WorldWideScience

Sample records for pet isotope production

  1. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  2. Routes for the production of isotopes for PET with high intensity deuteron accelerators

    Science.gov (United States)

    Arias de Saavedra, F.; Porras, I.; Praena, J.

    2018-04-01

    Recent advances in accelerator science are opening new possibilities in different fields of physics. In particular, the development of compact linear accelerators that can provide charged particles of low-medium energy (few MeV) with high current (above mA) allows for the study of new possibilities in neutron production and for new routes for the production of radioisotopes. Keeping in mind how radioisotopes are actually produced in dedicated facilities, we have performed a study of alternative reactions to produce PET isotopes induced by low-energy deuterons. We have fitted the EXFOR cross sections data, used the fitted values of the stopping power by Andersen and Ziegler and calculated by numerical integration the production rate of isotopes for charged particles up to 20 MeV. The results for deuterons up to 3 MeV are compared with the ones from cyclotrons, which are able to provide higher energies to the charged projectiles but with lower intensities. Our results indicate that using linear accelerators may be a good alternative for producing PET isotopes, reducing the problem of neutron activation.

  3. A 3He++ RFQ accelerator for the production of PET isotopes

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    1997-05-01

    Project status of the 3He ++ 10.5 MeV RFQ Linear Accelerator for the production of PET isotopes will be presented. The accelerator design was begun in September of 1995 with a goal of completion and delivery of the accelerator to BRF in Shreveport, Louisiana by the summer of 1997. The design effort and construction is concentrated in Lab G on the Fermilab campus. Some of the high lights include a 25 mA peak current 3He' ion source, four RFQ accelerating stages that are powered by surplus Fermilab linac RF stations, a gas jet charge doubler, and a novel 540 degree bending Medium Energy Beam Transport (MEBT). The machine is designed to operate at 360 Hz repetition rate with a 2.5% duty cycle. The average beam current is expected to be 150-300 micro amperes electrical, 75- 150 micro amperes particle current

  4. Deuteron-induced reactions generated by intense lasers for PET isotope production

    Science.gov (United States)

    Kimura, Sachie; Bonasera, Aldo

    2011-05-01

    We investigate the feasibility of using laser accelerated protons/deuterons for positron emission tomography (PET) isotope production by means of the nuclear reactions 11B(p, n) 11C and 10B(d, n) 11C. The second reaction has a positive Q-value and no energy threshold. One can, therefore, make use of the lower energy part of the laser-generated deuterons, which includes the majority of the accelerated deuterons. By assuming that the deuteron spectra are similar to the proton spectra, the 11C produced from the reaction 10B(d, n) 11C is estimated to be 7.4×10 9 per laser-shot at the Titan laser at Lawrence Livermore National Laboratory. Meanwhile a high-repetition table-top laser irradiation is estimated to generate 3.5×10 711C per shot from the same reaction. In terms of the 11C activity, it is about 2×10 4 Bq per shot. If this laser delivers kHz, the activity is integrated to 1 GBq after 3 min. The number is sufficient for the practical application in medical imaging for PET.

  5. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Fraile, L.M., E-mail: lmfraile@ucm.es [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L.; Udías, J.M.; Cal-González, J.; Corzo, P.M.G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E. [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Muñoz-Martín, A. [Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Vaquero, J.J. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid (Spain)

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a {sup 68}Ga and {sup 66}Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes in proton therapy.

  6. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    Young, P.; Sun, D.; Larson, D.; Pasquinelli, R.; Anderson, K.; Bieniosek, F.; Schmidt, C.W.; Popovic, M.; McCrory, E.; Webber, R.; Link, J.; Krohn, K.; Bida, J.

    1996-01-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production of radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (1 MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ's. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research. (author)

  7. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    1996-09-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (I MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ'S. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research

  8. Production of strontium-82 for the Cardiogen trademark PET generator: a project of the Department of Energy Virtual Isotope Center

    International Nuclear Information System (INIS)

    Phillips, D.R.; Peterson, E.J.; Taylor, W.A.; Jamriska, D.J.; Hamilton, V.T.; Kitten, J.J.; Valdez, F.O.; Salazar, L.L.; Pitt, L.R.; Heaton, R.C.; Kolsky, K.L.; Mausner, L.F.; Kurczak, S.; Zhuikov, B.L.; Kokhanyuk, V.M.; Konyakhin, N.A.; Nortier, F.M.; Walt, T.N. van der; Hanekom, J.; Sosnowski, K.M.; Carty, J.S.

    2000-01-01

    In December of 1989, the United States Food and Drug Administration approved 82 Rb chloride in saline solution for cardiological perfusion imaging by positron emission tomography (PET). The solution is derived from a 82 Sr generator system that is presently manufactured by Bristol Myers Squibb and distributed for clinical application in the United States by Bracco Diagnostics, Inc. Many years of research and development by people in several institutions led up to the approval for clinical use. Currently, there are about 15 sites in the U.S. that perform clinical myocardial perfusion imaging by PET using 82 Rb chloride from the generator. In order to manufacture the generators, Bristol Myers Squibb requires about 1600 mCi of 82 Sr every 30 days. The United States Department of Energy and MDS Nordion, Canada are the current suppliers with qualified Drug Master Files for the production and distribution of this nuclide for the Cardiogen trademark generator. These two entities have worked together over the years to assure the regular, reliable supply of the 82 Sr. Here we describe the facilities and methods used by the Department of Energy in its Virtual Isotope Center to make and distribute the nuclide. (orig.)

  9. Isotope production

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Dewi M.

    1995-07-15

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the Cyclone-30

  10. Evaluation of the production capabilities of 18F, 11C, 13N and 15O PET isotopes at the PET-cyclotron-radiochemistry site of Messina University

    OpenAIRE

    Auditore, Lucrezia; Amato, Ernesto; Italiano, Antonio; Pagano, Benedetta; Baldari, Sergio

    2017-01-01

    The production of 18F, 11C, 13N, and 15O positron emitting radionuclides for PET imaging is usually accomplished in Nuclear Medicine Departments through direct nuclear reactions induced by protons accelerated by compact medical cyclotrons on liquid or gaseous targets. Messina University has funded the construction of a PET-cyclotron-radio-chemistry plant at the Messina University Hospital, equipped with a 11 MeV self-shielded cyclotron. We estimated the expected production yields of these nuc...

  11. Sci—Fri PM: Topics — 07: Monte Carlo Simulation of Primary Dose and PET Isotope Production for the TRIUMF Proton Therapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, C; Jirasek, A [University of Victoria (Australia); Blackmore, E; Hoehr, C; Schaffer, P; Trinczek, M [TRIUMF (Canada); Sossi, V [University of British Columbia (Canada)

    2014-08-15

    Uveal melanoma is a rare and deadly tumour of the eye with primary metastases in the liver resulting in an 8% 2-year survival rate upon detection. Large growths, or those in close proximity to the optic nerve, pose a particular challenge to the commonly employed eye-sparing technique of eye-plaque brachytherapy. In these cases external beam charged particle therapy offers improved odds in avoiding catastrophic side effects such as neuropathy or blindness. Since 1995, the British Columbia Cancer Agency in partnership with the TRIUMF national laboratory have offered proton therapy in the treatment of difficult ocular tumors. Having seen 175 patients, yielding 80% globe preservation and 82% metastasis free survival as of 2010, this modality has proven to be highly effective. Despite this success, there have been few studies into the use of the world's largest cyclotron in patient care. Here we describe first efforts of modeling the TRIUMF dose delivery system using the FLUKA Monte Carlo package. Details on geometry, estimating beam parameters, measurement of primary dose and simulation of PET isotope production are discussed. Proton depth dose in both modulated and pristine beams is successfully simulated to sub-millimeter precision in range (within limits of measurement) and 2% agreement to measurement within in a treatment volume. With the goal of using PET signals for in vivo dosimetry (alignment), a first look at PET isotope depth distribution is presented — comparing favourably to a naive method of approximating simulated PET slice activity in a Lucite phantom.

  12. Evaluation of the production capabilities of 18F, 11C, 13N and 15O PET isotopes at the PET-cyclotron-radiochemistry site of Messina University

    Directory of Open Access Journals (Sweden)

    Lucrezia Auditore

    2017-02-01

    Full Text Available The production of 18F, 11C, 13N, and 15O positron emitting radionuclides for PET imaging is usually accomplished in Nuclear Medicine Departments through direct nuclear reactions induced by protons accelerated by compact medical cyclotrons on liquid or gaseous targets. Messina University has funded the construction of a PET-cyclotron-radio-chemistry plant at the Messina University Hospital, equipped with a 11 MeV self-shielded cyclotron. We estimated the expected production yields of these nuclides, accounting for target thickness, production of other radioactive nuclides, and time effects on the irradiated target purity. To this aim, both TALYS code (v. 1.8 and an analytical approach based on EXFOR experimental data were used. The general agreement between the two approaches, and with the available literature data, allows to assess the expected yields at the End of Bombardment, and relative target purities, to be used for further radiopharmaceutical preparation steps.

  13. Positron range in PET imaging: non-conventional isotopes

    International Nuclear Information System (INIS)

    Jødal, L; Le Loirec, C; Champion, C

    2014-01-01

    In addition to conventional short-lived radionuclides, longer-lived isotopes are becoming increasingly important to positron emission tomography (PET). The longer half-life both allows for circumvention of the in-house production of radionuclides, and expands the spectrum of physiological processes amenable to PET imaging, including processes with prohibitively slow kinetics for investigation with short-lived radiotracers. However, many of these radionuclides emit ‘high-energy’ positrons and gamma rays which affect the spatial resolution and quantitative accuracy of PET images. The objective of the present work is to investigate the positron range distribution for some of these long-lived isotopes. Based on existing Monte Carlo simulations of positron interactions in water, the probability distribution of the line of response displacement have been empirically described by means of analytic displacement functions. Relevant distributions have been derived for the isotopes 22 Na, 52 Mn, 89 Zr, 45 Ti, 51 Mn, 94m Tc, 52m Mn, 38 K, 64 Cu, 86 Y, 124 I, and 120 I. It was found that the distribution functions previously found for a series of conventional isotopes (Jødal et al 2012 Phys. Med. Bio. 57 3931–43), were also applicable to these non-conventional isotopes, except that for 120 I, 124 I, 89 Zr, 52 Mn, and 64 Cu, parameters in the formulae were less well predicted by mean positron energy alone. Both conventional and non-conventional range distributions can be described by relatively simple analytic expressions. The results will be applicable to image-reconstruction software to improve the resolution. (paper)

  14. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Stevenson, N.R.

    1995-06-01

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  15. Comprehensive Approach for Monitoring and Analyzing the Activity Concentration Level of PET Isotopes

    International Nuclear Information System (INIS)

    Osovizky, A.; Paran, J.; Ankry, N.; Vulasky, E.; Ashkenazi, B.; Tal, N.; Dolev, E.; Gonen, E.

    2004-01-01

    A comprehensive approach for measuring and analyzing low concentration levels of positron emitter isotopes is introduced. The solution is based on a Continuous Air Monitoring Sampler (CAMS), Stack Monitoring System (SMS) and software package. Positron Emission Tomography (PET) is a major tool for both, biochemical research and non-invasive diagnostics for medicine imaging. The PET method utilizes short half life β + radioisotopes that are produced in cyclotron sites built especially for this purpose. The growing need for β + isotopes brought about a commonly wide use of cyclotrons next to populated areas. Isotopes production involves two possible radiation hazards deriving from the activity concentration; one refers to the nearby population by the activity released through the ventilation system and the other refers to the personnel working in the nuclear facility. A comprehensive system providing solution for both radiation hazards is introduced in this work

  16. Linacs for medical isotope production

    International Nuclear Information System (INIS)

    Pramudita, A.

    2012-01-01

    This paper reviews efforts on using high energy (25-30 MeV) and high power (10-20 kW) electron linacs and lower energy (7 MeV) proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography) radioisotopes are produced through photonuclear reactions such as 19 F(γ,n) 18 F, which also allow production of other PET radionuclides 11 C, 13 N, and 15 O. Other mostly used medical radionuclides 99m Tc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18 F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons. (author)

  17. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  18. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  19. Medical Isotope Production at TRIUMF - from Imaging to Treatment

    Science.gov (United States)

    Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunz, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; Robertson, A.; Ruth, T.; Zacchia, N.; Zeisler, S.; Schaffer, P.

    TRIUMF has a long history of medical isotope production. For more than 40 years, the Life Sciences Division at TRIUMF has produced isotopes for Positron Emission Tomography (PET) for the local hospitals. Recently, the division has taken on the challenge to expand the facility's isotope repertoire to isotopes for imaging to treatment. At the smallest cyclotron at TRIUMF with energy of 13 MeV, radiometals are being produced in a liquid target which is typically used for PET isotope production. This effort makes radiometals available for early stage research and preclinical trials. At beam energy of 24 MeV, we produce 99mTc from 100Mo with a cyclotron, the most common isotope for Single-Photon-Emission-Computed-Tomography (SPECT) and the most common isotope for nuclear imaging. The use of a cyclotron bypasses the common production route via a nuclear reactor as well as enriched uranium. And finally, at our 500 MeV cyclotron we have demonstrated the production of α emitters useful for targeted alpha therapy. Herein, these efforts are summarized.

  20. Review on PET radiopharmaceuticals: from isotopes and molecules to medical applications

    International Nuclear Information System (INIS)

    Seimbille, Yann

    2014-01-01

    Molecular imaging of living subjects is an emerging field that aims to study molecular and cellular events in the intact living animal and human. Unlike classical biology, molecular imaging allows to study biological processes with cells residing in their native environment in the living subjects. Positron Emission Tomography (PET) is actually one of the preferred molecular imaging tool for its high sensitivity and its capability to non-invasively and quantitatively visualize in vivo cellular events in the non- or sub-pharmacologic concentration (nano to picomolar) without affecting biological processes. An overview of the principles of this imaging technique and a comparison with other imaging modalities will be presented. Combination of PET technology with conventional anatomical imaging (computed tomography (CT), magnetic resonance imaging (MRI)) or with another molecular imaging technique is getting more and more relevant, and such hybrid imaging is often best suited to answer specific biological or medical question. PET imaging requires the injection of a radioactive tracer, which is made of a positron-emitting isotope that allows signal detection and a chemically specific pharmacophore that interacts with the intended molecular target. Infrastructure, methods and regulation about the production of the different radionuclides of interest and the synthesis of PET tracers will be discussed. Recent novel radiolabelling strategies, as well as new technologies (i.e. micro fluidic), to generate libraries of PET radiopharmaceuticals will also be covered in this presentation

  1. PRODUCTION CONSIDERATIONS FOR THE CLASSICAL PET NUCLIDES.

    Energy Technology Data Exchange (ETDEWEB)

    FINN,R.; SCHLYER,D.

    2001-06-25

    Nuclear Medicine is the specialty of medical imaging, which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts associated with this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radiolabeled tracers necessary to achieve time-dependent molecular images. The specialty is expanding with specific Positron emission tomography (PET) and SPECT radiopharmaceuticals allowing for an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. PET is an example of a technique that has been shown to yield the physiologic information necessary for clinical oncology diagnoses based upon altered tissue metabolism. Most PET drugs are currently produced using a cyclotron at locations that are in close proximity to the hospital or academic center at which the radiopharmaceutical will be administered. In November 1997, a law was enacted called the Food and Drug Administration Modernization Act of 1997 which directed the Food and Drug Administration (FDA) to establish appropriate procedures for the approval of PET drugs in accordance with section 505 of the Federal Food, Drug, and Cosmetic Act and to establish current good manufacturing practice requirements for such drugs. At this time the FDA is considering adopting special approval procedures and cGMP requirements for PET drugs. The evolution of PET radiopharmaceuticals has introduced a new class of ''drugs'' requiring production facilities and product formulations that must be closely aligned with the scheduled clinical utilization. The production of the radionuclide in the appropriate synthetic form is but one critical component in the manufacture of the finished radiopharmaceutical.

  2. PRODUCTION CONSIDERATIONS FOR THE CLASSICAL PET NUCLIDES

    International Nuclear Information System (INIS)

    FINN, R.; SCHLYER, D.

    2001-01-01

    Nuclear Medicine is the specialty of medical imaging, which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts associated with this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radiolabeled tracers necessary to achieve time-dependent molecular images. The specialty is expanding with specific Positron emission tomography (PET) and SPECT radiopharmaceuticals allowing for an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. PET is an example of a technique that has been shown to yield the physiologic information necessary for clinical oncology diagnoses based upon altered tissue metabolism. Most PET drugs are currently produced using a cyclotron at locations that are in close proximity to the hospital or academic center at which the radiopharmaceutical will be administered. In November 1997, a law was enacted called the Food and Drug Administration Modernization Act of 1997 which directed the Food and Drug Administration (FDA) to establish appropriate procedures for the approval of PET drugs in accordance with section 505 of the Federal Food, Drug, and Cosmetic Act and to establish current good manufacturing practice requirements for such drugs. At this time the FDA is considering adopting special approval procedures and cGMP requirements for PET drugs. The evolution of PET radiopharmaceuticals has introduced a new class of ''drugs'' requiring production facilities and product formulations that must be closely aligned with the scheduled clinical utilization. The production of the radionuclide in the appropriate synthetic form is but one critical component in the manufacture of the finished radiopharmaceutical

  3. Experience utilizing a 3.7 MeV tandem cascade accelerator (TCA) for PET radioisotope production

    International Nuclear Information System (INIS)

    Welch, M.J.; Gaehle, G.; Dence, C.S.

    1994-01-01

    A 3.7 MeV TCA was installed at Washington University in the Spring of 1993 for evaluation as a PET isotope production accelerator. The accelerator was installed in a specially designed suite consisting of the accelerator room, a open-quotes hot labclose quotes and a open-quotes cold labclose quotes. The accelerator has been utilized routinely for PET isotope production since it's installation. Although the major radionuclide produced utilizing the TCA is oxygen-15, techniques for the production of fluorine-18 and nitrogen-13 have been developed. The novel techniques used to produce usable quantities of these latter two isotopes will be discussed

  4. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    NARCIS (Netherlands)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to

  5. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ingemann Jensen, A.T.

    2013-06-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  6. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    International Nuclear Information System (INIS)

    Ingemann Jensen, A.T.

    2013-01-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  7. Commercialization of DOE isotope production

    International Nuclear Information System (INIS)

    Laflin, S.

    1997-01-01

    This paper describes the business structure and operations of MAC Isotopes (MACI) L.L.C., a newly created business resulting from the commercialization of a former U.S. Department of Energy (DOE) mission at the Idaho National Engineering and Environmental Laboratory (INEEL). MACI began its commercial operations on October 1, 1996, and is the first U.S. commercial isotope production business to result from the commercialization of DOE facilities or programs. The commercialization was the culmination of an -2-yr competitive procurement process by the DOE and Lockheed Martin Idaho Technologies Company (LMITCO). MACI was selected from this competitive process as the commercial business of choice on the basis of providing the best value to the DOE/LMITCO and having the greatest potential for commercial success

  8. Evolution of PET and SPECT tracers from cyclotrons: production and application

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1992-01-01

    Small cyclotrons play an increasing role in the production of medically useful isotopes. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are major tools in modern nuclear medicine for monitoring regional physiological and pharmacological functions at a molecular level. This requires physiological substrates or drugs labeled with suitable positron emitters or single photon emitters. Short-lived neutron deficient radioisotopes of high specific activity and high radionuclidic purity are needed. Some examples of radionuclide production, the development of radiopharmaceuticals for PET and SPECT, and their applications is presented with special emphasis on fluorine-18 and iodine-123. (author)

  9. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    OpenAIRE

    Kotasidis Fotis A.; Kotasidis Fotis A.; Angelis Georgios I.; Anton-Rodriguez Jose; Matthews Julian C.; Reader Andrew J.; Reader Andrew J.; Zaidi Habib; Zaidi Habib; Zaidi Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However due to the short half life of clinically used isotopes other long lived isotopes not used in clinical practice are used to perform the PSF measurements. As such non optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction usuall...

  10. Beneficial uses and production of isotopes

    CERN Document Server

    2001-01-01

    Isotopes, radioactive and stable, are used worldwide in various applications related to medical diagnosis or care, industry and scientific research. More than fifty countries have isotope production or separation facilities operated for domestic supply, and sometimes for international markets. This publication provides up-to-date information on the current status of, and trends in, isotope uses and production. It also presents key issues, conclusions and recommendations, which will be of interest to policy makers in governmental bodies, scientists and industrial actors in the field.

  11. Beneficial uses and production of isotopes

    International Nuclear Information System (INIS)

    2000-01-01

    Radioactive and stable isotopes are widely used in many sectors including medicine, industry and research. Practically all countries in the world are using isotopes in one way or another. In many cases, isotopes have no substitute and in most of their applications they are more effective and cheaper than alternative techniques or processes. The production of isotopes is less widespread, but more than fifty countries have isotope production or separation facilities operated for domestic supply, and sometimes for international markets. In spite of the importance of isotopes in economic and social terms, comprehensive statistical data on volumes or values of isotope production and uses are not readily available. This lack of information led the NEA to include the topic in its programme of work. The study carried out by the NEA, in co-operation with the International Atomic Energy Agency (IAEA), aimed at collecting and analysing information on various aspects of isotope production and uses in order to highlight key issues and provide findings and recommendations of relevance, in particular, for governmental bodies involved. This report provides data collected in 1999, reviewed and analysed by a group of experts nominated by Member countries. The participating experts and the NEA and IAEA Secretariats endeavored to present consistent and comprehensive information on isotope uses and production in the world. It is recognised, however, that the data and analyses included in the report are by no means exhaustive. The views expressed in the document are those of the participating experts and do not necessarily represent those of the countries concerned. The report is published under the responsibility of the Secretary-General of the OECD. (author)

  12. NON-CONVENTIONAL PET NUCLIDES: PRODUCTION AND IMAGING

    OpenAIRE

    Laforest, Richard

    2015-01-01

    Abstract Medical cyclotrons are now commonly used for the production of PET nuclides by the (pn) reaction. These devices are typically capable of delivering 10-15 MeV protons beams at sufficiently high intensity for timely production of β+ decaying nuclides. Non-conventional PET nuclides have emerged recently and offers new opportunities for diagnostic and therapy drug discovery. In this paper, we will review the production capabilities for such nuclides at Washington University Medical Schoo...

  13. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    International Nuclear Information System (INIS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18 F or 11 C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38 K or 60 Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections

  14. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M; Iglesias, J; Casas, J; Saviron, J M; Quintanilla, M

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  15. Accelerator Production of Isotopes for Medical Use

    Science.gov (United States)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  16. Maillard reaction products in pet foods

    NARCIS (Netherlands)

    Rooijen, van C.

    2015-01-01

    Pet dogs and cats around the world are commonly fed processed commercial foods throughout their lives. Often heat treatments are used during the processing of these foods to improve nutrient digestibility, shelf life, and food safety. Processing is known to induce the Maillard reaction, in which

  17. Symposium on isotope production and applications

    International Nuclear Information System (INIS)

    1981-01-01

    This report contains the papers delivered at the symposium on isotope production and applications, held at Pelindaba, Pretoria, South Africa. The following topics were discussed: facilities for the production of radioisotopes at Pelindaba; the role of the chemist in the development and production of radioisotopic preparations; quality control of radioisotopic products; applications of radioisotopes in medicine; concepts and current status of nuclear imaging; industrial and research applications of radioisotopic tracers and radioisotopic radiation sources; radiation processing using intense radioisotopic radiation sources; a review of current and future radioisotope production activities at the Council for Scientific and Industrial Research

  18. The reactor and the production of isotopes

    International Nuclear Information System (INIS)

    Hevesy, G. de

    1962-01-01

    The construction of the cyclotron immensely advanced the availability of radioactive tracers, a few of which even today can be produced only with the aid of this device. But even this great advance was overshadowed by the fabulous production of isotopes by the reactors. Isotopes of almost any element and of almost unlimited activity became available. It now became possible to apply H 3 - discovered already in the 'thirties by Rutherford and Oliphant - and C 14 , and these were used in thousands of investigations

  19. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  1. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  2. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    Energy Technology Data Exchange (ETDEWEB)

    Andreyev, Andriy, E-mail: andriy.andreyev-1@philips.com [Philips Healthcare, Highland Heights, Ohio 44143 (United States); Sitek, Arkadiusz [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1M9 (Canada)

    2014-02-15

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and

  3. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    Science.gov (United States)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  4. Electroplating targets for production of unique PET radionuclides

    International Nuclear Information System (INIS)

    Bui, V.; Sheh, Y.; Finn, R.

    1994-01-01

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators

  5. Isotope production technologies from a regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, K. [Canadian Nuclear Safety Committee, Ottawa, Ontario (Canada)

    2012-07-01

    This paper discusses isotope production technologies from a regulatory perspective. The regulator is the CNSC which has the mandate to protect the health, safety and security of persons and the environment and to implement Canada's international commitments on the peaceful use of nuclear energy. Nuclear facilities regulated by CNSC include linear accelerator (medical), pool irradiator (industrial) and Pelletron (research) as well as cyclotrons.

  6. Design study of an ultra-compact superconducting cyclotron for isotope production

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  7. Quantitation of Maillard reaction products in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    During processing of pet food, the Maillard reaction occurs, which reduces the bioavailability of essential amino acids such as lysine and results in the formation of advanced Maillard reaction products (MRPs). The aim of this study was to quantitate MRPs (fructoselysine (FL), carboxymethyllysine

  8. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  9. Production Situation and Technology Prospect of Medical Isotopes

    Directory of Open Access Journals (Sweden)

    GAO Feng;LIN Li;LIU Yu-hao;MA Xing-jun

    2016-10-01

    Full Text Available The isotope production technology was overviewed, including traditional and newest technology. The current situation of medical isotope production was introduced. The problems faced by isotope supply and demand were analyzed. The future development trend of medical isotopes and technology prospect were put forward. As the most populous country, nuclear medicine develops rapidly, however, domestic isotope mainly relies on imports. The highly productive and relatively safe MIPR is expected to be an effective way to breakthrough the bottleneck of the development of nuclear medicine. Traditional isotope production technologies with reactor can be improved. It's urgent to research and promote new isotope production technologies with reactor. Those technologies which do not depend on reactor will have a bright market prospects.

  10. Decommissioning and dismantling of the Rossendorf Isotope Production

    International Nuclear Information System (INIS)

    Grahnert, Thomas

    2016-01-01

    After just over 40 years of production operation 2000, the operation of the Rossendorf Isotope Production was finally stopped. In the last few years of production already sections of the Rossendorf Isotope Production have been decommissioned. With the end of the isotope production the decommissioning of the entire complex started. In the two-part report, the decommissioning and dismantling of the Rossendorf Isotope production is presented. In part 1 (atw 5/2016) mainly the authorisation procedures and the realised decommissioning concept are presented. Part 2 (atw 6/2016) deals with special selected aspects of the implementation of the decommissioning programme.

  11. Isotope products manufacture in Russia and its prospects

    International Nuclear Information System (INIS)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B.

    1997-01-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  12. Activation of air and concrete in medical isotope production facilities

    Science.gov (United States)

    Dodd, Adam C.; Shackelton, R. J.; Carr, D. A.; Ismail, A.

    2017-05-01

    Medical isotope facilities operating in the 10 to 25 MeV proton energy range have long been used to generate radioisotopes for medical diagnostic imaging. In the last few years the beam currents available in commercially available cyclotrons have increased dramatically, and so the activation of the materials within cyclotron vaults may now pose more serious radiological hazards. This will impact the regulatory oversight of cyclotron operations, cyclotron servicing and future decommissioning activities. Air activation could pose a hazard to cyclotron staff. With the increased cyclotron beam currents it was necessary to examine the issue more carefully. Therefore the ways in which radioactivity may be induced in air by neutron reactions and neutron captures were considered and it was found that the dominant mechanism is neutron capture on Ar-40. A study of the activation of the air by neutron capture on Ar-40 within a cyclotron vault was performed using the MCNP Monte Carlo code. The neutron source energy spectrum used was from the production of the widely used F-18 PET isotope. The results showed that the activation of the air within a cyclotron vault does not pose a significant radiological hazard at the beam intensities currently in use and shows how ventilation affects the results. A second MCNP study on the activation of ordinary concrete in cyclotron vaults by neutron capture was made with a view to determining the optimum thickness of borated polyethylene to reduce neutron activation on both the inner surfaces of the vault and around production targets. This is of importance in decommissioning cyclotrons and therefore in the design of new cyclotron vaults. The distribution of activation on the walls as a function of the source position was also studied. Results are presented for both borated and regular polyethylene, and F-18 and Tc-99 neutron spectra.

  13. Production of americium isotopes in France

    International Nuclear Information System (INIS)

    Koehly, G.; Bourges, J.; Madic, C.; Nguyen, T.H.; Lecomte, M.

    1984-12-01

    The program of productions of americium 241 and 243 isotopes is based respectively on the retreatment of aged plutonium alloys or plutonium dioxide and on the treatment of plutonium targets irradiated either in CELESTIN reactors for Pu-Al alloys or OSIRIS reactor for plutonium 242 dioxide. All the operations, including americium final purifications, are carried out in hot cells equipped with remote manipulators. The chemical processes are based on the use of extraction chromatography with hydrophobic SiO 2 impregnated with extracting agents. Plutonium targets and aged plutonium alloys are dissolved in nitric acid using conventional techniques while plutonium dioxide dissolutions are performed routine at 300 grams scale with electrogenerated silver II in 4M HNO 3 at room temperature. The separation between plutonium and americium is performed by extraction of Pu(IV) either on TBP/SiO 2 or TOAHNO 3 /SiO 2 column. Americium recovery from waste streams rid of plutonium is realized by chromatographic extraction of Am(III) using mainly TBP and episodically DHDECMP as extractant. The final purification of both americium isotopes uses the selective extraction of Am(VI) on HDDiBMP/SiO 2 column at 60 grams scale. Using the overall process a total amount of 1000 grams of americium 241 and 100 grams of americium 243 has been produced nowadays and the AmO 2 final product indicates a purity better than 98.5%

  14. Reactor calculations in aid of isotope production at SAFARI-1

    International Nuclear Information System (INIS)

    Ball, G.

    2003-01-01

    Varying levels of reactor physics support is given to the isotope production industry. As the pressures on both the safety limits and economical production of reactor produced isotopes mount, reactor physics calculational support is playing an ever increasing role. Detailed modelling of the reactor, irradiation rigs and target material enables isotope production in reactors to be maximised with respect to yields and quality. NECSA's methodology in this field is described and some examples are given. (author)

  15. Automation of (64)Cu production at Turku PET Centre.

    Science.gov (United States)

    Elomaa, Viki-Veikko; Jurttila, Jori; Rajander, Johan; Solin, Olof

    2014-07-01

    At Turku PET Centre automation for handling solid targets for the production of (64)Cu has been built. The system consists of a module for moving the target from the irradiation position into a lead transport shield and a robotic-arm assisted setup for moving the target within radiochemistry laboratory. The main motivation for designing automation arises from radiation hygiene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Neutron spectra due 13N production in a PET cyclotron

    International Nuclear Information System (INIS)

    Benavente, J.A.; Vega-Carrillo, H.R.; Lacerda, M.A.S.; Fonseca, T.C.F.; Faria, F.P.; Silva, T.A. da

    2015-01-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during 13 N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1 MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for 18 F production in a previous work. - Highlights: • MCNPX code was used to estimate the neutron spectra in a PET cyclotron. • Neutrons were estimated when 13 N is produced. • Neutron spectra show evaporation and room-return neutrons. • Calculated H*(10) were compared with measured H*(10)

  17. PET

    DEFF Research Database (Denmark)

    Mariager, Rasmus Mølgaard; Schmidt, Regin; Heiberg, Morten Rievers

    PET handler om den hemmelige tjenestes arbejde under den kolde krig 1945-1989. Her fortæller Regin Schmidt, Rasmus Mariager og Morten Heiberg om de mest dramatiske og interessante sager fra PET's arkiv. PET er på flere måder en udemokratisk institution, der er sat til at vogte over demokratiet....... Dens virksomhed er skjult for offentligheden, den overvåger borgernes aktiviteter, og den registrerer følsomme personoplysninger. Historien om PET rejser spørgsmålet om, hvad man skal gøre, når befolkningen i et demokrati er kritisk indstillet over for overvågningen af lovlige politiske aktiviteter......, mens myndighederne mener, at det er nødvendigt for at beskytte demokratiet. PET er på en gang en fortælling om konkrete aktioner og begivenheder i PET's arbejde og et stykke Danmarkshistorie. Det handler om overvågning, spioner, politisk ekstremisme og international terrorisme.  ...

  18. Isotopes for the improvement of industrial products

    International Nuclear Information System (INIS)

    Schultze-Kraft, P.

    1978-01-01

    Full text: For many years the International Atomic Energy Agency has been giving technical assistance to developing countries on the application of radioisotopes in medicine, agriculture and hydrology. With increasing industrialization, these countries feel a growing need for the use of isotopic methods as a means of improving the control of production processes and the quality of industrial products. In response to the demand for training in this field, the IAEA recently held its first Regional Training Course in the Practical Use of Radioisotope Techniques in Industry for Process and Quality Control. The course was given from 27 March to 28 April 1978 at the Instituto Venezolano de Investigaciones Cientificas (IVIC) in Caracas, Venezuela, in co-operation with the Consejo Nacional para el Desarrollo de la Industria Nuclear (CONAN) and the Junta del Acuerdo de Cartagena. It was financed jointly by the IAEA and CONAN, and in addition received a special contribution by the Government of the Federal Republic of Germany. Participants were 18 engineers and physicists from Bolivia, Chile, Colombia, Ecuador, Peru and Venezuela, and the lecturers came from Denmark, Federal Republic of Germany, Poland and the host country. Course directors were Dr. J.J. Henriquez (IVIC) and Dr. L. Wiesner (IAEA expert). The idea of the course was to demonstrate that radioisotope techniques can considerably reduce production costs by optimizing industrial processes and making more efficient use of raw materials. It is estimated that the paper industry in the USA, for example, is saving about 100 million dollars per year through the application of radioisotopes. During the training course, the participants gained practical experience in applying isotopic techniques in several fields: in a paper mill at Moron they measured the weight per surface area, and in the cement factory of Ocumare del Tuy the residence time of clinker, at the new international airport of Maiquetia they determined the

  19. High-precision γ -ray spectroscopy of the cardiac PET imaging isotope 82Rb and its impact on dosimetry

    Science.gov (United States)

    Nino, M. N.; McCutchan, E. A.; Smith, S. V.; Lister, C. J.; Greene, J. P.; Carpenter, M. P.; Muench, L.; Sonzogni, A. A.; Zhu, S.

    2016-02-01

    82Rb is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like 201Tl and 99 mTc sestamibi. High-quality β -decay data are essential to accurately appraise the total dose received by the patients. A source of 82Sr was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of 82Kr including 12 new levels, 50 new γ -ray transitions, and the determination of many new spin assignments through angular correlations. These new high-quality data allow a precise reappraisal of the β -decay strength function and thus the consequent dose received by patients.

  20. A proposed standard on medical isotope production in fission reactors

    International Nuclear Information System (INIS)

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-01-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  1. Isotope methods for the control of food products and beverages

    Energy Technology Data Exchange (ETDEWEB)

    Guillou, C; Reniero, F [Commission of the European Communities, Joint Research Centre, Ispra (Italy)

    2001-10-01

    The measurement of the stable isotope contents provides useful information for the detection of many frauds in food products. Nuclear magnetic resonance (NMR) and isotopic ratio mass spectroscopy (IRMS) are the two main analytical techniques used for the determination of stable isotope contents in food products. These analytical techniques have been considerably improved in the last years offering wider possibilities of applications for food analysis. A review of the applications for the control of food products and beverages is presented. The need for new reference materials is discussed. (author)

  2. Isotope methods for the control of food products and beverages

    International Nuclear Information System (INIS)

    Guillou, C.; Reniero, F.

    2001-01-01

    The measurement of the stable isotope contents provides useful information for the detection of many frauds in food products. Nuclear magnetic resonance (NMR) and isotopic ratio mass spectroscopy (IRMS) are the two main analytical techniques used for the determination of stable isotope contents in food products. These analytical techniques have been considerably improved in the last years offering wider possibilities of applications for food analysis. A review of the applications for the control of food products and beverages is presented. The need for new reference materials is discussed. (author)

  3. Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I positron emitting radionuclides through future laser-accelerated proton beams at ELI-Beamlines for innovative PET diagnostics

    OpenAIRE

    Italiano, Antonio; Amato, Ernesto; Minutoli, Fabio; Margarone, Daniele; Baldari, Sergio

    2016-01-01

    The development of innovative production pathways for high-Z positron emitters is of great interest to enlarge the applicability of PET diagnostics, especially in view of the continuous development of new radiopharmaceuticals. We evaluated the theoretical yields of 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I PET isotopes, plus the 68Ge isotope, parent of the 68Ga positron emitter, in the hypothesis of production through laser-accelerated proton sources expected at the ELI-Beamlines facility. By mean...

  4. Isotope Production at the Hanford Site in Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Ammoniums

    1999-06-01

    This report was prepared in response to a request from the Nuclear Energy Research Advisory Committee (NERAC) subcommittee on ''Long-Term Isotope Research and Production Plans.'' The NERAC subcommittee has asked for a reply to a number of questions regarding (1) ''How well does the Department of Energy (DOE) infrastructure sme the need for commercial and medical isotopes?'' and (2) ''What should be the long-term role of the federal government in providing commercial and medical isotopes?' Our report addresses the questions raised by the NERAC subcommittee, and especially the 10 issues that were raised under the first of the above questions (see Appendix). These issues are related to the isotope products offered by the DOE Isotope Production Sites, the capabilities and condition of the facilities used to produce these products, the management of the isotope production programs at DOE laboratories, and the customer service record of the DOE Isotope Production sites. An important component of our report is a description of the Fast Flux Test Facility (FFTF) reactor at the Hbford Site and the future plans for its utilization as a source of radioisotopes needed by nuclear medicine physicians, by researchers, and by customers in the commercial sector. In response to the second question raised by the NERAC subcommittee, it is our firm belief that the supply of isotopes provided by DOE for medical, industrial, and research applications must be strengthened in the near future. Many of the radioisotopes currently used for medical diagnosis and therapy of cancer and other diseases are imported from Canada, Europe, and Asia. This situation places the control of isotope availability, quality, and pricing in the hands of non-U.S. suppliers. It is our opinion that the needs of the U.S. customers for isotopes and isotope products are not being adequately served, and that the DOE infrastructure and facilities devoted to the

  5. USAHA PENINGKATAN PRODUKTIVITAS DENGAN PRODUCTIVITY EVALUATION TREE (PET MODELS

    Directory of Open Access Journals (Sweden)

    Muchlison Anis

    2007-04-01

    Full Text Available Usaha peningkatan produktivitas merupakan suatu langkah menuju perbaikan perusahaan dimasa yang akan datang. Model perencanaan produktivitas Productivity Evaluation Tree (PET memberikan kemudahan bagi perusahaan dalam mengembangkan dan menilai seluruh alternatif yang mungkin dilakukan dalam menetapkan target peningkatan produktivitas dan usaha peningkatan produktivitas. Dalam penelitian ini alternatif perencanaan ada tiga. Pertama, meningkatkan standart penggunaan bahan baku dari 20% menjadi 30%. Kedua, pengeluaran bahan baku diusulkan sama dengan bulan lalu dengan menerapkan peningkatan standart penggunaan bahan baku sama seperti dengan alternatif pertama, Ketiga, menstimulasi alternatif 2 dengan melakukan manajemen motivasi terhadap tenaga kerja. Dari hasil evaluasi pohon produktivitas maka dapat diketahui estimasi peningkatan produktivitas yang tertinggi adalah alternatif ke tiga dengan perubahan tingkat produktivitas sebesar 0,39.

