WorldWideScience

Sample records for ph domain inhibitors

  1. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    Science.gov (United States)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  2. Novel functions of CCM1 delimit the relationship of PTB/PH domains.

    Science.gov (United States)

    Zhang, Jun; Dubey, Pallavi; Padarti, Akhil; Zhang, Aileen; Patel, Rinkal; Patel, Vipulkumar; Cistola, David; Badr, Ahmed

    2017-10-01

    Three NPXY motifs and one FERM domain in CCM1 makes it a versatile scaffold protein for tethering the signaling components together within the CCM signaling complex (CSC). The cellular role of CCM1 protein remains inadequately expounded. Both phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains were recognized as structurally related but functionally distinct domains. By utilizing molecular cloning, protein binding assays and RT-qPCR to identify novel cellular partners of CCM1 and its cellular expression patterns; by screening candidate PTB/PH proteins and subsequently structurally simulation in combining with current X-ray crystallography and NMR data to defined the essential structure of PTB/PH domain for NPXY-binding and the relationship among PTB, PH and FERM domain(s). We identified a group of 28 novel cellular partners of CCM1, all of which contain either PTB or PH domain(s), and developed a novel classification system for these PTB/PH proteins based on their relationship with different NPXY motifs of CCM1. Our results demonstrated that CCM1 has a wide spectrum of binding to different PTB/PH proteins and perpetuates their specificity to interact with certain PTB/PH domains through selective combination of three NPXY motifs. We also demonstrated that CCM1 can be assembled into oligomers through intermolecular interaction between its F3 lobe in FERM domain and one of the three NPXY motifs. Despite being embedded in FERM domain as F3 lobe, F3 module acts as a fully functional PH domain to interact with NPXY motif. The most salient feature of the study was that both PTB and PH domains are structurally and functionally comparable, suggesting that PTB domain is likely evolved from PH domain with polymorphic structural additions at its N-terminus. A new β1A-strand of the PTB domain was discovered and new minimum structural requirement of PTB/PH domain for NPXY motif-binding was determined. Based on our data, a novel theory of structure, function and

  3. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    Science.gov (United States)

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. GRP1 PH Domain, Like AKT1 PH Domain, Possesses a Sentry Glutamate Residue Essential for Specific Targeting to Plasma Membrane PI(3,4,5)P3

    Science.gov (United States)

    Pilling, Carissa; Landgraf, Kyle E.; Falke, Joseph J.

    2011-01-01

    During the appearance of the signaling lipid PI(3,4,5)P3, an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P3-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P2 and bind the rare PI(3,4,5)P3 target lipid with sufficiently high affinity. Our previous study of the E17K mutant of protein kinase B (AKT1) PH domain, together with evidence from Carpten et al (1), revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P2, thereby playing an essential role in specific PI(3,4,5)P3 targeting (2). The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P3-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P2 affinity and constitutive plasma membrane targeting. To test this hypothesis the present study investigates the E345 residue, a putative sentry glutamate, of General Receptor for Phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into GRP1 PH domain enhances PI(4,5)P2 affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P2 releases E345K GRP1 PH domain into the cytoplasm and the efficiency of this release increases when target Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K (1, 3). Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P3-specific binding

  5. Probing SH2-domains using Inhibitor Affinity Purification (IAP).

    Science.gov (United States)

    Höfener, Michael; Heinzlmeir, Stephanie; Kuster, Bernhard; Sewald, Norbert

    2014-01-01

    Many human diseases are correlated with the dysregulation of signal transduction processes. One of the most important protein interaction domains in the context of signal transduction is the Src homology 2 (SH2) domain that binds phosphotyrosine residues. Hence, appropriate methods for the investigation of SH2 proteins are indispensable in diagnostics and medicinal chemistry. Therefore, an affinity resin for the enrichment of all SH2 proteins in one experiment would be desirable. However, current methods are unable to address all SH2 proteins simultaneously with a single compound or a small array of compounds. In order to overcome these limitations for the investigation of this particular protein family in future experiments, a dipeptide-derived probe has been designed, synthesized and evaluated. This probe successfully enriched 22 SH2 proteins from mixed cell lysates which contained 50 SH2 proteins. Further characterization of the SH2 binding properties of the probe using depletion and competition experiments indicated its ability to enrich complexes consisting of SH2 domain bearing regulatory PI3K subunits and catalytic phosphoinositide 3-kinase (PI3K) subunits that have no SH2 domain. The results make this probe a promising starting point for the development of a mixed affinity resin with complete SH2 protein coverage. Moreover, the additional findings render it a valuable tool for the evaluation of PI3K complex interrupting inhibitors.

  6. Solution structure of the Grb2 SH2 domain complexed with a high-affinity inhibitor

    International Nuclear Information System (INIS)

    Ogura, Kenji; Shiga, Takanori; Yokochi, Masashi; Yuzawa, Satoru; Burke, Terrence R.; Inagaki, Fuyuhiko

    2008-01-01

    The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity

  7. Structure of PIN-domain protein PH0500 from Pyrococcus horikoshii

    International Nuclear Information System (INIS)

    Jeyakanthan, Jeyaraman; Inagaki, Eiji; Kuroishi, Chizu; Tahirov, Tahir H.

    2005-01-01

    The structure of P. horikoshii OT3 protein PH0500 was determined by the multiple anomalous dispersion method and refined in two crystal forms. The protein is a dimer and has a PIN-domain fold. The Pyrococcus horikoshii OT3 protein PH0500 is highly conserved within the Pyrococcus genus of hyperthermophilic archaea and shows low amino-acid sequence similarity with a family of PIN-domain proteins. The protein has been expressed, purified and crystallized in two crystal forms: PH0500-I and PH0500-II. The structure was determined at 2.0 Å by the multiple anomalous dispersion method using a selenomethionyl derivative of crystal form PH0500-I (PH0500-I-Se). The structure of PH0500-I has been refined at 1.75 Å resolution to an R factor of 20.9% and the structure of PH0500-II has been refined at 2.0 Å resolution to an R factor of 23.4%. In both crystal forms as well as in solution the molecule appears to be a dimer. Searches of the databases for protein-fold similarities confirmed that the PH0500 protein is a PIN-domain protein with possible exonuclease activity and involvement in DNA or RNA editing

  8. Novel inhibitors induce large conformational changes of GAB1 pleckstrin homology domain and kill breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2015-01-01

    Full Text Available The Grb2-associated binding protein 1 (GAB1 integrates signals from different signaling pathways and is over-expressed in many cancers, therefore representing a new therapeutic target. In the present study, we aim to target the pleckstrin homology (PH domain of GAB1 for cancer treatment. Using homology models we derived, high-throughput virtual screening of five million compounds resulted in five hits which exhibited strong binding affinities to GAB1 PH domain. Our prediction of ligand binding affinities is also in agreement with the experimental KD values. Furthermore, molecular dynamics studies showed that GAB1 PH domain underwent large conformational changes upon ligand binding. Moreover, these hits inhibited the phosphorylation of GAB1 and demonstrated potent, tumor-specific cytotoxicity against MDA-MB-231 and T47D breast cancer cell lines. This effort represents the discovery of first-in-class GAB1 PH domain inhibitors with potential for targeted breast cancer therapy and provides novel insights into structure-based approaches to targeting this protein.

  9. Characterization of PhPRP1, a histidine domain arabinogalactan protein from Petunia hybrida pistils.

    Science.gov (United States)

    Twomey, Megan C; Brooks, Jenna K; Corey, Jillaine M; Singh-Cundy, Anu

    2013-10-15

    An arabinogalactan protein, PhPRP1, was purified from Petunia hybrida pistils and shown to be orthologous to TTS-1 and TTS-2 from Nicotiana tabacum and NaTTS from Nicotiana alata. Sequence comparisons among these proteins, and CaPRP1 from Capsicum annuum, reveal a conserved histidine-rich domain and two hypervariable domains. Immunoblots show that TTS-1 and PhPRP1 are also expressed in vegetative tissues of tobacco and petunia respectively. In contrast to the molecular mass heterogeneity displayed by the pistil proteins, the different isoforms found in seedlings, roots, and leaves each has a discrete size (37, 80, 160, and 200 kDa) on SDS-PAGE gels. On the basis of their chemistry, distinctive domain architecture, and the unique pattern of expression, we have named this group of proteins HD-AGPs (histidine domain-arabinogalactan proteins). Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.; Devraj, Rajesh V.; Walker, John K.; Devadas, Balekudru; Hope, Heidi R.; Compton, Robert P.; Schindler, John F.; Hirsch, Jeffrey L.; Benson, Alan G.; Kurumbail, Ravi G.; Stegeman, Roderick A.; Williams, Jennifer M.; Broadus, Richard M.; Walden, Zara; Monahan, Joseph B.; Pfizer

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.

  11. The PH Domain of PDK1 Exhibits a Novel, Phospho-Regulated Monomer-Dimer Equilibrium With Important Implications for Kinase Domain Activation: Single Molecule and Ensemble Studies†

    Science.gov (United States)

    Ziemba, Brian P.; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J.

    2013-01-01

    Phosphoinositide-Dependent Kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4-5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric state(s) of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. The present study investigates the binding of purified WT and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single molecule and ensemble measurements. Single molecule analysis of the brightness of fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric, while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single molecule analysis of 2-D diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little protein penetration into the bilayer as observed for other PH domains. The 2-D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that enables greater protein insertion into

  12. Progress towards the development of SH2 domain inhibitors.

    Science.gov (United States)

    Kraskouskaya, Dziyana; Duodu, Eugenia; Arpin, Carolynn C; Gunning, Patrick T

    2013-04-21

    Src homology 2 (SH2) domains are 100 amino acid modular units, which recognize and bind to tyrosyl-phosphorylated peptide sequences on their target proteins, and thereby mediate intracellular protein-protein interactions. This review summarizes the progress towards the development of synthetic agents that disrupt the function of the SH2 domains in different proteins as well as the clinical relevance of targeting a specific SH2 domain. Since 1986, SH2 domains have been identified in over 110 human proteins, including kinases, transcription factors, and adaptor proteins. A number of these proteins are over-activated in many diseases, including cancer, and their function is highly dependent on their SH2 domain. Thus, inhibition of a protein's function through disrupting that of its SH2 domain has emerged as a promising approach towards the development of novel therapeutic modalities. Although targeting the SH2 domain is a challenging task in molecular recognition, the progress reported here demonstrates the feasibility of such an approach.

  13. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  14. Multiscale Simulations Suggest a Mechanism for the Association of the Dok7 PH Domain with PIP-Containing Membranes.

    Directory of Open Access Journals (Sweden)

    Amanda Buyan

    2016-07-01

    Full Text Available Dok7 is a peripheral membrane protein that is associated with the MuSK receptor tyrosine kinase. Formation of the Dok7/MuSK/membrane complex is required for the activation of MuSK. This is a key step in the complex exchange of signals between neuron and muscle, which lead to neuromuscular junction formation, dysfunction of which is associated with congenital myasthenic syndromes. The Dok7 structure consists of a Pleckstrin Homology (PH domain and a Phosphotyrosine Binding (PTB domain. The mechanism of the Dok7 association with the membrane remains largely unknown. Using multi-scale molecular dynamics simulations we have explored the formation of the Dok7 PH/membrane complex. Our simulations indicate that the PH domain of Dok7 associates with membranes containing phosphatidylinositol phosphates (PIPs via interactions of the β1/β2, β3/β4, and β5/β6 loops, which together form a positively charged surface on the PH domain and interact with the negatively charged headgroups of PIP molecules. The initial encounter of the Dok7 PH domain is followed by formation of additional interactions with the lipid bilayer, and especially with PIP molecules, which stabilizes the Dok7 PH/membrane complex. We have quantified the binding of the PH domain to the model bilayers by calculating a density landscape for protein/membrane interactions. Detailed analysis of the PH/PIP interactions reveal both a canonical and an atypical site to be occupied by the anionic lipid. PH domain binding leads to local clustering of PIP molecules in the bilayer. Association of the Dok7 PH domain with PIP lipids is therefore seen as a key step in localization of Dok7 to the membrane and formation of a complex with MuSK.

  15. Effect of diphtheria toxin T-domain on endosomal pH

    Directory of Open Access Journals (Sweden)

    A. J. Labyntsev

    2015-08-01

    Full Text Available A key step in the mode of cytotoxic action of diphtheria toxin (DT is the transfer of its catalytic domain (Cd from endosomes into the cytosol. The main activity in this process is performed by the transport domain (Td, but the molecular mechanism of its action remains unknown. We have previously shown that Td can have some influence on the endosomal transport of DT. The aim of this work was to study the effect of diphtheria toxin on the toxin compartmentalization in the intracellular transporting pathway and endosomal pH. We used recombinant fragments of DT, which differed only by the presence of Td in their structure, fused with fluorescent proteins. It was shown that the toxin fragment with Td moved slower by the pathway early-late endosomes-lysosomes, and had a slightly different pattern of colocalization with endosomal markers than DT fragment without Td. In addition, endosomes containing DT fragments with Td had a constant pH of about 6.5 from the 10th to 50th minute of observation, for the same time endosomes containing DT fragments without Td demons­trated a decrease in pH from 6.3 to 5.5. These results indicate that Td inhibits acidification of endosomal medium. One of possible explanations for this may be the effect of the ion channel formed by the T-domain on the process of the endosomal acidification. This property of Td may not only inhibit maturation of endosomes but also inhibit activation of endosomal pH-dependent proteases, and this promotes successful transport of Cd into the cell cytosol.

  16. Aromatic amino acids and their relevance in the specificity of the PH domain

    Czech Academy of Sciences Publication Activity Database

    Morales, J.; Sobol, Margaryta; Rodriguez-Zapata, L.C.; Hozák, Pavel; Castano, E.

    2017-01-01

    Roč. 30, č. 12 (2017), č. článku e2649. ISSN 0952-3499 R&D Projects: GA TA ČR(CZ) TE01020118; GA ČR GAP305/11/2232; GA ČR GA16-03346S; GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : PH domain * Phosphatidic acid * Phosphoinositides Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.175, year: 2016

  17. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    Science.gov (United States)

    Kadamur, Ganesh

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154

  18. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site.

    Science.gov (United States)

    Kadamur, Ganesh; Ross, Elliott M

    2016-05-20

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. H3S10ph broadly marks early-replicating domains in interphase ESCs and shows reciprocal antagonism with H3K9me2.

    Science.gov (United States)

    Chen, Carol C L; Goyal, Preeti; Karimi, Mohammad M; Abildgaard, Marie H; Kimura, Hiroshi; Lorincz, Matthew C

    2018-01-01

    Phosphorylation of histone H3 at serine 10 (H3S10ph) by Aurora kinases plays an important role in mitosis; however, H3S10ph also marks regulatory regions of inducible genes in interphase mammalian cells, implicating mitosis-independent functions. Using the fluorescent ubiquitin-mediated cell cycle indicator (FUCCI), we found that 30% of the genome in interphase mouse embryonic stem cells (ESCs) is marked with H3S10ph. H3S10ph broadly demarcates gene-rich regions in G1 and is positively correlated with domains of early DNA replication timing (RT) but negatively correlated with H3K9me2 and lamin-associated domains (LADs). Consistent with mitosis-independent kinase activity, this pattern was preserved in ESCs treated with Hesperadin, a potent inhibitor of Aurora B/C kinases. Disruption of H3S10ph by expression of nonphosphorylatable H3.3S10A results in ectopic spreading of H3K9me2 into adjacent euchromatic regions, mimicking the phenotype observed in Drosophila JIL-1 kinase mutants . Conversely, interphase H3S10ph domains expand in Ehmt1 (also known as Glp ) null ESCs, revealing that H3S10ph deposition is restricted by H3K9me2. Strikingly, spreading of H3S10ph at RT transition regions (TTRs) is accompanied by aberrant transcription initiation of genes co-oriented with the replication fork in Ehmt1 -/- and Ehmt2 -/- ESCs, indicating that establishment of repressive chromatin on the leading strand following DNA synthesis may depend upon these lysine methyltransferases. H3S10ph is also anti-correlated with H3K9me2 in interphase murine embryonic fibroblasts (MEFs) and is restricted to intragenic regions of actively transcribing genes by EHMT2. Taken together, these observations reveal that H3S10ph may play a general role in restricting the spreading of repressive chromatin in interphase mammalian cells. © 2018 Chen et al.; Published by Cold Spring Harbor Laboratory Press.

  20. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3).

    Science.gov (United States)

    Pilling, Carissa; Landgraf, Kyle E; Falke, Joseph J

    2011-11-15

    During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al

  1. Finding a needle in a haystack: the role of electrostatics in target lipid recognition by PH domains.

    Directory of Open Access Journals (Sweden)

    Craig N Lumb

    Full Text Available Interactions between protein domains and lipid molecules play key roles in controlling cell membrane signalling and trafficking. The pleckstrin homology (PH domain is one of the most widespread, binding specifically to phosphatidylinositol phosphates (PIPs in cell membranes. PH domains must locate specific PIPs in the presence of a background of approximately 20% anionic lipids within the cytoplasmic leaflet of the plasma membrane. We investigate the mechanism of such recognition via a multiscale procedure combining Brownian dynamics (BD and molecular dynamics (MD simulations of the GRP1 PH domain interacting with phosphatidylinositol (3,4,5-trisphosphate (PI(3,4,5P₃. The interaction of GRP1-PH with PI(3,4,5P₃ in a zwitterionic bilayer is compared with the interaction in bilayers containing different levels of anionic 'decoy' lipids. BD simulations reveal both translational and orientational electrostatic steering of the PH domain towards the PI(3,4,5P₃-containing anionic bilayer surface. There is a payoff between non-PIP anionic lipids attracting the PH domain to the bilayer surface in a favourable orientation and their role as 'decoys', disrupting the interaction of GRP1-PH with the PI(3,4,5P₃ molecule. Significantly, approximately 20% anionic lipid in the cytoplasmic leaflet of the bilayer is nearly optimal to both enhance orientational steering and to localise GRP1-PH proximal to the surface of the membrane without sacrificing its ability to locate PI(3,4,5P₃ within the bilayer plane. Subsequent MD simulations reveal binding to PI(3,4,5P₃, forming protein-phosphate contacts comparable to those in X-ray structures. These studies demonstrate a computational framework which addresses lipid recognition within a cell membrane environment, offering a link between structural and cell biological characterisation.

  2. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Donghoon M Lee

    Full Text Available The recruitment of GDP/GTP exchange factors (GEFs to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  3. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    OpenAIRE

    Kadamur, Ganesh; Ross, Elliott M.

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in...

  4. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.

    Science.gov (United States)

    Corradi, Hazel R; Schwager, Sylva L U; Nchinda, Aloysius T; Sturrock, Edward D; Acharya, K Ravi

    2006-03-31

    Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.

  5. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity.

    Directory of Open Access Journals (Sweden)

    Kyle E Roberts

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR is an epithelial chloride channel mutated in patients with cystic fibrosis (CF. The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors", but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL, which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers" that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01 binds six-fold more tightly than the previous best hexamer (iCAL35, and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.

  6. Effect of pH on the Structure and DNA Binding of the FOXP2 Forkhead Domain.

    Science.gov (United States)

    Blane, Ashleigh; Fanucchi, Sylvia

    2015-06-30

    Forkhead box P2 (FOXP2) is a transcription factor expressed in cardiovascular, intestinal, and neural tissues during embryonic development and is implicated in language development. FOXP2 like other FOX proteins contains a DNA binding domain known as the forkhead domain (FHD). The FHD interacts with DNA by inserting helix 3 into the major groove. One of these DNA-protein interactions is a direct hydrogen bond that is formed with His554. FOXP2 is localized in the nuclear compartment that has a pH of 7.5. Histidine contains an imidazole side chain in which the amino group typically has a pKa of ~6.5. It seems possible that pH fluctuations around 6.5 may result in changes in the protonation state of His554 and thus the ability of the FOXP2 FHD to bind DNA. To investigate the effect of pH on the FHD, both the structure and the binding affinity were studied in the pH range of 5-9. This was done in the presence and absence of DNA. The structure was assessed using size exclusion chromatography, far-UV circular dichroism, and intrinsic and extrinsic fluorescence. The results indicated that while pH did not affect the secondary structure in the presence or absence of DNA, the tertiary structure was pH sensitive and the protein was less compact at low pH. Furthermore, the presence of DNA caused the protein to become more compact at low pH and also had the potential to increase the dimerization propensity. Fluorescence anisotropy was used to investigate the effect of pH on the FOXP2 FHD DNA binding affinity. It was found that pH had a direct effect on binding affinity. This was attributed to the altered hydrogen bonding patterns upon protonation or deprotonation of His554. These results could implicate pH as a means of regulating transcription by the FOXP2 FHD, which may also have repercussions for the behavior of this protein in cancer cells.

  7. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.

    Science.gov (United States)

    Brewer, Frances K; Follit, Courtney A; Vogel, Pia D; Wise, John G

    2014-12-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  8. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies.

    Science.gov (United States)

    Ziemba, Brian P; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J

    2013-07-16

    Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows

  9. Contribution of Kunitz protease inhibitor and transmembrane domains to amyloid precursor protein homodimerization.

    Science.gov (United States)

    Ben Khalifa, N; Tyteca, D; Courtoy, P J; Renauld, J C; Constantinescu, S N; Octave, J N; Kienlen-Campard, P

    2012-01-01

    The two major isoforms of the human amyloid precursor protein (APP) are APP695 and APP751. They differ by the insertion of a Kunitz-type protease inhibitor (KPI) sequence in the extracellular domain of APP751. APP-KPI isoforms are increased in Alzheimer's disease brains, and they could be associated with disease progression. Recent studies have shown that APP processing to Aβ is regulated by homodimerization, which involves both extracellular and juxtamembrane/transmembrane (JM/TM) regions. Our aim is to understand the mechanisms controlling APP dimerization and the contribution of the ectodomain and JM/TM regions to this process. We used bimolecular fluorescence complementation approaches coupled to fluorescence-activated cell sorting analysis to measure the dimerization level of different APP isoforms and APP C-terminal fragments (C99) mutated in their JM/TM region. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain of APP or C99 did not significantly affect fluorescence complementation. These findings indicate that the KPI domain plays a major role in APP dimerization. They set the basis for further investigation of the relation between dimerization, metabolism and function of APP. Copyright © 2012 S. Karger AG, Basel.

  10. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. (c) 2010 Wiley Periodicals, Inc.

  11. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    Science.gov (United States)

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  12. [How aliphatic alcohols and ph affect reactional capability of the horse blood serum cholinesterase at its interaction with organophosphorus inhibitors].

    Science.gov (United States)

    Basova, N E; Kormilitsin, B N; Perchenok, A Iu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2013-01-01

    There was studied action of aliphatic alcohols (ethanol, propanol, isopropanol, n-butanol, isobutanol, secbutanol, tretbetanol) and pH on various kinds of reactional capability the serum cholinesterase. At the alcohols-affected inhibition of the cholinesterase hydrolytic activity, the determining role was played not the total number carbon atoms in the alcohol molecule, but by the "effective length" of the carbohydrate chain. The fact that the presence of alcohols did not affect parameters of the reverse cholinesterase inhibition with onium ions tetramethylammonium and choline allows suggesting the absence of effect solvents on specific acetylcholine sorption in the enzyme active center. With aid of two rows of hydrophobic organophosphorus inhibitors (OPI), we have managed to estimate both the degree and the character itself of the modifying action of alcohols and pH on the process of irreversible inhibition of serum cholinesterase.

  13. INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity.

    Science.gov (United States)

    Yokota, Asumi; Kimura, Shinya; Masuda, Satohiro; Ashihara, Eishi; Kuroda, Junya; Sato, Kiyoshi; Kamitsuji, Yuri; Kawata, Eri; Deguchi, Yasuyuki; Urasaki, Yoshimasa; Terui, Yasuhito; Ruthardt, Martin; Ueda, Takanori; Hatake, Kiyohiko; Inui, Ken-ichi; Maekawa, Taira

    2007-01-01

    Central nervous system (CNS) relapse accompanying the prolonged administration of imatinib mesylate has recently become apparent as an impediment to the therapy of Philadelphia chromosome-positive (Ph+) leukemia. CNS relapse may be explained by limited penetration of imatinib mesylate into the cerebrospinal fluid because of the presence of P-glycoprotein at the blood-brain barrier. To overcome imatinib mesylate-resistance mechanisms such as bcr-abl amplification, mutations within the ABL kinase domain, and activation of Lyn, we developed a dual BCR-ABL/Lyn inhibitor, INNO-406 (formerly NS-187), which is 25 to 55 times more potent than imatinib mesylate in vitro and at least 10 times more potent in vivo. The aim of this study was to investigate the efficacy of INNO-406 in treating CNS Ph+ leukemia. We found that INNO-406, like imatinib mesylate, is a substrate for P-glycoprotein. The concentrations of INNO-406 in the CNS were about 10% of those in the plasma. However, this residual concentration was enough to inhibit the growth of Ph+ leukemic cells which expressed not only wild-type but also mutated BCR-ABL in the murine CNS. Furthermore, cyclosporine A, a P-glycoprotein inhibitor, augmented the in vivo activity of INNO-406 against CNS Ph+ leukemia. These findings indicate that INNO-406 is a promising agent for the treatment of CNS Ph+ leukemia.

  14. The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Ammar, Mohamed Raafet; Erard, Marie; Amar, Muriel; Moreau, Alexandre W; Fossier, Philippe; Gleize, Vincent; Vitale, Nicolas; Morel, Nicolas

    2013-10-28

    Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1-V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading.

  15. A fluorescence polarization based screening assay for identification of small molecule inhibitors of the PICK1 PDZ domain

    DEFF Research Database (Denmark)

    Thorsen, Thor S; Madsen, Kenneth L; Dyhring, Tino

    2011-01-01

    PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ...

  16. Pro-domain removal in ASP-2 and the cleavage of the amyloid precursor are influenced by pH

    Directory of Open Access Journals (Sweden)

    Austen Brian

    2002-08-01

    Full Text Available Abstract Background One of the signatures of Alzheimer's disease is the accumulation of aggregated amyloid protein, Aβ, in the brain. Aβ arises from cleavage of the Amyloid Precursor protein by β and γ secretases, which present attractive candidates for therapeutic targeting. Two β-secretase candidates, ASP-1 and ASP-2, were identified as aspartic proteases, both of which cleave the amyloid precursor at the β-site. These are produced as immature transmembrane proteins containing a pro-segment. Results ASP-2 expressed in HEK293-cells cleaved the Swedish mutant amyloid precursor at different β-sites at different pHs in vitro. Recent reports show that furin cleaves the pro-peptide of ASP-2, whereas ASP-1 undergoes auto-catalysis. We show that purified recombinant ASP-2 cleaves its own pro-peptide at ph 5 but not pH 8.5 as seen by mass spectrometry, electrophoresis and N-terminal sequencing. Conclusion We suggest that ASP-2 processing as well as activity are influenced by pH, and hence the cellular localisation of the protein may have profound effects on the production of Aβ. These factors should be taken into consideration in the design of potential inhibitors for these enzymes.

  17. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  18. The Role of Factor XIa (FXIa) Catalytic Domain Exosite Residues in Substrate Catalysis and Inhibition by the Kunitz Protease Inhibitor Domain of Protease Nexin 2*

    Science.gov (United States)

    Su, Ya-Chi; Miller, Tara N.; Navaneetham, Duraiswamy; Schoonmaker, Robert T.; Sinha, Dipali; Walsh, Peter N.

    2011-01-01

    To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu98, Tyr143, Ile151, Arg3704, Lys192, and Tyr5901) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal Km values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of kcat for S-2366 hydrolysis. All six Ala mutants displayed deficient kcat values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of Ki except for K192A, and Y5901A, which displayed increased values of Ki. The integrity of the S1 binding site residue, Asp189, utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr143, Ile151, Arg3704, and Tyr5901) are important for S-2366 hydrolysis; Glu98 and Lys192 are essential for FIX but not S-2366 hydrolysis; and Lys192 and Tyr5901 are required for both inhibitor and macromolecular substrate interactions. PMID:21778227

  19. Characterization of the PB2 Cap Binding Domain Accelerates Inhibitor Design

    Directory of Open Access Journals (Sweden)

    Amanda E. Constantinides

    2018-01-01

    Full Text Available X-ray crystallographic structural determinations of the PB2 cap binding domain (PB2cap have improved the conformational characterization of the RNA-dependent RNA polymerase machinery (PA, PB2, and PB1 of the influenza virus. Geometrically, the catalytic PB1 subunit resembles the palm of a human hand. PA lies near the thumb region, and PB2 lies near the finger region. PB2 binds the cap moiety in the pre-mRNA of the host cell, while the endonuclease of PA cleaves the pre-mRNA 10–13 nucleotides downstream. The truncated RNA piece performs as a primer for PB1 to synthesize the viral mRNA. Precisely targeting PB2cap with a small molecule inhibitor will halt viral proliferation via interference of the cap-snatching activity. Wild-type and mutant PB2cap from A/California/07/2009 H1N1 were expressed in Escherichia coli, purified by nickel affinity and size exclusion chromatography, crystallized, and subjected to X-ray diffraction experiments. The crystal of mutant PB2cap liganded with m7GTP was prepared by co-crystallization. Structures were solved by the molecular replacement method, refined, and deposited in the Protein Data Bank (PDB. Structural determination and comparative analyses of these structures revealed the functions of Glu361, Lys376, His357, Phe404, Phe323, Lys339, His432, Asn429, Gln406, and Met401 in PB2cap, and the dissociation of the influenza A PB2cap C-terminal subdomain (residues 446–479 upon ligand binding. Understanding the role of these residues will aid in the ultimate development of a small-molecule inhibitor that binds both Influenza A and B virus PB2cap.

  20. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    Science.gov (United States)

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  1. Time esophageal pH < 4 overestimates the prevalence of pathologic esophageal reflux in subjects with gastroesophageal reflux disease treated with proton pump inhibitors

    Directory of Open Access Journals (Sweden)

    Sloan Sheldon

    2008-05-01

    Full Text Available Abstract Background A Stanford University study reported that in asymptomatic GERD patients who were being treated with a proton pump inhibitor (PPI, 50% had pathologic esophageal acid exposure. Aim We considered the possibility that the high prevalence of pathologic esophageal reflux might simply have resulted from calculating acidity as time pH Methods We calculated integrated acidity and time pH Results The prevalence of pathologic 24-hour esophageal reflux in both studies was significantly higher when measured as time pH Conclusion In GERD subjects treated with a PPI, measuring time esophageal pH

  2. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase.

    Science.gov (United States)

    Gajiwala, Ketan S; Grodsky, Neil; Bolaños, Ben; Feng, Junli; Ferre, RoseAnn; Timofeevski, Sergei; Xu, Meirong; Murray, Brion W; Johnson, Ted W; Stewart, Al

    2017-09-22

    The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  4. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    International Nuclear Information System (INIS)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-01-01

    Highlights: ► APPL1 regulates the protein level of EGFR in response to EGF stimulation. ► Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. ► Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  5. Characteristics and mutation analysis of Ph-positive leukemia patients with T315I mutation receiving tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Xu PP

    2017-09-01

    Full Text Available Peipei Xu,1 Dan Guo,2 Xiaoyan Shao,1 Miaoxin Peng,1 Bing Chen2 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, 2Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China Background: TKIs are the first-line treatment for patients with Ph-positive (Ph+ leukemia. However, drug resistance is frequently observed, mainly due to mutations within the breakpoint cluster region-Abelson leukemia virus (BCR-ABL kinase domain. The T315I substitution confers complete resistance to TKIs. The aim of this study was to analyze the clinical characteristics of 17 patients with T315I mutation after TKI treatment and provide a basis for prognosis.Patients and methods: The clinical data of 17 TKI-resistant Ph+ leukemia patients who were found to have a ABL kinase domain mutation from September 2008 to January 2017 were collected. Karyotypes and BCR-ABL fusion gene were analyzed by R-banding and fluorescence in situ hybridization, respectively. Total RNA was extracted by TRIzol reagent, and the ABL kinase domain mutation was detected by direct sequencing.Results: A total of 17 patients reached effective remission including major molecular response and complete cytogenetic response. However, all the patients subsequently developed a T315I mutation after treatment with TKIs. The rate of the BCR-ABL fusion gene in most of the patients who developed the T315I mutation was significantly higher than that before the mutation. At initial diagnosis, patients average platelet count was 149.7×109/L, whereas the average platelet count was only 53.88×109/L after the T315I mutation (P<0.01. The results also showed that the survival time of patients with a high proportion of blast cells or a high number of white blood cells was obviously shortened.Conclusion: Patients platelet count decreased when detected with the T315I mutation compared with the initial

  6. Serine protease inhibitors containing a Kunitz domain: their role in modulation of host inflammatory responses and parasite survival.

    Science.gov (United States)

    de Magalhães, Mariana T Q; Mambelli, Fábio S; Santos, Bruno P O; Morais, Suellen B; Oliveira, Sergio C

    2018-03-31

    Proteins containing a Kunitz domain have the typical serine protease inhibition function ranging from sea anemone to man. Protease inhibitors play major roles in infection, inflammation disorders and cancer. This review discusses the role of serine proteases containing a Kunitz domain in immunomodulation induced by helminth parasites. Helminth parasites are associated with protection from inflammatory conditions. Therefore, interest has raised whether worm parasites or their products hold potential as drugs for treatment of immunological disorders. Finally, we also propose the use of recombinant SmKI-1 from Schistosoma mansoni as a potential therapeutic molecule to treat inflammatory diseases. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain

    Science.gov (United States)

    Mistry, Pragnesh; Laird, Michelle H. W.; Schwarz, Ryan S.; Greene, Shannon; Dyson, Tristan; Snyder, Greg A.; Xiao, Tsan Sam; Chauhan, Jay; Fletcher, Steven; Toshchakov, Vladimir Y.; MacKerell, Alexander D.; Vogel, Stefanie N.

    2015-01-01

    Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein–protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. PMID:25870276

  8. Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Tetsuya, E-mail: t2masuda@kais.kyoto-u.ac.jp [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ohta, Keisuke [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kitabatake, Naofumi [Department of Foods and Human Nutrition, Notre Dame Seishin University, Okayama 700-8516 (Japan); Tani, Fumito [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Structure of a recombinant thaumatin at pH 8.0 determined at a resolution of 1.0 A. Black-Right-Pointing-Pointer Substantial fluctuations of a loop in domain II was found in the structure at pH 8.0. Black-Right-Pointing-Pointer B-factors for Lys137, Lys163, and Lys187 were significantly affected by pH change. Black-Right-Pointing-Pointer An increase in mobility might play an important role in the heat-induced aggregation. -- Abstract: Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at 50 nM. Although the sweetness remains when thaumatin is heated at 80 Degree-Sign C for 4 h under acid conditions, it rapidly declines when heating at a pH above 6.5. To clarify the structural difference at high pH, the atomic structure of a recombinant thaumatin I at pH 8.0 was determined at a resolution of 1.0 A. Comparison to the crystal structure of thaumatin at pH 7.3 and 7.0 revealed the root-mean square deviation value of a C{alpha} atom to be substantially greater in the large disulfide-rich region of domain II, especially residues 154-164, suggesting that a loop region in domain II to be affected by solvent conditions. Furthermore, B-factors of Lys137, Lys163, and Lys187 were significantly affected by pH change, suggesting that a striking increase in the mobility of these lysine residues, which could facilitate a reaction with a free sulfhydryl residue produced via the {beta}-elimination of disulfide bonds by heating at a pH above 7.0. The increase in mobility of lysine residues as well as a loop region in domain II might play an important role in the heat-induced aggregation of thaumatin above pH 7.0.

  9. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation

    Directory of Open Access Journals (Sweden)

    Pero Stephanie C

    2007-09-01

    Full Text Available Abstract Background Human growth factor receptor bound protein 7 (Grb7 is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines. Results As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding. Conclusion Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of

  10. APS, an adaptor molecule containing PH and SH2 domains, has a negative regulatory role in B cell proliferation

    International Nuclear Information System (INIS)

    Iseki, Masanori; Kubo-Akashi, Chiyomi; Kwon, Sang-Mo; Yamaguchi, Akiko; Takatsu, Kiyoshi; Takaki, Satoshi

    2005-01-01

    Adaptor molecule containing PH and SH2 domains (APS) is an intracellular adaptor protein that forms part of an adaptor family along with Lnk and SH2-B. APS transcripts are expressed in various tissues including brain, kidney, and muscle, as well as in splenic B cells but not in T cells. We investigated the functions of APS in B cell development and activation by generating APS-transgenic (APS-Tg) mice that overexpressed APS in lymphocytes. The number of B-1 cells in the peritoneal cavity was reduced in APS-Tg mice, as were B-2 cells in the spleen. B cell development in the bone marrow was partially impaired at the transition stage from proliferating large pre-B to small pre-B cells. B cell proliferation induced by B cell receptor (BCR) crosslinking but not by other B cell mitogens was also impaired in APS-Tg mice. APS co-localized with BCR complexes and filamentous actin in activated APS-Tg B cells. Thus, APS appears to play novel negative regulatory roles in BCR signaling, actin reorganization pathways, and control of compartment sizes of B-lineage cells

  11. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    Science.gov (United States)

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  12. Changes in signal transducer and activator of transcription 3 (STAT3) dynamics induced by complexation with pharmacological inhibitors of Src homology 2 (SH2) domain dimerization.

    Science.gov (United States)

    Resetca, Diana; Haftchenary, Sina; Gunning, Patrick T; Wilson, Derek J

    2014-11-21

    The activity of the transcription factor signal transducer and activator of transcription 3 (STAT3) is dysregulated in a number of hematological and solid malignancies. Development of pharmacological STAT3 Src homology 2 (SH2) domain interaction inhibitors holds great promise for cancer therapy, and a novel class of salicylic acid-based STAT3 dimerization inhibitors that includes orally bioavailable drug candidates has been recently developed. The compounds SF-1-066 and BP-1-102 are predicted to bind to the STAT3 SH2 domain. However, given the highly unstructured and dynamic nature of the SH2 domain, experimental confirmation of this prediction was elusive. We have interrogated the protein-ligand interaction of STAT3 with these small molecule inhibitors by means of time-resolved electrospray ionization hydrogen-deuterium exchange mass spectrometry. Analysis of site-specific evolution of deuterium uptake induced by the complexation of STAT3 with SF-1-066 or BP-1-102 under physiological conditions enabled the mapping of the in silico predicted inhibitor binding site to the STAT3 SH2 domain. The binding of both inhibitors to the SH2 domain resulted in significant local decreases in dynamics, consistent with solvent exclusion at the inhibitor binding site and increased rigidity of the inhibitor-complexed SH2 domain. Interestingly, inhibitor binding induced hot spots of allosteric perturbations outside of the SH2 domain, manifesting mainly as increased deuterium uptake, in regions of STAT3 important for DNA binding and nuclear localization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    De Marco, A.; Menegatti, E.; Guarneri, M.

