/NO] of 1.0. The presence of SO2 in the feed had an irreversible negative effect on the activity of the Ce0.3/ARM catalyst.

  4. Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure

    Science.gov (United States)

    Segovia, Rubén; Qu, Geyang; Peng, Miao; Sun, Xiudong; Shi, Hongyan; Gao, Bo

    2018-03-01

    Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure ( 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.

  5. A study of proton polarization in ammonia (NH sub 3 ) under irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Dzyubak, A.P.; Karnaukhov, I.M.; Lukhanin, A.A.; Neffa, A.Yu.; Semisalov, I.L.; Sorokin, P.V.; Sporov, E.S.; Telegin, Yu.N.; Tolmachev, I.A.; Trotsenko, V.I. (Kharkov Institute of Physics and Technology, Ukrainian SSR, Academy of Sciences, 310108 Kharkov, USSR (UA))

    1989-05-05

    The proton polarization in irradiated NH{sub 3} has been measured as a function of the irradiation dose and annealing temperature. The analysis of the experimental data obtained shows that under low-temperature'' irradiation along with the NH{sup {minus}}{sub 2} the e{sub tr}-radical is likely to be formed which contributes to the polarization build-up and relaxation and influences the radiation damage resistance of the target.

  6. NH4HCO3 gas-generating liposomal nanoparticle for photoacoustic imaging in breast cancer

    Directory of Open Access Journals (Sweden)

    Xia J

    2017-03-01

    Full Text Available Jizhu Xia, Gang Feng, Xiaorong Xia, Lan Hao, Zhigang Wang Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Abstract: In this study, we have developed a biodegradable nanomaterial for photoacoustic imaging (PAI. Its biodegradation products can be fully eliminated from a living organism. It is a gas-generating nanoparticle of liposome-encapsulating ammonium bicarbonate (NH4HCO3 solution, which is safe, effective, inexpensive, and free of side effects. When lasers irradiate these nanoparticles, NH4HCO3 decomposes to produce CO2, which can absorb much of the light energy under laser irradiation with a specific wavelength, and then expand under heat to generate a thermal acoustic wave. An acoustic detector can detect this wave and show it as a photoacoustic signal on a display screen. The intensity of the photoacoustic signal is enhanced corresponding to an increase in time, concentration, and temperature. During in vivo testing, nanoparticles were injected into tumor-bearing nude mice through the caudal vein, and photoacoustic signals were detected from the tumor, reaching a peak in 4 h, and then gradually disappearing. There was no damage to the skin or subcutaneous tissue from laser radiation. Our developed gas-generating nanomaterial, NH4HCO3 nanomaterial, is feasible, effective, safe, and inexpensive. Therefore, it is a promising material to be used in clinical PAI. Keywords: Photoacoustic tomography, CO2, NH4HCO3, contrast agent, cancer

  7. Pressure-Induced Metallization of the Halide Perovskite (CH 3 NH 3 )PbI 3

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Adam; Lin, Yu [Photon; Mao, Wendy L. [Photon; Karunadasa, Hemamala I.

    2017-03-10

    We report the metallization of the hybrid perovskite semiconductor (MA)PbI3 (MA = CH3NH3+) with no apparent structural transition. We tracked its bandgap evolution during compression in diamond-anvil cells using absorption spectroscopy and observed strong absorption over both visible and IR wavelengths at pressures above ca. 56 GPa, suggesting the imminent closure of its optical bandgap. The metallic character of (MA)PbI3 above 60 GPa was confirmed using both IR reflectivity and variable-temperature dc conductivity measurements. The impressive semiconductor properties of halide perovskites have recently been exploited in a multitude of optoelectronic applications. Meanwhile, the study of metallic properties in oxide perovskites has revealed diverse electronic phenomena. Importantly, the mild synthetic routes to halide perovskites and the templating effects of the organic cations allow for fine structural control of the inorganic lattice. Pressure-induced closure of the 1.6 eV bandgap in (MA)PbI3 demonstrates the promise of the continued study of halide perovskites under a range of thermodynamic conditions, toward realizing wholly new electronic properties.

  8. The mitigating effect of calcification-dependent of utilization of inorganic carbon of Chara vulgaris Linn on NH4-N toxicity.

    Science.gov (United States)

    Wang, Heyun; Ni, Leyi; Xie, Ping

    2013-09-01

    Increased ammonium (NH4-N) concentrations in water bodies have been reported to adversely affect the dominant species of submersed vegetation in meso-eutrophic waters worldwide. However calcareous plants were lowly sensitive to NH4-N toxicity. In order to make clear the function of calcification in the tolerance of calcareous plants to NH4-N stress, we studied the effects of increased HCO3(-) and additional NH4-N on calcification and utilization of dissolve inorganic carbon (DIC) in Chara vulgaris Linn in a 7-d sub-acute experiment (light:dark 12:12h) carried out in an open experimental system in lab. Results revealed that calcification was dependent of utilization of dissolve inorganic carbon. Additional HCO3(-) significantly decreased the increase of pH while additional NH4-N did not. And additional HCO3(-) significantly improved calcification while NH4-N did in versus in relation to the variation of DIC concentration. However, addition of both HCO3(-) and NH4-N increased utilization of DIC. This resulted in calcification to utilization of DIC ratio decreased under additional NH4-N condition while increased under additional HCO3(-) conditions in response to the variation of solution pH. In the present study, external HCO3(-) decreased the increase of solution pH by increasing calcification, which correspondingly mitigated the toxic effect of high NH4-N. And we argue that the mitigating effect of increased HCO3(-) on NH4-N toxicity is dependent of plant calcification, and it is a positive feedback mechanism, potentially leading to the dominance of calcareous plants in meso-eutrophic water bodies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin

    Science.gov (United States)

    Sivakumar, P.; Priyatharshni, S.; Nagashanmugam, K. B.; Thanigaivelan, A.; Kumar, K.

    2017-08-01

    In recent years nanoscale metal-organic frameworks (NMOFs) are contributing as an effective material for use in drug delivery and imaging applications due to their porous surfaces and easy surface modifications. In this work, Fe-MIL-88B-NH2 NMOFs were successfully synthesized on facile hydrothermal route and 2-aminoterephthalic acid (NH2-BDC) was employed as a bridging ligand to activate amine functional groups on the surface. Amine functional groups not only serve as a structure stabilizing agent but also enhance the loading efficiency of the doxorubicin (DOX) anticancer drug. A pH responsive DOX release was realized by introducing a positively charged chitosan (Chi) capping layer. Upon Chi-coating, cleavage was observed in the Fe-MIL-88B-NH2 structure at acidic pH, while gel-like insoluble structure was formed at basic pH. By utilizing this phenomenon, a pH responsive DOX release system was developed by using Chi capped Fe-MIL-88B-NH2 NMOFs under the designed pH (4.0-8.0). The results suggest the Chi capped Fe-MIL-88B-NH2 can be a promising candidate for future pH responsive drug delivery systems.

  10. Alkali metal and ammonium fluoro(trifluoroacetato)metallates M'[ M''33-F)(CF3COO)6(CF3COOH)3], where M' = Li, Na, K, NH4, Rb, or Cs and M'' = Ni or Co. Synthesis and crystal structures

    Science.gov (United States)

    Tereshchenko, D. S.; Morozov, I. V.; Boltalin, A. I.; Karpova, E. V.; Glazunova, T. Yu.; Troyanov, S. I.