  6. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  7. Possibilities for the production of non-stable isotopes

    International Nuclear Information System (INIS)

    Benlliure, J.; Enqvist, T.; Junghans, A.R.; Ricciardi, V.; Schmidt, K.H.; Farget, F.

    1999-04-01

    The production of neutron-rich isotopes is discussed in terms of the two main reaction mechanisms leading to the formation of these nuclei, projectile fragmentation and fission. Production cross sections are calculated for cold-fragmentation and fission. The expected yields are estimated taking into account different technical approaches actually discussed for the production of radioactive beams. (orig.)

  8. Determination of photooxygenation products of rotenone with isotope dilution method

    International Nuclear Information System (INIS)

    Chubachi, Mitsuo; Hamada, Masayuki

    1975-01-01

    When rotenone dissolved in certain solvent was photochemically oxidized, rotenolones, dehydrorotenone and rotenonone were obtained as main products. In order to determine the quantitative yields of these compounds in photooxygenation products, four compounds mentioned above were labeled with carbon-14 and the isotope dilution method by these labeled compounds was applied to the product analysis. (auth.)

  9. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    International Nuclear Information System (INIS)

    Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H.; Castillo, J.

    2007-01-01

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of 18 F labeled FDG, operation and radiation monitoring experience are included. We conclude that 18 FDG CT-PET is the most effective technique for patient diagnosis

  10. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  11. On the problem of formation of demand for isotope products

    International Nuclear Information System (INIS)

    Zuev, G.F.

    1975-01-01

    A methodological approach to the study of the process of shaping the market for isotope production is considered. The hypothesis was made that 13 main factors affect the demand for isotopic products. To confirm this hypothesis, a priori information was collected by the questionnaire mathod, and it was formalized by a ranking correlation method. By using these methods it is possible to evaluate the factors that affect the demand for isotopic products. The results of the questionnaire were placed in a table which contains the ''combining rank''. The ranks were then re-formed (recalculated), and the results were placed in a matrix table. After verification, the factors were distributed according to the degree of their effect on isotopic product demand. The study is significant only if the average degree of agreement of the opinions of the experts queried is not fortuitous. Therefore the significance of the coefficient of agreement, W, was checked. Based on the coefficients of agreement obtained, it was concluded that the average degree of agreement of all experts questioned on the effect of the individual factors on the demand for isotopic products is high

  12. Reactor production of 252Cf and transcurium isotopes

    International Nuclear Information System (INIS)

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, 252 Cf, 253 Es, and 255 Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of 254g Es from 252 Cf will be discussed. 14 refs., 5 tabs

  13. Laboratory and cyclotron requirements for PET research

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1993-01-01

    The requirements for carrying out PET research can vary widely depending on the type of basic research being carried out and the extent of a clinical program at a particular center. The type of accelerator and laboratory facilities will, of course, depend on the exact mix. These centers have been divided into four categories. 1. Clinical PET with no radionuclide production facilities, 2. clinical PET with some radionuclide production facilities, 3. clinical PET with research support, and 4. a PET research facility developing new tracers and exploring clinical applications. Guidelines for the choice of an accelerator based on these categories and the practical yields of the common nuclear reactions for production of PET isotopes have been developed and are detailed. Guidelines as to the size and physical layout of the laboratory space necessary for the synthesis of various radiopharmaceuticals have also been developed and are presented. Important utility and air flow considerations are explored

  14. The effective management of medical isotope production in research reactors

    International Nuclear Information System (INIS)

    Drummond, D.T.

    1993-01-01

    During the 50-yr history of the use of radioisotopes for medical applications, research reactors have played a pivotal role in the production of many if not most of the key products. The marriage between research reactors and production operations is subject to significant challenges on two fronts. The medical applications of the radioisotope products impose some unique constraints and requirements on the production process. In addition, the mandates and priorities of a research reactor are not always congruent with the demands of a production environment. This paper briefly reviews the historical development of medical isotope production, identifies the unique challenges facing this endeavor, and discusses the management of the relationship between the isotope producer and the research reactor operator. Finally, the key elements of a successful relationship are identified

  15. Medical Isotopes Production Project: Molybdenum-99 and related isotopes: Environmental Impact Statement, Volume I

    International Nuclear Information System (INIS)

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related medical isotopes (iodine-131, xenon-133 and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition to the preferred alternative, three other reasonable alternatives and a no action alternative are analyzed in detail. The sites for the three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities, of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity

  16. Organohalogen Compounds in Pet Dog and Cat: Do Pets Biotransform Natural Brominated Products in Food to Harmful Hydroxlated Substances?

    Science.gov (United States)

    Mizukawa, Hazuki; Nomiyama, Kei; Nakatsu, Susumu; Iwata, Hisato; Yoo, Jean; Kubota, Akira; Yamamoto, Miyuki; Ishizuka, Mayumi; Ikenaka, Yoshinori; Nakayama, Shouta M M; Kunisue, Tatsuya; Tanabe, Shinsuke

    2016-01-05

    There are growing concerns about the increase in hyperthyroidism in pet cats due to exposure to organohalogen contaminants and their hydroxylated metabolites. This study investigated the blood contaminants polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH-PCBs, OH-PBDEs, and MeO-PBDEs), in pet dogs and cats. We also measured the residue levels of these compounds in commercially available pet foods. Chemical analyses of PCBs and OH-PCBs showed that the OH-PCB levels were 1 to 2 orders of magnitude lower in cat and dog food products than in their blood, suggesting that the origin of OH-PCBs in pet dogs and cats is PCBs ingested with their food. The major congeners of OH-/MeO-PBDEs identified in both pet food products and blood were natural products (6OH-/MeO-BDE47 and 2'OH-/MeO-BDE68) from marine organisms. In particular, higher concentrations of 6OH-BDE47 than 2'OH-BDE68 and two MeO-PBDE congeners were observed in the cat blood, although MeO-BDEs were dominant in cat foods, suggesting the efficient biotransformation of 6OH-BDE47 from 6MeO-BDE47 in cats. We performed in vitro demethylation experiments to confirm the biotransformation of MeO-PBDEs to OH-PBDEs using liver microsomes. The results showed that 6MeO-BDE47 and 2'MeO-BDE68 were demethylated to 6OH-BDE47 and 2'OH-BDE68 in both animals, whereas no hydroxylated metabolite from BDE47 was detected. The present study suggests that pet cats are exposed to MeO-PBDEs through cat food products containing fish flavors and that the OH-PBDEs in cat blood are derived from the CYP-dependent demethylation of naturally occurring MeO-PBDE congeners, not from the hydroxylation of PBDEs.

  17. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  18. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  19. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99 Mo is the parent isotope of 99m Tc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  20. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  1. Medical-isotope supply hit by production problems

    Science.gov (United States)

    Gould, Paula

    2008-10-01

    A shortfall in the production of medical isotopes in Europe has forced hospitals to delay patient scans or offer alternative diagnostic tests. The problems began in August when all three nuclear reactors used to generate molybdenum-99, which then decays to form the key nuclear-imaging agent technetium-99, had to be unexpectedly shut down at the same time.

  2. Systematics of new isotopic production cross sections from neon projectiles

    International Nuclear Information System (INIS)

    Chen, C.X.; Guzik, T.G.; McMahon, M.; Wefel, J.P.; Flores, I.; Lindstrom, P.J.; Tull, C.E.; Mitchell, J.W.; Cronqvist, M.; Crawford, H.J.

    1996-02-01

    New isotopic production cross sections from 22 Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.)

  3. Systematics of new isotopic production cross sections from neon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C X; Guzik, T G; McMahon, M; Wefel, J P [Louisiana State Univ., Baton Rouge, LA (United States); Flores, I; Lindstrom, P J; Tull, C E [Lawrence Berkeley Lab., CA (United States); Mitchell, J W [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Cronqvist, M; Crawford, H J [California Univ., Berkeley, CA (United States). Space Sciences Lab.; and others

    1996-02-01

    New isotopic production cross sections from {sup 22}Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.). 9 refs.

  4. Production and use of stable isotopes in France

    International Nuclear Information System (INIS)

    Roth, E.; Letolle, R.

    1991-01-01

    This paper can not cover the field of production and use of stable isotopes in France exhaustively within six pages. We have chosen to concentrate on highlights of the subject and on recent work, and to give references for further reading. 26 refs

  5. Potential medical applications of the plasma focus in the radioisotope production for PET imaging

    International Nuclear Information System (INIS)

    Roshan, M.V.; Razaghi, S.; Asghari, F.; Rawat, R.S.; Springham, S.V.; Lee, P.; Lee, S.; Tan, T.L.

    2014-01-01

    Devices other than the accelerators are desired to be investigated for generating high energy particles to induce nuclear reaction and positron emission tomography (PET) producing radioisotopes. The experimental data of plasma focus devices (PF) are studied and the activity scaling law for External Solid Target (EST) activation is established. Based on the scaling law and the techniques to enhance the radioisotopes production, the feasibility of generating the required activity for PET imaging is studied. - Highlights: • Short lived radioisotopes for PET imaging are produced in plasma focus device. • The scaling law of the activity induced with plasma focus energy is established. • The potential medical applications of plasma focus are studied

  6. Evaluation of isotope utilizations in consumer products

    International Nuclear Information System (INIS)

    Sato, Otomaru

    1980-01-01

    Consumer products are generally divided into three groups, according to the state of radioactive material or radiation used. First, there are those intentionally added with radioactive materials, such as self-luminous paints and ionization type smoke detectors, utilizing the ionization and excitation by radiation. Second, there are those utilizing natural radioactive materials like glaze. Third, there are those materials containing intrinsically natural radioactive materials. In the first group, the safety evaluation of self-luminous watches and clocks and the risk-benefit evaluation of ionization type smoke detectors are described, and the approval standards for the consumer products and the R/B evaluation method are explained. There are variety of consumer products utilizing radiation, by the exposure dose caused by them is extremely insignificant, far lower than that due to natural radiation. (J.P.N.)

  7. Overview on recent developments: alternative isotope production methods in Canada

    International Nuclear Information System (INIS)

    Huynh, K.

    2012-01-01

    The purpose of this paper is to provide an update on the Government of Canada's programs in alternative isotope production methods for securing supply of technetium 99m for Canadians. The supply disruptions of isotopes in 2007 and 2009/2010 caused by unplanned outages at AECL's National Research Universal (NRU) reactor highlighted the fragility of the supply chain that delivers medical isotopes, specifically Technetium 99m (Tc99m) to patients in Canada and globally. Tc99m, which is derived from its parent, molybdenum99 (Mo99) is the most widely used medical isotope for imaging, and accounts for 80 percent of nuclear medicine diagnostic procedures. Prior to the outage, nearly all the Mo99 produced for the world market came from five aging government owned research reactors in Canada, France, the Netherlands, Belgium and South Africa. The NRU, the largest of these, produced about 30 to 40 percent of the world supply of isotopes prior to 2009 - since its return to service in 2010, its world market share is estimated at 15 to 20%.

  8. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Scott, S.W.

    1997-01-01

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients

  9. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Scott, S.W.

    1997-08-29

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  10. Innovative complexation strategies for the introduction of short-lived PET isotopes into radiopharmaceuticals

    International Nuclear Information System (INIS)

    Simecek, Jakub

    2013-01-01

    A number of TRAP (Triazacyclononane-triphosphinate) chelators were evaluated for labelling with Gallium-68. Based on the obtained data, a novel bifunctional chelator NOPO was designed, synthesised and employed for preparation of Ga-68 radiopharmaceuticals. Several 68 Ga-labelled NOPO peptidic conjugates showed promising results in preclinical positron emission tomography (PET) imaging studies using the mice models. Moreover, NOPO was found also suitable for labelling with Copper-64.

  11. Production of high-purity isotopes by electromagnetic separation; Production electromagnetique d'isotope tres purs

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Improvement in isotopic purity of nuclides prepared by electromagnetic separation is searched into the principle of cascades of monochromators. The principal drawback of which is to allow the separation of only one isotope at a time. The electromagnetic separator of Saclay is equipped with an electrostatic post-analyzer, which is described. Significant results are obtained, concerning isotopic enhancements of uranium-235 and mercury-204. A schema of isotopic contagion is then proposed, the basis of it is the scattering of the primary ions in the residual atmosphere of the separator chamber. The most frequent type of collisions being accompanied by neutralisation of the ions, the schema explains the efficiency of the second stage. As a matter of conclusion, some particularities concerning the routine work at a high enhancement, small output machine, are given. (author) [French] L'accroissement de la purete isotopique des especes nucleaires preparees par separation electromagnetique est recherche dans l'emploi du principe des cascades de monochromateurs, moyennant la servitude de ne collecter qu'un isotope a la fois. Le separateur electromagnetique de Saclay est equipe dans ce but d'un post-analyseur electrostatique, qui est decrit. Des resultats significatifs sont donnes, portant sur les enrichissements obtenus dans les separations d'uranium-235 et de mercure-204. Un schema de contagion isotopique est propose. Il est fonde sur la diffusion a petit angle accompagnant la neutralisation des faisceaux primaires par collision avec le gaz residuel. Ce schema permet d'expliquer l'efficacite de l'etage electrostatique. En matiere de conclusion, la methode d'exploitation d'une machine a faible debit et a haut enrichissement est donnee. (auteur)

  12. Cyclotron production of {sup 43}Sc for PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, Rafał [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Krajewski, Seweryn [Synektik S.A., Research and Development Center, Warsaw (Poland); Szkliniarz, Katarzyna [Department of Nuclear Physics, University of Silesia, Katowice (Poland); Sitarz, Mateusz [Heavy Ion Laboratory, University of Warsaw, Warsaw (Poland); Abbas, Kamel [Nuclear Security Unit, Joint Research Centre, Institute for Transuranium Elements, European Commission, Ispra (Italy); Choiński, Jarosław; Jakubowski, Andrzej; Jastrzębski, Jerzy [Heavy Ion Laboratory, University of Warsaw, Warsaw (Poland); Majkowska, Agnieszka [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Simonelli, Federica [Nuclear Decommissioning Unit, Joint Research Centre, Ispra Site Management Directorate, European Commission, Ispra (Italy); Stolarz, Anna; Trzcińska, Agnieszka [Heavy Ion Laboratory, University of Warsaw, Warsaw (Poland); Zipper, Wiktor [Department of Nuclear Physics, University of Silesia, Katowice (Poland); Bilewicz, Aleksander [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland)

    2015-12-04

    Recently, significant interest in {sup 44}Sc as a tracer for positron emission tomography (PET) imaging has been observed. Unfortunately, the co-emission by {sup 44}Sc of high-energy γ rays (E{sub γ} = 1157, 1499 keV) causes a dangerous increase of the radiation dose to the patients and clinical staff. However, it is possible to produce another radionuclide of scandium—{sup 43}Sc—having properties similar to {sup 44}Sc but is characterized by much lower energy of the concurrent gamma emissions. This work presents the production route of {sup 43}Sc by α irradiation of natural calcium, its separation and purification processes, and the labeling of [DOTA,Tyr3] octreotate (DOTATATE) bioconjugate. Natural CaCO{sub 3} and enriched [{sup 40}Ca]CaCO{sub 3} were irradiated with alpha particles for 1 h in an energy range of 14.8–30 MeV at a beam current of 0.5 or 0.25 μA. In order to find the optimum method for the separation of {sup 43}Sc from irradiated calcium targets, three processes previously developed for {sup 44}Sc were tested. Radiolabeling experiments were performed with DOTATATE radiobioconjugate, and the stability of the obtained {sup 43}Sc-DOTATATE was tested in human serum. Studies of {sup nat}CaCO{sub 3} target irradiation by alpha particles show that the optimum alpha particle energies are in the range of 24–27 MeV, giving 102 MBq/μA/h of {sup 43}Sc radioactivity which creates the opportunity to produce several GBq of {sup 43}Sc. The separation experiments performed indicate that, as with {sup 44}Sc, due to the simplicity of the operations and because of the chemical purity of the {sup 43}Sc obtained, the best separation process is when UTEVA resin is used. The DOTATATE conjugate was labeled by the obtained {sup 43}Sc with a yield >98 % at elevated temperature. Tens of GBq activities of {sup 43}Sc of high radionuclidic purity can be obtainable for clinical applications by irradiation of natural calcium with an alpha beam.

  13. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  14. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  15. Subsystem for control of isotope production with linear electron accelerator

    CERN Document Server

    Karasyov, S P; Uvarov, V L

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels.

  16. Development of Laser Application Technology for Stable Isotope Production

    International Nuclear Information System (INIS)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee

    2007-04-01

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed

  17. Subsystem for control of isotope production with linear electron accelerator

    International Nuclear Information System (INIS)

    Karasyov, S.P.; Pomatsalyuk, R.I.; Uvarov, V.L.

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels

  18. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  19. Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I positron emitting radionuclides through future laser-accelerated proton beams at ELI-Beamlines for innovative PET diagnostics

    Directory of Open Access Journals (Sweden)

    Antonio Italiano

    2016-05-01

    Full Text Available The development of innovative production pathways for high-Z positron emitters is of great interest to enlarge the applicability of PET diagnostics, especially in view of the continuous development of new radiopharmaceuticals. We evaluated the theoretical yields of 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I PET isotopes, plus the 68Ge isotope, parent of the 68Ga positron emitter, in the hypothesis of production through laser-accelerated proton sources expected at the ELI-Beamlines facility. By means of the TALYS software we simulated the nuclear reactions leading to the above radionuclides, hypothesizing three possible scenarios of broad proton spectra, with maximum energies of about 9, 40 and 100 MeV. The production yields of the studied radionuclides, within the expected fluences, appear to be suitable for pre-clinical applications.

  20. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86

    International Nuclear Information System (INIS)

    Walrand, Stephan; Jamar, Francois; Mathieu, Isabelle; De Camps, Joelle; Lonneux, Max; Pauwels, Stanislas; Sibomana, Merence; Labar, Daniel; Michel, Christian

    2003-01-01

    Several yttrium-90 labelled somatostatin analogues are now available for cancer radiotherapy. After injection, a large amount of the compound is excreted via the urinary tract, while a variable part is trapped in the tumour(s), allowing the curative effect. Unfortunately, the compound may also be trapped in critical tissues such as kidney or bone marrow. As a consequence, a method for assessment of individual biodistribution and pharmacokinetics is required to predict the maximum dose that can be safely injected into patients. However, 90 Y, a pure β - particle emitter, cannot be used for quantitative imaging. Yttrium-86 is a positron emitter that allows imaging of tissue uptake using a PET camera. In addition to the positron, 86 Y also emits a multitude of prompt single γ-rays, leading to significant overestimation of uptake when using classical reconstruction methods. We propose a patient-dependent correction method based on sinogram tail fitting using an 86 Y point spread function library. When applied to abdominal phantom acquisition data, the proposed correction method significantly improved the accuracy of the quantification: the initial overestimation of background activity by 117% was reduced to 9%, while the initial error in respect of kidney uptake by 84% was reduced to 5%. In patient studies, the mean discrepancy between PET total body activity and the activity expected from urinary collections was reduced from 92% to 7%, showing the benefit of the proposed correction method. (orig.)

  1. Radio-isotope production using laser Wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Toth, C.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.; Reitsma, A.

    2001-01-01

    A 10 Hz, 10 TW solid state laser system has been used to produce electron beams suitable for radio-isotope production. The laser beam was focused using a 30 cm focal length f/6 off-axis parabola on a gas plume produced by a high pressure pulsed gas jet. Electrons were trapped and accelerated by high gradient wakefields excited in the ionized gas through the self-modulated laser wakefield instability. The electron beam was measured to contain excesses of 5 nC/bunch. A composite Pb/Cu target was used to convert the electron beam into gamma rays which subsequently produced radio-isotopes through (gamma, n) reactions. Isotope identification through gamma-ray spectroscopy and half-life time measurements demonstrated that Cu 61 was produced which indicates that 20-25 MeV gamma rays were produced, and hence electrons with energies greater than 25-30 MeV. The production of high energy electrons was independently confirmed using a bending magnet spectrometer. The measured spectra had an exponential distribution with a 3 MeV width. The amount of activation was on the order of 2.5 uCi after 3 hours of operation at 1 Hz. Future experiments will aim at increasing this yield by post-accelerating the electron beam using a channel guided laser wakefield accelerator

  2. Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-27

    The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

  3. Experimental monitoring of ozone production in a PET cyclotron facility

    International Nuclear Information System (INIS)

    Zanibellato, L.; Cicoria, G.; Pancaldi, D.; Boschi, S.; Mostacci, D.; Marengo, M.

    2010-01-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital 'S.Orsola-Malpighi' PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  4. Study of the production yields of "1"8F, "1"1C, "1"3N and "1"5O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Margarone, Daniele; Pagano, Benedetta; Baldari, Sergio; Korn, Georg

    2016-01-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. "1"8F, "1"1C, "1"3N and "1"5O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of "1"8F-, "1"1C- and "1"3N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  5. Study of the production yields of {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Italiano, Antonio, E-mail: italianoa@unime.it [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Margarone, Daniele [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic); Pagano, Benedetta [Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Baldari, Sergio [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Korn, Georg [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic)

    2016-03-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of {sup 18}F-, {sup 11}C- and {sup 13}N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  6. Use of Radioactive Ion Beams for Biomedical Research 2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating prototype PET scanner at the Geneva Cantonal Hospital

    CERN Multimedia

    2002-01-01

    % IS331 \\\\ \\\\ The use of radioactive metal ions (such as $^{90}$Y, $^{153}$Sm or $^{186}$Re) in cancer therapy has made some progress, but has been hampered by factors that could be addressed at CERN with a greater likelihood of success than at any other installation in the world. The present proposal seeks to use the unique advantage of CERN ISOLDE to get round these problems together with the PET scanners at the Cantonal Hospital Geneva (PET~=~positron emission tomography). Radioisotope production by spallation at ISOLDE makes available a complete range of isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. Among these isotopes several positron-emitters having clinical relevance are available.\\\\ \\\\Some free rare earth chelatas are used presently in palliation of painful bone metastases. Curative effects are not able for the moment with this kind of radiopharmaceuticals. More and better data on the biokinetics and bio-distribution...

  7. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    Science.gov (United States)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  8. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  9. Oak Ridge Isotope Products and Services - Current and Expected Supply and Demand

    International Nuclear Information System (INIS)

    Aaron, W.S.; Alexander, C.W.; Cline, R.L.; Collins, E.D.; Klein, J.A.; Knauer, J.B. Jr.; Mirzadeh, S.

    1999-01-01

    Oak Ridge National Laboratory (ORNL) has been a major center of isotope production research, development, and distribution for over 50 years. Currently, the major isotope production activities include (1) the production of transuranium element radioisotopes, including 252 Cf; (2) the production of medical and industrial radioisotopes; (3) maintenance and expansion of the capabilities for production of enriched stable isotopes; and, (4) preparation of a wide range of custom-order chemical and physical forms of isotope products, particularly in accelerator physics research. The recent supply of and demand for isotope products and services in these areas, research and development (R ampersand D), and the capabilities for future supply are described in more detail below. The keys to continuing the supply of these important products and services are the maintenance, improvement, and potential expansion of specialized facilities, including (1) the High Flux Isotope Reactor (HFIR), (2) the Radiochemical Engineering Development Center (REDC) and Radiochemical Development Laboratory (RDL) hot cell facilities, (3) the electromagnetic calutron mass separators and the plasma separation process equipment for isotope enrichment, and (4) the Isotope Research Materials Laboratory (IRML) equipment for preparation of specialized chemical and physical forms of isotope products. The status and plans for these ORNL isotope production facilities are also described below

  10. 21 CFR 212.110 - How must I maintain records of my production of PET drugs?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false How must I maintain records of my production of PET drugs? 212.110 Section 212.110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... those not stored at the inspected establishment, must be legible, stored to prevent deterioration or...

  11. Production of DNA polymerase by recombinant pET-17b/Pfu-Pol ...

    African Journals Online (AJOL)

    Although this enzyme has been produced worldwide, there is no reported cloning or production of polymerases in Egypt. In the current work, plasmid coding Pfu polymerase enzyme (pET-17b/Pfu-Pol) was transformed into E. coli Top10. The plasmid coding Pfu- polymerase was confirmed by restriction analysis using HindIII ...

  12. Cosmogenic isotope beryllium-7 in the atmosphere: Production versus transport

    Science.gov (United States)

    Pacini, Alessandra; Usoskin, Ilya; Evangelista, Heitor; Echer, Ezequiel; Mursula, Kalevi; Leppanen, Ari-Pekka

    Cosmogenic isotope 7 Be measured near the ground can provide information about its produc-tion (that occurs in the atmosphere due to the interaction of cosmic rays and atmospheric constituents) and its deposition processes (that involves air mass dynamics, stratosphere-troposphere coupling and local climatic conditions). We present the results of an investigation of the atmospheric 7 Be temporal variations at different geographic locations (Finland and Brazil). This study was based on an analysis of three time series of 7 Be concentration measured in near-surface air samples from Rovaniemi and Loviisa (Finland) and Rio de Janeiro (Brazil) for the last decades. We made use of the wavelet spectral method to identify the frequency-temporal features of the 7 Be temporal variations that allowed us to determine the relative importance of production and deposition process for the observed data. By comparing these time series with climatic indices and the values of 7 Be concentration expected from the model for the same period, we found that the climate system is the main driver of the surface isotopic modulation, while the imprints of the production variations are geographically dependent. Thus,7 Be can be considered a good tool to monitor the large-scale air mass dynamics.

  13. Thermonuclear neutron sources - a new isotope production technology

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, Richard A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    With the successful detonation of the Hutch device, we have demonstrated the feasibility of a new isotope production technique. The exposure of a 238-U and 232-Th target to an extremely large neutron flux, 1.8 x 10{sup 25} neutrons/cm{sup 2}, produced super-heavy nuclides up to 257-Fm by the multiple neutron capture process. Kilogram quantities of Hutch debris were recovered by a modification of standard drilling techniques. A semicontinuous batch process was used to concentrate approximately 10{sup 10} atoms of 257-Fm from approximately 50 kg of debris. Experience from the Hutch debris recovery efforts indicates that significant engineering advances in recovery techniques and subsequent cost reductions are possible. The demonstrated success of the device clearly justifies anengineering development program. Comparing debris recovery by underground mining operations with recovery using possible advances in drilling technology does not indicate an obvious cost advantage of one system over the other. Possible advances in mining technology could change this tentative conclusion. Any novel schemes for debris concentration that might be possible through an understanding of underground nuclear detonation phonomenology would also radically affect recovery and processing economics. A preliminary process engineering design of a large-scale (a few hundred to a few thousand kilograms) processing facility located at the Nevada Test Site will be discussed. Cost estimates for isotopes produced in this facility will be described. The effects of debris concentration, 'ore' beneficiation, and total debris processed on unit costs will be discussed. These preliminary estimates show that this new isotope 'production' scheme would be competitive with existing reactor facilities. (author)

  14. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-01-01

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand

  15. Inductively coupled plasma mass-spectrometric determination of platinum in excretion products of client-owned pet dogs

    NARCIS (Netherlands)

    Janssens, T.; Brouwers, E. E M; de Vos, J.P.; de Vries, N.; Schellens, J. H M; Beijnen, J. H.

    2015-01-01

    Residues of antineoplastic drugs in canine excretion products may represent exposure risks to veterinary personnel, owners of pet dogs and other animal care-takers. The aim of this study was to measure the extent and duration of platinum (Pt) excretion in pet dogs treated with carboplatin. Samples

  16. Mechanical behavior of sustainable building materials using PET waste and industrial by-products

    OpenAIRE

    Juárez, C. A; Mendoza-Rangel, J. M; González, J. R; Rodríguez, J. A; Valdez, P

    2015-01-01

    The building industry is facing the challenge of satisfying a growing demand for housing spaces that can be mitigated by the use of construction materials manufactured with industrial by-products that allow the production of low-cost housing with a low environmental impact. In this research, an alternative building system to manufacture lightweight masonry blocks with polyethylene terephthalate (PET) bottles and fiber-reinforced panels using binary mixture (Portland cement and fly ash), was s...

  17. SCK-CEN increases production of medical isotopes by half

    International Nuclear Information System (INIS)

    Ponsard, B.; Leysen, P.; Janssens, J.

    2010-01-01

    It is impossible to imagine the medical world today without radioisotopes, and due to rapid technological progress in nuclear medicine their use is still on the rise. An important role of research reactors is the production of molybdenum-99. Around the world this is done primarily by five nuclear research reactors, one of which is the BR2 reactor of SCK-CEN. As a result of checks and maintenance work on three other reactors, for a few years there has been a serious crisis in the availability of this medical isotope. In order to guarantee the worldwide supply of radioisotopes, SCK-CEN expanded its production of molybdenum-99 by 50 percent in 2010.

  18. Laser separating system for production of zinc isotopes

    International Nuclear Information System (INIS)

    Bokhan, P.A.; Zakrevskij, D.Eh.; Stepanov, A.Yu.; Fateev, N.V.

    2000-01-01

    The separating system, which provides using the photochemical reaction of Zn at the long-lived Zn(4p 3 P j ) state with the CO 2 molecule was constructed. The reaction constant is equal to k = 2.5 · 10 -10 cm 3 c -1 . For production of selectively excited atoms the excitation of Zn at the Zn(6s 3 S 1 ) state by two counter UV photons followed by its decomposition at the Zn(4p 3 P j ) state was used. The feature of the used scheme of the Zn excitation provides the appearance of super-radiation on the cascades of transitions from the 6s 3 S 1 at 6p 3 P 1 0 state. The high selectivity of the consumption, the productivity of the system by the 66 Zn isotope exceeds over 0.5 g/h [ru

  19. Isotope production potential at Sandia National Laboratories: Product, waste, packaging, and transportation

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1995-01-01

    The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of 99 Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories' Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided

  20. Calculation of isotopic mass and energy production by a matrix operator method

    International Nuclear Information System (INIS)

    Lee, C.E.

    1976-08-01

    The Volterra method of the multiplicative integral is used to determine the isotopic density, mass, and energy production in linear systems. The solution method, assumptions, and limitations are discussed. The method allows a rapid accurate calculation of the change in isotopic density, mass, and energy production independent of the magnitude of the time steps, production or decay rates, or flux levels

  1. Re-enrichment of O-18 isotopic water used for the production of F-18 in a cyclotron

    International Nuclear Information System (INIS)

    Kim, J.; Kim, T.S.; Choi, H.; Jang, D.S.; Jeong, D.Y.

    2004-01-01

    Full text: The demand for and applications of stable isotopes in medicine, industry, and science in the modern era has increased and expanded significantly. Especially, 18 O-enriched water (> 90%) is used as a target in a cyclotron for the production of the β -emitting radioisotope 18 F, which is essential for PET (Positron Emission Tomography) pharmaceutical [ 18 F]-labeled 2-deoxyglucose (FDG) synthesis. Currently, 18 O is produced by a cold distillation of NO (Nitric Oxide) or a fractional distillation of water. These processes, however, are technically complicated and costly so as to limit the production of 18 O. In this regard, it is essential to re-use the used target water as much as possible since the 18 O-enriched water is so expensive (∼ $150/g). In order to recycle the used target water, it is necessary to purify the organic and inorganic impurities contaminated during the 18 f-FDG production loop and to re-enrich the 18 O isotope in the target water diluted during the purification process. For the development of a compact target water 18 O re-enrichment system, the 18 O isotope separation characteristics of MD (Membrane Distillation) were investigated. The 18 O isotopic water permeation and separation characteristics of a hydrophobic PTFE membrane using Air Gap MD and Vacuum Enhanced MD were evaluated. Permeation fluxes were measured by weighing the collected membrane-permeated water vapor. 18 O/ 16 O of each water sample was analyzed by a Tunable Diode Laser Absorption Spectroscopy (TDLAS). We observed the effects of the air in the membrane pores and the temperature gradient applied to the membrane surfaces on the vapor permeation flux and the oxygen isotope separation for the first time. For both AGMD and VEMD, the permeation flux and the degree of 18 O separation increased as the membrane interfacial temperature gradient increased. Even though the oxygen isotope separation and the permeation flux for the VEMD is slightly higher than the AGMD, the

  2. Development of key technology for the medical isotope production

    International Nuclear Information System (INIS)

    Oh, Soo Youl; Kim, I. S.; Kim, W. W.; Rhee, C. K.; Park, K. B.; Park, S. J.; Shin, H. S.; Shin, Y. J.

    2005-06-01

    The objective of this project is to experimentally verify and enhance Mo-99 and Sr-89 recovery/purification processes as the key technologies for the medical isotope production from a solution fuel reactor. A joint experiment was planned between KAERI and Kurchatov Institute (KI), Russia. The kinds of experiments planed are, a series of Mo-99 recovery/purification experiments from the ARGUS reactor which uses High Enriched Uranium (HEU) fuel, a series of the same experiments but from the Low Enriched Uranium (LEU) solution target, a demonstration of the mechanism of Sr-89 delivery from the air medium in the reactor vessel. Meanwhile, the survey and legalistic interpretation of relevant patents shows a possibility of infringement of TCI Inc.'s patents in case of exporting medical isotopes produced at the MIP to Japan and the US so far as the MIP adopts the concept of the Russian ARGUS and recovery/purification process. Eliminating, not minor changing, step(s) or condition(s) of patent processes would help to avoid the patent infringement. Because of a difficulty in the KAERI-KI full-time co-experiments at KI labs, a different idea between two parties about the depth of background information to be provided to KAERI, and other reasons, the experiment plan was not executed

  3. Medical Isotopes Production Project: Molybdenum-99 and related isotopes - environmental impact statement. Volume II, comment response document

    International Nuclear Information System (INIS)

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related isotopes (iodine-131, xenon-133, and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community as soon as practicable. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition, three other reasonable alternatives and a No Action alternative are analyzed in detail, The sites for these three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity. This document contains comments recieved from meetings held regarding the site selection for isotope production

  4. Pb and Sr isotopic compositions of ancient pottery: a method to discriminate production sites

    International Nuclear Information System (INIS)

    Zhang Xun; Chen Jiangfeng; Ma Lin; He Jianfeng; Wang Changsui; Qiu Ping

    2004-01-01

    The discriminating of production sites of ancient pottery samples using multi-isotopic systematics was described. Previous work has proven that Pb isotopic ratios can be used for discriminating the production sites of ancient pottery under certain conditions. The present work suggests that although Nd isotopic ratios are not sensitive to the production sites of ancient pottery, Sr isotopic ratios are important for the purpose. Pb isotopic ratios are indistinguishable for the pottery excavated from the Jiahu relict, Wuyang, Henan Province and for famous Qin Terra-cotta Figures. But, the 87 Sr/ 86 Sr ratios for the former (about 0.715) are significantly lower than that of the latter (0.717-0.718). The authors concluded that a combined use of Pb and Sr isotopes would be a more powerful method for discriminating the production site of ancient pottery. (authors)

  5. Materials technology for accelerator production of fissile isotopes

    International Nuclear Information System (INIS)

    Horak, J.A.

    1978-02-01

    The materials used for the accelerator production of fissile isotopes must enable the facility to achieve maximum fuel production at a minimum cost. Neutron production in the target would be maximized by use of thorium cooled with Pb--56 percent Bi or with sodium. The thorium should be ion-plated with approximately 1 mil of nickel or stainless steel for retention of fission products. The target container will have to be replaced at frequent intervals because of the copious quantities of neutronically produced helium and hydrogen in the container. Replacement would coincide with shutdown of the facility for the removal of the fissile material produced. If sodium is used to cool both the target and fertile blanket, a simple basket-type target container could be used. This would greatly reduce radiation effects in the target container. Type 316 stainless steel or V--20 wt percent Ti should perform satisfactorily as a target container. The fertile blanket should be 233 Th or 238 U that is coated with approximately 1 mil of nickel or stainless steel and cooled with sodium. The blanket container could be an austenitic stainless steel such as type 304 or 316; some ferritic alloys may also provide a satisfactory blanket container. 31 references

  6. Stable isotope separation; Separations physicochimiques d'isotopes stables realisations et etudes de petites productions

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Molinari, Ph; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    which cooling water circulates. Studies are going forward to increase the separation factor of the cascade by using an auxiliary gas. Isotopic Exchange: A series of experiments has been performed to determine the isotopic separation factor between a lithium amalgam and an organic solvent containing a lithium salt. The various parameters which may enter into this exchange were studied: the influence of the type of solvent (the two solvents used were dimethylformamide and tetrahydrofurane), of the temperature, of the concentration and of the nature of the associated halogen. Solutions of Li metal and liquid NH{sub 3} were studied also. A number of tests were carried out to see whether there was a difference between the isotopic compositions of the Li present in the two liquid layers obtained by the dissolution of Li metal in ammonia. No difference was observed between the Li isotopic ratios in the two phases. This was also true in the case of a layer of of Li in liquid NH{sub 3} and a layer of Li I in a similar solvent. Electromigration: The method of counter current electro Migration in fused salts is a powerful isotopic enrichment technique. It can be used successfully to separate the isotopes of elements with strongly metallic character. In the case of alkalis, small quantities of isotopically pure {sup 7}Li have been obtained, while the enrichment factors obtained for potassium are of the order of 10. With regard to the alkaline earths, it has been possible to produce small quantities of calcium enriched 5 times in {sup 46}Ca. However considerable technological difficulties rise up in the way of production on a semi-industrial scale. (authors) [French] Nous avons effectue Ia separation de deuterium pur, a partir de melanges gazeux d'hydrogene et de deuterium, par chromatographie de deplacement de bande sur colonnes de palladium supporte. Les meilleures performances ont ete obtenues par des colonnes de Pd sur fritte d'alumine {alpha}. Avec une colonne de ce type, de

  7. Safety evaluation of small samples for isotope production

    International Nuclear Information System (INIS)

    Sharma, Archana; Singh, Tej; Varde, P.V.

    2015-09-01

    Radioactive isotopes are widely used in basic and applied science and engineering, most notably as environmental and industrial tracers, and for medical imaging procedures. Production of radioisotope constitutes important activity of Indian nuclear program. Since its initial criticality DHRUVA reactor has been facilitating the regular supply of most of the radioisotopes required in the country for application in the fields of medicine, industry and agriculture. In-pile irradiation of the samples requires a prior estimation of the sample reactivity load, heating rate, activity developed and shielding thickness required for post irradiation handling. This report is an attempt to highlight the contributions of DHRUVA reactor, as well as to explain in detail the methodologies used in safety evaluation of the in pile irradiation samples. (author)

  8. Production of PET radiopharmaceutical 18F-FDG using synthesizer automatic module

    International Nuclear Information System (INIS)

    Purwoko; Chairuman; Adang Hardi Gunawan; Yayan Tahyan; Eny Lestari; Sri Aguswarini Lestiyowati; Karyadi; Sri Bagiawati

    2010-01-01

    Radiopharmaceutical 2-( 18 F)Fluoro-2-Deoxy-D-Glucose or 18 F(FDG) is an important PET (Positron Emission Tomography) radiopharmaceutical for tumour imaging. In the PET technique glucose metabolism in tumour tissues can be determined quantitatively and used for diagnosis staging and monitoring of treatment tumour or cancer disease in medical oncology. The production of 2-( 18 F)Fluoro-2-Deoxy-D-Glucose 18 F-FDG using compact automated system module TRACERlab MX has been carried out. The modular setup of the apparatus permits reliable for routine synthesis of radiopharmaceuticals 18 F-FDG based on kriptofix mediated nucleophilic fluorination to mannose triflate precursor. Radiochemical yield of 18 F-FDG was 53.895 % (decay time uncorrected) in 40 minutes. The product showed that the colorless and clear solution at pH:6, sterile and pirogen free, kriptofix impurities was low and radiochemical purity was 99.595%. (author)

  9. Calculation of radiation production of high specific activity isotopes 192Ir and 60Co

    International Nuclear Information System (INIS)

    Zhou Quan; Zhong Wenfa; Xu Xiaolin

    1997-01-01

    The high specific activity isotopes: 192 Ir and 60 Co in the high neutron flux reactor are calculated with the method of reactor physics. The results of calculation are analyzed in two aspects: the production of isotopes and the influence to parameters of the reactor, and hence a better case is proposed as a reference to the production

  10. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  11. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    International Nuclear Information System (INIS)

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-01-01

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge

  12. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  13. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review.

