Variational Perturbation Treatment of the Confined Hydrogen Atom
Montgomery, H. E., Jr.
2011-01-01
The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…
Optical perturbation of atoms in weak localization
Yedjour, A.
2018-01-01
We determine the microscopic transport parameters that are necessary to describe the diffusion process of the atomic gas in optical speckle. We use the self-consistent theory to calculate the self-energy of the atomic gas. We compute the spectral function numerically by an average over disorder realizations in terms of the Greens function. We focus mainly on the behaviour of the energy distribution of the atoms to estimate a correction to the mobility edge. Our results show that the energy distribution of the atoms locates the mobility edge position under the disorder amplitude. This behaviour changes for each disorder parameter. We conclude that the disorder amplitude potential induced modification of the energy distribution of the atoms that plays a major role for the prediction of the mobility edge.
Gravitational perturbations of the hydrogen atom
International Nuclear Information System (INIS)
Parker, L.
1983-01-01
The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)
Regular perturbation theory for two-electron atoms
International Nuclear Information System (INIS)
Feranchuk, I.D.; Triguk, V.V.
2011-01-01
Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.
Dimensional perturbation theory for the two-electron atom
International Nuclear Information System (INIS)
Goodson, D.Z.
1987-01-01
Perturbation theory in δ = 1/D, where D is the dimensionality of space, is applied to the two-electron atom. In Chapter 1 an efficient procedure for calculating the coefficients of the perturbation series for the ground-state energy is developed using recursion relations between the moments of the coordinate operators. Results through tenth order are presented. The series is divergent, but Pade summation gives results comparable in accuracy to the best configuration-interaction calculations. The singularity structure of the Pade approximants confirms the hypothesis that the energy as a function of δ has an infinite sequence of poles on the negative real axis that approaches an essential singularity at δ = O. The essential singularity causes the divergence of the perturbation series. There are also two poles at δ = 1 that slow the asymptotic convergence of the low-order terms. In Chapter 2, various techniques are demonstrated for removing the effect of these poles, and accurate results are thereby obtained, even at very low order. In Chapter 3, the large D limit of the correlation energy (CE) is investigated. In the limit D → infinity it is only 35% smaller than at D = 3. It can be made to vanish in the limit by modifying the Hartree-Fock (HF) wavefunction. In Chapter 4, perturbation theory is applied to the Hooke's-law model of the atom. Prospects for treating more-complicated systems are briefly discussed
Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H
2015-01-01
Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many
Semiclassical perturbation theory for diffraction in heavy atom surface scattering.
Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli
2012-05-28
The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.
Atomic phenomena in dense plasmas
International Nuclear Information System (INIS)
Weisheit, J.C.
1981-03-01
The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination
Non-perturbative treatment of relativistic quantum corrections in large Z atoms
International Nuclear Information System (INIS)
Dietz, K.; Weymans, G.
1983-09-01
Renormalised g-Hartree-Dirac equations incorporating Dirac sea contributions are derived. Their implications for the non-perturbative, selfconsistent calculation of quantum corrections in large Z atoms are discussed. (orig.)
Atomic and magnetic configurational energetics by the generalized perturbation method
DEFF Research Database (Denmark)
Ruban, Andrei V.; Shallcross, Sam; Simak, S.I.
2004-01-01
in the framework of the Korringa-Kohn-Rostoker method within the atomic sphere and coherent potential approximations. This is demonstrated with calculations of ordering energies, short-range order parameters, and transition temperatures in the CuZn, CuAu, CuPd, and PtCo systems. Furthermore, we show that the GPM...
International Nuclear Information System (INIS)
Yuan Lin; Zhou Ben-Hu; Zhao Yun-Hui; Xu Jun; Hai Wen-Hua
2012-01-01
A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions
AtomPy: an open atomic-data curation environment
Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka
2014-06-01
We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.
Cold atoms in a cryogenic environment
International Nuclear Information System (INIS)
Haslinger, S.
2011-01-01
The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a
Adiabatic perturbation theory for atoms and molecules in the low-frequency regime.
Martiskainen, Hanna; Moiseyev, Nimrod
2017-12-14
There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when iℏω∂∂τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).
Novel hybrid adaptive controller for manipulation in complex perturbation environments.