    2013-01-01

    A series of fluoro(trifluoroacetato)metallates were synthesized by crystallization from solutions in trifluoroacetic acid containing nickel(II) or cobalt(II) nitrate hydrates and alkali metal or ammonium fluorides: Li[Ni33-F)(CF3COO)6(CF3COOH)3](CF3COOH)3 ( I), M'[Ni33-F)(CF3COO)6(CF3COOH)3] ( M' = Na ( II), NH4 ( IV), Rb ( V), and Cs ( VI)), NH4[Co33-F) (CF3COO)6(CF3COOH)3] ( III), and Cs[Ni33-F)(CF3COO)6(CF3COOH)3](CF3COOH)0.5 ( VII). The crystal structures of these compounds were determined by single-crystal X-ray diffraction. All structures contain triangular trinuclear complex anions [ M 3″(μ3-F)(CF3COO)6(CF3COOH)3]- ( M″ = Ni, Co) structurally similar to trinuclear 3d metal oxo carboxylate complexes. The three-coordinated F atom is located at the center of the triangle formed by Ni(II) or Co(II) atoms. The metal atoms are linked in pairs by six bridging trifluoroacetate groups located above and below the plane of the [ M″3 F] triangle. The oxygen atoms of the axial CF3COOH molecules complete the coordination environment of M″ atoms to an octahedron.

  11. Myocardial perfusion quantification using simultaneously acquired 13 NH3 -ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress.

    Science.gov (United States)

    Kunze, Karl P; Nekolla, Stephan G; Rischpler, Christoph; Zhang, Shelley HuaLei; Hayes, Carmel; Langwieser, Nicolas; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Schwaiger, Markus

    2018-04-19

    Systematic differences with respect to myocardial perfusion quantification exist between DCE-MRI and PET. Using the potential of integrated PET/MRI, this study was conceived to compare perfusion quantification on the basis of simultaneously acquired 13 NH 3 -ammonia PET and DCE-MRI data in patients at rest and stress. Twenty-nine patients were examined on a 3T PET/MRI scanner. DCE-MRI was implemented in dual-sequence design and additional T 1 mapping for signal normalization. Four different deconvolution methods including a modified version of the Fermi technique were compared against 13 NH 3 -ammonia results. Cohort-average flow comparison yielded higher resting flows for DCE-MRI than for PET and, therefore, significantly lower DCE-MRI perfusion ratios under the common assumption of equal arterial and tissue hematocrit. Absolute flow values were strongly correlated in both slice-average (R 2  = 0.82) and regional (R 2  = 0.7) evaluations. Different DCE-MRI deconvolution methods yielded similar flow result with exception of an unconstrained Fermi method exhibiting outliers at high flows when compared with PET. Thresholds for Ischemia classification may not be directly tradable between PET and MRI flow values. Differences in perfusion ratios between PET and DCE-MRI may be lifted by using stress/rest-specific hematocrit conversion. Proper physiological constraints are advised in model-constrained deconvolution. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Relationships between lichen community composition and concentrations of NO2 and NH3

    International Nuclear Information System (INIS)

    Gadsdon, Sally R.; Dagley, Jeremy R.; Wolseley, Patricia A.; Power, Sally A.

    2010-01-01

    The relationship between different features of lichen communities in Quercus robur canopies and environmental variables, including concentrations of NO 2 and NH 3 was investigated. NO 2 concentration was the most significant variable, it was positively correlated with the proportion of lichen cover comprising nitrophytes and negatively correlated with total lichen cover. None of the lichen community features were correlated with NH 3 concentrations, which were relatively low across the site. Since nitrophytes and nitrophobes are likely to react in opposite directions to nitrogenous compounds, total lichen cover is not a suitable indicator for these pollutants. It is, therefore, suggested that the proportion of lichen cover comprising nitrophytes may be a suitable simple indicator of air quality, particularly in locations where the pollution climate is dominated by oxides of nitrogen. - Response of lichen communities to nitrogenous pollutants.

  13. Selectivity of Catalytically Modified Tin Dioxide to CO and NH3 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Artem Marikutsa

    2015-10-01

    Full Text Available This paper is aimed at selectivity investigation of gas sensors, based on chemically modified nanocrystalline tin dioxide in the detection of CO and ammonia mixtures in air. Sol-gel prepared tin dioxide was modified by palladium and ruthenium oxides clusters via an impregnation technique. Sensing behavior to CO, NH3 and their mixtures in air was studied by in situ resistance measurements. Using the appropriate match of operating temperatures, it was shown that the reducing gases mixed in a ppm-level with air could be discriminated by the noble metal oxide-modified SnO2. Introducing palladium oxide provided high CO-sensitivity at 25–50 °C. Tin dioxide modified by ruthenium oxide demonstrated increased sensor signals to ammonia at 150–200 °C, and selectivity to NH3 in presence of higher CO concentrations.

  14. A non-typical sequence of phase transitions in (NH4)3GeF7: optical and structural characterization.

    Science.gov (United States)

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Misyul, S V

    2016-03-28

    Single crystals of germanium double salt (NH4)3GeF7 = (NH4)2GeF6·NH4F = (NH4)3[GeF6]F were grown and studied by the methods of polarization optics and X-ray diffraction. The birefringence Δn = (no - ne), the rotation angle of the optical indicatrix ϕ(T) and unit cell parameters were measured in the temperature range 100-400 K. Three structural phase transitions were found at the temperatures: T1↓ = 279.2 K (T1↑ = 279.4 K), T2↑ = 270 K (T2↓ = 268.9 K), T3↓ = 218 K (T3↑ = 227 K). An unusual sequence of symmetry transformations with temperature change was established: P4/mbm (Z = 2) (G1) ↔ Pbam (Z = 4) (G2) ↔ P21/c (Z = 4) (G3) ↔ Pa3[combining macron] (Z = 8) (G4). The crystal structures of different phases were determined. The experimental data were additionally interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account the critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions.

  15. Predictions of NO{sub x} formation in an NH{sub 3}-doped syngas flame using CFD combined with a detailed reaction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A; Norstroem, T; Kilpinen, P; Hupa, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1998-12-31

    The formation of NO{sub x} in a CO/H{sub 2}/CH{sub 4}/NH{sub 3} jet in a co-flowing air stream was modeled by use of CFD combined with a comprehensive detailed reaction mechanism. The comprehensive mechanism involved 340 reversible elementary reactions between 55 species. Three different approaches to include the detailed reaction mechanism were tested. In approach I, all chemistry was described with the comprehensive mechanism. In approaches IIa and IIb the comprehensive mechanism was used in post-processing calculations of the nitrogen chemistry. In approach IIa, the temperatures of the reacting structures obtained in the main calculations were used, whereas in approach IIb, the inlet temperatures to the reacting structures were taken from the main calculation. In approach IIIa and IIIb, empirical reaction mechanisms describing the nitrogen chemistry were tested. The turbulence-chemistry interaction was accounted for with a new model, which combines the Eddy-Dissipation Concept with a model based on the `Exchange by Interaction with the Mean`. There was a clear difference between the computed results and the measured ones. The use of approach I resulted in an obvious overprediction of the lift-off height. The predicted molar NO{sub x} yield with the approaches IIa and IIb were 89 % and 85 %, respectively, whereas a yield of 23 % had been measured. With the empirical mechanisms used in approach IIIa, a similar NO{sub x} yield was predicted as with approaches IIa and IIb. With IIIb the predicted NO{sub x} yield was 40 %. However, in this case 67 % of the NH{sub 3} remained unreacted. The reason for the large difference between the calculated NO{sub x} yield and the measured one reported in the literature is a poor modeling of the initial part of the fuel jet. A possible reason for this is the coarse grid. (author) 15 refs.