    Science.gov (United States)

    Duan, Haoran; Ye, Liu; Erler, Dirk; Ni, Bing-Jie; Yuan, Zhiguo

    2017-10-01

    Nitrous oxide (N 2 O) is an important greenhouse gas and an ozone-depleting substance which can be emitted from wastewater treatment systems (WWTS) causing significant environmental impacts. Understanding the N 2 O production pathways and their contribution to total emissions is the key to effective mitigation. Isotope technology is a promising method that has been applied to WWTS for quantifying the N 2 O production pathways. Within the scope of WWTS, this article reviews the current status of different isotope approaches, including both natural abundance and labelled isotope approaches, to N 2 O production pathways quantification. It identifies the limitations and potential problems with these approaches, as well as improvement opportunities. We conclude that, while the capabilities of isotope technology have been largely recognized, the quantification of N 2 O production pathways with isotope technology in WWTS require further improvement, particularly in relation to its accuracy and reliability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  15. Post-target produced [{sup 18}F]F{sub 2} in the production of PET radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Forsback, Sarita; Solin, Olof [Turku PET Centre, Turku (Finland). Radiopharmaceutical Chemistry Lab. and Accelerator Lab.

    2015-06-01

    Electrophilic radiofluorination was successfully carried out in the early years of PET radiochemistry due to its ease and fast reaction speed. However, at the present, the use of electrophilic methods is limited due to low specific activity (SA). Post-target produced [{sup 18}F]F{sub 2} has significantly higher SA compared to other electrophilic approaches, and it has been used in the production of clinical PET radiopharmaceuticals at the Turku PET Centre for years. Here, we summarize the synthesis and use of these radiopharmaceuticals, namely [{sup 18}F]FDOPA, [{sup 18}F] CFT, [{sup 18}F]EF5 and [{sup 18}F]FBPA.

  16. Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-12

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

  17. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    Thisgaard, H.

    2008-08-01

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  18. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  19. Stable isotope separation in calutrons: Forty years of production and distribution

    International Nuclear Information System (INIS)

    Bell, W.A.; Tracy, J.G.

    1987-11-01

    The stable isotope separation program, established in 1945, has operated continually to provide enriched stable isotopes and selected radioactive isotopes, including the actinides, for use in research, medicine, and industrial applications. This report summarizes the first forty years of effort in the production and distribution of stable isotopes. Evolution of the program along with the research and development, chemical processing, and production efforts are highlighted. A total of 3.86 million separator hours has been utilized to separate 235 isotopes of 56 elements. Relative effort expended toward processing each of these elements is shown. Collection rates (mg/separator h), which vary by a factor of 20,000 from the highest to the lowest ( 205 Tl to 46 Ca), and the attainable isotopic purity for each isotope are presented. Policies related to isotope pricing, isotope distribution, and support for the enrichment program are discussed. Changes in government funding, coupled with large variations in sales revenue, have resulted in 7-fold perturbations in production levels

  20. Feasibility study of medical isotope production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for 99 Mo, the parent of 99m Tc, in the event of an interruption in the current Canadian supply. 99m Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for 99 Mo and to identify and examine all issues with potential for environmental impact

  1. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Dawson, R.; Erdman, K.L.

    1989-05-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. TRIUMF is cooperating with a local industrial company in designing and constructing such a cyclotron. It will be a four sector H - cyclotron, exploiting the newly developed high brightness multicusp ion source. This source with H - current capability in excess of 5 mA makes feasible accelerated H - beam intensities of up to 500 μA. Beam extraction is by stripping to H + in a thin graphite foil. Extraction of two high-intensity beams, with energy variable from 15 to 30 MeV is planned. The use of an external ion source, provision of a good vacuum in the acceleration region, and the careful choice of materials for components in the median plane leads to a cyclotron that will have low activation and can be easily serviced in spite of the very high operating beam intensities. A design extension to 70 MeV using many of the design features of the 30 MeV cyclotron can be easily made. Such a machine with a good quality variable energy beam is a highly desirable source of protons for isotope production, injection into higher energy high intensity acceleration, injection into higher energy high intensity accelerators, and as an irradiation facility for ocular melanomas. Design of the 30 MeV cyclotron is well advanced and construction is in progress

  2. Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Myeong-Hwan; Lee, Young-Ouk [Korea Atomic Energy Research Institue, Daejeon (Korea, Republic of); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-12-15

    The possibilities of production of yet unknown neutron-rich isotopes of Md are explored in several multi-nucleon transfer reactions with actinide targets and stable and radioactive beams. The projectile-target combinations and bombarding energies are suggested to produce new neutron-rich isotopes of Md in future experiments. (orig.)

  3. BIPAL - a data library for computing the burnup of fissionable isotopes and products of their decay

    International Nuclear Information System (INIS)

    Kralovcova, E.; Hep, J.; Valenta, V.

    1978-01-01

    The BIPAL databank contains data on 100 heavy metal isotopes starting with 206 Tl and finishing with 253 Es. Four are stable, the others are unstable. The following data are currently stored in the databank: the serial number and name of isotopes, decay modes and, for stable isotopes, the isotopic abundance (%), numbers of P decays and Q captures, numbers of corresponding final products, branching ratios, half-lives and their units, decay constants, thermal neutron captures, and fission cross sections, and other data (mainly alpha, beta and gamma intensities). The description of data and a printout of the BIPAL library are presented. (J.B.)

  4. PET imaging in multiple sclerosis

    NARCIS (Netherlands)

    Faria, Daniele de Paula; Copray, Sjef; Buchpiguel, Carlos; Dierckx, Rudi; de Vries, Erik

    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus

  5. Isotope Production and Distribution Program. Financial statements, September 30, 1994 and 1993

    Energy Technology Data Exchange (ETDEWEB)

    Marwick, P.

    1994-11-30

    The attached report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution (IP&D) Program`s financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on IP&D`s 1994 statements. Their reports on IP&D`s internal control structure and on compliance with laws,and regulations are also provided. The charter of the Isotope Program covers the production and sale of radioactive and stable isotopes, byproducts, and related isotope services. Prior to October 1, 1989, the Program was subsidized by the Department of Energy through a combination of appropriated funds and isotope sales revenue. The Fiscal Year 1990 Appropriations Act, Public Law 101-101, authorized a separate Isotope Revolving Fund account for the Program, which was to support itself solely from the proceeds of isotope sales. The initial capitalization was about $16 million plus the value of the isotope assets in inventory or on loan for research and the unexpended appropriation available at the close of FY 1989. During late FY 1994, Public Law 103--316 restructured the Program to provide for supplemental appropriations to cover costs which are impractical to incorporate into the selling price of isotopes. Additional information about the Program is provided in the notes to the financial statements.

  6. Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy

    DEFF Research Database (Denmark)

    Thisgaard, Helge

    Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron...... isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able...

  7. UTILIZATION OF CANDEIA (Eremanthus erythropappus WOOD RESIDUES IN THE PRODUCTION OF PARTICLEBOAD WITH ADDITION OF PET

    Directory of Open Access Journals (Sweden)

    Rosimeire Cavalcante dos Santos

    2011-03-01

    Full Text Available This work aimed to evaluate, through the physical and mechanical properties, the panels production viability with inclusion of candeia (Eremanthus erythropappus wood residues and the influence of different percentages of PET (polyethylene terephthalate, as well as the presence and absence of paraffin on the properties of particleboard. There were used candeia wood residues, after oil extraction, in association with eucalypt wood in the proportion of 25:75 and urea-formaldehyde adhesive (12% for panels production; besides the PET incorporation in particle form, which were originated from soft drink bottles and included in three percentages (0%, 25% e 50% in treatments in the presence (1% and absence of paraffin emulsion. The panels pressing cycle occurred under electric heating at 160°C, 0.4 MPa of pressure, during 8 minutes. The experimental design was entirely randomized with three repetitions. The properties evaluated, according to DIN (1971, ASTM D 1037-93 (1995 and CS 236-66 (1968 standards, were: internal bonding; static bending (modulus of elasticity – MOE and rupture – MOR; compression parallel to the panel surface; water absorption and thickness swelling, after 2 and 24 hours water immersion. The panel mechanical properties decreased with increasing in PET level; in general, paraffin addition did not improve the wood/plastic panels resistance and higroscopicity; the utilization of candeia wood residues is viable, in association with eucalypt wood, for the wood/plastic panel production, since the properties attended the minimum demands of the standards, except static bending.

  8. The global threat reduction initiative and conversion of isotope production to LEU targets

    International Nuclear Information System (INIS)

    Kuperman, A. J.

    2005-01-01

    The U.S. Global Threat Reduction Initiative (GTRI) has given a decisive impetus to the RERTR program's longstanding goal of converting worldwide production of medical radioisotopes from reliance on bomb-grade, highly enriched uranium (HEU) to low-enriched uranium (LEU) unsuitable for weapons. Although the four major; isotope producers continue to resist calls for conversion, they face mounting pressure from a variety of fronts including: (1) GTRI; (2) a related, multilateral U.S. initiative to forge agreement on conversion among the states that are home to the major producers; (3) an IAEA effort to provide technical assistance that will facilitate large-scale production of medical isotopes using LEU by producers who seek to do so; (4) planned production in the United States of substantial quantities of medical isotopes using LEU; and (5) pending U.S. legislation that would prohibit the export of HEU for production of isotopes as soon as alternative, LEU-produced isotopes are available. Accordingly, it now appears inevitable that worldwide isotope production will be converted from reliance on HEU to LEU. The only remaining question is which producers will be the first to reliably deliver sizeable quantities of LEU-produced isotopes and thereby capture global market share from the others. (author)

  9. Transmutation of Isotopes --- Ecological and Energy Production Aspects

    Science.gov (United States)

    Gudowski, Waclaw

    2000-01-01

    This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional

  10. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-01-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report

  11. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1997-11-01

    The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ( 99 Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department's plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed

  12. 21 CFR 212.70 - What controls and acceptance criteria must I have for my finished PET drug products?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false What controls and acceptance criteria must I have... POSITRON EMISSION TOMOGRAPHY DRUGS (Eff. 12-12-2011) Finished Drug Product Controls and Acceptance § 212.70 What controls and acceptance criteria must I have for my finished PET drug products? (a) Specifications...

  13. Read the Label First: Protect Your Pets

    Science.gov (United States)

    Learn about the importance of reading pet products labels before purchasing and using any product to insure the safety of your pets. Find tips for ways to reduce the changes of pets accessing potentially dangerous products.

  14. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  15. Microfluidics without channels: highly-flexible synthesis on a digital-microfluidic chip for production of diverse PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, Robert Michael [Univ. of California, Los Angeles, CA (United States)

    2010-09-01

    Positron emission tomography (PET) imaging is used for fundamental studies of living biological organisms and microbial ecosystems in applications ranging from biofuel production to environmental remediation to the study, diagnosis, and treatment monitoring of human disease. Routine access to PET imaging, to monitor biochemical reactions in living organisms in real time, could accelerate a broad range of research programs of interest to DOE. Using PET requires access to short-lived radioactive-labeled compounds that specifically probe the desired living processes. The overall aims of this project were to develop a miniature liquid-handling technology platform (called “microfluidics”) that increases the availability of diverse PET probes by reducing the cost and complexity of their production. Based on preliminary experiments showing that microfluidic chips can synthesis such compounds, we aimed to advance this technology to improve its robustness, increase its flexibility for a broad range of probes, and increase its user-friendliness. Through the research activities of this project, numerous advances were made; Tools were developed to enable the visualization of radioactive materials within microfluidic chips; Fundamental advances were made in the microfluidic chip architecture and fabrication process to increase its robustness and reliability; The microfluidic chip technology was shown to produce useful quantities of an example PET probes, and methods to further increase the output were successfully pursued; A “universal” chip was developed that could produce multiple types of PET probes, enabling the possibility of “on demand” synthesis of different probes; and Operation of the chip was automated to ensure minimal radiation exposure to the operator Based on the demonstrations of promising technical feasibility and performance, the microfluidic chip technology is currently being commercialized. It is anticipated that costs of microfluidic chips can be

  16. Particle Accelerators for PET radionuclides

    DEFF Research Database (Denmark)

    Jensen, Mikael

    2012-01-01

    The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost-effectively achie......The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost......-effectively achieved by the well proven technology of the compact medical cyclotron, presently available from several companies. The main features of these cyclotrons are essential similar: resistive, sector focused iron magnets, internal negative ion sources and stripping extraction. The remaining differences between...... different manufacturers will be discussed the light of what is actually needed for a given PET site operation. Alternatives to the conventional cyclotron have been proposed and tested but have at present very limited use. These alternatives will be discussed, as well as the future possibilities of supplying...

  17. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    Science.gov (United States)

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E; Feldman, Mark; Forstner, Michael R J

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  18. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    Directory of Open Access Journals (Sweden)

    Ivana Mali

    Full Text Available Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans (i.e., traditional farming for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming. Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  19. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets

    Science.gov (United States)

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E.; Feldman, Mark; Forstner, Michael R. J.

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions. PMID:26407157

  20. Experimental study of xenon isotopes production by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou Mingsheng; Liang Xiongwen; Zhang Yonggang; Dong Jinping

    2006-01-01

    The gas centrifuge technology is studied for the separation of Xe isotopes. The nature Xe is chosen as processing gas. A four-state cascade is designed to separate 124 Xe to a concentration of being greater than 65% in three separation runs. 124 Xe can be enriched to a concentration 99% in more separation runs using a cascade of more gas centrifuges. (authors)

  1. Production of stable isotopes at Urenco. 10 years of progress

    International Nuclear Information System (INIS)

    Mol, C.A.; Rakhorst, H.

    2003-01-01

    In the last ten years, Urenco has built its spin-off activity of stable isotopes in a multi-million dollar business. It is a high quality, ISO certified, client oriented and profitable European business with further growth potential. (author)

  2. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  3. Bulk and compound-specific isotope analysis of long-chain n-alkanes from a 85,000 year sediment core from Lake Peten Petén Itzá, Guatemala

    Science.gov (United States)

    Mays, J.; Brenner, M.; Curtis, J. H.; Curtis, K.; Hodell, D. A.; Correa-Metrio, A.; Escobar, J.; Dutton, A. L.; Zimmerman, A. R.; Guilderson, T. P.

    2013-12-01

    Sediment core PI-6 from Lake Petén Itzá, Guatemala possesses an 85-ka record of climate from lowland Central America. Variations in sediment lithology suggest large, abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. Study of cores from nearby Lake Quexil demonstrated the utility of using the carbon isotopic composition of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al. 2001). Forty-nine samples were taken from composite Petén Itzá core PI-6 to measure carbon isotopes of bulk organic carbon and long-chain n alkanes. Changes in δ13C values indicate shifts in the relative proportion of C3 to C4 biomass. The record shows largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the Last Glacial Maximum (LGM) indicate moderate precipitation and little rainfall fluctuation. The deglacial was a period of pronounced climate variability, e.g. the Bölling-Allerod and Younger Dryas. Arid times of the deglacial were inferred from samples with the greatest δ13C values in organic matter, reflecting the largest proportion of C4 plants. Such inferences are supported by stable isotope measurements on ostracod shells and analysis of pollen from the same sample depths in core PI-6. Carbon stable isotope measures on bulk organic carbon and n alkane compounds show similar trends throughout the record and the C:N ratio of Petén Itzá sediments indicates a predominantly allochthonous source for bulk organic matter. Hence, isotope measures on bulk organic carbon (δ13CTOC) in sediments from this lake are sufficient to infer climate-driven shifts in vegetation, making n-alkane extraction and isotope analysis superfluous.

  4. Solidification of acidic liquid waste from 99Mo isotope production

    International Nuclear Information System (INIS)

    Parsons, G.J.

    2001-01-01

    Full text: The production of the radioisotope molybdenum-99 by the fission process began at ANSTO in the late 1960's. Molybdenum-99, with a half life of 66 hours, decays by beta emission to produce technetium-99m, a metastable isotope. Technetium-99m is the most widely used medical radioisotope due to its near ideal properties, particularly the radioactive half life of only 6 hours. ANSTO has been producing generators for around 30 years for distribution to hospitals and nuclear medicine centres. These generators produce technetium-99m for medical use by decay of the contained molybdenum-99. To produce molybdenum-99, uranium dioxide pellets enriched to 2.2% 235 U are irradiated in ANSTO's HIFAR reactor for about one week. The irradiated pellets are subsequently dissolved in nitric acid to allow the recovery of the molybdenum. An acidic intermediate level liquid waste results from this processing. A primary waste results from the raw leach solution (after removal of the molybdenum onto a packed alumina column) and a weaker secondary waste is produced from a series of column washing steps. The waste solution contains uranium, the majority of the other fission products and low levels of ammonia in a nitric acid solution. This liquid waste had been accumulating and stored in specially designed shielded tanks in a storage facility. A process has been developed at ANSTO to convert this intermediate level liquid waste into a crystalline solid form of considerably less volume and mass, for improved storage. The operation comprises three processing steps. The lower strength secondary waste solution first requires concentration, with the removal of water and some acid into a condensate. The condensate is chemically neutralised and treated through the conventional water treatment plant. Concentrated solution is then treated in a batch chemical process to reduce the low levels of ammonia to very low levels. The final evaporation process removes further water and acid and

  5. A conversion development program to LEU targets for medical isotope production in the MAPLE Facilities

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2000-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). The molybdenum extraction process from the HEU targets provided predictable, consistent yields for our high-volume molybdenum production process. A reliable supply of HEU for the NRU research reactor targets has enabled MDS Nordion to develop a secure chain of medical isotope supply for the international nuclear medicine community. Each link of the isotope supply chain, from isotope production to patient application, has been established on a proven method of HEU target irradiation and processing. To ensure a continued reliable and timely supply of medical isotopes, the design of the MAPLE facilities was based on our established process - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a program to convert the MAPLE facilities to LEU targets. An initial feasibility study was initiated to identify the technical issues to convert the MAPLE targets from HEU to LEU. This paper will present the results of the feasibility study. It will also describe future challenges and opportunities in converting the MAPLE facilities to LEU targets for large scale, commercial medical isotope production. (author)

  6. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  7. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, {gamma}), (n, 2n), (n, p), and ({gamma}, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  8. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    Science.gov (United States)

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  9. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  10. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  11. Hot cell chemistry for isotope production at Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Barnes, J.W.; Bentley, G.E.; Ott, M.A.; DeBusk, T.P.

    1978-01-01

    A family of standardized glass and plastic ware has been developed for the unit processes of dissolution, volume reduction, ion exchange, extraction, gasification, filtration, centrifugation, and liquid transfer in the hot cells. Computerized data handling and gamma pulse analysis have been applied to quality control and process development in hot cell procedures for production of isotopes for research in physics and medicine. The above has greatly reduced the time needed to set up for and produce a new isotope

  12. Difficulties and aspects to take into account in the production, use and distribution of new radiopharmaceuticals PET

    International Nuclear Information System (INIS)

    Sanchez, R.; Rayo, J.I.; Serrano, J.; Infante, J.; Luz Dominguez, M.; Garcia, L.; Duran, C.

    2008-01-01

    This article seeks to describe the requirements, legal and technical, for the production, distribution and use of new radiopharmaceuticals PET (other than the 18 F.D.G.), describing the legislative framework in which we find ourselves, the characteristics of a production and types of synthesis and existing modules. A list of susceptible radiopharmaceuticals is presented that are being currently used in nuclear medicine by specifying the real possibilities of their production and use and which are the difficulties we face

  13. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 2. Animal products.

    Science.gov (United States)

    Inácio, Caio T; Chalk, Phillip M

    2017-01-02

    In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.

  14. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    Science.gov (United States)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  15. 78 FR 27303 - Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron...

    Science.gov (United States)

    2013-05-10

    ...-0178] Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron... electron beam and x-ray sources for irradiation of poultry feed and poultry feed ingredients. This action... CFR part 579) to provide for the safe use of electron beam and x-ray sources for irradiation of...

  16. 21 CFR 212.80 - What are the requirements associated with labeling and packaging PET drug products?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false What are the requirements associated with labeling and packaging PET drug products? 212.80 Section 212.80 Food and Drugs FOOD AND DRUG ADMINISTRATION... POSITRON EMISSION TOMOGRAPHY DRUGS (Eff. 12-12-2011) Packaging and Labeling § 212.80 What are the...

  17. 21 CFR 212.90 - What actions must I take to control the distribution of PET drug products?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false What actions must I take to control the... POSITRON EMISSION TOMOGRAPHY DRUGS (Eff. 12-12-2011) Distribution § 212.90 What actions must I take to control the distribution of PET drug products? (a) Written distribution procedures. You must establish...

  18. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    Science.gov (United States)

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  20. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  1. Method of separation of fission and corrosion products and of corresponding isotopes from liquid waste

    International Nuclear Information System (INIS)

    Prochazka, H.; Stamberg, K.; Jilek, R.; Hulak, P.; Katzer, J.

    1976-01-01

    A method of separating fission and corrosion products and corresponding stable isotopes from liquid waste is described. Mycelia of fungi are used as sorbents for retaining these products on their surface and within their pores. Methods of activation or regeneration of the sorbent are outlined. 11 claims

  2. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation of met...

  3. A cyclotron isotope production facility designed to maximize production and minimize radiation dose

    International Nuclear Information System (INIS)

    Dickie, W.J.; Stevenson, N.R.; Szlavik, F.F.

    1993-01-01

    Continuing increases in requirements from the nuclear medicine industry for cyclotron isotopes is increasing the demands being put on an aging stock of machines. In addition, with the 1990 recommendations of the ICRP publication in place, strict dose limits will be required and this will have an effect on the way these machines are being operated. Recent advances in cyclotron design combined with lessons learned from two decades of commercial production mean that new facilities can result in a substantial charge on target, low personnel dose, and minimal residual activation. An optimal facility would utilize a well engineered variable energy/high current H - cyclotron design, multiple beam extraction, and individual target caves. Materials would be selected to minimize activation and absorb neutrons. Equipment would be designed to minimize maintenance activities performed in high radiation fields. (orig.)

  4. Isotopes and their possible use as bio markers of microbial products

    International Nuclear Information System (INIS)

    Zyakun, A.M.

    1992-01-01

    The purpose of this presentation is to determine the range of possible variations in the distribution of carbon isotopes ( 12 C and 13 C) in the metabolic products of the basic biological systems (production of organic matter by photosynthetic bacteria, its consumption by heterotrophic organisms, biological production of methane, its utilization by methanotrophic organisms, biological production of carbon monoxide and its bacterial oxidation). 32 refs., 11 figs., 3 tabs

  5. Production of an {sup 15}O beam using a stable oxygen ion beam for in-beam PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Akram, E-mail: mohammadi.akram@qst.go.jp; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-21

    In advanced ion therapy, the {sup 15}O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an {sup 15}O beam by projectile fragmentation of a stable {sup 16}O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors’ group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of {sup 15}O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of {sup 15}O fragments. The highest production rate of {sup 15}O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the {sup 16}O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the {sup 15}O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the {sup 16}O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is

  6. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  7. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1995-01-01

    Certain radioactive isotopes for North American and especially the United States' needs are enormously important to the medical community and their numerous patients. The most important medical isotope is 99 Mo, which is currently manufactured by Nordion International Inc. in a single, aging reactor operated by Atomic Energy of Canada, Ltd. The reactor's useful life is expected to end at the turn of the century. Production loss because of reactor shutdown possibilities prompted the US Congress to direct the DOE to provide for a US backup source for this crucial isotope. The SNL Annular Core Research Reactor (ACRR) was evaluated as a site to provide 99 Mo initially and other isotopes that can be economically extracted from the process. Medical isotope production at SNL is a new venture in manufacturing. Should SNL be selected and the project reach the manufacturing stage, SNL would expect to service up to 30% of the US market under normal circumstances as a backup to the Canadian supply with the capability to service 100% should the need arise. The demand for 99 Mo increases each year; hence, the proposed action accommodates growth in demand to meet this increase. The proposed project would guarantee the supply of medical isotopes would continue if either the irradiation or processing activities in Canada were interrupted

  8. Proper interpretation of dissolved nitrous oxide isotopes, production pathways, and emissions requires a modelling approach.

    Science.gov (United States)

    Thuss, Simon J; Venkiteswaran, Jason J; Schiff, Sherry L

    2014-01-01

    Stable isotopes ([Formula: see text]15N and [Formula: see text]18O) of the greenhouse gas N2O provide information about the sources and processes leading to N2O production and emission from aquatic ecosystems to the atmosphere. In turn, this describes the fate of nitrogen in the aquatic environment since N2O is an obligate intermediate of denitrification and can be a by-product of nitrification. However, due to exchange with the atmosphere, the [Formula: see text] values at typical concentrations in aquatic ecosystems differ significantly from both the source of N2O and the N2O emitted to the atmosphere. A dynamic model, SIDNO, was developed to explore the relationship between the isotopic ratios of N2O, N2O source, and the emitted N2O. If the N2O production rate or isotopic ratios vary, then the N2O concentration and isotopic ratios may vary or be constant, not necessarily concomitantly, depending on the synchronicity of production rate and source isotopic ratios. Thus prima facie interpretation of patterns in dissolved N2O concentrations and isotopic ratios is difficult. The dynamic model may be used to correctly interpret diel field data and allows for the estimation of the gas exchange coefficient, N2O production rate, and the production-weighted [Formula: see text] values of the N2O source in aquatic ecosystems. Combining field data with these modelling efforts allows this critical piece of nitrogen cycling and N2O flux to the atmosphere to be assessed.

  9. Design features of isotope production facility at Inshas cyclotron complex. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N [Nuclear Research Center, Atomic Energy Aurhority, Cairo, (Egypt)

    1996-03-01

    The nuclear research center, AEA, Egypt is erecting at its Inshas campus cyclotron complex for multidisciplinary use for research and application. The complex is to utilize a russian made AVF cyclotron accelerator of the type MGC-20 with MeV protons. Among its applications, the accelerator will be used for the production of short lived cyclotron isotopes. This article presents a concise description of the design features of isotope production facility to be annexed to the complex layout, schemes for radio waste, ventilation, and air conditioning systems. 2 figs., 2 tabs.

  10. Estimate of production of medical isotopes by photo-neutron reaction at the Canadian Light Source

    Science.gov (United States)

    Szpunar, B.; Rangacharyulu, C.; Daté, S.; Ejiri, H.

    2013-11-01

    In contrast to conventional bremsstrahlung photon beam sources, laser backscatter photon sources at electron synchrotrons provide the capability to selectively tune photons to energies of interest. This feature, coupled with the ubiquitous giant dipole resonance excitations of atomic nuclei, promises a fertile method of nuclear isotope production. In this article, we present the results of simulations of production of the medical/industrial isotopes 196Au, 192Ir and 99Mo by (γ,n) reactions. We employ FLUKA Monte Carlo code along with the simulated photon flux for a beamline at the Canadian Light Source in conjunction with a CO2 laser system.

  11. Isotope materials availability and services for target production at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Dahl, T.L.; Ottinger, C.L.; Aaron, W.S.; Adair, H.L.

    1987-01-01

    Materials available through the Isotope Distribution Program include separated stable isotopes, byproduct radioisotopes, and research quantities of source and special nuclear materials. Isotope products are routinely available in the forms listed in the product description section of the Isotopes Products and Services Catalog distributed by the Oak Ridge National Laboratory (ORNL). Different forms can be provided in some cases, usually at additional cost. Routinely available services include cyclotron target irradiations, fabrication of special physical forms, source encapsulation, ion implantation, and special purifications. Materials and services that are not offered as part of the routine distribution program may be made available from commercial sources in the United States. Specific forms of isotopic research materials include thin films and foils for use as accelerator targets, metal or other compounds in the form of bars or wires, and metal foils. Methods of fabrication include evaporation, sputtering, rolling, electrolytic deposition, pressing, sintering, and casting. High-purity metal forms of plutonium, americium, and curium are prepared by vacuum reduction/distillation. Both fissionable and nonfissionable neutron dosimeters are prepared for determining the neutron energy spectra, flux, and fluence at various locations within a reactor. Details on what materials are available and how the materials and related services can be obtained from ORNL are described. (orig.)

  12. Production and quality control of 66 Ga as a PET radioisotope

    International Nuclear Information System (INIS)

    Rowshanfarzad, P.; Jalilian, A. R.; Akhlaghi, M.; Sabet, M.

    2004-01-01

    Background: 66 Ga (t 1/2 =9.49 h, β + : 4.153 MeV, γ: 511, 834, 1039, 2752 keV) has a wide range of applications in different fields of medical sciences. Production of 66 Ga became one of our main interests, according to its increasing applications in nuclear medicine, particularly in PET imaging. Materials and Methods: 66 Zn (p,n) 66 Ga reaction was determined as the best choice for the production of 66 Ga, according to the present facilities and conditions. The bombardment was performed by 15 MeV protons in Cyclone 30-IBA accelerator with a current intensity of 180 μA for 67 min. ALICE nuclear code and SRIM nuclear program were used to determine the optimum energy and target thickness. Targets were prepared by electroplating of 66 Zn (>95%) on a copper backing. Chemical processing was performed by a no carrier added method consisting of ion exchange chromatography and liquid-liquid extraction. Anion exchange chromatography was used for the recovery of target material. Quality control of the product was carried out in two steps of chemical and radionuclidic purity control. Results: the activity of 66 Ga was 2.41 Ci at the end of bombardment and the production yield was 12.04 mCi/μAh. The chemical separation yield was 93% and the yield of chemical recovery of the target material was 97%. Quality control tests showed a radionuclidic purity of more than 97% and the amounts of chemical impurities were in accordance with standard levels. Discussion: Our production yield was comparable with previous reports given in the literature. The chemical separation method used in this research was simple and brought up acceptable results. So, this process can be considered as one of the best choices for the production of 66 Ga

  13. Advances in the production of isotopes and radiopharmaceuticals at the Atomic Energy Corporation of South Africa

    International Nuclear Information System (INIS)

    Louw, P.A.; De Villiers, W.Y.Z.; Jarvis, N.V.

    1997-01-01

    The Atomic Energy Corporation of South Africa Ltd (AEC) owns and operates the 20 MW research reactor, SAFARI-1. Utilisation of the reactor has in recent years changed from research and materials testing to the production of isotopes. The most important breakthrough achieved in recent years is the production of high quality fission 99Mo. This has been produced routinely since April 1993 and supplied to clients across the world. A capability for the reliable production of 1000 Ci of 99Mo per week (calibrated for six days after production) has been proven. The AEC has also established facilities to produce its own 99mTc generators together with a most of radiopharmaceutical kits for diagnostic nuclear medicine purposes. The production of 153 Sm and 131 I (tellurium oxide route) has been operational for many years. Applications include therapeutic radiopharmaceuticals such as 153 Sm-EDTMP for bone cancer pain palliation, 13' I-Lipiodol for liver cancer and 131 I capsules for thyroid treatment. Facilities for the production of other isotopes such as 131 I (from fission), 32 P and 35 S are in various stages of completion. Extensive analytical methods and equipment have been developed and are routinely used to certify the quality of exported isotopes. Irradiation and encapsulation of 192 Ir is also performed routinely at the AEC. Modern facilities allow for the production of isotopes such as 131 Ba and 140 La on an ad hoc basis. Quality assurance procedures based on ISO9000 were developed for all aspects of the production of the various isotopes. Documentation, such as Drug Master Files, required by authorities in various countries has also been submitted and accepted

  14. Calculation of the isotope concentrations, source terms and radiation shielding of the SAFARI-1 irradiation products

    International Nuclear Information System (INIS)

    Stoker, C.C.; Ball, G.

    2000-01-01

    The ever increasing expansion of the irradiation product portfolio of the SAFARI-1 reactor leads to the need to routinely calculate the radio-isotope concentrations and source terms for the materials irradiated in the reactor accurately. In addition to this, the required shielding for the transportation and processing of these irradiation products needs to be determined. In this paper the calculational methodology applied is described with special attention given to the spectrum dependence of the one-group cross sections of selected SAFARI-1 irradiation materials and the consequent effect on the determination of the isotope concentrations and source terms. Comparisons of the calculated isotopic concentrations and dose rates with experimental analysis and measurements provide confidence in the calculational methodologies and data used. (author)

  15. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-07-01

    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  16. A PET system based on 2-18FDG production with a low energy electrostatic proton accelerator and a dual headed PET scanner.

    Science.gov (United States)

    Sandell, A; Ohlsson, T; Erlandsson, K; Hellborg, R; Strand, S E

    1992-01-01

    We have developed a comparatively inexpensive PET system, based on a rotating scanner with two scintillation camera heads, and a nearby low energy electrostatic proton accelerator for production of short-lived radionuclides. Using a 6 MeV proton beam of 5 microA, and by optimization of the target geometry for the 18O(p,n)18F reaction, 750 MBq of 2-18FDG can be obtained. The PET scanner shows a spatial resolution of 6 mm (FWHM) and a sensitivity of 80 s-1kBq-1ml-1 (3 kcps/microCi/ml). Various corrections are included in the imaging process, to compensate for spatial and temporal response variations in the detector system. Both filtered backprojection and iterative reconstruction methods are employed. Clinical studies have been performed with acquisition times of 30-40 min. The system will be used for clinical experimental research with short- as well as long-lived positron emitters. Also the possibility of true 3D reconstruction is under evaluation.

  17. Methane Carbon Isotopic Composition Reveals Changing Production Pathways Across a Gradient of Permafrost Thaw

    Science.gov (United States)

    Rocci, K.; Burke, S. A.; Clariza, P.; Malhotra, A.; McCalley, C. K.; Verbeke, B. A.; Werner, S. L.; Roulet, N. T.; Varner, R. K.

    2017-12-01

    Methane (CH4) emission in areas of discontinuous permafrost may increase with warming temperatures resulting in a positive feedback to climate change. Characterizing the production pathways of CH4, which may be inferred by measuring carbon isotopes, can help determine underlying mechanistic changes. We studied CH4 flux and isotopic composition of porewater (δ13C-CH4) in a sub-arctic peatland in Abisko, Sweden to understand controls on these factors across a thaw gradient during four growing seasons. Methane chamber flux measurements and porewater samples were collected in July 2013, and over the growing seasons of 2014 to 2016. Samples were analyzed on a Gas Chromatograph with a Flame Ionization Detector for CH4 concentrations and a Quantum Cascade Laser for carbon isotopes. Increased emission rates and changing isotopic signatures were observed across the thaw gradient throughout the growing season. While CH4 flux increased with increases in temperature and shallower water table, δ13C-CH4 exhibited a seasonal pattern that did not correlate with measured environmental variables, suggesting dependence on other factors. The most significant controlling factor for both flux and isotopic signature was plant community composition, specifically, the presence of graminoid species. Graminoid cover increases with thaw stage so both CH4 emissions and δ13C-CH4 are likely to increase in a warmer world, suggesting a shift toward the acetoclastic pathway of methane production.

  18. Evaluation of pet food by-product as an alternative feedstuff in weanling pig diets.

    Science.gov (United States)

    Jablonski, E A; Jones, R D; Azain, M J

    2006-01-01

    Three experiments were conducted to evaluate pet food by-product (PFB) as a component of nursery starter diets and its effects on pig performance. The PFB used in these studies was a pelleted dog food that contained (as-fed basis) 21% CP, 1.25% total lysine, and 8.3% ether extract. In Exp. 1, 288 early-weaned pigs (5.2 kg at 14 d) were used to determine the effects of replacing animal protein and energy sources with PFB at 0, 10, 30, and 50% (as-fed basis) inclusion levels in phase I (d 0 to 7 after weaning) and phase II (d 7 to 21 after weaning) diets. Phase I diets contained 27.5% whey, 18.75% soybean meal, 1.50% lysine, 0.90% Ca, and 0.80% P, with PFB substituted for corn, fat, plasma protein, fish meal, limestone, and dicalcium phosphate. Phase II diets had a constant 10% whey, 1.35% lysine, and PFB was substituted for blood cells, a portion of the soybean meal, and other ingredients as in phase I diets. In phase I, growth performance by pigs fed PFB-containing diets was similar to that of the control diet. In phase II, ADG (linear; P PFB inclusion. In Exp. 2, 80 weaned pigs (6.7 kg at 21 d) were fed a common phase I diet for 1 wk and used to further evaluate the effect of PFB in phase II diets (same as Exp 1; initial BW = 8.1 kg) on growth performance and apparent total tract nutrient digestibility. There were no differences in ADG, ADFI, or G:F across treatments. Dry matter and energy digestibility did not differ among diets; however, digestibilities of CP (P PFB was increased in the diet. In Exp. 3, the performance by pigs (n = 1 70; 5.5 kg; 21 d of age) fed diets with 0 or 30% PFB in both phases I and II was examined. Growth performance was similar in both diets. These studies demonstrate that pet food by-product can effectively be used as a partial replacement for animal protein sources and grain energy sources in the diets of young nursery pigs.

  19. Reconstruction of prehistoric plant production and cooking practices by a new isotopic method

    Energy Technology Data Exchange (ETDEWEB)

    Hastorf, C A [California Univ., Los Angeles (USA). Dept. of Anthropology; DeNiro, M J [California Univ., Los Angeles (USA). Dept. of Earth and Space Sciences

    1985-06-06

    A new method is presented based on isotopic analysis of burnt organic matter, allowing the characterization of previously unidentifiable plant remains extracted from archaeological contexts. The method is used to reconstruct prehistoric production, preparation and consumption of plant foods, as well as the use of ceramic vessels, in the Upper Mantaro Valley region of the central Peruvian Andes.

  20. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity

    NARCIS (Netherlands)

    Abouchami, W.; Galer, S.J.G.; de Baar, H.J.W.; Alderkamp, A.C.; Middag, R.; Laan, P.; Feldmann, H.; Andreae, M.O.