Directory of Open Access Journals (Sweden)
Alex M C Smith
Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.
Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.
Irwin, Benedict W J; Huggins, David J
2018-05-08
We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.
Quantum system under periodic perturbation: Effect of environment
International Nuclear Information System (INIS)
Hotta, M.; Joichi, I.; Matsumoto, S.; Yoshimura, M.
1997-01-01
In many physical situations the behavior of a quantum system is affected by interaction with a larger environment. We develop, using the method of an influence functional, how to deduce the density matrix of the quantum system incorporating the effect of environment. After introducing the characterization of the environment by spectral weight, we first devise schemes to approximate the spectral weight, and then a perturbation method in field theory models, in order to approximately describe the environment. All of these approximate models may be classified as extended Ohmic models of dissipation whose differences are in the high frequency part. The quantum system we deal with in the present work is a general class of harmonic oscillators with an arbitrary time-dependent frequency. The late time behavior of the system is well described by an approximation that employs a localized friction in the dissipative part of the correlation function appearing in the influence functional. The density matrix of the quantum system is then determined in terms of a single classical solution obtained with the time-dependent frequency. With this one can compute the entropy, the energy distribution function, and other physical quantities of the system in a closed form. A specific application is made to the case of a periodically varying frequency. This dynamical system has a remarkable property when the environmental interaction is switched off: The effect of the parametric resonance gives rise to an exponential growth of the populated number in higher excitation levels, or particle production in field theory models. The effect of the environment is investigated for this dynamical system and it is demonstrated that there exists a critical strength of the friction for the parametric effect. (Abstract Truncated)
International Nuclear Information System (INIS)
Ivanov, E.; Vata, I.; Plostinaru, D.; Catana, D.; Dudu, D.; Constantinescu, O.
2003-01-01
The Time Differential Perturbed Angular Distribution (TDPAD) method in connection with long-lived Positron Life-Time Spectroscopy (PLTS) have been used to observe 'quantum beat' spin oscillations of positronium atom in an external magnetic field. Our results offer an encouraging hint toward a new method of condensed matter investigation by PLTS. Similarities with Muonium Spin Rotation (μSR) method are suggested. (authors)
Photoabsorption spectra in the perturbative regime for atoms in crossed electric and magnetic fields
International Nuclear Information System (INIS)
Marxer, H.; Moser, I.; O'Mahony, P.F.; Mota-Furtado, F.
1994-01-01
We calculate photoabsorption spectra of atoms in crossed electric and magnetic fields using a truncated basis of Coulomb eigenfunctions. The method yields spectra in the regime where inter-n-mixing is not dominant and allows for the treatment of non-hydrogenic atoms via a simple recourse to quantum defects. We compare results for hydrogen to those obtained in second order perturbation theory where the residual degeneracy left in first order perturbation theory is completely lifted and we show that only a very small basis size is needed to achieve convergence to within the accuracy of second order perturbation theory. In the case of lithium the coupling of an incomplete hydrogen-like manifold to states with non-negligible quantum defects substantially modifies the spectra obtained in comparison to the purely hydrogenic spectra. In the inter-n-mixing regime we also compare our convoluted results directly with an experimental spectrum for hydrogen and find good agreement below the saddle point. (Author)
Diagrammatic many-body perturbation expansion for atoms and molecules. Pt. 6
International Nuclear Information System (INIS)
Moncrieff, D.; Baker, D.J.; Wilson, S.