    1982-01-01

    1 H NMR spectra of the porcine pancreatic secretory trypsin inhibitor (PSTI) have been recorded vs. pH and temperature. Of the two tyrosines, one titrates with a pK of 1.25, while the resonances from the other are pH insensitive in the investigated range 4.8 less than or equal to pH less than or equal to 12. This is consistent with PSTI having one Tyr solvent exposed (Try-20) and the other buried (Tyr-31). The resonances from the lysyl epsilon-CH 2 protons titrate with a pK of 10.95. The titration is accompanied by a pronounced line broadening, which starts near pH 8.5. Between pH 11.5 and pH 12 the epsilon-CH 2 resonances recover their low pH line width. Titration curves for the lysines and Tyr-20 reflect single proton ionization equilibria, suggesting that these residues do not interact among themselves. On the basis of double resonance experiments, combined with analysis of chemical shifts, spin-spin couplngs, and line widths, all methyl resonances are identified and followed as functions of pH and temperature. The γ-CH 3 doublet from the N-terminal Thr-1 is assigned by comparison between spectra of forms I and II of the inhibitor, the latter lacking the first four residues of form I. The β-CH 3 resonance from Ala-7 is also assigned. Proton resonance parameters of methyl groups are shown to afford useful NMR probes for the characterization of local nonbonded interactions, microenvironments, and mobilities

  14. In silico simulations of STAT1 and STAT3 inhibitors predict SH2 domain cross-binding specificity.

    Science.gov (United States)

    Szelag, Malgorzata; Sikorski, Krzysztof; Czerwoniec, Anna; Szatkowska, Katarzyna; Wesoly, Joanna; Bluyssen, Hans A R

    2013-11-15

    Signal transducers and activators of transcription (STATs) comprise a family of transcription factors that are structurally related and which participate in signaling pathways activated by cytokines, growth factors and pathogens. Activation of STAT proteins is mediated by the highly conserved Src homology 2 (SH2) domain, which interacts with phosphotyrosine motifs for specific contacts between STATs and receptors and for STAT dimerization. By generating new models for human (h)STAT1, hSTAT2 and hSTAT3 we applied comparative in silico docking to determine SH2-binding specificity of the STAT3 inhibitor stattic, and of fludarabine (STAT1 inhibitor). Thus, we provide evidence that by primarily targeting the highly conserved phosphotyrosine (pY+0) SH2 binding pocket stattic is not a specific hSTAT3 inhibitor, but is equally effective towards hSTAT1 and hSTAT2. This was confirmed in Human Micro-vascular Endothelial Cells (HMECs) in vitro, in which stattic inhibited interferon-α-induced phosphorylation of all three STATs. Likewise, fludarabine inhibits both hSTAT1 and hSTAT3 phosphorylation, but not hSTAT2, by competing with the highly conserved pY+0 and pY-X binding sites, which are less well-preserved in hSTAT2. Moreover we observed that in HMECs in vitro fludarabine inhibits cytokine and lipopolysaccharide-induced phosphorylation of hSTAT1 and hSTAT3 but does not affect hSTAT2. Finally, multiple sequence alignment of STAT-SH2 domain sequences confirmed high conservation between hSTAT1 and hSTAT3, but not hSTAT2, with respect to stattic and fludarabine binding sites. Together our data offer a molecular basis that explains STAT cross-binding specificity of stattic and fludarabine, thereby questioning the present selection strategies of SH2 domain-based competitive small inhibitors. © 2013 Elsevier B.V. All rights reserved.

  15. The mTOR inhibitor, everolimus (RAD001), overcomes resistance to imatinib in quiescent Ph-positive acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Kuwatsuka, Y; Minami, M; Minami, Y; Sugimoto, K; Hayakawa, F; Miyata, Y; Abe, A; Goff, D J; Kiyoi, H; Naoe, T

    2011-01-01

    In Ph-positive (Ph + ) leukemia, the quiescent cell state is one of the reasons for resistance to the BCR-ABL-kinase inhibitor, imatinib. In order to examine the mechanisms of resistance due to quiescence and the effect of the mammalian target of rapamycin inhibitor, everolimus, for such a resistant population, we used Ph + acute lymphoblastic leukemia patient cells serially xenotransplanted into NOD/SCID/IL2rγ null (NOG) mice. Spleen cells from leukemic mice showed a higher percentage of slow-cycling G 0 cells in the CD34 + CD38 − population compared with the CD34 + CD38 + and CD34 − populations. After ex vivo imatinib treatment, more residual cells were observed in the CD34 + CD38 − population than in the other populations. Although slow-cycling G 0 cells were insensitive to imatinib in spite of BCR-ABL and CrkL dephosphorylation, combination treatment with everolimus induced substantial cell death, including that of the CD34 + CD38 − population, with p70-S6 K dephosphorylation and decrease of MCL-1 expression. The leukemic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse system with the in vivo combination treatment with imatinib and everolimus showed a decrease of tumor burden including CD34 + cells. These results imply that treatment with everolimus can overcome resistance to imatinib in Ph + leukemia due to quiescence

  16. Engineering N-terminal domain of tissue inhibitor of metalloproteinase (TIMP)-3 to be a better inhibitor against tumour necrosis factor-alpha-converting enzyme.

    Science.gov (United States)

    Lee, Meng-Huee; Verma, Vandana; Maskos, Klaus; Nath, Deepa; Knäuper, Vera; Dodds, Philippa; Amour, Augustin; Murphy, Gillian

    2002-01-01

    We previously reported that full-length tissue inhibitor of metalloproteinase-3 (TIMP-3) and its N-terminal domain form (N-TIMP-3) displayed equal binding affinity for tissue necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE). Based on the computer graphic of TACE docked with a TIMP-3 model, we created a number of N-TIMP-3 mutants that showed significant improvement in TACE inhibition. Our strategy was to select those N-TIMP-3 residues that were believed to be in actual contact with the active-site pockets of TACE and mutate them to amino acids of a better-fitting nature. The activities of these mutants were examined by measuring their binding affinities (K(app)(i)) and association rates (k(on)) against TACE. Nearly all mutants at position Thr-2 exhibited slightly impaired affinity as well as association rate constants. On the other hand, some Ser-4 mutants displayed a remarkable increase in their binding tightness with TACE. In fact, the binding affinities of several mutants were less than 60 pM, beyond the sensitivity limits of fluorimetric assays. Further studies on cell-based processing of pro-TNF-alpha demonstrated that wild-type N-TIMP-3 and one of its tight-binding mutants, Ser-4Met, were capable of inhibiting the proteolytic shedding of TNF-alpha. Furthermore, the Ser-4Met mutant was also significantly more active (P<0.05) than the wild-type N-TIMP-3 in its cellular inhibition. Comparison of N-TIMP-3 and full-length TIMP-3 revealed that, despite their identical TACE-interaction kinetics, the latter was nearly 10 times more efficient in the inhibition of TNF-alpha shedding, with concomitant implications for the importance of the TIMP-3 C-terminal domain in vivo. PMID:11988096

  17. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide

    Science.gov (United States)

    Ippolito, Joseph E.; Brandenburg, Matthew W.; Ge, Xia; Crowley, Jan R.; Kirmess, Kristopher M.; Som, Avik; D’Avignon, D. Andre; Arbeit, Jeffrey M.; Achilefu, Samuel; Yarasheski, Kevin E.; Milbrandt, Jeffrey

    2016-01-01

    Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer. PMID:27438712

  18. The mTOR inhibitor, everolimus (RAD001), overcomes resistance to imatinib in quiescent Ph-positive acute lymphoblastic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwatsuka, Y; Minami, M; Minami, Y; Sugimoto, K; Hayakawa, F; Miyata, Y; Abe, A [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Goff, D J [Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA (United States); Kiyoi, H [Department of Infectious Diseases, Nagoya University Hospital, Nagoya (Japan); Naoe, T [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2011-05-01

    In Ph-positive (Ph{sup +}) leukemia, the quiescent cell state is one of the reasons for resistance to the BCR-ABL-kinase inhibitor, imatinib. In order to examine the mechanisms of resistance due to quiescence and the effect of the mammalian target of rapamycin inhibitor, everolimus, for such a resistant population, we used Ph{sup +} acute lymphoblastic leukemia patient cells serially xenotransplanted into NOD/SCID/IL2rγ{sup null} (NOG) mice. Spleen cells from leukemic mice showed a higher percentage of slow-cycling G{sub 0} cells in the CD34{sup +}CD38{sup −} population compared with the CD34{sup +}CD38{sup +} and CD34{sup −} populations. After ex vivo imatinib treatment, more residual cells were observed in the CD34{sup +}CD38{sup −} population than in the other populations. Although slow-cycling G{sub 0} cells were insensitive to imatinib in spite of BCR-ABL and CrkL dephosphorylation, combination treatment with everolimus induced substantial cell death, including that of the CD34{sup +}CD38{sup −} population, with p70-S6 K dephosphorylation and decrease of MCL-1 expression. The leukemic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse system with the in vivo combination treatment with imatinib and everolimus showed a decrease of tumor burden including CD34{sup +} cells. These results imply that treatment with everolimus can overcome resistance to imatinib in Ph{sup +} leukemia due to quiescence.

  19. Influence of different chromosomal abnormalities in Ph-positive bone marrow cells on the chronic myeloid leukemia course during tyrosine kinase inhibitors therapy

    Directory of Open Access Journals (Sweden)

    O. Yu. Vinogradova

    2014-07-01

    Full Text Available The additional molecular and chromosomal abnormalities (ACA in Phositive cells usually considered as a genetic marker of chronic myeloid leukemia (CML progression. 457 patients in different CML phases received tyrosine kinase inhibitors (1st and 2nd generation were studied. During therapy 50 cases with additional chromosomal abnormalities in Ph+ clone (22 of them in chronic CML phase were revealed (median follow-up from CML diagnosis – 117 months, median imatinib therapy – 62 months. 86 % of patients in chronic phase with Ph+- cell abnormalities were cytogenetic resistance, and their 5-years overall survival was 80 % which was significantly lower than in patients without ACA (p < 0.005. The treatment results depend on chromosomal abnormalities detected. In patients with additional chromosome 8 imatinib therapy is effective, although complete cytogenetic response (CCR is achieved only in the later therapy stages. In patients with additional translocations CCR also achieved with imatinib or 2nd generation TKI. Only a third of patients with additional Ph-chromosome or BCR/ABL amplification achieved complete suppression of Ph+ clone using 2nd generation TKI. The presence of additional chromosome 7 abnormalities and complex karyotype disorders involving isochromosome i(17(q10 are poor prognostic factors of TKI treatment failures.

  20. Changes in pH and NADPH regulate the DNA binding activity of neuronal PAS domain protein 2, a mammalian circadian transcription factor.

    Science.gov (United States)

    Yoshii, Katsuhiro; Tajima, Fumihisa; Ishijima, Sumio; Sagami, Ikuko

    2015-01-20

    Neuronal PAS domain protein 2 (NPAS2) is a core clock transcription factor that forms a heterodimer with BMAL1 to bind the E-box in the promoter of clock genes and is regulated by various environmental stimuli such as heme, carbon monoxide, and NAD(P)H. In this study, we investigated the effects of pH and NADPH on the DNA binding activity of NPAS2. In an electrophoretic mobility shift (EMS) assay, the pH of the reaction mixture affected the DNA binding activity of the NPAS2/BMAL1 heterodimer but not that of the BMAL1/BMAL1 homodimer. A change in pH from 7.0 to 7.5 resulted in a 1.7-fold increase in activity in the absence of NADPH, and NADPH additively enhanced the activity up to 2.7-fold at pH 7.5. The experiments using truncated mutants revealed that N-terminal amino acids 1-61 of NPAS2 were sufficient to sense the change in both pH and NADPH. We further analyzed the kinetics of formation and DNA binding of the NPAS2/BMAL1 heterodimer at various pH values. In the absence of NADPH, a change in pH from 6.5 to 8.0 decreased the KD(app) value of the E-box from 125 to 22 nM, with an 8-fold increase in the maximal level of DNA binding for the NPAS2/BMAL1 heterodimer. The addition of NADPH resulted in a further decrease in KD(app) to 9 nM at pH 8.0. Furthermore, NPAS2-dependent transcriptional activity in a luciferase assay using NIH3T3 cells also increased with the pH of the culture medium. These results suggest that NPAS2 has a role as a pH and metabolite sensor in regulating circadian rhythms.

  1. pH dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation.

    Science.gov (United States)

    Bidwai, Anil K; Ok, Esther Y; Erman, James E

    2008-09-30

    The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.

  2. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J.; Goswami, Chandan

    2014-01-01

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys

  3. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de [Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel (Germany); Bhandari, Anita [Molecular Physiology, Zoological Institute, Christian-Albrechts-University at Kiel, Kiel (Germany); Sarde, Sandeep J. [Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel (Germany); Goswami, Chandan [National Institute of Science Education and Research, Bhubaneswar, Orissa (India)

    2014-07-18

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.

  4. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation.

    Directory of Open Access Journals (Sweden)

    Matteo eLambrughi

    2012-11-01

    Full Text Available Cyclin-dependent kinase inhibitors (CKIs are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs, which lack a well-defined and organized three-dimensional structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs and collapsed conformations. These structural features can be relevant to protein function in vivo.The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models of the compact conformations of the Sic1 kinase-inhibitory domain (KID by all-atom molecular-dynamics simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of hub residues and electrostatic interactions which are likely to be involved in the stabilization of globular states.

  5. Influence of time, temperature, pH and inhibitors on bioaccumulation of radiocaesium - 137Cs by lichen Hypogymnia physodes

    International Nuclear Information System (INIS)

    Pipiska, M.; Kociova, M.; Hornik, M.; Augustin, J.; Lesny, J.

    2005-01-01

    Caesium bioaccumulation experiments were carried out at 4 to 60 o C using natural samples of the lichen Hypogymnia physodes. Thalli were incubated in 2.5 μmol.l -1 CsCl solutions labelled with 137 CsCl for up to 24 h at pH values from 2 to 10. Bioaccumulation of Cs + ions in the first phase of the lichen-CsCl solution interaction is rapid, neither pH, nor temperature dependent within the range 4 to 60 o C and observed also with the lichen biomass thermally inactivated at 60 o C or chemically by formaldehyde. The second phase of 137 Cs bioaccumulation is time, temperature and pH dependent and is inhibited by formaldehyde and thermal inactivation. The process at the initial concentration C 0 = 2.5 μmol.l -1 CsCl and 20 o C reached equilibrium within 12 hours. It can be described by the first order reaction kinetics equation: log [C t ] = 1.89 - 0.00153 t, R = -0.950. Maximal values of Cs-bioaccumulation were observed at 20 o C with minimum at 4 o C and 40 o C and at pH 4-5 with minimum at pH 2 and pH 6. Low caesium efflux values from lichen thalli by water and 0.1 mol.l -1 neutral salts at 20 o C and 24 h equilibrium were observed. Efflux characterized by distribution coefficients D = [Cs] solution /[Cs] biomass at biomass/solution ratio 1:25 (w/v, wet wt.), decreases in the order: Li+ - 78 · 10 -3 > NH 4 + = K + - 15 · 10 -3 > Cs + = Na + - 11 · 10 -3 . Low extractability of caesium from lichen by water and salt solutions can explain long persistent times of radiocaesium contamination sorbed by lichens, observed by many authors in caesium contaminated forest and mountain regions. Hypothesis of the role of the lichen secondary metabolites as caesium binders is discussed. (author)

  6. Trp[superscript 2313]-His[superscript 2315] of Factor VIII C2 Domain Is Involved in Membrane Binding Structure of a Complex Between the C[subscript 2] Domain and an Inhibitor of Membrane Binding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhuo; Lin, Lin; Yuan, Cai; Nicolaes, Gerry A.F.; Chen, Liqing; Meehan, Edward J.; Furie, Bruce; Furie, Barbara; Huang, Mingdong (Harvard-Med); (UAH); (Maastricht); (Chinese Aca. Sci.)

    2010-11-03

    Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 {angstrom}) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed {beta}-strand of the C2 domain, Trp{sup 2313}-His{sup 2315}. This result indicates that the Trp{sup 2313}-His{sup 2315} segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.

  7. Peptide-Based Membrane Fusion Inhibitors Targeting HCoV-229E Spike Protein HR1 and HR2 Domains

    Directory of Open Access Journals (Sweden)

    Shuai Xia

    2018-02-01

    Full Text Available Human coronavirus 229E (HCoV-229E infection in infants, elderly people, and immunocompromised patients can cause severe disease, thus calling for the development of effective and safe therapeutics to treat it. Here we reported the design, synthesis and characterization of two peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein heptad repeat 1 (HR1 and heptad repeat 2 (HR2 domains, 229E-HR1P and 229E-HR2P, respectively. We found that 229E-HR1P and 229E-HR2P could interact to form a stable six-helix bundle and inhibit HCoV-229E spike protein-mediated cell-cell fusion with IC50 of 5.7 and 0.3 µM, respectively. 229E-HR2P effectively inhibited pseudotyped and live HCoV-229E infection with IC50 of 0.5 and 1.7 µM, respectively. In a mouse model, 229E-HR2P administered intranasally could widely distribute in the upper and lower respiratory tracts and maintain its fusion-inhibitory activity. Therefore, 229E-HR2P is a promising candidate for further development as an antiviral agent for the treatment and prevention of HCoV-229E infection.

  8. Crystallization and Preliminary Diffraction Analysis of the CAL PDZ Domain in Complex with a Selective Peptide Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    J Amacher; P Cushing; J Weiner; D Madden

    2011-12-31

    Cystic fibrosis (CF) is associated with loss-of-function mutations in the CF transmembrane conductance regulator (CFTR), which regulates epithelial fluid and ion homeostasis. The CFTR cytoplasmic C-terminus interacts with a number of PDZ (PSD-95/Dlg/ZO-1) proteins that modulate its intracellular trafficking and chloride-channel activity. Among these, the CFTR-associated ligand (CAL) has a negative effect on apical-membrane expression levels of the most common disease-associated mutant {Delta}F508-CFTR, making CAL a candidate target for the treatment of CF. A selective peptide inhibitor of the CAL PDZ domain (iCAL36) has recently been developed and shown to stabilize apical expression of {Delta}F508-CFTR, enhancing net chloride-channel activity, both alone and in combination with the folding corrector corr-4a. As a basis for structural studies of the CAL-iCAL36 interaction, a purification protocol has been developed that increases the oligomeric homogeneity of the protein. Here, the cocrystallization of the complex in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 35.9, b = 47.7, c = 97.3 {angstrom}, is reported. The crystals diffracted to 1.4 {angstrom} resolution. Based on the calculated Matthews coefficient (1.96 {angstrom}{sup 3} Da{sup -1}), it appears that the asymmetric unit contains two complexes.

  9. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    Science.gov (United States)

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  10. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target.

    Science.gov (United States)

    Watson, Gabrielle M; Lucas, William A H; Gunzburg, Menachem J; Wilce, Jacqueline A

    2017-01-01

    Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.

  11. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target

    Directory of Open Access Journals (Sweden)

    Gabrielle M. Watson

    2017-09-01

    Full Text Available Growth factor receptor bound protein 7 (Grb7 is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine, however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.

  12. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target

    Science.gov (United States)

    Watson, Gabrielle M.; Lucas, William A. H.; Gunzburg, Menachem J.; Wilce, Jacqueline A.

    2017-01-01

    Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors. PMID:29018805

  13. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles.

    Science.gov (United States)

    Szunerits, Sabine; Walt, David R

    2002-02-15

    The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.

  14. Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats

    Directory of Open Access Journals (Sweden)

    Xu Huang

    2015-10-01

    Full Text Available AIM:To evaluate the therapeutic effect of Nodinhibit-1 on alkali-burn-induced corneal neovascularization (CNV and inflammation.The nucleotide-binding oligomerzation domain 1 (NOD1 is a potent angiogenic gene.METHODS:The alkali-burned rat corneas (32 right eyes were treated with eye drops containing Nodinhibit-1 or phosphate buffered solution (PBS, PH 7.4 only, four times per day. CNV and inflammation were monitored using slit lamp microscopy, and the area of CNV was measured by formula. Vascular endothelial growth factor (VEGF and pigment epithelium-derived factor (PEDF was determined by Western blot analysis. The TUNEL assay was used to assess the corneal apoptosis cells.RESULTS:Alkali-burn-induced progressive CNV and inflammation in the cornea. After treatment for 7d and 14d, there were statistically significant differences in the CNV areas and inflammatory index on that between two group(P<0.05, respectively. Epithelial defect quantification showed a significant difference between the two groups at days 4 and 7 after the alkali burns (P<0.05. The apoptotic cells on days 1, 4, and 7 between the two groups showed significant differences at all time points (P<0.05, respectively. Compared to that in control group, the protein level of VEGF expression was significantly reduced whereas the PEDF expression was increase in the Nodinhibit-1 groups on day 14 (P<0.05, respectively=.CONCLUSION:Topical application of 10.0 μg/mL Nodinhibit-1 may have potential effect for the alkali burn-induced CNV and inflammation. The effect of Nodinhibit-1 on CNV may be by regulation the equilibrium of VEGF and PEDF in the wounded cornea.

  15. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    Science.gov (United States)

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  16. Time-domain finite elements in optimal control with application to launch-vehicle guidance. PhD. Thesis

    Science.gov (United States)

    Bless, Robert R.

    1991-01-01

    A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.

  17. Effect of fluid flow, pH and tobacco extracts concentration as organic inhibitors to corrosion characteristics of AISI 1045 steel in 3.5% NaCl environment containing CO2 gas

    Science.gov (United States)

    Kurniawan, Budi Agung; Pratiwi, Vania Mitha; Ahmadi, Nafi'ul Fikri

    2018-04-01

    Corrosion become major problem in most industries. In the oil and gas company, corrosion occurs because of reaction between steel and chemical species inside crude oil. Crude oil or nature gas provide corrosive species, such as CO2, O2, H2S and so on. Fluid containing CO2 gas causes CO2 corrosion which attack steel as well as other corrosion phenomena. This CO2 corrosion commonly called as sweet environment and produce FeCO3 as corrosion products. Fluid flow factor in pipelines during the oil and gas transportation might increase the rate of corrosion itself. Inhibitor commonly use used as corrosion protection because its simplicity in usage. Nowadays, organic inhibitor become main issue in corrosion protection because of biodegradable, low cost, and environmental friendly. This research tried to use tobacco leaf extract as organic inhibitor to control corrosion in CO2 environment. The electrolyte solution used was 3.5% NaCl at pH 4 and pH 7. Weight loss test results showed that the lowest corrosion rate was reach at 132.5 ppm inhibitor, pH 7 and rotational speed of 150 rpm with corrosion rate of 0.091 mm/y. While at pH 4, the lowest corrosion rate was found at rotational speed of 150 rpm with inhibitor concentration of 265 ppm and corrosion rate of 0.327 mm/y. FTIR results indicate the presence of nicotine functional groups on the steel surface. However, based on corrosion rate, it is believed that corrosion occurs, and FeCO3 was soluble in electrolyte. Tobacco leaf extract inhibitors worked by a physisorption mechanism, where tobacco inhibitors formed thin layer on the steel surface.

  18. Preparation and crystallization of the Grb7 SH2 domain in complex with the G7-18NATE nonphosphorylated cyclic inhibitor peptide

    International Nuclear Information System (INIS)

    Yap, Min Y.; Wilce, Matthew C. J.; Clayton, Daniel J.; Perlmutter, Patrick; Aguilar, Marie-Isabel; Wilce, Jacqueline A.

    2010-01-01

    The preparation and successful crystallization of the Grb7 SH2 domain in complex with the specific cyclic peptide inhibitor G7-18NATE are reported. This structure is anticipated to reveal the basis of the binding affinity and specificity and to assist with the development of second-generation inhibitors of Grb7, which is involved in cancer progression. Grb7 is an adapter protein that is involved in signalling pathways that mediate eukaryotic cell proliferation and migration. Its overexpression in several cancer types has implicated it in cancer progression and led to the development of the G7-18NATE cyclic peptide inhibitor. Here, the preparation of crystals of G7-18NATE in complex with its Grb7 SH2 domain target is reported. Crystals of the complex were grown by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant at room temperature. X-ray diffraction data were collected from crystals to 2.4 Å resolution using synchrotron X-ray radiation at 100 K. The diffraction was consistent with space group P2 1 , with unit-cell parameters a = 52.7, b = 79.1, c = 54.7 Å, α = γ = 90.0, β = 104.4°. The structure of the G7-18NATE peptide in complex with its target will facilitate the rational development of Grb7-targeted cancer therapeutics

  19. Gastroesophageal reflux disease-related symptom recurrence in patients discontinuing proton pump inhibitors for Bravo wireless esophageal pH monitoring study

    Directory of Open Access Journals (Sweden)

    R. Schey

    2017-10-01

    Full Text Available Background: Patients with gastroesophageal reflux disease (GERD are treated with proton pump inhibitors (PPIs. Those that do not achieve symptom relief, or non-responders, usually undergo esophageal pH monitoring off PPIs in order to confirm the presence of GERD. Aims: To assess the efficacy of the reverse-PPI trial in evaluating the presence of GERD or its recurrence rates, as well as to identify a correlation between the symptom recurrence rates and GERD severity determined by 48-hour Bravo esophageal pH-monitor testing. Methods: A final total of 205 patients that underwent the 48-hour Bravo esophageal pH-monitoring study were retrospectively included. Patients discontinued PPI usage for at least 7 days prior to testing, and completed symptom questionnaires during the 2-day test. The Bravo test was considered positive if the percentage of time with esophageal pH 4.4%. Results: A total of 363 patients underwent 48-hour Bravo testing and of those patients, 205 were eligible for the study. Ninety-two patients reported symptoms as being «same/better» and 113 as being «worse» after stopping PPIs. Of the 92 patients with improved symptoms, 44 (48% had documented acid reflux during the Bravo study, compared with 65 of 113 (58% patients with worsening symptoms that also complained of acid reflux. Of the 109 patients found to have confirmed GERD upon pH monitoring, 65 (59.6% reported a worsening of symptoms, compared with 48 of 96 (50.0% patients without GERD (p = 0.043. Main symptoms stated to be worse included heartburn, chest pain, regurgitation, nausea, and belching (p  7 days (p = 0.042 Conclusion: Symptom exacerbation following PPI cessation for at least 7 days correlated with acid reflux severity assessed by Bravo testing. Patients off PPIs for 7 days had a higher likelihood of experiencing worsening symptoms, compared with those off PPIs for more than 7 days. These findings suggest that when PPIs are held for 7 days or less prior to

  20. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways

    DEFF Research Database (Denmark)

    Nordmaj, Mie Anemone; Munthe-Fog, Lea; Hein, Estrid

    2015-01-01

    Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative......:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect...

  1. Computational dissection of allosteric inhibition of the SH2 domain of Bcr-Abl kinase by the monobody inhibitor AS25.

    Science.gov (United States)

    Ji, Mingfei; Zheng, Guodong; Li, Xiaolong; Zhang, Zhongqin; Jv, Guanqun; Wang, Xiaowei; Wang, Jialin

    2017-06-01

    The deregulated breakpoint cluster region (Bcr)-Abelson tyrosine kinase (Abl) fusion protein represents an attractive pharmacological target for the treatment of chronic myeloid leukemia (CML). The high affinity of monobody AS25 was designed to target the Src homology 2 (SH2) domain of Bcr-Abl, leading to allosteric inhibition of Bcr-Abl through formation of protein-protein interactions. An I164E mutation in the SH2 domain disrupts AS25 binding to the SH2 domain of Bcr-Abl. The detailed mechanisms, however, remain to be unresolved. Here, molecular dynamics (MD) simulations and binding free energy calculations were performed to explore the conformational and energetic differences between the wild-type (WT) complexes of Bcr-Abl SH2 domain and AS25 (SH2 WT -AS25) as well as the mutated complexes (SH2 I164E -AS25). The results revealed that I164E mutation not only caused an increase in the conformational flexibility of SH2-AS25 complexes, but also weakened the binding affinity of AS25 to SH2. The comparative binding modes of SH2-AS25 complexes between WT and the I164E mutant were comprehensively analyzed to unravel the disruption of hydrophobic and hydrogen bonding interactions in the interface of the SH2-AS25 complex triggered by the I164E mutation. The results obtained may help to design the next generation of higher affinity Bcr-Abl SH2-specific peptide inhibitors.

  2. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.

    Science.gov (United States)

    Sha, Fern; Gencer, Emel Basak; Georgeon, Sandrine; Koide, Akiko; Yasui, Norihisa; Koide, Shohei; Hantschel, Oliver

    2013-09-10

    The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, termed monobodies, for the N- and C-terminal SH2 domains of SHP2. Intracellular expression followed by interactome analysis showed that the monobodies are essentially monospecific to SHP2. Two crystal structures revealed that the monobodies occupy the phosphopeptide-binding sites of the SH2 domains and thus can serve as competitors of SH2-phosphotyrosine interactions. Surprisingly, the segments of both monobodies that bind to the peptide-binding grooves run in the opposite direction to that of canonical phosphotyrosine peptides, which may contribute to their exquisite specificity. When expressed in cells, monobodies targeting the N-SH2 domain disrupted the interaction of SHP2 with its upstream activator, the Grb2-associated binder 2 adaptor protein, suggesting decoupling of SHP2 from the BCR-ABL protein complex. Inhibition of either N-SH2 or C-SH2 was sufficient to inhibit two tyrosine phosphorylation events that are critical for SHP2 catalytic activity and to block ERK activation. In contrast, targeting the N-SH2 or C-SH2 revealed distinct roles of the two SH2 domains in downstream signaling, such as the phosphorylation of paxillin and signal transducer and activator of transcription 5. Our results delineate a hierarchy of function for the SH2 domains of SHP2 and validate monobodies as potent and specific antagonists of protein-protein interactions in cancer cells.

  3. Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change.

    OpenAIRE

    Masuda, Tetsuya; Ohta, Keisuke; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2012-01-01

    Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at 50 nM. Although the sweetness remains when thaumatin is heated at 80 °C for 4h under acid conditions, it rapidly declines when heating at a pH above 6.5. To clarify the structural difference at high pH, the atomic structure of a recombinant thaumatin I at pH 8.0 was determined at a resolution of 1.0Å. Comparison to the crystal structure of thaumatin at pH 7.3 and 7.0 revealed the root-mean square deviation value of ...

  4. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide.

    Science.gov (United States)

    Diaz, Alejandra R; Core, Leighton J; Jiang, Min; Morelli, Michela; Chiang, Christina H; Szurmant, Hendrik; Perego, Marta

    2012-03-01

    Rap proteins in Bacillus subtilis regulate the phosphorylation level or the DNA-binding activity of response regulators such as Spo0F, involved in sporulation initiation, or ComA, regulating competence development. Rap proteins can be inhibited by specific peptides generated by the export-import processing pathway of the Phr proteins. Rap proteins have a modular organization comprising an amino-terminal alpha-helical domain connected to a domain formed by six tetratricopeptide repeats (TPR). In this study, the molecular basis for the specificity of the RapA phosphatase for its substrate, phosphorylated Spo0F (Spo0F∼P), and its inhibitor pentapeptide, PhrA, was analyzed in part by generating chimeric proteins with RapC, which targets the DNA-binding domain of ComA, rather than Spo0F∼P, and is inhibited by the PhrC pentapeptide. In vivo analysis of sporulation efficiency or competence-induced gene expression, as well as in vitro biochemical assays, allowed the identification of the amino-terminal 60 amino acids as sufficient to determine Rap specificity for its substrate and the central TPR3 to TPR5 (TPR3-5) repeats as providing binding specificity toward the Phr peptide inhibitor. The results allowed the prediction and testing of key residues in RapA that are essential for PhrA binding and specificity, thus demonstrating how the widespread structural fold of the TPR is highly versatile, using a common interaction mechanism for a variety of functions in eukaryotic and prokaryotic organisms.

  5. Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo.

    Science.gov (United States)

    Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E

    2017-07-01

    Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage

    Science.gov (United States)

    Demitrack, Elise S; Aihara, Eitaro; Kenny, Susan; Varro, Andrea; Montrose, Marshall H

    2012-01-01

    Background and aims The authors’ goal was to measure pH at the gastric surface (pHo) to understand how acid secretion affects the repair of microscopic injury to the gastric epithelium. Methods Microscopic gastric damage was induced by laser light, during confocal/two-photon imaging of pH-sensitive dyes (Cl-NERF, BCECF) that were superfused over the mucosal surface of the exposed gastric corpus of anaesthetised mice. The progression of repair was measured in parallel with pHo. Experimental conditions included varying pH of luminal superfusates, and using omeprazole (60 mg/kg ip) or famotidine (30 mg/kg ip) to inhibit acid secretion. Results Similar rates of epithelial repair and resting pHo values (~pH 4) were reported in the presence of luminal pH 3 or pH 5. Epithelial repair was unreliable at luminal pH 2 and pHo was lower (2.5±0.2, P pH 3). Epithelial repair was slower at luminal pH 7 and pHo was higher (6.4±0.1, PpH 3 or pH 7, omeprazole reduced maximal damage size and accelerated epithelial repair, although only at pH 3 did omeprazole further increase surface pH above the level caused by imposed damage. At luminal pH 7, famotidine also reduced maximal damage size and accelerated epithelial repair. Neither famotidine nor omeprazole raised plasma gastrin levels during the time course of the experiments. Conclusions Epithelial repair in vivo is affected by luminal pH variation, but the beneficial effects of acutely blocking acid secretion extend beyond simply raising luminal and/or surface pH. PMID:21997560

  7. The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function.

    Science.gov (United States)

    Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng

    2013-08-09

    Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Control of red cell volume and pH in trout: Effects of isoproterenol, transport inhibitors, and extracellular pH in bicarbonate/carbon dioxide-buffered media

    DEFF Research Database (Denmark)

    NIKINMAA, M; STEFFENSEN, JF; TUFTS, BL

    1987-01-01

    The effects of extracellular pH and beta-adrenergic stimula-tion on the volume and pH of rainbow. trout red cells were studied in HCO3-/ CO2 butfered media. A decrease in extracellular pH caused an increase in red cell volume and a decrease in intracellular pH. The pH-induced changes in cell volume......, and that the Na+/H+ exchanger is not activated by changes in intracellular pH alone. The adrenergic drug, isoproterenol, promoted cell swelling and proton extrusion even in the presence of 10 mM HCO3-, showing that the adrenergic response plays a significant role in the control of cytoplasmic pH. These responses...... were enhanced by a decrease in extracellular pH, showing that the adrenergic response is of benefit to stressed animals. DIDS markedly enhanced the effect of isoproterenol on the pHi, but abolished the increase in red cell volume. The effects of furosemide were similar to those of DIDS, suggesting...

  9. Structure of the catalytic domain of the Tannerella forsythia matrix metallopeptidase karilysin in complex with a tetrapeptidic inhibitor

    DEFF Research Database (Denmark)

    Guevara, Tibisay; Ksiazek, Miroslaw; Skottrup, Peter Durand

    2013-01-01

    -micromolar binding affinities. Subsequent refinement revealed that inhibition comparable to that of longer peptides could be achieved using the tetrapeptide SWFP. To analyze its binding, the high-resolution crystal structure of the complex between Kly18 and SWFP was determined and it was found that the peptide binds...... to the primed side of the active-site cleft in a substrate-like manner. The catalytic zinc ion is clamped by the α-amino group and the carbonyl O atom of the serine, thus distantly mimicking the general manner of binding of hydroxamate inhibitors to metallopeptidases and contributing, together with three zinc...... determinants of inhibition of karilysin and open the field for the design of novel inhibitory strategies aimed at the treatment of human periodontal disease based on a peptidic hit molecule....

  10. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    Science.gov (United States)

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  11. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    Science.gov (United States)

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-06-21

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.

  12. Amino substituted nitrogen heterocycle ureas as kinase insert domain containing receptor (KDR inhibitors: Performance of structure–activity relationship approaches

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-06-01

    Full Text Available A quantitative structure–activity relationship (QSAR study was performed on a set of amino-substituted nitrogen heterocyclic urea derivatives. Two novel approaches were applied: (1 the simplified molecular input-line entry systems (SMILES based optimal descriptors approach; and (2 the fragment-based simplex representation of molecular structure (SiRMS approach. Comparison with the classic scheme of building up the model and balance of correlation (BC for optimal descriptors approach shows that the BC scheme provides more robust predictions than the classic scheme for the considered pIC50 of the heterocyclic urea derivatives. Comparison of the SMILES-based optimal descriptors and SiRMS approaches has confirmed good performance of both techniques in prediction of kinase insert domain containing receptor (KDR inhibitory activity, expressed as a logarithm of inhibitory concentration (pIC50 of studied compounds.

  13. Migration of the guinea pig sperm membrane protein PH-20 from one localized surface domain to another does not occur by a simple diffusion-trapping mechanism.

    Science.gov (United States)

    Cowan, A E; Myles, D G; Koppel, D E

    1991-03-01

    The redistribution of membrane proteins on the surface of cells is a prevalent feature of differentiation in a variety of cells. In most cases the mechanism responsible for such redistribution is poorly understood. Two potential mechanisms for the redistribution of surface proteins are: (1) passive diffusion coupled with trapping, and (2) active translocation. We have studied the process of membrane protein redistribution for the PH-20 protein of guinea pig sperm, a surface protein required for sperm binding to the egg zona pellucida (P. Primakoff, H. Hyatt, and D. G. Myles (1985). J. Cell Biol. 101, 2239-2244). PH-20 protein is localized to the posterior head plasma menbrane of the mature sperm cell. Following the exocytotic acrosome reaction, PH-20 protein moves into the newly incorporated inner acrosomal membrane (IAM), placing it in a position favorable for a role in binding sperm to the egg zona pellucida (D. G. Myles, and P. Primakoff (1984), J. Cell Biol. 99, 1634-1641). To analyze the mechanistic basis for this protein migration, we have used fluorescence microscopy and digital image processing to characterize PH-20 protein migration in individual cells. PH-20 protein was observed to move against a concentration gradient in the posterior head plasma membrane. This result argues strongly against a model of passive diffusion followed by trapping in the IAM, and instead suggests that an active process serves to concentrate PH-20 protein toward the boundary separating the posterior head and IAM regions. A transient gradient of PH-20 concentration observed in the IAM suggests that once PH-20 protein reaches the IAM, it is freely diffusing. Additionally, we observed that migration of PH-20 protein was calcium dependent.