    2011-01-01

    The High Nutrient Low Chlorophyll (HNLC) Southern Ocean plays a key role in regulating the biological pump and the global carbon cycle. Here we examine the efficacy of stable cadmium (Cd) isotope fractionation for detecting differences in biological productivity between regions. Our results show

  1. Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Otero, Neus; Palau, Jordi; Shouakar-Stash, Orfan; Soler, Albert

    2013-01-01

    Highlights: ► TCE and cis-DCE Cl isotope fractionation was investigated for the first time with ZVI. ► A C–Cl bond is broken in the rate-limiting step during ethylene ZVI dechlorination. ► Dual C/Cl isotope plot is a promising tool to discriminate abiotic degradation. ► Product-related carbon isotopic fractionation gives evidence of abiotic degradation. ► Hydrogenolysis and β-dichloroelimination pathways occur simultaneously. - Abstract: This study investigated C and, for the first time, Cl isotope fractionation of trichloroethene (TCE) and cis-dichloroethene (cis-DCE) during reductive dechlorination by cast zero-valent iron (ZVI). Hydrogenolysis and β-dichloroelimination pathways occurred as parallel reactions, with ethene and ethane deriving from the β-dichloroelimination pathway. Carbon isotope fractionation of TCE and cis-DCE was consistent for different batches of Fe studied. Transformation of TCE and cis-DCE showed Cl isotopic enrichment factors (ε Cl ) of −2.6‰ ± 0.1‰ (TCE) and −6.2‰ ± 0.8‰ (cis-DCE), with Apparent Kinetic Isotope Effects (AKIE Cl ) for Cl of 1.008 ± 0.001 (TCE) and 1.013 ± 0.002 (cis-DCE). This indicates that a C–Cl bond breakage is rate-determining in TCE and cis-DCE transformation by ZVI. Two approaches were investigated to evaluate if isotope fractionation analysis can distinguish the effectiveness of transformation by ZVI as opposed to natural biodegradation. (i) Dual isotope plots. This study reports the first dual (C, Cl) element isotope plots for TCE and cis-DCE degradation by ZVI. The pattern for cis-DCE differs markedly from that reported for biodegradation of the same compound by KB-1, a commercially available Dehalococcoides-containing culture. The different trends suggest an expedient approach to distinguish abiotic and biotic transformation, but this needs to be confirmed in future studies. (ii) Product-related isotope fractionation. Carbon isotope ratios of the hydrogenolysis product cis

  2. Characterization of the region and year of production of wines by stable isotopes and elemental analyses

    Directory of Open Access Journals (Sweden)

    M. Day

    1995-06-01

    Full Text Available Stable isotope and elemental analyses were applied to the study of wines produced from the Cabernet Franc vine variety cultivated during several years (1982 to 1990 on specific parts of the Saumur-Champigny vineyard dedicated to the « terroir » experiment of INRA. The purpose of this work was to describe the behaviour or 2H, 13C and 18O isotopes in the water and ethanol of wines in terms of the meteorological conditions (temperature, precipitation and insolation which govern vine growing. Since the « terroir » concept involves a synergy between the c1imate and the soil, the distribution of typical metallic elements was also determined by flame and electrothermal ionization atomic absorption. About twenty parcels, carefully described from the geological and pedological point of view were considered in this study which demonstrated the ability of Sr, Al and Rb to discriminate between wines from the same year but grown on adjacent parcels. The content in trace elements of the wines was also shown to be correlated with the geological nature of the soil. As far as stable isotopes are considered, it appears that the climate of the year of production of a given region has a drastic influence on the isotope ratios of water and ethanol of wines and good correlations way be computed between these parameters and temperature and precipitations. From a more basic aspect, it is also shown that the nature of the soil which governs, at least in a part, the water use efficiency of vine, induces typical variations in the isotopic composition of wines. The results of this study demonstrate also the ability of stable isotope and elemental analyses to determine the geographical origin of a wine, and when the region of production is known, to infer the year of production from meteorological data. This method might prove to be an alternative method to radio carbon analysis for the next vintages.

  3. Lead contamination in cocoa and cocoa products: isotopic evidence of global contamination.

    Science.gov (United States)

    Rankin, Charley W; Nriagu, Jerome O; Aggarwal, Jugdeep K; Arowolo, Toyin A; Adebayo, Kola; Flegal, A Russell

    2005-10-01

    In this article we present lead concentrations and isotopic compositions from analyses of cocoa beans, their shells, and soils from six Nigerian cocoa farms, and analyses of manufactured cocoa and chocolate products. The average lead concentration of cocoa beans was cocoa and chocolate products were as high as 230 and 70 ng/g, respectively, which are consistent with market-basket surveys that have repeatedly listed lead concentrations in chocolate products among the highest reported for all foods. One source of contamination of the finished products is tentatively attributed to atmospheric emissions of leaded gasoline, which is still being used in Nigeria. Because of the high capacity of cocoa bean shells to adsorb lead, contamination from leaded gasoline emissions may occur during the fermentation and sun-drying of unshelled beans at cocoa farms. This mechanism is supported by similarities in lead isotopic compositions of cocoa bean shells from the different farms (206Pb/207Pb = 1.1548-1.1581; 208Pb/207Pb = 2.4344-2.4394) with those of finished cocoa products (206Pb/207Pb = 1.1475-1.1977; 208Pb/207Pb = 2.4234-2.4673). However, the much higher lead concentrations and larger variability in lead isotopic composition of finished cocoa products, which falls within the global range of industrial lead aerosols, indicate that most contamination occurs during shipping and/or processing of the cocoa beans and the manufacture of cocoa and chocolate products.

  4. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products.

    Science.gov (United States)

    Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T

    2015-01-01

    Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products.

  5. Isotopic and sedimentological clues to productivity change in Late

    Indian Academy of Sciences (India)

    610Ma) intracratonic carbonate successions viz., Bhander Limestone of Vindhyan Basin and Raipur Limestone of Chattisgarh Basin suggest higher organic productivity during this period. This view is supported by sedimentological evidence of ...

  6. Plutonium isotopic assay of reprocessing product solutions in the KfK K-edge densitometer

    International Nuclear Information System (INIS)

    Eberle, H.; Ottmar, H.; Matussek, P.

    1985-04-01

    The KfK K-edge densiometer, designed for accurate element concentration measurements using the technique of X-ray absorptiometry at the K absorption edge, provides as an additional option the possibility to determine the isotopic composition of freshly separated plutonium from an gamma-spectrometric analysis of its self-radiation. This report describes the underlying methodology and experimental procedures for the isotopic analysis in the K-edge densitometer. The paper also presents and discusses the experimental results so far obtained from routine measurements on reprocessing product solutions. (orig.)

  7. Strontium isotope study of coal utilization by-products interacting with environmental waters.

    Science.gov (United States)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2012-01-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ((87)Sr/(86)Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-(87)Sr/(86)Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. The MAPLE-X concept dedicated to the production of radio-isotopes

    International Nuclear Information System (INIS)

    Heeds, W.

    1985-06-01

    MAPLE is a versatile new Canadian multi-purpose research reactor concept that meets the nuclear aspirations of developing countries. It is planned to convert the NRX reactor at Chalk River Nuclear Laboratories into MAPLE-X as a demonstration prototype of this concept and thereafter to dedicate its operation to the production of radio-isotopes. A description of MAPLE-X and details of molybdenum-99 production are given

  9. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C, [General Atomics

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  10. Mathematical modeling and multicriterion optimization for photonuclear production of the 67cu isotope

    International Nuclear Information System (INIS)

    Dikij, N.P.; Rudychev, Y.V.; Fedorchenko, D.V.; Khazhmuradov, M.A.

    2014-01-01

    This paper considers a method for 67 Cu isotope production using electron bremsstrahlung by the 68 Zn(gamma, p) 67 Cu reaction. The facility for 67 Cu isotope production contains an electron accelerator, electron-gamma converter and zinc target. To optimize this facility we developed three-dimensional model of the converter and the target. Using this model, we performed the mathematical modeling of zinc target irradiation and thermal-hydraulic processes inside the target for various parameters of the electron beam and converter configurations. For mathematical modeling of radiation processes we used the MCNPX software. Thermal-hydraulic simulation utilized the commercial SolidWorks software with Flow Simulation module. Mathematical modeling revealed that efficient 67 Cu isotope production needs smaller beam diameter and higher electron energy. Under these conditions target heat power also increases, thus additional cooling is necessary. If the beam diameter and the electron energy are fixed the most effective method to satisfy the operating parameters and retain an efficient isotope yield is to optimize photonuclear spectra of the target by variation of converter thickness. We developed an algorithm for multicriterion optimization and performed the optimization of the facility with account to coupled radiation and heat transfer processes.

  11. Calibrating the radiation detector of the ventilation of a PET radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Lacerda, Marco Aurelio de Sousa; Tavares, Jose Carlos Freitas; Silva, Juliana Batista da

    2011-01-01

    The aim of this work is to demonstrate a new methodology of estimating the calibration factor of the ventilation duct of a PET radiopharmaceutical facility. The proposed methodology was studied to minimize contamination risks for the workers, as well as the uncertainties attributed to the gas sampling. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. It was performed 3 consecutive irradiations with normal water (H 2 16 O) for production of nitrogen-13 to estimate the calibration factor of the detector located in the chimney of the facility. The readings of the detector were registered by the online radiation monitoring system (MEDISMARTS) during the transfer of the irradiated liquid until the count rate decreased for the background (BG) levels. The remaining activity of the water from the vial was measured and the decay corrected to the beginning of the transfer of the activity. The mean calibration factor estimated was (3.6 +- 0.5) kBq . m -3 . cps -1 . The maximum activities registered in the three irradiations were, respectively, 278 s, 370 s and 366 s after transferring of the activity to the hot cell. The conservative assumptions adopted and the values found for the calibration factor, which were close to the manufacturer published data, permit to estimate, safely, the discharges of radioactive gases in the installation. (author)

  12. Isotopic alloying to tailor helium production rates in mixed spectrum reactors

    International Nuclear Information System (INIS)

    Mansur, L.K.; Rowcliffe, A.F.; Grossbeck, M.L.; Stoller, R.E.

    1985-01-01

    The purposes of this work are to increase the understanding of mechanisms by which helium affects microstructure and properties, to aid in the development of materials for fusion reactors, and to obtain data from fission reactors in regimes of direct interest for fusion reactor applications. Isotopic alloying is examined as a means of manipulating the ratio of helium transmutations to atom displacements in mixed spectrum reactors. The application explored is based on artificially altering the relative abundances of the stable isotopes of nickel to systematically vary the fraction of 58 Ni in nickel bearing alloys. The method of calculating helium production rates is described. Results of example calculations for proposed experiments in the High Flux Isotope Reactor are discussed

  13. Summary Report of the First Research Coordination Meeting on Nuclear Data for Charged-Particle Monitor Reactions and Medical Isotope Production

    International Nuclear Information System (INIS)

    Nichols, Alan L.; Noy, Roberto Capote

    2013-02-01

    A summary is given of the first IAEA research coordination meeting on ''Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production'. Participants reassessed and reviewed the requirements for both cross-section and decay data, based on the earlier findings of three IAEA consultants' meetings (High-precision beta-intensity measurements and evaluations for specific PET radioisotopes, INDC(NDS)-0535, December 2008; Improvements in charged-particle monitor reactions and nuclear data for medical isotope production, INDC(NDS)-0591, September 2011; Intermediate-term nuclear data needs for medical applications: cross sections and decay data, INDC(NDS)-0596, September 2011). While significant emphasis was placed on the needs defined in IAEA report INDC(NDS)-0591, a limited number of relevant items and issues were also considered from the other two technical meetings. Recommendations focused on cross-section studies for a reasonably wide range of targets and projectiles, along with decay data measurements and evaluations for specific radionuclides. Individual presentations and discussions are described in this report, along with listings of the agreed work packages to be undertaken by the participants of the coordinated research project. (author)

  14. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  15. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.

    2007-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent

  16. Calibration setting numbers for dose calibrators for the PET isotopes "5"2Mn, "6"4Cu, "7"6Br, "8"6Y, "8"9Zr, "1"2"4I

    International Nuclear Information System (INIS)

    Wooten, A. Lake; Lewis, Benjamin C.; Szatkowski, Daniel J.; Sultan, Deborah H.; Abdin, Kinda I.; Voller, Thomas F.; Liu, Yongjian; Lapi, Suzanne E.

    2016-01-01

    For PET radionuclides, the radioactivity of a sample can be conveniently measured by a dose calibrator. These devices depend on a “calibration setting number”, but many recommended settings from manuals were interpolated based on standard sources of other radionuclide(s). We conducted HPGe gamma-ray spectroscopy, resulting in a reference for determining settings in two types of vessels containing one of several PET radionuclides. Our results reiterate the notion that in-house, experimental calibrations are recommended for different radionuclides and vessels. - Highlights: • Dose calibrators measure radioactivity by ionization of gas from emitted radiation. • Accuracy of dose calibrators depends on “calibration setting numbers” for isotopes. • Many manufacturer settings are interpolated from emissions of other radionuclides. • As a high-precision reference, HPGe gamma-ray spectroscopy was conducted. • New calibrations were found for PET isotopes "5"2Mn, "6"4Cu, "7"6Br, "8"6Y, "8"9Zr, and "1"2"4I.

  17. Synthetic techniques of radiopharmaceuticals production labeled with C-11 for PET in cardiology

    Science.gov (United States)

    Dyubkov, V. S.; Ekaeva, I. V.; Katunina, T. A.; Rumyantsev, A. S.; Silchenkov, A. V.; Tuflina, T. V.

    2017-01-01

    Positron emission tomography (PET) and PET-Computerised Tomography (CT) are unique, non-invasive diagnostic techniques, in which the local, temporal and quantitative distributions of radioactive labelled substances are measured to investigate physiological processes. It is well known that PET centre of Bakulev Scientific Centre for Cardiovascular Surgery is the oldest one in Moscow. During more than fifteen years a large number of patients have received PET scans. Due to main stream of Scientific Centre, emphasis is placed on examining the heart functioning. For the diagnosis innervation of the heart muscle a number of radiopharmaceuticals are used, including PET radiopharmaceuticals such as 11C-CGP 12177, 11C-meta-hydroxyephedrine as well as its synthetic analogues labelled with other PET radionuclides (18F, 68Ga). 11C-meta-hydroxyephedrine is one of the most perspective radiopharmaceutical for an investigation of cardiac receptors function due to required materials availability for a radio synthesis in Russia. The main advantage of proposed 11C-meta-hydroxyephedrine synthesis technique is the use of a catalyst which allows one decrease reaction time from 5 minutes to 30 seconds. Obtained results allow one decrease reaction time of methylation and increase radiochemical and technological yields.

  18. Development of HM12 cyclotron for PET

    International Nuclear Information System (INIS)

    Morita, Takuzo; Kawama, Tetsuo; Fujii, Kazuo

    2000-01-01

    In Japan, there are at present more than 30 PET (Positron Emission Tomography) facilities. The movements of medical insurance application to the PET diagnosis using [ 18 F] FDG (2-[ 18 F]-fluoro-2-deoxy-glucose) by the Ministry of Health and Welfare are being enhanced by PET related people. Therefore, more clinical centers using PET system are expected to be built in the near future. HM12 cyclotron was developed to meet such market demands for PET, and the prototype machine has been rent to Cyclotron Radio Isotope Center (CYRIC) of Tohoku University since Oct. 1998 for their use of clinical research with positron emitters like 11 C, 13 N, 15 O and 18 F. We got many technical data of HM12 Cyclotron on the clinical base. The data was enough to establish the reliability of HM12 system operation under the clinical condition. The first commercial product of HM12 Cyclotron was delivered to National Cancer Center in March 2000. The final performance test will be finished by the end of June 2000. (author)

  19. Short-lived radionuclide production capability at the Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Mausner, L.F.; Richards, P.

    1985-01-01

    The Brookhaven National Linac Isotope Producer is the first facility to demonstrate the capability of a large linear accelerator for efficient and economical production of difficult-to-make, medically useful radionuclides. The linac provides a beam of 200-MeV protons at an integrated beam current of up to 60 μA. The 200-MeV proton energy is very suitable for isotope production because the spallation process can create radionuclides unavailable at lower energy accelerators or reactors. Several medically important short-lived radionuclides are presently being prepared for on-site and off-site collaborative research programs. These are iodine-123, iron-52, manganese-52m, ruthenium-97, and the rubidium-81-krypton-81m system. The production parameters for these are summarized

  20. Computer study of isotope production for medical and industrial applications in high power accelerators

    Science.gov (United States)

    Mashnik, S. G.; Wilson, W. B.; Van Riper, K. A.

    2001-07-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes. These methods are readily applicable both to accelerator and reactor environments and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements that may be expanded to other reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures, is available on the Web at http://t2.lanl.gov/publications/.

  1. Optimization of neutron flux distribution in Isotope Production Reactor

    International Nuclear Information System (INIS)

    Valladares, G.L.

    1988-01-01

    In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely the Vmod / Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO 2 ) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author) [pt

  2. Production of exotic, short lived carbon isotopes in ISOL-type facilities

    CERN Document Server

    Franberg, Hanna; Köster, Ulli; Ammann, Markus

    2008-01-01

    The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

  3. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Science.gov (United States)

    He, Pengzhen; Alexander, Becky; Geng, Lei; Chi, Xiyuan; Fan, Shidong; Zhan, Haicong; Kang, Hui; Zheng, Guangjie; Cheng, Yafang; Su, Hang; Liu, Cheng; Xie, Zhouqing

    2018-04-01

    Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42-)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m-3 with a mean of (141 ± 88 (1σ)) µg m-3, with SO42- representing 8-25 % of PM2.5 mass. The observed Δ17O(SO42-) varied from 0.1 to 1.6 ‰ with a mean of (0.9 ± 0.3) ‰. Δ17O(SO42-) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5 ≥ 75 µg m-3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III-V, heterogeneous sulfate production (Phet) was estimated to contribute 41-54 % to total sulfate formation with a mean of (48 ± 5) %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫ H2O + HSO3- + SO32-) oxidation by H2O2 in aerosol water accounted for 5-13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42-). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21-22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42-), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66-73 % of Phet. The assumption about the thermodynamic state of aerosols

  4. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Directory of Open Access Journals (Sweden)

    P. He

    2018-04-01

    Full Text Available Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42− collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m−3 with a mean of (141  ±  88 (1σ µg m−3, with SO42− representing 8–25 % of PM2.5 mass. The observed Δ17O(SO42− varied from 0.1 to 1.6 ‰ with a mean of (0.9  ±  0.3 ‰. Δ17O(SO42− increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75 µg m−3 of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet was estimated to contribute 41–54 % to total sulfate formation with a mean of (48  ±  5 %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV ( =  SO2 ⚫ H2O + HSO3−  +  SO32− oxidation by H2O2 in aerosol water accounted for 5–13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−. Heterogeneous sulfate production via S(IV oxidation by O3 was estimated to contribute 21–22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−, such as S(IV oxidation by NO2 in aerosol water and/or by O2 via a

  5. Inductively coupled plasma mass-spectrometric determination of platinum in excretion products of client-owned pet dogs.

    Science.gov (United States)

    Janssens, T; Brouwers, E E M; de Vos, J P; de Vries, N; Schellens, J H M; Beijnen, J H

    2015-06-01

    Residues of antineoplastic drugs in canine excretion products may represent exposure risks to veterinary personnel, owners of pet dogs and other animal care-takers. The aim of this study was to measure the extent and duration of platinum (Pt) excretion in pet dogs treated with carboplatin. Samples were collected before and up to 21 days after administration of carboplatin. We used validated, ultra-sensitive, inductively coupled plasma-mass spectrometry assays to measure Pt in canine urine, faeces, saliva, sebum and cerumen. Results showed that urine is the major route of elimination of Pt in dogs. In addition, excretion occurs via faeces and saliva, with the highest amounts eliminated during the first 5 days. The amount of excreted Pt decreased over time but was still quantifiable at 21 days after administration of carboplatin. In conclusion, increased Pt levels were found in all measured excretion products up to 21 days after administration of carboplatin to pet dogs, with urine as the main route of excretion. These findings may be used to further adapt current veterinary guidelines on safe handling of antineoplastic drugs and treated animals. © 2013 Blackwell Publishing Ltd.

  6. Isotope Production for Pet’s Changing Clientele: Surviving the Centrifugal Forces

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, T. E.; Engle, J. W.; Nickles, R. J. [Department of Medical Physics, University of Wisconsin, Madison, WI, 53706 (United States)

    2009-07-01

    After thirty years of slow growth, the production of PET tracers at the University of Wisconsin has ignited, entering an exponential phase. The capacity has undergone a major boost with new facilities, but difficulties arise in trying to maintain a balance that has traditionally existed between the expectations of basic scientists using novel tracers, clinicians needing reliable supply of routine agents, and our academic mission for the training of graduate students toward their doctoral degrees. This IAEA CRP has provided a template that has assisted us in our pursuit of sustainable operation, critical for the transfer of technology to Member States with widely differing needs and resources. (author)

  7. Isotope Production for Pet’s Changing Clientele: Surviving the Centrifugal Forces

    International Nuclear Information System (INIS)

    Barnhart, T.E.; Engle, J.W.; Nickles, R.J.

    2009-01-01

    After thirty years of slow growth, the production of PET tracers at the University of Wisconsin has ignited, entering an exponential phase. The capacity has undergone a major boost with new facilities, but difficulties arise in trying to maintain a balance that has traditionally existed between the expectations of basic scientists using novel tracers, clinicians needing reliable supply of routine agents, and our academic mission for the training of graduate students toward their doctoral degrees. This IAEA CRP has provided a template that has assisted us in our pursuit of sustainable operation, critical for the transfer of technology to Member States with widely differing needs and resources. (author)

  8. Gallium‐68 DOTATATE Production with Automated PET Radiopharmaceutical Synthesis System: A Three Year Experience

    Directory of Open Access Journals (Sweden)

    Alireza Aslani

    2014-10-01

    Full Text Available Objective(s: Gallium‐68 (Ga‐68 is an ideal research and hospital‐based PET radioisotope. Currently, the main form of Ga‐68 radiopharmaceutical that is being synthesised in‐house is Ga‐68 conjugated with DOTA based derivatives. The development of automated synthesis systems has increased the reliability, reproducibility and safety of radiopharmaceutical productions. Here we report on our three year, 500 syntheses experience with an automated system for Ga‐68 DOTATATE. Methods: The automated synthesis system we use is divided into three parts of a servomotor modules, b single use sterile synthesis cassettes and, c a computerized system that runs the modules. An audit trail is produced by the system as a requirement for GMP production. The required reagents and chemicals are made in‐. The Germanium breakthrough is determined on a weekly basis. Production yields for each synthesis are calculated to monitor the performance and efficiency of the synthesis. The quality of the final product is assessed after each synthesis by ITLC‐SG and HPLC methods. Results: A total of 500 Ga‐68 DOTATATE syntheses (>800 patient doses were performed between March 2011 and February 2014. The average generator yield was 81.3±0.2% for 2011, 76.7±0.4% for 2012 and 75.0±0.3% for 2013. Ga‐68 DOTATATE yields for 2011, 2012, and 2013 were 81.8±0.4%, 82.2±0.4% and 87.9±0.4%, respectively. These exceed the manufacturer’s expected value of approximately 70%. Germanium breakthrough averaged 8.6×10‐6% of total activity which is well below the recommended level of 0.001%. The average ITLC‐measured radiochemical purity was above 98.5% and the average HPLC‐measured radiochemical purity was above 99.5%. Although there were some system failures during synthesis, there were only eight occasions where the patient scans needed to be rescheduled. Conclusion: In our experience the automated synthesis system performs reliably with a relatively low incident

  9. TRIGA International - History of Training Research Isotope production General Atomics

    International Nuclear Information System (INIS)

    2008-01-01

    TRIGA conceived at GA in 1956 by a distinguished group of scientists including Edward Teller and Freeman Dyson. First TRIGA reactor Mk-1 was commissioned on 3 may 1958 at G.A. Characteristic feature of TRIGA reactors is inherent safety: Sitting can be confinement or conventional building. TRIGA reactors are the most prevalent in the world: 67 reactors in 24 countries. Steady state powers up to 14 MWt, pulsing up to 22,000 MWt. To enlarge the scope of its manufactured products, CERCA engaged in a Joint Venture with General Atomics, and in July 1995 a new Company was founded: TRIGA INTERNATIONAL SAS (50% GA, 50% CERCA; Head Office: Paris (France); Sales offices: GA San Diego (Ca, USA) and CERCA Lyon (France); Manufacturing plant: CERCA Romans. General Atomics ID: founded in 1955 at San Diego, California, by General Dynamics; status: Privately held corporation; owners: Neal and Linden Blue; business: High technology research, design, manufacturing, and production for industry and Government in the U.S. and overseas; locations: U.S., Germany, Japan, Australia, Thailand, Morocco; employees: 5,000. TRIGA's ID: CERCA is a subsidiary of AREVA, born in November 05, 1957. Activities: fuel manufacture for research reactor, equipment and components for high-energy physics, radioactive sources and reference sources; plants locations: Romans and Pierrelatte (France); total strength: 180. Since the last five years TRIGA has manufactured and delivered more than 800 fuel elements with a door to door service. TRIGA International has the experience to manufacture all types of TRIGA fuel: standard fuel elements, instrumented fuel elements, fuel followed control rods, geometry: 37.3 mm (1.47 in.), 35.8 mm (1.4 in), 13 mm (0.5 in), chemical Composition: U w% 8.5, 12, 20, 30 and 45 w/o, erbium and no erbium. TRIGA International is on INL's approved vendor list (ISO 9000/NQA) and is ready to meet any TRIGA fuel needs either in the US or worldwide

  10. Recent progress of in-flight separators and rare isotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshiyuki, E-mail: kubo@ribf.riken.jp

    2016-06-01

    New-generation in-flight separators are being developed worldwide, including the Super-FRS separator at the GSI Facility for Antiproton and Ion Research (FAIR), the ARIS separator at the Michigan State University (MSU) Facility for Rare Isotopes Beams (FRIB), and the BigRIPS separator at the RIKEN RI Beam Factory (RIBF), each of which is aimed at expanding the frontiers of rare isotope (RI) production and advancing experimental studies on exotic nuclei far from stability. Here, the recent progress of in-flight separators is reviewed, focusing on the advanced features of these three representative separators. The RI beam production that we have conducted using the BigRIPS separator at RIKEN RIBF is also outlined.

  11. Multi-isotopic signatures of organic and conventional Italian pasta along the production chain

    DEFF Research Database (Denmark)

    Bontempo, L.; Camin, F.; Paolini, M.

    2016-01-01

    The variability of stable isotope ratios (δ2H, δ13C, δ15N, δ18O and δ34S) along the production chain of pasta (durum wheat, flour and pasta) produced by using both conventional and organic farming systems in four Italian regions in 2 years was investigated. The aim was to evaluate if and how...... control procedures that can be used to check the geographical origin of Italian organic and conventional pasta and its raw materials....

  12. Statistical model of hadrons multiple production in space of total angular momentum and isotopic spin

    International Nuclear Information System (INIS)

    Gridneva, S.A.; Rus'kin, V.I.

    1980-01-01

    Basic features of the statistical model of multiple hadron production based on microcanonical distribution and taking into account the laws of conservation of total angular momentum, isotopic spin, p-, G-, C-eveness and Bose-Einstein statistics requirements are given. The model predictions are compared with experimental data on anti NN annihilation at rest and e + e - annihilation in hadrons at annihilation total energy from 2 to 3 GeV [ru

  13. Considerations related to the deuterium-depleted water isotopic analysis for an industrial production pilot plant

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru; Irimescu, Rodica

    2000-01-01

    In the last few years, there is a major interest related to the use of Deuterium Depleted Water (DDW) for biological and medical purposes. Therefore, a production installation for DDW was developed and now, it is working in our Institute. The deuterium isotopic concentration for the final product is in the 10 - 40 ppm D / (D + H) range depending on customers' requirements. In order to control and manage the production process and also to validate the final product, a special procedure for deuterium content measurement for DDW by Isotopic Ratio Mass Spectrometry was developed. The main instrumentation is a MAT 250 IRMS with a hydrogen preparation line based on the zinc reduction process. The first concern regarding the analysis procedure for these water samples with very low deuterium concentration has been related to the preparation of an internal standard with a D / (D + H) isotopic value in the measurement range. For this raison, a distinct procedure was developed and applied, so that starting to the well-known VSMOW standard and so, a sequence of 12 samples with decreasing deuterium content was obtained. These samples were measured and 3 / 2 ratio mass signals versus 2 mass signal were plotted and statistically analyzed. Obviously, for each measurement, a H 3+ correction factor was calculated and applied, as a results of an entire statistically elimination procedure and by extrapolation of the linear curve plotted, a value for the primary DDW was determined. Other important problem related to deuterium content determination was to minimize the H 3+ factor correction. As the deuterium content is very low the contribution of this factor to the 3 mass signal becomes very important. Therefore, special operations were developed, considering the behaviour of linear dependence between 3 / 2 mass signal versus 2 mass signal in the lower part. Finally, special attention was given to estimate the lower isotopic concentration analysis limit. (authors)

  14. Production yields of noble-gas isotopes from ISOLDE UC$_{x}$/graphite targets

    CERN Document Server

    Bergmann, U C; Catherall, R; Cederkäll, J; Diget, C A; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gausemel, H; Georg, U; Giles, T; Hagebø, E; Jeppesen, H B; Jonsson, O C; Köster, U; Lettry, Jacques; Nilsson, T; Peräjärvi, K; Ravn, H L; Riisager, K; Weissman, L; Äystö, J

    2003-01-01

    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UC$_{x}$/graphite and ThC$_{x}$/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UC$_x$/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \\end{abstract} \\begin{keyword} % keywords here, in the form: keyword \\sep keyword radioactive ion beams \\sep release \\sep ion yields \\sep ISOL (Isotope Separation On-Line) \\sep uranium and thorium carbide targets. % PACS codes here, in the form: \\PACS code \\sep code...

  15. Government of Canada response to the report of the Expert Review Panel on medical isotope production

    International Nuclear Information System (INIS)

    Paradis, C.

    2010-01-01

    Recent supply disruptions have highlighted the fragility of the supply chain that delivers essential medical isotopes to patients globally. A new and more reliable way of supplying isotopes to Canadians needs to be found. That is why the Government of Canada established the Expert Review Panel on Medical Isotope Production (the Panel) in June 2009. The Government recognizes the relatively long lead times associated with the development of any new source of medical. isotopes. To ensure that appropriate action is taken now for the long term, the Government tasked the Panel with reporting to the Minister. of Natural Resources on its assessment of the most viable options for securing supplies of technetium-99m (Tc99r) for the Canadian health care system over the medium and long term and the actions that may be required by governments and others to facilitate realization of these options. The Panel reported to the Minister of Natural Resources on November 30, 2009. Since then, the Government has been carefully considering the recommendations of the Panel within the context of the broader nuclear and health care landscape. What follows is the Government's response to the Panel's thoughtful, comprehensive and insightful report, including actions that are planned based on its recommendations. (author)

  16. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  17. Investigation of two technical toxaphene products by using isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, W.; Armbruster, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie; Gleixner, G. [Max-Planck-Institut fuer Biogeochemie, Jena (Germany)

    2004-09-15

    Organochlorine compounds have been used in high quantities throughout the past 60 years. Being long-lived in the environment and toxic to humans and wildlife, some of them were classified as persistent organic pollutants (POPs). One of the POPs of special concern is toxaphene which is produced by the chlorination of the natural product camphene (or {alpha}-pinene). The technical products consist of several hundred compounds, mainly of chlorobornanes with an average number of eight chlorine substituents. Toxaphene has been produced in high quantities in different parts of the world. Even though the use has been discontinued during the last two decades, there are still several ecosystems which are heavily contaminated with this chloropesticide. Due to the huge variety of the technical products accompanied with a severe change of composition in the environment, analytical tracing back of toxaphene residues to a specific product has not yet been achieved. One of the potential analytical tools for distinguishing substances that differ only in their way of production is the determination of ratios of stable isotopes ({sup 13}C/{sup 12}C; {sup 2}H/{sup 1}H; {sup 15}N/{sup 14}N). Since the synthesis of toxaphene is starting from natural compounds obtained from different continents, the technical products could have different ratios of stable isotopes. In this study, we investigated the {sup 13}C/{sup 12}C ratio of two former major toxaphene products.

  18. Production of noble gas isotopes by proton-induced reactions on bismuth

    International Nuclear Information System (INIS)

    Leya, I.; David, J.-C.; Leray, S.; Wieler, R.; Michel, R.

    2008-01-01

    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr- and Xe-isotopes from bismuth (Bi) from the respective reaction thresholds up to 2.6 GeV. Here we present 275 cross sections for 23 nuclear reactions. The production of noble gas isotopes from Bi is of special importance for design studies of accelerator driven systems (EA/ADS) and nuclear spallation sources. For experiments with proton energies above 200 MeV the mini-stack approach was used instead of the stacked-foil technique in order to minimise the influences of secondary particles on the residual nuclide production. Comparing the cross sections for Bi to the data published recently for Pb indicates that for 4 He the cross sections for Bi below 200 MeV are up to a factor of 2-3 higher than the Pb data, which can be explained by the production of α-decaying Po-isotopes from Bi but not from Pb. Some of the cross sections for the production of 21 Ne from Bi are affected by recoil effects from neighboured Al-foils, which compromises a study of a possible lowering of the effective Coulomb-barrier. The differences in the excitation functions between Pb and Bi for Kr- and Xe-isotopes can be explained by energy-dependent higher fission cross sections for Bi compared to Pb. The experimental data are compared to results from the theoretical nuclear model codes INCL4/ABLA and TALYS. The INCL4/ABLA system describes the cross sections for the production of 4 He-, Kr- and Xe-isotopes reasonably well, i.e. mostly within a factor of a few. In contrast, the model completely fails describing 21 Ne, 22 Ne, 36 Ar and 38 Ar, which are produced via spallation and/or multifragmentation. The TALYS code is only able to accurately predict reaction thresholds. The absolute values are either significantly over- or underestimated. Consequently, the comparison of measured and modelled thin target cross sections clearly indicates that experimental data are still needed because the

  19. Improved automated production of 18F-FMISO and its tumor hypoxia imaging by Micro-PET/CT

    International Nuclear Information System (INIS)

    Wang Mingwei; Zhang Yongping; Zheng Yujia; Bao Xiao; Zheng Yingjian

    2013-01-01

    Background: 1-H-1-(3-[ 18 F]fluoro-2-hydroxypropyl)-2-nitroimidazole ( 18 F-FMISO) is a specific molecular imaging probe for tumor hypoxia imaging, and its PET/CT imaging has an important clinical value for planning cancer radiotherapy target volume. Purpose: This study aimed to develop an improved, automated production of 18 F-FMISO and to perform Micro-PET/CT imaging of tumor hypoxia. Methods: Based on the labeling precursor NITTP and a simple 'one-pot' method, an upgraded Explora GN module together with Explora LC was adopted to run radiofluorination (NITTP (10 mg), MeCN (1.0 mL), 120℃, 5.0 min), hydrolysis (HCI (1.0 mol/L, 1.0 mL), 130℃, 8.0 min) and high performance liquid chromatography (HPLC) purification to produce 18 F-FMISO automatically. Moreover, Radio-HPLC and Radio-TLC were applied for the quality control, and Micro-PET/CT scanner for hypoxia imaging of SW1990 pancreatic tumor-bearing mice. Results: As results, 18 F-FMISO was obtained with the synthesis time for about 65 min, the radiochemical yield of (30±5.0)% (no decay corrected, n=20), the radiochemical purity of above 99%, the specific activity of (2.04±0.17)x10 11 Bq·μmol -1 , plus with the enhanced chemical purity. Moreover, MicroPET/CT imaging showed that 18 F-FMISO presented whole-body distribution in SW1990 tumor-bearing mice, and the optimized time point for tumor hypoxia imaging was 3 h post injection with the uptake ratios of tumor-to-muscle of 3.00±0.08. Conclusion: In sum, we developed an improved, automated production of 18 F-FMISO with high performance liquid chromatography purification, high radiochemical yield, high specific activity and high reliability , and also verified its MicroPET/CT imaging of tumor hypoxia for providing experimental reference data. (authors)

  20. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  1. Lead Contamination in Cocoa and Cocoa Products: Isotopic Evidence of Global Contamination

    OpenAIRE

    Rankin, Charley W.; Nriagu, Jerome O.; Aggarwal, Jugdeep K.; Arowolo, Toyin A.; Adebayo, Kola; Flegal, A. Russell

    2005-01-01

    In this article we present lead concentrations and isotopic compositions from analyses of cocoa beans, their shells, and soils from six Nigerian cocoa farms, and analyses of manufactured cocoa and chocolate products. The average lead concentration of cocoa beans was ≤ 0.5 ng/g, which is one of the lowest reported values for a natural food. In contrast, lead concentrations of manufactured cocoa and chocolate products were as high as 230 and 70 ng/g, respectively, which are consistent with mark...

  2. Production of krypton isotopes by (p,xn) reactions on bromine

    International Nuclear Information System (INIS)

    Chiengmai, S.N.; Hans, L.; Petter, M.

    1976-06-01

    Radioactive isotopes of the halogens are of great importance when preparing radiopharmaceuticals. 77 Br has mainly been produced by a direct reaction 75 As(α,2n) 77 Br. Recently an indirect way, producing 77 Kr which then decays to 77 Br, has been suggested. Since this provides a convenient method of separation this work develops this idea further making use of high energy protons on bromine Br(p,xn) 77 Kr→ 77 Br. The production cross-section for this reaction has been studied in the proton-energy interval of 20-80 MeV and the optimal production procedures considered. (Auth.)

  3. Selection of the process for the heavy water production using isotopic exchange amonia-hydrogen

    International Nuclear Information System (INIS)

    Guzman R, G.H.

    1980-01-01

    The utilization of the Petroleos Mexicanos ammonia plants for heavy water production by the isotopic exchange NH 3 -H 2 process is presented, in addition a description of the other heavy water production processes was presented. In the ammonia hydrogen process exist two possible alternatives for the operation of the system, one of them is to carry out the enrichment to the same temperature, the second consists in making the enrichment at two different temperatures (dual temperature process), an analysis was made to select the best alternative. The conclusion was that the best operation is the dual temperature process, which presents higher advantages according to the thermodynamics and engineering of the process. (author)

  4. Installation and testing of a hospital-based cyclotron for radiation therapy and isotope production

    International Nuclear Information System (INIS)

    Almond, P.R.; Marbach, J.R.; Otte, V.A.

    1983-01-01

    A hospital based cyclotron is under installation at The University of Texas M.D. Anderson Hospital in Houston. This machine will be used for the production of radioactive isotopes and for the generation of neutrons for the radiotherapy treatment of cancer. It is a Cyclotron Corporation CP-42 negative proton accelerator. For neutron production the protons are transported through an isocentrically mounted beam transport system that can be rotated around the patient. The shielding requirements of this facility will be described as will the initial measurements on the characteristics of the neutron beam

  5. Production of transplutonium elements in the high flux isotope reactor (HFIR)

    International Nuclear Information System (INIS)

    Bigelow, J.E.; Corbett, B.L.; King, L.J.; McGuire, S.C.; Sims, T.M.

    1980-01-01

    The techniques described have been demonstrated to be adequate to predict the contents of transplutonium element production targets which have been irradiated in the HFIR. The deviations, at least for isotopes of mass 253 or less, are generally within the usual analytical uncertainties, or else are for isiotopes which are of little overall import to the program. Work is especially needed to get a better picture of the production of 250 Cm, 254 Es, 255 Es, and ultimately 257 Fm, since researchers are frequently stating their interest in obtaining larger quantities of these rare and difficult-to-produce nuclides

  6. Production and identification of heavy Ni isotopes: Evidence for the doubly magic nucleus 7828Ni. Short note

    International Nuclear Information System (INIS)

    Engelmann, C.; Ameil, F.; Bernas, M.; Heinz, A.; Janas, Z.; Kozhuharov, C.; Miehe, C.; Pfuetzner, M.; Roehl, C.; Stephan, C.; Tassan-Got, L.; Voss, B.