1989-01-01
The efficient evaluation of the second-order expression in the many-body perturbation theory expansion for the correlation energy on vector processing and parallel processing computers is discussed. It is argued that the linked diagram theorem not only leads to the well known theoretical advantages of the many-body perturbation theory approach which allows the calculation of correlation energies for large (i.e. extended molecules or species containing heavy atoms) systems but also decouples the many-electron problem allowing efficient implementation on parallel processing machines. Furthermore, the computation associated with each of the resulting subproblems is very well suited to vector processing machines. Timing tests are reported for the CRAY 1 and CDC Cyber 205 vector processors, for a 1 processor implementation on the CRAY X-MP/48 and the ETA-10E, and for a 4 processor implementation on the Cray X-MP/48. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
Zhou, Yun; Pollak, Eli; Miret-Artés, Salvador
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to "soft" corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
Helmich-Paris, B.; Knecht, Stefan
2017-01-01
In the present article, we show how to formulate the partially contracted n-electron valence second-order perturbation theory (NEVPT2) energies in the atomic and active molecular orbital basis by employing the Laplace transformation of orbital-energy denominators (OEDs). As atomic-orbital (AO) basis
Evidence for atomic scale disorder in indium nitride from perturbed angular correlation spectroscopy
International Nuclear Information System (INIS)
Dogra, R; Shrestha, S K; Byrne, A P; Ridgway, M C; Edge, A V J; Vianden, R; Penner, J; Timmers, H
2005-01-01
The crystal lattice of bulk grains and state-of-the-art films of indium nitride was investigated at the atomic scale with perturbed angular correlation spectroscopy using the 111 In/Cd radioisotope probe. The probe was introduced during sample synthesis, by diffusion and by ion implantation. The mean quadrupole interaction frequency ν Q = 28 MHz was observed at the indium probe site in all types of indium nitride samples with broad frequency distributions. The observed small, but non-zero, asymmetry parameter indicates broken symmetry around the probe atoms. Results have been compared with theoretical calculations based on the point charge model. The consistency of the experimental results and their independence of the preparation technique suggest that the origin of the broad frequency distribution is inherent to indium nitride, indicating a high degree of disorder at the atomic scale. Due to the low dissociation temperature of indium nitride, furnace and rapid thermal annealing at atmospheric pressure reduce the lattice disorder only marginally
The Atom, the Environment and Sustainable Development
International Nuclear Information System (INIS)
2014-09-01
The IAEA has a broad mandate to facilitate nuclear applications in a number of areas and scientific disciplines. A fundamental component of the Agency's mandate is to enhance the peaceful contribution of nuclear science and technology to the specific development needs of its Member States in areas such as industry, human health, agriculture and nutrition. Nuclear techniques play an important role in addressing these development challenges. By facilitating their use, the IAEA is contributing to sustainable development. Well known examples include helping to advance treatment methods for fighting diseases, improving access to electricity, and increasing food security. A major underlying challenge in development for many Member States is environmental degradation. Environmental issues affect local, national, regional and global communities and threaten to undermine human well-being. Addressing these issues in a timely and efficient manner is essential. As with the other areas mentioned above, nuclear science and technology can make a particularly valuable contribution to assisting with efforts to better understand and protect the natural environment. Through The Atom, the Environment and Sustainable Development, the IAEA aims to raise and widen awareness of the unique contributions nuclear science and technology can make to the environmental dimension of sustainable development. Through this publication and other reports, it is expected that the readers acquire a better and more precise understanding of the significant role of science and technology, including nuclear-related technology, in the global development agenda. This publication also highlights the IAEA's role in supporting developing countries to realize their sustainable development aspirations through technology transfer and capacity-building
Z-1 perturbation theory applied to the correlation energy problem of atoms
International Nuclear Information System (INIS)
Robinson, B.H.
1975-01-01
Rayleigh--Schroedinger Perturbation Theory is applied to obtain directly exact and explicit analytic formulas for the electron correlation energies of N electron systems in terms of their pairwise interactions through second order in Z -1 , where Z is the nucleus of the atom. It is demonstrated that the second order correlation energy may be expressed as exactly the sum of pairwise correlation energies. In the case of no zeroth order degeneracy, the zeroth and first order terms vanish. The expression for the pairwise energies is an infinite sum, all terms of which are of the same sign. There is no numerical differencing. In the case of zeroth order degeneracy it is shown that the above statement concerning the second order energy still holds, but the expressions are a bit more complicated. It is shown that they ''almost'' reduce to a much simpler form. Also, the computation of the first order correlation energy is considered
Inner-shell correlations and Sturm expansions in coupled perturbation calculations of atomic systems
International Nuclear Information System (INIS)
Sherstyuk, A.I.; Solov'eva, G.S.