  14. Proton pump inhibitor responders who are not confirmed as GERD patients with impedance and pH monitoring: who are they?

    NARCIS (Netherlands)

    de Bortoli, N.; Martinucci, I.; Savarino, E.; Bellini, M.; Bredenoord, A. J.; Franchi, R.; Bertani, L.; Furnari, M.; Savarino, V.; Blandizzi, C.; Marchi, S.

    2014-01-01

    A short-course of proton pump inhibitors (PPIs) is often used to confirm gastroesophageal reflux disease (GERD). However, some patients with PPI responsive heartburn do not seem to have evidence of GERD on impedance-pH monitoring (MII-pH). The aim of the study was to evaluate patients with reflux

  15. Fusion to Human Serum Albumin Extends the Circulatory Half-Life and Duration of Antithrombotic Action of the Kunitz Protease Inhibitor Domain of Protease Nexin 2.

    Science.gov (United States)

    Sheffield, William P; Eltringham-Smith, Louise J; Bhakta, Varsha

    2018-01-01

    The Kunitz Protease Inhibitor (KPI) domain of protease nexin 2 (PN2) potently inhibits coagulation factor XIa. Recombinant KPI has been shown to inhibit thrombosis in mouse models, but its clearance from the murine circulation remains uncharacterized. The present study explored the pharmacokinetic and pharmacodynamic effects of fusing KPI to human serum albumin (HSA) in fusion protein KPIHSA. Hexahistidine-tagged KPI (63 amino acids) and KPIHSA (656 amino acids) were expressed in Pichia pastoris yeast and purified by nickel-chelate chromatography. Clearance profiles in mice were determined, as well as the effects of KPI or KPIHSA administration on FeCl3-induced vena cava thrombus size or carotid artery time to occlusion, respectively. Fusion to HSA increased the mean terminal half-life of KPI by 8-fold and eliminated its interaction with the low density lipoprotein receptor-related protein. KPI and KPIHSA similarly reduced thrombus size and occlusion in both venous and arterial thrombosis models when administered at the time of injury, but only KPI was effective when administered one hour before injury. Albumin fusion deflects KPI from rapid in vivo clearance without impairing its antithrombotic properties and widens its potential therapeutic window. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Inconsistency in the Diagnosis of Functional Heartburn: Usefulness of Prolonged Wireless pH Monitoring in Patients With Proton Pump Inhibitor Refractory Gastroesophageal Reflux Disease

    Science.gov (United States)

    Penagini, Roberto; Sweis, Rami; Mauro, Aurelio; Domingues, Gerson; Vales, Andres; Sifrim, Daniel

    2015-01-01

    Background/Aims The diagnosis of functional heartburn is important for management, however it stands on fragile pH monitoring variables, ie, acid exposure time varies from day to day and symptoms are often few or absent. Aim of this study was to investigate consistency of the diagnosis of functional heartburn in subsequent days using prolonged wireless pH monitoring and its impact on patients’ outcome. Methods Fifty proton pump inhibitotor refractory patients (11 male, 48 years [range, 38–57 years]) with a diagnosis of functional heart-burn according to Rome III in the first 24 hours of wireless pH monitoring were reviewed. pH variables were analysed in the following 24-hour periods to determine if tracings were indicative of diagnosis of non-erosive reflux disease (either acid exposure time > 5% or normal acid exposure time and symptom index ≥ 50%). Outcome was assessed by review of hospital files and/or telephone interview. Results Fifteen out of 50 patients had a pathological acid exposure time after the first day of monitoring (10 in the second day and 5 in subsequent days), which changed their diagnosis from functional heartburn to non-erosive reflux disease. Fifty-four percent of non-erosive reflux disease vs 11% of functional heartburn patients (P heartburn patients (P heartburn at 24-hour pH-monitoring can be re-classified as non-erosive reflux disease after a more prolonged pH recording period. This observation has a positive impact on patients’ management. PMID:25843078

  17. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5-5.5).

    Science.gov (United States)

    Guynot, M E; Ramos, A J; Sanchis, V; Marín, S

    2005-05-25

    A hurdle technology approach has been applied to control common mold species causing spoilage of intermediate moisture bakery products (Eurotium spp., Aspergillus spp., and Penicillium corylophilum), growing on a fermented bakery product analogue (FBPA). The factors studied included a combination of different levels of weak acid preservatives (potassium sorbate, calcium propionate, and sodium benzoate; 0-0.3%), pH (4.5-5.5), and water activity (a(w); 0.80-0.90). Potassium sorbate was found to be the most effective in preventing fungal spoilage of this kind of products at the maximum concentration tested (0.3%) regardless of a(w). The same concentration of calcium propionate and sodium benzoate was effective only at low a(w) levels. On the other hand, potassium sorbate activity was slightly reduced at pH 5.5, the 0.3% being only effective at 0.80 a(w). These findings indicate that potassium sorbate may be a suitable preserving agent to inhibit deterioration of a FBPA of slightly acidic pH (near 4.5) by xerophilic fungi. Further studies have to be done in order to adjust the minimal inhibitory concentration necessary to obtain a product with the required shelf life.

  18. [Development of Ph negative acute myeloid leukemia in a patient with minor-BCR/ABL positive chronic myeloid leukemia achieving a partial cytogenetic response during tyrosine kinase inhibitor treatment].

    Science.gov (United States)

    Fujii, Soichiro; Miura, Ikuo; Tanaka, Hideo

    2015-06-01

    A 78-year-old male, who had CKD and chronic heart failure, was referred to our hospital for evaluation of leukocytosis. His bone marrow contained 12% blast cells and chromosome analysis showed the Ph chromosome as well as other changes. The patient was diagnosed with the accelerated-phase CML because FISH and RT-PCR disclosed BCR/ABL fusion signals and minor BCR/ABL, respectively. Imatinib was administered, but the CML was resistant to this treatment. We gave him nilotinib employing a reduced and intermittent administration protocol because of the progression of anemia and heart failure. The patient achieved PCyR in 8 months, but, 12 months later, his WBC count increased and 83% of the cells were blasts. Because the probable diagnosis was the blast crisis of CML, we switched from nilotinib to dasatinib. However, leukocytosis worsened and he died of pneumonia. It was later revealed that he had a normal karyotype and both FISH and RT-PCR analysis of BCR/ABL were negative. His final diagnosis was Ph negative AML developing from Ph positive CML in PCyR. Since there were no dysplastic changes indicative of MDS, it was assumed that the AML was not secondary leukemia caused by the tyrosine kinase inhibitor but, rather, de novo AML.

  19. OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models.

    Science.gov (United States)

    Garton, Andrew J; Crew, Andrew P A; Franklin, Maryland; Cooke, Andrew R; Wynne, Graham M; Castaldo, Linda; Kahler, Jennifer; Winski, Shannon L; Franks, April; Brown, Eric N; Bittner, Mark A; Keily, John F; Briner, Paul; Hidden, Chris; Srebernak, Mary C; Pirrit, Carrie; O'Connor, Matthew; Chan, Anna; Vulevic, Bojana; Henninger, Dwight; Hart, Karen; Sennello, Regina; Li, An-Hu; Zhang, Tao; Richardson, Frank; Emerson, David L; Castelhano, Arlindo L; Arnold, Lee D; Gibson, Neil W

    2006-01-15

    OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.

  20. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients

    OpenAIRE

    Englund, Emelie; Reitsma, Bart; King, Ben C.; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G.; Jirström, Karin; Blom, Anna M.

    2015-01-01

    Background: The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. \\ud \\ud Methods: Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. \\ud \\ud Result...

  1. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    Science.gov (United States)

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  2. Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): structure of its complex with the N-terminal domain of RSK2 at 1.8 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Derewenda, Urszula; Artamonov, Mykhaylo; Szukalska, Gabriela; Utepbergenov, Darkhan; Olekhnovich, Natalya [University of Virginia, Charlottesville, VA 22908-0736 (United States); Parikh, Hardik I.; Kellogg, Glen E. [Virginia Commonwealth University, Richmond, VA 23298-0540 (United States); Somlyo, Avril V.; Derewenda, Zygmunt S., E-mail: zsd4n@virginia.edu [University of Virginia, Charlottesville, VA 22908-0736 (United States)

    2013-02-01

    The crystal structure of quercitrin, a naturally occurring flavonol glycoside, has been determined in a complex with the N-terminal kinase domain of murine RSK2. The structure revealed that quercitrin inhibits the RSK2 kinase in the same fashion as another known inhibitor, SL0101. Members of the RSK family of kinases constitute attractive targets for drug design, but a lack of structural information regarding the mechanism of selective inhibitors impedes progress in this field. The crystal structure of the N-terminal kinase domain (residues 45–346) of mouse RSK2, or RSK2{sup NTKD}, has recently been described in complex with one of only two known selective inhibitors, a rare naturally occurring flavonol glycoside, kaempferol 3-O-(3′′,4′′-di-O-acetyl-α-l-rhamnopyranoside), known as SL0101. Based on this structure, it was hypothesized that quercitrin (quercetin 3-O-α-l-rhamnopyranoside), a related but ubiquitous and inexpensive compound, might also act as an RSK inhibitor. Here, it is demonstrated that quercitrin binds to RSK2{sup NTKD} with a dissociation constant (K{sub d}) of 5.8 µM as determined by isothermal titration calorimetry, and a crystal structure of the binary complex at 1.8 Å resolution is reported. The crystal structure reveals a very similar mode of binding to that recently reported for SL0101. Closer inspection shows a number of small but significant differences that explain the slightly higher K{sub d} for quercitrin compared with SL0101. It is also shown that quercitrin can effectively substitute for SL0101 in a biological assay, in which it significantly suppresses the contractile force in rabbit pulmonary artery smooth muscle in response to Ca{sup 2+}.

  3. Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): structure of its complex with the N-terminal domain of RSK2 at 1.8 Å resolution

    International Nuclear Information System (INIS)

    Derewenda, Urszula; Artamonov, Mykhaylo; Szukalska, Gabriela; Utepbergenov, Darkhan; Olekhnovich, Natalya; Parikh, Hardik I.; Kellogg, Glen E.; Somlyo, Avril V.; Derewenda, Zygmunt S.

    2013-01-01

    The crystal structure of quercitrin, a naturally occurring flavonol glycoside, has been determined in a complex with the N-terminal kinase domain of murine RSK2. The structure revealed that quercitrin inhibits the RSK2 kinase in the same fashion as another known inhibitor, SL0101. Members of the RSK family of kinases constitute attractive targets for drug design, but a lack of structural information regarding the mechanism of selective inhibitors impedes progress in this field. The crystal structure of the N-terminal kinase domain (residues 45–346) of mouse RSK2, or RSK2 NTKD , has recently been described in complex with one of only two known selective inhibitors, a rare naturally occurring flavonol glycoside, kaempferol 3-O-(3′′,4′′-di-O-acetyl-α-l-rhamnopyranoside), known as SL0101. Based on this structure, it was hypothesized that quercitrin (quercetin 3-O-α-l-rhamnopyranoside), a related but ubiquitous and inexpensive compound, might also act as an RSK inhibitor. Here, it is demonstrated that quercitrin binds to RSK2 NTKD with a dissociation constant (K d ) of 5.8 µM as determined by isothermal titration calorimetry, and a crystal structure of the binary complex at 1.8 Å resolution is reported. The crystal structure reveals a very similar mode of binding to that recently reported for SL0101. Closer inspection shows a number of small but significant differences that explain the slightly higher K d for quercitrin compared with SL0101. It is also shown that quercitrin can effectively substitute for SL0101 in a biological assay, in which it significantly suppresses the contractile force in rabbit pulmonary artery smooth muscle in response to Ca 2+

  4. [Syk inhibitors].

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  5. PH sensor

    OpenAIRE

    Artero, C.; Nogueras Cervera, Marc; Manuel Lázaro, Antonio

    2012-01-01

    This paper presents a design of a marine instrument for the measurement of pH in seawater. The measurement system consists of a pH electrode connected to the underwater observatory OBSEA. The extracted data are useful for scientists researching ocean acidification. Peer Reviewed

  6. Evolutionary dynamics of hepatitis C virus NS3 protease domain during and following treatment with narlaprevir, a potent NS3 protease inhibitor

    NARCIS (Netherlands)

    de Bruijne, J.; Thomas, X. V.; Rebers, S. P.; Weegink, C. J.; Treitel, M. A.; Hughes, E.; Bergmann, J. F.; de Knegt, R. J.; Janssen, H. L. A.; Reesink, H. W.; Molenkamp, R.; Schinkel, J.

    2013-01-01

    Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected

  7. Insights into the Inhibition of the p90 Ribosomal S6 Kinase (RSK) by the Flavonol Glycoside SL0101 from the 1.5 Å Crystal Structure of the N-Terminal Domain of RSK2 with Bound Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Utepbergenov, Darkhan; Derewenda, Urszula; Olekhnovich, Natalya; Szukalska, Gabriela; Banerjee, Budhaditya; Hilinski, Michael K.; Lannigan, Deborah A.; Stukenberg, P. Todd; Derewenda, Zygmunt S. (Lodz - Poland); (UV)

    2012-09-11

    The p90 ribosomal S6 family of kinases (RSK) are potential drug targets, due to their involvement in cancer and other pathologies. There are currently only two known selective inhibitors of RSK, but the basis for selectivity is not known. One of these inhibitors is a naturally occurring kaempferol-a-l-diacetylrhamnoside, SL0101. Here, we report the crystal structure of the complex of the N-terminal kinase domain of the RSK2 isoform with SL0101 at 1.5 {angstrom} resolution. The refined atomic model reveals unprecedented structural reorganization of the protein moiety, as compared to the nucleotide-bound form. The entire N-lobe, the hinge region, and the aD-helix undergo dramatic conformational changes resulting in a rearrangement of the nucleotide binding site with concomitant formation of a highly hydrophobic pocket spatially suited to accommodate SL0101. These unexpected results will be invaluable in further optimization of the SL0101 scaffold as a promising lead for a novel class of kinase inhibitors.

  8. Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Le; Pratt, John K.; Soltwedel, Todd; Sheppard, George S.; Fidanze, Steven D.; Liu, Dachun; Hasvold, Lisa A.; Mantei, Robert A.; Holms, James H.; McClellan, William J.; Wendt, Michael D.; Wada, Carol; Frey, Robin; Hansen, T.Matthew; Hubbard, Robert; Park, Chang H.; Li, Leiming; Magoc, Terrance J.; Albert, Daniel H.; Lin, Xiaoyu; Warder, Scott E.; Kovar, Peter; Huang, Xiaoli; Wilcox, Denise; Wang, Rongqi; Rajaraman, Ganesh; Petros, Andrew M.; Hutchins, Charles W.; Panchal, Sanjay C.; Sun, Chaohong; Elmore, Steven W.; Shen, Yu; Kati, Warren M.; McDaniel, Keith F. (AbbVie)

    2017-03-24

    Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, Ki = 160 μM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumor growth inhibition efficacy in mouse flank xenograft models.

  9. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 exposed renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhiming Li

    2015-01-01

    Full Text Available This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 to protect against renal ischemia/reperfusion (I/R injury (RI/RI in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.

  10. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  11. Can free energy calculations be fast and accurate at the same time? Binding of low-affinity, non-peptide inhibitors to the SH2 domain of the src protein

    Science.gov (United States)

    Chipot, Christophe; Rozanska, Xavier; Dixit, Surjit B.

    2005-11-01

    The usefulness of free-energy calculations in non-academic environments, in general, and in the pharmaceutical industry, in particular, is a long-time debated issue, often considered from the angle of cost/performance criteria. In the context of the rational drug design of low-affinity, non-peptide inhibitors to the SH2 domain of the pp60src tyrosine kinase, the continuing difficulties encountered in an attempt to obtain accurate free-energy estimates are addressed. free-energy calculations can provide a convincing answer, assuming that two key-requirements are fulfilled: (i) thorough sampling of the configurational space is necessary to minimize the statistical error, hence raising the question: to which extent can we sacrifice the computational effort, yet without jeopardizing the precision of the free-energy calculation? (ii) the sensitivity of binding free-energies to the parameters utilized imposes an appropriate parametrization of the potential energy function, especially for non-peptide molecules that are usually poorly described by multipurpose macromolecular force fields. Employing the free-energy perturbation method, accurate ranking, within ±0.7 kcal/mol, is obtained in the case of four non-peptide mimes of a sequence recognized by the pp60src SH2 domain.

  12. Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins.

    Science.gov (United States)

    Culurgioni, Simone; Muñoz, Inés G; Moreno, Alberto; Palacios, Alicia; Villate, Maider; Palmero, Ignacio; Montoya, Guillermo; Blanco, Francisco J

    2012-03-30

    The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.

  13. Development of pharmacophore similarity-based quantitative activity hypothesis and its applicability domain: applied on a diverse data-set of HIV-1 integrase inhibitors.

    Science.gov (United States)

    Kumar, Sivakumar Prasanth; Jasrai, Yogesh T; Mehta, Vijay P; Pandya, Himanshu A

    2015-01-01

    Quantitative pharmacophore hypothesis combines the 3D spatial arrangement of pharmacophore features with biological activities of the ligand data-set and predicts the activities of geometrically and/or pharmacophoric similar ligands. Most pharmacophore discovery programs face difficulties in conformational flexibility, molecular alignment, pharmacophore features sampling, and feature selection to score models if the data-set constitutes diverse ligands. Towards this focus, we describe a ligand-based computational procedure to introduce flexibility in aligning the small molecules and generating a pharmacophore hypothesis without geometrical constraints to define pharmacophore space, enriched with chemical features necessary to elucidate common pharmacophore hypotheses (CPHs). Maximal common substructure (MCS)-based alignment method was adopted to guide the alignment of carbon molecules, deciphered the MCS atom connectivity to cluster molecules in bins and subsequently, calculated the pharmacophore similarity matrix with the bin-specific reference molecules. After alignment, the carbon molecules were enriched with original atoms in their respective positions and conventional pharmacophore features were perceived. Distance-based pharmacophoric descriptors were enumerated by computing the interdistance between perceived features and MCS-aligned 'centroid' position. The descriptor set and biological activities were used to develop support vector machine models to predict the activities of the external test set. Finally, fitness score was estimated based on pharmacophore similarity with its bin-specific reference molecules to recognize the best and poor alignments and, also with each reference molecule to predict outliers of the quantitative hypothesis model. We applied this procedure to a diverse data-set of 40 HIV-1 integrase inhibitors and discussed its effectiveness with the reported CPH model.

  14. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  15. Suppression of STAT3 NH2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21.

    Science.gov (United States)

    Ray, Sutapa; Coulter, Don W; Gray, Shawn D; Sughroue, Jason A; Roychoudhury, Shrabasti; McIntyre, Erin M; Chaturvedi, Nagendra K; Bhakat, Kishor K; Joshi, Shantaram S; McGuire, Timothy R; Sharp, John G

    2018-04-01

    Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH 2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients. © 2017 Wiley Periodicals, Inc.

  16. APP with Kunitz type protease inhibitor domain (KPI) correlates with neuritic plaque density but not with cortical synaptophysin immunoreactivity in Alzheimer's disease and non-demented aged subjects: a multifactorial analysis.

    Science.gov (United States)

    Zhan, S S; Sandbrink, R; Beyreuther, K; Schmitt, H P

    1995-01-01

    The formation of beta A4 amyloid protein in neuritic plaques in Alzheimer's disease (AD) and advanced age is a complex process that involves a number of both cellular and molecular mechanisms, the interrelations of which are not yet completely understood. We have examined quantitatively, in AD and aged controls an extended spectrum of amyloid plaque-related cellular and molecular factors and the cortical synaptophysin immunoreactivity (synaptic density) in order to check for interrelations between them by multifactorial analysis. In 3 cases of senile dementia of the Alzheimer type (SDAT) aged 72, 80 and 82 years, and 9 controls aged 43-88 (mean age 65) years, the cortical synaptophysin immunoreactivity was assessed, together with the numbers of neurons, astrocytes and microglial cells, senile plaques, of tangle-bearing neurons, and the amount of beta A4 amyloid precursor protein (APP) with and without the Kunitz type serine protease inhibitor (KPI) domain. The main results were: APP including the KPI domain (KPI-APP) correlated with the number of neuritic plaques, regardless of whether they occurred in SDAT or non-demented controls. There was no significant difference in the amount of KPI-APP between SDAT and controls. Conversely, APP695 (without KPI) was significantly reduced in SDAT. KPI-APP did not correlate with the synaptophysin immunoreactivity (RGVA), while APP695 showed a significant correlation with the latter in all evaluations. It also correlated with the neuron counts, which was not true for KPI-APP. These results support previous findings indicating that KPI-APP is an important local factor for amyloid deposition in the neuritic plaques, both in AD and in non-demented aged people. On the contrary, KPI-APP does not seem to be significantly involved in the mechanisms of synaptic change outside of the plaques.

  17. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients

    International Nuclear Information System (INIS)

    Englund, Emelie; Reitsma, Bart; King, Ben C.; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G.; Jirström, Karin; Blom, Anna M.

    2015-01-01

    The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. Tissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients. Our findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients

  18. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients.

    Science.gov (United States)

    Englund, Emelie; Reitsma, Bart; King, Ben C; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G; Jirström, Karin; Blom, Anna M

    2015-10-19

    The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. Tissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients. Our findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients.

  19. Parallel screening of drug-like natural compounds using Caco-2 cell permeability QSAR model with applicability domain, lipophilic ligand efficiency index and shape property: A case study of HIV-1 reverse transcriptase inhibitors

    Science.gov (United States)

    Patel, Rikin D.; Kumar, Sivakumar Prasanth; Patel, Chirag N.; Shankar, Shetty Shilpa; Pandya, Himanshu A.; Solanki, Hitesh A.

    2017-10-01

    The traditional drug design strategy centrally focuses on optimizing binding affinity with the receptor target and evaluates pharmacokinetic properties at a later stage which causes high rate of attrition in clinical trials. Alternatively, parallel screening allows evaluation of these properties and affinity simultaneously. In a case study to identify leads from natural compounds with experimental HIV-1 reverse transcriptase (RT) inhibition, we integrated various computational approaches including Caco-2 cell permeability QSAR model with applicability domain (AD) to recognize drug-like natural compounds, molecular docking to study HIV-1 RT interactions and shape similarity analysis with known crystal inhibitors having characteristic butterfly-like model. Further, the lipophilic properties of the compounds refined from the process with best scores were examined using lipophilic ligand efficiency (LLE) index. Seven natural compound hits viz. baicalien, (+)-calanolide A, mniopetal F, fagaronine chloride, 3,5,8-trihydroxy-4-quinolone methyl ether derivative, nitidine chloride and palmatine, were prioritized based on LLE score which demonstrated Caco-2 well absorption labeling, encompassment in AD structural coverage, better receptor affinity, shape adaptation and permissible AlogP value. We showed that this integrative approach is successful in lead exploration of natural compounds targeted against HIV-1 RT enzyme.

  20. Domain analysis

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    The domain-analytic approach to knowledge organization (KO) (and to the broader field of library and information science, LIS) is outlined. The article reviews the discussions and proposals on the definition of domains, and provides an example of a domain-analytic study in the field of art studies....... Varieties of domain analysis as well as criticism and controversies are presented and discussed....

  1. Trichloroacetimidates as Alkylating Reagents and Their Application in the Synthesis of Pyrroloindoline Natural Products and Synthesis of Small Molecule Inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP)

    Science.gov (United States)

    Adhikari, Arijit A.

    was applied towards the synthesis of natural products and their analogs. The pyrroloindoline ring system is found in many alkaloids and cyclic peptides which mainly differ in the substitution at the C3a position. To provide rapid access to these natural products a diversity-oriented strategy was established via displacement of C3a-trichloroacetimidate pyrroloindoline. Carbon, oxygen, sulfur and nitrogen nucleophiles were all shown to undergo substitution reactions with these trichloroacetimidates in the presence of a Lewis acid catalyst. In order to demonstrate the utility of this new method it was applied towards the synthesis of arundinine and a formal synthesis of psychotriasine. Current investigations involve the application of this method towards the synthesis of a complex pyrroloindoline natural product kapakahine C and the progress made therein has been discussed. The reactivity of trichloroacetimidates was also investigated for the selective C3-alkylation of 2,3-disubstituted indoles to provide indolenines. Indolenines serve as useful intermediates in the synthesis of many complex alkaloids. Different benzylic and allylic trichloroacetimidates were shown to provide 3,3'-disubstituted indolenines with high yields in the presence of catalytic amounts of Lewis acids. Various substituted indoles were evaluated under these reaction conditions. This methodology was also applied towards the synthesis of the core tetracyclic ring system found in communesin natural products. In addition to the above work, synthesis of small molecule inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP) has also been described. Aberrations in the phosphoinositide 3-kinase (PI3K) cellular signaling pathway can lead to diseased cellular states like cancer. Herein we have reported stereoselective synthesis of two quinoline based small molecule SHIP inhibitors. The lead compounds and their analogs were tested for their activities against SHIP by Malachite green assay

  2. Concrete domains

    OpenAIRE

    Kahn, G.; Plotkin, G.D.

    1993-01-01

    This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation.

  3. Domain Engineering

    Science.gov (United States)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  4. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  5. Pleckstrin Homology Domain Diffusion in Dictyostelium Cytoplasm Studied Using Fluorescence Correlation Spectroscopy

    NARCIS (Netherlands)

    Engel, Ruchira; Hink, Mark A.; Bosgraaf, Leonard; Haastert, Peter J.M. van; Visser, Antonie J.W.G.

    2004-01-01

    The translocation of pleckstrin homology (PH) domain-containing proteins from the cytoplasm to the plasma membrane plays an important role in the chemotaxis mechanism of Dictyostelium cells. The diffusion of three PH domain-green fluorescent protein (GFP) fusions (PH2-GFP, PH10-GFP, and PH-CRAC

  6. Pleckstrin homology domain diffusion in Dictyostelium cytoplasm studied using fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Ruchira, A.; Hink, M.A.; Bosgraaf, L.; Haastert, van P.J.M.; Visser, A.J.W.G.

    2004-01-01

    The translocation of pleckstrin homology (PH) domain-containing proteins from the cytoplasm to the plasma membrane plays an important role in the chemotaxis mechanism of Dictyostelium cells. The diffusion of three PH domain-green fluorescent protein (GFP) fusions (PH2-GFP, PH10-GFP, and PH-CRAC

  7. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 7. Trp -> TyrO radical transformation in hen egg-white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding

    DEFF Research Database (Denmark)

    Bobrowski, K.; Holcman, J.; Poznanski, J.

    1997-01-01

    Intramolecular long-range electron transfer (LRET) in hen egg-white lysozyme (HEWL) accompanying Trp --> TyrO radical transformation was investigated in aqueous solution by pulse radiolysis as a function of pH (5.2-7.4) and temperature (283-328K). The reaction was induced by highly selective...... below its denaturation temperature. Selective oxidation by ozone of the Trp62 indole side-chain in HEWL to N'-formylkynurenine (NFKyn62-HEWL) caused a large drop in the initial yield of Trp(.) radicals, G(Trp(.))(i). This was accompanied by a relatively small decrease in k(5) but selective oxidation...

  8. A systematic study of the effect of low pH acid treatment on anti-drug antibodies specific for a domain antibody therapeutic: Impact on drug tolerance, assay sensitivity and post-validation method assessment of ADA in clinical serum samples.

    Science.gov (United States)

    Kavita, Uma; Duo, Jia; Crawford, Sean M; Liu, Rong; Valcin, Joan; Gleason, Carol; Dong, Huijin; Gadkari, Snaehal; Dodge, Robert W; Pillutla, Renuka C; DeSilva, Binodh S

    2017-09-01

    We developed a homogeneous bridging anti-drug antibody (ADA) assay on an electro chemiluminescent immunoassay (ECLIA) platform to support the immunogenicity evaluation of a dimeric domain antibody (dAb) therapeutic in clinical studies. During method development we evaluated the impact of different types of acid at various pH levels on polyclonal and monoclonal ADA controls of differing affinities and on/off rates. The data shows for the first time that acids of different pH can have a differential effect on ADA of various affinities and this in turn impacts assay sensitivity and drug tolerance as defined by these surrogate controls. Acid treatment led to a reduction in signal of intermediate and low affinity ADA, but not high affinity or polyclonal ADA. We also found that acid pretreatment is a requisite for dissociation of drug bound high affinity ADA, but not for low affinity ADA-drug complexes. Although we were unable to identify an acid that would allow a 100% retrieval of ADA signal post-treatment, use of glycine pH3.0 enabled the detection of low, intermediate and high affinity antibodies (Abs) to various extents. Following optimization, the ADA assay method was validated for clinical sample analysis. Consistencies within various parameters of the clinical data such as dose dependent increases in ADA rates and titers were observed, indicating a reliable ADA method. Pre- and post-treatment ADA negative or positive clinical samples without detectable drug were reanalyzed in the absence of acid treatment or presence of added exogenous drug respectively to further assess the effectiveness of the final acid treatment procedure. The overall ADA results indicate that assay conditions developed and validated based on surrogate controls sufficed to provide a reliable clinical data set. The effect of low pH acid treatment on possible pre-existing ADA or soluble multimeric target in normal human serum was also evaluated, and preliminary data indicate that acid type and

  9. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  10. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    Science.gov (United States)

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  11. Syk inhibitors.

    Science.gov (United States)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  12. Domain crossing

    DEFF Research Database (Denmark)

    Schraefel, M. C.; Rouncefield, Mark; Kellogg, Wendy

    2012-01-01

    In CSCW, how much do we need to know about another domain/culture before we observe, intersect and intervene with designs. What optimally would that other culture need to know about us? Is this a “how long is a piece of string” question, or an inquiry where we can consider a variety of contexts a...

  13. Trusted Domain

    DEFF Research Database (Denmark)

    Hjorth, Theis Solberg; Torbensen, Rune

    2012-01-01

    remote access via IP-based devices such as smartphones. The Trusted Domain platform fits existing legacy technologies by managing their interoperability and access controls, and it seeks to avoid the security issues of relying on third-party servers outside the home. It is a distributed system...... of wireless standards, limited resources of embedded systems, etc. Taking these challenges into account, we present a Trusted Domain home automation platform, which dynamically and securely connects heterogeneous networks of Short-Range Wireless devices via simple non-expert user. interactions, and allows......In the digital age of home automation and with the proliferation of mobile Internet access, the intelligent home and its devices should be accessible at any time from anywhere. There are many challenges such as security, privacy, ease of configuration, incompatible legacy devices, a wealth...

  14. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  15. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  16. PH og modernismen

    DEFF Research Database (Denmark)

    Ahnfeldt-Mollerup, Merete

    2012-01-01

    Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus.......Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus....

  17. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, van M.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp)3 scarcely dissolves

  18. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  19. Optic nerve pH and PO2

    DEFF Research Database (Denmark)

    Pedersen, Daniella B; Stefánsson, Einar; Kiilgaard, Jens Folke

    2006-01-01

    Earlier studies have demonstrated that carbonic anhydrase inhibitors (CAIs) increase optic nerve oxygen tension (ONPO(2)) in pigs. We hypothesized that the mechanism of this effect was either a CO(2) increase or a pH decrease in tissue and blood. To test this hypothesis we investigated and compared...... how optic nerve pH (ONpH) and ONPO(2) are affected by: (1) carbonic anhydrase inhibition; (2) respiratory acidosis, and (3) metabolic acidosis. We measured ONpH with a glass pH electrode and ONPO(2) with a polarographic oxygen electrode. One of the electrodes was placed in the vitreous cavity 0.5 mm...

  20. A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis

    DEFF Research Database (Denmark)

    Halls, C.E.; Rogers, S. W.; Ouffattole, M.

    2006-01-01

    proaleurain maturation protease and of papain when assayed at pH 4.5 but not at pH 6.3. In a pull-down assay, the inhibitor bound tightly to papain, but only weakly to the aspartate protease pepsin. When the cauliflower protease inhibitor was transiently expressed in tobacco suspension culture protoplasts...

  1. PhAST: pharmacophore alignment search tool.

    Science.gov (United States)

    Hähnke, Volker; Hofmann, Bettina; Grgat, Tomislav; Proschak, Ewgenij; Steinhilber, Dieter; Schneider, Gisbert

    2009-04-15

    We present a ligand-based virtual screening technique (PhAST) for rapid hit and lead structure searching in large compound databases. Molecules are represented as strings encoding the distribution of pharmacophoric features on the molecular graph. In contrast to other text-based methods using SMILES strings, we introduce a new form of text representation that describes the pharmacophore of molecules. This string representation opens the opportunity for revealing functional similarity between molecules by sequence alignment techniques in analogy to homology searching in protein or nucleic acid sequence databases. We favorably compared PhAST with other current ligand-based virtual screening methods in a retrospective analysis using the BEDROC metric. In a prospective application, PhAST identified two novel inhibitors of 5-lipoxygenase product formation with minimal experimental effort. This outcome demonstrates the applicability of PhAST to drug discovery projects and provides an innovative concept of sequence-based compound screening with substantial scaffold hopping potential. 2008 Wiley Periodicals, Inc.

  2. Imaging Lysosomal pH Alteration in Stressed Cells with a Sensitive Ratiometric Fluorescence Sensor.

    Science.gov (United States)

    Xue, Zhongwei; Zhao, Hu; Liu, Jian; Han, Jiahuai; Han, Shoufa

    2017-03-24

    The organelle-specific pH is crucial for cell homeostasis. Aberrant pH of lysosomes has been manifested in myriad diseases. To probe lysosome responses to cell stress, we herein report the detection of lysosomal pH changes with a dual colored probe (CM-ROX), featuring a coumarin domain with "always-on" blue fluorescence and a rhodamine-lactam domain activatable to lysosomal acidity to give red fluorescence. With sensitive ratiometric signals upon subtle pH changes, CM-ROX enables discernment of lysosomal pH changes in cells undergoing autophagy, cell death, and viral infection.

  3. .Gov Domains API

    Data.gov (United States)

    General Services Administration — This dataset offers the list of all .gov domains, including state, local, and tribal .gov domains. It does not include .mil domains, or other federal domains outside...

  4. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  5. PhD Dissertations

    OpenAIRE

    Redazione Reti Medievali (a cura di)

    2010-01-01

    Report of PhD Dissertations.Anna Airò La scrittura delle regole. Politica e istituzioni a Taranto nel Quattrocento, Tesi di dottorato di ricerca in Storia medievale, Università degli studi di Firenze, 2005 Pasquale Arfé La Clavis Physicae II (316-529) di Honorius Augustodunensis. Studio ed edizione critica, Tesi di dottorato in Storia della filosofia medievale, Università degli Studi di Napoli "L'Orientale", 2005 Alessandro Azzimonti Scrittura agiografica e strutture di potere nell'Italia c...

  6. Structure and dynamics of the human pleckstrin DEP domain: distinct molecular features of a novel DEP domain subfamily.

    Science.gov (United States)

    Civera, Concepcion; Simon, Bernd; Stier, Gunter; Sattler, Michael; Macias, Maria J

    2005-02-01

    Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.

  7. Esophageal pH monitoring

    Science.gov (United States)

    pH monitoring - esophageal; Esophageal acidity test ... Esophageal pH monitoring is used to check how much stomach acid is entering the esophagus. It also checks how well the acid is cleared downward into the ...

  8. ELISA analysis of soybean trypsin inhibitors in processed foods.

    Science.gov (United States)

    Brandon, D L; Bates, A H; Friedman, M

    1991-01-01

    Soybean proteins are widely used in human foods in a variety of forms, including infant formulas, flour, protein concentrates, protein isolates, soy sauces, textured soy fibers, and tofu. The presence of inhibitors of digestive enzymes in soy proteins impairs the nutritional quality and possibly the safety of soybeans and other legumes. Processing, based on the use of heat or fractionation of protein isolates, does not completely inactivate or remove these inhibitors, so that residual amounts of inhibitors are consumed by animals and humans. New monoclonal antibody-based immunoassays can measure low levels of the soybean Kunitz trypsin inhibitor (KTI) and the Bowman-Birk trypsin and chymotrypsin inhibitor (BBI) and the Bowman-Birk foods. The enzyme-linked immunosorbent assay (ELISA) was used to measure the inhibitor content of soy concentrates, isolates, and flours, both heated and unheated; a commercial soy infant formula; KTI and BBI with rearranged disulfide bonds; browning products derived from heat-treatment of KTI with glucose and starch; and KTI exposed to high pH. The results indicate that even low inhibitor isolates contain significant amounts of specific inhibitors. Thus, infants on soy formula consume about 10 mg of KTI plus BBI per day. The immunoassays complement the established enzymatic assays of trypsin and chymotrypsin inhibitors, and have advantages in (a) measuring low levels of inhibitors in processed foods; and (b) differentiating between the Kunitz and Bowman-Birk inhibitors. The significance of our findings for food safety are discussed.