  16. Predictions of NO{sub x} formation in an NH{sub 3}-doped syngas flame using CFD combined with a detailed reaction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A.; Norstroem, T.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-12-31

    The formation of NO{sub x} in a CO/H{sub 2}/CH{sub 4}/NH{sub 3} jet in a co-flowing air stream was modeled by use of CFD combined with a comprehensive detailed reaction mechanism. The comprehensive mechanism involved 340 reversible elementary reactions between 55 species. Three different approaches to include the detailed reaction mechanism were tested. In approach I, all chemistry was described with the comprehensive mechanism. In approaches IIa and IIb the comprehensive mechanism was used in post-processing calculations of the nitrogen chemistry. In approach IIa, the temperatures of the reacting structures obtained in the main calculations were used, whereas in approach IIb, the inlet temperatures to the reacting structures were taken from the main calculation. In approach IIIa and IIIb, empirical reaction mechanisms describing the nitrogen chemistry were tested. The turbulence-chemistry interaction was accounted for with a new model, which combines the Eddy-Dissipation Concept with a model based on the `Exchange by Interaction with the Mean`. There was a clear difference between the computed results and the measured ones. The use of approach I resulted in an obvious overprediction of the lift-off height. The predicted molar NO{sub x} yield with the approaches IIa and IIb were 89 % and 85 %, respectively, whereas a yield of 23 % had been measured. With the empirical mechanisms used in approach IIIa, a similar NO{sub x} yield was predicted as with approaches IIa and IIb. With IIIb the predicted NO{sub x} yield was 40 %. However, in this case 67 % of the NH{sub 3} remained unreacted. The reason for the large difference between the calculated NO{sub x} yield and the measured one reported in the literature is a poor modeling of the initial part of the fuel jet. A possible reason for this is the coarse grid. (author) 15 refs.

  17. Growth of (CH$_3$)$_2$NH$_2$CuCl$_3$ single crystals using evaporation method with different temperatures and solvents

    OpenAIRE

    Chen, L. M.; Tao, W.; Zhao, Z. Y.; Li, Q. J.; Ke, W. P.; Wang, X. M.; Liu, X. G.; Fan, C.; Sun, X. F.

    2013-01-01

    The bulk single crystals of of low-dimensional magnet (CH$_3$)$_2$NH$_2$CuCl$_3$ (DMACuCl$_3$ or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The bes...

  18. Development of selective catalytic oxidation (SCO) for NH{sub 3} and HCN removal from gasification gas; Selektiivisen katalyyttisen hapetusprosessin (SCO) kehittaeminen kaasutuskaasun NH{sub 3}:n ja HCN:n poistoon

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T.; Heiskanen, K. [VTT Energy, Espoo (Finland)

    1997-10-01

    In gasification, reactive nitrogen compounds (mainly NH{sub 3} and HCN) are formed from fuel nitrogen. If the gas containing NH{sub 3} is burned, a high NO{sub x} emission may be formed. The content of nitrogen compounds of the hot gasification gas could be reduced in Selective Catalytic Oxidation (SCO) process. In this process small amounts of reactive oxidisers are injected into the gas in order to convert NH{sub 3} to N{sub 2}. The utilization of SCO process together with low NO{sub x} burners in advanced gasification power stations might offer an alternative for flue gas treatment technologies like SCR (Selective Catalytic Reduction). In the earlier research, conditions were found, where oxidizers reacted selectively with ammonia in the gasification gas. Highest ammonia reduction took place in the aluminium oxide bed in the presence of NO and O{sub 2}. The aim of this study is to examine the reaction mechanism in order to be able to further evaluate the development possibilities of this kind process. The effect of composition and the amount of added oxidizer, the content of combustible gas components, space velocity, pressure and temperature will be studied. The experiments are carried out with the laboratory scale high pressure flow reactor of VTT Energy. Kinetic modelling of the experimental results is carried out in co-operation with the combustion chemistry group of Aabo Akademi. The aim of the modelling work is to bring insight to the gas-phase reactions that are important for the SCO-process. (orig.)

  19. Differential response of microbial respiration to supplied nitrogen forms in 3 contrasting alpine meadow soils on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zeng

    Full Text Available ABSTRACT An incubation experiment was conducted to examine the effects of nitrogen (N applications in different forms (NH4NO3, NH4Cl, and KNO3 on microbial respiration considering 3 different alpine meadow soils (C poor soil, pH = 8.1, 1.6% C; C moderate soil, pH = 6.0, 5.0% C; C rich soil, pH = 7.1, 7.4% C in the Tibetan Plateau. The addition of NH4NO3 and NH4Cl increased the microbial respiration in C poor soil, but KNO3 had no effect. The inorganic N forms had no effects on C rich soil, but decreased microbial respiration in C moderate soil. Soil microbial respiration levels across the different types were ordered as follows: C poor soil < C rich soil < C moderate soil, regardless of N addition. These results suggest that the effect of N on microbial respiration in alpine meadow soils is more dependent on the initial soil pH than on soil C availability.

  20. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    Science.gov (United States)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This

  1. Electron Transfer from Triplet State of TIPS-Pentacene Generated by Singlet Fission Processes to CH3NH3PbI3 Perovskite.

    Science.gov (United States)

    Lee, Sangsu; Hwang, Daesub; Jung, Seok Il; Kim, Dongho

    2017-02-16

    To reveal the applicability of singlet fission processes in perovskite solar cell, we investigated electron transfer from TIPS-pentacene to CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite in film phase. Through the observation of the shorter fluorescence lifetime in TIPS-pentacene/MAPbI 3 perovskite bilayer film (5 ns) compared with pristine MAPbI 3 perovskite film (20 ns), we verified electron-transfer processes between TIPS-pentacene and MAPbI 3 perovskite. Furthermore, the observation of singlet fission processes, a faster decay rate, TIPS-pentacene cations, and the analysis of kinetic profiles of the intensity ratio between 500 and 525 nm in the TA spectra of the TIPS-pentacene/MAPbI 3 perovskite bilayer film indicate that electron transfer occurs from triplet state of TIPS-pentacene generated by singlet fission processes to MAPbI 3 perovskite conduction band. We believe that our results can provide useful information on the design of solar cells sensitized by singlet fission processes and pave the way for new types of perovskite solar cells.

  2. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    OpenAIRE

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic ...