1995-01-01
It is shown that virtual Hartree-Fock orbitals in Sturm-type expansions can be used to calculate the response of atomic systems to an external field within the framework of the coupled perturbation theory with allowance for correlation effects. The corrected electron-electron interaction in a system with field-distorted orbitals is considered by adding a nonlocal potential to a one-electron Hartree-Fock operator within each group of equivalent elections. The remaining correlation effects are calculated by solving a system of equations for corrections to the radial functions. The system is solved iteratively, with each subsequent iteration corresponding to a correction of an increasingly higher order in the electron--electron interaction. The explicit expression derived for the polarizability contains one-and two-particle radial integrals of the Sturm functions
International Nuclear Information System (INIS)
Baik, M.; Pont, M.; Shakeshaft, R.
1995-01-01
We develop a method for calculating the (quasi)energy eigenvalue E(F) of a hydrogen atom in a nonperturbative ac field of strength F starting from a knowledge of the coefficients E (2m) of the Rayleigh-Schroedinger perturbation series E(F)=tsum m=0 M E (2m) F 2m . We first use the coefficients E (2m) (the unperturbed energy is E (0) ) to construct the inverse series F 2 (E)=tsum m=1 M F (m) (E-E (0) ) m . We resum the latter series using the Pade method, and solve the implicit equation F 2 (E)=bar F 2 for E(bar F). The reconstructed function E(F) has the singularity structure appropriate to the true E(F). We are able to obtain good results for the lifetime of a hydrogen atom in a high-frequency field up to very high intensities, well into the (highly nonperturbative) stabilization regime
International Nuclear Information System (INIS)
Vrscay, E.R.
1986-01-01
A simple power-series method is developed to calculate to large order the Rayleigh-Schroedinger perturbation expansions for energy levels of a hydrogen atom with a Yukawa-type screened Coulomb potential. Perturbation series for the 1s, 2s, and 2p levels, shown not to be of the Stieltjes type, are calculated to 100th order. Nevertheless, the poles of the Pade approximants to these series generally avoid the region of the positive real axis 0 < lambda < lambda(, where lambda( represents the coupling constant threshold. As a result, the Pade sums afford accurate approximations to E(lambda) in this domain. The continued-fraction representations to these perturbation series have been accurately calculated to large (100th) order and demonstrate a curious ''quasioscillatory,'' but non-Stieltjes, behavior. Accurate values of E(lambda) as well as lambda( for the 1s, 2s, and 2p levels are reported
International Nuclear Information System (INIS)
Wilson, S.; Silver, D.M.
1979-01-01
Third-order diagrammatic perturbation theory provides a simple and accurate description of the electronic structure of atoms and molecules beyond that afforded by independent electron models. The largest corrections to such treatments, the fourth-order terms, are presented and discussed. All of the diagrams, which arise when the closed-shell Hartree--Fock function is utilized as a reference function, are given through fourth order. 18 references
Screening of Coulomb interaction and many-body perturbation theory in atoms
International Nuclear Information System (INIS)
Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.
1988-01-01
Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example
Environment. 1980-1994. International Atomic Energy Agency publications
International Nuclear Information System (INIS)
1995-06-01
The catalogue lists all publications of the International Atomic Energy Agency dealing with the Environment issued during the period 1980-1993. The major subjects covered include: effect of agrochemical residues on soils and aquatic ecosystems, application of radioisotopes in conservation of the environment, siting of nuclear power plants, environmental isotope data and environmental contamination due to nuclear accidents
Non-perturbative solution of a quantum mechanical oscillator interacting with a specific environment
International Nuclear Information System (INIS)
Badralexe, E.; Gupta, R.K.; Scheid, W.
1984-01-01
A quantum mechanical model of an oscillator interacting linearly with an environment is treated by the method of perturbation series expansion. For a special class of environments and interactions, the series is summed up to all orders. An integral equation for the time dependence of the coordinate operator of the oscillator is obtained, which is solved analytically by the method of Laplace transformations. General conditions are stated for a dissipative behaviour of the special class of environments considered. An example, which is widely applicable, is discussed. (author)
Intermittent contact atomic force microscopy in electrochemical environment
Energy Technology Data Exchange (ETDEWEB)
Haering, P; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [Bern Univ., Bern (Switzerland)
1997-06-01
In situ measurements with Atomic Force Microscopy may cause surface modifications due to the tip-surface interactions. As an alternative and less destructive method, Intermittent Contact Atomic Force Microscopy (ICAFM) has been tested in an electrolytic environment. In the ICAFM mode the tip is not constantly in contact with the surface under investigation but is tapping onto the surface with a certain frequency. A commercial Park Scientific Instruments Microscopy has been modified to enable in situ experiment with ICAFM. It was possible to image iridium oxide films with ICAFM in the electrolytic environment without any noticeable surface modifications. (author) 3 figs., 4 refs.