  9. PhD Dissertations

    Directory of Open Access Journals (Sweden)

    Redazione Reti Medievali (a cura di

    2004-06-01

    Full Text Available Report of PhD Dissertations. Francesco Barone Istituzioni, società ed economia a Catania nel tardo medioevo (XIV-XV secolo, Tesi di dottorato in Storia medievale (XVI ciclo, Università degli Studi di Firenze, 2004   Laura Berti Ceroni Il territorio e le strutture di Cesarea e Classe tra tarda antichità e alto medioevo in rapporto con Ravenna, Tesi di dottorato di ricerca in Storia e Informatica, Università degli studi di Bologna, 2002-2003.   Marco Bicchierai Poppi dalla signoria dei conti Guidi al vicariato del Casentino (1360-1480, Tesi di dottorato in Storia medievale (XIV ciclo, Università degli Studi di Firenze, 2004   Emanuela Garimberti Spatiosa ad habitandum loca. Luoghi e identità nella Historia Langobardorum di Paolo Diacono, Tesi di dottorato in Storia medievale (XV ciclo, Università degli Studi di Bologna, 2004   Lorenzo Tanzini Sistemi normativi e pratiche istituzionali a Firenze dalla fine del XIII all’inizio del XV secolo, Tesi di dottorato di ricerca in Storia medievale (XVI ciclo, Università degli Studi di Firenze, 2004   Stefania Tarquini Pellegrinaggio e asseto urbano di Roma, Tesi di dottorato di ricerca in Storia dei centri, delle vie e della cultura dei pellegrinaggi nel Medioevo euro mediterraneo (XV ciclo, Università degli studi di Lecce, 2003

  10. PhD Dissertations

    Directory of Open Access Journals (Sweden)

    Redazione Reti Medievali (a cura di

    2010-06-01

    Full Text Available Report of PhD dissertations. Andrea Brugnoli Una storia locale: l’organizzazione del territorio veronese nel medioevo: trasformazioni della realtà e schemi notarili (IX-metà XII secolo, Tesi di dottorato di ricerca in Scienze Storiche e Antropologiche (XXII ciclo, Università degli Studi di Verona, 2010   Luca Filangieri Famiglie e gruppi dirigenti a Genova (secoli XII-metà XIII, Tesi di dottorato di ricerca in Storia medievale (XXII ciclo, Università degli Studi di Firenze, 2010   Jakub Kujawi ski Wernakularna kolekcja historiograficzna z rękopisu francuskiego nr 688 z Biblioteki Narodowej w Paryżu. Studium źródłoznawcze (La raccolta dei volgarizzamenti delle opere storiografiche nel manoscritto francese 688 della Biblioteca Nazionale di Parigi, Tesi di dottorato, Università “Adam Mickiewicz”, Facoltà di Storia, Pozna, a.a. 2009/2010   Marta Longhi I signori “de Radicata”. Strategie di affermazione familiare e patrimoniale nel Piemonte dei secoli XII-XIV, Tesi di dottorato di ricerca in Istituzioni, Società, Religioni dal Tardo Antico alla fine del Medioevo (XX ciclo, Università di Torino, 2008

  11. PhD Dissertations

    Directory of Open Access Journals (Sweden)

    Redazione Reti Medievali (a cura di

    2003-06-01

    Full Text Available Reporto of PhD Dissertations.   Mario Dalle Carbonare Società, potere e clientele nell’Irlanda altomedievale (secoli V-IX, Tesi di dottorato di ricerca in Storia sociale europea, Università "Ca' Foscari" di Venezia, 2003 Vieri Mazzoni La legislazione antighibellina e la politica oligarchica della Parte Guelfa di Firenze nel secondo Trecento (1347-1378, Tesi di dottorato di ricerca in Storia Medievale (ciclo XII, Università degli Studi di Firenze   Alma Poloni Pisa dalle origini del movimento popolare alla discesa di Ludovico il Bavaro. I gruppi dirigenti cittadini tra continuità e trasformazione, Tesi di dottorato di ricerca in Storia dell'Europa nel medioevo, Università degli studi di Pisa, 2003   Andrea Puglia Potere marchionale, amministrazione del territorio, società locali dalla morte di Ugo di Tuscia a Guelfo VI di Baviera (1001-1160, Tesi di dottorato di ricerca in Storia medievale, Università degli studi di Milano, 2003

  12. Modes of Interaction of Pleckstrin Homology Domains with Membranes: Toward a Computational Biochemistry of Membrane Recognition.

    Science.gov (United States)

    Naughton, Fiona B; Kalli, Antreas C; Sansom, Mark S P

    2018-02-02

    Pleckstrin homology (PH) domains mediate protein-membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH-PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH-PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP 2 or PIP 3 , allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the "canonical" (C) and/or "alternate" (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo. Copyright © 2017. Published by Elsevier Ltd.

  13. A PhD is a PhD is a PhD

    OpenAIRE

    Ostrow, Deborah Anne

    2017-01-01

    A PhD is a PhD is a PhD is a practice-based project that interrogates the process of an artist undertaking PhD research under established criteria. It consists of an exegesis, an original screenplay, and a digital film made for online viewing, with images drawn from a range of documentaries and films found on YouTube. They have been dissected, re-assembled and then re-embedded to YouTube. The source material covers topics such as medicalization of madness, the conspicuous appropriation of uni...

  14. The pH Game.

    Science.gov (United States)

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  15. Identification of a molecular pH sensor in coral.

    Science.gov (United States)

    Barott, Katie L; Barron, Megan E; Tresguerres, Martin

    2017-11-15

    Maintaining stable intracellular pH (pHi) is essential for homeostasis, and requires the ability to both sense pH changes that may result from internal and external sources, and to regulate downstream compensatory pH pathways. Here we identified the cAMP-producing enzyme soluble adenylyl cyclase (sAC) as the first molecular pH sensor in corals. sAC protein was detected throughout coral tissues, including those involved in symbiosis and calcification. Application of a sAC-specific inhibitor caused significant and reversible pHi acidosis in isolated coral cells under both dark and light conditions, indicating sAC is essential for sensing and regulating pHi perturbations caused by respiration and photosynthesis. Furthermore, pHi regulation during external acidification was also dependent on sAC activity. Thus, sAC is a sensor and regulator of pH disturbances from both metabolic and external origin in corals. Since sAC is present in all coral cell types, and the cAMP pathway can regulate virtually every aspect of cell physiology through post-translational modifications of proteins, sAC is likely to trigger multiple homeostatic mechanisms in response to pH disturbances. This is also the first evidence that sAC modulates pHi in any non-mammalian animal. Since corals are basal metazoans, our results indicate this function is evolutionarily conserved across animals. © 2017 The Author(s).

  16. Optic nerve pH and PO2

    DEFF Research Database (Denmark)

    Pedersen, Daniella B; Stefánsson, Einar; Kiilgaard, Jens Folke

    2006-01-01

    Earlier studies have demonstrated that carbonic anhydrase inhibitors (CAIs) increase optic nerve oxygen tension (ONPO(2)) in pigs. We hypothesized that the mechanism of this effect was either a CO(2) increase or a pH decrease in tissue and blood. To test this hypothesis we investigated and compared...... how optic nerve pH (ONpH) and ONPO(2) are affected by: (1) carbonic anhydrase inhibition; (2) respiratory acidosis, and (3) metabolic acidosis. We measured ONpH with a glass pH electrode and ONPO(2) with a polarographic oxygen electrode. One of the electrodes was placed in the vitreous cavity 0.5 mm...... over the optic nerve in the eyes of domestic pigs....

  17. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence.

    Science.gov (United States)

    Choi, Jeongjoon; Groisman, Eduardo A

    2016-09-01

    pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH. © 2016 John Wiley & Sons Ltd.

  18. New Estimation of the Dosage of Scale Inhibitor in the Cooling Water System

    Directory of Open Access Journals (Sweden)

    Jiang Jiaomei

    2011-01-01

    Full Text Available In the cooling water system, excessive use of organic phosphate scale inhibitors is harmful to environment. Reducing the dosage of the organic phosphate scale inhibitor is important. A self-made jacketed crystallizer was used in this experiment. The critical pH values have been determined in cooling water systems with series of Ca2+ concentrations by adding different concentration of the scale inhibitor ATMP (Amino Trimethylene Phosphonic Acid according to the calcium carbonate Metastable zone theory. A model equation at 45 °C and pH=9 was proposed to estimate the lowest dose of the scale inhibitor ATMP. The measured pH value was approximate to the expected pH value in two cooling water systems through verification test.

  19. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    Science.gov (United States)

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  20. Intracellular pH homeostasis in Leishmania donovani amastigotes and promastigotes

    International Nuclear Information System (INIS)

    Glaser, T.A.; Baatz, J.E.; Kreishman, G.P.; Mukkada, A.J.

    1988-01-01

    Intracellular pH and pH gradients of Leishmania donovani amastigotes and promastigotes were determined over a broad range of extracellular pH values. Intracellular pH was determined by 31 P NMR and by equilibrium distribution studies with 5,5-dimethyloxazolidine-2,4-dione or methylamine. Promastigotes maintain intracellular pH values close to neutral between extracellular pH values of 5.0 and 7.4. Amastigote intracellular pH is maintained close to neutral at external pH values as low as 4.0. Both life stages maintain a positive pH gradient to an extracellular pH of 7.4, which is important for active transport of substrates. Treatment with ionophores, such as nigericin and carbonyl cyanide m-chlorophenylhydrazone and the ATPase inhibitor dicyclohexylcarbodiimide, reduced pH gradients in both stages. Maintenance of intracellular pH in the physiologic range is especially relevant for the survival of the amastigote in its acidic in vivo environment

  1. Cadmium triggers Elodea canadensis to change the surrounding water pH and thereby Cd uptake.

    Science.gov (United States)

    Javed, M Tariq; Greger, Maria

    2011-01-01

    This study was aimed to investigate the influence of Elodea canadensis shoots on surrounding water pH in the presence of cadmium and the effect of plant-induced pH on cadmium uptake. The pH change in the surrounding nutrient solution and Cd uptake by Elodea shoots were investigated after cultivation of various plant densities (1, 3, 6 plants per 500 ml) in hydroponics at a starting pH of 4.0 and in the presence of different concentrations of cadmium (0, 0.1, 0.5 microM). Cadmium uptake was also investigated at different constant pH (4.0, 4.5, 5.5 and 6.5). To investigate if the pH change arose from photosynthetic activities, plants were grown under light, darkness or in the presence of a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and 0.5 microM cadmium in the solution. Elodea had an ability to increase the surrounding water pH, when the initial pH was low, which resulted in increased accumulation of Cd. The higher the plant density, the more pronounced was the pH change. The pH increase was not due to the photosynthetic activity since the pH rise was more pronounced under darkness and in the presence of DCMU. The pH increase by Elodea was triggered by cadmium.

  2. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-12-01

    Full Text Available Introduction: The dysregulation of pH by cancerous cells of solid tumors is able to create a unique milieu that is in favor of progression, invasion and metastasis as well as chemo-/immuno-resistance traits of solid tumors. Bioelements involved in pH dysregulation provide new set of oncotargets, inhibition of which may result in better clinical outcome. Methods: To study the impacts of pH dysregulation, we investigated the tumor development and progression in relation with Warburg effect, glycolysis and formation of aberrant tumor microenvironment. Results: The upregulation of glucose transporter GLUT-1 and several enzymes involve in glycolysis exacerbates this phenomenon. The accumulation of lactic acids in cancer cells provokes upregulation of several transport machineries (MCT-1, NHE-1, CA IX and H+ pump V-ATPase resulting in reinforced efflux of proton into extracellular fluid. This deviant event makes pH to be settled at 7.4 and 6.6 respectively in cancer cells cytoplasm and extracellular fluid within the tumor microenvironment, which in return triggers secretion of lysosomal components (various enzymes in acidic milieu with pH 5 into cytoplasm. All these anomalous phenomena make tumor microenvironment (TME to be exposed to cocktail of various enzymes with acidic pH, upon which extracellular matrix (ECM can be remodeled and even deformed, resulting in emergence of a complex viscose TME with high interstitial fluid pressure. Conclusion: It seems that pH dysregulation is able to remodel various physiologic functions and make solid tumors to become much more invasive and metastatic. It also can cause undesired resistance to chemotherapy and immunotherapy. Hence, cancer therapy needs to be reinforced using specific inhibitors of bioelements involved in pH dysregulation of TME in solid tumors.

  3. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    Science.gov (United States)

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  4. Urine pH test

    Science.gov (United States)

    ... urine test Male urinary tract References Bose A, Monk RD, Bushinsky DA. Kidney stones. In: Melmed S, Polonsky ... and its influence on urine pH. J Am Diet Assoc . 1995;95(7):791-797. PMID: 7797810 ...

  5. Exercise and Pulmonary Hypertension (PH)

    Science.gov (United States)

    ... Situations Find a Doctor PH Care Centers PHA Classroom PHA Registry Insurance Guide Specialty Pharmacy Other Resources ... no published data in the medical literature regarding routine exercise in patients with PAH. However, there are ...

  6. Screening for Inhibitors of Essential Leishmania Glucose Transporters

    Science.gov (United States)

    2013-07-01

    Leishmania Glucose Transporters PRINCIPAL INVESTIGATOR: Scott M. Landfear, Ph.D. CONTRACTING ORGANIZATION: Oregon Health & Science...COVERED 1 July 2009- 30 June 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Screening for Inhibitors of Essential Leishmania Glucose Transporters 5b...The objective of this project was to identify compounds that selectively inhibit the essential Leishmania glucose transporters and could hence serve

  7. PhEDEx Data Service

    International Nuclear Information System (INIS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-01-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the 'SiteDB' service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  8. Programmable pH buffers

    Science.gov (United States)

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  9. Considerations on prevention of phlebitis and venous pain from intravenous prostaglandin E(1) administration by adjusting solution pH: in vitro manipulations affecting pH.

    Science.gov (United States)

    Kohno, Emiko; Nishikata, Mayumi; Okamura, Noboru; Matsuyama, Kenji

    2008-01-01

    Prostaglandin E(1) (PGE(1); Alprostadil Alfadex) is a potent vasodilator and inhibitor of platelet aggregation used to treat patients with peripheral vascular disease. The main adverse effects of intravenous PGE(1) administration, phlebitis and venous pain, arise from the unphysiologically low pH of infusion solutions. When PGE(1) infusion solutions with a pH value greater then 6 are used, phlebitis and venous pain are considered to be avoidable. Beginning with a PGE(1) infusion solution with pH greater than 6, we add the amount of 7% sodium bicarbonate needed to bring the solution to pH 7.4 if phlebitis or venous pain develops. In the present study we established a convenient nomogram showing the relationship between the titratable acidity of various infusion solutions and the volume of 7% sodium bicarbonate required to attain pH 7.4 for preventing the phlebitis and venous pain associated with PGE(1) infusion.

  10. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...... active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower...

  11. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors ...

    Indian Academy of Sciences (India)

    2012-05-04

    May 4, 2012 ... high stability at different pH values (2.0 to 10.0) except at pH 5.0 and are thermolabile beyond 80°C for ... plant proteins like lectins, PIs and amylase inhibitors in the ..... competitive inhibition was characterized by no changes.

  12. Digestion products of the PH20 hyaluronidase inhibit remyelination.

    Science.gov (United States)

    Preston, Marnie; Gong, Xi; Su, Weiping; Matsumoto, Steven G; Banine, Fatima; Winkler, Clayton; Foster, Scott; Xing, Rubing; Struve, Jaime; Dean, Justin; Baggenstoss, Bruce; Weigel, Paul H; Montine, Thomas J; Back, Stephen A; Sherman, Larry S

    2013-02-01

    Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation. Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo. OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions. We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions. Copyright © 2012 American Neurological Association.

  13. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  14. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.

    Science.gov (United States)

    Vainshtein, I; Kovacina, K S; Roth, R A

    2001-03-16

    The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.

  15. Substrate Binding Induces Domain Movements in Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank

    2002-01-01

    ); here we present the 2.5 Å structure of the uncomplexed apo enzyme, determined from twinned crystals. A structural analysis and comparison of the two structures of the E. coli enzyme show that binding of the inhibitor is accompanied by significant domain movements of approximately 12° around a hinge...

  16. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  17. Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors.

    Science.gov (United States)

    Tsai, J C; Guy, R H; Thornfeldt, C R; Gao, W N; Feingold, K R; Elias, P M

    1996-06-01

    The intercellular domains of the stratum corneum, which contain a mixture of cholesterol, free fatty acids, and ceramides, mediate both the epidermal permeability barrier and the transdermal delivery of both lipophilic and hydrophilic molecules. Prior studies have shown that each of the three key lipid classes is required for normal barrier function. For example, selective inhibition of either cholesterol, fatty acid, or ceramide synthesis in the epidermis delays barrier recovery rates after barrier perturbation of hairless mouse skin in vivo. In this study, we investigated the potential of certain inhibitors of lipid synthesis to enhance the transdermal delivery of lidocaine or caffeine as a result of their capacity to perturb barrier homeostasis. After acetone disruption of the barrier, the extent of lidocaine delivery and the degree of altered barrier function paralleled each other. Moreover, the further alteration in barrier function produced by either the fatty acid synthesis inhibitor 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), the cholesterol synthesis inhibitor fluvastatin (FLU), or cholesterol sulfate (CS) resulted in a further increase in lidocaine absorption. Furthermore, coapplications of TOFA and CS together caused an additive increase in lidocaine uptake. Finally, a comparable increase in drug delivery occurred when the barrier was disrupted initially with DMSO instead of acetone; coapplications of TOFA and FLU together again delayed barrier recovery and increased drug delivery by about 8-fold vs delivery from a standard enhancing vehicle. Whereas these metabolic inhibitors also variably increased the octanol/water partitioning of the drugs studied (perhaps via complexion or pH alterations), physicochemical effects of the inhibitors alone did not alter drug uptake in intact skin; i.e., passive mechanisms alone cannot account for the net increase in drug delivery. Our results show that modulations of epidermal lipid biosynthesis, following

  18. Effects of the EGFR Inhibitor Erlotinib on Magnesium Handling

    NARCIS (Netherlands)

    Dimke, Henrik; van der Wijst, Jenny; Alexander, Todd R.; Meijer, Inez M. J.; Mulder, Gemma M.; van Goor, Harry; Tejpar, Sabine; Hoenderop, Joost G.; Bindels, Rene J.

    A mutation in pro-EGF causes isolated hypomagnesemia, and monoclonal antibodies targeting the extracellular domain of the EGF receptor (EGFR) affect epithelial Mg2+ transport. The effect of the EGFR tyrosine kinase inhibitor erlotinib on Mg2+ homeostasis, however, remains unknown. Here, we injected

  19. Paulette Gray, Ph.D.

    Science.gov (United States)

    Paulette S. Gray, Ph.D. is the Director for the Division of Extramural Activities (DEA). As the director of the division, she is responsible for the overall scientific, fiscal, and administrative management of the division, including broad strategic planning, development, implementation, and evaluation.

  20. pH in Action

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Biekman, E.S.A.

    2001-01-01

    Based on fundamental chemical relations, well-established in chemical engineering and chemical technology over almost a century, the effects of pH in food and agricultural products will be deduced for different situations and processes. Based on simple equilibria and dissociation of water, salts,

  1. Neuronal pH regulation

    DEFF Research Database (Denmark)

    Vorstrup, S; Jensen, K E; Thomsen, C

    1989-01-01

    The intracellular pH in the brain was studied in six healthy volunteers before and immediately after the administration of 2 g of acetazolamide. Phosphorus-31 nuclear magnetic resonance spectroscopy by a 1.5 tesla whole-body scanner was used. The chemical shift between the inorganic phosphate...

  2. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Aromatase inhibitors in pediatrics.

    Science.gov (United States)

    Wit, Jan M; Hero, Matti; Nunez, Susan B

    2011-10-25

    Aromatase, an enzyme located in the endoplasmic reticulum of estrogen-producing cells, catalyzes the rate-limiting step in the conversion of androgens to estrogens in many tissues. The clinical features of patients with defects in CYP19A1, the gene encoding aromatase, have revealed a major role for this enzyme in epiphyseal plate closure, which has promoted interest in the use of inhibitors of aromatase to improve adult height. The availability of the selective aromatase inhibitors letrozole and anastrozole--currently approved as adjuvant therapy for breast cancer--have stimulated off-label use of aromatase inhibitors in pediatrics for the following conditions: hyperestrogenism, such as aromatase excess syndrome, Peutz-Jeghers syndrome, McCune-Albright syndrome and functional follicular ovarian cysts; hyperandrogenism, for example, testotoxicosis (also known as familial male-limited precocious puberty) and congenital adrenal hyperplasia; pubertal gynecomastia; and short stature and/or pubertal delay in boys. Current data suggest that aromatase inhibitors are probably effective in the treatment of patients with aromatase excess syndrome or testotoxicosis, partially effective in Peutz-Jeghers and McCune-Albright syndrome, but probably ineffective in gynecomastia. Insufficient data are available in patients with congenital adrenal hyperplasia or functional ovarian cysts. Although aromatase inhibitors appear effective in increasing adult height of boys with short stature and/or pubertal delay, safety concerns, including vertebral deformities, a decrease in serum HDL cholesterol levels and increase of erythrocytosis, are reasons for caution.

  4. Histone deacetylase-mediated regulation of endolysosomal pH.

    Science.gov (United States)

    Prasad, Hari; Rao, Rajini

    2018-05-04

    The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na + /H + exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of Drosophila and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aβ in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease. © 2018 Prasad and Rao.

  5. Conformational dynamics and ligand binding in the multi-domain protein PDC109.

    Directory of Open Access Journals (Sweden)

    Hyun Jin Kim

    2010-02-01

    Full Text Available PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2 repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs, a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M(-1, estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.

  6. The SACSESS hydrometallurgy domain - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Geist, A. [Karlsruhe Institute of Technology - KIT, Institute for Nuclear Wsaste Disposal - INE, Karlsruhe (Germany); Taylor, R. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, CA20 1PG (United Kingdom); Ekberg, C. [Chalmers University of Technology, Nuclear Chemistry/Industrial Materials Recycling, SE-412 96 Goeteborg (Sweden); Guilbaud, P.; Bourg, S. [CEA, Centre de Marcoule, Nuclear Energy Division, F-30207 Bagnols-sur-Ceze (France); Modolo, G. [Forschungszentrum Juelich GmbH - FZJ, Institut fuer Energie- und Klimaforschung - IEK-6, Juelich (Germany)

    2016-07-01

    The EURATOM FP7 project SACSESS (Safety of Actinide Separation Processes) is in continuity of a long line of preceding EURATOM projects. SACSESS is organised along four domains, one of them related to the development of hydrometallurgical (i.e. solvent extraction based) actinide separations processes. Within this domain, the most promising processes developed in previous projects are further developed, improving their technology readiness level (TRL) towards the point at which safe industrial implementation will be achievable. The SACSESS reference compounds are: TODGA, CyMe{sub 4}-BTBP, SO{sub 3}-Ph-BTP, HEDTA and DTPA. TODGA is used to co-extract actinides and lanthanides from high-acidity raffinate solutions, separating from the non-lanthanide fission products. TODGA is also used to accelerate the extraction kinetics of CyMe{sub 4}-BTBP. CyMe{sub 4}-BTBP extracts actinides selectively over lanthanides and many other fission products. HEDTA and DTPA are used to strip actinides selectively over lanthanides from an organic phase containing both actinides and lanthanides. SO{sub 3}-Ph-BTP was developed to overcome some of the drawbacks of HEDTA and DTPA, such as the narrow pH window they are effective in.

  7. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.

    Science.gov (United States)

    Consler, T G; Uberbacher, E C; Bunick, G J; Liebman, M N; Lee, J C

    1988-02-25

    The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the

  8. Industrial PhD report: Sustainable Innovation

    DEFF Research Database (Denmark)

    Olesen, Gitte Gylling Hammershøj

    2011-01-01

    Erhvervs PhD rapport udarbejdet i tilknytning til Erhvervs PhD kurset der er obligatorisk for Erhvervs PhD studerende. Rapporten omhandler relationer melllem den akademiske verden og industrien i sammenhæng med PhD projektet, betragtet og analyseret gennem teori om bæredygtig innovation....

  9. JAK inhibitors in autoinflammation.

    Science.gov (United States)

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.

  10. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  11. Conserved Domain Database (CDD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — CDD is a protein annotation resource that consists of a collection of well-annotated multiple sequence alignment models for ancient domains and full-length proteins.

  12. An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells.

    Science.gov (United States)

    Ng, Shu Rui; O'Hare, Danny

    2015-06-21

    pH sensors were fabricated by anodically electrodepositing iridium oxide films (AEIROFs) onto microelectrodes on chips and coated with poly(ethyleneimine) (PEI) for mechanical stability. These demonstrate super-Nernstian response to pH from pH 4.0 to 7.7 in chloride-free phosphate buffer. The surface of the chip was coated with fibronectin for the attachment of porcine aortic endothelial cells (PAECs). The working capability of the pH sensor for monitoring acute local pH changes was investigated by stimulating the PAECs with thrombin. Our results show that thrombin induced acute extracellular acidification of PAECs and dissolution of fibronectin, causing the local pH to decrease. The use of PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, reduced extracellular acidification and an increase in local pH was observed. This study shows that our pH sensors can facilitate the investigation of acute cellular responses to stimulation by monitoring the real-time, local pH changes of cells attached to the sensors.

  13. The chemistry, physiology and pathology of pH in cancer.

    Science.gov (United States)

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta

    2014-03-19

    Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.

  14. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures.

    Science.gov (United States)

    Krystek, S; Stouch, T; Novotny, J

    1993-12-05

    An empirical function was used to calculate free energy change (delta G) of complex formation between the following inhibitors and enzymes: Kunitz inhibitor (BPTI) with trypsin, trypsinogen and kallikrein; turkey ovomucoid 3rd domain (OMTKY3) with alpha-chymotrypsin and the Streptomyces griseus protease B; the potato chymotrypsin inhibitor with the protease B; and the barely chymotrypsin inhibitor and eglin-c with subtilisin and thermitase. Using X-ray coordinates of the nine complexes, we estimated the contributions that hydrophobic effect, electrostatic interactions and side-chain conformational entropy make towards the stability of the complexes. The calculated delta G values showed good agreement with the experimentally measured ones, the only exception being the kallikrein/BPTI complex whose X-ray structure was solved at an exceptionally low pH. In complexes with different enzymes, the same inhibitor residues contributed identically towards complex formation (delta G(residue) Spearman rank correlation coefficient 0.7 to 1.0). The most productive enzyme-contacting residues in OMTKY3, eglin-c, and the chymotrypsin inhibitors were found in analogous positions on their respective binding loops; thus, our calculations identified a functional (energetic) motif that parallels the well-known structural similarity of the binding loops. The delta G values calculated for BPTI complexed with trypsin (-21.7 kcal) and trypsinogen (-23.4 kcal) were similar and close to the experimental delta G value of the trypsin/BPTI complex (-18.1 kcal), lending support to the suggestion that the 10(7) difference in the observed stabilities (KA) of these two complexes reflects the energetic cost of conformational changes induced in trypsinogen during the pre-equilibrium stages of complex formation. In almost all of the complexes studied, the stabilization free energy contributed by the inhibitors was larger than that donated by the enzymes. In the trypsin-BPTI complex, the calculated

  15. Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Fidrusli, A.; Suryanto; Mahmood, M.

    2018-01-01

    Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

  16. Urinary trypsin inhibitor - an experimental and clinical study

    International Nuclear Information System (INIS)

    Berling, B.M.

    1991-01-01

    The urinary trypsin inhibitor (UTI) is an acid stable proteinase inhibitor present in blood and urine. It was purified from urine using affinity chromatography, ion exchange chromatography and gel filtration. Two forms of UTI were present in urine, A and B. A radioimmunoassay for measurement of UTI in urine and plasma was performed. The normal level of UTI in plasma and serum was about 2 mg/l. The normal excretion in urine was about 8 mg per 24 hours. The plasma and urine levels of UTI were studied in patients with acute pancreatitis and in patients undergoing cholecystectomy. Uremic patients had a marked increase of UTI in plasma compatible with decreased glomerular filtration. In samples from healthy persons as well as from patients only inhibitor A was found. Inhibitor B has recently been renamed bikunin because of its two Kunitz-type inhibiting domains. Inhibitor A might be called tetrakunin. Radioactively labeled UTI (inhibitor A) was injected intravenously in three male volunteers. The plasma half-life of 125 I UTI was 2 hours. Free biologically active inhibitor was found in the urine during the first four hours after injection. The organ distribution of intravenously injected 125 I UTI was studied in rats. Fifteen minutes after injection the major part of the radioactivity was found in the kidneys, suggesting that the kidneys are the primary site of UTI metabolism. Using immunohistochemical techniques UTI was found in the proximal tubules of the normal human kidney further indicating the tubular reabsorption and methabolisms of UTI

  17. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.

    2003-01-01

    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of

  18. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  19. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  20. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  1. Second-generation inhibitors of Bruton tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2016-09-01

    Full Text Available Abstract Bruton tyrosine kinase (BTK is a critical effector molecule for B cell development and plays a major role in lymphoma genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases, which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib, ONO/GS-4059, and BGB-3111.

  2. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  3. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  4. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase

    International Nuclear Information System (INIS)

    Gunn, Natalie J.; Gorman, Michael A.; Dobson, Renwick C. J.; Parker, Michael W.; Mulhern, Terrence D.

    2011-01-01

    The Src-homology 2 (SH2) domain of Csk-family protein tyrosine kinases acts as a conformational switch to regulate their catalytic activity, which in turn promotes the inhibition of their proto-oncogenic targets, the Src-family kinases. Here, the expression, purification, small-angle X-ray scattering and preliminary diffraction analysis of the SH2 domain of the Csk-homologous kinase is reported. The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a = 25.8, b = 34.6, c = 63.2 Å, β = 99.4°

  5. Arrestin-related proteins mediate pH signaling in fungi

    OpenAIRE

    Herranz, Silvia; Rodríguez, José M.; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C.; Arst, Herbert N.; Peñalva, Miguel A.; Vincent, Olivier

    2005-01-01

    Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian β-arrestins, ubiquitinated in a signal-dependent and 7TM protein-depe...

  6. Parathyroid hormone depresses cytosolic pH and DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Reid, I.R.; Civitelli, R.; Avioli, L.V.; Hruska, K.A.

    1988-01-01

    It has recently become apparent that a number of hormones and growth factors modulate cytosolic pH (pH i ) and there is some evidence that this in turn may influence cell growth. The authors have examined the effects of parathyroid hormone (PTH) on both these parameters in an osteoblast-like cell line, UMR 106. Preliminary studies, using the pH-sensitive fluorescent probe 2',7'-bis(2-carboxyethyl)-5,(6)-carboxyfluorescein indicated that these cells regulate pH i by means of an amiloride-inhibitable Na + -H + exchanger. Rat PTH-(1-34) (rPTH) caused a progressive dose-related decrease in pH i with a half-maximal effect at 10 -11 M. The diacylglycerol analogue, phorbol 12-myristate 13-acetate, increased both pH i and [ 3 H]thymidine incorporation, and amiloride reduced both indexes. However, rPTH remained a potent inhibitor of [ 3 H]thymidine incorporation in the presence of amiloride, even though it did not affect pH i in these circumstances. It is concluded that PTH decreases pH i and growth in UMR 106 cells but that these changes can be dissociated. Depression of pH i may have other important effects on bone metabolism, such as reducing cell-cell communication, and may be associated with alkalinization of the bone fluid compartment

  7. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains.

    Science.gov (United States)

    Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet

    2014-10-01

    JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor

    Science.gov (United States)

    Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi

    2018-01-01

    Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH 7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site ( 103 M- 1, 310 K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH0), entropy change (ΔS0) and Gibbs free energy change (ΔG0) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR).

  9. Fetal scalp pH testing

    Science.gov (United States)

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  10. Acid loading test (pH)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  11. A double-blind placebo-controlled trial of omeprazole on urinary pH in healthy subjects

    DEFF Research Database (Denmark)

    Osther, P J; Rasmussen, L; Pedersen, S A

    1992-01-01

    Urinary pH is related to urinary calculus formation as well as urinary infection. Omeprazole is an effective inhibitor of gastric acid secretion through inhibition of the parietal cell H+K+ATPase. In this study we have evaluated a possible effect of omeprazole on urine acidification. Ten healthy...... male subjects took placebo and omeprazole, 40 mg o.m., for 10 days in a double-blind placebo-controlled trial. Morning fasting urinary pH was measured on day 10 of each treatment course using a pH meter. No effect of omeprazole on urinary pH could be demonstrated. It is thus unlikely...... that it is necessary to take omeprazole treatment into consideration in stone screening. As omeprazole did not affect urinary pH, no urological side effects related to changes in urinary pH can be expected....

  12. Domain: Labour market

    NARCIS (Netherlands)

    Oude Mulders, J.; Wadensjö, E.; Hasselhorn, H.M.; Apt, W.

    This domain chapter is dedicated to summarize research on the effects of labour market contextual factors on labour market participation of older workers (aged 50+) and identify research gaps. While employment participation and the timing of (early) retirement is often modelled as an individual

  13. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Domain-Specific Multimodeling

    DEFF Research Database (Denmark)

    Hessellund, Anders

    the overall level of abstraction. It does, however, also introduce a new problem of coordinating multiple different languages in a single system. We call this problem the coordination problem. In this thesis, we present the coordination method for domain-specific multimodeling that explicitly targets...

  15. GlycoDomainViewer

    DEFF Research Database (Denmark)

    Joshi, Hiren J; Jørgensen, Anja; Schjoldager, Katrine T

    2018-01-01

    features, which enhances visibility and accessibility of the wealth of glycoproteomic data being generated. The GlycoDomainViewer enables visual exploration of glycoproteomic data, incorporating information from recent N- and O-glycoproteome studies on human and animal cell lines and some organs and body...

  16. pH sensor calibration procedure

    OpenAIRE

    Artero Delgado, Carola; Nogueras Cervera, Marc; Manuel Lázaro, Antonio; Prat Tasias, Jordi; Prat Farran, Joana d'Arc

    2013-01-01

    This paper describes the calibration of pH sensor located at the OBSEA marine Observatory. This instrument is based on an industrial pH electrode that is connected to a CTD instrument (Conductivity, Temperature, and Depth ). The calibration of the pH sensor has been done using a high precision spectrophotometer pH meter from Institute of Marine Sciences (ICM), and in this way it has been obtained a numerical function for the p H sensor propor...

  17. The framing of scientific domains

    DEFF Research Database (Denmark)

    Dam Christensen, Hans

    2014-01-01

    domains, and UNISIST helps understanding this navigation. Design/methodology/approach The UNISIST models are tentatively applied to the domain of art history at three stages, respectively two modern, partially overlapping domains, as well as an outline of an art historical domain anno c1820...

  18. PhD students and integrative research

    NARCIS (Netherlands)

    Fry, G.; Tress, B.; Tress, G.

    2006-01-01

    The training of PhD students is currently very dynamic and varies widely from place to place. We present some examples of this variation and comment on how it may affect the way PhD students cope with integrative studies. Our focus is on the training needs of PhD students studying integrative

  19. Effect of external pH on the cytoplasmic and vacuolar pHs in Mung bean root-tip cells

    International Nuclear Information System (INIS)

    Torimitsu, Keiichi; Yazaki, Yoshiaki; Nagasuka, Kinuyo; Ohta, Eiji; Sakata, Makoto

    1984-01-01

    The effect of the external pH on the intracellular pH in mung bean (Vigna mungo (L.) Hepper) root-tip cells was investigated with the 31 P nuclear magnetic resonance (NMR) method. The 31 P NMR spectra showed three peaks caused by cytoplasmic G-6-P, cytoplasmic Psub(i) and vacuolar Psub(i). The cytoplasmic and vacuolar pHs could be determined by comparing the Psub(i) chemical shifts with the titration curve. When the external pH was changed over a range from pH 3 to 10, the cytoplasmic pH showed smaller changes than the vacuolar pH, suggesting that the former is regulated more strictly than the latter. The H + -ATPase inhibitor, DCCD, caused the breakdown of the mechanism that regulates the intracellular pH. H + -ATPase appears to have an important part in the regulation of the intracellular pH. (author)

  20. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    Directory of Open Access Journals (Sweden)

    David H. Keating

    2014-08-01

    Full Text Available Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass, phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH. To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(PH, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

  1. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    Science.gov (United States)

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  2. Using model complexes to augment and advance metalloproteinase inhibitor design.

    Science.gov (United States)

    Jacobsen, Faith E; Cohen, Seth M

    2004-05-17

    The tetrahedral zinc complex [(Tp(Ph,Me))ZnOH] (Tp(Ph,Me) = hydrotris(3,5-phenylmethylpyrazolyl)borate) was combined with 2-thenylmercaptan, ethyl 4,4,4-trifluoroacetoacetate, salicylic acid, salicylamide, thiosalicylic acid, thiosalicylamide, methyl salicylate, methyl thiosalicyliate, and 2-hydroxyacetophenone to form the corresponding [(Tp(Ph,Me))Zn(ZBG)] complexes (ZBG = zinc-binding group). X-ray crystal structures of these complexes were obtained to determine the mode of binding for each ZBG, several of which had been previously studied with SAR by NMR (structure-activity relationship by nuclear magnetic resonance) as potential ligands for use in matrix metalloproteinase inhibitors. The [(Tp(Ph,Me))Zn(ZBG)] complexes show that hydrogen bonding and donor atom acidity have a pronounced effect on the mode of binding for this series of ligands. The results of these studies give valuable insight into how ligand protonation state and intramolecular hydrogen bonds can influence the coordination mode of metal-binding proteinase inhibitors. The findings here suggest that model-based approaches can be used to augment drug discovery methods applied to metalloproteins and can aid second-generation drug design.

  3. High-resolution crystal structures of Drosophila melanogaster angiotensin-converting enzyme in complex with novel inhibitors and antihypertensive drugs.

    Science.gov (United States)

    Akif, Mohd; Georgiadis, Dimitris; Mahajan, Aman; Dive, Vincent; Sturrock, Edward D; Isaac, R Elwyn; Acharya, K Ravi

    2010-07-16

    Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE. 2010 Elsevier Ltd. All rights reserved.

  4. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Nina; Kosec, Tadeja, E-mail: tadeja.kosec@zag.si; Legat, Andraž

    2016-12-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl{sup −} and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl{sup −}/inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl{sup −}.

  5. TENCompetence Domain Model

    NARCIS (Netherlands)

    2006-01-01

    This is the version 1.1 of the TENCompetence Domain Model (version 1.0 released at 19-6-2006; version 1.1 at 9-11-2008). It contains several files: a) a pdf with the model description, b) three jpg files with class models (also in the pdf), c) a MagicDraw zip file with the model itself, d) a release

  6. DGAT inhibitors for obesity.

    Science.gov (United States)

    Matsuda, Daisuke; Tomoda, Hiroshi

    2007-10-01

    Obesity is characterized by the accumulation of triacylglycerol in adipocytes. Diacylglycerol acyltransferase (DGAT) catalyzes the final reaction of triacylgycerol synthesis. Two isozymes of DGAT, DGAT1 and DGAT2, have been reported. Increased DGAT2 activity has a role in steatosis, while DGAT1 plays a role in very (V)LDL synthesis; increased plasma VLDL concentrations may promote obesity and thus DGAT1 is considered a potential therapeutic target of inhibition for obesity control. Several DGAT inhibitors of natural and synthetic origin have been reported, and their future prospect as anti-obesity drugs is discussed in this review.