    1995-07-01

    We report the first observation of the doubly magic nucleus 78 Ni 50 and the heavy isotopes 77 Ni, 73,74,75 Co, 80 Cu. The isotopes were produced by nuclear fission in collisions of 750 A.MeV projectiles of 238 U on Be target nuclei. The fully-stripped fission products were separated in-flight by the fragment separator FRS and identified event-by-event by measuring the magnetic rigidity, the trajectory, the energy deposit, and the time of flight. Production cross-sections and fission yields for the new Ni-isotopes are given. (orig.)

  7. Production and separation of neutron-rich rare isotopes around and below the Fermi energy

    CERN Document Server

    Souliotis, G A; Chubarian, G; Yennello, S J

    2003-01-01

    The production of n-rich rare isotopes around and below the Fermi energy is investigated using beams from the K500 Superconducting Cyclotron and the MARS recoil separator at the Cyclotron Institute of Texas A and M University. The experimental results from the reactions of 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni and 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 Sn are presented and compared with simulations. The calculations involve a deep inelastic transfer (DIT) code for the primary interaction stage followed by the code GEMINI for the de-excitation stage. The results are also compared with the EPAX parametrization. The data on the 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni reaction show that both proton-removal and several-neutron pick-up isotopes are produced. An enhancement is observed in the production of n-rich isotopes close to the projectile relative to the predictions of DIT/GEMINI and the expectations of EPAX. The data of 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 ...

  8. Cosmic-ray production rates of neon isotopes in meteorite minerals

    International Nuclear Information System (INIS)

    Bhandari, N.

    1988-01-01

    The rates of production of 21 Ne and 22 Ne in spallation reactions, both due to solar as well as galactic cosmic rays, in some major meteoritic minerals, e.g. olivines, feldspars and pyroxenes, are calculated using their energy spectra and excitation functions. The production profiles of 21 Ne and 22 Ne due to galactic cosmic rays, and the 22 Ne/ 21 Ne ratio depend upon the size of the meteoroid. The 22 Ne/ 21 Ne ratio is very sensitive to the abundance of sodium and consequently its depth profile is distinctly different in feldspars, the ratio increasing with depth rather than decreasing as in pyroxenes and olivines. In the near-surface regions, up to a depth of 2 cm, production due to solar flare protons dominates, giving rise to a steep gradient in isotopic production as well as in the 22 Ne/ 21 Ne ratio. Composite production profiles are given and compared with measurements in some meteorites. (author). 22 refs

  9. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  10. Gamma ray NDA assay system for total plutonium and isotopics in plutonium product solutions

    International Nuclear Information System (INIS)

    Cowder, L.R.; Hsue, S.T.; Johnson, S.S.; Parker, J.L.; Russo, P.A.; Sprinkle, J.K.; Asakura, Y.; Fukuda, T.; Kondo, I.

    1979-01-01

    A LASL-designed gamma-ray NDA instrument for assay of total plutonium and isotopics of product solutions at Tokai-Mura is currently installed and operating. The instrument is, optimally, a densitometer that uses radioisotopic sources for total plutonium measurements at the K absorption edge. The measured transmissions of additional gamma-ray lines from the same radioisotopic sources are used to correct for self-attenuation of passive gamma rays from plutonium. The corrected passive data give the plutonium isotopic content of freshly separated to moderately aged solutions. This off-line instrument is fully automated under computer control, with the exception of sample positioning, and operates routinely in a mode designed for measurement control. A one-half percent precision in total plutonium concentration is achieved with a 15-minute measurement

  11. Radioactive isotopes are use wide in medicine

    International Nuclear Information System (INIS)

    Vargas, Celso

    2011-01-01

    The radioactive isotopes are used in medicine to view the status of an organ under different conditions; especially in the evolution of an organism after treatment of a cancer. In this process, three key areas have combined; first, the production of isotopes by developing of accelerators or reactors both linear accelerator and cyclotrons. Second, the use of suitable equipment such as PET (Positron emission tomography) for accurate scan of internal organs at physiological and biochemical level or molecular for diagnosis and effective treatment of diseases such as cancer. Currently, the trend has been to combine PET with other technologies such as CAT (computed axial tomographic) or SPECT (Single photon emission computer tomography). Third and finally, the development of molecules increasingly specific that have allowed to obtain several chemical compounds for different uses [es

  12. United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

  13. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    Science.gov (United States)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  14. Inferring biome-scale net primary productivity from tree-ring isotopes

    Science.gov (United States)

    Pederson, N.; Levesque, M.; Williams, A. P.; Hobi, M. L.; Smith, W. K.; Andreu-Hayles, L.

    2017-12-01

    Satellite estimates of vegetation growth (net primary productivity; NPP), tree-ring records, and forest inventories indicate that ongoing climate change and rising atmospheric CO2 concentration are altering productivity and carbon storage of forests worldwide. The impact of global change on the trends of NPP, however, remain unknown because of the lack of long-term high-resolution NPP data. For the first time, we tested if annually resolved carbon (δ13C) and oxygen (δ18O) stable isotopes from the cellulose of tree rings from trees in temperate regions could be used as a tool for inferring NPP across spatiotemporal scales. We compared satellite NPP estimates from the moderate-resolution imaging spectroradiometer sensor (MODIS, product MOD17A) and a newly developed global NPP dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset to annually resolved tree-ring width and δ13C and δ18O records from four sites along a hydroclimatic gradient in Eastern and Central United States. We found strong correlations across large geographical regions between satellite-derived NPP and tree-ring isotopes that ranged from -0.40 to -0.91. Notably, tree-ring derived δ18O had the strongest relation to climate. The results were consistent among the studied tree species (Quercus rubra and Liriodendron tulipifera) and along the hydroclimatic conditions of our network. Our study indicates that tree-ring isotopes can potentially be used to reconstruct NPP in time and space. As such, our findings represent an important breakthrough for estimating long-term changes in vegetation productivity at the biome scale.

  15. A level-playing field for medical isotope production - How to phase-out reliance on HEU

    International Nuclear Information System (INIS)

    Kuperman, A.J.

    1999-01-01

    Two decades ago, civilian commerce in highly enriched uranium (HEU) for use as targets in the production of medical isotopes was considered a relatively minor security concern for three reasons. First, the number of producers was small. Second, the amount of HEU involved was small. Third, the amount of HEU was dwarfed by the quantities of HEU in civilian commerce as fuel for nuclear research and test reactors. Now, however, all three variables have changed. First, as the use of medical isotopes has expanded rapidly, production programs are proliferating. Second, as the result of such new producers and the expansion of existing production facilities, the amounts of HEU involved are growing. Third, as the RERTR program has facilitated the phase-out of HEU as fuel in most research and test reactors, the quantities of HEU for isotope production have come to represent a significant percentage of global commerce in this weapons-usable material. Medical isotope producers in several states are cooperating with the RERTR program to convert to low-enriched uranium (LEU) targets within the next few years, and one already relies on LEU for isotope production. However, the three biggest isotope producers - in Canada and the European Union - continue to rely on HEU, creating a double-standard that endangers the goal of the RERTR program. Each of these three producers has expressed economic concerns about being put at a competitive disadvantage if it alone converts. This paper proposes forging a firmer international consensus that all present and future isotope producers should convert to LEU, and calls for codifying such a commitment in a statement of intent to be prepared by producers over the next year. With such a level playing field, no producer would need fear being put at a competitive disadvantage by conversion, or being stigmatized by pressure groups for continued reliance on HEU. The phase-out of all HEU commerce for isotope production could be achieved within about

  16. Production technology status and development trend of stable isotopes C, N and O

    International Nuclear Information System (INIS)

    Li Hulin

    2011-01-01

    It has been over half a century since the successful separation of table isotopes carbon, nitrogen and oxygen. The production capacity achieved three levels improvements from the laboratory-scale of one hundred grams, to the pilot production of several kilo- grams, and mass production of one hundred kilograms. The separation technologies also achieved three generation progress. The first generation of separation technology was represented by thermal diffusion method, chromatography, and ion exchange; the second generation of separation technology was represented by chemical exchange, distillation; the third generation of separation technology was characterized by the techniques innovation of material recycling, energy coupling, energy saving, and large-scale production capacity. At present, "1"3C is wholly produced by cryogenic distillation method, "1"5N is produced by NO/HNO_3 chemical exchange and NO cryogenic distillation method, and "1"80 is manufactured by distillation of water, and cryogenic distillation of NO and O_2. The same features of these separation methods are achieving energy coupling, materials recycling, large-scale producing, and energy conservation in the process. In the future, it will be the theme of stable isotope industry to develop environment-friendly, raw materials available, energy saving, low-cost, and large-scale manufacturing technology through continuous technological innovation. (authors)

  17. Preliminary review on isotope separation of long life fission products. Application research of laser isotope separation to 135Cs

    International Nuclear Information System (INIS)

    Oshita, Hironori; Ozawa, Masaki; Ishikawa, Makoto; Koyama, Shin'ichi; Akatsuka, Hiroshi

    2007-09-01

    Recently establishment of self consistent nuclear fuel cycle has been required with respect to economical efficiency, safety and reduction of the load to the environment. Especially 135 Cs included in spent fuel of nuclear power plants has extremely long half life (3.0x10 6 y) and its water solubility leads to the anxiety of exudation into ground water for geologic disposal. The conventional methods for isotope separation based on the mass difference of isotope could not gain large separation factors, which leads to the requirement of operational repetition and large equipment. Furthermore many elements of which the masses are near to that of the object isotope are included in spent fuel, which makes it difficult to expect high separation factor by the methods merely based on the mass difference. Recent technology development of laser e.g. dye laser or semi-conductor laser has come to make it possible in principle to excite a specific isotope and separate it from other isotopes making use of its intrinsic physical and chemical properties of the excited state. This laser isotope separation (LIS) technique is believed to be suitable for cesium because of its stable properties on light absorption and emission and many studies have come to be made. This document reviews the principle, application to the separation of 135 Cs and current status of LIS and reports the subjects to be solved and suggestions; especially laser induced chemical reactions expected as a low-cost and simple equipment isotope separation method. The resulting extracted subjects are 1) the specification of the excited states of cesium i.e. extra-nuclear electron configuration, life (or duration) and transition probability, 2) the factors that may effect on the isotope shift of cesium; the mean square radius of the nucleus, electric quadrupole moment and extra nuclear electron wave function at the nucleus, 3) the factors that may cause the disturbance of the selectivity; resonant energy transference

  18. Clinical PET application

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Hong, Song W.; Choi, Chang W.; Yang, Seong Dae [Korea Cancer Center Hospital, Seoul (Korea)

    1997-12-01

    PET gives various methabolic images, and is very important, new diagnostic modality in clinical oncology. In Korea Cancer Center Hospital, PET is installed as a research tool of long-mid-term atomic research project. For the efficient use of PET for clinical and research projects, income from the patients should be managed to get the raw material, equipment, manpower, and also for the clinical PET research. 1. Support the clinical application of PET in oncology. 2. Budgetary management of income, costs for raw material, equipment, manpower, and the clinical PET research project. In this year, 250 cases of PET images were obtained, which resulted total income of 180,000,000 won. 50,000,000 won was deposited for the 1998 PET clinical research. Second year PET clinical research should be managed under unified project. Increased demand for {sup 18}FDG in and outside KCCH need more than 2 times production of {sup 18}FDG in a day purchase of HPLC pump and {sup 68}Ga pin source which was delayed due to economic crisis, should be done early in 1998. (author). 2 figs., 3 tabs.

  19. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    International Nuclear Information System (INIS)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez; Universidade Federal de Pernambuco

    2017-01-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly "9"9Mo. Compare to multipurpose research reactors, an AHR dedicated for "9"9Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  20. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez, E-mail: milianperez89@gmail.com, E-mail: dmilian@instec.cu, E-mail: lorenapilar1109@gmail.com, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly {sup 99}Mo. Compare to multipurpose research reactors, an AHR dedicated for {sup 99}Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  1. In-beam PET at high-energy photon beams: a feasibility study

    Science.gov (United States)

    Müller, H.; Enghardt, W.

    2006-04-01

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft für Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable.

  2. The production of cosmogenic isotopes in the earth's atmosphere and their inventories

    International Nuclear Information System (INIS)

    O'Brien, K.; de la Zerda Lerner, A.; Shea. M.A.; Smart, D.F.

    1991-01-01

    In this paper, production rates of cosmogenic isotopes in the Earth's atmosphere and their dependence on solar modulation and geomagnetic field intensity are calculated. Spallation cross sections were also obtained using the Silberberg-Tsao equations and solar modulation effects were calculated using the force-field model. The current geomagnetic field is treated in detail, and past magnetic fields are modeled based on the archeomagnetic record. Radiocarbon and radioberyllium inventories so obtained are in good agreement with current values. The neutrino-emitting radioactivity of the Earth's atmosphere is shown to add a negligible contribution to the flux from the Sun

  3. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Directory of Open Access Journals (Sweden)

    S. N. Ladd

    2017-09-01

    Full Text Available The hydrogen isotopic composition (δ2H of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H∕1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early

  4. Considerations in the design of a high power medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, Russell M.; Nordyke, William H.; Brown, Roy

    2002-01-01

    For the low enriched aqueous homogeneous reactor to be economic in the production of medical isotopes, such as Mo-99 and Sr-89, the power level should be of the order of 100 kWth. This is double the earlier designs and this paper discusses the design changes which must be considered to meet this goal. The topics considered are: 1. Heat removal from the reactor solution; 2. Recombination of radiolytic gases; 3. Adequate radiation shielding; 4. Stability of reactor power with fluctuating reactivity; 5. Adequate cooling of the reflector; 6. Independent shutdown mechanisms; 7. Required volume of the reactor; 8. Economic implementation. (author)

  5. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    Science.gov (United States)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  6. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  7. Heme products post-radiofrequency ablation obscure tumor recurrence on MR but not on PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Syed Ramisa; Gooden, Casey E.; Schuster, David M. [Emory Univ. Hospital, Atlanta (United States)

    2012-06-15

    A 76-year-old male with non-small-cell lung cancer, post lobectomy, presented with hepatic metastatic disease and underwent radiofrequency ablation (RFA), a minimally invasive and safe approach for treatment of liver tumors. Gadolinium-enhanced MRI of the patient performed at our institution 5 months post-RFA leads to palliation, increased T1 signal at the RFA site believed to be post-RFA blood products. RFA leads to palliation, increased survival, and is better tolerated than other ablative techniques. It has also been associated with a low rate of local recurrence. Post-RFA, the target, lesion typically has hyperintense signal with T1-weighting, low signal on T2-weighting, and is non-enhancing following post-gadolinium administration. Recurrent disease typically demonstrates new enhancement, increased size, and development of T1-weighted hypointense and T2-weighted hyperintense regions. Subsequent positron emission tomography (PET/CT) of the patient demonstrated focal FDG uptake on the corresponding sagittal image, at the border of the prior RFA ablation zone, with maximal SUV of 6.9, Characteristic for recurrent hepatic metastasis. The photopenic area was at the epicenter of the RFA site. PET/CT imaging is also used to monitor residual tumor or recurrence after RFA. Lesions that show increased 18-fluorodeoxyglucose (FDG) uptake on PET become photopenic immediately after RFA, suggestive of complete ablation. Focal areas of increased FDG uptake within the ablated zone are suspicious for residual or recurrent disease. Reactive tissue is typically present in the periphery of the ablated lesion and has uniform low-grade FDG uptake, unlike the focal nodular intense uptake observed with active tumor.

  8. Use of LEU in the aqueous homogeneous medical isotope production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R.M. [Babock & Wilcox, Lynchburg, VA (United States)

    1997-08-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.

  9. Use of LEU in the aqueous homogeneous medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, R.M.

    1997-01-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution

  10. Rate of germanium-isotope production by background processes in the SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.; Ibragimova, T.V.; Cleveland, B.T.

    2002-01-01

    Data on a direct determination of systematic uncertainties caused by the background production of germanium isotopes in the radiochemical SAGE experiment measuring the solar-neutrino flux are analyzed. The result obtained for the rate of 68 Ge production is 6.5(1±1.0) times greater than the expected one; the rate of 69 Ge production does not exceed preliminary estimates. The above result for 68 Ge corresponds to the systematic uncertainty that is caused by the interaction of cosmic-ray muons and which is equal to 5.8% (4.5 SNU) at a solar-neutrino-capture rate of 77.0 SNU. An experiment is proposed that would test the effect of cosmic-ray muon influence on the SAGE systematic uncertainty and which would be performed at the location of the underground scintillation telescope facilities of the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences)

  11. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.

    Science.gov (United States)

    Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal

    2015-10-15

    Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

    International Nuclear Information System (INIS)

    Wood, Matthew J.; Komives, Elizabeth A.

    1999-01-01

    Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10-100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment

  13. Stable carbon isotopes in high-productive littoral areas of Lake Constance

    International Nuclear Information System (INIS)

    Chondrogianni, C.

    1992-01-01

    The investigation attempted to extend understanding of C fractionation in aquatic systems and to facilitate the interpretation of palaeolimnological isotope data. Particular interest was taken in the aspect of bicarbonate assimilation at high productivity and in the exchange processes between water and atmosphere. Littoral areas of lakes were chosen as areas of investigation as they offer a high-productivity environment with large populations of submersed macrophytes and periphytes. To get a better picture of the factors influencing C fractionation, litteral and pellagial regions were compared on the one hand and a mesotrophic (Ueberlingersee) and a eutrophic (Gnadensee) lake section on the other hand. Further factors of differentiation between the two lake parts were: Volume, the proportional share of the litteral area, and water exchange. Two main fields of interest were investigated: - Determination of the C isotope ratio (δ 13 C) in the dissolved bicarbonate of water in the sediments of a single year for the purpose of calibrating its fractionation in the basis of the present chemical and physical status of the lake water (water programme). - Determination of δ 13 C in selected carbonate components from sedimentary cores in order to find out about palaeolimnological events in the areas of investigation (sediment programme). (orig.) [de

  14. Hydrogen isotope double differential production cross sections induced by 62.7 MeV neutrons on a lead target

    International Nuclear Information System (INIS)

    Kerveno, M.; Haddad, F.; Eudes, Ph.; Kirchner, T.; Lebrun, C.; Slypen, I.; Meulders, J.P.; Le Brun, C.; Lecolley, F.R.; Lecolley, J.F.; Louvel, M.; Lefebvres, F.; Hilaire, S.; Koning, A.J.

    2002-01-01

    Double differential hydrogen isotope production cross sections have been extracted in 62.7 MeV neutron induced reactions on a lead target. The angular distribution was measured at eight angles from 20 deg. to 160 deg. allowing the extraction of angle-differential, energy differential, and total production cross sections. A first set of comparisons with several theoretical calculations is also presented

  15. Rise of the machines : cyclotrons and radiopharmaceuticals in the PET-CT-MR golden age

    International Nuclear Information System (INIS)

    Price, Roger

    2011-01-01

    Full text: One particularly inspiring narrative in the evolution of medical imaging over 35 years begins with the introduction of quassi-routine production of 18F, enabled by advances in reliability of (medical) cyclotrons; invention of the 'molecule of the century' [18F]FOG and its robust synthesis; comprehending betrayal of major tumour-cell types by their glucose avidity; astounding advances in PET scanners (recently, time-of-flight); and marriage of anatomic with functional 3-D imaging as PET/CT or (recently) PET/MR. Though the explosion in PET is identified historically with diagnostic oncology plus quantitation of nuclear medicine, plus the collateral leverage of advances in CT and MR, other potentially transformative opportunities (pre-diagnosis or quantifying treatment response) are emerging in dementia and diabetes-as exemplars of PET-addressable mass afflictions-driven by advances in specificity/sensitivity of targeting molecules. PET delivers femto-M functional sensitivity (e.g.; receptor-targeting)-several magnitude-orders of narrow-context superiority over MR or CT-exemplified by the rapid rise of solid-targetry metallo-PET (64Cu, 89Zr), and concomitantly, preclinical radioimmuno micro-PET/CT/SPECT imaging. Though [11 C ] PET has elucidated brain, prostate and other cell +/- tumour mechanisms, realistic clinical rollout demands longer halflife [18F]-labelling. [18F] innovations beyond [18F]FDG elucidate numerous metabolisms, including choline, hypoxia, apoptosis and amino-acid, and notably will soon provide a routine-clinical [18F]-alternative to [11 C] based beta-amyloid dementia diagnosis. Frontier PET is constrained by cost/dose, shackled to 'twentieth century' technologies-cyclotron, hotcell and synthesis unit. Example is [18F] bone scintigraphy; acknowledged as clinically superior to [99mTc]MOP, its widespread implementation awaits cheaper isotope, accessible PET/CT scanners, and maybe 'true' shortage of [99mTc]. Generator-sourced 68 Ga-PET is

  16. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  17. Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production

    Science.gov (United States)

    Anex, R. P.; Francis Clar, J.

    2015-12-01

    Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.

  18. Parametric study on the steam reforming of phenol-PET solution to hydrogen production over Ni promoted on Al_2O_3-La_2O_3 catalyst

    International Nuclear Information System (INIS)

    Nabgan, Bahador; Nabgan, Walid; Tuan Abdullah, Tuan Amran; Tahir, Muhammad; Gambo, Yahya; Ibrahim, Maryam; Syie Luing, Wong

    2017-01-01

    Highlights: • Parametric study of H_2 production from phenol-PET steam reforming was studied. • Optimised conditions were 800 °C, 0.10 ml/min feed flow rate, and 7% PET. • High amount of aliphatic branched-chains and cyclic compounds were produced. • PET was efficiently converted to hydrogen and valuable fuels at optimized condition. • Significant influence resulted for all the main independent factors. - Abstract: Production of hydrogen from plastic waste could be a prospective key to the ecological problems resulted from waste. To further explore the process, a 32-runs parametric study on the steam reforming of Polyethylene terephthalate (PET) dissolved in phenol was conducted in a fixed bed reactor using Ni over La_2O_3-Al_2O_3 support. The five factors studied were temperature (A), feed flow rate (B), mass flow (C), phenol concentration (D), and concentration of PET solution (E), whereas the responses were phenol conversion (Y_1) and hydrogen selectivity (Y_2). From the result, it was observed that significant influence resulted for all the main independent variables on the dependent variable of Y_1 and Y_2 with the range of 47.24–97.6% and 49–70.96%, respectively. Moreover, the Y_1 and Y_2 responses have influenced by some interaction variables like AC, CD, CE, ACE, and BCE. As evident from the design, initial variables such as 800 °C, 0.10 ml/min feed flow rate, 10 SCCM mass flow, 10 wt.% of phenol in the feed, and 7% PET concentration were the best preliminary conditions that formed maximum Y_1 (94%) and Y_2 (71%) responses. However, analyses on the product composition revealed that high amount of aliphatic branched-chains along with moderate amount of cyclic compounds were produced from steam reforming of PET-phenol. Due to the short retention time of the compounds on the catalysts bed, the aromatization of PET cracking products was small.

  19. Production and investigation of tungsten α emitters including the new isotopes, 165W and 166W

    International Nuclear Information System (INIS)

    Toth, K.S.; Schmidt-Ott, W.; Bingham, C.R.; Ijaz, M.A.

    1975-01-01

    Neutron-deficient tungsten isotopes were produced by bombarding an enriched 156 Dy target with 16 O ions accelerated in the Oak Ridge isochronous cyclotron. A gas-jet-capillary system was used to transport product nuclei to an area where their α-decay properties could be investigated. The data of Eastham and Grant concerning 162 , 163 , 164 W were confirmed. In addition, two new weak α groups were observed. On the basis of excitation functions, 14 N + 156 Dy cross bombardments, and α-decay energy systematics they were assigned to the new isotopes 165 W and 166 W. Their decay properties are as follows: (1) 165 W, E/sub alpha/ = 4.909 plus-or-minus 0.005 MeV, T 1 / 2 = 5.1 plus-or-minus 0.5 sec, and (2) 166 W, E/sub alpha/ = 4.739 plus-or-minus 0.005 MeV, T 1 / 2 = 16 plus-or-minus 3 sec

  20. Optimization of 64Cu production for Radio-metabolic therapy and for PET

    International Nuclear Information System (INIS)

    Groppi, F.; Bonardi, M.; Birattari, C.; Gini, L.; Guariglia, S.; Mainardi, C.; Menapace, E.

    2002-01-01

    The 6 4C u is a very interesting radioisotope for nuclear biomedical applications, due to its physical characteristics: a) it decay β+ and β- with maximum energy equal to 653 keV and 578 keV respectively, that correspond to maximum range of β+ in soft tissue ∼ 2.7 mm and average range ∼ 1 mm. In this way it is possible to give a local dose in the region of interest and to have a high resolution in the PET images; b) it has an half life of 12.7 h, that is suitable for medical applications, reducing the exposure of personnel and of the patients and the problem of waste discharge; c) besides the gamma of annihilation (36%), it has only one γ emission at 1345.84 keV (0.473%) with low intensity: this reduces the dose to healthy tissue and to medical personnel. For these reasons 6 4C u can be considered a dual purpose radionuclide: it can be used both to localise and measure the tumour mass through the PET tomography and for the metabolic therapy of the tumour itself. Cu(2.) forms a class of stable classical complexes and chelates with ditio carbamates (DTC), like ethylmethyl-DTC and tiosemicarbazonates, like pyruvaldehyde-bis-(N 4 -methyl semicarbazone (PTSM) and acetyl-bis-(N 4 -methyl semicarbazone) (ATSM), and finally with aza macrocyclic chelants (cyclens, cyclams, sarcofands), like DOTA, DOTP and SarAr). The behaviour of some of them has been already investigated in both cell cultures, rats and humans since the end of the 90-ties

  1. [sup 205]Bi/[sup 206]Bi cyclotron production from Pb-isotopes for absorption studies in humans

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.; Dresow, B.; Heinrich, H.C. (Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Medizinische Biochemie); Wendel, J.; Bechtold, V. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Kernphysik)

    1993-12-01

    Pb(p,xn) thick target excitation functions were measured in the energy range 10-38 MeV in order to optimize the production of isotopically pure radiobismuth from [sup nat]Pb, [sup 206]Pb, and [sup 207]Pb. Additionally, the decay of Po-isotopes from deuteron irradiation of natural bismuth ([sup 209]Bi) was exploited for radiobismuth production. [sup 205]Bi was produced from [sup 206]Pb at 20 MeV with only 2% of [sup 206]Bi at 4 weeks post irradiation. Bismuth compounds as used in the treatment of peptic ulcer were labeled with [sup 205]Bi for absorption studies in animals and subjects. (Author).

  2. Research on isotope geology. Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive/stable isotopes and fission track 2

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Cheon; Chi, Se Jung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Radioelements and heat production rates of granitic rocks and stable isotopes of groundwaters were analyzed to investigate the geothermal potential of Wolchulsan granite complex in the southern Yeongam area. Wolchulsan granite complex is composed mainly by Cretaceous pink alkali-feldspar granite and partly Jurassic biotite granite. The main target for the geothermal exploration is the alkali-feldspar granite that is known in general to be favorable geothermal reservoir(e.g., Shap granite in UK). To develop exploration techniques for geothermal anomalies, all geochemical data were compared to those from the Jeonju granite complex. Heat production rates(HPR) of the alkali-feldspar granite is 1.8 - 10.6 {mu}Wm{sup -3}. High radio-thermal anomalies were revealed from the central western and northern parts of the granite body. These are relatively higher than the Caledonian hot dry granites in the UK. The integrated assessment of Wolchulsan granite complex suggests potential of the Cretaceous alkali-feldspar granite as a geothermal targets. Groundwater geochemistry of the Yeongam area reflects simple evaporation process and higher oxidation environment. Stable isotope data of groundwaters are plotted on or close to the Meteoric Water Line(MWL). These isotopic data indicate a significant meteoric water dominance and do not show oxygen isotope fractionation between groundwater and wall rocks. In despite of high HPR values of the Yeongam alkali-feldspar granite, groundwater samples do not show the same geochemical properties as a thermal water in the Jeonju area. This reason can be well explained by the comparison with geological settings of the Jeonju area. The Yeongam alkali-feldspar granite does not possess any adjacent heat source rocks despite its high radio-thermal HPR. While the Jeonju granite batholith has later heat source intrusive and suitable deep fracture system for water circulation with sedimentary cap rocks. (Abstract Truncated)

  3. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  4. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.

    Science.gov (United States)

    AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R

    2014-08-01

    The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.

  5. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  6. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Energy Technology Data Exchange (ETDEWEB)

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  7. Use of Stable Isotopes and Incubation Studies to Characterize Methane Production Mechanism in Northern Wetlands

    Science.gov (United States)

    Chanton, J. P.; Fields, D.; Hines, M. E.; Rooney-Varga, J.

    2003-12-01

    Arctic and boreal ecosystems are important since they occupy greater than 1/5 of the Earth's terrestrial surface, they are sensitive to subtle climate changes, and they have significant effects on the atmosphere. Methanogenesis is dominated by two major pathways, acetotrophic (i.e., acetoclastic) methanogenesis in which acetate is the immediate precursor of CH4 (and CO2), and H2/CO2 methanogenesis in which CH4 is a product of H2 oxidation coupled with CO2 reduction. Recent studies suggest that acetotrophic methanogenesis does not occur widely in the northern wetlands and acetate can accumulate to high levels (Duddleston et al., 2002; Hines et al., 2001a). Methanogenesis at these sites is dominated by the H2/CO2 pathway and the importance of acetate as a precursor of CH4 seems to decrease with decreasing temperature and increasing oligotrophy. We surveyed a transect across Alaska from Deadhorse to Anchorage and used stable isotope distributions of DIC, CH4 and H2O to discern the relative importance of differing methane production mechanisms. These results compared favorably to incubation studies. Vegetation type was found to be a strong indicator of methane production mechanism, with Carex indicating acetotrophic methaneogenesis and sphagnum being an indicator of a lack of acetate methaneogenesis. The effects of production pathway variation on the dD of methane will also be presented.

  8. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  9. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan - A stable isotope approach

    International Nuclear Information System (INIS)

    Miller, Todd W.; Omori, Koji; Hamaoka, Hideki; Shibata, Jun-ya; Hidejiro, Onishi

    2010-01-01

    The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan's total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ 15 N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ 15 N and δ 13 C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes.

  10. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan--a stable isotope approach.

    Science.gov (United States)

    Miller, Todd W; Omori, Koji; Hamaoka, Hideki; Shibata, Jun-ya; Hidejiro, Onishi

    2010-10-01

    The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan's total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ(15)N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ(15)N and δ(13)C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products.

    Science.gov (United States)

    Moran, James J; Fraga, Carlos G; Nims, Megan K

    2018-08-15

    The ability to connect a chemical threat agent to a specific batch of a synthetic precursor can provide a fingerprint to contribute to effective forensic investigations. Stable isotope analysis can leverage intrinsic, natural isotopic variability within the molecules of a threat agent to unlock embedded chemical fingerprints in the material. Methylphosphonic dichloride (DC) is a chemical precursor to the nerve agent sarin. DC is converted to methylphosphonic difluoride (DF) as part of the sarin synthesis process. We used a suite of commercially available DC stocks to both evaluate the potential for δ 13 C analysis to be used as a fingerprinting tool in sarin-related investigations and to develop sample preparation techniques (using chemical hydrolysis) that can simplify isotopic analysis of DC and its synthetic products. We demonstrate that natural isotopic variability in DC results in at least three distinct, isotope-resolved clusters within the thirteen stocks we analyzed. Isotopic variability in the carbon feedstock (i.e., methanol) used for DC synthesis is likely inherited by the DC samples we measured. We demonstrate that the hydrolysis of DC and DF to methylphosphonic acid (MPA) can be used as a preparative step for isotopic analysis because the reaction does not impart a significant isotopic fractionation. MPA is more chemically stable, less toxic, and easier to handle than DC or DF. Further, the hydrolysis method we demonstrated can be applied to a suite of other precursors or to sarin itself, thereby providing a potentially valuable forensic tool. Copyright © 2018. Published by Elsevier B.V.

  12. Isotope dilution ICP-MS with laser-assisted sample introduction for direct determination of sulfur in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F.; Heilmann, Jens; Heumann, Klaus G. [Johannes Gutenberg-University Mainz (Germany). Institute of Inorganic Chemistry and Analytical Chemistry

    2005-08-01

    Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different {sup 34}S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured {sup 34}S/{sup 32}S isotope ratio of the isotope-diluted sample remained constant - a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 {mu}g g{sup -1} ('sulfur-free' premium gasoline) to 10.4 mg g{sup -1} (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 {mu}g g{sup -1} and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level. (orig.)

  13. Isotope dilution ICP-MS with laser-assisted sample introduction for direct determination of sulfur in petroleum products.

    Science.gov (United States)

    Boulyga, Sergei F; Heilmann, Jens; Heumann, Klaus G

    2005-08-01

    Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different 34S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured 34S/32S isotope ratio of the isotope-diluted sample remained constant-a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 microg g(-1) ('sulfur-free' premium gasoline) to 10.4 mg g(-1) (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 microg g(-1) and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level.

  14. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, Thallada; Kaneko, Jun; Muto, Akinori; Sakata, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, 700-8530 Okayama (Japan); Jakab, Emma [Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest (Hungary); Matsui, Toshiki [Toda Kogyo Co. Ltd., Hiroshima 739-0652 (Japan); Uddin, Md. Azhar [Process Safety and Environment Protection Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2004-08-01

    Pyrolysis of polypropylene (PP)/polyethylene (PE)/polystyrene (PS)/poly(vinyl chloride) (PVC)/high impact polystyrene with brominated flame retardant (HIPS-Br) plastics mixed with poly(ethylene terephthalate) (PET) was performed at 430C under atmospheric pressure using a semi-batch operation. The presence of PET in the pyrolysis mixture of PP/PE/PS/PVC/HIPS-Br affected significantly the formation of decomposition products and the decomposition behavior of the plastic mixture. We observed the following effects of PET on the pyrolysis of PP/PE/PS/PVC/HIPS-Br mixed plastics: (1) the yield of liquid product decreased and the formation of gaseous products increased; (2) a waxy residue was formed in addition to the solid carbon residue; (3) the formation of SbBr{sub 3} was not detected in liquid products; (4) the yield of chlorinated branched alkanes increased as well as vinyl bromide and ethyl bromide were formed. The use of calcium carbonate carbon composite (Ca-C) completely removed the chlorine and bromine content from the liquid products during PP/PE/PS/PVC/HIPS-Br pyrolysis, however in the presence of PET, the catalytic experiment (Ca-C, 8g) yielded liquid products containing 310ppm of Br and 20ppm of Cl. In addition, the Ca-C increased the yield of liquid products about 3-6wt.%, as well as enhanced the gaseous product evolution and decreased the yield of residue. The halogen free liquid hydrocarbons can be used as a feedstock in a refinery or as a fuel.

  15. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    Science.gov (United States)

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  16. The different facilities of the reactor Phenix for radio isotope production and fission product burner

    International Nuclear Information System (INIS)

    Coulon, P.; Clerc, R.; Tommasi, J.

    1993-01-01

    During the last few years different tests have been made to optimize the blanket of the reactor. Year after year the breeding ratio has lost a part of interest regarding the production and availability of plutonium in the world. A characteristic of a fast reactor is to have important neutron leaks from the core. The spectrum of those neutrons is intermediate, the idea was to find a moderator compatible with sodium and stable in temperature. After different tests we kept as a moderator the calcium hydride and as a samply support, a cluster which is separated from the carrier. At the end we present the model used for thermalized calculations. The scheme is then applied to a heavy nuclide transmutation example (Np237 Pu238) and to fission product transmutation (Tc99). (authors). 9 figs

  17. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    International Nuclear Information System (INIS)

    Buckner, M.; Cappiello, M.; Pitcher, E.; O'Brien, H.

    1998-01-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M ampersand O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project

  18. SPECT og PET i neurobiologien

    DEFF Research Database (Denmark)

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...

  19. Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Lestringuez, J.; Yiou, F.

    1975-01-01

    Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons were measured by mass spectrometry. The results are compared with lower energy measurements and discussed in terms of the variation of the cosmic ray L/M ratio in this energy region [fr

  20. Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Lestringuez, J.; Yiou, F.

    1975-01-01

    Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons have been measured by mass spectrometry. The results are compared with lower energy measurements and discussed in terms of the variation of the cosmic ray L/M ratio in the energy region [fr

  1. Production and chemical isolation procedure of positron-emitting isotopes of arsenic for environmental and medical applications

    Science.gov (United States)

    Ellison, P. A.; Barnhart, T. E.; Engle, J. W.; Nickles, R. J.; DeJesus, O. T.

    2012-12-01

    The positron-emitting isotopes of arsenic have unique potential for imaging research in medical and environmental applications. The production and purification of radioarsenic from proton-irradiated natural GeO2 targets is reported. The separation procedure utilizes precipitation and anion exchange separation steps. Two anion exchange procedures were investigated. An overall arsenic decay-corrected separation yield of 80% was obtained.

  2. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1997-01-01

    The Oak Ridge national laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the isotope enrichment facility (IEF)fwill be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies. (orig.)

  3. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  4. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 years. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; SIO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capabilities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies

  5. Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    da Silva, D A F; Biscola, N P; Dos Santos, L D; Sartori, M M P; Denadai, J C; da Silva, E T; Ducatti, C; Bicudo, S D; Barraviera, B; Ferreira, R S

    2016-11-01

    Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for 13 C and 15 N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed 15 N equilibrium 5 days after MBM removal (54th day). Conversely, 15 N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, 15 N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural 15 N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ 13 C and δ 15 N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  7. Leakage Identification Of Volcanic Product Pollutant Of ijen Crater Using Natural Isotop Deuterium And Oxiren-18

    International Nuclear Information System (INIS)

    Susiati, Heni; Sjarmufni, A.; S.B.S, Yarianto; Suprijadi; Wibagyo

    2001-01-01

    Community surrounding the Asembagus Sugar Fabric guess that the factory has polluted water body of Banyuputih River. Leakage detection of the pollutant has been to prove that guess using variation of natural isotop composition of Deuterium and Oxygen-18. Sampling was carried out at Ijen crater area, Banyupahit River and surrounding the sugar factory and also Belawan Fresh water source. Isotop analysis was done-by mass spectrometer. Based on analysis result have been gotten information that each location have vary of isotop value, Isotop concentration at Ijen crater was relative high so isotop concentration of Banyupahit river was also relative high although rather lower than lien Crater. Based on another interpretation, there are correlation at isotope concentration between Ijen crater and Banyupahit River

  8. Establishing the potential of Ca isotopes as proxy for consumption of dairy products

    International Nuclear Information System (INIS)

    Chu, N.-C.; Henderson, Gideon M.; Belshaw, Nick S.; Hedges, Robert E.M.