Environment. 1990-2001. International Atomic Energy Agency publications
International Nuclear Information System (INIS)
2001-05-01
This catalog lists all sales publications of the International Atomic Energy Agency dealing with the Environment, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue
Radiation perturbation theory in gravity and quantum universe as a hydrogen atom
International Nuclear Information System (INIS)
Pervushin, V.N.
1992-01-01
In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs
DEFF Research Database (Denmark)
Ruiz-Ramos, M.; Ferrise, Roberto; Rodríguez, A
2018-01-01
type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts....... However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T...
AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications
Directory of Open Access Journals (Sweden)
Claudio Mendoza
2014-05-01
Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workﬂows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.
Environment, 1986-1997. International Atomic Energy Agency publications
International Nuclear Information System (INIS)
1998-04-01
This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Environment and issued during the period of 1986-1997. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English
Frequency modulation detection atomic force microscopy in the liquid environment
Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.
True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.
Saturated two-photon absorption by atoms in a perturber gas
International Nuclear Information System (INIS)
Nienhuis, G.
1980-01-01
We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Efstathiou, K; Lukina, O V [Department of Mathematics, University of Groningen, Groningen 9700 AK (Netherlands); SadovskiI, D A [Departement de physique, Universite du Littoral, 59140 Dunkerque (France)], E-mail: K.Efstathiou@rug.nl, E-mail: O.Lukina@math.rug.nl, E-mail: sadovski@univ-littoral.fr
2009-02-06
We consider perturbations of the hydrogen atom by sufficiently small homogeneous static electric and magnetic fields in near-orthogonal configurations. Normalization of the Keplerian symmetry reveals that in the parameter space such systems belong in a 'zone' of systems close to the 1:1 resonance, the latter corresponding to the exactly orthogonal configuration. Integrable approximations obtained from second normalization of systems in the 1:1 zone are classified into several different qualitative types, many of which possess nontrivial monodromy. We compute monodromy of the complete three-dimensional energy-momentum map, compare the joint quantum spectrum to classical bifurcation diagrams, and show the effect of second normalization to the joint spectrum.
Energy Technology Data Exchange (ETDEWEB)
Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl [Section of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Repisky, Michal, E-mail: michal.repisky@uit.no [CTCC, Department of Chemistry, UIT The Arctic University of Norway, N-9037 Tromø (Norway)
2016-07-07
We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.
International Nuclear Information System (INIS)
Helmich-Paris, Benjamin; Visscher, Lucas; Repisky, Michal
2016-01-01
We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.
Scheeres, Daniel J
2012-01-01
The proposed book will provide a detailed, technical introduction to the analysis of orbital motion in strongly perturbed environments, focusing on motion about small Solar System bodies, such as comets and asteroids. The author shows why such small bodies are of interest and why they can be used as a motivation for the general analysis of orbital mechanics. He shows how it is possible to model the small body environment, including specialised cases such as those of binary asteroids, comets and ‘rubble piles’, and how the fundamental equations of motion are derived. The properties of the various solutions to the equations of motion are described and the methods of analysis and their application are discussed. Both ballistic motion and powered motion on and about small bodies are considered and case studies for different small body missions are presented. The author concludes his comprehensive treatment with a discussion of the mechanics of multi-body small body systems and a review of advanced topics and ...
A study on development strategy of atomic safety organization for atomic environment
Energy Technology Data Exchange (ETDEWEB)
Lee, Sung Bok; Jeong, Ji Hun; Kim Tae Hee; Lee, Seung Hyuk; Woo, Eun Jung [Konkuk Univ., Seoul (Korea, Republic of)
2005-02-15
The objective of this research is to suggest some strategies which can make the safety of atomic power possible and reinforce the nuclear regulatory system. It will contribute to the expansion and settlement of nuclear safety culture by making the public understand well about the safety of nuclear energy, and searching public relations and incentive strategies. In addition, since the nuclear environment is changing rapidly, the necessity of cooperation between the public and the private has veen mostly required. So we need to develop the effective administrative system based on their cooperation. Therefore, it will examine the function of organization established, operation system, and also social network closely connected with the nuclear safety. Moreover, by analyzing the change of regulatory environment and present safety confirmation of nuclear energy, it will devise the new safety confirmation system of nuclear energy.