  7. Pronounced radiosensitization of cultured human cancer cells by COX inhibitor under acidic microenvironment

    International Nuclear Information System (INIS)

    Shah, Tushar; Ryu, Samuel; Lee, Ho Jun; Brown, Stephen; Kim, Jae Ho

    2002-01-01

    Purpose: To demonstrate the influence of pH on the cytotoxicity and radiosensitization by COX (cyclooxygenase) -1 and -2 inhibitors using established human cancer cells in culture. Methods and Materials: Nonselective COX inhibitor, ibuprofen (IB), and selective COX-2 inhibitor, SC-236, were used to determine the cytotoxicity and radiosensitization at varying pH of culture media. Human colon carcinoma cell line (HT-29) was exposed to the drug alone and in combination with radiation at different pH of the cell culture media. The end point was clonogenic ability of the single-plated cells after the treatment. Results: Cytotoxicity and radiosensitization of IB increased with higher drug concentration and longer exposure time. The most significant radiosensitization was seen with IB (1.5 mM) for 2-h treatment at pH 6.7 before irradiation. The dose-modifying factor as defined by the ratio of radiation doses required to achieve the same effect on cell survival was 1.8 at 10% survival level. In contrast, SC-236 (50 μM for 2-8 h) showed no pH-dependent cytotoxicity. There was modest increase in the cell killing at lower doses of radiation. Conclusion: An acidic pH was an important factor affecting the increased cytotoxicity and radiosensitization by ibuprofen. Radiation response was enhanced at shoulder portion of the cell survival curve by selective COX-2 inhibitor

  8. SH2 Domain Histochemistry.

    Science.gov (United States)

    Buhs, Sophia; Nollau, Peter

    2017-01-01

    Among posttranslational modifications, the phosphorylation of tyrosine residues is a key modification in cell signaling. Because of its biological importance, characterization of the cellular state of tyrosine phosphorylation is of great interest. Based on the unique properties of endogenously expressed SH2 domains recognizing tyrosine phosphorylated signaling proteins with high specificity we have developed an alternative approach, coined SH2 profiling, enabling us to decipher complex patterns of tyrosine phosphorylation in various normal and cancerous tissues. So far, SH2 profiling has largely been applied for the analysis of protein extracts with the limitation that information on spatial distribution and intensity of tyrosine phosphorylation within a tissue is lost. Here, we describe a novel SH2 domain based strategy for differential characterization of the state of tyrosine phosphorylation in formaldehyde-fixed and paraffin-embedded tissues. This approach demonstrates that SH2 domains may serve as very valuable tools for the analysis of the differential state of tyrosine phosphorylation in primary tissues fixed and processed under conditions frequently applied by routine pathology laboratories.

  9. On the function of chitin synthase extracellular domains in biomineralization.

    Science.gov (United States)

    Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke

    2013-08-01

    Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Dynamic regulation of gastric surface pH by luminal pH

    OpenAIRE

    Chu, Shaoyou; Tanaka, Shin; Kaunitz, Jonathan D.; Montrose, Marshall H.

    1999-01-01

    In vivo confocal imaging of the mucosal surface of rat stomach was used to measure pH noninvasively under the mucus gel layer while simultaneously imaging mucus gel thickness and tissue architecture. When tissue was superfused at pH 3, the 25 μm adjacent to the epithelial surface was relatively alkaline (pH 4.1 ± 0.1), and surface alkalinity was enhanced by topical dimethyl prostaglandin E2 (pH 4.8 ± 0.2). Luminal pH was changed from pH 3 to pH 5 to mimic the fasted-to-fed transition in intra...

  11. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    Science.gov (United States)

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Domain decomposition method for solving elliptic problems in unbounded domains

    International Nuclear Information System (INIS)

    Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1991-01-01

    Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs

  13. 5 alpha-reductase inhibitors and prostatic disease.

    Science.gov (United States)

    Schröder, F H

    1994-08-01

    5 alpha-Reductase inhibitors are a new class of substances with very specific effects on type I and type II 5 alpha R which may be of use in the treatment of skin disease, such as male pattern baldness, male acne and hirsutism, as well as prostatic hyperplasia and prostate cancer. At least two types of 5 alpha R inhibitors with a different pH optimum have been described. cDNA encoding for both the type I and the type II enzyme has been cloned. Most of the orally effective 5 alpha R inhibitors belong to the class of 4-azasteroids. The radical substituted in the 17 position of the steroid ring seems to be related to species specific variations and to the types of 5 alpha R enzymes in different species and organ systems. 5 alpha R inhibitors lead to a decrease of plasma DHT by about 65% while there is a slight rise in plasma testosterone. The decrease of tissue DHT in the ventral prostate of the intact rat, the dog and in humans is more pronounced and amounts to about 85%. There is a reciprocal rise of tissue T in these systems. The application of an inhibitor of 5 alpha R type II leads to a shrinkage of BPH in men by about 30%. In the rat a similar shrinkage accompanied by a significant decrease of total organ DNA occurs. This decrease, however, is not as pronounced as can be achieved with castration.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Pulmonary Toxicity of Cholinesterase Inhibitors

    National Research Council Canada - National Science Library

    Hilmas, Corey; Adler, Michael; Baskin, Steven I; Gupta, Ramesh C

    2006-01-01

    .... Whereas nerve agents were produced primarily for military deployment, other cholinesterase inhibitors were used for treating conditions such as myasthenia gravis and as pretreaunents for nerve agent exposure...

  15. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.

    Science.gov (United States)

    Liu, Fei; Xiao, Zhina; Yang, Li; Chen, Qian; Shao, Lu; Liu, Juanxu; Yu, Yixun

    2017-09-01

    In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases

    Science.gov (United States)

    Liu, Ye; Zheng, Tengfei; Bruner, Steven D.

    2011-01-01

    Summary Phosphopantetheine-modified carrier domains play a central role in the template-directed, biosynthesis of several classes of primary and secondary metabolites. Fatty acids, polyketides and nonribosomal peptides are constructed on multidomain enzyme assemblies using phosphopantetheinyl thioester-linked carrier domains to traffic and activate building blocks. The carrier domain is a dynamic component of the process, shuttling pathway intermediates to sequential enzyme active sites. Here we report an approach to structurally fix carrier domain/enzyme constructs suitable for X-ray crystallographic analysis. The structure of a two-domain construct of E. coli EntF was determined with a conjugated phosphopantetheinyl-based inhibitor. The didomain structure is locked in an active orientation relevant to the chemistry of nonribosomal peptide biosynthesis. This structure provides details into the interaction of phosphopantetheine arm with the carrier domain and the active site of the thioesterase domain. PMID:22118682

  17. Proteolytic and Trypsin Inhibitor Activity in Germinating Jojoba Seeds (Simmondsia chinensis) 1

    Science.gov (United States)

    Samac, Deborah; Storey, Richard

    1981-01-01

    Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling. Jojoba cotyledonary extracts were found to inhibit the enzymic activity of trypsin, chymotrypsin, and pepsin but not the protease from Aspergillus saotoi. The heat-labile trypsin inhibitor substance(s) was found in commercially processed jojoba seed meal and the albumin fraction of seed proteins. Trypsin inhibitor activity decreased with germination. PMID:16662104

  18. Proteolytic and Trypsin Inhibitor Activity in Germinating Jojoba Seeds (Simmondsia chinensis).

    Science.gov (United States)

    Samac, D; Storey, R

    1981-12-01

    Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling.Jojoba cotyledonary extracts were found to inhibit the enzymic activity of trypsin, chymotrypsin, and pepsin but not the protease from Aspergillus saotoi. The heat-labile trypsin inhibitor substance(s) was found in commercially processed jojoba seed meal and the albumin fraction of seed proteins. Trypsin inhibitor activity decreased with germination.

  19. Functional Domain Driven Design

    OpenAIRE

    Herrera Guzmán, Sergio

    2016-01-01

    Las tecnologías están en constante expansión y evolución, diseñando nuevas técnicas para cumplir con su fin. En el desarrollo de software, las herramientas y pautas para la elaboración de productos software constituyen una pieza en constante evolución, necesarias para la toma de decisiones sobre los proyectos a realizar. Uno de los arquetipos para el desarrollo de software es el denominado Domain Driven Design, donde es importante conocer ampliamente el negocio que se desea modelar en form...

  20. Feature-level domain adaptation

    DEFF Research Database (Denmark)

    Kouw, Wouter M.; Van Der Maaten, Laurens J P; Krijthe, Jesse H.

    2016-01-01

    -level domain adaptation (flda), that models the dependence between the two domains by means of a feature-level transfer model that is trained to describe the transfer from source to target domain. Subsequently, we train a domain-adapted classifier by minimizing the expected loss under the resulting transfer...... modeled via a dropout distribution, which allows the classiffier to adapt to differences in the marginal probability of features in the source and the target domain. Our experiments on several real-world problems show that flda performs on par with state-of-the-art domainadaptation techniques.......Domain adaptation is the supervised learning setting in which the training and test data are sampled from different distributions: training data is sampled from a source domain, whilst test data is sampled from a target domain. This paper proposes and studies an approach, called feature...

  1. Compensating for Incomplete Domain Knowledge

    National Research Council Canada - National Science Library

    Scott, Lynn M; Drezner, Steve; Rue, Rachel; Reyes, Jesse

    2007-01-01

    .... First, many senior leader positions require experience in more than one functional or operational domain, but it is difficult to develop a corps of senior leaders with all the required combinations of domain knowledge...

  2. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    , for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...... as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context....

  3. Summarization by domain ontology navigation

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2013-01-01

    of the subject. In between these two extremes, conceptual summaries encompass selected concepts derived using background knowledge. We address in this paper an approach where conceptual summaries are provided through a conceptualization as given by an ontology. The ontology guiding the summarization can...... be a simple taxonomy or a generative domain ontology. A domain ontology can be provided by a preanalysis of a domain corpus and can be used to condense improved summaries that better reflects the conceptualization of a given domain....

  4. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    Science.gov (United States)

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  5. Evolution of a New Class of VEGFR-2 Inhibitors from Scaffold Morphing and Redesign.

    Science.gov (United States)

    Mainolfi, Nello; Karki, Rajeshri; Liu, Fang; Anderson, Karen

    2016-04-14

    Anti-VEGF therapy is a clinically validated treatment for age-related macular degeneration (AMD). We have recently reported the discovery of oral VEGFR-2 inhibitors that are selectively distributed to the ocular tissues. Herein we report a further development of those compounds and in particular the validation of the hypothesis that aminoheterocycles such as aminoisoxazoles and aminopyrazoles could also function as effective "hinge" binding moieties leading to a new class of KDR (kinase insert domain containing receptor) inhibitors.

  6. pH distribution in human tumors

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Leeper, D.B.; Moylan, D.J.; Nerlinger, R.E.

    1984-01-01

    pH distribution in human tumors is being determined to evaluate this parameter as a prognostic indicator of hyperthermia response. pH is measured by a modified glass pH electrode (21g, model MI 408, Microelectrodes, Inc., Londonderry, NH) inserted through an 18g open-ended Angiocath. Eight tumors have been evaluated to date; and of those, 3 were also assayed after the first heat treatment coincident with determination of blood flow. Tumors were between 2-5 cm, of various histologies, and of primary, recurrent, or metastatic origin. 2-4 measurements were made per tumor. Pretreatment readings were between 6.4 and 7.2 pH units. As tumor blood flow increased after 1 hr heating (41.5 - 43 0 ) pH rose 0.1 - 0.3 units. Normal rat muscle yields pH readings of 7.35 - 7.45. Although there was considerable heterogeneity of pH within tumors, accuracy and drift were not a problem. 5-15 min were required for pH stabilization after catheter insertion and <5 min after electrode insertion. A saline wheal was used for anesthesia to preclude modification of pH by anesthetics. Patient tolerance has not been a problems. This study suggests that human tumor tissue has a preponderance of areas more acidic than normal tissue. This may serve to sensitize tumor cells to hyperthermia and provide a prognostic indicator of tumor response

  7. DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain.

    Science.gov (United States)

    Tabarani, Georges; Thépaut, Michel; Stroebel, David; Ebel, Christine; Vivès, Corinne; Vachette, Patrice; Durand, Dominique; Fieschi, Franck

    2009-08-07

    DC-SIGN is a C-type lectin receptor of dendritic cells and is involved in the early stages of numerous infectious diseases. DC-SIGN is organized into a tetramer enabling multivalent interaction with pathogens. Once formed, the DC-SIGN-pathogen complex can be internalized into compartments of increasing acidity. We have studied the pH dependence of the oligomerization state and conformation of the entire extracellular domain and neck region. We present evidence for equilibrium between the monomeric and tetrameric states of the extracellular domain, which exhibits a marked dependence with respect to both pH and ionic strength. Using solution x-ray scattering we have obtained a molecular envelope of the extracellular domain in which a model has been built. Our results highlight the central role of the neck domain in the pH-sensitive control of the oligomerization state, in the extended conformation of the protein, and in carbohydrate recognition domain organization and presentation. This work opens new insight into the molecular mechanism of ligand release and points to new avenues to block the first step of this important infection pathway.

  8. Biological abatement of cellulase inhibitors

    Science.gov (United States)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  9. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    -amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha...

  10. Corrosion inhibitors. Manufacture and technology

    International Nuclear Information System (INIS)

    Ranney, M.W.

    1976-01-01

    Detailed information is presented relating to corrosion inhibitors. Areas covered include: cooling water, boilers and water supply plants; oil well and refinery operations; fuel and lubricant additives for automotive use; hydraulic fluids and machine tool lubes; grease compositions; metal surface treatments and coatings; and general processes for corrosion inhibitors

  11. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  12. Substitution of the transmembrane domain of Vpu in simian-human immunodeficiency virus (SHIVKU1bMC33) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques

    International Nuclear Information System (INIS)

    Hout, David R.; Gomez, Melissa L.; Pacyniak, Erik; Gomez, Lisa M.; Fegley, Barbara; Mulcahy, Ellyn R.; Hill, M. Sarah; Culley, Nathan; Pinson, David M.; Nothnick, Warren; Powers, Michael F.; Wong, Scott W.; Stephens, Edward B.

    2006-01-01

    The Vpu protein of human immunodeficiency virus type 1 has been shown to shunt the CD4 receptor molecule to the proteasome for degradation and to enhance virus release from infected cells. The exact mechanism by which the Vpu protein enhances virus release is currently unknown but some investigators have shown that this function is associated with the transmembrane domain and potential ion channel properties. In this study, we determined if the transmembrane domain of Vpu could be functionally substituted with that of the prototypical viroporin, the M2 protein of influenza A virus. We constructed chimeric vpu gene in which the transmembrane domain of Vpu was replaced with that of the M2 protein of influenza. This chimeric vpu gene was substituted for the vpu gene in the genome of a pathogenic simian human immunodeficiency virus, SHIV KU-1bMC33 . The resulting virus, SHIV M2 , synthesized a Vpu protein that had a slightly different M r compared to the parental SHIV KU-1bMC33 , reflecting the different sizes of the two Vpu proteins. The SHIV M2 was shown to replicate with slightly reduced kinetics when compared to the parental SHIV KU-1bMC33 but electron microscopy revealed that the site of maturation was similar to the parental virus SHIV KU1bMC33 . We show that the replication and spread of SHIV M2 could be blocked with the antiviral drug rimantadine, which is known to target the M2 ion channel. Our results indicate a dose dependent inhibition of SHIV M2 with 100 μM rimantadine resulting in a >95% decrease in p27 released into the culture medium. Rimantadine did not affect the replication of the parental SHIV KU-1bMC33 . Examination of SHIV M2 -infected cells treated with 50 μM rimantadine revealed numerous viral particles associated with the cell plasma membrane and within intracytoplasmic vesicles, which is similar to HIV-1 mutants lacking a functional vpu. To determine if SHIV M2 was as pathogenic as the parental SHIV KU-1bMC33 virus, two pig-tailed macaques

  13. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian (ARIAD)

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  14. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  15. Domain architecture conservation in orthologs

    Science.gov (United States)

    2011-01-01

    Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the

  16. Coaching af ph.d.-studerende

    DEFF Research Database (Denmark)

    Godskesen, Mirjam Irene

    Rapporten danner grundlag for at etablere et koncept for ph.d.-coaching. Erfaringerne fra et 2-årigt projekt om ph.d.-coaching i SCKK regi beskrives. De centrale temaer er tilrettelæggelse af den individuelle coaching, typiske temaer i coachingen og arbejdsdeling mellem coach og vejleder. Der er...

  17. Salivary pH: A diagnostic biomarker

    Directory of Open Access Journals (Sweden)

    Sharmila Baliga

    2013-01-01

    Full Text Available Objectives: Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. Study Design: The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. Results: The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001 whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001. Conclusion: These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  18. Salivary pH: A diagnostic biomarker.

    Science.gov (United States)

    Baliga, Sharmila; Muglikar, Sangeeta; Kale, Rahul

    2013-07-01

    Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001) whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001). These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  19. Ph og børnenes rum

    DEFF Research Database (Denmark)

    de Coninck-Smith, Ning

    2008-01-01

    Arkiteten og kulturkritikeren PH tegnede to bygninger til børn, nemlig fabriksbørnehaven ved Dehns Vaskeri fra 1948 og det ombyggede børnehjem Mindet fra 1954. Bidraget diskuterer PH's særlige greb om arkitektur til børn og placerer det ind i samtidens diskussion om børn, deres udvikling og behov....

  20. PER PhDs & Bachelor's Degrees

    Science.gov (United States)

    White, Susan C.

    2017-01-01

    Recently, the editor remarked to me that physics departments that offered a PhD with a specialization in Physics Education Research (PER) seemed to graduate more bachelor's degree recipients than those physics PhD departments that did not have the specialization. I was not convinced. That led to quite a bit of discussion between us. He compiled a…

  1. Urbanism PhD Research 2008 - 2010

    NARCIS (Netherlands)

    Smit, M.; Van der Hoeven, F.D.; Brand, N.; Van der Burg, L.; Çal??kan, O.; Tan, E.R.; Wang, C.Y.; Zhou, J.

    2009-01-01

    To ensure the quality of the Ph.D. research the Department introduced a special procedure for periodic evaluation: after a period of nine months the potential Ph.D. candidates are asked to present their research design, theoretical framework and methodological approach to the members of the

  2. (ajst) the influence of ph and adsorbent

    African Journals Online (AJOL)

    goethite sorbed a little more metal ion than the natural goethite. This was attributed ... was greatly governed by pH with nearly 100% adsorption of Pb occurring at initial pH of 5. Generally, Pb was ... extensively study and applied for the removal of heavy .... Goethite has variable surface charge characteristics, which gave it a ...

  3. On Calibration of pH Meters

    Directory of Open Access Journals (Sweden)

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  4. Plasmalemmal V-H+-ATPases regulate intracellular pH in human lung microvascular endothelial cells

    International Nuclear Information System (INIS)

    Rojas, Jose D.; Sennoune, Souad R.; Maiti, Debasish; Martinez, Gloria M.; Bakunts, Karina; Wesson, Donald E.; Martinez-Zaguilan, Raul

    2004-01-01

    The lung endothelium layer is exposed to continuous CO 2 transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na + /H + exchanger and HCO 3 - -dependent H + -transporting mechanisms regulate intracellular pH (pH cyt ) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H + -ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na + /H + exchanger and HCO 3 - -based H + -transporting mechanisms, to maintain pH cyt homeostasis. Immunocytochemical studies revealed V-H + -ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na + and HCO 3 - that were similar to those observed in the presence of either Na + , or Na + and HCO 3 - . The Na + - and HCO 3 - -independent pH cyt recovery was inhibited by bafilomycin A 1 , a V-H + -ATPase inhibitor. These studies show a Na + - and HCO 3 - -independent pH cyt regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases

  5. Purification and Partial Characterization of Potato (Solanum tuberosum) Invertase and Its Endogenous Proteinaceous Inhibitor

    Science.gov (United States)

    Bracho, Geracimo E.; Whitaker, John R.

    1990-01-01

    Invertase plays an important role in the hydrolysis of sucrose in higher plants, especially in the storage organs. In potato (Solanum tuberosum) tubers, and in some other plant tissues, the enzyme seems to be controlled by interaction with an endogenous proteinaceous inhibitor. An acid invertase from potato tubers (variety russet) was purified 1560-fold to electrophoretic homogeneity by consecutive use of concanvalin A-Sepharose 4B affinity chromatography, DEAE-Sephadex A-50-120 chromatography, Sephadex G-150 chromatography, and DEAE-Sephadex A-50-120 chromatography. The enzyme contained 10.9% carbohydrate, had an apparent molecular weight of 60,000 by gel filtration, and was composed of two identical molecular weight subunits (Mr 30,000). The enzyme had a Km for sucrose of 16 millimolar at pH 4.70 and was most stable and had maximum activity around pH 5. The endogenous inhibitor was purified 610-fold to homogeneity by consecutive treatment at pH 1 to 1.5 at 37°C for 1 hour, (NH4)2SO4 fractionation, Sephadex G-100 chromatography, DEAE-Sephadex G-50-120 chromatography, and hydroxylapatite chromatography. The inhibitor appears to be a single polypeptide (Mr 17,000) without glyco groups. The purified inhibitor was stable over the pH range of 2 to 7 when incubated at 37°C for 1 hour. Images Figure 2 PMID:16667287

  6. Characteristics of the Inhibition of Potato (Solanum tuberosum) Invertase by an Endogenous Proteinaceous Inhibitor in Potatoes

    Science.gov (United States)

    Bracho, Geracimo E.; Whitaker, John R.

    1990-01-01

    Effect of several parameters on inhibition of potato (Solanum tuberosum) invertase by its endogenous proteinaceous inhibitor was determined using homogeneous preparations of both proteins. The inhibitor and invertase formed an inactive complex with an observed association rate constant at pH 4.70 and 37°C of 8.82 × 102 per molar per second and a dissociation rate constant of 3.3 × 10−3 per minute. The inhibitor appeared to bind to invertase in more than one step. Initial interaction (measured by loss of invertase activity) was rapid, relatively weak, readily reversible (Ki of 2 × 10−6 molar) and noncompetitive with substrate at pH 4.70. Initial interaction was probably followed by isomerization to a tighter (Ki of 6.23 × 10−8 molar) complex, which dissociated slowly with a half-time of 3.5 hour. Interaction between enzyme and inhibitor appeared to be of ionic character and essentially pH independent between pH 3.5 and 7.4. PMID:16667286

  7. Spectroscopic determination of pH

    International Nuclear Information System (INIS)

    Faanu, A.; Glover, E.T.; Bailey, E.; Rochelle, C.

    2009-01-01

    A technique of measuring pH at temperature range of 20 - 70 0 C and high pressure conditions of 1 - 200 atmospheres has been developed by relating the ratio of absorbance peaks of indicator solutions (basic and acidic) as a function of pH, using ultraviolet-visible spectrophotometer. The pH values of the buffer solutions measured at 20 0 C and 70 0 C indicated slight temperature dependence, while the pressure had no effect. The pH of the buffer solutions increased with temperature with relative standard deviations in the range 0.4 - 0.5 % at 95 % confidence interval. The possible causes of the temperature dependence were attributed to changes in pH values as the temperature changed. (au)

  8. Determination Of Ph Including Hemoglobin Correction

    Science.gov (United States)

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  9. Endoscopic sensing of alveolar pH.

    Science.gov (United States)

    Choudhury, D; Tanner, M G; McAughtrie, S; Yu, F; Mills, B; Choudhary, T R; Seth, S; Craven, T H; Stone, J M; Mati, I K; Campbell, C J; Bradley, M; Williams, C K I; Dhaliwal, K; Birks, T A; Thomson, R R

    2017-01-01

    Previously unobtainable measurements of alveolar pH were obtained using an endoscope-deployable optrode. The pH sensing was achieved using functionalized gold nanoshell sensors and surface enhanced Raman spectroscopy (SERS). The optrode consisted of an asymmetric dual-core optical fiber designed for spatially separating the optical pump delivery and signal collection, in order to circumvent the unwanted Raman signal generated within the fiber. Using this approach, we demonstrate a ~100-fold increase in SERS signal-to-fiber background ratio, and demonstrate multiple site pH sensing with a measurement accuracy of ± 0.07 pH units in the respiratory acini of an ex vivo ovine lung model. We also demonstrate that alveolar pH changes in response to ventilation.

  10. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.

    Science.gov (United States)

    Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko

    2011-01-01

    HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors. © 2010 John Wiley & Sons A/S.

  11. Crystal structure of a complex of human chymase with its benzimidazole derived inhibitor

    International Nuclear Information System (INIS)

    Matsumoto, Yoshiyuki; Kakuda, Shinji; Koizumi, Masahiro; Mizuno, Tsuyoshi; Muroga, Yumiko; Kawamura, Takashi; Takimoto-Kamimura, Midori

    2013-01-01

    The crystal structure of human chymase complexed with a novel benzimidazole inhibitor, TJK002, was determined at 2.8 Å resolution. The present study shows that the benzimidazole ring of the inhibitor takes the stable stacking interaction with the protonated His57 in the catalytic domain of human chymase. The crystal structure of human chymase complexed with a novel benzimidazole inhibitor, TJK002, was determined at 2.8 Å resolution. The X-ray crystallographic study shows that the benzimidazole inhibitor forms a non-covalent interaction with the catalytic domain of human chymase. The hydrophobic fragment of the inhibitor occupies the S1 pocket. The carboxylic acid group of the inhibitor forms hydrogen bonds with the imidazole N(∊) atom of His57 and/or the O(γ) atom of Ser195 which are members of the catalytic triad. This imidazole ring of His57 induces π–π stacking to the benzene ring of the benzimidazole scaffold as P2 moiety. Fragment molecular orbital calculation of the atomic coordinates by X-ray crystallography shows that this imidazole ring of His57 could be protonated with the carboxyl group of Asp102 or hydroxyl group of Ser195 and the stacking interaction is stabilized. A new drug design strategy is proposed where the stacking to the protonated imidazole of the drug target protein with the benzimidazole scaffold inhibitor causes unpredicted potent inhibitory activity for some enzymes

  12. What Matters for Excellence in PhD Programs? Latent Constructs of Doctoral Program Quality Used by Early Career Social Scientists

    Science.gov (United States)

    Morrison, Emory; Rudd, Elizabeth; Zumeta, William; Nerad, Maresi

    2011-01-01

    This paper unpacks how social science doctorate-holders come to evaluate overall excellence in their PhD training programs based on their domain-specific assessments of aspects of their programs. Latent class analysis reveals that social scientists 6-10 years beyond their PhD evaluate the quality of their doctoral program with one of two…

  13. Distributed plastic optical fibre measurement of pH using a photon counting OTDR

    International Nuclear Information System (INIS)

    Saunders, C; Scully, P J

    2005-01-01

    Distributed measurement of pH was demonstrated at a sensitised region 4m from the distal end of a 20m length of plastic optical fibre. The cladding was removed from the fibre over 150mm and the bare core was exposed to an aqueous solution of methyl red at three values of pH, between 2.89 and 9.70. The optical fibre was interrogated at 648nm using a Luciol photon counting optical time domain reflectometer, and demonstrated that the sensing region was attenuated as a function of pH. The attenuation varied from 16.3 dB at pH 2.89 to 8.6 dB at pH 9.70; this range equated to -1.13 ± 0.04 dB/pH. It is thus possible to determine both the position to ± 12mm and pH to an estimated ± 0.5pH at the sensing region

  14. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    Science.gov (United States)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  15. Potent radiolabeled human renin inhibitor, [3H]SR42128: enzymatic, kinetic, and binding studies to renin and other aspartic proteases

    International Nuclear Information System (INIS)

    Cumin, F.; Nisato, D.; Gagnol, J.P.; Corvol, P.

    1987-01-01

    The in vitro binding of [ 3 H]SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a K/sub i/ of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of [ 3 H]SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the K/sub D/ was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of [ 3 H]SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, [ 3 H]SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with [ 3 H]SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems. The study as a whole indicates that pH plays a major role in the binding of [ 3 H]SR42128 to aspartic proteases and that the nature of the inhibitor residue reacting with the renin S 2 subsites is of critical importance for the specificity of the renin-inhibitor interaction

  16. Protein domain organisation: adding order

    Directory of Open Access Journals (Sweden)

    Kummerfeld Sarah K

    2009-01-01

    Full Text Available Abstract Background Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. Results We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Conclusion Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected

  17. Protein domain organisation: adding order.

    Science.gov (United States)

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2009-01-29

    Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected degree of clustering and more domain pairs in forward and

  18. Changes in root cap pH are required for the gravity response of the Arabidopsis root

    Science.gov (United States)

    Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.

    2001-01-01

    Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.

  19. Prediction Reweighting for Domain Adaptation.

    Science.gov (United States)

    Shuang Li; Shiji Song; Gao Huang

    2017-07-01

    There are plenty of classification methods that perform well when training and testing data are drawn from the same distribution. However, in real applications, this condition may be violated, which causes degradation of classification accuracy. Domain adaptation is an effective approach to address this problem. In this paper, we propose a general domain adaptation framework from the perspective of prediction reweighting, from which a novel approach is derived. Different from the major domain adaptation methods, our idea is to reweight predictions of the training classifier on testing data according to their signed distance to the domain separator, which is a classifier that distinguishes training data (from source domain) and testing data (from target domain). We then propagate the labels of target instances with larger weights to ones with smaller weights by introducing a manifold regularization method. It can be proved that our reweighting scheme effectively brings the source and target domains closer to each other in an appropriate sense, such that classification in target domain becomes easier. The proposed method can be implemented efficiently by a simple two-stage algorithm, and the target classifier has a closed-form solution. The effectiveness of our approach is verified by the experiments on artificial datasets and two standard benchmarks, a visual object recognition task and a cross-domain sentiment analysis of text. Experimental results demonstrate that our method is competitive with the state-of-the-art domain adaptation algorithms.

  20. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications.

    Science.gov (United States)

    Huang, J; Wu, C; Liu, D; Yang, X; Wu, R; Zhang, J; Ma, C; He, H

    2017-01-01

    C-terminal domains widely exist in the C-terminal region of multidomain proteases. As a β-sandwich domain in multidomain protease, the C-terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C-terminal protease domains are described. Furthermore, the application prospects of C-terminal domains, including polycystic kidney disease, prepeptidase C-terminal and collagen-binding domain, in the area of medicine and biological artificial materials are also discussed. © 2016 The Society for Applied Microbiology.

  1. SGLT2 Inhibitor-associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis.

    Science.gov (United States)

    Goldenberg, Ronald M; Berard, Lori D; Cheng, Alice Y Y; Gilbert, Jeremy D; Verma, Subodh; Woo, Vincent C; Yale, Jean-François

    2016-12-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are the newest class of antihyperglycemic agents available on the market. Regulator warnings and concerns regarding the risk of developing diabetic ketoacidosis (DKA), however, have dampened enthusiasm for the class despite the combined glycemic, blood pressure, and occasional weight benefits of SGLT2 inhibitors. With the goal of improving patient safety, a cross-Canada expert panel and writing group were convened to review the evidence to-date on reported SGLT2 inhibitor-related DKA incidents and to offer recommendations for preventing and recognizing patients with SGLT2 inhibitor-associated DKA. Reports covering DKA events in subjects taking SGLT2 inhibitors that were published in PubMed, presented at professional conferences, or in the public domain from January 2013 to mid-August 2016 were reviewed by the group independently and collectively. Practical recommendations for diagnosis and prevention were established by the panel. DKA is rarely associated with SGLT2 inhibitor therapy. Patients with SGLT2 inhibitor-associated DKA may be euglycemic (plasma glucose level SGLT2 inhibitor-associated DKA may be prevented by withholding SGLT2 inhibitors when precipitants develop, avoiding insulin omission or inappropriate insulin dose reduction, and by following sick day protocols as recommended. Preventive strategies should help avoid SGLT2 inhibitor-associated DKA. All SGLT2 inhibitor-treated patients presenting with signs or symptoms of DKA should be suspected to have DKA and be investigated for DKA, especially euglycemic patients. If DKA is diagnosed, SGLT2 inhibitor treatment should be stopped, and the DKA should be treated with a traditional treatment protocol. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  2. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals.

    Science.gov (United States)

    Olajuyigbe, Folasade M; Demitri, Nicola; De Zorzi, Rita; Geremia, Silvano

    2016-10-31

    Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  3. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals

    Directory of Open Access Journals (Sweden)

    Folasade M. Olajuyigbe

    2016-10-01

    Full Text Available Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  4. Multifunctionalities driven by ferroic domains

    Science.gov (United States)

    Yang, J. C.; Huang, Y. L.; He, Q.; Chu, Y. H.

    2014-08-01

    Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.

  5. Objective determination of pH thresholds in the analysis of 24 h ambulatory oesophageal pH monitoring

    NARCIS (Netherlands)

    Weusten, B. L.; Roelofs, J. M.; Akkermans, L. M.; vanBerge-Henegouwen, G. P.; Smout, A. J.

    1996-01-01

    In 24 h oesophageal pH monitoring, pH 4 is widely but arbitrarily used as the threshold between reflux and non-reflux pH values. The aim of the study was to define pH thresholds objectively, based on Gaussian curve fitting of pH frequency distributions. Single-channel 24 h oesophageal pH monitoring

  6. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    Science.gov (United States)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  7. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Science.gov (United States)

    Zuo, Wu-Lin; Li, Sheng; Huang, Jie-Hong; Yang, Deng-Liang; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Ye, Ke-Nan; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-01-01

    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  8. Mapping the Moral Domain

    Science.gov (United States)

    Graham, Jesse; Nosek, Brian A.; Haidt, Jonathan; Iyer, Ravi; Koleva, Spassena; Ditto, Peter H.

    2010-01-01

    The moral domain is broader than the empathy and justice concerns assessed by existing measures of moral competence, and it is not just a subset of the values assessed by value inventories. To fill the need for reliable and theoretically-grounded measurement of the full range of moral concerns, we developed the Moral Foundations Questionnaire (MFQ) based on a theoretical model of five universally available (but variably developed) sets of moral intuitions: Harm/care, Fairness/reciprocity, Ingroup/loyalty, Authority/respect, and Purity/sanctity. We present evidence for the internal and external validity of the scale and the model, and in doing so present new findings about morality: 1. Comparative model fitting of confirmatory factor analyses provides empirical justification for a five-factor structure of moral concerns. 2. Convergent/discriminant validity evidence suggests that moral concerns predict personality features and social group attitudes not previously considered morally relevant. 3. We establish pragmatic validity of the measure in providing new knowledge and research opportunities concerning demographic and cultural differences in moral intuitions. These analyses provide evidence for the usefulness of Moral Foundations Theory in simultaneously increasing the scope and sharpening the resolution of psychological views of morality. PMID:21244182

  9. Functional properties of the recombinant kringle-2 domain of tissue plasminogen activator produced in Escherichia coli

    International Nuclear Information System (INIS)

    Wilhelm, O.G.; Jaskunas, S.R.; Vlahos, C.J.; Bang, N.U.

    1990-01-01

    The kringle-2 domain (residues 176-262) of tissue-type plasminogen activator (t-PA) was cloned and expressed in Escherichia coli. The recombinant peptide, which concentrated in cytoplasmic inclusion bodies, was isolated, solubilized, chemically refolded, and purified by affinity chromatography on lysine-Sepharose to apparent homogeneity. [35S]Cysteine-methionine-labeled polypeptide was used to study the interactions of kringle-2 with lysine, fibrin, and plasminogen activator inhibitor-1. The kringle-2 domain bound to lysine-Sepharose and to preformed fibrin with a Kd = 104 +/- 6.2 microM (0.86 +/- 0.012 binding site) and a Kd = 4.2 +/- 1.05 microM (0.80 +/- 0.081 binding site), respectively. Competition experiments and direct binding studies showed that the kringle-2 domain is required for the formation of the ternary t-PA-plasminogen-intact fibrin complex and that the association between the t-PA kringle-2 domain and fibrin does not require plasmin degradation of fibrin and exposure of new COOH-terminal lysine residues. We also observed that kringle-2 forms a complex with highly purified guanidine-activated plasminogen activator inhibitor-1, dissociable by 0.2 M epsilon-aminocaproic acid. The kringle-2 polypeptide significantly inhibited tissue plasminogen activator/plasminogen activator inhibitor-1 interaction. The kringle-2 domain bound to plasminogen activator inhibitor-1 in a specific and saturable manner with a Kd = 0.51 +/- 0.055 microM (0.35 +/- 0.026 binding site). Therefore, the t-PA kringle-2 domain is important for the interaction of t-PA not only with fibrin, but also with plasminogen activator inhibitor-1 and thus represents a key structure in the regulation of fibrinolysis

  10. Red wine contains a potent inhibitor of phenolsulphotransferase.

    Science.gov (United States)

    Littlewood, J T; Glover, V; Sandler, M

    1985-01-01

    Many ethanolic drinks, especially red wine, contain potent inhibitors of phenolsulphotransferase. At a dilution of 1/75 from the original beverage, extracts from six types of red wine inhibited human platelet phenolsulphotransferase P by a mean of 99% and human platelet phenolsulphotransferase M by 12%. Such extracts had no significant effect on rat liver monoamine oxidase A or human platelet monoamine oxidase B. The inhibitors, which have not yet been identified, can be extracted into ethyl acetate at acid or neutral pH. Thus, they are not monoamines. Flavonoid phenols are plausible candidates. As phenolsulphotransferase M and P are involved in the metabolism of many phenols, including drugs, the inhibition of these enzymes could result in the enhancement of pharmacological potency and have important clinical consequences. PMID:3857069

  11. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  12. Bisulfite compounds as metabolic inhibitors: nonspecific effects on membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luettge, U; Osmond, C B; Ball, E; Brinckmann, E; Kinze, G

    1972-01-01

    Bisulfite compounds are shown to be nonspecific inhibitors of photosynthetic processes and of ion transport in green tissues. CO/sub 2/ fixation and light-dependent transient changes in external pH are inhibited about 50% by 5 x 10/sup -4/M glyoxal-Na-bisulfite. Chloride uptake in the light and in the dark is inhibited to the same extent at this concentration. At 5 x 10/sup -3/M the inhibitor reduces ATP levels in the light and in the dark, and the effects on glycolate oxidase and PEP carboxylase are observed. The extent of inhibition is dependent on time of treatment with glyoxal-Na-bisulfite and freshly prepared NaHSO/sub 3/ is equally as effective as the addition compound. Possible explanations of the bisulfite effects and the relationships to SO/sub 2/ effects on photosynthesis are discussed.

  13. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Soonthornsit, Jeerawat [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Yamaguchi, Yoko; Tamura, Daisuke [Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Yamamoto, Akitsugu [Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 266 Tamura, Nagahama, Shiga, 526‐0829 (Japan); Nakamura, Nobuhiro, E-mail: osaru3@cc.kyoto-su.ac.jp [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A{sub 2} inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A{sub 2} was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. - Highlights: • The Golgi apparatus reversibly disassembles by low pH treatment. • The cis-Golgi disassembles quickly generating tubular structures. • Both anterograde and retrograde transport between the ER and the Golgi apparatus are reduced. • Phospholipase A{sub 2} inhibitors (ONO

  14. Functional photoacoustic microscopy of pH.

    Science.gov (United States)

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin I; Wang, Lihong V

    2011-10-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.