    2006-01-01

    A procedure has been developed which allows precise determination of Ca isotope ratios in natural and organic samples such as bones, milk and other biological materials. In this study the procedure is used to determine Ca isotope ratios in modern dietary systems and to establish the potential of Ca isotopes as a paleodiet tracer by analysis of bones. Multi-sampling across a 5 cm portion of a red deer jawbone shows invariant Ca isotope ratios and suggests negligible isotopic effect during bone remodelling. The difference between Ca isotopes in red deer diet and bones from one location was 0.65 per mille , in agreement with a previous study of diet/bone offsets. Similar values for modern deer-bone δ 44/42 Ca from four geographically diverse populations demonstrate that geological/environmental conditions do not cause large variability and suggest that diet is the major cause for variations in bone δ 44/42 Ca. δ 44/42 Ca of herbivore milk is found to be ∼0.5 to 0.6 higher than the corresponding diet. Modern human milk has a δ 44/42 Ca of -1.15 (n = 4) and is isotopically the lightest material reported in this study. This suggests that, for these samples, a significant portion of Ca intake was from dairy sources, and that human milk has Ca which is, again, ∼0.6 per mille isotopically lighter than dietary Ca intake. Finally, Ca isotope ratios are presented from a variety of samples formed during fermentation processes (e.g., curds, whey, etc.) which indicate that these processes do not fractionate Ca isotopes significantly. Together, the data in this paper indicate that, because milk is an important dietary source of Ca with a distinctive signature, Ca isotope ratios should provide a tracer for past dairy consumption. A simplified model is outlined to demonstrate the ability to quantify dairy consumption by the analysis of Ca isotopes in bones

  9. Determination of management by labor competencies in the production process of the Isotope Center

    International Nuclear Information System (INIS)

    Pérez Centurión, Yoneiki; Fernández Rodríguez, Rosio

    2016-01-01

    The present research is carried out in the Center of Isotopes (CENTIS) belonging to the Agency of Nuclear Energy and Advanced Technologies of the Ministry of Science, Technology and Environment of Cuba (CITMA). Its mission is to develop, produce, and supply radiopharmaceuticals, clinical diagnostics and scientific and technical health services in the national and international markets. Based on a diagnosis of the organization through the GRH-DPC model, it was determined that the main problem is the Deficient Management of Human Resources, highlighting as main cause that the labor competencies are not identified at any of its three levels . As a result of this analysis the need to establish a procedure to carry out the process of identification and validation of the competency system, as well as the design of the profile of positions by competencies of the entity. For the development of this work, different tools and techniques were used in the field of research such as: bibliographical analysis, brainstorming, expert method, statistical tools, cause and effect diagram, SWOT matrix, flow diagram, among others. The main result of the research is the identification of the organization's distinctive competencies, those of the key production processes of 99 Mo-99mTc Generators and the profiles of the positions of the Production Management linked to the selected subprocesses.

  10. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  11. Production of Thorium-229 at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Boll, Rose Ann; Garland, Marc A.; Mirzadeh, Saed

    2008-01-01

    The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viable source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (∼40 g or ∼8 Ci; ∼80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).

  12. Targetry at the LANL 100 MeV isotope production facility: lessons learned from facility commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nortier, F. M. (Francois M.); Fassbender, M. E. (Michael E.); DeJohn, M.; Hamilton, V. T. (Virginia T.); Heaton, R. C. (Richard C.); Jamriska, David J.; Kitten, J. J. (Jason J.); Lenz, J. W.; Lowe, C. E.; Moddrell, C. F.; McCurdy, L. M. (Lisa M.); Peterson, E. J. (Eugene J.); Pitt, L. R. (Lawrence R.); Phillips, D. R. (Dennis R.); Salazar, L. L. (Louie L.); Smith, P. A. (Paul A.); Valdez, Frank O.

    2004-01-01

    The new Isotope Production Facility (IPF) at Los Alamos National Laboratory has been commissioned during the spring of 2004. Commissioning activities focused on the establishment of a radionuclide database, the review and approval of two specific target stack designs, and four trial runs with subsequent chemical processing and data analyses. This paper highlights some aspects of the facility and the targetry of the two approved target stacks used during the commissioning process. Since one niobium encapsulated gallium target developed a blister after the extended irradiation of 4 days, a further evaluation of the gallium targets is required. Beside this gallium target, no other target showed any sign of thermal failure. Considering the uncertainties involved, the production yields obtained for targets irradiated in the same energy slot are consistent for all three 'Prototype' stacks. A careful analysis of the temperature profile in the RbCl targets shows that energy shifts occur in the RbCl and Ga targets. Energy shifts are a result of density variations in the RbCl disk under bombardment. Thickness adjustments of targets in the prototype stack are required to ensure maximum production yields of {sup 82}Sr and {sup 68}Ge in the design energy windows. The {sup 68}Ge yields obtained are still consistently lower than the predicted yield value, which requires further investigation. After recalculation of the energy windows for the RbCl and Ga targets, the measured {sup 82}Sr production yields compare rather well with values predicted on the basis of evaluated experimental excitation function data.

  13. Production of He-, Ne-, Ar-, Kr-, and Xe-isotopes by proton-induced reactions on lead

    International Nuclear Information System (INIS)

    Leya, I.; Michel, R.

    2003-01-01

    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr-, and Xe-isotopes from lead from the respective reaction thresholds up to 2.6 GeV. The production of noble gas isotopes in lead by proton-induced reactions is of special importance for design studies of accelerator driven systems and energy amplifiers. In order to minimise the influences of secondary particles on the production of residual nuclides a new Mini-Stack approach was used instead of the well-known stacked-foil techniques for all experiments with proton energies above 200 MeV. With some exceptions our database for the proton-induced production of noble gas isotopes from lead is consistent and nearly complete. In contradistinction to the production of He from Al and Fe, where the cross sections obtained by thin-target irradiation experiments are up to a factor of 2 higher than the NESSI data, both datasets agree for the He production from lead. (orig.)

  14. Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes

    International Nuclear Information System (INIS)

    Baron, Sandrine; Le-Carlier, Cecile; Carignan, Jean; Ploquin, Alain

    2009-01-01

    The identification of metal provenance is often based on chemical and Pb isotope analyses of materials from the operating chain, mainly ores and metallic artefacts. Such analyses, however, have their limits. Some studies are unable to trace metallic artefacts or ingots to their ore sources, even in well-constrained archaeological contexts. Possible reasons for this difficulty are to be found among a variety of limiting factors: (i) problems of ore signatures, (ii) mixing of different ores (alloys), (iii) the use of additives during the metallurgical process, (iv) metal recycling and (v) possible Pb isotopic fractionation during metal production. This paper focuses on the issue of Pb isotope fractionation during smelting to address the issue of metal provenance. Through an experimental reconstruction of argentiferous Pb production in the medieval period, an attempt was made to better understand and interpret the Pb isotopic composition of ore smelting products. It is shown that the measured differences (outside the total external uncertainties of 0.005 (2*sd) for 206 Pb/ 204 Pb ratios) in Pb signatures measured between ores, slag and smoke are not due to Pb mass fractionation processes, but to (1) ore heterogeneity (Δ 206 Pb/ 204 Pb slag-ores = 0.066) and (2) the use of additives during the metallurgical process (Δ 206 Pb/ 204 Pb slag-ores = 0.083). Even if these differences are due to causes (1) and/or (2), smoke from the ore reduction appears to reflect the ore mining area without a significant disturbance of its Pb signature for all the isotopic ratios (Δ 206 Pb/ 204 Pb smokes-ores = 0.026). Thus, because the isotopic heterogeneity of the mining district and additives is averaged in slags, slag appears as the most relevant product to identify ancient metal provenance. Whereas aiming at identifying a given mine seems beyond the possibilities provided by the method, searching for the mining district through analysis of the smelting workshop materials should

  15. Difficulties and aspects to take into account in the production, use and distribution of new radiopharmaceuticals PET; Difficultes et aspects a prendre en compte dans la production, l'utilisation et la distribution des nouveaux radiopharmaceutiques TEP

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Rayo, J.I.; Serrano, J.; Infante, J.; Luz Dominguez, M.; Garcia, L.; Duran, C. [Hospital Infanta Cristina, Servicio de Medicina Nuclear, Badajoz (Spain)

    2008-10-15

    This article seeks to describe the requirements, legal and technical, for the production, distribution and use of new radiopharmaceuticals PET (other than the {sup 18}F.D.G.), describing the legislative framework in which we find ourselves, the characteristics of a production and types of synthesis and existing modules. A list of susceptible radiopharmaceuticals is presented that are being currently used in nuclear medicine by specifying the real possibilities of their production and use and which are the difficulties we face.

  16. Industrial scale production of stable isotopes employing the technique of plasma separation

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Bigelow, T.S.; Tarallo, F.J.

    2003-01-01

    Calutrons, centrifuges, diffusion and distillation processes are some of the devices and techniques that have been employed to produce substantial quantities of enriched stable isotopes. Nevertheless, the availability of enriched isotopes in sufficient quantities for industrial applications remains very restricted. Industries such as those involved with medicine, semiconductors, nuclear fuel, propulsion, and national defense have identified the potential need for various enriched isotopes in large quantities. Economically producing most enriched (non-gaseous) isotopes in sufficient quantities has so far eluded commercial producers. The plasma separation process is a commercial technique now available for producing large quantities of a wide range of enriched isotopes. Until recently, this technique has mainly been explored with small-scale ('proof-of-principle') devices that have been built and operated at research institutes. The new Theragenics TM facility at Oak Ridge, TN houses the only existing commercial scale PSP system. This device, which successfully operated in the 1980's, has recently been re-commissioned and is planned to be used to produce a variety of isotopes. Progress and the capabilities of this device and it's potential for impacting the world's supply of stable isotopes in the future is summarized. This technique now holds promise of being able to open the door to allowing new and exciting applications of these isotopes in the future. (author)

  17. Stable isotope composition of environmental water and food products as a tracer of origin

    International Nuclear Information System (INIS)

    Wierzchnicki, R.; Owczarczyk, A.; Soltyk, W.

    2004-01-01

    The paper is the review of Institute of Nuclear Chemistry and Technology (INCT) activity in application of stable isotope ratios (especially D/H and 18 O/ 16 O) for environmental studies and food origin control. INCT has at disposal since 1998, a high class instrument - Isotope Ratio Mass Spectrometer, Delta Plus, Finnigan MAT, Germany - suitable to perform such measurements. (author)

  18. Production of beta-gamma coincidence spectra of individual radioxenon isotopes for improved analysis of nuclear explosion monitoring data

    Science.gov (United States)

    Haas, Derek Anderson

    Radioactive xenon gas is a fission product released in the detonation of nuclear devices that can be detected in atmospheric samples far from the detonation site. In order to improve the capabilities of radioxenon detection systems, this work produces beta-gamma coincidence spectra of individual isotopes of radioxenon. Previous methods of radioxenon production consisted of the removal of mixed isotope samples of radioxenon gas released from fission of contained fissile materials such as 235U. In order to produce individual samples of the gas, isotopically enriched stable xenon gas is irradiated with neutrons. The detection of the individual isotopes is also modeled using Monte Carlo simulations to produce spectra. The experiment shows that samples of 131mXe, 133 Xe, and 135Xe with a purity greater than 99% can be produced, and that a sample of 133mXe can be produced with a relatively low amount of 133Xe background. These spectra are compared to models and used as essential library data for the Spectral Deconvolution Analysis Tool (SDAT) to analyze atmospheric samples of radioxenon for evidence of nuclear events.

  19. Using Gas Chromatography/Isotope Ratio Mass Spectrometry to Determine the Fractionation Factor for H2 Production by Hydrogenases

    International Nuclear Information System (INIS)

    Yang, Hui; Ghandi, H.; Shi, Liang; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2012-01-01

    Hydrogenases catalyze the reversible formation of H2, and they are key enzymes in the biological cycling of H2. H isotopes should be a very useful tool in quantifying proton trafficking in biological H2 production processes, but there are several obstacles that have thus far limited the use of this tool. In this manuscript, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H2 evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. A custom-designed high-throughput gas chromatography-isotope ratio mass spectrometer is employed to measure the isotope ratio of the H2. Using this method, we determined that the fractionation factor of H2 production by the (NiFe)-hydrogenase from Desulfivibrio fructosovran is 0.27. This result indicates that, as expected, protons are highly favored over deuterons during H2 evolution. Potential applications of this new method are discussed.

  20. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei

    2016-08-22

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δ), transpiration (T, δ) and ET (δ) to partition the total water flux. Due to the extreme heat and aridity, δ and δ were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δ, δ, and δ increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.

  1. Discovery of the iron isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Twenty-eight iron isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Discovery of the silver isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Ginepro, J.Q.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Thirty-eight silver isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  3. Discovery of the cadmium isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Thoennessen, M.

    2010-01-01

    Thirty-seven cadmium isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT

    International Nuclear Information System (INIS)

    Wetter, Axel; Lipponer, Christine; Nensa, Felix; Altenbernd, Jens-Christian; Schlosser, Thomas; Lauenstein, Thomas; Heusch, Philipp; Ruebben, Herbert; Bockisch, Andreas; Poeppel, Thorsten; Nagarajah, James

    2014-01-01

    The aim of this study was to evaluate the positron emission tomography (PET) component of [ 18 F]choline PET/MRI and compare it with the PET component of [ 18 F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer. Thirty-six patients were examined with simultaneous [ 18 F]choline PET/MRI following combined [ 18 F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUV max and SUV mean ) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUV max and SUV mean was tested using Pearson's product-moment correlation and Bland-Altman analysis. All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUV max and SUV mean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p max of PET/CT and PET/MRI (R = 0.86, p mean of PET/CT and PET/MRI (R = 0.81, p max of PET/CT vs PET/MRI and -1.12 to +2.23 between SUV mean of PET/CT vs PET/MRI. PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUV max and SUV mean was found. Both SUV max and SUV mean were significantly lower in [ 18 F]choline PET/MRI than in [ 18 F]choline PET/CT. Differences of SUV max and SUV mean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [ 18 F]choline between the subsequent examinations and in the respective organ systems have to be taken into account. (orig.)

  5. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    Science.gov (United States)

    Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef

    2017-07-01

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by 136Xe projectiles at 500AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed.

  6. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sushil K.; Kamys, Boguslaw [Jagiellonian University, The Marian Smoluchowski Institute of Physics, Krakow (Poland); Goldenbaum, Frank; Filges, Detlef [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany)

    2017-07-15

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by {sup 136}Xe projectiles at 500 AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed. (orig.)

  7. Isotope studies on plant productivity. Results of a co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    In order to explore this approach, a Co-ordinated Research Programme (CRP) on the Use of Isotope Studies for Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics was initiated in October 1989 and complete in October 1994. Almost half of the work carried out under this programme concentrated on water use efficiency and the rest on phosphate use efficiency. Egypt, Morocco and Tunisia focused on wheat; Nigeria and Sierra Leone on cowpea; Kenya, Sudan and the United Republic of Tanzania on nitrogen fixing trees such as Prosopis, Acacia and Gliricidia; and Viet Nam on rice. Experiments conducted in the field showed that there is a wealth of genetic diversity among the genotypes/provenances of crop and tree species in their capacity for uptake and use of phosphorus and water from soils limited in resources. Several elite genotypes/provenances were identified which are highly efficient in water or phosphate use. In a few cases, the high water use efficiency (or the high phosphorus use efficiency) feature was seen in the same genotype where the grain yield was also high. Morphological parameters responsible for making some genotypes superior in their capacity to use phosphorus or water have also been investigated. It is our hope that the findings reported in this publication will help agricultural scientists in the Member States, particularly in Africa, in their quest of finding solutions to problems of food security. Refs, figs, tabs.

  8. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  9. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1996-01-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of 60 Ni which produces no helium, 59 Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ( Nat Ni) which provides an intermediate level of helium due to delayed development of 59 Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to ∼7 dpa at 300 and 400 degrees C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400 degrees C than at 300 degrees C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from 59 Ni and Nat Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400 degrees C. At 300 degrees C, it appeared that high densities of bubbles formed whereas at 400 degrees C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces

  10. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    Science.gov (United States)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  11. Isotope studies on plant productivity. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1996-07-01

    In order to explore this approach, a Co-ordinated Research Programme (CRP) on the Use of Isotope Studies for Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics was initiated in October 1989 and complete in October 1994. Almost half of the work carried out under this programme concentrated on water use efficiency and the rest on phosphate use efficiency. Egypt, Morocco and Tunisia focused on wheat; Nigeria and Sierra Leone on cowpea; Kenya, Sudan and the United Republic of Tanzania on nitrogen fixing trees such as Prosopis, Acacia and Gliricidia; and Viet Nam on rice. Experiments conducted in the field showed that there is a wealth of genetic diversity among the genotypes/provenances of crop and tree species in their capacity for uptake and use of phosphorus and water from soils limited in resources. Several elite genotypes/provenances were identified which are highly efficient in water or phosphate use. In a few cases, the high water use efficiency (or the high phosphorus use efficiency) feature was seen in the same genotype where the grain yield was also high. Morphological parameters responsible for making some genotypes superior in their capacity to use phosphorus or water have also been investigated. It is our hope that the findings reported in this publication will help agricultural scientists in the Member States, particularly in Africa, in their quest of finding solutions to problems of food security. Refs, figs, tabs

  12. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  13. New neutron-rich isotope production in 154Sm+160Gd

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-09-01

    Full Text Available Deep inelastic scattering in 154Sm+160Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD model and time dependent Hartree–Fock (TDHF theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with 58≤Z≤76 are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

  14. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry

    International Nuclear Information System (INIS)

    Esteban, N.V.; Loughlin, T.; Yergey, A.L.; Zawadzki, J.K.; Booth, J.D.; Winterer, J.C.; Loriaux, D.L.

    1991-01-01

    Growth retardation as well as the development of Cushingoid features in adrenally insufficient patients treated with the currently accepted replacement dose of cortisol (33-41 mumol/day.m2; 12-15 mg/m2.day) prompted us to reevaluate the cortisol production rate (FPR) in normal subjects and patients with Cushing's syndrome, using a recently developed thermospray liquid chromatography-mass spectrometry method. The stable isotope [9,12,12-2H3]cortisol was infused continuously for 31 h at about 5% of the anticipated FPR. Blood samples were obtained at 20-min intervals for 24 h, spun, and pooled in 4-h groups. Tracer dilution in plasma was determined by liquid chromatography/mass spectrometry. The method was validated with controlled infusions in 6 patients with adrenal insufficiency. Results from 12 normal volunteers revealed a FPR of 27.3 +/- 7.5 mumol/day (9.9 +/- 2.7 mg/day) or 15.7 mumol/day.m2; 5.7 mg/m2. day. A previously unreported circadian variation in FPR was observed. Patients with Cushing's syndrome demonstrated unequivocal elevation of FPR and cortisol concentration correlated during each sample period in normal volunteers, indicating that cortisol secretion, rather than metabolism, is mainly responsible for changes in plasma cortisol. Our data suggest that the FPR in normal subjects may be lower than previously believed

  15. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  16. Isotope Effects Associated with N2O Production by Fungal and Bacterial Nitric Oxide Reductases: Implications for Enzyme Mechanisms

    Science.gov (United States)

    Hegg, E. L.; Yang, H.; Gandhi, H.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.

    2014-12-01

    Nitrous oxide (N2O) is both a powerful greenhouse gas and a key participant in ozone destruction. Microbial activity accounts for over 70% of the N2O produced annually, and the atmospheric concentration of N2O continues to rise. Because the fungal and bacterial denitrification pathways are major contributors to microbial N2O production, understanding the mechanism by which NO is reduced to N2O will contribute to both N2O source tracing and quantification. Our strategy utilizes stable isotopes to probe the enzymatic mechanism of microbial N2O production. Although the use of stable isotopes to study enzyme mechanisms is not new, our approach is distinct in that we employ both measurements of isotopic preferences of purified enzyme and DFT calculations, thereby providing a synergistic combination of experimental and computational approaches. We analyzed δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom) of N2O produced by purified fungal cytochrome P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum as well as bacterial cytochrome c dependent nitric oxide reductase (cNOR) from Paracoccus denitrificans. P450nor exhibits an inverse kinetic isotope effect for Nβ (KIE = 0.9651) but a normal isotope effect for both Nα (KIE = 1.0127) and the oxygen atom (KIE = 1.0264). These results suggest a mechanism where NO binds to the ferric heme in the P450nor active site and becomes Nβ. Analysis of the NO-binding step indicated a greater difference in zero point energy in the transition state than the ground state, resulting in the inverse KIE observed for Nβ. Following protonation and rearrangement, it is speculated that this complex forms a FeIV-NHOH- species as a key intermediate. Our data are consistent with the second NO (which becomes Nα and O in the N2O product) attacking the FeIV-NHOH- species to generate a FeIII-N2O2H2 complex that enzymatically (as opposed to abiotically) breaks down to release N2O. Conversely, our preliminary data

  17. Gas targets for the production of 15O, 11C and 18F for PET studies

    International Nuclear Information System (INIS)

    Hichwa, R.D.; Hugel, E.A.; Moskwa, J.J.; Raylman, R.R.

    1987-01-01

    Production of 15 O, 11 C and 18 F is achieved with particle irradiation of gaseous targets. Design features for generalized targets include characterization of window materials and cooling, target size and shape, beam size and profile, and chamber cooling and operating pressure. A cylindrical design is employed that utilizes a C-ring for sealing the target window to the target body. Ultrapure materials are required for fabrication of 11 C and 18 F targets. Use of welded joints are to be limited on all targets and eliminated on 18 F systems. Tomographic techniques will be used to determine the cross-sectional temperature profile of target gases during bombardment. Mass species are measured with a sector focused mass spectrometer while the target undergoes particle irradiation for production of clinical agents. This diagnostic information is useful for tailoring the bombardment conditions to achieve optimal precursor production and the highest specific activity that may be obtained from the target. (orig.)

  18. Fingerprinting Marcellus Shale waste products from Pb isotope and trace metal perspectives

    International Nuclear Information System (INIS)

    Johnson, Jason D.; Graney, Joseph R.

    2015-01-01

    Highlights: • Dry drilled, uncontaminated cuttings from Marcellus Shale and surrounding units. • Unoxidized and oxidized samples leached short and long term with H 2 O or dilute HCl. • Pb isotope ratios have distinctly different values from Marcellus Shale samples. • Mo and other trace metals can be used as Marcellus Shale environmental tracers. • Marcellus Shale leachate concentrations can exceed EPA contaminant screening levels. - Abstract: Drill cuttings generated during unconventional natural gas extraction from the Marcellus Shale, Appalachian Basin, U.S.A., generally contain a very large component of organic-rich black shale because of extensive lateral drilling into this target unit. In this study, element concentrations and Pb isotope ratios obtained from leached drill cuttings spanning 600 m of stratigraphic section were used to assess the potential for short and long term environmental impacts from Marcellus Shale waste materials, in comparison with material from surrounding formations. Leachates of the units above, below and within the Marcellus Shale yielded Cl/Br ratios of 100–150, similar to produced water values. Leachates from oxidized and unoxidized drill cuttings from the Marcellus Shale contain distinct suites of elevated trace metal concentrations, including Cd, Cu, Mo, Ni, Sb, U, V and Zn. The most elevated Mo, Ni, Sb, U, and V concentrations are found in leachates from the lower portion of the Marcellus Shale, the section typically exploited for natural gas production. In addition, lower 207 Pb/ 206 Pb ratios within the lower Marcellus Shale (0.661–0.733) provide a distinctive fingerprint from formations above (0.822–0.846) and below (0.796–0.810), reflecting 206 Pb produced as a result of in situ 238 U decay within this organic rich black shale. Trace metal concentrations from the Marcellus Shale leachates are similar to total metal concentrations from other black shales. These metal concentrations can exceed screening

  19. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    Science.gov (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  20. Isotope reversals in hydrocarbon gases of natural shale systems and well head production data

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U.; Schloemer, S.; Stiller, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Marquardt, D. [Rijksuniversiteit Utrecht (Netherlands)

    2013-08-01

    Relationships between gas geochemical signatures and the thermal maturity of source rocks containing aquatic organic matter are based on on pyrolysis experiments and have been successfully used in conventional hydrocarbon exploration since long. We demonstrate how these models can be applied to the evaluation of unconventional shale resources. For this purpose hydrocarbon gases have been extracted from low and high mature source rocks (type II kerogens) using laboratory desorption techniques. We determined the molecular composition of the gases as well as the carbon isotope ratios of methane to propane. In the extracted gases we observe an increase of {sup 13}C content in methane with increasing dry gas ratio (C1/{Sigma}C1-6). The carbon isotope ratios of ethane and propane initially increase with increasing dryness but start to become isotopically lighter above a dry gas ratio of 0.8. We show that oil-to-gas cracking explains the observed gas geochemical data, and that mixing between gases from different processes is a key factor to describe natural hydrocarbon systems of shales. However, data from published case studies using well head gases which show 'isotope roll-over' effects indicate that the isotopic reversal observed in well head samples deviate from those observed in natural shale systems in a fundamental way. We show that isotope reversals related to well head gases are best explained by an additional isotope fractionation effect induced through hydraulic fracturing and gas migration from the shale to the well head. Although, this induced isotope fractionation is an artifact which obscures isotopic information of natural systems to a large extend, we suggest a simple classification scheme which allows distinguishing between hot and cool spot areas using well head or mud line gas data. (orig.)

  1. The method for production of high purity carrier free ortophosphoric acid labeled with isotopes Phosphorus-32 and Phosphorus-33

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Abdusalyamov, A.N.; Chistyakov, P.G.; Yuldashev, B.S.

    2001-01-01

    Extensive application for various radioactive isotopes was found in an extremity of the 20-Th century in a science and production. Labeled compounds are used with growing effectiveness in a molecular biology, gene engineering, medicine and other areas. Phosphorus-32 and Phosphorus-33 isotopes as a different labeled compounds that are used mainly in molecular biology are produced at the Radiopreparat enterprise of the Institute of Nuclear Physics of Academy of Sciences of Uzbekistan Republic. The quality of labeled preparations is very high. The specifications for above mentioned preparations corresponds to demands most of customers in different countries. P-32 or P-33 labeled orthophosphoric acid has high radiochemical purity (more than 99 %) and specific radioactivity close to theoretical. Orthophosphoric acid prepared by the described above method has radiochemical purity about 95 % and output of the target product 99%

  2. Potential impact of releases from a new Molybdenum-99 production facility on regional measurements of airborne xenon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, Ted W.; Eslinger, Paul W.; Cameron, Ian M.; Friese, Judah I.; Hayes, James C.; Metz, Lori A.; Miley, Harry S.

    2014-03-01

    The monitoring of the radioactive xenon isotopes 131mXe, 133Xe, 133mXe, and 135Xe is important for the detection of nuclear explosions. While backgrounds of the xenon isotopes are short-lived, they are constantly replenished from activities dominated by the fission-based production of 99Mo used for medical procedures. One of the most critical locations on earth for the monitoring of nuclear explosions is the Korean peninsula, where the Democratic Republic of North Korea (DPRK) has announced that it had conducted three nuclear tests between 2009 and 2013. This paper explores the backgrounds that would be caused by the medium to large scale production of 99Mo in the region of the Korean peninsula.

  3. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  4. 90Nb: potential radionuclide for application in immuno-PET. Development of appropriate production strategy and first in vivo evaluation of 90Nb-labeled monoclonal antibody

    International Nuclear Information System (INIS)

    Radchenko, Valery

    2013-01-01

    Nuclear medicine is a modern and highly effective tool for the detection and treatment of oncological disease. Molecular imaging based on radiotracers includes single photon emission tomography (SPECT) and positron emission tomography (PET), which provide non-invasive tumor visualization on nano- and picomolar level, respectively. Currently, many novel tracers for more precise discovery of small tumors and metastases have been introduced and are under investigation. Many of them are protein-based biomolecules which nature herself produces as antigens for the eradication of tumor cells. Antibodies and antibody fragments play an important role in tumor diagnostics and treatment. PET imaging with antibodies and antibody fragments is called immuno-PET. The main issue that needs to be addressed is that appropriate radiotracers with half-lives related to the half-lives of biomolecules are needed. The development of novel radiotracers is a multistep, complicated task. This task includes the evaluation of production, separation and labeling strategy for chosen radionuclide. Finally, the biomolecule-radionuclide complex should be stable in time. An equally important factor is the economic suitability of the production strategy, which will lead to a key decision for future application of the developed radionuclide. In recent work, 90 Nb has been proposed as a potential candidate for application in immuno-PET. Its half-life of 14.6 hours is suitable for application with antibody fragments and some intact antibodies. 90 Nb has a relatively high positron branching of 53% and an optimal energy of β + emission of 0.35 MeV that can provide high quality of imaging with low dose of used radionuclide. First proof-of-principle studies have shown that 90 Nb: (i) can be produced in sufficient amount and purity by proton bombardment of natural zirconium target (ii) can be isolated from target material with appropriate radiochemical purity (iii) may be used for labeling of monoclonal

  5. Development of tags for a general lost-step isotope labeling of biomolecule-based substrates with carbon monoxide: pallado-catalyzed carbonylation and PET application

    International Nuclear Information System (INIS)

    Cornilleau, Thomas

    2016-01-01

    Positron Emission Tomography (PET) is a powerful molecular-imaging technique for physiological and biological investigations in various areas. Due to the increasing need of this technique for in vivo applications, there is always a demand for the development of new tracers and radiolabeling strategies. In this context an original method was developed to introduce the "1"1C-radioisotope for the labeling of bio-conjugated compounds. The extremely mild conditions of this intramolecular Pd catalyzed alc-oxy-carbonylation allowed to label these structures in the last step of the synthesis. Diversification of the available precursors was investigated by a novel bi-aryl cross coupling using gold catalysis under photo-redox conditions. Finally, preliminary studies for the functionalization of BODIPY cores were realized to obtain innovative bimodal probes. (author)

  6. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  7. Evaluation and Compilation of Neutron Activation Cross Sections for Medical Isotope Production

    International Nuclear Information System (INIS)

    Binney, Stephen E.

    2004-01-01

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory

  8. Radio-isotope production scale-up at the University of Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Nickles, Robert Jerome [Univ of Wisconsin

    2014-06-19

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing

  9. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Production of actinide isotopes in simulated PWR fuel and their influence on inherent neutron emission

    International Nuclear Information System (INIS)

    Bosler, G.E.; Phillips, J.R.; Wilson, W.B.; LaBauve, R.J.; England, T.R.

    1982-07-01

    This report describes calculations that examine the sensitivity of actinide isotopes to various reactor parameters. The impact of actinide isotope build-up, depletion, and decay on the neutron source rate in a spent-fuel assembly is determined, and correlations between neutron source rates and spent-fuel characteristics such as exposure, fissile content, and plutonium content are established. The application of calculations for evaluating experimental results is discussed

  11. Analysis and results of a hydrogen-moderated isotope production assembly in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Wootan, D.W.; Rawlins, J.A.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1989-01-01

    This paper reports on a cobalt test assembly containing yttrium hydride pins for neutron moderation irradiated in the Fast Flux Test Facility (FFTF) during cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce 60 Co and a set of four pins with europium oxide to produce 153 Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the 60 Co production to be predictable to an accuracy of ∼ 5%. The measured 60 Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average 60 Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes 152 Eu and 154 Eu to an absolute accuracy of ≅ 10%. The measured europium radioisotope and 153 Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many FFTF isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly

  12. Dynamic isotope effect on the product energy partitioning in CH2OH+→CHO++H2

    Science.gov (United States)

    Rhee, Young Min; Kim, Myung Soo

    1998-10-01

    The deuterium isotope effect on the product energy partitioning in the title reaction was investigated both experimentally and theoretically. The measured kinetic energy release (KER) showed a significant dependence on the position of deuteration. A reliable potential energy surface of the reaction was constructed from ab initio results using the recently developed interpolation algorithm. The classical trajectory calculation on this surface well reproduced the experimental finding. Close inspection of the potential energy surface revealed that the isotope effect on KER and the product rotations arose from the alteration of the symmetry of the reaction path near the transition state induced by the mass change upon isotopic substitution. The product vibrations were found to be affected by the change in the coupling constants which also arose from the mass-dependent change in the reaction path. Possibility of the quantum mechanical tunneling was also considered. Tunneling-corrected classical trajectory results were in excellent agreement with the experimental ones, indicating that the reaction proceeds via barrier penetration below the threshold.

  13. Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review

    International Nuclear Information System (INIS)

    Wulff, W.

    1990-01-01

    A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs

  14. The NNSA global threat reduction initiative's efforts to minimize the use of highly enriched uranium for medical isotope production

    International Nuclear Information System (INIS)

    Staples, Parrish

    2010-01-01

    The mission of the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction (GTRI) is to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. GTRI is a key organization for supporting domestic and global efforts to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications. GTRI implements the following activities in order to achieve its threat reduction and HEU minimization objectives: Converting domestic and international civilian research reactors and isotope production facilities from the use of HEU to low enriched uranium (LEU); Demonstrating the viability of medical isotope production technologies that do not use HEU; Removing or disposing excess nuclear and radiological materials from civilian sites worldwide; and Protecting high-priority nuclear and radiological materials worldwide from theft and sabotage. This paper provides a brief overview on the recent developments and priorities for GTRI program activities in 2010, with a particular focus on GTRI's efforts to demonstrate the viability of non-HEU based medical isotope production technologies. (author)

  15. The use of the isotopic composition of individual compounds for correlating spilled oils and refined products in the environment with suspected sources

    International Nuclear Information System (INIS)

    Philp, R.P.; Allen, J.; Kuder, T.

    2002-01-01

    Gas chromatography (GC) and gas chromatography/mass spectrometry (CGMS) are two methods generally used to correlate crude oils and refined products found in the environment with their suspected pollution sources. In certain cases, this can be done with bulk carbon isotope compositions, but with crude condensates, or refined products, the lack of biomarkers prohibits the successful use for making unique correlations. Such products can be correlated using an alternative method which makes use of combined gas chromatography-isotope ratio and mass spectrometry (GCIRMS). This method makes it possible to determine the carbon and hydrogen isotopic composition of individual compounds in crude oil, thus producing isotopic fingerprints that could be used in correlation studies. The feasibility of using of GCIRMS to correlate various spilled products in different environments was the main focus of this study. The authors are not proposing that this method will replace GC or GCMS, but are suggesting that it is a powerful tool that could be used in conjunction with the early methods. Carbon and hydrogen isotopic fractionation has been reported for light components such as benzene and toluene. Higher carbon numbered compounds do not seem to undergo major carbon isotopic fractionation as a result of weathering. Hydrogen variations are currently undergoing investigation for compounds with a carbon number greater than C10. Also, isotopic fractionation for refined products has the potential to attenuate naturally. 33 refs., 6 figs

  16. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  17. Transmission factors for neutrons produced by radioisotopes production used in PET

    International Nuclear Information System (INIS)

    Hernandez G, D.; Cruzate, J.A.

    1996-01-01

    The dose transmission factor for normal concrete and the neutrons produced in the 18 O(p,n) 18 F and 13 C(p,n) 13 N reactions are presented in this paper. These transmission factors permit to simplify the calculation of the necessary accelerator shielding to be used in the radioisotope production for positron emission tomography. The energy distributions of the neutrons resulting from the irradiation of thick targets, with 10 to 13 MeV protons, were determined using the thin target cross sections, the energy loss per path length and the energy balance of the reaction (Q-equation). The one dimensional discrete ordinate transport code ANISN and the conversion coefficients from fluence to dose, presented in the ICRP Publication 51 were employed to obtain the transmission factors. (authors). 12 refs., 3 figs., 2 tabs

  18. Stable carbon isotope analysis (δ13C values) of polybrominated diphenyl ethers and their UV-transformation products

    International Nuclear Information System (INIS)

    Rosenfelder, Natalie; Bendig, Paul; Vetter, Walter

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the δ 13 C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in 13 C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in 13 C because of more stable bonds between 13 C and bromine. As a result, the δ 13 C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the δ 13 C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios 1) is typical of transformation products. - Highlights: → δ 13 C values of PBDEs were determined by means of compound specific isotope analysis. → PBDEs in technical mixtures were the more depleted in 13 C the higher they were brominated. → Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. → δ 13 C values of irradiated PBDEs and technical PBDEs progressed diametrically. → Ratios of the δ 13 C values were used to distinguish native from transformed PBDEs. - Diametrically progressing δ 13 C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  19. Production of intense metallic ion beams in order of isotopic separations; Production de faisceaux intenses d'ions metalliques en vue de la separation des isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sarrouy, J L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. Les sources d'ions realisees fournissent des debits ioniques de 10 mA. Ce present travail porte sur l'obtention de faisceaux d'ions faisceaux d'ions intenses (10 a 15 mA), des differents procedes de mesures des courants d'ions, ainsi que l'etude du phenomene de neutralisation de charge d'espace. La deuxieme partie de ce memoire portera sur l'etude et l'adaptation sur la source de divers type de four permettant de vaporiser et d'ioniser directement les metaux. Par ordre de difficulte croissantes de vaporisations, nous avons atteint le chrome. (M.B.)

  20. Isotope aided studies on non-protein nitrogen and agro-industrial by-products utilization by ruminants

    International Nuclear Information System (INIS)

    1987-01-01

    This publication reports the results of a five year Co-ordinated Research Programme aimed at (1) evaluating locally available resources, in particular agro-industrial by-products as feeds for ruminant animals and (2) formulating rations using these resources to improve the level of animal production in developing countries. The Programme was executed by the Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development and involved 13 participants from 12 countries. The papers published here are those presented by the participants of the Programme at the Final Research Co-ordination Meeting held in Vienna from 24 to 26 March 1986

  1. Measurement of the induced radionuclides in production of radiopharmaceuticals for positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Machizuki, Shingo; Ogatam Yoshimune; Ishigure, Nobuhito; Hatano, Kentaro; Abe, Junichiro; Ito, Kengo; Ito, Yoshihiro; Nishino, Masanari; Miyahara, Hiroshi

    2006-01-01

    The radioactive by-products contained in an entire series of target foil, [ 18 O]H 2 O and synthesis apparatus were identified and quantified. From the perspective of waste management, 60 Co induced in Havar foil should be taken into consideration. Because the exempt activity of 60 Co in BSS is 0.1 MBq, the used Havar foil should be managed more than for 20 years. The radionuclides in the [ 18 F]-FDG synthesis apparatus are negligible. Equivalent doses at skin and to tissues were estimated assuming a point source at a distance of 30 cm in air. The annual equivalent doses at skin and equivalent dose at deep tissues of such an operating staff will be 56 and 8.3 μSv, respectively, as two times the remove of the target foil and five hundreds times the synthesis of the [ 18 F]-FDG. When proper radiation protection is provided, the exposure from the cyclotron management and the [ 18 F]-FDG synthesis process will not cause meaningful radiological risk to the operating staff. The activity concentration of 3 H, 180 kBq·cm -3 , detected in the target water, is 3,000 times the legal limit of effluent for 3 H. The operators should take care of the treatment of the target water when they make a distillation for reuse and a disposal. (author)

  2. Proceedings of V International Seminar and V National Workshop 'Use and development of products isotopic health industry'. 20th anniversary CENTIS

    International Nuclear Information System (INIS)

    2016-01-01

    At the Salon Copa Room. Hotel Habana Riviera Took place the V International Seminar and V National Workshop 'Use and development of products isotopic health industry' for the 20th anniversary CENTIS. The event was organized by the Isotope Center. Some 200 domestic and foreign experts debated topics related to the development and production of radiopharmaceuticals in Cuba and the world, its therapeutic applications in certain tumors, and quality management systems in nuclear medicine. (author)

  3. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jane A.; Pashley, Vanessa [NIGL, BGS, Keyworth, NG12 5GG (United Kingdom); Richards, Gemma J. [School of Veterinary Science, University of Bristol, Bristol BS40 5DU (United Kingdom); Brereton, Nicola [The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ (United Kingdom); Knowles, Toby G. [School of Veterinary Science, University of Bristol, Bristol BS40 5DU (United Kingdom)

    2015-12-15

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. - Highlights: • Lead (Pb) isotopes measured in modern British meat were geogenic in origin. • The match indicates that this technique may be used to provenance biological products. • There was no evidence for a contribution from modern anthropogenic Pb sources.