Robust Trajectory Design in Highly Perturbed Environments Leveraging Continuation Methods, Phase I
National Aeronautics and Space Administration — Research is proposed to investigate continuation methods to improve the robustness of trajectory design algorithms for spacecraft in highly perturbed dynamical...
The atomic simulation environment-a Python library for working with atoms.
Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D; Jennings, Paul C; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W
2017-07-12
The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.
Teleportation of Atomic States in a Vacuum-Induced Environment
International Nuclear Information System (INIS)
Liu Jin; Shao Bin; Xiang Shaohua; Zou Jian
2009-01-01
We present a scheme for teleporting atomic state through a dissipative quantum channel induced by spontaneous emission and investigate the destructive effect of the atomic decay on the success probability and the fidelity of teleportation associated to different channels. It is found that there exists an optimal channel to realize faithful teleportation.
Atoms, Nature, and Man; Man-made Radioactivity in the Environment
Energy Technology Data Exchange (ETDEWEB)
Hines, Neal O.
1966-01-01
This booklet describes the environmental investigations that have been conducted with the aid of the atom since the first atomic detonation near Alamogordo, New Mexico, in 1945. The earth's mysteries, however, are not easily unlocked, and investigations of our environment with atomic tools have only begun. The story thus is one of beginnings but of beginnings that point the way, it is hoped, to a new understanding of the world in the atomic future.
International Nuclear Information System (INIS)
Belkhiri, Madeny
2014-01-01
In hot dense plasmas, the free-electron and ion spatial distribution may strongly affect the atomic structure. To account for such effects we have implemented a potential correction based on the uniform electron gas model and on a Thomas-Fermi Approach in the Flexible Atomic Code (FAC). This code has been applied to obtain energies, wave-functions and radiative rates modified by the plasma environment. In hydrogen-like ions, these numerical results have been successfully compared to an analytical calculation based on first-order perturbation theory. In the case of multi-electron ions, we observe level crossings in agreement with another recent model calculation. Various methods for the collision cross-section calculations are reviewed. The influence of plasma environment on these cross-sections is analyzed in detail. Some analytical expressions are proposed for hydrogen-like ions in the limit where Born or Lotz approximations apply and are compared to the numerical results from the FAC code. Finally, from this work, we study the influence of the plasma environment on our collisional-radiative model so-called Foch. Because of this environment, the mean charge state of the ions increases. The line shift is observed on the bound-bound emission spectra. A good agreement is found between our work and experimental data on a Titanium plasma. (author) [fr
Photoexcitation and ionization of hydrogen atom confined in Debye environment
International Nuclear Information System (INIS)
Lumb, S.; Lumb, S.; Nautiyal, V.
2015-01-01
The dynamics of a hydrogen atom confined in an impenetrable spherical box and under the effect of Debye screening, in the presence of intense short laser pulses of few femtosecond is studied in detail. The energy spectra and wave functions have been calculated using Bernstein polynomial (B-polynomial) method. Variation of transition probabilities for various transitions due to changes in Debye screening length, confinement radius as well as the parameters characterizing applied laser pulse is studied and explained. The results are found to be in good agreement with the results obtained by others. The photoexcitation and ionization of the atom strongly depend on confinement radius and screening parameter. For small confinement radii and for some values of screening parameter the atom is found to be ionized easily. The dynamics of the atom can be easily controlled by varying pulse parameters
Topology of local atomic environments: implications for magnetism and superconductivity
International Nuclear Information System (INIS)
Bennett, L.H.; Watson, R.E.; Pearson, W.B.
1985-01-01
Wigner-Seitz cells have been constructed, as a function of atomic size, for a number of transition-metal alloys (SmCo 5 etc.) and a disclination network has been obtained from these. Magnetism in these alloys can be related to the disclination lines, much like the superexchange paths familiar in the magnetism of salts
Effects of the atomic environment on the electron binding energies in samarium
Czech Academy of Sciences Publication Activity Database
Inoyatov, A. K.; Kovalík, Alojz; Filosofov, D. V.; Ryšavý, Miloš; Vénos, Drahoslav; Yushkevich, Y. V.; Perevoshchikov, L. L.; Zhdanov, V. S.