  3. Mechanism of NH{sub 3} desorption during the reaction of H{sub 2} with nitrogen containing carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Juan F. Espinal; Thanh N. Truong; Fanor Mondragon [University of Antioquia, Medellin (Colombia). Institute of Chemistry

    2005-07-01

    The continued increase in demand for natural gas has stimulated the interest in coal conversion to methane as synthetic natural gas by hydropyrolysis of coal (pyrolysis in a H{sub 2} atmosphere). Because the produced raw gas contains considerable amounts of gaseous N-containing products that have to be removed before delivering to final users, the information on distribution of coal-N is important for designing purification processes. It has been reported in the literature that NH{sub 3} is the main nitrogen containing gas that is released during the hydropyrolysis process. Other gases such as HCN and N{sub 2} are also released but in a much smaller amount. To the best of our knowledge, the mechanism for NH{sub 3} desorption during hydrogen reaction with carbonaceous materials has not been studied. We carried out a molecular modeling study using Density Functional Theory in order to get an insight of the mechanism and thermodynamics for NH{sub 3} evolution using pyridinic nitrogen as a model of N-containing carbonaceous material. We propose a mechanism that involves consecutive hydrogenation steps that lead to C-N bond breakage and NH{sub 3} desorption to the gas phase. It was found that the first hydrogenation reaction is highly exothermic. However, further hydrogenations are endothermic. Several pathways for NH{sub 3} evolution were proposed and most of them show high exothermicity. 17 refs., 2 figs.

  4. PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.

    Science.gov (United States)

    Yang, Weiyuan; Cai, Yuanping; Hu, Li; Wei, Qian; Chen, Guoju; Bai, Mei; Wu, Hong; Liu, Juanxu; Yu, Yixun

    2017-02-02

    Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. However, little is known about the role of CESA3 in species other than A. thaliana. To gain a better understanding of CESA3, the petunia (Petunia hybrida) PhCESA3 gene was isolated, and the role of PhCESA3 in plant growth was analyzed in a wide range of plants. PhCESA3 mRNA was present at varying levels in tissues examined. VIGS-mediated PhCESA3 silencing resulted in dwarfing of plant height, which was consistent with the phenotype of the A. thaliana rsw1 mutant (a temperature-sensitive allele of AtCESA1), the A. thaliana cev1 mutant (the AtCESA3 mild mutant), and the antisense AtCESA3 line. However, PhCESA3 silencing led to swollen stems, pedicels, filaments, styles and epidermal hairs as well as thickened leaves and corollas, which were not observed in the A. thaliana cev1 mutant, the rsw1 mutant and the antisense AtCESA3 line. Further micrographs showed that PhCESA3 silencing reduced the length and increased the width of cells, suggesting that PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.

  5. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    Science.gov (United States)

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  6. Reassessment of the NH4 NO3 thermal decomposition technique for calibration of the N2 O isotopic composition.

    Science.gov (United States)

    Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A

    2016-09-08

    In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk  = (δ 15 N α  + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.

  7. 1H and 2H NMR relaxation study on the phase transitions of (NH4)3H(SO4)2 and (ND4)3D(SO4)2 single crystals

    International Nuclear Information System (INIS)

    Lim, Ae Ran; Jeong, Se-Young

    2006-01-01

    T 1 , T 1ρ and T 2 for the 1 H and 2 H nuclei in (NH 4 ) 3 H(SO 4 ) 2 and (ND 4 ) 3 D(SO 4 ) 2 single crystals grown using the slow evaporation method were measured for phases I, II, III, IV and V. The 1 H T 1 , T 1ρ , and T 2 values were found to exhibit different trends in phases II and III: T 1 , T 1ρ and T 2 for 1 H do not change significantly near the phase transition at 265 K, whereas near 413 K they change discontinuously. We conclude that the NH 4 + and H(SO 4 ) 2 - ions do not play an important role in the III-II phase transition, but do play important roles in the II-I phase transition. The liquid-like nature of the 1 H T 1ρ and T 2 above 413 K is indicative of the destruction and reconstruction of hydrogen bonds. Moreover, the phase transitions of the (NH 4 ) 3 H(SO 4 ) 2 crystal are accompanied by changes in the molecular motion of the (NH 4 ) + ions. The variations with temperature of the 2 H T 1 and T 2 of (ND 4 ) 3 D(SO 4 ) 2 crystals are not similar to those observed for the 1 H T 1 and T 2 . Our comparison of the results for (NH 4 ) 3 H(SO 4 ) 2 and (ND 4 ) 3 D(SO 4 ) 2 crystals indicates the following: the 1 H T 1ρ and T 2 of the (NH 4 ) + and H(SO 4 ) 2 - ions above T C1 are characteristic of fast, liquid-like motion, which is not the case for (ND 4 ) 3 D(SO 4 ) 2 ; and the 2 H T 1 of D(SO 4 ) 2 - in (ND 4 ) 3 D(SO 4 ) 2 is longer than the 2 H T 1 of (ND 4 ) + in contrast to the results for (NH 4 ) 3 H(SO 4 ) 2 crystals

  8. Interactions of nickel(II) with histones: enhancement of 2'-deoxyguanosine oxidation by Ni(II) complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3.

    Science.gov (United States)

    Bal, W; Lukszo, J; Kasprazak, K S

    1996-03-01

    Studies of 2'-deoxyguanosine oxidation by hydrogen peroxide in the presence of CH3CO-Cys-Ala-Ile-His-NH2 (CAIH) and/or NiCl2 have been carried out in 100 mM phosphate buffer (pH 7.4) at 37 degrees C. The dimeric CAIH oxidation product, CAIH disulfide, and its weak, octahedral Ni(II) complex, rather than the monomeric CAIH and its strong, square-planar Ni(II) complex, were found to be major catalysts of 8-oxo-2'-deoxyguanosine (8-oxo-dG) formation. The presence of Ni(II) largely enhanced 8-oxo-dG yield, especially at submillimolar concentrations of H2O2. The reaction was found not to involve detectable amounts of free radicals or Ni(III). These results, together with those published previously [Bal, W. et al. (1995) Chem. Res. Toxicol. 8, 683-692], lay a framework for the detailed investigations of the interactions of histone octamer with Ni(II) and other metal ions. They also suggest that molecular mechanisms of nickel carcinogenesis may involve oxidative damage processes catalyzed by weak Ni(II) complexes with cellular components.

  9. In vitro growth of Brassocattleya orchid hybrid in different concentrations of KNO3, NH4NO3 and benzylaminopurine

    OpenAIRE

    Cardoso,Jean C; Ono,Elizabeth O

    2011-01-01

    One of the most important applications of plant tissue culture is mass propagation of ornamental plants. This experiment evaluated the effect of different concentrations of NH4NO3 and KNO3 and BAP on the in vitro growth of orchid hybrid Brassocattleya 'Pastoral'. Seedlings of this orchid hybrid were used as explants and cultivated in medium with mineral salts and vitamins from the MS medium (Murashige & Skoog, 1962), with the macronutrients P, Ca and Mg reduced by half, and with an additi...

  10. One for two: conversion of waste chicken feathers to carbon microspheres and (NH4)HCO3.

    Science.gov (United States)

    Gao, Lei; Hu, Haibo; Sui, Xuelin; Chen, Changle; Chen, Qianwang

    2014-06-03

    Pyrolysis of 1 g of waste chicken feathers (quills and barbs) in supercritical carbon dioxide (sc-CO2) system at 600 °C for 3 h leads to the formation of 0.25 g well-shaped carbon microspheres with diameters of 1-5 μm and 0.26 g ammonium bicarbonate ((NH4)HCO3). The products were characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopic, FT-IR spectrum, X-ray electron spectroscopy (XPS), and N2 adsorption/desorption measurements. The obtained carbon microspheres displayed great superhydrophobicity as fabric coatings materials, with the water contact angle of up to 165.2±2.5°. The strategy is simple, efficient, does not require any toxic chemicals or catalysts, and generates two valuable materials at the same time. Moreover, other nitrogen-containing materials (such as nylon and amino acids) can also be converted to carbon microspheres and (NH4)HCO3 in the sc-CO2 system. This provides a simple strategy to extract the nitrogen content from natural and man-made waste materials and generate (NH4)HCO3 as fertilizer.