  15. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    Science.gov (United States)

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  16. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  17. Domain wall networks on solitons

    International Nuclear Information System (INIS)

    Sutcliffe, Paul

    2003-01-01

    Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks

  18. Topological domain walls in helimagnets

    Science.gov (United States)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  19. The kinetics of interaction of porcine - alpha-, and porcine - beta -trypsin with intact and modified soybean trypsin inhibitor (kunitz)

    International Nuclear Information System (INIS)

    Hamid, M.A.

    1994-01-01

    The association of porcine trypsin with soybean trypsin inhibitor (Kunitz) resulted in characteristic changes in absorption spectrum, indicating an alteration of the micro environments of the enzyme chromophores as a consequence of the interaction. The rates of formation of the stable trypsin - inhibitor complexes from porcine - alpha - trypsin and soybean trypsin inhibitor and from porcine - beta - trypsin and either intact or modified soybean trypsin inhibitor were measured by mixing the equimolar concentration of the reactants in a Stopped - Flow apparatus at pH (4.5 to 10.0). The reaction of trypsin with soybean trypsin inhibitor was of first order with respect to the concentration of the reactants used. The rates of dissociation of the stable complexes, alpha - trypsin - soybean trypsin inhibitor, beta -trypsin - soybean trypsin inhibitor and beta -trypsin modified soybean trypsin inhibitor were also measured at pH (1.92 to 3.58). The values of first order rate constant, k/sub D/ obtained for the dissociation of all the three complexes were identical with one another. The kinetics results obtained for the porcine trypsin were compared with those of bovine trypsin system and it was suggested that the reaction mechanisms in both these systems were identical. (author)

  20. The PhD by Publication

    Directory of Open Access Journals (Sweden)

    Susi Peacock

    2017-07-01

    Full Text Available Aim/Purpose: The purpose of this work is to develop more nuanced understandings of the PhD by publication, particularly raising awareness of the retrospective PhD by publication. The article aims to contribute to contemporary debates about the differing pathways to the attainment of doctoral study completion and the artifacts submitted for that purpose. It also seeks to support prospective graduate students and supervisors who are embarking upon alternative routes to doctoral accreditation. Background: The PhD is considered the pinnacle of academic study – highly cherished, and replete with deeply held beliefs. In response to changes in job markets, developments in the disciplines, and more varied student cohorts, diverse pathways to completion of this award have emerged, such as the PhD by publication (PhDP. A PhDP may either be prospective or retrospective. For the former, publications are planned and created with their contributions to the PhDP in mind. The retrospective PhD is assembled after some, or most, of the publications have been completed. The artifact submitted for examination in this case consists of a series of peer-reviewed academic papers, books, chapters, or equivalents that have been published or accepted for publication, accompanied by an over-arching narrative. The retrospective route is particularly attractive for professionals who are research-active but lack formal academic accreditation at the highest level. Methodology: This article calls upon a literature review pertaining to the award of PhDP combined with the work of authors who offer their personal experiences of the award. The author also refers to her candidature as a Scottish doctoral student whilst studying for the award of PhD by publication. Contribution: This work raises awareness of the PhDP as a credible and comparable pathway for graduate students. The article focuses upon the retrospective PhDP which, as with all routes to doctoral accreditation, has

  1. Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of diphtheria toxin T domain.

    Science.gov (United States)

    Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L

    2014-11-04

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.

  2. Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain

    Science.gov (United States)

    2015-01-01

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210

  3. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  4. Investigation of interaction studies of cefpirome with ACE-inhibitors in various buffers

    Science.gov (United States)

    Nawaz, Muhammad; Arayne, Muhammad Saeed; Sultana, Najma; Abbas, Hira Fatima

    2015-02-01

    This work describes a RP-HPLC method for the determination and interaction studies of cefpirome with ACE-inhibitors (captopril, enalapril and lisinopril) in various buffers. The separation and interaction of cefpirome with ACE-inhibitors was achieved on a Purospher Star, C18 (5 μm, 250 × 4.6 mm) column. Mobile phase consisted of methanol: water (80:20, v/v, pH 3.3); however, for the separation of lisinopril, it was modified to methanol-water (40:60, v/v, pH 3.3) and pumped at a flow rate of 1 mL min-1. In all cases, UV detection was performed at 225 nm. Interactions were carried out in physiological pH i.e., pH 1 (simulated gastric juice), 4 (simulated full stomach), 7.4 (blood pH) and 9 (simulated GI), drug contents were analyzed by reverse phase high performance liquid chromatography. Method was found linear in the concentration range of 1.0-50.0 μg mL-1 with correlation coefficient (r2) of 0.999. Precision (RSD%) was less than 2.0%, indicating good precision of the method and accuracy was 98.0-100.0%. Furthermore, cefpirome-ACE-inhibitors' complexes were also synthesized and results were elucidated on the basis of FT-IR, and 1H NMR. The interaction results show that these interactions are pH dependent and for the co-administration of cefpirome and ACE-inhibitors, a proper interval should be given.

  5. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel' man, E.S.; Kuznetsova, I.G. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    The efficiency of corrosion protection of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in chloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylanthranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys.

  6. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel'man, E.S.; Kuznetsova, I.G.

    1982-01-01

    The efficiency of corrosion protoction of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in clloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylantiranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys

  7. Effect of two mouthwashes on salivary ph.

    Science.gov (United States)

    Belardinelli, Paola A; Morelatto, Rosana A; Benavidez, Tomás E; Baruzzi, Ana M; López de Blanc, Silvia A

    2014-01-01

    To analyze the effect of two mouthwashes on salivary pH and correlate it with age, buffer capacity and saliva flow rate in healthy volunteers, a crossover phase IV clinical study involving three age-based groups was designed. Two commercial mouthwashes (MW), Cool Mint ListerineR (MWa) and Periobacter R (MWb) were used. The unstimulated saliva of each individual was first characterized by measuring flow rate, pH, and buffer capacity. Salivary pH was evaluated before rinsing with a given MW, immediately after rinsing, 5 minutes later, and then every 10 min (at 15, 25, 35 min) until the baseline pH was recovered. Paired t-test, ANOVA with a randomized block design, and Pearson correlation tests were used. Averages were 0.63 mL/min, 7.06, and 0.87 for flow rate, pH, and buffer capacity, respectively. An immediate significant increase in salivary pH was observed after rinsing, reaching average values of 7.24 (MWb) and 7.30 (MWa), which declined to an almost stable value 15 minutes. The great increase in salivary pH, after MW use shows that saliva is a dynamic system, and that the organism is capable of responding to a stimulus with changes in its composition. It is thus evident that pH of the external agent alone is not a good indicator for its erosive potential because biological systems tend to neutralize it. The results of this study enhance the importance of in vivo measurements and reinforce the concept of the protective action of saliva.

  8. Salivary pH: A diagnostic biomarker

    OpenAIRE

    Baliga, Sharmila; Muglikar, Sangeeta; Kale, Rahul

    2013-01-01

    Objectives: Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. Study D...

  9. Resource Unavailability (RU) Per Domain Behavior

    NARCIS (Netherlands)

    Karagiannis, Georgios; Westberg, L.; Bader, A.; Tschofenig, Hannes; Tschofenig, H.

    2006-01-01

    This draft specifies a Per Domain Behavior that provides the ability to Diffserv nodes located outside Diffserv domain(s), e.g., receiver or other Diffserv enabled router to detect when the resources provided by the Diffserv domain(s) are not available. The unavailability of resources in the domain

  10. Multiple functions of the von Willebrand Factor A domain in matrilins: secretion, assembly, and proteolysis

    Directory of Open Access Journals (Sweden)

    Kanbe Katsuaki

    2008-06-01

    Full Text Available Abstract The von Willebrand Factor A (vWF A domain is one of the most widely distributed structural modules in cell-matrix adhesive molecules such as intergrins and extracellular matrix proteins. Mutations in the vWF A domain of matrilin-3 cause multiple epiphyseal dysplasia (MED, however the pathological mechanism remains to be determined. Previously we showed that the vWF A domain in matrilin-1 mediates formation of a filamentous matrix network through metal-ion dependent adhesion sites in the domain. Here we show two new functions of the vWF A domain in cartilage-specific matrilins (1 and 3. First, vWF A domain regulates oligomerization of matrilins. Insertion of a vWF A domain into matrilin-3 converts the formation of a mixture of matrilin-3 tetramer, trimer, and dimer into a tetramer only, while deletion of a vWF A domain from matrilin-1 converts the formation of the native matrilin-1 trimer into a mixture of trimer and dimer. Second, the vWF A domain protects matrilin-1 from proteolysis. We identified a latent proteolytic site next to the vWF A2 domain in matrilin-1, which is sensitive to the inhibitors of matrix proteases. Deletion of the abutting vWF A domain results in degradation of matrilin-1, presumably by exposing the adjacent proteolytic site. In addition, we also confirmed the vWF A domain is vital for the secretion of matrilin-3. Secretion of the mutant matrilin-3 harbouring a point mutation within the vWF A domain, as occurred in MED patients, is markedly reduced and delayed, resulting from intracellular retention of the mutant matrilin-3. Taken together, our data suggest that different mutations/deletions of the vWF A domain in matrilins may lead to distinct pathological mechanisms due to the multiple functions of the vWF A domain.

  11. Taxonomies of Educational Objective Domain

    OpenAIRE

    Eman Ghanem Nayef; Nik Rosila Nik Yaacob; Hairul Nizam Ismail

    2013-01-01

    This paper highlights an effort to study the educational objective domain taxonomies including Bloom’s taxonomy, Lorin Anderson’s taxonomy, and Wilson’s taxonomy. In this study a comparison among these three taxonomies have been done. Results show that Bloom’s taxonomy is more suitable as an analysis tool to Educational Objective domain.

  12. Binding of the Inhibitor Protein IF1 to Bovine F1-ATPase

    Science.gov (United States)

    Bason, John V.; Runswick, Michael J.; Fearnley, Ian M.; Walker, John E.

    2011-01-01

    In the structure of bovine F1-ATPase inhibited with residues 1–60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme. PMID:21192948

  13. The therapeutic potential of I-domain integrins.

    Science.gov (United States)

    Brennan, Marian; Cox, Dermot

    2014-01-01

    Due to their role in processes central to cancer and autoimmune disease I-domain integrins are an attractive drug target. Both antibodies and small molecule antagonists have been discovered and tested in the clinic. Much of the effort has focused on αLβ2 antagonists. Maybe the most successful was the monoclonal antibody efalizumab, which was approved for the treatment of psoriasis but subsequently withdrawn from the market due to the occurrence of a serious adverse effect (progressive multifocal leukoencephalopathy). Other monoclonal antibodies were tested for the treatment of reperfusion injury, post-myocardial infarction, but failed to progress due to lack of efficacy. New potent small molecule inhibitors of αv integrins are promising reagents for treating fibrotic disease. Small molecule inhibitors targeting collagen-binding integrins have been discovered and future work will focus on identifying molecules selectively targeting each of the collagen receptors and identifying appropriate target diseases for future clinical studies.

  14. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE.

  15. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation

    DEFF Research Database (Denmark)

    Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B

    2014-01-01

    The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain...

  16. Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity.

    Science.gov (United States)

    Kimani, Stanley G; Kumar, Sushil; Bansal, Nitu; Singh, Kamalendra; Kholodovych, Vladyslav; Comollo, Thomas; Peng, Youyi; Kotenko, Sergei V; Sarafianos, Stefan G; Bertino, Joseph R; Welsh, William J; Birge, Raymond B

    2017-03-08

    TAM receptors (Tyro-3, Axl, and Mertk) are a family of three homologous type I receptor tyrosine kinases that are implicated in several human malignancies. Overexpression of TAMs and their major ligand Growth arrest-specific factor 6 (Gas6) is associated with more aggressive staging of cancers, poorer predicted patient survival, acquired drug resistance and metastasis. Here we describe small molecule inhibitors (RU-301 and RU-302) that target the extracellular domain of Axl at the interface of the Ig-1 ectodomain of Axl and the Lg-1 of Gas6. These inhibitors effectively block Gas6-inducible Axl receptor activation with low micromolar IC 50s in cell-based reporter assays, inhibit Gas6-inducible motility in Axl-expressing cell lines, and suppress H1299 lung cancer tumor growth in a mouse xenograft NOD-SCIDγ model. Furthermore, using homology models and biochemical verifications, we show that RU301 and 302 also inhibit Gas6 inducible activation of Mertk and Tyro3 suggesting they can act as pan-TAM inhibitors that block the interface between the TAM Ig1 ectodomain and the Gas6 Lg domain. Together, these observations establish that small molecules that bind to the interface between TAM Ig1 domain and Gas6 Lg1 domain can inhibit TAM activation, and support the further development of small molecule Gas6-TAM interaction inhibitors as a novel class of cancer therapeutics.

  17. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  18. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus.

    Science.gov (United States)

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke; Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho; Yamamoto, Akitsugu; Nakamura, Nobuhiro

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Polar Domain Discovery with Sparkler

    Science.gov (United States)

    Duerr, R.; Khalsa, S. J. S.; Mattmann, C. A.; Ottilingam, N. K.; Singh, K.; Lopez, L. A.

    2017-12-01

    The scientific web is vast and ever growing. It encompasses millions of textual, scientific and multimedia documents describing research in a multitude of scientific streams. Most of these documents are hidden behind forms which require user action to retrieve and thus can't be directly accessed by content crawlers. These documents are hosted on web servers across the world, most often on outdated hardware and network infrastructure. Hence it is difficult and time-consuming to aggregate documents from the scientific web, especially those relevant to a specific domain. Thus generating meaningful domain-specific insights is currently difficult. We present an automated discovery system (Figure 1) using Sparkler, an open-source, extensible, horizontally scalable crawler which facilitates high throughput and focused crawling of documents pertinent to a particular domain such as information about polar regions. With this set of highly domain relevant documents, we show that it is possible to answer analytical questions about that domain. Our domain discovery algorithm leverages prior domain knowledge to reach out to commercial/scientific search engines to generate seed URLs. Subject matter experts then annotate these seed URLs manually on a scale from highly relevant to irrelevant. We leverage this annotated dataset to train a machine learning model which predicts the `domain relevance' of a given document. We extend Sparkler with this model to focus crawling on documents relevant to that domain. Sparkler avoids disruption of service by 1) partitioning URLs by hostname such that every node gets a different host to crawl and by 2) inserting delays between subsequent requests. With an NSF-funded supercomputer Wrangler, we scaled our domain discovery pipeline to crawl about 200k polar specific documents from the scientific web, within a day.

  20. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.

    Science.gov (United States)

    Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas

    2017-09-20

    The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pK a ∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pK a values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.

    Science.gov (United States)

    Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali

    2017-04-27

    A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.

  2. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    Science.gov (United States)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  3. Separated matter and antimatter domains with vanishing domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.; Tkachev, I.I., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su, E-mail: tkachev@ms2.inr.ac.ru [Physics Department and Laboratory of Cosmology and Elementary Particle Physics, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation)

    2015-10-01

    We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.

  4. Redox transformations of iron at extremely low pH: fundamental and applied aspects

    OpenAIRE

    Johnson, D. Barrie; Kanao, Tadayoshi; Hedrich, Sabrina

    2012-01-01

    Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially-mediated cycling of iron in extremely acidic environments (pH <3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure a...

  5. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family.

    Science.gov (United States)

    Shamsi, Tooba Naz; Parveen, Romana; Amir, Mohd; Baig, Mohd Affan; Qureshi, M Irfan; Ali, Sher; Fatima, Sadaf

    2016-01-01

    This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug potentials. Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD) spectroscopy. ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2-12 showing a decline in the activity around pH 4-5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10-80°C) but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH. To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids present in the reactive sites. Therefore, ASPI

  6. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Directory of Open Access Journals (Sweden)

    Wu-Lin Zuo

    Full Text Available The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+/HCO(3(- cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH solution, the intracellular pH (pHi recovery from NH(4Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+/H(+ exchanger (NHE. Immediately changing of the KH solution from HEPES buffered to HCO(3(- buffered would cause another pHi recovery. The pHi recovery in HCO(3(- buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, the inhibitor of HCO(3(- transporter or by removal of extracellular Na(+. The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  7. Metal corrosion inhibitors and ecology

    International Nuclear Information System (INIS)

    Krasts, H.; Svarce, J.; Berge, B.

    1999-01-01

    The use of metal corrosion inhibitors in water is one of the cheapest method to protect metals against corrosion. However, the used inhibitors can come to surface water in the course of time and can become as source of environmental pollution. It is important to co-ordinate amount of substances in the elaborated inhibitors not only with demands for metal protection, but also with demands for quality of surface water and drinking water according to normative statements: 3.5 mg/l (as PO 4 ) for hexametaphosphate, tripolyphosphate and phosphonate; 40 mg/l (as SiO 2 for silicate, up to 1 mg/l for CU 2+ ; up to 5 mg/l for Zn 2+ ; up to 1 mg/l for B; up to 0.5 mg/l for Mo 2+ . The examples of the elaborated inhibitors are given. Many organic substances can be used as corrosion inhibitors, but there is shortage of standard methods for their analysis in water in Latvia. Removing of salt's deposits from boilers needs elaboration of a separate normative statement for dispersing waste water which content chloride at high concentration and heavy metals. (authors)

  8. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    Directory of Open Access Journals (Sweden)

    Ruben M Markosyan

    2016-01-01

    Full Text Available Ebola virus (EBOV is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  9. CO{sub 2} injection as pH regulator in refrigeration circuits; Inyeccion de CO{sub 2} como regulador de pH en circuitos de refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Belinchon, J.

    2009-07-01

    Water from rivers is not usually suitable for use in cooling circuits of industrial installations, normally because of its high fouling ability. this requires a treatment before use based on the use of fouling inhibitors, biocides and pH regulators. The most commonly used pH regulator is sulfuric acid, a very hazardous chemical product that also generates secondary saline contamination due to the sulfates. Since 2008, Iberdrola Generation, in collaboration with Air Liquid, has been carrying out a pilot project in Cofrentes Nuclear Power Plant focusing on the use of CO{sub 2} as an acidifier of the main condenser cooling system. (Author)

  10. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    Science.gov (United States)

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited. © 2013 FEBS.

  11. Ferroelectric negative capacitance domain dynamics

    Science.gov (United States)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  12. Mechanisms of intragastric pH sensing.

    Science.gov (United States)

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  13. Regulation of pH During Amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nanci, Antonio; Kurtz, Ira; Wright, J Timothy; Paine, Michael L

    2010-02-01

    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.

  14. Nanoscale insight of high piezoelectricity in high-TC PMN-PH-PT ceramics

    Science.gov (United States)

    Zhu, Rongfeng; Zhang, Qihui; Fang, Bijun; Zhang, Shuai; Zhao, Xiangyong; Ding, Jianning

    2018-03-01

    The piezoelectric properties of the high-Curie temperature (high-TC) 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (0.15PMN-0.38PH-0.47PT) ceramics prepared by three different methods were compared. The 0.15PMN-0.38PH-0.47PT ceramics synthesized by the partial oxalate route exhibit the optimum properties, in which d33* = 845.3 pm/V, d33 = 456.2 pC/N, Kp = 67.2%, and TC = 291 °C. The nanoscale origin of the high piezoelectric response of the 0.15PMN-0.38PH-0.47PT ceramics was investigated by piezoresponse force microscopy (PFM) using the ceramics synthesized by the partial oxalate route. Large quantities of fine stripe submicron ferroelectric domains are observed, which form large island domains. In order to give further insights into the piezoelectric properties of the 0.15PMN-0.38PH-0.47PT ceramics from a microscopic point of view, the local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) were investigated, from which the local converse piezoelectric coefficient d33*(l) is calculated as 220 pm/V.

  15. Wavefield extrapolation in pseudodepth domain

    KAUST Repository

    Ma, Xuxin

    2013-02-01

    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.

  16. Fragment-Based Drug Discovery in the Bromodomain and Extra-Terminal Domain Family.

    Science.gov (United States)

    Radwan, Mostafa; Serya, Rabah

    2017-08-01

    Bromodomain and extra-terminal domain (BET) inhibition has emerged recently as a potential therapeutic target for the treatment of many human disorders such as atherosclerosis, inflammatory disorders, chronic obstructive pulmonary disease (COPD), some viral infections, and cancer. Since the discovery of the two potent inhibitors, I-BET762 and JQ1, different research groups have used different techniques to develop novel potent and selective inhibitors. In this review, we will be concerned with the trials that used fragment-based drug discovery (FBDD) approaches to discover or optimize BET inhibitors, also showing fragments that can be further optimized in future projects to reach novel potent BET inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.

  17. Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors.

    Science.gov (United States)

    Faes, Seraina; Duval, Adrian P; Planche, Anne; Uldry, Emilie; Santoro, Tania; Pythoud, Catherine; Stehle, Jean-Christophe; Horlbeck, Janine; Letovanec, Igor; Riggi, Nicolo; Demartines, Nicolas; Dormond, Olivier

    2016-12-05

    Blocking the mechanistic target of rapamycin complex-1 (mTORC1) with chemical inhibitors such as rapamycin has shown limited clinical efficacy in cancer. The tumor microenvironment is characterized by an acidic pH which interferes with cancer therapies. The consequences of acidity on the anti-cancer efficacy of mTORC1 inhibitors have not been characterized and are thus the focus of our study. Cancer cell lines were treated with rapamycin in acidic or physiological conditions and cell proliferation was investigated. The effect of acidity on mTORC1 activity was determined by Western blot. The anticancer efficacy of rapamycin in combination with sodium bicarbonate to increase the intratumoral pH was tested in two different mouse models and compared to rapamycin treatment alone. Histological analysis was performed on tumor samples to evaluate proliferation, apoptosis and necrosis. Exposing cancer cells to acidic pH in vitro significantly reduced the anti-proliferative effect of rapamycin. At the molecular level, acidity significantly decreased mTORC1 activity, suggesting that cancer cell proliferation is independent of mTORC1 in acidic conditions. In contrast, the activation of mitogen-activated protein kinase (MAPK) or AKT were not affected by acidity, and blocking MAPK or AKT with a chemical inhibitor maintained an anti-proliferative effect at low pH. In tumor mouse models, the use of sodium bicarbonate increased mTORC1 activity in cancer cells and potentiated the anti-cancer efficacy of rapamycin. Combining sodium bicarbonate with rapamycin resulted in increased tumor necrosis, increased cancer cell apoptosis and decreased cancer cell proliferation as compared to single treatment. Taken together, these results emphasize the inefficacy of mTORC1 inhibitors in acidic conditions. They further highlight the potential of combining sodium bicarbonate with mTORC1 inhibitors to improve their anti-tumoral efficacy.

  18. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  19. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  20. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.

    Science.gov (United States)

    Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng

    2018-06-01

    Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Frequently Asked Questions for Parents of Children with PH

    Science.gov (United States)

    ... Frequently Asked Questions for Parents of Children with PH What causes pulmonary hypertension in children? I’ve ... of what I read is about adults with PH. What are the primary differences between PH in ...

  2. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or pH...... ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  3. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor.

    Science.gov (United States)

    Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi

    2018-01-05

    Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site (~10 3 M -1 , 310K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH 0 ), entropy change (ΔS 0 ) and Gibbs free energy change (ΔG 0 ) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Additives as corrosion inhibitors in reinforced concrete

    International Nuclear Information System (INIS)

    Venegas, Ricardo; Vera, Rosa; Carvajal, Ana Maria; Villarroel, Maria; Vera, Enrique; Ortiz, Cesar

    2008-01-01

    This work studies the behavior of two additives as inhibitors of corrosion in reinforced concrete. The presence of Microsilica, a physical inhibitor, in the mixture decreases pore size in structures and improves compression. Calcium Nitrite, a chemical inhibitor, is an oxidizing agent and allows a more homogenous film to form over the steel that becomes more resistant to attacks from aggressive ions like anion chloride and others. Three pairs of concrete test pieces were used without additives and with additives with a/c ration of 0.55. The samples were exposed to an accelerated attack of chlorides, submerging them in a 4.27 M solution of NaCl for 24 hours and then drying them at room temperature for another 24 hours, completing a cycle every 48 hours. The tests were carried out at 1 cycle and 5 cycles of partial moistening and drying. The steel corrosion was evaluated with corrosion potential measurements. Conductivity, pH, chlorides and sulfate profiles were defined depending on the depth of the concrete. The composition of the corrosion products was determined using X-ray diffraction and the morphology of the film by scanning electron microscopy. The results show that for 1 test cycle, the corrosion potential of the steel in the sample with calcium nitrite was -54mV, which was a higher value than that measured in the sample with microsilica (-217.3mV) and without an additive (-159.1mV), corroborating its inhibitory power. The content of the free chlorides in the sample with micros ice allows greater capillary suction by adding high amounts of chloride to the structure (2.6% on the outside up to 2.20% near the steel); while the test pieces with calcium nitrite and without an additive had concentrations lower than 2% in all the evaluated points. After five cycles of exposing the samples to the saline solution the behavior is inverted. The measures of conductivity agreed with the previous results. Meanwhile, the pH of the solutions obtained from the powder from the

  5. PhD supervisor-student relationship

    Directory of Open Access Journals (Sweden)

    FILIPE PRAZERES

    2017-10-01

    Full Text Available The relationship between the PhD supervisor and the PhD student is a complex one. When this relationship is neither effective nor efficient, it may yield negative consequences, such as academic failure (1. The intricacy of the supervisor-student relationship may be in part comparable to the one between the physician and his/her patient [see, for example (2]. Both interactions develop over several years and the players involved in each relationship – PhD supervisor-student on the one side and physician-patient on the other side – may at some point of the journey develop different expectations of one another [see, for example (3, 4] and experience emotional distress (5. In both relationships, the perceived satisfaction with the interaction will contribute to the success or failure of the treatment in one case, and in the other, the writing of a thesis. To improve the mentioned satisfaction, not only there is a need to invest time (6, as does the physician to his/ her patients, but also both the supervisor and the PhD student must be willing to negotiate a research path to follow that would be practical and achievable. The communication between the physician and patient is of paramount importance for the provision of health care (7, and so is the communication between the supervisor and PhD student which encourages the progression of both the research and the doctoral study (8. As to a smooth transition to the postgraduate life, supervisors should start thinking about providing the same kind of positive reinforcement that every student is used to experience in the undergraduate course. The recognition for a job well done will mean a lot for a PhD student, as it does for a patient. One good example is the increase in medication compliance by patients with high blood pressure who receive positive reinforcement from their physicians (9. Supervisors can organize regular meetings for (and with PhD students in order to not only discuss their projects

  6. Identification of the potential inhibitors of malolactic fermentation in wines

    Directory of Open Access Journals (Sweden)

    Renata Vieira da MOTA

    2017-10-01

    Full Text Available Abstract This exploratory work aims to identify the potential inhibitors of lactic bacterial growth and to propose enological practices to guarantee the occurrence of spontaneous malolactic fermentation (MLF in wines from traditional and double-pruning management harvests in southeast Brazil. One white wine from a summer harvest and one red wine from a winter harvest that failed to complete MLF were utilized as comparative models to identify inhibitor compounds to lactic bacteria. Wine composition, alcoholic-fermentation temperature and bacterial strain contribute to the success or failure of MLF. Temperatures below 12 °C during alcoholic fermentation decrease lactic bacterial metabolism and may impair the bacteria’s growth after yeast cells lysis. A must pH below 3.2 in a summer harvest impairs bacterial growth, and the association of low pH with a free-SO2 concentration above 10 mg L-1 may inhibit MLF. For grapes with a high sugar content, harvested in the winter cycle, enologists should keep the alcohol content below 15% and control the alcoholic-fermentation temperature.

  7. pH dependent polymeric micelle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    McLean, S C; Gee, M L [The University of Melbourne, VIC (Australia). School of Chemistry

    2003-07-01

    Full text: Poly(2-vinylpyridine)-poly(ethylene oxide) (P2VP-PEO) shows potential as a possible drug delivery system for anti-tumour drugs since it forms pH dependent polymeric micelles. Hence to better understand the adsorption behaviour of this polymer we have studied the interaction forces between layers of P2VP-PEO adsorbed onto silica as a function of solution pH using an Atomic Force Microscope (AFM). When P2VP-PEO is initially adsorbed above the pKa of the P2VP block, P2VP-PEO adsorbs from solution as micelles that exist as either partially collapsed- or a hemi-micelles at the silica surface. Below the pKa of P2VP, the P2VP-PEO adsorbs as unimers, forming a compact layer with little looping and tailing into solution. When initial adsorption of P2VP-PEO is in the form of unimers, any driving force to self-assembly of the now charge neutral polymer is kinetically hindered. Hence, after initial adsorption at pH 3.6, a subsequent increase in pH to 6.6 results in a slow surface restructuring towards self-assembly and equilibrium. When the pH is increased from pH 6.6 to 9.7 there is a continuation of the evolution of the system to its equilibrium position during which the adsorbed P2VP-PEO unimers continue to 'unravel' from the surface, extending away from it, towards eventual complete surface self-assembly.

  8. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.

    Directory of Open Access Journals (Sweden)

    M Olivia Kim

    2015-10-01

    Full Text Available BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our recently developed computational protocol applying the binding polynomial formalism to the constant pH molecular dynamics (CpHMD framework, we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of correctly addressing the binding-induced protonation changes in protein-ligand systems where binding accompanies a net proton transfer. This work comprises the first application of our CpHMD-based free energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.

  9. Topology Based Domain Search (TBDS)

    National Research Council Canada - National Science Library

    Manning, William

    2002-01-01

    This effort will explore radical changes in the way Domain Name System (DNS) is used by endpoints in a network to improve the resilience of the endpoint and its applications in the face of dynamically changing infrastructure topology...

  10. Domain Discretization and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...

  11. Heliborne time domain electromagnetic system

    International Nuclear Information System (INIS)

    Bhattacharya, S.

    2009-01-01

    Atomic Minerals Directorate (AMD), are using heliborne and ground time domain electromagnetic (TDEM) system for the exploration of deep seated unconformity type uranium deposits. Uranium has been explored in various parts of the world like Athabasca basin using time domain electromagnetic system. AMD has identified some areas in India where such deposits are available. Apart from uranium exploration, the TDEM systems are used for the exploration of deep seated minerals like diamonds. Bhabha Atomic Research Centre (BARC) is involved in the indigenous design of the heliborne time domain system since this system is useful for DAE and also it has a scope of wide application. In this paper we discuss about the principle of time domain electromagnetic systems, their capabilities and the development and problems of such system for various other mineral exploration. (author)

  12. Anisotropy of domain wall resistance

    Science.gov (United States)

    Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon

    2000-10-30

    The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.

  13. Maneuver from the Air Domain

    Science.gov (United States)

    2016-05-26

    Overload From the previous discussion, cognitive maneuver seeks to degrade the enemy’s capacity for...in all domains, the ability to maneuver from the air domain in the cognitive sense, comes primarily from air power’s unique ability to overload the... cognitive maneuver mechanisms developed in the 1980s as part of broader maneuver warfare theory. The result is a proposed definition of maneuver from

  14. Ferroelectric Negative Capacitance Domain Dynamics

    OpenAIRE

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2017-01-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transien...

  15. Gravity and domain wall problem

    International Nuclear Information System (INIS)

    Rai, B.; Senjanovic, G.

    1992-11-01

    It is well known that the spontaneous breaking of discrete symmetries may lead to conflict with big-bang cosmology. This is due to formation of domain walls which give unacceptable contribution to the energy density of the universe. On the other hand, it is expected that gravity breaks global symmetries explicitly. In this work we propose that this could provide a natural solution to the domain-wall problem. (author). 17 refs

  16. Incompleteness in the finite domain

    Czech Academy of Sciences Publication Activity Database

    Pudlák, Pavel

    2017-01-01

    Roč. 23, č. 4 (2017), s. 405-441 ISSN 1079-8986 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : finite domain Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016 https://www.cambridge.org/core/journals/bulletin-of-symbolic-logic/article/incompleteness-in-the-finite-domain/D239B1761A73DCA534A4805A76D81C76

  17. Trisubstituted purine inhibitors of PDGFR alpha and their antileukemic activity in the human eosinophilic cell line EOL-1

    Czech Academy of Sciences Publication Activity Database

    Malínková, Veronika; Řezníčková, Eva; Jorda, Radek; Gucký, T.; Kryštof, Vladimír

    2017-01-01

    Roč. 25, č. 24 (2017), s. 6523-6535 ISSN 0968-0896 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : dependent kinase inhibitors * src tyrosine kinase * 2,6,9-trisubstituted purines * therapeutic target * potent inhibitor * imatinib * leukemia * mutations * mutant * domain Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Hematology Impact factor: 2.930, year: 2016

  18. EH domain of EHD1

    Energy Technology Data Exchange (ETDEWEB)

    Kieken, Fabien; Jovic, Marko; Naslavsky, Naava; Caplan, Steve, E-mail: scaplan@unmc.edu; Sorgen, Paul L. [University of Nebraska Medical Center, Department of Biochemistry and Molecular Biology and Eppley Cancer Center (United States)], E-mail: psorgen@unmc.edu

    2007-12-15

    EHD1 is a member of the mammalian C-terminal Eps15 homology domain (EH) containing protein family, and regulates the recycling of various receptors from the endocytic recycling compartment to the plasma membrane. The EH domain of EHD1 binds to proteins containing either an Asn-Pro-Phe or Asp-Pro-Phe motif, and plays an important role in the subcellular localization and function of EHD1. Thus far, the structures of five N-terminal EH domains from other proteins have been solved, but to date, the structure of the EH domains from the four C-terminal EHD family paralogs remains unknown. In this study, we have assigned the 133 C-terminal residues of EHD1, which includes the EH domain, and solved its solution structure. While the overall structure resembles that of the second of the three N-terminal Eps15 EH domains, potentially significant differences in surface charge and the structure of the tripeptide-binding pocket are discussed.

  19. EH domain of EHD1

    International Nuclear Information System (INIS)

    Kieken, Fabien; Jovic, Marko; Naslavsky, Naava; Caplan, Steve; Sorgen, Paul L.

    2007-01-01

    EHD1 is a member of the mammalian C-terminal Eps15 homology domain (EH) containing protein family, and regulates the recycling of various receptors from the endocytic recycling compartment to the plasma membrane. The EH domain of EHD1 binds to proteins containing either an Asn-Pro-Phe or Asp-Pro-Phe motif, and plays an important role in the subcellular localization and function of EHD1. Thus far, the structures of five N-terminal EH domains from other proteins have been solved, but to date, the structure of the EH domains from the four C-terminal EHD family paralogs remains unknown. In this study, we have assigned the 133 C-terminal residues of EHD1, which includes the EH domain, and solved its solution structure. While the overall structure resembles that of the second of the three N-terminal Eps15 EH domains, potentially significant differences in surface charge and the structure of the tripeptide-binding pocket are discussed

  20. CONTINUOUS MEASUREMENT OF THE CYTOPLASMIC PH IN LACTOCOCCUS-LACTIS WITH A FLUORESCENT PH INDICATOR

    NARCIS (Netherlands)

    MOLENAAR, D; ABEE, T; KONINGS, WN

    1991-01-01

    The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the

  1. A Busy period analysis of the level dependent PH/PH/1/K queue

    NARCIS (Netherlands)

    Al Hanbali, Ahmad

    2011-01-01

    In this paper, we study the transient behavior of a level dependent single server queuing system with a waiting room of finite size during the busy period. The focus is on the level dependent PH/PH/1/K queue. We derive in closed form the joint transform of the length of the busy period, the number

  2. [Proton pump inhibitors in gastro-oesophageal reflux disease: what is the further step?].

    Science.gov (United States)

    Simon, Mireille; Zerbib, Frank

    2013-01-01

    Optimisation of proton pump inhibitors use may improve reflux symptoms in 20-25% of the patients. Pathological gastro-oesophageal reflux should be documented in a patient with refractory reflux symptoms using upper endoscopy and/or pH testing. While on proton pump inhibitors twice daily, persistent symptoms are not related to gastro-oesophageal refluxdisease(GERD) in 50% of the patients. The new anti-reflux compounds have yet a limited efficacy and side effects that currently limit their development. Copyright © 2012. Published by Elsevier Masson SAS.

  3. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  4. An Insight into the Pharmacophores of Phosphodiesterase-5 Inhibitors from Synthetic and Crystal Structural Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen,G.; Wang, H.; Robinson, H.; Cai, J.; Wan, Y.; Ke, H.

    2008-01-01

    Selective inhibitors of cyclic nucleotide phosphodiesterase-5 (PDE5) have been used as drugs for treatment of male erectile dysfunction and pulmonary hypertension. An insight into the pharmacophores of PDE5 inhibitors is essential for development of second generation of PDE5 inhibitors, but has not been completely illustrated. Here we report the synthesis of a new class of the sildenafil derivatives and a crystal structure of the PDE5 catalytic domain in complex with 5-(2-ethoxy-5-(sulfamoyl)-3-thienyl)-1-methyl-3-propyl-1, 6-dihydro-7H-pyrazolo[4, 3-d]pyrimidin-7-one (12). Inhibitor 12 induces conformational change of the H-loop (residues 660-683), which is different from any of the known PDE5 structures. The pyrazolopyrimidinone groups of 12 and sildenafil are well superimposed, but their sulfonamide groups show a positional difference of as much as 1.5 Angstroms . The structure-activity analysis suggests that a small hydrophobic pocket and the H-loop of PDE5 are important for the inhibitor affinity, in addition to two common elements for binding of almost all the PDE inhibitors: the stack against the phenylalanine and the hydrogen bond with the invariant glutamine. However, the PDE5-12 structure does not provide a full explanation to affinity changes of the inhibitors. Thus alternatives such as conformational change of the M-loop are open and further structural study is required.

  5. Azidoblebbistatin, a photoreactive myosin inhibitor

    Science.gov (United States)

    Képiró, Miklós; Várkuti, Boglárka H.; Bodor, Andrea; Hegyi, György; Drahos, László; Kovács, Mihály; Málnási-Csizmadia, András

    2012-01-01

    Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC50 ≥ 50 μM) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC50 = 5 μM). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions. PMID:22647605

  6. Biological abatement of cellulase inhibitors.

    Science.gov (United States)

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Phosphodiesterase inhibitors in clinical urology.

    Science.gov (United States)

    Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias

    2013-05-01

    To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.

  8. Inhibitors of mTOR

    NARCIS (Netherlands)

    Klümpen, Heinz-Josef; Beijnen, Jos H.; Gurney, Howard; Schellens, Jan H. M.

    2010-01-01

    Inhibitors of mammalian target of rapamycin (mTOR) have been approved for the treatment of renal cell carcinoma and appear to have a role in the treatment of other malignancies. The primary objective of this drug review is to provide pharmacokinetic and dynamic properties of the commonly used drugs

  9. Retroviral proteinases and their inhibitors

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Juraj

    2000-01-01

    Roč. 3, 3,4 (2000), s. 23-24 [ Proteolytic enzymes and their inhibitors in physiology and pathogenesis. 14.09.2000, Plzen] Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  10. Domain-to-domain coupling in voltage-sensing phosphatase.