2016-01-01
Roč. 207, FEB (2016), s. 38-49 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Sm-149 * atomic environment * electron ginding energy * intermediate-valence state * chemical shift * natural atomic level width Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.661, year: 2016
Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment
Williams, Jason; D'Incao, Jose; Chiow, Sheng-Wey; Yu, Nan
2015-05-01
Precision atom interferometers (AI) in space promise exciting technical capabilities for fundamental physics research, with proposals including unprecedented tests of the weak equivalence principle, precision measurements of the fine structure and gravitational constants, and detection of gravity waves and dark energy. Consequently, multiple AI-based missions have been proposed to NASA, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory (CAL) onboard the International Space Station. In this talk, I will discuss our plans and preparation at JPL for the proposed flight experiments to use the CAL facility to study the leading-order systematics expected to corrupt future high-precision measurements of fundamental physics with AIs in microgravity. The project centers on the physics of pairwise interactions and molecular dynamics in these quantum systems as a means to overcome uncontrolled shifts associated with the gravity gradient and few-particle collisions. We will further utilize the CAL AI for proof-of-principle tests of systematic mitigation and phase-readout techniques for use in the next-generation of precision metrology experiments based on AIs in microgravity. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Perturbed Communication in a Virtual Environment to Train Medical Team Leaders
Huguet , Lauriane; Lourdeaux , Domitile; Sabouret , Nicolas; Ferrer , Marie-Hélène
2016-01-01
International audience; The VICTEAMS project aims at designing a virtual environment for training medical team leaders to non-technical skills. The virtual environment ispopulated with autonomous virtual agents who are able to make mistakes (in action or communication) in order to train rescue team leaders and to make them adaptive with all kinds of situations or teams.
Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre
Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.
International Nuclear Information System (INIS)
Sadlej, A.J.
1980-01-01
The problem of the most efficient perturbation calculation of the correlation contributions to atomic and molecular properties is discussed. The method which is based on the coupled Hartree-Fock (CHF) perturbation theory appears to be the most promising one. The CHF-based perturbation theory of correlation effects is applied to the calculation of the second-order correlation contributions to the electric dipole polarizabilities of He, Be and Ne. The numerical approach employed in this paper consists in computing first the electric-field-dependent SCF functions. Then, the field dependent second-order correlation energy is calculated. The electric dipole polarizabilities, accurate through the second-order in correlation, are obtained via the numerical differentiation of the field-dependent energies with respect to the external electric field strength. In order to avoid the use of very large basis sets the so-called electric-field-variant (EFV) orbitals are employed in the present study. The CHF results obtained in this paper are of the same accuracy as the best literature data. In addition of the second-order correlation correction the final values of the electric dipole polarizability differ from the accurate or experimental results by less than a few per cent. (author)
Atomic-scale dislocation dynamics in radiation damage environment
International Nuclear Information System (INIS)
Osetsky, Y.; Stoller, R.; Bacon, D.J.
2007-01-01
Full text of publication follows: The dynamics behavior of dislocations determines mechanical properties of crystalline materials. Long-range interactions between a moving dislocation and other defects can be treated within a continuum approach via interaction of their stress and strain fields. However, a vast contribution to mechanical properties depends on the direct interaction between dislocations and other defects and depends very much on the particular atomic scale structure of the both moving dislocation core and the obstacle. In this work we review recent progress in large-scale modeling of dislocation dynamics in metals at the atomic level by molecular dynamics and statics. We review the modem techniques used to simulate dynamics of dislocations in different lattice structures, the dependence on temperature, strain rate and obstacle size. Examples are given for bcc, fcc and hcp metals where edge and screw dislocations interact with vacancy (loops, voids, stacking fault tetrahedra, etc), self-interstitial clusters and secondary phase precipitates. Attention is paid to interpretation of atomistic results from the point of view of parameterization of continuum models. The latter is vitally necessary for further application in 3-dimensional dislocation dynamics within the multi-scale materials modeling approach. Research sponsored by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC0S-00OR22725 with UT-Battelle, LLC. (authors)
Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature
International Nuclear Information System (INIS)
Zou Hong-Mei; Fang Mao-Fa
2015-01-01
The population dynamics of a two-atom system, which is in two independent Lorentzian reservoirs or in two independent Ohmic reservoirs respectively, where the reservoirs are at zero temperature or finite temperature, is studied by using the time-convolutionless master-equation method. The influences of the characteristics and temperature of a non-Markovian environment on the population of the excited atoms are analyzed. We find that the population trapping of the excited atoms is related to the characteristics and the temperature of the non-Markovian environment. The results show that, at zero temperature, the two atoms can be effectively trapped in the excited state both in the Lorentzian reservoirs and in the Ohmic reservoirs. At finite temperature, the population of the excited atoms will quickly decay to a nonzero value. (paper)
International Nuclear Information System (INIS)
Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean
2014-01-01
Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)
Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.