  11. Influence of the Grain Size on the Properties of CH3NH3PbI3 Thin Films.

    Science.gov (United States)

    Shargaieva, Oleksandra; Lang, Felix; Rappich, Jörg; Dittrich, Thomas; Klaus, Manuela; Meixner, Matthias; Genzel, Christoph; Nickel, Norbert H

    2017-11-08

    Hybrid perovskites have already shown a huge success as an absorber in solar cells, resulting in the skyrocketing rise in the power conversion efficiency to more than η = 22%. Recently, it has been established that the crystal quality is one of the most important parameters to obtain devices with high efficiencies. However, the influence of the crystal quality on the material properties is not fully understood. Here, the influence of the morphology on electronic properties of CH 3 NH 3 PbI 3 thin films is investigated. Postannealing was used to vary the average grain size continuously from ≈150 to ≈1000 nm. Secondary grain growth is thermally activated with an activation energy of E a = 0.16 eV. The increase in the grain size leads to an enhancement of the photoluminescence, indicating an improvement in the material quality. According to surface photovoltage measurements, the charge-carrier transport length exhibits a linear increase with increasing grain size. The charge-carrier diffusion length is limited by grain boundaries. Moreover, an improved morphology leads to a drastic increase in power conversion efficiency of the devices.

  12. LPG and NH3 Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen Printing Technique

    Directory of Open Access Journals (Sweden)

    A. S. GARDE

    2010-11-01

    Full Text Available The gas sensing behavior of SnO2 thick film resistors deposited on alumina substrates has been investigated for LPG and NH3 gas. The standard screen printing technology was used to prepare the thick films. The films were fired at optimized temperature of 780 0C for 30 minutes. The material characterization was performed by XRD, SEM, FTIR, UV and EDAX for elemental analysis. IR spectroscopy analysis at 2949.26 cm-1 showed the peak assigned to the –Sn-H vibration due to the effect of hybridization i.e. sp3 and the sharp peak at 3734.31 cm-1 assigned to –Sn-OH stretching vibration due to hydrogen bonding. The variation of D.C electrical resistance of SnO2 film samples was measured in air as well as in LPG and NH3 gas atmosphere as a function of temperature. The SnO2 film samples show negative temperature coefficient of résistance. The SnO2 film samples showed the highest sensitivity to 600 ppm of LPG at 230 0C and NH3 at 370 0C. The effect of microstructure on sensitivity, response time and recovery time of the sensor in the presence of LPG and NH3 gases were studied and discussed.

  13. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling.

    Science.gov (United States)

    Cai, Chunfeng; Zhai, Jizhi; Bi, Gang; Wu, Huizhen

    2016-09-15

    Localized surface plasmon resonance coupling effects (LSPR) have attracted much attention due to their interesting properties. This Letter demonstrates significant photoluminescence (PL) enhancement in the Au NS/CH3NH3PbI3-xClx heterostructures via the LSPR coupling. The observed PL emission enhancement is mainly attributed to the hot electron energy transfer effect related to the LSPR coupling. For the energy transfer effect, photo-generated electrons will be directly extracted into Au SPs, rather than relaxed into exciton states. This energy transfer process is much faster than the diffusion and relaxation time of free electrons, and may provide new ideas on the design of high-efficiency solar cells and ultrafast response photodetectors.

  14. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    International Nuclear Information System (INIS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-01-01

    Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling

  15. Centrosymmetric [N(CH{sub 3}){sub 4}]{sub 2}TiF{sub 6} vs. noncentrosymmetric polar [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6}: A hydrogen-bonding effect on the out-of-center distortion of TiF{sub 6} octahedra

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-ah [Department of Chemistry Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Dong Woo [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2012-11-15

    The syntheses, structures, and characterization of organically templated zero-dimensional titanium fluoride materials, A{sub 2}TiF{sub 6} (A=[N(CH{sub 3}){sub 4}] or [C(NH{sub 2}){sub 3}]), are reported. Phase pure samples of A{sub 2}TiF{sub 6} were synthesized by either solvothermal reaction method or a simple mixing method. While [N(CH{sub 3}){sub 4}]{sub 2}TiF{sub 6} crystallizes in a centrosymmetric space group, R-3, [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} crystallizes in a noncentrosymmetric polar space group, Cm. The asymmetric out-of-center distortion of TiF{sub 6} octahedra in polar [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} are attributable to the hydrogen-bonding interactions between the fluorine atoms in TiF{sub 6} octahedra and the nitrogen atoms in the [C(NH{sub 2}){sub 3}]{sup +} cation. Powder second-harmonic generation (SHG) measurements on the [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6}, using 1064 nm radiation, indicate the material has SHG efficiency of 25 Multiplication-Sign that of {alpha}-SiO{sub 2}, which indicates an average nonlinear optical susceptibility, Left-Pointing-Angle-Bracket d{sub eff} Right-Pointing-Angle-Bracket {sub exp} of 2.8 pm/V. Additional SHG measurements reveal that the material is not phase-matchable (Type 1). The magnitudes of out-of-center distortions and dipole moment calculations for TiF{sub 6} octahedra will be also reported. - Graphical abstract: The out-of-center distortion of TiF{sub 6} octahedron in the polar noncentrosymmetric [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} is attributable to the hydrogen-bonding interactions between the F in TiF{sub 6} octahedron and the H-N in the [C(NH{sub 2}){sub 3}]{sup +}. Highlights: Black-Right-Pointing-Pointer Two titanium fluorides materials have been synthesized in high yields. Black-Right-Pointing-Pointer Hydrogen-bonds are crucial for the out-of-center distortion of TiF{sub 6} octahedra. Black-Right-Pointing-Pointer [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} has a SHG efficiency of 25

  16. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  17. Quasi-classical trajectory study of the role of vibrational and translational energy in the Cl(2P) + NH3 reaction.

    Science.gov (United States)

    Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J

    2012-05-28

    A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies

  18. Growth conditions for the biomass yield of two methanol utilizing yeast spp. , Candida sp. and Rhodotorula sp

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.W.

    1976-01-01

    More than 580 MeOH utilizing yeasts were isolated from samples collected throughout South Korea. Of these, 2 strains showed good biomass yield and were selected and tentatively identified as Candida melinii and Rhodotorula glutinis glutinis. Experiments on growth conditions for these 2 species were performed. Optimum pH was 2.6 for Candida, 5.2 for Rhodotorula, and the temperature optimum was 28 to 30/sup 0/ for both. Maximum biomass yield was 4.32 g/L for Candida and 4.2l g/L for Rhodotorula. Optimum concentrations were (NH/sub 4/)/sub 2/SO/sub 4/ 0.3%, Mg/sup +/ 400 ppM, Fe/sup +/ 10 to 15 ppM for Candida and (NH/sub 4/)/sub 2/SO/sub 4/ 0.3% Mg/sup +/ 600 ppM Ca/sup +/ 2 ppM for Rhodotorula. Biotin stimulated Candida. Protein contents of the dry cell biomass were 39.3% in Candida and 44.0% in Rhodotorula.