  4. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability

    International Nuclear Information System (INIS)

    Evans, Jane A.; Pashley, Vanessa; Richards, Gemma J.; Brereton, Nicola; Knowles, Toby G.

    2015-01-01

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. - Highlights: • Lead (Pb) isotopes measured in modern British meat were geogenic in origin. • The match indicates that this technique may be used to provenance biological products. • There was no evidence for a contribution from modern anthropogenic Pb sources.

  5. Pet Health

    Science.gov (United States)

    ... companionship and a feeling of safety to your life. Before getting a pet, think carefully about which ... Gaining or losing a lot of weight quickly Strange behavior Being sluggish and tired Trouble getting up ...

  6. Optimized production, quality control, biological evaluation and PET/CT imaging of {sup 68}Ga-PSMA-617 in breast adenocarcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mehdi; Yousefnia, Hassan; Bahrami-Samani, Ali; Zolghadri, Samaneh; Alirezapour, Behrouz [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Jalilian, Amir Reza; Geramifa, Parham; Beiki, Davood [Tehran Univ. of Medical Sciences (Iran, Islamic Republic of). Research Center for Nuclear Medicine; Maus, Stephan [Univ. Medical Centre Mainz (Germany). Clinic of Nuclear Medicine

    2017-08-01

    Optimized production, quality control and preclinical evaluation of {sup 68}Ga-PSMA-617 as a PET radiotracer for PSMA-positive malignancies as well as successful application in imaging of breast adenocarcinomas are reported. {sup 68}Ga-PSMA-617 radiolabeling and QC optimization, stability, log P, biodistribution in breast adenocarcinomas-bearing mice (direct and blockade studies) and also PET/CT imaging was performed. {sup 68}Ga-PSMA-617 complex was prepared in high radiochemical purity (>96%, ITLC, HPLC) and specific activity of 300-310 GBq/mM at 95 C using 2-4 micrograms of the peptide in 10 min followed by solid phase purification. The tracer was stable in serum and final formulation for at least 120 min. The log P was -1.98. Western blot test on the tumor cell homogenates demonstrated distinct existence of the PSMA on the surface. The biodistribution of the tracer demonstrated specific kidney and tumor significant uptake using blocking study. Significant tumor:blood and tumor:muscle ratio uptake observed at 30 min post-injection (2.69 and 19.1, respectively). A reduction of 40-80% off tumor uptake in the study time period observed using blocking test. {sup 68}Ga-PSMA-617 can be proposing a possible tracer for PET imaging of breast adenocarcinomas and other breast malignancies.

  7. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    Science.gov (United States)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  8. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability.

    Science.gov (United States)

    Evans, Jane A; Pashley, Vanessa; Richards, Gemma J; Brereton, Nicola; Knowles, Toby G

    2015-12-15

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. Copyright © 2015. Published by Elsevier B.V.

  9. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry

    Science.gov (United States)

    Leya, Ingo; Wieler, Rainer; Halliday, Alex N.

    2000-01-01

    Excesses and deficiencies in 182W in meteorites and lunar samples relative to the terrestrial 182W atomic abundance have been assigned to the decay of 182Hf (t1/2=9 Ma) and have been used to date metal-silicate fractionation events in the early solar system. Because the effects are very small, production and burn-out of tungsten isotopes by cosmic ray interactions are a concern in such studies. Masarik [J. Masarik, Contribution of neutron-capture reactions to observed tungsten isotopic ratios, Earth Planet. Sci. Lett. 152 (1997) 181-185] showed that neutron-capture reactions on tungsten isotopes can account at best for a minor part of the observed deficit of 182W in Toluca and other iron meteorites. On the other hand, in lunar samples and stony meteorites the production of 182W from 181Ta may become crucial. Here, we calculate this contribution as well as production and consumption of 182-186W by other neutron-induced reactions. The neutron fluence of each sample is estimated by its nominal cosmic-ray exposure age deduced from noble gas data. This approach overestimates the true cosmogenic W isotopic shifts for samples that might have been irradiated very close to the regolith surface. A quantitative estimate is often also hampered by a lack of Ta data. Despite these reservations, it appears that in many lunar samples neutron-capture on Ta has caused a large part of the observed 182W excess. On the other hand, in some samples, especially those with very low exposure ages, clearly only a minor or even negligible fraction of the 182W excess can be cosmogenic. Therefore, the conclusion, based on Hf-W model ages, that the Moon formed 50 Myr after the start of the solar system remains valid. Martian meteorites have lower Ta/W ratios and cosmic ray exposure ages than most lunar samples. Therefore, cosmogenic production has not significantly altered the W isotopic composition in Martian meteorites. Observed 182W excesses in Martian meteorites as well as the very large

  10. Isotopes Project

    International Nuclear Information System (INIS)

    Dairiki, J.M.; Browne, E.; Firestone, R.B.; Lederer, C.M.; Shirley, V.S.

    1984-01-01

    The Isotopes Project compiles and evaluates nuclear structure and decay data and disseminates these data to the scientific community. From 1940-1978 the Project had as its main objective the production of the Table of Isotopes. Since publication of the seventh (and last) edition in 1978, the group now coordinates its nuclear data evaluation efforts with those of other data centers via national and international nuclear data networks. The group is currently responsible for the evaluation of mass chains A = 167-194. All evaluated data are entered into the International Evaluated Nuclear Structure Data File (ENSDF) and are published in Nuclear Data Sheets. In addition to the evaluation effort, the Isotopes Project is responsible for production of the Radioactivity Handbook

  11. Pet Allergy Quiz

    Science.gov (United States)

    ... Treatments ▸ Allergies ▸ Pet Allergy ▸ Pet Allergy Quiz Share | Pet Allergy Quiz More than half of U.S. households ... cat family. Yet, millions of people suffer from pet allergies. Take this quiz to test your knowledge ...

  12. The use of glycerol in PET chemical recycling with the prospect of the polymeric membranes production; Utilizacao de glicerol na reciclagem quimica de PET visando a producao de membranas polimericas cationicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Agne R. de; Consentino, Vinicius M.; Muniz, Aline S.; Sakae, George H.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana - UFPR, Centro Politecnico, Curitiba, PR (Brazil)], e-mail: mafco@ufpr.br

    2011-07-01

    The recent interest in alternative sources of renewable energy of unlimited duration and with a low environmental impact, has led to a rise in the use and production of biodiesel. This requires an increase in the availability of glycerine in the market. This involves a study of new applications to increase the consumption of this raw material which can be linked to solving a serious environmental problem - the unsuitable disposal of post-consumption PET packages. Parallel to this, combustible cell technology is proving to have promising results, particularly in the area which uses polymeric electrolytes. The polymeric proton exchange membrane is currently most widely used in Nafion. However, this entails very high costs. By bringing together these important requirements in the energy sector, this study demonstrates how the development of aromatic sulfonate polyesters obtained from the chemical recycling of poly(ethylene terephthalate) with an aromatic derivative of glycerol. (author)

  13. Research and development studies into isotope production using the Harwell Variable Energy Cyclotron

    International Nuclear Information System (INIS)

    Nichols, A.L.; Bett, R.; Cuninghame, J.G.; Goodall, J.A.B.; Hill, J.I.S.; Sims, H.E.; Willis, H.H.

    1979-11-01

    Many useful radioisotopes can be produced by means of the Harwell Chemistry Division's Variable Energy Cyclotron. This report describes the preliminary preparation of a number of these neutron deficient isotopes (i.e. F18, S38, Fe52, Sr82-Rb82, Nb92m, Rh99, I123, Xe125, Tl201, Pu236, Pu237). Recently a targetry development programme has been initiated to optimise isotope yields. Gas, liquid and solid targets have been designed that can be quickly and safely removed from the cyclotron beam-line so that the target activity can be rapidly processed after the irradiation, if necessary. (author)

  14. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  15. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  16. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  17. 78 FR 34565 - Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron...

    Science.gov (United States)

    2013-06-10

    ... style for the strength units describing radiation sources. This correction is being made to improve the...). That document used incorrect style for the strength units describing radiation sources. This correction... HANDLING OF ANIMAL FEED AND PET FOOD 0 1. The authority citation for 21 CFR part 579 continues to read as...

  18. The impact of owner age on companionship with virtual pets

    OpenAIRE

    Lawson, Shaun W.; Chesney, Thomas

    2007-01-01

    This paper focuses on issues of interaction with a particular type of mobile information system – virtual pets. It examines the impact of owner age on companionship with virtual pets, and tests the hypothesis that younger virtual pet owners will experience closer companionship with their virtual pet than older owners. This is in response to the marketing stance adopted by virtual pet manufacturers who clearly target younger people as the main consumers of their products. The hypothesis was te...

  19. PET/MRI. Challenges, solutions and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Hans [Forschungszentrum Juelich (Germany). Inst. of Neuroscience and Medicine - 4

    2012-07-01

    Already from the start of PET/CT integrating positron emission tomography (PET) and computed tomography (CT) in one instrument, there have been considerations how to combine PET and magnetic resonance imaging (MRI) so that their complementary abilities can be utilized in a single investigation. Since classical PET electronics fail in an even weak magnetic field and PET signal processing might disturb high-frequency signals of MRI, it soon became clear that new solutions had to be found to avoid mutual interferences. During the last fifteen years a number of different approaches towards PET/MRI for small animal imaging have been developed by research groups which together with their specific features are summarized in this review. Recently, PET/MRI for human imaging became available as well - this time by industrial initiatives. First some prototypes of BrainPET/MRI were developed followed by commercial products for simultaneous and non-simultaneous whole-body PET/MRI. Although only PET/MRI integrated in one scanner offers the full diversity of complementary multiparametric imaging, there are also promising applications of non-simultaneous sequential PET/MRI. While describing the present instrumentation for human PET/MRI, this review discusses the challenges and promises related to this new imaging technology. (orig.)

  20. Measurement of mass and isotopic fission yields for heavy fission products with the LOHENGRIN mass spectrometer

    International Nuclear Information System (INIS)

    Bail, A.

    2009-05-01

    In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields of the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. To complete and improve the nuclear data libraries, these measurements have been extended in this work to the heavy mass region for the reactions 235 U(n th ,f), 239 Pu(n th ,f) and 241 Pu(n th ,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239 Pu(n th ,f) to determine the isotopic yields by spectrometry. These experiments have allowed to reduce considerably the uncertainties. Moreover the ionic charge state and kinetic energy distributions were specifically studied and have shown, among others, nanosecond isomers for some masses. (author)

  1. Process for the production of heavy water by H2-methylamine isotopic exchange

    International Nuclear Information System (INIS)

    Briec, M.; Ravoire, J.; Rostaing, M.

    1977-01-01

    An isotopic exchange process for separating D 2 from H 2 is presented. The H 2 -monomethylamine system is studied on the laboratory scale (kinetics, H 2 solubility, thermal stability and solubility of the catalyst) and on the pilot plant scale (operating conditions and economics) [fr

  2. Production and trapping of Na isotopes for beta-decay studies

    NARCIS (Netherlands)

    Rogachevskiy, Andrey Valerievich

    2007-01-01

    TRImP is a new facility at KVI, which is presently being completed. The acronym TRImP stands for Trapped Radioactive Isotopes: micro-laboratories for fundamental physics. The Standard Model (SM) quantitatively describes the electroweak and strong interactions. It is agrees very well with

  3. Study on material attractiveness aspect of spent nuclear fuel of LWR and FBR cycles based on isotopic plutonium production

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Saito, Masaki; Novitrian,; Waris, Abdul; Suud, Zaki

    2013-01-01

    Highlights: • The paper analyzes the plutonium production of recycling nuclear fuel option. • To evaluate material attractiveness based on intrinsic feature of material barrier. • Evaluation based on isotopic plutonium composition of spent fuel LWR and FBR. • Even mass number of plutonium gives a significant contribution to material barrier, in particular Pu-238 and Pu-240. • Doping MA in FBR blanket is effective to increase material barrier from weapon grade plutonium to more than MOX fuel grade. - Abstract: Recycling minor actinide (MA) as well as used uranium and plutonium can be considered to reduce nuclear waste production as well as to increase the intrinsic aspect of nuclear nonproliferation as doping material. Plutonium production as a significant aspect of recycling nuclear fuel option, gives some advantages and challenges, such as fissile material utilization of plutonium as well as production of some even mass number plutonium. The study intends to evaluate the material attractiveness based on the intrinsic feature of material barrier such as plutonium composition, decay heat and spontaneous fission neutron components from spent fuel (SF) light water reactor (LWR) and fast breeder reactor (FBR) cycles. A significant contribution has been shown by decay heat (DH) and spontaneous fission neutron (SFN) of even mass number of plutonium isotopes to the total DH and SFN of plutonium element, in particular from isotopic plutonium Pu-238 and Pu-240 contributions. Longer decay cooling time and higher burnup are effective to increase the material barrier (DH and SFN) level from reactor grade plutonium level to MOX grade plutonium level. Material barrier of plutonium element from spent fuel (SF) FBR in the core regions has similarity to the material barrier profile of SF LWR which can be categorized as MOX fuel grade plutonium. Plutonium compositions, DH and SFN components are categorized as weapon grade plutonium level for FBR blanket regions with no

  4. Nutritional sustainability of pet foods.

    Science.gov (United States)

    Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R

    2013-03-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.

  5. Procedure and equipment for the separation of isotopes for deuterium upgrading and for the production of heavy water

    International Nuclear Information System (INIS)

    Schoell, M.

    1981-01-01

    The invention concerns a simple procedure for the separation of isotopes for the enrichment of deuterium and for the production of heavy water as well as the equipment necessary for carrying out the process. Methane is conducted over bacterial cultures oxidizing methane to water and carbon dioxide. An enrichment of deuterium takes place in non-oxidized methane. The bacterial cultures are placed on carriers that are arranged in oxidation columns as baffle plates. Several oxidation towers of this kind can be arranged in series. (orig./RW) [de

  6. Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production

    Science.gov (United States)

    Kitagawa; van der Plicht J

    1998-02-20

    More than 250 carbon-14 accelerator mass spectrometry dates of terrestrial macrofossils from annually laminated sediments from Lake Suigetsu (Japan) provide a first atmospheric calibration for almost the total range of the radiocarbon method (45,000 years before the present). The results confirm the (recently revised) floating German pine chronology and are consistent with data from European and marine varved sediments, and combined uranium-thorium and carbon-14 dating of corals up to the Last Glacial Maximum. The data during the Glacial show large fluctuations in the atmospheric carbon-14 content, related to changes in global environment and in cosmogenic isotope production.

  7. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Amanda M. [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Heidrich, Brenden [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Durrant, Chad [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Bascom, Andrew [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Unlu, Kenan [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  8. Construction Status of the Beamline for Radio-Isotope Production in the Korea Multi-purpose Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. H.; Yoon, S. P.; Seol, K. T.; Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The 100-MeV beamline consist of 5 target room, a TR 103 as one of these is operating beamline, and a TR 101 as the other beamline is under construction as shown in Fig. 1. The TR 101 as beamline target room will be used for the high value-added medical isotope production and increased utilization of the proton accelerator. The optical system of the beamline consisted of dipole and quadrupole, and it included beam position monitor (BPM) and current transformer (CT) for beam diagnostics. The beamline was inserted into the carbon block and the aluminum collimator, the end of pipe as beam window was used for the aluminum to reduce the radioactive of materials. The target transfer equipment is being installed for RI production. The RI Beamline was aligned using the laser tracker, and vacuum leak was not detected by the helium leak detector. This facility is expected to the high value-added medical isotope production and increased utilization of the proton accelerator.

  9. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  10. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    International Nuclear Information System (INIS)

    Skelton, David; Goodyear, Abbey; Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T.; Logan, Timothy M.

    2010-01-01

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U- 13 C-glucose and 15 N-glutamate as labeled precursors. This study suggests that uniformly 15 N, 13 C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  11. Production of Rare Earth Isotope Beams for Radiotracer-DLTS on SiC

    CERN Multimedia

    2002-01-01

    Electrical properties of semiconductors are extremely sensitive to minor traces of impurities and defects. This fact allows to intentionally modify material properties and is thus the very basis of semiconductor electronics and optoelectronics. In the present project, electronic properties and doping effects of rare-earth elements in the technologically important semiconductor SiC are to be investigated using optical and electrical characterization techniques like Photoluminescence, Deep Level Transient Spectroscopy and Thermal Admittance Spectroscopy. By using the elemental transmutation of radioactive isotopes as a tracer, it will be guaranteed that the impurity-related band gap states can definitively be distinguished from intrinsic or process-induced defects. For SiC up to now only detailed investigation of Er- related deep levels have been reported, preliminary data exist for Sm- and Gd- impurities. In this project we propose the implantation of Pr and Eu isotopes for detailed level studies.

  12. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  13. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    -dependent discrimination against 202Hg relative to 198Hg. G. sulfurreducens PCA and D. desulfuricans ND132 have similar kinetic reactant/product Hg fractionation factors. Using the Hg isotope data, we showed that there are multiple intra- and/or extracellular pools provide substrate inorganic Hg for methylation.

  14. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Konobeyev, A.Y.; Pereslavtsev, P.E. [Obninsk Institute of Nuclear Power Engineering, Obninsk (Russian Federation)

    1995-10-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclide transmutation. All calculations have been performed using the SNT code.

  15. Optimization of the procedure for verification of the response on activity of activimeters in PET production units using 13N

    International Nuclear Information System (INIS)

    Verde Velasco, J. M.; Lopez Lorenzo, B.; Ruiz Guijarro, J. A.; Montes Fuentes, C.

    2013-01-01

    The Spanish Protocol for quality control in medicine nuclear1 establishes the need to control regular activity of the calibrators of dose response. This Protocol establishes the use of 99mTc for performing this test. In the case of a PET facility this methodology is feasible not to dispose of the radionuclide in the installation. We propose an alternative methodology for carrying out this test of fast, cheap and efficient form in a facility that has cyclotron. (Author)

  16. A Pilot Comparison of 18F-fluorocholine PET/CT, Ultrasonography and 123I/99mTc-sestaMIBI Dual-Phase Dual-Isotope Scintigraphy in the Preoperative Localization of Hyperfunctioning Parathyroid Glands in Primary or Secondary Hyperparathyroidism

    Science.gov (United States)

    Michaud, Laure; Balogova, Sona; Burgess, Alice; Ohnona, Jessica; Huchet, Virginie; Kerrou, Khaldoun; Lefèvre, Marine; Tassart, Marc; Montravers, Françoise; Périé, Sophie; Talbot, Jean-Noël

    2015-01-01

    that FCH-PET/CT is an adequate imaging tool in patients with primary or secondary hyperparathyroidism, since both adenomas and hyperplastic parathyroid glands can be detected. The sensitivity of FCH-PET/CT was better than that of US and was not inferior to that of dual-phase dual-isotope 123I/99mTc-scintigraphy. Further studies should evaluate whether FCH could replace 99mTc-sestaMIBI as the functional agent for parathyroid imaging, but US would still be useful to identify thyroid lesions. PMID:26469908

  17. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-09-01

    medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα−δ15Nβ, and δ18O of N2O (δ18O-N2O, we estimate that nitrifier-denitrification produced between 11% and 26% of N2O from cultures grown under 20% O2 and 43% to 87% under 0.5% O2. We also demonstrate that a positive correlation between SP and δ18O-N2O is expected when nitrifying bacteria produce N2O. A positive relationship between SP and δ18O-N2O has been observed in environmental N2O datasets, but until now, explanations for the observation invoked only denitrification. Such interpretations may overestimate the role of heterotrophic denitrification and underestimate the role of ammonia oxidation in environmental N2O production.

  19. Experimental design-based isotope-dilution SPME-GC/MS method development for the analysis of smoke flavouring products.

    Science.gov (United States)

    Giri, Anupam; Zelinkova, Zuzana; Wenzl, Thomas

    2017-12-01

    For the implementation of Regulation (EC) No 2065/2003 related to smoke flavourings used or intended for use in or on foods a method based on solid-phase micro extraction (SPME) GC/MS was developed for the characterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimisation. The best general conditions to quantitatively analyse the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 60°C extraction temperature, 30 min extraction time, 250°C desorption temperature, 180 s desorption time, 15 s agitation time, and 250 rpm agitation speed. Under the optimised conditions, 119 wood pyrolysis products including furan/pyran derivatives, phenols, guaiacol, syringol, benzenediol, and their derivatives, cyclic ketones, and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% <5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimised isotope dilution SPME-GC/MS based analytical method proved to be fit for purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavourings.

  20. Carbon Stable-Isotope and Physicochemical Data as a Possible Tool to Differentiate between Honey-Production Environments in Uruguay

    Directory of Open Access Journals (Sweden)

    Verónica Berriel

    2018-06-01

    Full Text Available The allocation of honey origin is an increasingly important issue worldwide as it is closely related to product quality and consumer preference. In South America, honeys produced in grasslands and eucalyptus or native forests are preferred at the regional level, so their differentiation is essential to assure consumers of their authenticity according to their productive system. The objective of this study was to differentiate honeys produced in three environments: one, a monoculture system based on the eucalyptus forest, and two others based in natural environments of grasslands and native forests. To do this, honey’s physicochemical and isotopic variables (pH, free acidity, lactic acid content, moisture, total sugar content, and honey and extracted protein 13C isotopic composition were analysed. Discriminant analysis applied to the data revealed that, based on the selected variables, it was impossible to differentiate the three groups of honeys due to the superposition of those produced in grasslands and native forests. For this reason, a group of honeys derived from native and polyfloral environments (grasslands and native forests was formed and subjected to discriminant analysis (DA, together with the group of honeys derived from a commercial plantation of eucalyptus forest. The model obtained in this case achieved 100% correct allocation both at the training stage and the cross-validation stage.

  1. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  2. Dynamics of N2O production pathways analyzed by 15N18O isotope labeling

    DEFF Research Database (Denmark)

    Jensen, Marlene Mark; Ma, Chun; Lavik, Gaute

    Nitrous oxide production associated with biological nitrogen transformations can contribute substantially to the CO2 footprint of both man-made and natural systems, but the pathways and regulation of N2O production are poorly understood. We developed a 15N/18O dual isotope labelling technique...

  3. The development of a small inherently safe homogeneous reactor for the production of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2013-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. New interest has been found in the use of liquid fueled nuclear reactors to produce these isotopes due to the ease of fuel processing and ability to efficiently use LEU as the fuel source. A version of this reactor is being developed at the Royal Military College of Canada to act as a successor to the SLOWPOKE-2 platform. The thermal hydraulic and transient characteristics of a 20 kWt version are being studied to verify inherent safety abilities. (author)

  4. Production of heavy element and search for new isotopes at JAERI-RMS

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Tomohiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    The new neutron deficient isotope {sup 209}Th and {sup 212}Pa have been produced in heavy ion induced fusion evaporation reactions. The evaporation residues were separated in-flight by the JAERI recoil mass separator (JAERI-RMS). The {alpha}-decay energy of {sup 209}Th and {sup 212}Pa are 8.080(50) MeV and 8.270(30) MeV, respectively. The corresponding half-lives are 3.8{sub -1.5}{sup +6.9} ms and 5.1{sub -1.9}{sup +6.1} ms. (author)

  5. Determination of fission products and actinides by inductively coupled plasma-mass spectrometry using isotope dilution analysis. A study of random and systematic errors

    International Nuclear Information System (INIS)

    Ignacio Garcia Alonso, Jose

    1995-01-01

    The theory of the propagation of errors (random and systematic) for isotope dilution analysis (IDA) has been applied to the analysis of fission products and actinide elements by inductively coupled plasma-mass spectrometry (ICP-MS). Systematic errors in ID-ICP-MS arising from mass-discrimination (mass bias), detector non-linearity and isobaric interferences in the measured isotopes have to be corrected for in order to achieve accurate results. The mass bias factor and the detector dead-time can be determined by using natural elements with well-defined isotope abundances. A combined method for the simultaneous determination of both factors is proposed. On the other hand, isobaric interferences for some fission products and actinides cannot be eliminated using mathematical corrections (due to the unknown isotope abundances in the sample) and a chemical separation is necessary. The theory for random error propagation in IDA has been applied to the determination of non-natural elements by ICP-MS taking into account all possible sources of uncertainty with pulse counting detection. For the analysis of fission products, the selection of the right spike isotope composition and spike to sample ratio can be performed by applying conventional random propagation theory. However, it has been observed that, in the experimental determination of the isotope abundances of the fission product elements to be determined, the correction for mass-discrimination and the correction for detector dead-time losses contribute to the total random uncertainty. For the instrument used in the experimental part of this study, it was found that the random uncertainty on the measured isotope ratios followed Poisson statistics for low counting rates whereas, for high counting rates, source instability was the main source of error

  6. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  7. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  8. Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production.

    Science.gov (United States)

    Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2011-02-01

    This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Trajectory Calculations for Bergman Cyclization Predict H/D Kinetic Isotope Effects Due to Nonstatistical Dynamics in the Product.

    Science.gov (United States)

    Doubleday, Charles; Boguslav, Mayla; Howell, Caronae; Korotkin, Scott D; Shaked, David

    2016-06-22

    An unusual H/D kinetic isotope effect (KIE) is described, in which isotopic selectivity arises primarily from nonstatistical dynamics in the product. In DFT-based quasiclassical trajectories of Bergman cyclization of (Z)-3-hexen-1,5-diyne (1) at 470 K, the new CC bond retains its energy, and 28% of nascent p-benzyne recrosses back to the enediyne on a vibrational time scale. The competing process of intramolecular vibrational redistribution (IVR) in p-benzyne is too slow to prevent this. Deuteration increases the rate of IVR, which decreases the fraction of recrossing and increases the yield of statistical (trapable) p-benzyne, 2. Trapable yields for three isotopomers of 2 range from 72% to 86%. The resulting KIEs for Bergman cyclization differ substantially from KIEs predicted by transition state theory, which suggests that IVR in this reaction can be studied by conventional KIEs. Leakage of vibrational zero point energy (ZPE) into the reaction coordinate was probed by trajectories in which initial ZPE in the CH/CD stretching modes was reduced by 25%. This did not change the predicted KIEs.

  10. 87Sr/86Sr isotopes in grapes of different cultivars: A geochemical tool for geographic traceability of agriculture products.

    Science.gov (United States)

    Tescione, Ines; Marchionni, Sara; Casalini, Martina; Vignozzi, Nadia; Mattei, Massimo; Conticelli, Sandro

    2018-08-30

    87 Sr/ 86 Sr was determined on fresh red and white grapes, soils and rocks from three selected vineyards to verify the isotopic relationships between the fruit of the vine and geologic substrata of vineyards. 87 Sr/ 86 Sr were determined on sampled grapes of four different harvest years and different grape varieties, on bioavailable fraction of soils, on whole soils, and on bedrocks from the geo-pedological substratum of the vineyards. The vineyards chosen for the experimental works belong to an organic farming winery and thus cultivation procedures were strictly controlled. Grapes were sampled during the harvests of four different but consecutive years with 87 Sr/ 86 Sr that does not change reflecting the values of the soil bioavailable fraction. No variations among grapes from different vine cultivars were observed. A strict isotope relationship with soil bio-available fraction was observed. These findings demonstrate the reliability of 87 Sr/ 86 Sr, even at a very small scale, for food products geographic origin assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235 U/ 238 U, 236 U/ 238 U, 145 Nd/ 143 Nd, 146 Nd/ 143 Nd, 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred μm to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146 Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235 U/ 238 U and 236 U/ 238 U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus

  12. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    Science.gov (United States)

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten

  13. Healthy Pets and People

    Science.gov (United States)

    ... prevent the spread of germs between pets and people. Keep pets and their supplies out of the kitchen, and ... a local wildlife rehabilitation facility. More Information Healthy Pets Healthy People Clean Hands Save Lives! Stay Healthy at Animal ...

  14. Production of medically useful bromine isotopes via alpha-particle induced nuclear reactions

    Science.gov (United States)

    Breunig, Katharina; Scholten, Bernhard; Spahn, Ingo; Hermanne, Alex; Spellerberg, Stefan; Coenen, Heinz H.; Neumaier, Bernd

    2017-09-01

    The cross sections of α-particle induced reactions on arsenic leading to the formation of 76,77,78Br were measured from their respective thresholds up to 37 MeV. Thin sediments of elemental arsenic powder were irradiated together with Al degrader and Cu monitor foils using the established stacked-foil technique. For determination of the effective α-particle energies and of the effective beam current through the stacks the cross-section ratios of the monitor nuclides 67Ga/66Ga were used. This should help resolve discrepancies in existing literature data. Comparison of the data with the available excitation functions shows some slight energy shifts as well as some differences in curve shapes. The calculated thick target yields indicate, that 77Br can be produced in the energy range Eα = 25 → 17 MeV free of isotopic impurities in quantities sufficient for medical application.

  15. Production of medically useful bromine isotopes via alpha-particle induced nuclear reactions

    Directory of Open Access Journals (Sweden)

    Breunig Katharina

    2017-01-01

    Full Text Available The cross sections of α-particle induced reactions on arsenic leading to the formation of 76,77,78Br were measured from their respective thresholds up to 37 MeV. Thin sediments of elemental arsenic powder were irradiated together with Al degrader and Cu monitor foils using the established stacked-foil technique. For determination of the effective α-particle energies and of the effective beam current through the stacks the cross-section ratios of the monitor nuclides 67Ga/66Ga were used. This should help resolve discrepancies in existing literature data. Comparison of the data with the available excitation functions shows some slight energy shifts as well as some differences in curve shapes. The calculated thick target yields indicate, that 77Br can be produced in the energy range Eα = 25 → 17 MeV free of isotopic impurities in quantities sufficient for medical application.

  16. The germanium isotopes production rate in background process in SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.; Ibragimova, T.V.; Cleveland, B.T.

    2002-01-01

    The analysis of the direct determination of systematics connected with the germanium isotopes generation of in background processes in radiochemical SAGE experiments on measuring solar neutrinos is described. The found 68 Ge generation rate is 6.5 (1 ± 1.0) times higher than expected; the generation rate of 69 Ge does not exceed preliminary evaluations. The result on 68 Ge corresponds to the systematic of cosmic ray muons of 5.8% (4.5 SNU) for the measured capture rate of solar neutrino of 77.0 SNU. To check the cosmic-ray muon influence of the SAGE systematic one suggests the experiment in place of underground scintillation telescope of the Baksan neutrino observatory on the Institute for Nuclear Research of the RAS [ru

  17. Production of intense metallic ion beams in order of isotopic separations

    International Nuclear Information System (INIS)

    Sarrouy, J.L.

    1955-01-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [fr

  18. Massive mercury target for thallium isotope production on the beam of high energy protons

    International Nuclear Information System (INIS)

    Novgorodov, A.F.; Kolachkovski, A.; Nguen Kong Chang.

    1980-01-01

    The yields of thallium radioisotopes in a massive mercury target irradiated with 660 MeV protons have been determined. The constancy of isotopic composition of radiothallium along the whole length (40 cm) of the target has been found. The yields of 200 Tl, 201 Tl and 202 Tl amount to 22.9+-2.8; 3.42+-0.45 and 0.459+-0.61 mCu/mkA h, respectively. It has been shown that the extraction of radioisotopes of thallium and some other elements from large amounts of mercury as well as their subsequent concentration may be carried out fully and relatavely fast when using dilute solutions of acetic acid

  19. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    Science.gov (United States)

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Radiation monitoring of PET staff

    International Nuclear Information System (INIS)

    Trang, A.

    2004-01-01

    Full text: Positron emission tomography (PET) is becoming a common diagnostic tool in hospitals, often located in and employing staff from the Nuclear Medicine or Radiology departments. Although similar in some ways, staff in PET departments are commonly found to have the highest radiation doses in the hospital environment due to unique challenges which PET tracers present in administration as well as production. The establishment of a PET centre with a dedicated cyclotron has raised concerns of radiation protection to the staff at the WA PET Centre and the Radiopharmaceutical Production and Development (RAPID) team. Since every PET centre has differing designs and practices, it was considered important to closely monitor the radiation dose to our staff so that improvements to practices and design could be made to reduce radiation dose. Electronic dosimeters (MGP DMC 2000XB), which have a facility to log time and dose at 10 second intervals, were provided to three PET technologists and three PET nurses. These were worn in the top pocket of their lab coats throughout a whole day. Each staff member was then asked to note down their duties throughout the day and also note the time they performed each duty. The duties would then correlate with the dose with which the electronic monitor recorded and an estimate of radiation dose per duty could be given. Also an estimate of the dose per day to each staff member could be made. PET nurses averaged approximately 20 μ8v per day getting their largest dose from caring for occasional problematic patients. Smaller doses of a 1-2 μ8v were recorded for injections and removing cannulas. PET technologists averaged approximately 15 μ8v per day getting their largest dose of 1-5μ8v mainly from positioning of patients and sometimes larger doses due to problematic patients. Smaller doses of 1-2 μ5v were again recorded for injections and removal of cannulas. Following a presentation given to staff, all WA PET Centre and RAPID staff

  1. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  2. Research within the coordinated programme on isotope-aided micronutrient studies in rice production with special reference to zinc deficiencies

    International Nuclear Information System (INIS)

    Rosales, C.M.

    1980-07-01

    An extensive survey identified 500,000 ha of soil in the Philippines as being potentially Zn-deficient for rice production. Isotope-aided laboratory, greenhouse, and field experiments were conducted to identify the most efficient methods of supplying fertilizer Zn to flooded rice. The application of 5 kg Zn/ha as ZnSO 4 effectively corrected a Zn deficiency and increased rice yield and Zn uptake for three successive growing seasons. No further increases were noted with higher rates of Zn application. Fertilizer ZnSO 4 was equally effective when mixed with the soil, combined with urea fertilizers, or surface-applied at or two weeks after transplanting the rice. Mine tailings were also shown to be an effective source of Zn. Mixing organic compost with the ZnSO 4 decreased the percent Zn derived from the fertilizer and the rice yield. 65 Zn-labelled ZnSO 4 was used

  3. Groundwater origin investigation with isotopic compositions for evaluation of high productive deep aquifers in Khon Kaen area, Northeast Thailand

    International Nuclear Information System (INIS)

    Buaphan, C.; Yangme, W.; Wannakao, L.; Sriboonlue, V.; Tassanasorn, A.; Buapeng, S.

    1999-01-01

    Investigation of groundwater origin by using isotopic compositions for evaluation of high productive deep aquifers in Khon Kaen Province is emphasized on hydrogeology and isotopes technique. The study area consists of Mesozoic sedimentary rocks and unconsolidated sediments of Quaternary. Phu Tok aquifers in the southern part of the study area are mainly confined in very well sorted, fine grained sandstone as well as in fractures and joints. They extend from Ban Tha Pra to Ban Phai covering area 500 km 2 . Depth to the aquifers is from 20 to 250 m, while their piezometric surface ranges from 0.35 m to 15 m from the ground surface. Their thickness range from 50 to 100 m. The transmissivity is from 0.45 to 1,047 m 2 /d on the pumping rate of 48-1,200 m 3 /d with drawdown of less than 10% and rough annual safe yield is 83.34x10 6 m 3 . The water is very good in quality for drinking, except for the TDS and total hardness around aquifer boundary. The groundwater and surface water are analysed for stable and radioactive isotopes, including 2 H, 18 O, 3 H and 14 C. The results show that the shallow groundwater of the depth less than 50 m is originated by direct recharge of rainfall between 180 and 6,820 a. The groundwater flow is relatively rapid from west to east and northwest to southeast, the high productive deep aquifer of Phu Tok flow radiate from recharging area to all direction. However, the groundwater flow rate based on 14 C analyses for Phu Tok is 2 to 3 m/a. Within some areas the flow is about 8 m/a, while the unconsolidated aquifers along the Phong River give flow rate about 4 m/a. The deeper aquifers also have direct rain recharge the same as the above aquifers but the flow rate are lower, especially the deepest aquifer at the depth of nearly 200 m indicated no direct rain recharge with age of more than 20 000 a, which is confirmed with the amount of tritium less than 1.0 TU. (author)

  4. Understanding advertising in pet nutrition.

    Science.gov (United States)

    Brown, R G

    1994-04-01

    Advertising is part of the effort to attract attention of consumers to products, in this case, pet foods. It is generally benign in its effect, but it can be misleading, although rarely deliberately so. It uses a specialized vocabulary, which must be mastered if one is to understand what is intended. For all of the expense and effort, advertising figures directly in relatively few decisions to purchase. Its main intention is to call our attention to a particular pet food and to give that product an image. If the pet food does not perform in the consumer's hands, then all of the advertising on earth will not be persuasive. On the other hand, if a product performs well, the word-of-mouth will be positive and that mode of advertising is one of the most effective.

  5. Radiation Protection in PET-CT

    International Nuclear Information System (INIS)

    2011-10-01

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  6. Re-thinking the role of radiometal isotopes: Towards a future concept for theranostic radiopharmaceuticals.

    Science.gov (United States)

    Notni, Johannes; Wester, Hans-Jürgen

    2018-03-01

    The potential and future role of certain metal radionuclides, for example, 44 Sc, 89 Zr, 86 Y, 64 Cu, 68 Ga, 177 Lu, 225 Ac, and 213 Bi, and several terbium isotopes has been controversially discussed in the past decades. Furthermore, the possible benefits of "matched pairs" of isotopes for tandem applications of diagnostics and therapeutics (theranostics) have been emphasized, while such approaches still have not made their way into routine clinical practice. Analysis of bibliographical data illustrates how popularity of certain nuclides has been promoted by cycles of availability and applications. We furthermore discuss the different practical requirements for diagnostic and therapeutic radiopharmaceuticals and the resulting consequences for efficient development of clinically useful pairs of radionuclide theranostics, with particular emphasis on the underlying economical factors. Based on an exemplary assessment of overall production costs for 68 Ga and 18 F radiopharmaceuticals, we venture a look into the future of theranostics and predict that high-throughput PET applications, that is, diagnosis of frequent conditions, will ultimately rely on 18 F tracers. PET radiometals will occupy a niche in the clinical low-throughput sector (diagnosis of rare diseases), but above all, dominate preclinical research and clinical translation. Matched isotope pairs will be of lesser relevance for theranostics but may become important for future PET-based therapeutic dosimetry. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Application of isotopes and radiation to increasing agricultural production - Phase 2. Indonesia. Project findings and recommendations

    International Nuclear Information System (INIS)

    1992-01-01

    This Phase 2 Project was primarily aimed at consolidating the advances made during the previous phase, formulating practical agricultural technologies which can be adopted by farmers, disseminating and applying these technologies, and enhancing the capability of the Centre for Application of Isotopes and Radiation (CAIR) to conduct agricultural research using nuclear and related techniques. Outputs generated by this project were generally in accordance with those anticipated in the Project Document. Some outputs have been transferred to the target beneficiaries (farmers) through existing systems of extension, in co-operation with the main implementing agency (BATAN). Other outputs have potential for further assessment, and may lead to practical applications in future. The rest remain as important contributions to scientific knowledge. The project has been managed to assure sustainability after project termination. A strong indication of such sustainability is evident in the on-going research and development work at CAIR and the adoption of transferred technologies by the end-users. To keep up with rapid global advancements in bio-science and technology, a new project on application of nuclear and related techniques in agricultural bio-science and technology would be needed in relation to the second long-term phase of the national development programmes. (author)

  8. Pet Problems at Home: Pet Problems in the Community.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  9. 9 CFR 130.10 - User fees for pet birds.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false User fees for pet birds. 130.10... AGRICULTURE USER FEES USER FEES § 130.10 User fees for pet birds. (a) User fees for pet birds of U.S. origin returning to the United States, except pet birds of U.S. origin returning from Canada, are as follows...