    Science.gov (United States)

    Sakata, Souhei; Matsuda, Makoto; Kawanabe, Akira; Okamura, Yasushi

    2017-01-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.

  11. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  12. Optoelectronic pH Meter: Further Details

    Science.gov (United States)

    Jeevarajan, Antony S.; Anderson, Mejody M.; Macatangay, Ariel V.

    2009-01-01

    A collection of documents provides further detailed information about an optoelectronic instrument that measures the pH of an aqueous cell-culture medium to within 0.1 unit in the range from 6.5 to 7.5. The instrument at an earlier stage of development was reported in Optoelectronic Instrument Monitors pH in a Culture Medium (MSC-23107), NASA Tech Briefs, Vol. 28, No. 9 (September 2004), page 4a. To recapitulate: The instrument includes a quartz cuvette through which the medium flows as it is circulated through a bioreactor. The medium contains some phenol red, which is an organic pH-indicator dye. The cuvette sits between a light source and a photodetector. [The light source in the earlier version comprised red (625 nm) and green (558 nm) light-emitting diodes (LEDs); the light source in the present version comprises a single green- (560 nm)-or-red (623 nm) LED.] The red and green are repeatedly flashed in alternation. The responses of the photodiode to the green and red are processed electronically to obtain the ratio between the amounts of green and red light transmitted through the medium. The optical absorbance of the phenol red in the green light varies as a known function of pH. Hence, the pH of the medium can be calculated from the aforesaid ratio.

  13. PH of Hawaiian precipitation: A preliminary report

    International Nuclear Information System (INIS)

    Miller, J.M.; Yoshinaga, A.M.

    1981-01-01

    Daily or biweekly precipitation samples have been collected at various sites on the island of Hawaii since 1974. The elevations of the sites ranged from sea level to 3400 m. Samples were analyzed on the day of collection for pH and conductivity. Detection of major anions, such as sulfate and nitrate, were made on selected samples during the period

  14. The Ph.D. Value Proposition

    Science.gov (United States)

    Cooper, Kenneth J.

    2012-01-01

    Atlanta University launched its doctor of arts in humanities (DAH) programs almost 40 years ago, and, since the 1988 merger with Clark College, Clark Atlanta University has continued to award the degrees. This fall, for the first time, its students will be able to earn Ph.D.s in humanities instead. In DAH programs around the country, there's been…

  15. Crystallization of the A-Domain of the Mannitol Transport Protein Enzyme IImtl

    NARCIS (Netherlands)

    Lammers, Leidy A.; Dijkstra, Bauke W.; Weeghel, Rob P. van; Pas, Hendri H.; Robillard, George T.

    1992-01-01

    The A-domain of the mannitol transport protein enzyme IImtl from Escherichia coli (relative molecular mass 16,300) was crystallized, both at room temperature and 4°C, from 40% polyethylene glycol 6000 (pH 8.5 to 9.0) using the hanging-drop method of vapour diffusion. The crystals have the monoclinic

  16. Monomeric CH3: A Small, Stable Antibody Domain with Therapeutic Promise | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Antibody domains are emerging as promising biopharmaceuticals because of their relatively small size compared to full-sized antibodies, which are too large to effectively penetrate tumors and bind to sterically restricted therapeutic targets. In an article published in The Journal of Biological Chemistry, Tianlei Ying, Ph.D., Dimiter Dimitrov,

  17. Detection and characterization of partially unfolded oligomers of the SH3 domain of α-Spectrin

    NARCIS (Netherlands)

    Casares, S.; Sadqi, M.; López-Mayorga, O.; Conejero-Lara, F.; van Nuland, N.A.J.

    2004-01-01

    For the purpose of equilibrium and kinetic folding-unfolding studies, the SH3 domain of α-spectrin (spc-SH3) has long been considered a classic two-state folding protein. In this work we have indeed observed that the thermal unfolding curves of spc-SH3 measured at pH 3.0 by differential scanning

  18. Optimization of urinary dipstick pH: Are multiple dipstick pH readings reliably comparable to commercial 24-hour urinary pH?

    Science.gov (United States)

    Abbott, Joel E; Miller, Daniel L; Shi, William; Wenzler, David; Elkhoury, Fuad F; Patel, Nishant D; Sur, Roger L

    2017-09-01

    Accurate measurement of pH is necessary to guide medical management of nephrolithiasis. Urinary dipsticks offer a convenient method to measure pH, but prior studies have only assessed the accuracy of a single, spot dipstick. Given the known diurnal variation in pH, a single dipstick pH is unlikely to reflect the average daily urinary pH. Our goal was to determine whether multiple dipstick pH readings would be reliably comparable to pH from a 24-hour urine analysis. Kidney stone patients undergoing a 24-hour urine collection were enrolled and took images of dipsticks from their first 3 voids concurrently with the 24-hour collection. Images were sent to and read by a study investigator. The individual and mean pH from the dipsticks were compared to the 24-hour urine pH and considered to be accurate if the dipstick readings were within 0.5 of the 24-hour urine pH. The Bland-Altman test of agreement was used to further compare dipstick pH relative to 24-hour urine pH. Fifty-nine percent of patients had mean urinary pH values within 0.5 pH units of their 24-hour urine pH. Bland-Altman analysis showed a mean difference between dipstick pH and 24-hour urine pH of -0.22, with an upper limit of agreement of 1.02 (95% confidence interval [CI], 0.45-1.59) and a lower limit of agreement of -1.47 (95% CI, -2.04 to -0.90). We concluded that urinary dipstick based pH measurement lacks the precision required to guide medical management of nephrolithiasis and physicians should use 24-hour urine analysis to base their metabolic therapy.

  19. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family.

    Directory of Open Access Journals (Sweden)

    Tooba Naz Shamsi

    Full Text Available This study was aimed to purify and characterize the Protease inhibitor (PI from a plant Allium sativum (garlic with strong medicinal properties and to explore its phytodrug potentials.Allium sativum Protease Inhibitor (ASPI was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD spectroscopy.ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2-12 showing a decline in the activity around pH 4-5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10-80°C but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM. The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH.To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids present in the reactive sites

  20. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich

    2010-01-01

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  1. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  2. pH Memory Effects of Tunable Block Copolymer Photonic Gels and Their Applications

    Science.gov (United States)

    Kang, Youngjong; Thomas, Edwin L.

    2007-03-01

    Materials with hysteresis, showing a bistable state to the external stimuli, have been widely investigated due to their potential applications. For example, they could be used as memory devices or optical switches when they have magnetic or optical hysteresis response to the external stimuli. Here we report pH tunable photonic gels which are spontaneously assembled from block copolymers. The general idea of this research is based on the selective swelling of block copolymer lamellar mesogels, where the solubility of one block is responsive to the change of pH. In this system, the domain spacing of the lamellar is varied with the extent of swelling. As a model system, we used protonated polystyrene-b-poly(2-vinly pyridine) (PS-b-P2VP) block copolymers forming lamellar structures. The photonic gel films prepared from protonated PS-b-P2VP show a strong reflectance in aqueous solution and the band position was varied with pH. Interestingly, a very strong optical hysteresis was observed while the reflection band of photonic gels was tuned by changing pH. We anticipate that pH tunable photonic gels with hysteresis can be applicable to novel applications such as a component of memory devices, photonic switches or drug delivery vehicles.

  3. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  4. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  5. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  6. Association between Proton Pump Inhibitors and Respiratory Infections: A Systematic Review and Meta-Analysis of Clinical Trials

    Directory of Open Access Journals (Sweden)

    Nabil Sultan

    2008-01-01

    Full Text Available BACKGROUND: Proton pump inhibitors (PPIs have become the mainstay of treatment for and prevention of many serious gastrointestinal diseases. Laboratory and clinical evidence suggests that the increase in gastric pH caused by PPIs may be linked to increased bacterial colonization of the stomach and may predispose patients to an increased risk for respiratory infections.

  7. Diagnostic value of the proton pump inhibitor test for gastro-oesophageal reflux disease in primary care

    NARCIS (Netherlands)

    Aanen, M. C.; Weusten, B. L. A. M.; Numans, M. E.; de Wit, N. J.; Baron, A.; Smout, A. J. P. M.

    2006-01-01

    AIM: To assess the diagnostic accuracy of the proton pump inhibitor test in a primary care population as well as its additional value over reflux history, using the symptom association probability outcome during 24-h oesophageal pH recording as reference test for gastro-oesophageal reflux disease.

  8. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding.

    Science.gov (United States)

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H-J

    2011-04-08

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.

  9. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G. (Sanofi); (Michigan)

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  10. PhD on Track – designing learning for PhD students

    Directory of Open Access Journals (Sweden)

    Gunhild Austrheim

    2013-12-01

    Full Text Available Three years ago we started the project "Information Management for Knowledge Creation". The project was initiated to create online information literacy modules for PhD students. The result of our endeavours, PhD on Track, will be launched in May 2013. The initial stage of the project was mapping out the information behaviour of PhD students, as well as what services they require from the library through a literature review and a focus group study. The findings of these inquiries formed the knowledge base from which we developed our information literacy modules. Our paper will focus on the interaction between content production and user testing when creating PhD on Track. Methods: User testing has been employed throughout the production stage. We have tested navigation and organisation of the web site, content and usability. The project team have conducted expert testing. Analysis: The results from our user testing have played an important part in decisions concerning content production. Our working hypothesis was that the PhD students would want an encyclopaedic website, a place to quickly find answers. However, the user tests revealed that PhD students understood and expected the website to be learning modules. Conclusions: The PhD students in the tests agreed that a site such as this would be useful, especially to new PhD students. They also liked the design, but had some qualms with the level of information. They preferred shorter text, but with more depth. The students would likewise have preferred more practical examples, more illustrations and more discipline specific information. The current content of PhD on Track reflects the feedback from the user testing. We have retained initial ideas such as one section for reviewing and discovering research literature and one section for publishing PhD research work. In addition, we have included more practical examples to indicate efficient workflows or relevant actions in context. Illustrations

  11. Reduction rules for reset/inhibitor nets

    NARCIS (Netherlands)

    Verbeek, H.M.W.; Wynn, M.T.; Aalst, van der W.M.P.; Hofstede, ter A.H.M.

    2010-01-01

    Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being

  12. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  13. 21 CFR 876.1400 - Stomach pH electrode.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stomach pH electrode. 876.1400 Section 876.1400...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1400 Stomach pH electrode. (a) Identification. A stomach pH electrode is a device used to measure intragastric and intraesophageal pH (hydrogen...

  14. EVALUATION OF A NEW CATHETER FOR ESOPHAGEAL PH MONITORING

    NARCIS (Netherlands)

    KUIT, JA; SCHEPEL, SJ; BIJLEVELD, CMA; KLEIBEUKER, JH

    A new catheter, provided with an Ion Sensitive Field Effect Transistor as a pH sensor and incorporating a reference electrode, was evaluated for esophageal pH recording. The pH-sensitivity was 54 mV/pH in vitro, with a linear response between pH 2 and pH 9. Clinical semi-ambulatory 24-hour

  15. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Domain walls at finite temperature

    International Nuclear Information System (INIS)

    Carvalho, C.A. de; Marques, G.C.; Silva, A.J. da; Ventura, I.

    1983-08-01

    It is suggested that the phase transition of lambda phi 4 theory as a function of temperature coincides with the spontaneous appearance of domain walls. Based on one-loop calculations, T sub(c) = 4M/√ lambda is estimated as the temperature for these domains to because energetically favored, to be compared with T sub(c) = 4.9M/√ lambda from effective potential calculations (which are performed directly in the broken phase). Domain walls, as well as other Types of fluctuations, disorder the system above T sub(c), leading to =0. The critical exponent for the specific heat above T sub(c) is computed; and α=2/3 + 0 (√ lambda) is obtained. (Author) [pt

  17. Domain similarity based orthology detection.

    Science.gov (United States)

    Bitard-Feildel, Tristan; Kemena, Carsten; Greenwood, Jenny M; Bornberg-Bauer, Erich

    2015-05-13

    Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic research, especially when taking into account the increasing number of sequenced organisms available, is to make this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to speed up the detection of orthologous proteins by using strings of domains to characterize the proteins. We present two new protein similarity measures, a cosine and a maximal weight matching score based on domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight matching similarity measures are compared against curated datasets. The measures show that domain content similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used inside porthoDom, the wrapper developed for proteinortho. porthoDom makes use of domain content similarity measures to group proteins together before searching for orthologs. By using domains instead of amino acid sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence comparison. We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho. The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL licence 3 at http://www.bornberglab.org/pages/porthoda .

  18. RVX-297- a novel BD2 selective inhibitor of BET bromodomains

    Energy Technology Data Exchange (ETDEWEB)

    Kharenko, Olesya A., E-mail: olesya@zenithepigenetics.com [Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1 (Canada); Gesner, Emily M.; Patel, Reena G.; Norek, Karen [Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1 (Canada); White, Andre; Fontano, Eric; Suto, Robert K. [Xtal BioStructures, Inc., 12 Michigan Dr., Natick, MA 01760 (United States); Young, Peter R.; McLure, Kevin G.; Hansen, Henrik C. [Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1 (Canada)

    2016-08-12

    Bromodomains are epigenetic readers that specifically bind to the acetyl lysine residues of histones and transcription factors. Small molecule BET bromodomain inhibitors can disrupt this interaction which leads to potential modulation of several disease states. Here we describe the binding properties of a novel BET inhibitor RVX-297 that is structurally related to the clinical compound RVX-208, currently undergoing phase III clinical trials for the treatment of cardiovascular diseases, but is distinctly different in its biological and pharmacokinetic profiles. We report that RVX-297 preferentially binds to the BD2 domains of the BET bromodomain and Extra Terminal (BET) family of protein. We demonstrate the differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography, and describe the structural differences driving the BD2 selective binding of RVX-297. The isothermal titration calorimetry (ITC) data illustrate the related differential thermodynamics of binding of RVX-297 to single as well as dual BET bromodomains. - Highlights: • A novel inhibitor of BET bromodomains, RVX-297 is described. • The differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography are described. • RVX-297 preferentially binds to the BD2 domains of the BET bromodomains. • The structural and thermodynamic properties of the BD2 selective binding of RVX-297 are characterized.

  19. The Distributed-SDF Domain

    DEFF Research Database (Denmark)

    Cuadrado, Daniel Lázaro; Ravn, Anders Peter; Koch, Peter

    2005-01-01

    The purpose of the Distributed-SDF domain for Ptolemy II is to allow distributed simulation of SDF models. It builds on top of the existing SDF domain by extending it. From the user’s point of view, using the Distributed-SDF director is sufficient to run the distributed version. It provides optio...... distributed nature. First of all, known memory bounds of the JVM can be overcome. Second, it yields smaller simulation times, mainly for models with high degree of parallelism and granularity....

  20. Design, Synthesis, and Biological Activity of 1,2,3-Triazolobenzodiazepine BET Bromodomain Inhibitors.

    Science.gov (United States)

    Sharp, Phillip P; Garnier, Jean-Marc; Hatfaludi, Tamas; Xu, Zhen; Segal, David; Jarman, Kate E; Jousset, Hélène; Garnham, Alexandra; Feutrill, John T; Cuzzupe, Anthony; Hall, Peter; Taylor, Scott; Walkley, Carl R; Tyler, Dean; Dawson, Mark A; Czabotar, Peter; Wilks, Andrew F; Glaser, Stefan; Huang, David C S; Burns, Christopher J

    2017-12-14

    A number of diazepines are known to inhibit bromo- and extra-terminal domain (BET) proteins. Their BET inhibitory activity derives from the fusion of an acetyl-lysine mimetic heterocycle onto the diazepine framework. Herein we describe a straightforward, modular synthesis of novel 1,2,3-triazolobenzodiazepines and show that the 1,2,3-triazole acts as an effective acetyl-lysine mimetic heterocycle. Structure-based optimization of this series of compounds led to the development of potent BET bromodomain inhibitors with excellent activity against leukemic cells, concomitant with a reduction in c- MYC expression. These novel benzodiazepines therefore represent a promising class of therapeutic BET inhibitors.

  1. [Memantine as add-on medication to acetylcholinesterase inhibitor therapy for Alzheimer dementia].

    Science.gov (United States)

    Haussmann, R; Donix, M

    2017-01-01

    Currently available data indicate superior therapeutic effects of combination treatment for Alzheimer dementia with memantine and acetylcholine esterase inhibitors in certain clinical contexts. Out of five randomized, placebo-controlled, double-blind trials two showed superior therapeutic effects in comparison to monotherapy with acetylcholinesterase inhibitors regarding various domains. Recently published meta-analyses and cost-benefit analyses also showed positive results. Recently published German guidelines for dementia treatment also take these new data into account and recommend combination treatment in patients with severe dementia on stable donepezil medication. This article gives an overview of current evidence for combination therapy.

  2. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Directory of Open Access Journals (Sweden)

    Zomaya Albert Y

    2006-12-01

    Full Text Available Abstract Background Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix, secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. Conclusion Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset.

  3. PhD competences of food studies

    Directory of Open Access Journals (Sweden)

    Chelo Gonzalez-Martinez

    2014-10-01

    Full Text Available In European Higher Education, learning outcomes and competences have been used sometimes with different meanings and sometimes with the same meaning. But both terms have been more commonly used to refer to knowledge, understanding and abilities a student must demonstrate at the end of a learning experience.  Their use is a consequence of the paradigm shift of the Bologna Process to a learner centered education environment. The definition of standards of competences (or learning outcomes for the PhD degree is thus a need for the quality assurance of this degree. In this work, subject-specific and generic competences for the PhD in Food Science and Technology and their alignment with the European Qualifications Framework (EQF level descriptors for quality assurance purposes have been identified.

  4. ATLAS PhD Grant Scholarship Programme

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    On 11 February, the first recipients of the ATLAS PhD Grant were presented with a certificate by the programme’s selection committee. The three scholars - Lailin Xu of China, Josefina Alconada of Argentina and Gagik Vardanyan of Armenia - were delighted at being able to continue their PhD programmes at CERN.   With certificates, from left: Lailin Xu, Josefina Alconada, and Gagik Vardanyan. The selection committee members, from left: IFAE Barcelona’s Martine Bosman, Fabiola Gianotti, Peter Jenni and from CERN HR James Purvis. (Image: ATLAS/Claudia Marcelloni). Former ATLAS spokespersons Peter Jenni and Fabiola Gianotti started the fund with the Fundamental Physics Prize award money they received last year. Both have used the entirety of their prizes for educational and humanitarian programmes. "We wanted to do something for students who are working on ATLAS, in particular those who otherwise could not come here and actually see the detector they are working on,&am...

  5. PhD students share their work

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    Last week, the second Doctoral Student Assembly gave students in the final stages of their PhD at CERN the chance to meet and present their work.   On 9 May, 24 students who are completing their PhD under the CERN Doctoral Student Programme were joined by their CERN supervisors and some of their university supervisors at an event organised by HR and the Technical Students Committee (TSC). After an address by the Director-General Rolf Heuer and short presentations by Ingrid Haug from HR and TSC Chair Stephan Russenschuck, the students presented their work in a poster session. Held in a packed Council Chamber, the event was a great opportunity for the doctoral students to get to know each other and to share their work in fields as diverse as radiation protection, computing, physics and engineering.

  6. Complexation Key to a pH Locked Redox Reaction

    Science.gov (United States)

    Rizvi, Masood Ahmad; Dangat, Yuvraj; Shams, Tahir; Khan, Khaliquz Zaman

    2016-01-01

    An unfavorable pH can block a feasible electron transfer for a pH dependent redox reaction. In this experiment, a series of potentiometric titrations demonstrate the sequential loss in feasibility of iron(II) dichromate redox reaction over a pH range of 0-4. The pH at which this reaction failed to occur was termed as a pH locked reaction. The…

  7. The PhD Conundrum in South African Academia

    Science.gov (United States)

    Breier, Mignonne; Herman, Chaya

    2017-01-01

    South African universities need more academics with PhDs, from historically disadvantaged population groups in particular, but they face a conundrum. In order to have more staff with PhDs, they need to produce more PhD graduates. But in order to produce more PhD graduates, they need more staff with PhDs to supervise. This article explores this…

  8. Iodine evolution and pH control

    International Nuclear Information System (INIS)

    Beahm, E.C.; Lorenz, R.A.; Weber, C.F.

    1993-01-01

    The pH is the major factor in determining the extent of I 2 in solution. In containment where no pH-control chemicals are present, the acidity or basicity of the water pool will be determined by materials that are introduced into containment as a result of the accident itself. These materials may be fission products (i.e., cesium compounds), thermally produced products (i.e., core-concrete aerosols), or compounds produced by radiation (i.e., nitric acid). In situations where pH levels fall below ∼7, the formation of I 2 will occur in irradiated iodide solutions. A correlation between pH and iodine formation is needed so that the amounts I 2 in water pools can be assessed. This, in turn, determines the amount of I 2 in the atmosphere available for escape by containment leakage. A number of calculational routines based on more than 100 differential equations representing individual reactions can be found in the literature. In this work, it is shown that a simpler approach based on the steady-state decomposition of hydrogen peroxide should correctly describe iodine formation in severe accidents. Comparisons with test data show this approach to be valid. The most important acids in containment will be nitric acid (HNO 3 ), produced by irradiation of water and air, and hydrochloric acid (HCl), produced by irradiation or heating of electrical cable insulation. The most important bases in containment will be cesium hydroxide, cesium borate (or cesium carbonate), and in some plants pH additives, such as sodium hydroxide or sodium phosphate

  9. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro

    NARCIS (Netherlands)

    Walker, J.B.; Hughes, B.; James, I.; Haddock, P.; Kluft, C.; Bajzar, L.

    2003-01-01

    Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethyl-mercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged,

  10. Condensation of rye chromatin in somatic interphase nuclei of Ph1 and ph1b wheat

    Czech Academy of Sciences Publication Activity Database

    Kopecký, David; Allen, D.C.; Duchoslav, M.; Doležel, Jaroslav; Lukaszewski, A.J.

    2007-01-01

    Roč. 119, 3-4 (2007), s. 263-267 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : hexaploid wheat * Ph1 and ph1b * rye chromatin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.402, year: 2007

  11. Optimum pH and pH Stability of Crude Polyphenol Oxidase (PPO ...

    African Journals Online (AJOL)

    The effect of pH on the activity and stability of crude polyphenol oxidase (PPO) extracted from garden egg (Solanum aethiopicum), pawpaw (Carica papaya), pumpkin ... Optimum pH values were found to be 6.0,6.5,6.0, 4.5 and 4.0/or 8.0 for the enzyme extracted from Solanum aethiopicum, Carica papaya, Cucurbita pepo, ...

  12. [Effect of Azospirillum lectins on the Activity of Proteolytic Enzymes and Their Inhibitors in Wheat Seedling Roots].

    Science.gov (United States)

    Alen'kina, S A; Nikitina, V E

    2015-01-01

    The lectins of associative nitrogen-fixing strains Azospirillum brasilense Sp7 and Sp245 were shown to exerte a multidirectional effect on the activity of acidic (pH 3.5), neutral (6.8), and alkaline (pH 7.8) proteinases. The lectin of the epiphytic A. brasilense Sp7 decreased proteolytic activity at all pH values, whereas the lectin of the endophytic A. brasilense Sp245 activated neutral and alkaline proteinases, while not affecting the alkaline ones. Experiments with protease inhibitors made it possible to conclude that the lectins of the studied A. brasilense strains alter the ratio between the activities of different protease types in germinating seeds. The activity of trypsin inhibitors in wheat seedling roots was found to increase in the presence of the lectins. Our results indicate a broader spectrum of effects of azospirilla lectins on the host plant organism.

  13. Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains.

    Science.gov (United States)

    Chou, Tsui-Fen; Bulfer, Stacie L; Weihl, Conrad C; Li, Kelin; Lis, Lev G; Walters, Michael A; Schoenen, Frank J; Lin, Henry J; Deshaies, Raymond J; Arkin, Michelle R

    2014-07-29

    The p97 AAA (ATPase associated with diverse cellular activities), also called VCP (valosin-containing protein), is an important therapeutic target for cancer and neurodegenerative diseases. p97 forms a hexamer composed of two AAA domains (D1 and D2) that form two stacked rings and an N-terminal domain that binds numerous cofactor proteins. The interplay between the three domains in p97 is complex, and a deeper biochemical understanding is needed in order to design selective p97 inhibitors as therapeutic agents. It is clear that the D2 ATPase domain hydrolyzes ATP in vitro, but whether D1 contributes to ATPase activity is controversial. Here, we use Walker A and B mutants to demonstrate that D1 is capable of hydrolyzing ATP and show for the first time that nucleotide binding in the D2 domain increases the catalytic efficiency (kcat/Km) of D1 ATP hydrolysis 280-fold, by increasing kcat 7-fold and decreasing Km about 40-fold. We further show that an ND1 construct lacking D2 but including the linker between D1 and D2 is catalytically active, resolving a conflict in the literature. Applying enzymatic observations to small-molecule inhibitors, we show that four p97 inhibitors (DBeQ, ML240, ML241, and NMS-873) have differential responses to Walker A and B mutations, to disease-causing IBMPFD mutations, and to the presence of the N domain binding cofactor protein p47. These differential effects provide the first evidence that p97 cofactors and disease mutations can alter p97 inhibitor potency and suggest the possibility of developing context-dependent inhibitors of p97. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Deactivation of the E. coli pH stress sensor CadC by cadaverine.

    Science.gov (United States)

    Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten

    2012-11-23

    At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases.

    Science.gov (United States)

    Horton, John R; Engstrom, Amanda; Zoeller, Elizabeth L; Liu, Xu; Shanks, John R; Zhang, Xing; Johns, Margaret A; Vertino, Paula M; Fu, Haian; Cheng, Xiaodong

    2016-02-05

    The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is an atypical insertion of a DNA-binding ARID domain and a histone-binding PHD domain into the Jumonji domain, which separates the catalytic domain into two fragments (JmjN and JmjC). Here we demonstrate that internal deletion of the ARID and PHD1 domains has a negligible effect on in vitro enzymatic kinetics of the KDM5 family of enzymes. We present a crystal structure of the linked JmjN-JmjC domain from KDM5A, which reveals that the linked domain fully reconstitutes the cofactor (metal ion and α-ketoglutarate) binding characteristics of other structurally characterized Jumonji domain demethylases. Docking studies with GSK-J1, a selective inhibitor of the KDM6/KDM5 subfamilies, identify critical residues for binding of the inhibitor to the reconstituted KDM5 Jumonji domain. Further, we found that GSK-J1 inhibited the demethylase activity of KDM5C with 8.5-fold increased potency compared with that of KDM5B at 1 mm α-ketoglutarate. In contrast, JIB-04 (a pan-inhibitor of the Jumonji demethylase superfamily) had the opposite effect and was ~8-fold more potent against KDM5B than against KDM5C. Interestingly, the relative selectivity of JIB-04 toward KDM5B over KDM5C in vitro translates to a ~10-50-fold greater growth-inhibitory activity against breast cancer cell lines. These data define the minimal requirements for enzymatic activity of the KDM5 family to be the linked JmjN-JmjC domain coupled with the immediate C-terminal helical zinc-binding domain and provide structural characterization of the linked JmjN-JmjC domain for the KDM5 family, which should prove useful in the

  16. Learning processes across knowledge domains

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-01-01

    Purpose - The purpose of this paper is to shed light on the problematics of learning across knowledge boundaries in organizational settings. The paper specifically explores learning processes that emerge, when a new knowledge domain is introduced into an existing organizational practice with the ...

  17. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  18. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Gradability in the nominal domain

    NARCIS (Netherlands)

    Constantinescu, Camelia

    2011-01-01

    This dissertation investigates whether and how gradability is manifested in the nominal domain, as well as the implications this could have for theories of the representation of gradability. It is shown that the various gradability diagnostics proposed in the literature not only yield different

  20. The theory of syntactic domains

    NARCIS (Netherlands)

    Kracht, M.

    In this essay we develop a mathematical theory of syntactic domains with special attention to the theory of government and binding. Starting from an intrinsic characterization of command relations as defined in [Ba 90] we determine the structure of the distributive lattice of command relations.

  1. Impedance models in time domain

    NARCIS (Netherlands)

    Rienstra, S.W.

    2005-01-01

    Necessary conditions for an impedance function are derived. Methods available in the literature are discussed. A format with recipe is proposed for an exact impedance condition in time domain on a time grid, based on the Helmholtz resonator model. An explicit solution is given of a pulse reflecting

  2. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  3. Inhibiting properties and adsorption of an amine based fatty acid corrosion inhibitor on carbon steel in aqueous carbon dioxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Buchweishaija, Joseph

    1997-12-31

    Carbon dioxide corrosion is a major corrosion problem in oil and gas production systems and many organic inhibitors have been tested and used to protect the substrate from corrosion. This thesis studies the mechanism of interaction of the inhibitor molecule with the metallic substrate and how this affects the dissolution rate of the metal. The performance of a commercial amine based fatty acid corrosion inhibitor has been investigated using rotating cylinder electrodes and carbon steel electrodes in CO{sub 2} saturated formation water in the temperature range between 35 to 80{sup o}C. The corrosion process was monitored by electrochemical impedance measurements, and at the end of each experiment full polarization curves were recorded. When the inhibitor was applied on noncorroded electrodes, high inhibitor performance, over 99.7%, was observed independent of temperature. On precorroded electrodes inhibitor performance was found to depend on temperature and time of precorrosion. Above 60{sup o}C, the inhibitor performance decreased with increasing time of precorrosion, presumably because of the formation of a corrosion film of either iron carbonate or a combination of iron carbonate and iron carbide which prevent the inhibitor from reaching the surface. The inhibitor protection efficiency was assumed to be associated with the degree of inhibitor coverage at the material surface, and adsorption isotherms have been calculated in the concentration range between 0.1 ppm and 100 ppm. A Langmuir isotherm was found to give the best fit. The inhibitor performance on a 2 days precorroded rotating electrode was investigated at different solution pH ranging between 4.5 and 6.5 at 35{sup o}C. 130 refs., 80 figs., 22 tabs.

  4. Compiling Dictionaries Using Semantic Domains*

    Directory of Open Access Journals (Sweden)

    Ronald Moe

    2011-10-01

    Full Text Available

    Abstract: The task of providing dictionaries for all the world's languages is prodigious, re-quiring efficient techniques. The text corpus method cannot be used for minority languages lacking texts. To meet the need, the author has constructed a list of 1 600 semantic domains, which he has successfully used to collect words. In a workshop setting, a group of speakers can collect as many as 17 000 words in ten days. This method results in a classified word list that can be efficiently expanded into a full dictionary. The method works because the mental lexicon is a giant web or-ganized around key concepts. A semantic domain can be defined as an important concept together with the words directly related to it by lexical relations. A person can utilize the mental web to quickly jump from word to word within a domain. The author is developing a template for each domain to aid in collecting words and in de-scribing their semantics. Investigating semantics within the context of a domain yields many in-sights. The method permits the production of both alphabetically and semantically organized dic-tionaries. The list of domains is intended to be universal in scope and applicability. Perhaps due to universals of human experience and universals of linguistic competence, there are striking simi-larities in various lists of semantic domains developed for languages around the world. Using a standardized list of domains to classify multiple dictionaries opens up possibilities for cross-lin-guistic research into semantic and lexical universals.

    Keywords: SEMANTIC DOMAINS, SEMANTIC FIELDS, SEMANTIC CATEGORIES, LEX-ICAL RELATIONS, SEMANTIC PRIMITIVES, DOMAIN TEMPLATES, MENTAL LEXICON, SEMANTIC UNIVERSALS, MINORITY LANGUAGES, LEXICOGRAPHY

    Opsomming: Samestelling van woordeboeke deur gebruikmaking van se-mantiese domeine. Die taak van die voorsiening van woordeboeke aan al die tale van die wêreld is geweldig en vereis doeltreffende tegnieke. Die

  5. An ontological approach to domain engineering

    NARCIS (Netherlands)

    Falbo, R.A.; Guizzardi, G.; Duarte, K.

    2002-01-01

    Domain engineering aims to support systematic reuse, focusing on modeling common knowledge in a problem domain. Ontologies have also been pointed as holding great promise for software reuse. In this paper, we present ODE (Ontology-based Domain Engineering), an ontological approach for domain

  6. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  7. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  8. Clickable prodrugs bearing potent and hydrolytically cleavable nicotinamide phosphoribosyltransferase inhibitors

    Directory of Open Access Journals (Sweden)

    Sadrerafi K

    2018-04-01

    Full Text Available Keivan Sadrerafi, Emilia O Mason, Mark W Lee Jr Department of Chemistry, University of Missouri, Columbia, MO, USA Purpose: Our previous study indicated that carborane containing small-molecule 1-(hydroxymethyl-7-(4′-(trans-3″-(3‴-pyridylacrylamidobutyl-1,7-dicarbadodecaborane (hm-MC4-PPEA, was a potent inhibitor of nicotinamide phosphoribosyltransferase (Nampt. Nampt has been shown to be upregulated in most cancers and is a promising target for the treatment of many different types of cancers, including breast cancers. Patients and methods: To increase the selectivity of hm-MC4-PPEA toward cancer cells, three prodrugs were synthesized with different hydrolyzable linkers: ester, carbonate, and carbamate. Using click chemistry a fluorophore was attached to these prodrugs to act as a model for our conjugation strategy and to serve as an aid for prodrug stability studies. The stabilities of these drug conjugates were tested in phosphate-buffered saline (PBS at normothermia (37°C using three different pH levels, 5.5, 7.5, and 9.5, as well as in horse serum at physiological pH. The stability of each was monitored using reversed-phase HPLC equipped with both diode array and fluorescence detection. The inhibitory activity of hm-MC4-PPEA was also measured using a commercially available colorimetric assay. The biological activities of the drug conjugates as well as those of the free drug (hm-MC4-PPEA, were evaluated using the MTT assay against the human breast cancer cell lines T47D and MCF7, as well as the noncancerous, transformed, Nampt-dependent human breast epithelium cell line 184A1.Results: hm-MC4-PPEA showed to be a potent inhibitor of recombinant Nampt activity, exhibiting an IC50 concentration of 6.8 nM. The prodrugs showed great stability towards hydrolytic degradation under neutral, mildly acidic and mildly basic conditions. The carbamate prodrug also showed to be stable in rat serum. However, the carbonate and the ester prodrug

  9. Potential role of recombinant secretory leucoprotease inhibitor in the prevention of neutrophil mediated matrix degradation.

    Science.gov (United States)

    Llewellyn-Jones, C G; Lomas, D A; Stockley, R A

    1994-06-01

    Neutrophil elastase is able to degrade connective tissue matrices and is thought to be involved in the pathogenesis of destructive lung diseases. The ability of recombinant secretory leucoprotease inhibitor (rSLPI) to inhibit neutrophil mediated degradation of fibronectin in vitro is demonstrated and its efficacy compared with native alpha-1-proteinase inhibitor (n alpha 1-PI), recombinant alpha-1-proteinase inhibitor (r alpha 1-PI), and the chemical elastase inhibitor ICI 200,355. When preincubated with neutrophils both rSLPI and r alpha 1-PI were effective inhibitors of fibronectin degradation although n alpha 1-PI and ICI 200,355 were less effective. Recombinant SLPI was the most effective inhibitor when the cells were allowed to adhere to fibronectin before the addition of the inhibitors. Preincubation of rSLPI (0.1 mumol/l) with the fibronectin plate resulted in almost total inhibition of fibronectin degradation (reduced to 3.3 (SE 0.9)% of control). Pretreating the fibronectin plate with 1 mumol/l rSLPI, r alpha 1-PI and ICI 200,355 followed by thorough washing before the addition of cells resulted in no inhibition of fibronectin degradation with r alpha 1-PI and the ICI inhibitor, but rSLPI retained its inhibitory effect. This effect could be reduced by adding rSLPI in high pH buffer or 2 mol/1 NaCl. It is postulated that rSLPI binds to fibronectin to form a protective layer which prevents its degradation by neutrophil elastase. It may prove to be the most useful therapeutic agent in the prevention of neutrophil mediated lung damage.

  10. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase.

    Science.gov (United States)

    Gunn, Natalie J; Gorman, Michael A; Dobson, Renwick C J; Parker, Michael W; Mulhern, Terrence D

    2011-03-01

    The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2 Å, β=99.4°.

  11. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  12. PUBLIC DOMAIN PROTECTION. USES AND REUSES OF PUBLIC DOMAIN WORKS

    Directory of Open Access Journals (Sweden)

    Monica Adriana LUPAȘCU

    2015-07-01

    Full Text Available This study tries to highlight the necessity of an awareness of the right of access to the public domain, particularly using the example of works whose protection period has expired, as well as the ones which the law considers to be excluded from protection. Such works are used not only by large libraries from around the world, but also by rights holders, via different means of use, including incorporations into original works or adaptations. However, the reuse that follows these uses often only remains at the level of concept, as the notion of the public’s right of access to public domain works is not substantiated, nor is the notion of the correct or legal use of such works.

  13. The panacea toolbox of a PhD biomedical student.

    Science.gov (United States)

    Skaik, Younis

    2014-01-01

    Doing a PhD (doctor of philosophy) for the sake of contribution to knowledge should give the student an immense enthusiasm through the PhD period. It is the time in one's life that one spends to "hit the nail on the head" in a specific area and topic of interest. A PhD consists mostly of hard work and tenacity; however, luck and genius might also play a little role. You can pass all PhD phases without having both luck and genius. The PhD student should have pre-PhD and PhD toolboxes, which are "sine quibus non" for getting successfully a PhD degree. In this manuscript, the toolboxes of the PhD student are discussed.

  14. Amperometric micro pH measurements in oxygenated saliva.

    Science.gov (United States)

    Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-07-24

    An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.

  15. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase.