  19. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins.

    Science.gov (United States)

    Wacker, Tobias; Garcia-Celma, Juan J; Lewe, Philipp; Andrade, Susana L A

    2014-07-08

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4(+) scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4(+)/NH3 transport is used instead in acid-base and pH homeostasis in kidney or NH4(+)/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters.

  20. Ni(NH32(NO32—A 3-D Network through Bridging Nitrate Units Isolated from the Thermal Decomposition of Nickel Hexammine Dinitrate

    Directory of Open Access Journals (Sweden)

    Joachim Breternitz

    2018-06-01

    Full Text Available Nickel nitrate diammine, Ni(NH32(NO32, can be synthesised from the thermal decomposition of nickel nitrate hexammine, Ni[(NH36](NO32. The hexammine decomposes in two distinct major stages; the first releases 4 equivalents of ammonia while the second involves the release of NOx, N2, and H2O to yield NiO. The intermediate diammine compound can be isolated following the first deammoniation step or synthesised as a single phase from the hexammine under vacuum. Powder X-ray diffraction (PXD experiments have allowed the structure of Ni(NH32(NO32 to be solved for the first time. The compound crystallises in orthorhombic space group Pca21 (a = 11.0628 (5 Å, b = 6.0454 (3 Å, c = 9.3526 (4 Å; Z = 4 and contains 11 non-hydrogen atoms in the asymmetric unit. Fourier transform infrared (FTIR spectroscopy demonstrates that the bonding in the ammine is consistent with the structure determined by PXD.

  1. Multiple-Stage Structure Transformation of Organic-Inorganic Hybrid Perovskite CH3NH3PbI3

    Science.gov (United States)

    Chen, Qiong; Liu, Henan; Kim, Hui-Seon; Liu, Yucheng; Yang, Mengjin; Yue, Naili; Ren, Gang; Zhu, Kai; Liu, Shengzhong; Park, Nam-Gyu; Zhang, Yong

    2016-07-01

    By performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH3NH3PbI3 ) to the fully degraded state (i.e., PbI2 ) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (centimeters), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditions (e.g., power, illumination time, and interruption pattern). We highlight four transformation stages (stages I-IV, with stage I being the pristine state) along either the spontaneous or photoinduced degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out that previously reported Raman spectra in the literature reflect highly degraded structures of either stage III or stage IV. Additional characteristic optical features of partially degraded materials under the joint action of spontaneous and photodegradation are also given. This study offers reliable benchmark results for understanding the intrinsic material properties and structure transformation of this unique category of hybrid materials, and the findings are pertinently important to a wide range of potential applications where the hybrid material is expected to function in greatly different environment and light-matter interaction conditions.

  2. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    Science.gov (United States)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  3. pH distribution in human tumors

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Leeper, D.B.; Moylan, D.J.; Nerlinger, R.E.

    1984-01-01

    pH distribution in human tumors is being determined to evaluate this parameter as a prognostic indicator of hyperthermia response. pH is measured by a modified glass pH electrode (21g, model MI 408, Microelectrodes, Inc., Londonderry, NH) inserted through an 18g open-ended Angiocath. Eight tumors have been evaluated to date; and of those, 3 were also assayed after the first heat treatment coincident with determination of blood flow. Tumors were between 2-5 cm, of various histologies, and of primary, recurrent, or metastatic origin. 2-4 measurements were made per tumor. Pretreatment readings were between 6.4 and 7.2 pH units. As tumor blood flow increased after 1 hr heating (41.5 - 43 0 ) pH rose 0.1 - 0.3 units. Normal rat muscle yields pH readings of 7.35 - 7.45. Although there was considerable heterogeneity of pH within tumors, accuracy and drift were not a problem. 5-15 min were required for pH stabilization after catheter insertion and <5 min after electrode insertion. A saline wheal was used for anesthesia to preclude modification of pH by anesthetics. Patient tolerance has not been a problems. This study suggests that human tumor tissue has a preponderance of areas more acidic than normal tissue. This may serve to sensitize tumor cells to hyperthermia and provide a prognostic indicator of tumor response

  4. Synthesis, structural characterization and ion-exchange behavior of a newly designed polyoxometalate, (Me2NH2)3(Mo12O40S)

    International Nuclear Information System (INIS)

    Chakraborty, Rajesh; Mondal, Biplab; Chattopadhyay, Pabitra

    2015-01-01

    A new ion-exchanger of chemical formula (Me 2 NH 2 ) 3 (Mo 12 O 40 S) (1) of the class of Keggin type polyoxometalate has been synthesized and characterized by single-crystal XRD. The crystal of 1 is rhombohedral, space group R-3 with cell dimensions, a = 16.504(18) Å, b = 16.504(18)Å (1) Å, c = 25.23(3) Å and α = 90.00°, β = 90.00°, γ = 120.00° and Z = 6. This material (1) is thermally and chemically stable even towards radiation. Its ion exchange capacity for alkali and alkaline earth metal ions has been studied. This material is useful to separate the short-lived daughter 90 Y from its long-lived parent 90 Sr in the equilibrium mixture at pH 6.0 with 1.0 % EDTA solution as an eluent. (author)

  5. Synthesis of Cu3N from CuO and NaNH2

    Directory of Open Access Journals (Sweden)

    Akira Miura

    2014-12-01

    Full Text Available We report on the low-temperature synthesis of submicron-sized Cu3N powder produced from CuO and NaNH2 powder mixture by heating at 150–190 °C in a Teflon-sealed autoclave. The structure was the anti-RuO3 type with a lattice parameter of 0.3814(1 nm, and strong optical absorption was observed below ∼1.9 eV. This synthesis method has the potential of facile control of the reaction with less use of ammonia sources.

  6. Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1-x Br x )3 perovskite solar cells

    Science.gov (United States)

    Phuong Nguyen, Bich; Kim, Gee Yeong; Jo, William; Kim, Byeong Jo; Jung, Hyun Suk

    2017-08-01

    The electrical properties of CH3NH3Pb(I1-x Br x )3 (x = 0.13) perovskite materials were investigated under ambient conditions. The local work function and the local current were measured using Kelvin probe force microscopy and conductive atomic force microscopy, respectively. The degradation of the perovskite layers depends on their grain size. As the material degrades, an additional peak in the surface potential appears simultaneously with a sudden increase and subsequent relaxation of the local current. The potential bending at the grain boundaries and the intragrains is the most likely reason for the change of the local current surface of the perovskite layers. The improved understanding of the degradation mechanism garnered from this study helps pave the way toward an improved photo-conversion efficiency in perovskite solar cells.

  7. On the structural phase transitions of the perovskite-type layer structures (Csub(n)Hsub(2n+1)NH3)2MeCl4

    International Nuclear Information System (INIS)

    Heger, G.