  10. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Collini, F. [Department of Physical Sciences, Earth and Environment, University of Siena and INFN, Pisa (Italy); Ferretti, S.; Kraan, A.C.; Lucenò, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sportelli, G.; Zaccaro, E.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2016-07-11

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly {sup 15}O and {sup 11}C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm{sup 2} and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  11. SPECT og PET i neurobiologien

    DEFF Research Database (Denmark)

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...... of important biological processes in the intact organism can be studied. The methods have been used in many disciplines but in particular for neurobiological research on the brain--e.g., the brain's regional blood circulation and mapping of the brain's functional structure. The methods have also been used...

  12. Catalytic recombination of dissociation products with Pt/SnO2 for rare and common isotope long-life, closed-cycle CO2 lasers

    Science.gov (United States)

    Brown, Kenneth G.; Sidney, B. D.; Schryer, D. R.; Upchurch, B. T.; Miller, I. M.

    1986-01-01

    This paper reports results on recombination of pulsed CO2 laser dissociation products with Pt/SnO2 catalysts, and supporting studies in a surrogate laboratory catalyst reactor. The closed-cycle, pulsed CO2 laser has been continuously operated for one million pulses with an overall power degradation of less than 5 percent by flowing the laser gas mixture through a 2-percent Pt/SnO2 catalyst bed. In the surrogate laboratory reactor, experiments have been conducted to determine isotopic exchange with the catalyst when using rare-isotope gases. The effects of catalyst pretreatment, sample weight, composition, and temperature on catalyst efficiency have also been determined.

  13. Isotopic distributions of the sup 1 sup 8 N fragmentation products in coincidence with neutrons on targets sup 1 sup 9 sup 7 Au and sup 9 Be

    CERN Document Server

    Li Xiang Qing; Ye Yan Lin; Hua Hui; Chen Tao; Li Zhi Huan; Ge Yuch Eng; Wang Quan Jin; Wu He Yu; Jin Ge; Duan Li Min; Xiao Zhi Gang; Wang Hong Wei; Li Zhu Yu; Wang Su Fang

    2002-01-01

    The authors present the experimental isotopic distributions of the sup 1 sup 8 N projectile fragmentation products Li, Be, B and C in coincidence with neutrons, as well as the inclusive ones on sup 1 sup 9 sup 7 Au and sup 9 Be targets. In the framework of the abrasion-ablation model, these distributions are calculated for various nucleon density distributions of the projectile. The comparison with experimental isotopic distributions of the projectile-like fragments in coincidence with neutrons shows that the information on the nucleon density distribution of the sup 1 sup 8 N projectile can be extracted

  14. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  15. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  16. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull 2007; 6(4.000: 307-312

  17. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  18. Estimation of production rates for in-situ cosmogenic isotopes and application to surface exposure dating: certitudes and uncertainties

    International Nuclear Information System (INIS)

    Graham, I.J.

    1996-01-01

    Cosmogenic nuclides, produced in-situ in rocks by the action of cosmic rays on target nuclei, are increasingly being employed by earth scientists in a wide variety of applications. For example, surface exposure dating is used to determine erosion rates, the age of debris flows, alluvial fans, volcanic eruptions, meteoritic impact craters, and glacial deposits, and the timing of recent movement along faults and tectonic uplift. The technique can thus play a vital role in the study of potential hazards from geological processes, by establishing recurrence intervals between them, and establish chronologies and periodicities for major paleoclimatic events. Before surface exposure dating methods using cosmogenic isotopes can be applied even more widely, production rates of the main nuclides of interest must be better known, and their temporal and spatial variabilities determined. This paper summarises the present state of knowledge on production rates of the currently most useful nuclides ( 10 Be, 26 Al, 36 Cl, 14 C, 3 He and 21 Ne), discusses the main areas of concern, and makes suggestions for future improvement. (author). 83 refs., 7 tabs., 11 figs

  19. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.; Sawakuchi, Henrique O.; Da Cunha, Alan C.; Neu, Vania; Brito, Daimio C.; Da Silva Less, Diani F.; Diniz, Joel E. M.; De Matos Valerio, Aline; Kampel, Milton; Krusche, Alex V.; Richey, Jeffrey E.

    2017-02-07

    The Amazon River outgasses nearly an equivalent amount of CO2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO2 production since the recognition of a persistent state of CO2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capable of both decomposing high amounts of organic matter at lower trophic levels, driving CO2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O218O-O2) and O2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m3 d-1 at high water and 1.02 ± 0.55 g O m3 d-1 at low water. This translates to 41 ± 24% of the rate of O2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than

  20. Medical isotope production: A new research initiative for the Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Coats, R.L.; Parma, E.J.

    1993-01-01

    An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of 99 Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater 99 Mo production ensuring adequate capacity for future years

  1. Reply to Nicholson's comment on "Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2012-08-01

    Full Text Available The comment by Nicholson (2011a questions the "consistency" of the "definition" of the "biological end-member" used by Kaiser (2011a in the calculation of oxygen gross production. "Biological end-member" refers to the relative oxygen isotope ratio difference between photosynthetic oxygen and Air-O2 (abbreviated 17δP and 18δP for 17O/16O and 18O/16O, respectively. The comment claims that this leads to an overestimate of the discrepancy between previous studies and that the resulting gross production rates are "30% too high". Nicholson recognises the improved accuracy of Kaiser's direct calculation ("dual-delta" method compared to previous approximate approaches based on 17O excess (17Δ and its simplicity compared to previous iterative calculation methods. Although he correctly points out that differences in the normalised gross production rate (g are largely due to different input parameters used in Kaiser's "base case" and previous studies, he does not acknowledge Kaiser's observation that iterative and dual-delta calculation methods give exactly the same g for the same input parameters (disregarding kinetic isotope fractionation during air-sea exchange. The comment is based on misunderstandings with respect to the "base case" 17δP and 18δP values. Since direct measurements of 17δP and 18δPdo not exist or have been lost, Kaiser constructed the "base case" in a way that was consistent and compatible with literature data. Nicholson showed that an alternative reconstruction of 17δP gives g values closer to previous studies. However, unlike Nicholson, we refrain from interpreting either reconstruction as a benchmark for the accuracy of g. A number of publications over the last 12 months

  2. PET reconstruction

    International Nuclear Information System (INIS)

    O'Sullivan, F.; Pawitan, Y.; Harrison, R.L.; Lewellen, T.K.

    1990-01-01

    In statistical terms, filtered backprojection can be viewed as smoothed Least Squares (LS). In this paper, the authors report on improvement in LS resolution by: incorporating locally adaptive smoothers, imposing positivity and using statistical methods for optimal selection of the resolution parameter. The resulting algorithm has high computational efficiency relative to more elaborate Maximum Likelihood (ML) type techniques (i.e. EM with sieves). Practical aspects of the procedure are discussed in the context of PET and illustrations with computer simulated and real tomograph data are presented. The relative recovery coefficients for a 9mm sphere in a computer simulated hot-spot phantom range from .3 to .6 when the number of counts ranges from 10,000 to 640,000 respectively. The authors will also present results illustrating the relative efficacy of ML and LS reconstruction techniques

  3. Aquatic productivity: isotopic tracer aided studies of chemical-biological interactions

    International Nuclear Information System (INIS)

    1975-01-01

    Inland waters subject to the accumulation and effects of trace contaminants are discussed and a review of international research projects on this subject is given. The following aspects are specially discussed: aquatic nitrogen and agriculture; aquatic ecosystems in arid zones of developing countries; micronutrients in aquatic ecosystems; microbiological activity (''primary production''); enzymic methods in water quality determinations. Recommendations of the Joint FAO/IAEA Advisory Group for measures to be taken in order to protect water quality are also given

  4. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  5. Track 8: health and radiological applications. Isotopes and radiation: general. 2. Radiation Pasteurization for Diverse Food Products

    International Nuclear Information System (INIS)

    Braby, L.A.; Whittaker, A.D.; McLellan, M.; Waltar, A.E.

    2001-01-01

    requiring differential dosing, and many other technical variables. Both the testing of specific products and the basic research on irradiation processing require a fully instrumented irradiation facility and an extensive food safety and quality testing capability. To meet the needs of food processors that wish to consider entering the radiation-pasteurized product market, Texas A and M University (Texas A and M) has initiated a program to develop a comprehensive radiation pasteurization research facility. A 2-MV electrostatic electron accelerator for studying the potential benefits of surface pasteurization of some products is currently being assembled and will probably be the first radiation source to come on-line. A collaboration with Sure Beam Corporation, the major manufacturer of high-energy electron beam and X-ray irradiation equipment, will establish a new Texas A and M research and testing facility with two 20-kW, 10-MeV electron beam accelerators and a 5-MV X-ray source, all of which will be ready for use in 2002. An isotopic source of mono-energetic photons is also being considered. The food irradiation lines will connect directly with a new, 16 000-ft 2 , fully controlled temperature facility that is equipped with a loading ramp that can accommodate 18-wheeler trucks for receiving and delivering test market-sized loads of products. All of these irradiation facilities will be located in close proximity to the extensive food safety and quality testing facilities of Texas A and M, which operates one of the largest agricultural engineering and food sciences programs in American universities. We believe that this combination will provide the research and testing capability needed to support the rapid growth of radiation pasteurization that we expect to occur in the next few years. (authors)

  6. Opportunities to enhance and interpret nutrient fluxes and imbalances in animal production systems by use of stable isotopes

    International Nuclear Information System (INIS)

    Jarvis, S.C.

    2002-01-01

    key areas in which there is a need for improved understanding. Methods are being developed for understanding and controlling balances and of the processes involved. Increasingly, stable isotopes are being used to help develop this understanding. Examples are given of the way that enriched sources, and particularly natural abundance levels of N are being used to determine the way that controls over the flows of N at various physical scales within particular ecosystems are operating. By way of example, three case studies are taken to illustrate opportunities to employ stable isotopes of N to better understand fluxes, provide improved model description and predictive capability and ultimately to improve the management and outputs from the farm The first is an intensively managed 76 ha temperate dairy system, in SW of England; the second is 2 farming systems in the highlands of E. Kenya where traditional soil fertility practices cannot be maintained with an increasing population and land scarcity, and the final case study is that of a balanced, productive and environmentally sound integrated farming system in which modest amounts of external inputs are used to supplement recycled nutrients within a semi-intensive, agriculture- aquaculture management in Asia. The particular general areas within livestock systems which require further definition to enable improved N utilisation and which can be probed by δ 15 N studies include: impact of dietary quality on N utilisation and partitioning into excreta, the dynamics of N turnover from excreta, plant residues and soil organic matter and effects of changes in local husbandry/management practices, spatial and temporal effects of excretal return (either at grazing or after storage/application), interactions between N, other nutrients and water availability, N sources and rates of transformation and transfers into loss pathways and construction of soil and systems nutrient balances and the identification and determination of

  7. The new isotope 270110 and its decay products 266Hs and 262Sg

    International Nuclear Information System (INIS)

    Hofmann, S.; Hessberger, F.P.; Ackermann, D.

    2000-11-01

    The even-even nucleus 270 110 was synthesized using the reaction 64 Ni + 207 Pb. A total of eight α-decay chains was measured during an irradiation time of seven days. Decay data were obtained for the ground-state and a high spin K isomer. The new nuclei 266 Hs and 262 Sg were identified as daughter products after α decay. Spontaneous fission of 262 Sg terminates the decay chain. The measured data are in agreement with calculations using the macroscopic-microscopic model and with self-consistent HFB calculations with Skyrme-Sly4 interaction. (orig.)

  8. Analysis of polonium-210 in food products and bioassay samples by isotope-dilution alpha spectrometry

    International Nuclear Information System (INIS)

    Lin Zhichao; Wu Zhongyu

    2009-01-01

    A rapid and reliable radiochemical method coupled with a simple and compact plating apparatus was developed, validated, and applied for the analysis of 210 Po in variety of food products and bioassay samples. The method performance characteristics, including accuracy, precision, robustness, and specificity, were evaluated along with a detailed measurement uncertainty analysis. With high Po recovery, improved energy resolution, and effective removal of interfering elements by chromatographic extraction, the overall method accuracy was determined to be better than 5% with measurement precision of 10%, at 95% confidence level.

  9. Analysis of polonium-210 in food products and bioassay samples by isotope-dilution alpha spectrometry.

    Science.gov (United States)

    Lin, Zhichao; Wu, Zhongyu

    2009-05-01

    A rapid and reliable radiochemical method coupled with a simple and compact plating apparatus was developed, validated, and applied for the analysis of (210)Po in variety of food products and bioassay samples. The method performance characteristics, including accuracy, precision, robustness, and specificity, were evaluated along with a detailed measurement uncertainty analysis. With high Po recovery, improved energy resolution, and effective removal of interfering elements by chromatographic extraction, the overall method accuracy was determined to be better than 5% with measurement precision of 10%, at 95% confidence level.

  10. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis

    International Nuclear Information System (INIS)

    Ling, K.H.; Hanzlik, R.P.

    1989-01-01

    Liver microsomes from phenobarbital-induced rats oxidize toluene to a mixture of benzyl alcohol plus o-, m- and p-cresol (ca. 69:31). Stepwise deuteration of the methyl group causes stepwise decreases in the yield of benzyl alcohol relative to cresols (ca. 24:76 for toluene-d3). For benzyl alcohol formation from toluene-d3 DV = 1.92 and D(V/K) = 3.53. Surprisingly, however, stepwise deuteration induces stepwise increases in total oxidation, giving rise to an inverse isotope effect overall (DV = 0.67 for toluene-d3). Throughout the series (i.e. d0, d1, d2, d3) the ratios of cresol isomers remain constant. These results are interpreted in terms of product release for benzyl alcohol being slower than release of cresols (or their epoxide precursors), and slow enough to be partially rate-limiting in turnover. Thus metabolic switching to cresol formation causes a net acceleration of turnover

  11. Beneficial use of isotopes

    International Nuclear Information System (INIS)

    Bertel, E.; Stevens, G.H.

    1998-01-01

    The paper gives an outlook on the main isotopes currently used for beneficial applications, provides an overview on geographic distribution of isotope production capabilities and identifies the main suppliers world-wide. It analyses trends in different countries and regions, including the refurbishment and/or replacement of ageing facilities and the implementation of new capabilities. Issues related to adequate supply of isotopes and potential under or over capacity of production for some key products are discussed. The evolution of the isotope production sector is analysed. Issues such as lowering of governmental support to production facilities, emergence of international co-operation and agreements on production capabilities, and developments in non-OECD/NEA countries are addressed. The paper offers some concluding remarks on the importance of maintaining and enhancing beneficial uses of isotopes, the role of government policies, the need for co-operation between countries and between the private and public sectors. The paper addresses the role of international cooperation in making efficient use of existing isotope production capacity and investigates ways for reducing the need for investment in additional capacity. (author)

  12. PET after use. From problem to opportunity

    International Nuclear Information System (INIS)

    Chiacchio, G.; Malinconico, M.; Santacesaria, E.; Di Sero, M.

    1999-01-01

    Due to collection, separation and legislation problems, the only type of PET suitable for recycling, is, at moment, the polymer employed in liquid containers or, more precisely, PET from drink bottles. The paper refer to the most up-to-date strategies to overcomes typical problems occurring during physical recycling of PET (hydrolytic and thermal degradation). Among others, a recent procedure is cited, that utilizes p-hydroxybenzoic acid and titanium tetraisopropylate. As far as chemical recycling is concerned, alternative methodologies to PET glycolysis (normally employing ethyleneglycol to obtain monomers) using unsaturated diols to obtain polyesters suitable for production of thermosetting resins, are reported. Finally, chemical recycling of PET to produce alkyl-phthalates (well know plasticizers for thermoplastic polymers) is described [it

  13. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.

    2005-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  14. Homogeneous Slowpoke reactor for the production of radio-isotope: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busetta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2006-09-15

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous react will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB(r). It was found that it is needed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  15. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2005-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  16. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2006-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  17. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.W.

    2006-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  18. Feasibility study on medical isotope production using a compact neutron generator.

    Science.gov (United States)

    Leung, Ka-Ngo; Leung, James K; Melville, Graeme

    2018-07-01

    Compact neutron generators can provide high flux of neutrons with energies ranging from thermal (0.025 eV) to 14 MeV. Recent measurements demonstrated high neutron yields from the D- 7 Li fusion reaction at an interaction energy of 500 keV. Using the D- 7 Li reaction and applying new advancements in high flux neutron generator technology along with the commercial availability of high voltage DC power supplies enables the production of useful quantities of radioisotopes for medical applications. Using the known neutron reaction cross-sections, it has been estimated that hundreds-to-thousands MBq (or tens-to-hundreds mCi) of 99 Mo, 225 Ac, 64 Cu and 67 Cu can be obtained from a compact high flux neutron generator. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. An evaluation of neutron and gamme heating in fission product isotopes

    International Nuclear Information System (INIS)

    Leal, L.C.; Hill, R.N.; Khalil, H.S.

    1993-01-01

    The accurate prediction of the energy deposition rate in fast reactors, particularly in blanket and nonfueled regions, requires explicit treatment of gamma photon transport. Such an explicit treatment is part of the coupled neutron-photon heating method in use at Argonne National Laboratory, (ANL). In applying this procedure, three approximations are made in connection with the modeling of fission products (FPs): 1. The contribution of the FP neutron interactions to the gamma source is neglected. 2. In computing the macroscopic gamma interaction cross sections, the FPs are either neglected or simulated with an element (usually molybdenum) representative of an open-quotes averageclose quotes FP. 3. The heating contribution of the FP is neglected by use of zero FP kerma factors

  20. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  1. Thin film analysis by instrumental heavy ion activation analysis using distributed recoil ranges of isotopic products

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Guin, R.; Saha, S.K.; Sudersanan, M.

    2006-01-01

    Thin foils (0.1 to 10 μm), metallic or polymeric, are frequently used in nuclear physics and chemistry experiments using ion beams from an accelerator. Very often it is important to know the major, minor and trace element composition of the foil. Several nuclear analytical techniques, namely RBS, ERDA, etc. are available for the near surface analysis. We have applied heavy ion activation analysis (HIAA) to explore the bulk composition of thin films. One of the difficulties in this method of thin film analysis is that the product nuclides from nuclear reaction come out of the sample surface due to high recoil energy. In thick sample, the recoiled nuclides are absorbed in the sample itself. This effect has been used to employ heavy ion activation for the analysis of thin films

  2. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  3. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1988-01-01

    We previously demonstrated that conventional tracer methods applied to euglycemic-hyperinsulinemic glucose clamps result in substantially negative estimates for the rate of endogenous glucose production, particularly during the first half of 180-min clamps. We also showed that addition of tracer to the exogenous glucose infusate resulted in nonnegative endogenous glucose production (Ra) estimates. In this study, we investigated the underlying cause of negative estimates of Ra from conventional clamp/tracer methods and the reason for the difference in estimates when tracer is added to the exogenous glucose infusate. We performed euglycemic-hyperinsulinemic (300-microU/ml) clamps in normal dogs without (cold GINF protocol, n = 6) or with (hot GINF protocol, n = 6) tracer (D-[3-3H]glucose) added to the exogenous glucose infusate. In the hot GINF protocol, sufficient tracer was added to the exogenous glucose infusate such that arterial plasma specific activity (SAa) did not change from basal through the clamp period (P greater than .05). In the cold GINF studies, plasma SAa fell 81 +/- 2% from the basal level by the 3rd h of clamping. We observed a significant, transient, positive venous-arterial difference in specific activity (SAv-SAa difference) during the cold GINF studies. The SAv-SAa difference reached a peak of 27 +/- 6% at 30 min and diminished to a plateau of 7 +/- 1% between 70 and 180 min. We also observed a positive but constant SAv-SAa difference (4.6 +/- 0.2% between 10 and 180 min) during the hot GINF studies

  4. Trends in PET imaging

    International Nuclear Information System (INIS)

    Moses, William W.

    2000-01-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT)

  5. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  6. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  7. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    Science.gov (United States)

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  9. Isotopic distribution of the projectile-like products in the reaction 36Ar + 124Sn at 35 MeV/u

    International Nuclear Information System (INIS)

    Xiao Zhigang; Jin Genming; Wu Heyu; Hu Rongjiang; Wang Hongwei; Li Zuyu; Duan Limin; Wang Sufang; Wei Zhiyong; Zhang Baoguo; Liu Jianye; Zhu Yongtai

    2003-01-01

    The projectile-like products at 5.3 degree in the reaction 35 MeV/u 36 Ar + 124 Sn were inclusively measured with good isotopic identification. With increasing kinetic energy, the average N/Z ratio of the products gradually decreases, approaching to that of the projectile. It is shown from the isospin dependent quantum mechanics (IQMD) that with the increasing of reaction time, the average kinetic energy of the projectile-like products decreases, while the N/Z ratio increases gradually. Moreover, the isotropic composition is obviously dependent on the impact parameter, and the N/Z radio is becoming smaller with increasing collision centrality

  10. Summary report of the consultants' meeting on improvements in charged-particle monitor reactions and nuclear data for medical isotope production

    International Nuclear Information System (INIS)

    Capote Noy, R.; Nortier, F.M.

    2011-09-01

    A Consultants' Meeting on 'Improvements in Charged-Particle Monitor Reactions and Nuclear Data for Medical Isotope Production' was held at IAEA Headquarters, Vienna, Austria to define the scope, deliverables and appropriate work programme of a possible Coordinated Research Project (CRP) on the subject. The main data areas requiring improvements are monitor reactions for charged-particle beams, production of novel positron emitters, and production of alpha emitters. In all these areas special attention was also given to the need for measurements and re-evaluations of decay data. Detailed deliverables of the planned CRP were proposed. (author)

  11. PET / MRI vs. PET / CT. Indications Oncology

    International Nuclear Information System (INIS)

    Oliva González, Juan P.

    2016-01-01

    Hybrid techniques in Nuclear Medicine is currently a field in full development for diagnosis and treatment of various medical conditions. With the recent advent of PET / MRI much it speculated about whether or not it is superior to PET / CT especially in oncology. The Conference seeks to clarify this situation by dealing issues such as: State of the art technology PET / MRI; Indications Oncology; Some clinical cases. It concludes by explaining the oncological indications of both the real and current situation of the PET / MRI. (author)

  12. Medical isotope production experience at the V.G. Khlopin Radium Institute cyclotron

    International Nuclear Information System (INIS)

    Solin, L.M.

    2000-01-01

    Radium Institute cyclotron MGC-20 is used since 1990. There are four cyclotrons of such type in Russia and four abroad: in Finland, in Hungary, in North Korea and in Egypt. The Radium institute cyclotron was used in different fields, such as radioisotope production, nuclear physics, physics and engineering. For ten years some improvements of the Radium Institute cyclotron operation have been made. Those are: creation of the automatic control system based on IBM PC, development of a new power supply for the ion source, creation of the deflector electronic protection from discharges, change of the main elements of the cyclotron with high induced radioactivity. Moreover we investigated the possibility of the negative ions acceleration at the MGC-20 cyclotron without ion source exchange. The maximum value of the proton beam current reached was about 30 μA for 10 MeV H - beam energy. To extract the proton beam from the cyclotron after the stripping foil we made an additional output beam line. It was used for determination of the horizontal and vertical emittance. A special device was constructed and used for measurements of emittance. The latter amounted 30 π mm mrad for horizontal direction and 16 π mm mrad for vertical direction

  13. Production and identification of an isomeric state in 217Pa and the new isotope 218Pa

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Faust, W.; Muenzenberg, G.; Ewald, H.; Guettner, K.; Clerc, H.G.; Lang, W.; Wohlfarth, H.; Pielenz, K.

    1977-02-01

    Evaporation residues produced in the reaction 40Ar(176 MeV) + 181Ta were separated from the primary beam by the velocity filter SHIP and detected by a ΔE-E counter telescope. The technique of delayed coincidences was applied to individually identify the reaction products implanted into a Si-surface barrier detector by their subsequent alpha decays. The previously unknown nucleus 218Pa was identified by its known daughter decays. 218Pa was found to decay with Esub(α) = (9.614 +- 0.015) MeV, T(1/2) = (140 +- 50) μs and probably also with Esub(α) = (9.535 +- 0.020) MeV, T(1/2) = (150 + 100 - 50) μs. The half-life of the 8.33 MeV alpha decay of 217Pa was determined to be (o.2 +- 0.4) ms. Anew isomer in 217 Pa was found which decays with Esub(α) = (10.16 +- 0.02) MeV and T(1/2) = (1.8 +- 0.5) ms. (orig./BJ) [de

  14. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F.; Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2008-01-15

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the {sup 235}U/{sup 238}U, {sup 236}U/{sup 238}U, {sup 145}Nd/{sup 143}Nd, {sup 146}Nd/{sup 143}Nd, {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred {mu}m to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in {sup 146}Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously

  15. Eleven new heaviest isotopes of elements Z=105 to Z=117 identified among the products of 249Bk+48Ca reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu. Ts.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Lobanov, Yu. V.; Mezentsev, A. N.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.; Bailey, P. D.; Benker, D. E.; Ezold, J. G.; Porter, C. E.; Riley, F. D.

    2011-01-01

    The heaviest isotopes of elements Z=117 to Z=105, 294 117, 293 117, 290 115, 289 115, 286 113, 285 113, 282 Rg, 281 Rg, 278 Mt, 274 Bh, and 270 Db, were identified by means of the Dubna gas-filled recoil separator among the products of the 249 Bk + 48 Ca reaction. The details of the observed six decay chains, indicating the production and decay of isotopes 293 117 and 294 117, are presented and discussed. The decay energies and resulting half-lives of these new nuclei show a strong rise of stability with increasing neutron number, validating the concept of the island of enhanced stability for superheavy nuclei [Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010)].

  16. Novel targets for positron emission tomography (PET) radiopharmaceutical tracers for visualization of neuroinflammation

    Science.gov (United States)

    Shchepetkin, I.; Shvedova, M.; Anfinogenova, Y.; Litvak, M.; Atochin, D.

    2017-08-01

    Non-invasive molecular imaging techniques can enhance diagnosis of neurological diseases to achieve their successful treatment. Positron emission tomography (PET) imaging can identify activated microglia and provide detailed functional information based on molecular biology. This imaging modality is based on detection of isotope labeled tracers, which emit positrons. The review summarizes the developments of various radiolabeled ligands for PET imaging of neuroinflammation.

  17. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  18. Research within the coordinated programme on the use of isotopes in rice production studies

    International Nuclear Information System (INIS)

    Tung, Thai-Cong; Anh, Pham-Huu

    1974-01-01

    In the wet season experiment, water management practices (continuous flooding versus two days' drainage before top dressing of N-fertilizer) had no significant effect on the yield of rice plant, nor were any significant differences observed for the sources of N tested. Local rice variety Patnai produced greater yield than IR.22. There were no varietal differences in fertilizer-N absorption. The recovery of fertilizer-N by the plant was affected by the time of N application. Overall utilization from ammonium sulfate and urea was 5.6 and 5.7% respectively, for IR.22 and 7.3 and 7.3% for Patnai. Rice plants, especially IR.22, did not perform well in the acid sulfate soils. Continuous flooding was found to be more efficient than mid-term drainage in the conversion of fertilizer-N into grain protein. Both IR.22 and Patnai absorbed more soil-N. In dry season experiments (1971) water management was seen to have no effect on grain production. Application of N-fertilizer did not increase paddy yield significantly. Here, too, ammonium sulfate proved better than urea. Water management did affect the percentage and yield of fertilizer-derived N. Its recovery was affected by the time and source of fertilizer but not by water management. With top dressing at primordial initiation, the fertilizer-N was more efficiently absorbed by the plant (74.3% for ammonium sulfate and 46.2% for urea). A similar trend was observed with other water management practices

  19. The Texts of the Instruments connected with the Agency's Assistance to Argentina in Establishing a Research and Isotope Production Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-11-04

    The texts of the Title Transfer Agreement between the Agency and the Governments of Argentina and the United States of America, and of the Project Agreement between the Agency and the Government of Argentina, in connection with the Agency's assistance to that Government in establishing a research and isotope production reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 2 December 1964.

  20. The Texts of the Instruments connected with the Agency's Assistance to Argentina in Establishing a Research and Isotope Production Reactor Project

    International Nuclear Information System (INIS)

    1965-01-01

    The texts of the Title Transfer Agreement between the Agency and the Governments of Argentina and the United States of America, and of the Project Agreement between the Agency and the Government of Argentina, in connection with the Agency's assistance to that Government in establishing a research and isotope production reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 2 December 1964

  1. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  2. Pets and Parasites

    Science.gov (United States)

    ... good news is that this rarely happens. Most pet-to-people diseases can be avoided by following a few ... your doctor Can a parasite cause death in people and pets? Can human disease from a parasite be treated ...

  3. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  4. [Principles of PET].

    Science.gov (United States)

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  5. Nutritional Sustainability of Pet Foods12

    Science.gov (United States)

    Swanson, Kelly S.; Carter, Rebecca A.; Yount, Tracy P.; Aretz, Jan; Buff, Preston R.

    2013-01-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system. PMID:23493530

  6. Prospects for the methods of radionuclide production

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Dmitriev, S.N.

    2014-01-01

    Methods of radionuclide production for the nuclear-medicine purposes are described. In a budget approach, the application of low-energy accelerators is especially advantageous. Intense flux of bremsstrahlung at electron accelerators or high-current cyclotron beams of alpha particles must supply a great yield for many isotopes. The choice of a target material and of the projectile energy provides enough variation for concrete species formation. The innovating procedures are here proposed for optimizing of methods, for instance, application of the noble-gas target for production and transport of activities. The known and new variants of the 'generator' scheme are discussed. Many isotopes are listed as promising in the context of the therapeutic and theragnostic applications. Among them are isotopes/isomers emitting soft radiation for the selective and careful body treatment, also the positron emitters for PET, and the halogen and alkali-metal species convenient for chemical separation.

  7. Radiochemical studies relevant to 86Y production via 86Sr(p,n)86Y for PET imaging

    International Nuclear Information System (INIS)

    Sadeghi, M.; Aboudzadeh, M.; Zali, A.; Mirzaii, M.; Bolourinovin, F.

    2009-01-01

    A novel production technique of yttrium-86 based on bombardment of deposited strontium carbonate was investigated. 86 Y was produced via proton-induced reactions on SrCO 3 target that was prepared by the sedimentation method. Production yield of 0.37 mCi/μAh at 30 μA was measured by means of γ-ray spectrometry for natural target. The separation of 86/87/88 Y from Cu and Sr was carried out by two ion-exchange columns

  8. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  9. Isotopic tracers for net primary productivity for a terrestrial ecosystem: a case study of the Volta River basin

    International Nuclear Information System (INIS)

    Hayford, E.K.; Odamtten, G.T.; Enu-Kwesi, L.

    2006-01-01

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water and carbon balance of the River Volta watershed. These are 1) stable isotopes of hydrogen and oxygen, 2) long-term data on precipitation and evapotranspiration, and 3) stoichiometric relations of water and carbon. Results indicate that soils in the watershed annually respire 0.199 Pg C, and that the NPP is +0.029 Pg C yr-1. This implies an annual change in CO2 to the atmosphere within the watershed. Annually, River Volta watershed receives about 380 km3 of rainfall; approximately 50 per cent of which is returned to the atmosphere through plant transpiration. Associated with annual transpiration flux is a carbon flux of 0.170 x 1015 g C yr-1 or 428 g C m-2 yr-1 from the terrestrial ecosystem. Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux, the balance of photosynthesis and respiration in the Volta lake was also examined. The lake was found to release carbon dioxide to the atmosphere although the magnitude of the flux is smaller than that of the terrestrial ecosystem. (au)

  10. Shielding calculations by using the analytic methods : Application to the radio-isotopes production in the CENM reactor

    International Nuclear Information System (INIS)

    Elmorabit, A.; Labrim, H.

    2010-01-01

    Full text: this work is part of developing an analytical method for solving the neutrons transport equation in improving the treatment of the anisotropy of neutron scattering through heterogeneous shielding. We also develop the tools necessary for the formation of multigroup libraries (cross section) with the best choice of the weighting function. Among the radioprotection problems of radioisotopes production experiments in the research reactor core is mainly the photons gamma generation produced by radiative capture: activation of samples and their capsules. So, in order to review the safety of operating personnel and the public is essential to quantify the neutrons flux and gamma photons produced. In this study a numerical methods is used in two different Fortran program to solve the neutron transport problem and to determine the neutron and photon flux. This program based on the Monte Carlo method: the neutron is born with a unit statistical weight, this corrected after each imposed scattering event during its whole history within the shield. The final neutron statistical weight is used in an appropriate estimator to determine the searched response. The generated gamma rays by neutron capture are calculated of different isotopes, and then the equivalent dose rate is evaluated in biological tissue for different neutron source energies. We have identified and studied the choice of the best weighting function to calculate a library of multigroup cross sections self protected by using the energy weighting function. A Fortran program is used as a mathematical tool to solve the neutron slowing down equation in infinite homogeneous medium for different dilutions. We determined the energetic flux distribution and the effective integrals. The results of both calculations are in a good agreement; the relative error is less than 0.5%.

  11. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  12. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    Science.gov (United States)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite

  13. The rising pet market: hotels for cats and dogs in São Paulo city (Brazil

    Directory of Open Access Journals (Sweden)

    Tatiana Afonso

    2008-11-01

    Full Text Available This paper focuses on Hotels for dogs and cats in São Paulo city. Characteristics and tendencies are analyzed aiming to contribute to applied studies on the subject. It begins by bringing general data on pet market in the world and on hotels for pets in Brazil. Pets hosting is assessed through registers on the subject and interviews with managers of that kind of hotels, as well as with pet owners living in the southern part of São Paulo city. It could be stated that pet hosting is a rising market for two segments: a exclusive pet hosting and b shared hosting (people with their pets. Hotel products and services for pets mean both broadening of the hospitality concept, and diversification. It means also new professionals are needed at managerial and operational levels to attend pet owners´ expectations and pets comfort themselves.

  14. The heritage of radiotracers for PET

    International Nuclear Information System (INIS)

    Fowler, J.S.; Wolf, A.P.

    1988-01-01

    The history of PET research clearly demonstrates that it is advances in chemistry coupled with a detailed examination of the biochemistry of new radiotracers which has allowed the PET method to be applied to new areas of biology and medicine. Radiotracers whose regional distribution reflects glucose metabolism, neutrotransmitter activity and enzyme activity have all required the development of rapid synthetic methods for the radiotracers themselves and the characterization of their biochemical behavior. This article traces some of the advances in the production of labeled precursors and in radiotracer synthesis and evaluation which have shaped the rapidly expanding application of PET to problems in the neurosciences, in cardiology and in oncology. 54 refs

  15. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  16. Double tracer / double isotope gives Ga-68 dota-noc and F-18 FDG PET / CT. Protocol 1 day in a child with neuroblastoma to determine the clinical state and tumor metabolic state

    International Nuclear Information System (INIS)

    Oliva Gonzalez, Juan P.; Baum, Richard P.

    2009-01-01

    We report on a 6-year-old carrier of a neuroblastoma. The tumor was diagnosed in March 2004, under the right adrenal gland and confirmed by FNAB, ultrasound, CT and tumor markers. Because of its size and extent of the tumor was inoperable at the time due to which was subject to two cycles of chemotherapy (vincristine, cisplatin, etoposide and cyclophosphamide alternating with vincristine, carboplatin, etoposide and cyclophosphamide). After these two cycles of chemotherapy the patient underwent retroperitoneal surgery getting totally dry right adrenal gland and tumor. After surgery the patient received four additional cycles of chemotherapy until March 2005. During the months of August and September 2005 the patient complained of abdominal pain and were suspected of recurrence. She received ultrasound and CT scan were not conclusive. In December 2005 he made a scan with I-131-MIBG (148 MBq, 4 mCi intravenous, is flat and SPECT imaging performed 24 hours to 6 days after injection) showing only the normal left adrenal gland but not recurrence was visualized, which showed that the tumor did not grasp MIBG. In January 2006 the boy (121 cm.'s Height, weight 21 kg) was referred to the Centre for PET / CT of the Bad Berka Central Clinic in Germany for a PET / CT using Ga-68/DOTA- receptor NOC, a high affinity analogue of somatostatin. The tumor marker NSE was determined in serum before the PET / CT whose outcome was high (24.8 ng / ml, cutoff 15). The patient received 46 MBq (1.24 mCi) of Ga-68 DOTA-NOC intravenous and PET / CT whole body was performed at 75 minutes post-injection. No abnormal uptake was observed which indicated that the appellants had no somatostatin receptors. By having this negative result was decided to perform an additional PET / CT with F-18 FDG (with a low dose of contrast to improve the TAC). After fasting for 6 hours, the patient received 151 MBq (4.1 mCi) of F-18 FDG. A PET / CT whole body was performed at 75 minutes after administration of

  17. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: Coupling isotopic tools with mathematical modeling.

    Science.gov (United States)

    Carrey, R; Rodríguez-Escales, P; Soler, A; Otero, N

    2018-02-01

    Nitrate removal through enhanced biological denitrification (EBD), consisting of the inoculation of an external electron donor, is a feasible solution for the recovery of groundwater quality. In this context, liquid waste from wine industries (wine industry by-products, WIB) may be feasible for use as a reactant to enhance heterotrophic denitrification. To address the feasibility of WIB as electron donor to promote denitrification, as well as to evaluate the role of biomass as a secondary organic C source, a flow-through experiment was carried out. Chemical and isotopic characterization was performed and coupled with mathematical modeling. Complete nitrate attenuation with no nitrite accumulation was successfully achieved after 10 days. Four different C/N molar ratios (7.0, 2.0, 1.0 and 0) were tested. Progressive decrease of the C/N ratio reduced the remaining C in the outflow and favored biomass migration, producing significant changes in dispersivity in the reactor, which favored efficient nitrate degradation. The applied mathematical model described the general trends for nitrate, ethanol, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. This model shows how the biomass present in the system is degraded to dissolved organic C (DOC en ) and becomes the main source of DOC for a C/N ratio between 1.0 and 0. The isotopic model developed for organic and inorganic carbon also describes the general trends of δ 13 C of ethanol, DOC and DIC in the outflow water. The study of the evolution of the isotopic fractionation of organic C using a Rayleigh distillation model shows the shift in the organic carbon source from the WIB to the biomass and is in agreement with the isotopic fractionation values used to calibrate the model. Isotopic fractionations (ε) of C-ethanol and C-DOC en were -1‰ and -5‰ (model) and -3.3‰ and -4.8‰ (Rayleigh), respectively. In addition, an inverse isotopic fractionation of +10‰ was observed for

  18. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  19. A comparative study on the production rates of VFA and bacteria in the rumen of buffalo and goat estimated by isotope dilution technique

    International Nuclear Information System (INIS)

    Verma, D.N.; Mehra, U.R.; Singh, U.B.; Ranjhan, S.K.

    1977-01-01

    Digestibility trials were conducted on Murrah buffaloes and Barbari goats with rumen cannulae in the rumen to determine the digestibility of the feed constituents and the production rates of bacteria and total VFA were estimated in the rumen by isotope dilution technique. The bacterial cells growth in the rumen was more in goats than buffaloes when fed ad libitum and calculated on equal feed intake, where as, in buffaloes fed on restricted diet equal to the goats the production of bacteria and VFA were higher. Goats converted 54.04 percent of their dietary nitrogen into microbial nitrogen which was more than twice of buffaloes. (author)

  20. Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain.

    Science.gov (United States)

    Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca

    This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.