    Science.gov (United States)

    Schewe, Bettina; Schmälzlin, Elmar; Walz, Bernd

    2008-03-01

    Blowfly salivary gland cells have a vacuolar-type H(+)-ATPase (V-ATPase) in their apical membrane that energizes secretion of a KCl-rich saliva upon stimulation with serotonin (5-hydroxytryptamine, 5-HT). We have used BCECF to study microfluometrically whether V-ATPase and carbonic anhydrase (CA) are involved in intracellular pH (pH(i)) regulation, and we have localized CA activity by histochemistry. We show: (1) mean pH(i) in salivary gland cells is 7.5+/-0.3 pH units (N=96), higher than that expected from passive H(+) distribution; (2) low 5-HT concentrations (0.3-3 nmol l(-1)) induce a dose-dependent acidification of up to 0.2 pH units, with 5-HT concentrations >10 nmol l(-1), causing monophasic or multiphasic pH changes; (3) the acidifying effect of 5-HT is mimicked by bath application of cAMP, forskolin or IBMX; (4) salivary gland cells exhibit CA activity; (5) CA inhibition with acetazolamide and V-ATPase inhibition with concanamycin A lead to a slow acidification of steady-state pH(i); (6) 5-HT stimuli in the presence of acetazolamide induce an alkalinization that can be decreased by simultaneous application of the V-ATPase inhibitor concanamycin A; (7) concanamycin A removes alkali-going components from multiphasic 5-HT-induced pH changes; (8) NHE activity and a Cl(-)-dependent process are involved in generating 5-HT-induced pH changes; (9) the salivary glands probably contain a Na(+)-driven amino acid transporter. We conclude that V-ATPase and CA contribute to steady-state pH(i) regulation and 5-HT-induced outward H(+) pumping does not cause an alkalinization of pH(i) because of cytosolic H(+) accumulation attributable to stimulated cellular respiration and AE activity, masking the alkalizing effect of V-ATPase-mediated acid extrusion.

  16. Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells*

    Science.gov (United States)

    Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano

    2009-01-01

    Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies. PMID:19801663

  17. Microenvironmental pH is a key factor for exosome traffic in tumor cells.

    Science.gov (United States)

    Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano

    2009-12-04

    Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.

  18. Influence of ph on corrosion control of carbon steel by peroxide injection in sour water

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Martins Magda; Baptista, Walmar; Joia, Carlos Jose Bandeira de Mello [PROTEMP - PETROBRAS/CENPES, Cidade Universitaria, Quadra 7, Rio de Janeiro, CEP 21949-900 (Brazil); Ponciano, Gomes Jose Antonio da Cunha [Departamento de Engenharia Metalurgica e de Materiais-COPPE/UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil)

    2004-07-01

    Sour hydrogen damage is considered the most important corrosive process in the light-ends recovery section of Fluid Catalytic Cracking Units (FCCU). Corrosion in this condition is due to heavy gas oil that originates great amount of contaminants, such as H{sub 2}S, NH{sub 3} and HCN. Hydrogen absorption is promoted by the presence of free cyanides in the environment. The attenuation of this process requires the use of some inhibitors, such as oxygen, hydrogen peroxide (H{sub 2}O{sub 2}) or commercial polysulfides. The effect of these compounds is to neutralize free cyanides (CN{sup -}) into thio-sulfides (SCN{sup -}). When peroxide injection is selected, cyanide concentration in sour water has been used as key parameter to start the peroxide introduction. However, the importance of pH in this system has been pointed out by many authors. The aim of this work is to investigate the influence of pH when peroxide injection is carried out in less alkaline conditions of sour water. Electrochemical techniques - like anodic polarization and hydrogen permeation tests - and weight loss measurements were used to evaluate the effectiveness of corrosion control of carbon steel. It was concluded that at pH 7.5 peroxide injection can drive to an increment of the corrosion rate. Besides that, it was concluded that hydrogen permeation into the metal is promoted. Both detrimental effects were due to elemental sulfur generation in this pH range. The adoption of pH as a key parameter for peroxide injection is then suggested. (authors)

  19. Identification of Cysteine Proteases and Screening of Cysteine Protease Inhibitors in Biological Samples by a Two-Dimensional Gel System of Zymography and Reverse Zymography

    OpenAIRE

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-01-01

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the fi rst-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic...

  20. Phase I Study of INNO-406, a Dual Abl/Lyn Kinase Inhibitor, in Philadelphia Chromosome-Positive Leukemias Post-Imatinib Resistance or Intolerance

    Science.gov (United States)

    Kantarjian, H.; le Coutre, P.; Cortes, J.; Pinilla-Ibarz, J.; Nagler, A.; Hochhaus, A.; Kimura, S.; Ottmann, O.

    2010-01-01

    BACKGROUND INNO-406, an oral dual Abl/Lyn tyrosine kinase inhibitor (TKI), demonstrates specific Lyn kinase activity with no or limited activity against other Src-family member kinases. Several Bcr-Abl kinase domain mutations are sensitive to INNO-406 in vitro, including the F317L and F317V mutations. In this study, we evaluated INNO-406 in Philadelphia (Ph) chromosome–positive chronic myelogenous leukemia (CML) or acute lymphocytic leukemia (ALL) post-imatinib resistance or intolerance. METHODS A dose escalation study was conducted with a starting dose of 30mg administered orally once daily. Cohorts of at least 3 patients were treated at each dose level until the maximum tolerated dose (MTD) was reached. Twice-daily (BID) dosing was also evaluated. Therapy was allowed for a maximum of 24 months. RESULTS INNO-406 was administered to 56 patients with imatinib resistance (n=40) or intolerance (n=16). Other previous treatments included nilotinib (n=20), dasatinib (n=26), and dasatinib/nilotinib (n=9). Common mutations upon study entry included Y253H (n=6), G250E (n=4), T315I (n=4) and F317L (n=3). Among 31 patients with CML in chronic phase treated with INNO-406, the major cytogenetic response rate was 19%. In this study, no responses were seen in patients with CML-AP, CML-BP, or Ph-positive ALL. Dose-limiting toxicities (DLTs) at INNO-406 480mg BID were liver function abnormalities and thrombocytopenia. CONCLUSIONS INNO-406 showed anti-CML efficacy in this heavily pretreated study population. Based on the classical determinations of both DLT and MTD, the recommended phase 2 dose of INNO-406 is 240mg orally BID. Lower doses of INNO-406 may be equally effective and should be explored. PMID:20310049

  1. Forum for Almen Medicinske ph.d.-studerende

    DEFF Research Database (Denmark)

    Vedsted, Peter; Waldorff, Frans Boch; Eriksson, Tina

    Rapport fra første fællesmøde mellem nuværende og kommende almenmedicinske ph.d.-studerende. Rapporten anbefaler dannelse af et egentligt almenmedicinsk ph.d.-forum, der søges optaget i DSAM som en interessegruppe. Ph.d.-forum betragter sig som en ressource ved forskellige initiativer og ønsker...... blandt andet at arbejde for en værdig ansættelse af yngre forskere. Blandt de konkrete forslag, Ph.d.-forum har stillet, er almenmedicinske ph.d.-kurser og ph.d.-stipendium med henblik på udarbejdelse af protokol....

  2. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    Science.gov (United States)

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  3. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  4. ATLAS PhD Grants 2015

    CERN Multimedia

    Marcelloni De Oliveira, Claudia

    2015-01-01

    ATLAS PHd Grants - We are excited to announce the creation of a dedicated grant scheme (thanks to a donation from Fabiola Gianotti and Peter Jenni following their award from the Fundamental Physics Prize foundation) to encourage young and high-caliber doctoral students in particle physics research (including computing for physics) and permit them to obtain world class exposure, supervision and training within the ATLAS collaboration. This special PhD Grant is aimed at graduate students preparing a doctoral thesis in particle physics (incl. computing for physics) to spend one year at CERN followed by one year support also at the home Institute.

  5. Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors

    NARCIS (Netherlands)

    N. Steeghs (Neeltje); A.J. Gelderblom (Hans); J.A.M. Wessels (Judith); F.A.L.M. Eskens (Ferry); N. de Bont (Natasja); J.W. Nortier (Johan); H.J. Guchelaar (Henk Jan)

    2011-01-01

    textabstractSummary: Purpose Telatinib is an orally active small-molecule tyrosine kinase inhibitor of kinase insert domain receptor (KDR; VEGFR-2) and fms-related tyrosine kinase 4 (FLT4; VEGFR-3). This study aims at the identification of relationships between single nucleotide polymorphisms (SNPs)

  6. Calcineurin-inhibitor pain syndrome.

    Science.gov (United States)

    Prommer, Eric

    2012-07-01

    There has been increased recognition of calcineurin, a phosphoprotein serine/threonine phosphatase enzyme, in the regulation of many physiologic systems. Calcineurin mediates activation of lymphocytes, which play a role in immune response. Widely distributed in the central nervous system, calcinuerin also plays an important role in sensory neural function, via its role in the regulation of newly discovered 2-pore potassium channels, which greatly influence neuronal resting membrane potentials. Calcinuerin inhibition is the mechanism of action of immunomodulatory drugs such as cyclosporine and tacrolimus, which are widely used in transplantation medicine to prevent rejection. While important for immunosuppression, the use of calcineurin inhibitors has been associated with the development of a new pain syndrome called the calcineurin pain syndrome, which appears to be an untoward complication of the interruption of the physiologic function of calcineurin. This is a narrative review focusing on the epidemiology, pathophysiology, characterization of a newly recognized pain syndrome associated with the use of calcineurin inhibitors. The use of immunosuppressants however is associated with several well-known toxicities to which the calcineurin pain syndrome can be added. The development of this syndrome most likely involves altered nociceptive processing due to the effect of calcineurin inhibition on neuronal firing, as well as effects of calcineurin on vascular tone. The most striking aspect of the treatment of this syndrome is the response to calcium channel blockers, which suggest that the effects of calcineurin inhibition on vascular tone play an important role in the development of the calcineurin pain syndrome. The calcineurin syndrome is a newly recognized complication associated with the use of calcineurin inhibitors. There is no standard therapy at this time but anecdotal reports suggest the effectiveness of calcium channel blockers.

  7. Improving completion rates of students in biomedical PhD programs: an interventional study.

    Science.gov (United States)

    Viđak, Marin; Tokalić, Ružica; Marušić, Matko; Puljak, Livia; Sapunar, Damir

    2017-08-25

    Analysis of graduation success at the University of Split School of Medicine PhD programs conducted in 2011 revealed that only 11% of students who enrolled and completed their graduate coursework between 1999 and 2011 earned a doctoral degree. In this prospective cohort study we evaluated and compared three PhD programs within the same medical school, where the newest program, called Translational Research in Biomedicine (TRIBE), established in the academic year 2010/11, aimed to increase the graduation rate through an innovative approach. The intervention in the new program was related to three domains: redefined recruitment strategy, strict study regulations, and changes to the curriculum. We compared performance of PhD students between the new and existing programs and analyzed their current status, time to obtain a degree (from enrolment to doctorate), age at doctorate, number of publications on which the thesis was based and the impact factor of journals in which these were published. These improvement strategies were associated with higher thesis completion rate and reduced time to degree for students enrolled in the TRIBE program. There was no change in the impact factor or number of publications that were the basis for the doctoral theses. Our study describes good practices which proved useful in the design or reform of the PhD training program.

  8. Spontaneous aggregation of humic acid observed with AFM at different pH.

    Science.gov (United States)

    Colombo, Claudio; Palumbo, Giuseppe; Angelico, Ruggero; Cho, Hyen Goo; Francioso, Ornella; Ertani, Andrea; Nardi, Serenella

    2015-11-01

    Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of β-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  10. Inhibitors of plant hormone transport

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Zažímalová, Eva

    2016-01-01

    Roč. 253, č. 6 (2016), s. 1391-1404 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD15088 Institutional support: RVO:61389030 Keywords : polar auxin transport * acid-binding protein * gnom arf-gef * equilibrative nucleoside transporter * efflux carrier polarity * plasma-membrane-protein * cultured tobacco cells * arabidopsis-thaliana * gravitropic response * brefeldin-a * Plant hormones * Transport * Inhibitors * Auxin * Cytokinins * Strigolactones * Abscisic acid * Cell biology Subject RIV: ED - Physiology Impact factor: 2.870, year: 2016

  11. From toolkit to framework: The past and future evolution of PhEDEx

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hernandez, A. [CINVESTAV, IPN; Egeland, R. [Argosy U., Eagan; Huang, C. H. [Fermilab; Ratnikova, N. [Moscow, ITEP; Magini, N. [CERN; Wildish, T. [Princeton U.

    2012-01-01

    PhEDEx is the data-movement solution for CMS at the LHC. Created in 2004, it is now one of the longest-lived components of the CMS dataflow/workflow world. As such, it has undergone significant evolution over time, and continues to evolve today, despite being a fully mature system. Originally a toolkit of agents and utilities dedicated to specific tasks, it is becoming a more open framework that can be used in several ways, both within and beyond its original problem domain. In this talk we describe how a combination of refactoring and adoption of new technologies that have become available over the years have made PhEDEx more flexible, maintainable, and scaleable.

  12. Escalation of the Space Domain

    Science.gov (United States)

    2015-04-01

    vision of Arnold and other Air Force pioneers. Manned flight becomes the domain of NASA , and the United States shelves the idea of an aircraft-like...are similar in nature and application to those seen in science fiction moves or on television (i.e., Star Trek ) that can provide direct kinetic...Space, Infobase Publishing, New York: NY, 2011, pg. 12. 45 Ibid., pg. 12. 46 “Whom Gods Destroy.” Star Trek (original television series), Season 3

  13. Domains of bosonic functional integrals

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Para Univ., Belem, PA

    1998-07-01

    We propose a mathematical framework for bosonic Euclidean quantum field functional integrals based on the theory of integration on the dual algebraic vector space of classical field sources. We present a generalization of the Minlos-Dao Xing theorem and apply it to determine exactly the domain of integration associated to the functional integral representation of the two-dimensional quantum electrodynamics Schwinger generating functional. (author)

  14. Categorization in the Affective Domain

    DEFF Research Database (Denmark)

    Sauciuc, Gabriela-Alina

    2011-01-01

    Data collected in Romance and Scandinavian languages (N=474) in a superordinate category name production task indicate that a multiple-strategy approach would be more suitable for accounting of categorization in the affective domain instead of a prototype approach as suggested by previous studies....... This paper will highlight performance aspects which appear to be consistent with such an interpretation, as well as an important layman- expert knowledge asymmetry in affective categorization....

  15. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  16. Flexible time domain averaging technique

    Science.gov (United States)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  17. Effects of Mucuna pruriens protease inhibitors on Echis carinatus venom.

    Science.gov (United States)

    Hope-Onyekwere, Nnadozie Stanley; Ogueli, Godwin Ifeanyi; Cortelazzo, Alessio; Cerutti, Helena; Cito, Annarita; Aguiyi, John C; Guerranti, Roberto

    2012-12-01

    The medicinal plant Mucuna pruriens, with reputed anti-snake venom properties has been reported to contain a kunitz-type trypsin inhibitor. This study was undertaken to further evaluate the protease inhibitory potential of gpMuc, a multiform glycoprotein, and other protein fractions from M. pruriens seeds against trypsin, chymotrypsin, Echis carinatus snake venom, ecarin and thrombin. The results showed that gpMuc inhibited both trypsin and chymotrypsin activities and was thermally stable, maintaining its trypsin inhibitory activity at temperatures of up to 50°C. Its structural conformation was also maintained at pH ranges of 4-7. Immunoreactivity study confirms that it contains protease-recognizing epitope on one of its isoforms. The whole protein extract of M. pruriens seeds inhibited prothrombin activation by ecarin and whole E. carinatus venom, and also thrombin-like activity using chromogenic assay. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Extracellular pH Regulates Zinc Signaling via an Asp Residue of the Zinc-sensing Receptor (ZnR/GPR39)*

    Science.gov (United States)

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-01-01

    Zinc activates a specific Zn2+-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca2+ responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na+/H+ exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn2+ binding site, His17 or His19, or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp313 with alanine resulted in similar Ca2+ responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na+/H+ exchange at pH 7.4 and pH 6.5. Substitution of Asp313 to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp313, which was shown to modulate Zn2+ binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity. PMID:22879599

  19. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39).

    Science.gov (United States)

    Cohen, Limor; Asraf, Hila; Sekler, Israel; Hershfinkel, Michal

    2012-09-28

    Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.

  20. Dressed Domain Walls and holography

    International Nuclear Information System (INIS)

    Grisa, Luca; Pujolas, Oriol

    2008-01-01

    The cutoff version of the AdS/CFT correspondence states that the Randall Sundrum scenario is dual to a Conformal Field Theory (CFT) coupled to gravity in four dimensions. The gravitational field produced by relativistic Domain Walls can be exactly solved in both sides of the correspondence, and thus provides one further check of it. We show in the two sides that for the most symmetric case, the wall motion does not lead to particle production of the CFT fields. Still, there are nontrivial effects. Due to the trace anomaly, the CFT effectively renormalizes the Domain Wall tension. On the five dimensional side, the wall is a codimension 2 brane localized on the Randall-Sundrum brane, which pulls the wall in a uniform acceleration. This is perceived from the brane as a Domain Wall with a tension slightly larger than its bare value. In both cases, the deviation from General Relativity appears at nonlinear level in the source, and the leading corrections match to the numerical factors.

  1. Alternative to domain wall fermions

    International Nuclear Information System (INIS)

    Neuberger, H.

    2002-01-01

    An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions

  2. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells.

    Science.gov (United States)

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-10-03

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca 2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca 2+ -dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

  3. KEJAHATAN NAMA DOMAIN BERKAITAN DENGAN MEREK

    Directory of Open Access Journals (Sweden)

    Muhammad Nizar

    2018-02-01

    Full Text Available Indonesia already has an ITE Law governing domain names in general terms and on certain provisions in chapter VI, but the regulation of domain name crimes is not regulated in the ITE Law as mandated in the academic draft of the ITE Bill. The absence of regulation of domain name norm in the ITE Law creates problems with registrant of domain name (registrant which deliberately register the domain name is bad faith. The characteristic of a crime in a domain name relating to the mark is that the registered domain name has an equation in essence with another party’s well-known brand, the act of doing so by exploiting a reputation for well-known or previously commercially valuable names as domain names for addresses for sites (websites it manages. The Prosecutor may include articles of the KUHP in filing his indictment before the Court during the absence of special regulatory provisions concerning domain name crime.

  4. DIMA 3.0: Domain Interaction Map.

    Science.gov (United States)

    Luo, Qibin; Pagel, Philipp; Vilne, Baiba; Frishman, Dmitrij

    2011-01-01

    Domain Interaction MAp (DIMA, available at http://webclu.bio.wzw.tum.de/dima) is a database of predicted and known interactions between protein domains. It integrates 5807 structurally known interactions imported from the iPfam and 3did databases and 46,900 domain interactions predicted by four computational methods: domain phylogenetic profiling, domain pair exclusion algorithm correlated mutations and domain interaction prediction in a discriminative way. Additionally predictions are filtered to exclude those domain pairs that are reported as non-interacting by the Negatome database. The DIMA Web site allows to calculate domain interaction networks either for a domain of interest or for entire organisms, and to explore them interactively using the Flash-based Cytoscape Web software.

  5. A micromagnetic study of domain structure modeling

    International Nuclear Information System (INIS)

    Matsuo, Tetsuji; Mimuro, Naoki; Shimasaki, Masaaki

    2008-01-01

    To develop a mesoscopic model for magnetic-domain behavior, a domain structure model (DSM) was examined and compared with a micromagnetic simulation. The domain structure of this model is given by several domains with uniform magnetization vectors and domain walls. The directions of magnetization vectors and the locations of domain walls are determined so as to minimize the magnetic total energy of the magnetic material. The DSM was modified to improve its representation capability for domain behavior. The domain wall energy is multiplied by a vanishing factor to represent the disappearance of magnetic domain. The sequential quadratic programming procedure is divided into two steps to improve an energy minimization process. A comparison with micromagnetic simulation shows that the modified DSM improves the representation accuracy of the magnetization process

  6. Ferromagnetic and twin domains in LCMO manganites

    International Nuclear Information System (INIS)

    Jung, G.; Markovich, V.; Mogilyanski, D.; Beek, C. van der; Mukovskii, Y.M.

    2005-01-01

    Ferromagnetic and twin domains in lightly Ca-doped La 1-x Ca x MnO 3 single crystals have been visualized and investigated by means of the magneto-optical technique. Both types of domains became visible below the Curie temperature. The dominant structures seen in applied magnetic field are associated with magneto-crystalline anisotropy and twin domains. In a marked difference to the twin domains which appear only in applied magnetic field, ferromagnetic domains show up in zero applied field and are characterized by oppositely oriented spontaneous magnetization in adjacent domains. Ferromagnetic domains take form of almost periodic, corrugated strip-like structures. The corrugation of the ferromagnetic domain pattern is enforced by the underlying twin domains

  7. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    Energy Technology Data Exchange (ETDEWEB)

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  8. Nanomechanical DNA Origami pH Sensors

    Directory of Open Access Journals (Sweden)

    Akinori Kuzuya

    2014-10-01

    Full Text Available Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM. Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers, which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3', which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.

  9. Nanomechanical DNA origami pH sensors.

    Science.gov (United States)

    Kuzuya, Akinori; Watanabe, Ryosuke; Yamanaka, Yusei; Tamaki, Takuya; Kaino, Masafumi; Ohya, Yuichi

    2014-10-16

    Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM). Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers), which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3'), which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.

  10. Structural insights into the regulation and the recognition of histone marks by the SET domain of NSD1

    International Nuclear Information System (INIS)

    Morishita, Masayo; Di Luccio, Eric

    2011-01-01

    Highlights: → NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 are histone methyltransferases linked to numerous cancers. → Little is known about the NSD pathways and HMTase inhibitors are sorely needed in the epigenetic therapy of cancers. → We investigate the regulation and the recognition of histone marks by the SET domain of NSD1. → A unique and key mechanism is driven by a loop at the interface of the SET and postSET region. → Implications for developing specific and selective HMTase inhibitors are presented. -- Abstract: The development of epigenetic therapies fuels cancer hope. DNA-methylation inhibitors, histone-deacetylase and histone-methyltransferase (HMTase) inhibitors are being developed as the utilization of epigenetic targets is emerging as an effective and valuable approach to chemotherapy as well as chemoprevention of cancer. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 that are critical in maintaining the chromatin integrity. A growing number of studies have reported alterations or amplifications of NSD1, NSD2, or NSD3 in numerous carcinogenic events. Reducing NSDs activity through specific lysine-HMTase inhibitors appears promising to help suppressing cancer growth. However, little is known about the NSD pathways and our understanding of the histone lysine-HMTase mechanism is partial. To shed some light on both the recognition and the regulation of epigenetic marks by the SET domain of the NSD family, we investigate the structural mechanisms of the docking of the histone-H4 tail on the SET domain of NSD1. Our finding exposes a key regulatory and recognition mechanism driven by the flexibility of a loop at the interface of the SET and postSET region. Finally, we prospect the special value of this regulatory region for developing specific and selective NSD inhibitors for the epigenetic therapy of cancers.

  11. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  12. Biomedical PhD education - an international perspective

    DEFF Research Database (Denmark)

    Mulvany, Michael J.

    2013-01-01

    The PhD, otherwise known as the doctor of philosophy or Dr. Phil., is an internationally recognized degree, indicating that the PhD graduate has received training in research under supervision. Traditionally, the PhD was the route to an academic career, with most successful PhD graduates receiving...... tenured university positions. However, over the past 20–30 years, and particularly the past 10 years, the situation has changed dramatically. Governments in many countries have invested massively in PhD education, believing that trained researchers will contribute to the ‘knowledge society’, and thus...... increase the competitiveness of their countries in the future economies of the world. Thus, only a small fraction of PhD graduates now end up in academic research. Yet, the PhD remains a research degree, and indeed, institutions have become heavily dependent on PhD students for their research output...

  13. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta

    International Nuclear Information System (INIS)

    Myllynen, Paeivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysae, Jaana; Pirilae, Rauna; Lastumaeki, Anni; Vaehaekangas, Kirsi H.

    2008-01-01

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of 14 C-PhIP (2 μM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 ± 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of 14 C-PhIP from maternal to fetal circulation (FM ratio 0.90 ± 0.08 at 6 h, p 14 C-PhIP (R = - 0.81, p 14 C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells

  14. Vanadium Compounds as PTP Inhibitors

    Directory of Open Access Journals (Sweden)

    Elsa Irving

    2017-12-01

    Full Text Available Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs and protein tyrosine phosphatases (PTPs. Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.

  15. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  16. Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain.

    Science.gov (United States)

    Terracciano, Stefania; Russo, Alessandra; Chini, Maria G; Vaccaro, Maria C; Potenza, Marianna; Vassallo, Antonio; Riccio, Raffaele; Bifulco, Giuseppe; Bruno, Ines

    2018-01-26

    Heat shock protein 90 (Hsp90) is an ATP dependent molecular chaperone deeply involved in the complex network of cellular signaling governing some key functions, such as cell proliferation and survival, invasion and angiogenesis. Over the past years the N-terminal protein domain has been fully investigated as attractive strategy against cancer, but despite the many efforts lavished in the field, none of the N-terminal binders (termed "classical inhibitors"), currently in clinical trials, have yet successfully reached the market, because of the detrimental heat shock response (HSR) that showed to induce; thus, recently, the selective inhibition of Hsp90 C-terminal domain has powerfully emerged as a more promising alternative strategy for anti-cancer therapy, not eliciting this cell rescue cascade. However, the structural complexity of the target protein and, mostly, the lack of a co-crystal structure of C-terminal domain-ligand, essential to drive the identification of new hits, represent the largest hurdles in the development of new selective C-terminal inhibitors. Continuing our investigations on the identification of new anticancer drug candidates, by using an orthogonal screening approach, here we describe two new potent C-terminal inhibitors able to induce cancer cell death and a considerable down-regulation of Hsp90 client oncoproteins, without triggering the undesired heat shock response.

  17. IMPLICATIONS OF CROSS DOMAIN FIRES IN MULTI-DOMAIN BATTLE

    Science.gov (United States)

    2017-04-06

    meeting the threats or defeating the challenges posed by today’s enemy. As such, in a rapidly changing and demanding environment, I would contend...Joint Power.”10 As such, the Army, Marine Corps, Air Force and Navy are developing a new joint concept in order to adequately meet the challenges of...TRADOC Pamphlet 525-3-1, AOC, p. 13. 5 TRADOC Pamphlet 525-3-1, AOC, p. 13. 6 Kris Osborn, “Cross-Domain Fires: US Military’s Master Plan to Win the

  18. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  19. Polymeric gel nanoparticle pH sensors for intracellular measurements

    DEFF Research Database (Denmark)

    Almdal, Kristoffer; Andresen, Thomas Lars; Benjaminsen, Rikke Vicki

    pH range is approximately 4 pH units and thus a nanoparticle sensor with two pH sensitive fluorophores is appropriate. With one pH sensitive fluorophore the output from the sensor follows R=R0+R1/10(pKa-pH), where R is the ratio of fluorescence for the two fluorophores, R0 is the minimum value of R...

  20. Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitors

    International Nuclear Information System (INIS)

    Winkler, D.A.; Breedon, M.; White, P.; Hughes, A.E.; Sapper, E.D.; Cole, I.

    2016-01-01

    Highlights: • We screened a large library of organic compounds as replacements for toxic chromates. • High throughput automated corrosion testing was used to assess inhibitor performance. • Robust, predictive machine learning models of corrosion inhibition were developed. • Models indicated molecular features contributing to performance of organic inhibitors. • We also showed that quantum chemistry descriptors do not correlate with performance. - Abstract: Restrictions on the use of toxic chromate-based corrosion inhibitors have created important issues for the aerospace and other industries. Benign alternatives that offer similar or superior performance are needed. We used high throughput experiments to assess 100 small organic molecules as potential inhibitors of corrosion in aerospace aluminium alloys AA2024 and AA7075. We generated robust, predictive, quantitative computational models of inhibitor efficiency at two pH values using these data. The models identified molecular features of inhibitor molecules that had the greatest impact on corrosion inhibition. Models can be used to discover better corrosion inhibitors by screening libraries of organic compounds for candidates with high corrosion inhibition.

  1. Rilpivirine: a new non-nucleoside reverse transcriptase inhibitor.

    Science.gov (United States)

    Sharma, Mamta; Saravolatz, Louis D

    2013-02-01

    Rilpivirine is a new non-nucleoside reverse transcriptase inhibitor (NNRTI) that is approved for HIV-1 treatment-naive adult patients in combination with other antiretroviral agents. The recommended dose is a 25 mg tablet once daily taken orally with a meal. Due to cytochrome P450 3A4 enzyme induction or gastric pH increase, rilpivirine cannot be coadministered with a number of other drugs (anticonvulsants, rifabutin, rifampicin, rifapentine, proton pump inhibitors, systemic dexamethasone and St John's wort). Rilpivirine should be used with caution when coadministered with a drug with a known risk for torsade de pointes. Rilpivirine has a better tolerability than a comparative NNRTI, efavirenz, in clinical trials, with fewer central nervous system adverse effects, rashes, lipid abnormalities and discontinuation rates. Virological failure occurs more commonly with higher baseline viral loads (>100,000 copies/mL) and lower baseline CD4 counts (<50 cells/mm(3)). Seventeen NNRTI mutations have been associated with decreased susceptibility to rilpivirine: K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, H221Y, F227C, M230I/L, Y188L and the combination L100I + K103N. Resistance to rilpivirine largely excludes future use of the NNRTI class.

  2. Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase

    Directory of Open Access Journals (Sweden)

    Liu Liangwei

    2012-06-01

    Full Text Available Abstract Background Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn with a hyper-thermophilic Thermotoga maritima glucanase (Glu to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. Results When expressed in E. coli BL21(DE3, the two chimeras exhibited bi-functional activities of xylanase and glucanase. The Xyn-Glu Xyn moiety had optimal reaction temperature (Topt at 50 °C and thermal in-activation half-life (t1/2 at 50 °C for 47.6 min, compared to 47 °C and 17.6 min for the Xyn. The Glu-Xyn Xyn moiety had equivalent Topt to and shorter t1/2 (5.2 min than the Xyn. Both chimera Glu moieties were more thermostable than the Glu, and the three enzyme Topt values were higher than 96 °C. The Glu-Xyn Glu moiety optimal pH was 5.8, compared to 3.8 for the Xyn-Glu Glu moiety and the Glu. Both chimera two moieties cooperated with each other in degrading substrates. Conclusions Domain-swapping created different effects on each moiety properties. Fusing the Glu domain at C-terminus increased the xylanase thermostability, but fusing the Glu domain at N-terminus decreased the xylanase thermostability. Fusing the Xyn domain at either terminus increased the glucanase thermostability, and fusing the Xyn domain at C-terminus shifted the glucanase pH property 2 units higher towards alkaline environments. Fusing a domain at C-terminus contributes more to enzyme catalytic activity; whereas, fusing a bigger domain at N-terminus disturbs enzyme substrate binding affinity.

  3. Decrease in Daphnia egg viability at elevated pH

    NARCIS (Netherlands)

    Vijverberg, J.; Kalf, D.F.; Boersma, M.

    1996-01-01

    The effect of high pH on the reproduction of two Daphnia galeata clones was experimentally investigated in the laboratory. We observed that the mortality of juveniles and adults did not increase with increasing pH in the range pH 9.0- 10.5, which agrees with what is generally reported in the

  4. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  5. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens.

    Science.gov (United States)

    Hu, Marian Y; Lein, Etienne; Bleich, Markus; Melzner, Frank; Stumpp, Meike

    2018-04-16

    Experimental simulation of near-future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans-generational exposure to near-future acidification levels. Here we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, in order to study trans-generational plasticity using morphological and physiological endpoints. Acclimation of adults to pH T 7.2 (pCO 2 3500μatm) led to reductions in feeding rates, gonad weight, and fecundity. No effects were evident at moderate acidification levels (pH T 7.4; pCO 2 2000μatm). Parental pre-acclimation to pH T 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre-acclimation to pH T 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget. Parental pre-acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (e.g. pH T 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Protease purification and characterization of a serine protease inhibitor from Egyptian varieties of soybean seeds and its efficacy against Spodoptera littoralis

    Directory of Open Access Journals (Sweden)

    El-latif Ashraf Oukasha Abd

    2015-01-01

    Full Text Available Serine inhibitors have been described in many plant species and are universal throughout the plant kingdom. Trypsin inhibitors are the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of four Egyptian varieties of soybean (Glycine max. The soybean variety, Giza 22, was found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested soybean varieties. For this reason, Giza 22 was selected for further purification studies which used ammonium sulphate fractionation and DEAE-Sephadex A-25 column. Soybean purified proteins showed a single band on SDS-PAGE corresponding to a molecular mass of 17.9 kDa. The purified inhibitor was stable at temperatures below 60°C and was active at a wide range of pH, from 2 to 12 pH. The kinetic analysis revealed a non-competitive type of inhibition against trypsin and chymotrypsin enzymes. The inhibitor constant (Ki values suggested that the inhibitor has higher affinity toward a trypsin enzyme than to a chymotrypsin enzyme. Purified inhibitor was found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis. It may be concluded, that soybean protease inhibitor gene(s could be potential targets for those future studies which are concerned with developing insect resistant transgenic plants

  7. Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate.

    Science.gov (United States)

    Christeller, J T; Farley, P C; Ramsay, R J; Sullivan, P A; Laing, W A

    1998-05-15

    Phloem exudate from squash fruit contains heat-inactivated material which inhibits pepsin activity. This inhibitory activity was purified by mild acid treatment, chromatography on trypsin-agarose, Sephadex G-75 and reverse-phase HPLC, resulting in the elution of three peaks with pepsin-inhibitory activity. N-terminal sequencing indicated a common sequence of MGPGPAIGEVIG and the presence of minor species with seven- or two-amino-acid N-terminal extensions beyond this point. Microheterogeneity in this end sequence was exhibited within and between two preparations. Internal sequencing of a major peak after a trypsin digestion gave the sequence FYNVVVLEK. The common N-terminal sequence was used to design a degenerate primer for 3' rapid amplification of cDNA ends and cDNA clones encoding two isoforms of the inhibitor were obtained. The open reading frames of both cDNAs encoded proteins (96% identical) which contained the experimentally determined internal sequence. The amino acid content calculated from the predicted amino acid sequence was very similar to that measured by amino acid analysis of the purified inhibitor. The two predicted amino acid sequences (96 residues) had neither similarity to any other aspartic proteinase inhibitor nor similarity to any other protein. The inhibitors have a molecular mass of 10,552 Da, measured by matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry and approximately 10,000 Da by SDS/PAGE, and behave as dimers of approximately 21,000 Da during chromatography on Superdex G-75 gel-filtration medium. The calculated molecular masses from the predicted amino acid sequences were 10,551 Da and 10,527 Da. The inhibitor was capable of inhibiting pepsin (Ki = 2 nM) and a secreted aspartic proteinase from the fungus Glomerella cingulata (Ki = 20 nM). The inhibitor, which is stable over acid and neutral pH, has been named squash aspartic proteinase inhibitor (SQAPI).

  8. Single-Domain Antibodies As Therapeutics against Human Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yanling Wu

    2017-12-01

    Full Text Available In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1, influenza viruses, hepatitis C virus (HCV, respiratory syncytial virus (RSV, and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.

  9. Intracellular pH in sperm physiology.

    Science.gov (United States)

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Thermodynamic properties of pressurized PH3 superconductor

    Science.gov (United States)

    Koka, S.; Rao, G. Venugopal

    2018-05-01

    The paper presents the superconducting thermodynamic functions determined for pressurized phosphorus trihydride (PH3). In particular, free energy difference ΔF, thermodynamic critical field Hc, specific heat etc. have been calculated using analytical expressions. The calculations were performed in the frame work of the strong-coupling formalism. The obtained dimensionless parameters: RΔ ≡ 2Δ(0)/kBTc, RC ≡ ΔC(Tc)/CN(Tc) and RH≡TcCN(Tc)/Hc2(0) are 4.05, 1.96 and 0.156 respectively, which significantly differ from the values arising from the BCS theory of superconductivity. The thermodynamic properties strongly depend on the depairing electron correlations and retardation effects.

  11. PH Department: at the heart of CERN

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The Physics Department is where the Laboratory’s scientific activity takes place. Some 1000 members of the personnel and 11,000 users work together on CERN’s highly diversified experimental programme. The challenges for the coming years are twofold: maintain the level of excellence that led the Laboratory to the discovery of the Higgs boson, and preserve the diversity of the scientific programme. The new Department Head discusses his vision with us.   Livio Mapelli. “On paper, our plan for the next two years shows no surprises,” says Livio Mapelli, former Deputy Department Head and now, since January, Head of the Physics Department (PH). “We have to finish the completion, consolidation and initial upgrades of the experiments planned for LS1. In 2015, our core activity will be supporting the experiments during the restart of the accelerator complex. However, as physicists, the best reward for us would be to obtain new breakthroughs and importa...

  12. Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches

    Science.gov (United States)

    Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai

    2018-05-01

    The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.

  13. Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches.

    Science.gov (United States)

    Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai

    2018-04-07

    The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.

  14. The YARHG domain: an extracellular domain in search of a function.

    Directory of Open Access Journals (Sweden)

    Penny Coggill

    Full Text Available We have identified a new bacterial protein domain that we hypothesise binds to peptidoglycan. This domain is called the YARHG domain after the most highly conserved sequence-segment. The domain is found in the extracellular space and is likely to be composed of four alpha-helices. The domain is found associated with protein kinase domains, suggesting it is associated with signalling in some bacteria. The domain is also found associated with three different families of peptidases. The large number of different domains that are found associated with YARHG suggests that it is a useful functional module that nature has recombined multiple times.

  15. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  16. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-02-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  17. Domain specific MT in use

    DEFF Research Database (Denmark)

    Offersgaard, Lene; Povlsen, Claus; Almsten, Lisbeth Kjeldgaard

    2008-01-01

    point scale evaluate the sentence from the point of view of the post-editor. The post-editor profile defined by the LSP is based on the experiences of introducing MT in the LSP workflow. The relation between the Translation Edit Rate (TER) scores and “Usability” scores is tested. We find TER a candidate......The paper focuses on domain specific use of MT with a special focus on SMT in the workflow of a Language Service Provider (LSP). We report on the feedback of post-editors using fluency/adequacy evaluation and the evaluation metric ’Usability’, understood in this context as where users on a three...

  18. Meta-domains for Automated System Identification

    National Research Council Canada - National Science Library

    Easley, Matthew; Bradley, Elizabeth

    2000-01-01

    .... In particular we introduce a new structure for automated model building known as a meta-domain which, when instantiated with domain-specific components tailors the space of candidate models to the system at hand...

  19. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complex I and III

    Directory of Open Access Journals (Sweden)

    Daniel P Lindsay

    2015-03-01

    Full Text Available Excessive mitochondrial reactive oxygen species (ROS emission is a critical component in the etiolo-gy of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complex I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rote-none, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore. These results indicate that ROS production by complex I and by III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study sug-gests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III.

  20. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.