    1978-01-01

    The perovskite-type layer compounds (Csub(n)Hsub(2n+1)NH 3 ) 2 MeCl 4 show a variety of different structural modifications. They differ from oneanother by the order and dynamical behaviour of the CH 3 -CH 2 -...-CH 2 -NH 3 chain molecules and the [MeCl 6 ] octahedra layers. These two structural members are coupled together by N-H...Cl hydrogen bonds. According to group theoretical relations the modifications of (Csub(n)Hsub(2n+1)NH 3 ) 2 MeCl 4 were ordered in the scheme of a 'family tree'. Taking (CH 3 NH 3 ) 2 MnCl 4 as an example, various experimental investigations incorporated neutron diffraction are reported. They lead to a sequence of phase transitions. For these phase transitions a model is developed based on the orientations of the CH 3 NH 3 dump-bell molecules and their interactions with the [MnCl 6 ] layers. (orig./HPOE) [de

  8. Unique reactivity of Fe nanoparticles-defective graphene composites toward NH x (x = 0, 1, 2, 3) adsorption: A first-principles study

    KAUST Repository

    Liu, Xin

    2012-01-01

    We investigated the electronic structure of Fe nanoparticle-graphene composites and the impact of the interfacial interaction on NH x (x = 0, 1, 2, 3) adsorption by first-principles based calculations. We found that Fe 13 nanoparticles can be stabilized by the sp 2 dangling bonds on single vacancy graphene substrate with a binding energy up to -7.07 eV. This interaction not only deformed the carbon atoms around the defect and gave rise to the stability of the Fe nanoparticle against sintering, but also had significant impact on the adsorption of NH x that is related to the catalytic performance of these composites in NH 3 decomposition. Doping of the single vacancy graphene with N or B can finely tune the adsorption of NH x. Further analysis revealed that the calculated adsorption energies of NH x on these composites correlated well with the shift of the average d-band center of the Fe nanoparticles and they were around the peak of the activity-adsorption energy curve for NH 3 decomposition catalysts, especially when doped with B. The optimal adsorption of NH x on Fe nanoparticles deposited on boron-doped defective graphene suggests the possible high stability and superior catalytic performance of these composites in the low-temperature catalytic decomposition of NH 3. This journal is © 2012 the Owner Societies.

  9. DFT Study of PH3 Physisorption and Chemisorptions on Boron Nitride Nanotubes

    Science.gov (United States)

    Rakhshi, Mahdi; Mohsennia, Mohsen; Rasa, Hossein

    2018-03-01

    The adsorption of PH3 molecules on the NiB,N-doped(4,4) and (5,5) BNNTS surfaces has been investigated using density functional theory (DFT). The adsorption energies, geometric and electronic structures of the adsorbed systems were studied to judge the possible application of NiB,N-doped BNNTS in PH3 monitoring systems. Our calculated results showed that NiB,N-doped BNNTS had much higher adsorption energy and shorter binding distances than pure BNNTS owning to chemisorptions of the PH3 molecule. The obtained density of states (DOS) and frontier orbitals demonstrated that the orbital hybridization was obvious between the PH3 molecule and NiB,N-doped BNNTS. However, due to weak physisorption according to the total electron density maps, there was no evidence for hybridization between PH3 molecule and pure BNNTS. It was shown that after doping of Ni atom, the primary symmetry of BNNTS decreased which enhanced the chemical activity of BNNTS towards PH3 molecules. According to the obtained results, we highlight the high potential application of NiB,N-doped BNNTS in the design and fabrication of PH3 sensing devices.

  10. Blue- and red-shifts of V2O5 phonons in NH3 environment by in situ Raman spectroscopy

    Science.gov (United States)

    Adeleke Akande, Amos; Machatine, Augusto Goncalo Jose; Masina, Bathusile; Chimowa, George; Matsoso, Boitumelo; Roro, Kittessa; Duvenhage, Mart-Mari; Swart, Hendrik; Bandyopadhyay, Jayita; Sinha Ray, Suprakas; Wakufwa Mwakikunga, Bonex

    2018-01-01

    A layer of ~30 nm V2O5/100 nm-SiO2 on Si was employed in the in situ Raman spectroscopy in the presence of NH3 effluent from a thermal decomposition of ammonium acetate salt with the salt heated at 100 °C. When the layer is placed at 25 °C, we observe a reversible red-shift of 194 cm-1 V2O5 phonon by 2 cm-1 upon NH3 gas injection to saturation, as well as a reversible blue-shift of the 996 cm-1 by 4 cm-1 upon NH3 injection. However when the sensing layer is placed at 100 °C, the 194 cm-1 remains un-shifted while the 996 cm-1 phonon is red-shifted. There is a decrease/increase in intensity of the 145 cm-1 phonon at 25 °C/100 °C when NH3 interacts with V2O5 surface. Using the traditional and quantitative gas sensor tester system, we find that the V2O5 sensor at 25 °C responds faster than at 100 °C up to 20 ppm of NH3 beyond which it responds faster at 100 °C than at 25 °C. Overall rankings of the NH3 gas sensing features between the two techniques showed that the in situ Raman spectroscopy is faster in response compared with the traditional chemi-resistive tester. Hooke’s law, phonon confinement in ~51 nm globular particles with ~20 nm pore size and physisorption/chemisorption principles have been employed in the explanation of the data presented.

  11. The preliminary results of the diagnosis of pituitary diseases using 13N-NH3 PET dynamic imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; Chen Hongmei; Yang Huazhang; Tang Anwu; Qiao Suixian

    2002-01-01

    Objective: To preliminarily evaluate the value of 13 N-NH 3 PET dynamic imaging for the diagnosis of pituitary diseases. Methods: The 13 N-NH 3 PET dynamic imaging was performed on 2 patients with pituitary microadenoma and one patient with hypopituitarism, the diagnoses were confirmed by MRI, levels of relative endocrine hormones in blood and clinical presentations. Results: In 2 patients with pituitary microadenoma, the pituitaries were seen in 20 and 30 s after the internal carotid was seen in the dynamic PET images, the upper margins of pituitaries were convex, the heights were 1.75 cm and 1.62 cm, the standard uptake values (SUVs) of pituitaries were 3.96 and 3.28, and the radioactivity ratio of pituitary to thalamus were 1.58 and 1.27. In the patient with hypopituitarism, the pituitary was seen at 3 min after the image of the internal carotid, the image of pituitary was smaller than the normal ones (0.82 cm x 0.83 cm x 1.03 cm), the SUV of pituitary was 1.48, and the radioactivity ratio of pituitary to thalamus was 0.64. Conclusion: The 13 N-NH 3 PET dynamic imaging is useful in diagnosing pituitary microadenoma and hypopituitarism

  12. Quantifying emissions of NH3 and NOx from Agricultural Sources and Biomass Burning using SOF

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Dix, B. K.

    2017-12-01

    Column measurements of trace gas absorption along the direct solar beam present a powerful yet underused approach to quantify emission fluxes from area sources. The University of Colorado Solar Occultation Flux (CU SOF) instrument (Kille et al., 2017, AMT, doi:10.5194/amt-10-373-2017) features a solar tracker that is self-positioning for use from mobile platforms that are in motion (Baidar et al., 2016, AMT, doi: 10.5194/amt-9-963-2016). This enables the use from research aircraft, as well as the deployment under broken cloud conditions, while making efficient use of aircraft time. First airborne SOF measurements have been demonstrated recently, and we discuss applications to study emissions from biomass burning using aircraft, and to study primary emissions of ammonia and nitrogen oxides (= NO + NO2) from area sources such as concentrated animal feeding operations (CAFO). SOF detects gases in the open atmosphere (no inlets), does not require access to the source, and provides results in units that can be directly compared with emission inventories. The method of emission quantification is relatively straightforward. During FRAPPE (Front Range Air Pollution and Photochemistry Experiment) in Colorado in 2014, we measured emission fluxes of NH3, and NOx from CAFO, quantifying the emissions from 61400 of the 535766 cattle in Weld County, CO (11.4% of the cattle population). We find that NH3 emissions from dairy and cattle farms are similar after normalization by the number of cattle, i.e., we find emission factors, EF, of 11.8 ± 2.0 gNH3/h/head for the studied CAFOs; these EFs are at the upper end of reported values. Results are compared to daytime NEI emissions for case study days. Furthermore, biologically active soils are found to be a strong source of NOx. The NOx sources account for 1.2% of the N-flux (i.e., NH3), and can be competitive with other NOx sources in Weld, CO. The added NOx is particularly relevant in remote regions, where O3 formation and oxidative

  13. A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation.

    Science.gov (United States)

    Yang, Linfen; Liu, Bin; Liu, Tongyao; Ma, Xinlong; Li, Hao; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2017-04-03

    In this study, a series of hybrid nanostructured photocatalysts P25/(NH 4 ) x WO 3 nanocomposites with the average crystallite size of P25 and (NH 4 ) x WO 3 of the sample was calculated to be about 30 nm and 130 nm, were successfully synthesized via a simple one-step hydrothermal method. The as-obtained samples was characterized by transmission electron microscopy (TEM), which implies that the P25/(NH 4 ) x WO 3 nanocomposites are fabricated with favourable nanosizd interfacial. The XPS results confirmed that the obtained sample consists of mixed chemical valences of W 5+ and W 6+ , the low-valance W 5+ sites could be the origin of NIR absorption. As revealed by optical absorption results, P25/(NH 4 ) x WO 3 nanocomposites possess high optical absorption in the whole solar spectrum of 200-2500 nm. Benefiting from this unique photo-absorption property and the synergistic effect of P25 and (NH 4 ) x WO 3 , broad spectrum response photocatalytic activities covering UV, visible and near infrared regions on degradation of Rhodamine B have been realized by P25/(NH 4 ) x WO 3 nanocomposites. Meanwhile, the stability of photocatalysts was examined by the XRD and XPS of the photocatalysts after the reaction. The results show that P25/(NH 4 ) x WO 3 photocatalysts has a brilliant application prospect in the energy utilization to solve deteriorating environmental issues.

  14. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.

    Science.gov (United States)

    Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S

    2007-12-01

    We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.

  15. Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

    Science.gov (United States)

    Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P

    2017-06-01

    Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring

    Science.gov (United States)

    Huang, Yu; Wieck, Lucas; Tao, Shiquan

    2013-02-01

    Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.

  17. Co-adsorption of NH3 and SO2 on quartz(0 0 0 1): Formation of a stabilized complex

    NARCIS (Netherlands)

    Grecea, M.L.; Gleeson, M.A.; van Schaik, W.; Kleyn, A.W.; Bijkerk, F.

    2011-01-01

    We have investigated the co-adsorption of NH3 and SO2 on the quartz(0 0 0 1) surface by TPD and RAIRS. A surface complex is formed as a result of various relative exposures of NH3 and SO2, irrespective of dosage order. However, the relative molecular composition of the complex is dependent on the

  18. Free NH3 quantum rotations in Hofmann clathrates: structure factors and line widths studied by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Sobolev, O.; Vorderwisch, P.; Desmedt, A.

    2005-01-01

    Quantum rotations of NH 3 groups in Hofmann clathrates Ni-Ni-C 6 H 6 and Ni-Ni-C 12 H 10 have been studied using inelastic neutron scattering. Calculations of the dynamical structure factor for a free uniaxial quantum rotor reproduce the neutron scattering data with respect to their Q- and T-dependence as well as the relative intensities for the 0 → 1, 0 → 2 and 1 → 2 transitions. Though the effective NH 3 rotation constant is different from the gas phase value, the effective radius of rotation (i.e., the average distance of protons from the rotation axis) is equal or very close to the geometrical value r = 0.94 A for a NH 3 group. Comparing the experimental data with the calculated dynamical structure factor for the 0 → 3 transition it could be shown, that the corresponding transition line, in contrast to transitions between j = 0,1,2 levels measured so far, has a finite width at T = 0 K

  19. PEGylated (NH4)xWO3 nanorods as efficient and stable multifunctional nanoagents for simultaneous CT imaging and photothermal therapy of tumor.

    Science.gov (United States)

    Macharia, Daniel K; Tian, Qiyun; Chen, Liang; Sun, Yingqi; Yu, Nuo; He, Chuanglong; Wang, Han; Chen, Zhigang

    2017-09-01

    The simultaneous imaging and photothermal therapy of tumors have attracted much attention, and a prerequisite is to obtain multifunctional nanomaterials. Ideally, one kind of nanoparticles with single component can be used as both imaging agent and photothermal agent. Herein, we have developed the PEGylated (NH 4 ) x WO 3 (denoted as (NH 4 ) x WO 3 -PEG) nanorods as multifunctional nanoparticles with single semiconductor component. (NH 4 ) x WO 3 -PEG nanorods with about 30nm diameter and length of several hundred nanometers have been obtained through a solvothermal synthesis-PEGylation two-step route. Under the irradiation of 980-nm laser with intensity of 0.72Wcm -2 , aqueous dispersion of (NH 4 ) x WO 3 -PEG nanorods (0.67-5.44mmol/L) displays high elevation (17.6-34.5°C) of temperature in 400s, accompanied by an excellent long-term photothermal stability. Furthermore, (NH 4 ) x WO 3 -PEG nanorods exhibit as high as 6 times X-ray attenuation ability compared to that of the clinically used iodine-based X-ray computed tomography (CT) contrast agent (Iopromide). More importantly, after PBS solution of (NH 4 ) x WO 3 -PEG nanorods is injected into the tumor of mice, the tumor can be effectively detected by CT imaging. Moreover, cancer cells in vivo can be further destroyed by the photothermal effects of (NH 4 ) x WO 3 -PEG nanorods, under the irradiation of 980-nm laser with the safe intensity of 0.72Wcm -2 for 10min. Therefore, (NH 4 ) x WO 3 -PEG nanorods can be used as a new kind of stable and efficient multifunctional nanoagent with single component for simultaneous CT imaging and photothermal therapy of tumor. Copyright © 2017. Published by Elsevier B.V.

  20. Effect of Gold (Au) Doping on the Surface of CeO2 Materials Surface Gas Sensor to NH3, CO and HNO3 Detection Sensitivity

    International Nuclear Information System (INIS)

    Sayono; Tjipto Sujitno; Agus Santoso; Sunardi

    2002-01-01

    Research on the effect of various dose and energy of gold ions (1.2 x 10 16 ion/cm 2 , 40 keV; 4.4 x 10 16 ion/cm 2 , 60 keV and 4.6 x 10 16 ion/cm 2 , 80 keV) implanted into CeO 2 thin layer gas sensor has been carried out using ion accelerator. The effect such as their resistance and sensitivity for various temperature and gas sensor such as NH 3 , CO and HNO 3 has been done. It was found that the best resistance and sensitivity was achieved at ion dose 1.2 x 10 16 ion/cm 2 and 40 keV. At this conditions, the resistance was 2.22 MΩ and sensitivity was (70.3 ± 8.38)% for NH 3 ; (45 ± 6.78)% for CO and (30.3 ± 5.5)% for HNO 3 gas, at the sensor temperature of 325 o C and concentration of 4800 ppm. (author)