2018-04-01
The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.
International Nuclear Information System (INIS)
Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.
2008-01-01
The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19 F, the β - decay product of 19 O (t 1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, |V zz | = 2.91(17) x 10 22 V m -2 , suggests that the incident 19 O atoms are stabilized at an interlayer position with point group C 3v . Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19 O beam
Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.
2008-01-01
The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.
Atomic energy, environment and energy conservation in Eastern Europe
International Nuclear Information System (INIS)
Kanno, Koko
1990-01-01
About 12 % of generated electric power is the nuclear power in Eastern European countries. Generally electric power is short in these countries, and as the countermeasures for environment, the promotion of nuclear power generation is considered. However, the public opinion opposing it is also strong. The situation in respective countries is briefly discussed. The prevention of warming of the earth and the reduction of carbon dioxide gas release are the largest environmental problems discussed in western countries, but in Eastern European countries, the far more primitive problem of the damage due to SO 2 is serious. Notwithstanding high sulfur brown coal is the main fuel, the installation of desulfurizing facilities has been neglected. The demand for the countermeasures to environmental pollution by people has become strong. The energy efficiency in Eastern European countries is poor, and it is one of the causes of environmental pollution. The industrial structure is centering around heavy industries which consume much energy, the energy loss arises due to the delay of equipment modernization, and the energy is cheap, so its saving is neglected. Energy conservation is important. (K.I.)
Directory of Open Access Journals (Sweden)
Wolfgang eTaube
2014-12-01
Full Text Available For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI and action observation (AO have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT and a balance training combining AO and MI (AO+MI_BT on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical balance training (BT is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON. Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT not only promotes motor learning of ‘rigid’ postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients.
Das, Satyendra K; Banerjee, Debasish; Johnston, Karl; Das, Parnika; Butz, Tilman; Amaral, Vitor S; Correia, Joao G; Barbosa, Marcelo B
2014-01-01
30 keV Cd-111m and 50 keV Hg-199m beams from ISOLDE were used to implant on preformed targets of C-60 with a thickness of 1 mg cm(-2). Endofullerene compounds, viz. Cd-111m@C-60 and Hg-199m@C-60 formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151-245 keV cascade of Cd-111m and the 374 158 keV cascade of Hg-199m on a six LaBr3(Ce) detector system coupled with digital electronics. The results for 111mCd@C60 indicate a single static component (27\\%) and a fast relaxing component (73\\%), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C60 are omega(Q) = 8.21(36) Mrad s(-1) and eta = 0.41(9), respectively. The fast relaxation con...
Resonance interaction energy between two entangled atoms in a photonic bandgap environment.
Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia
2018-03-26
We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.
Energy Technology Data Exchange (ETDEWEB)
Das, Satyendra K.; Guin, Rashmohan; Banerjee, Debasish [Variable Energy Cyclotron Centre, Kolkata (India). Accelerator Chemistry Section (Bhabha Atomic Research Centre); Johnston, Karl [CERN, Geneva (Switzerland); Das, Parnika [Variable Energy Cyclotron Centre, Kolkata (India); Butz, Tilman [Leipzig Univ. (Germany). Faculty of Physics and Earth Sciences; Amaral, Vitor S. [Aveiro Univ. (Portugal). Physics Dept.; Aveiro Univ. (Portugal). CICECO; Correia, Joao G.; Barbosa, Marcelo B. [Instituto Tecnologico e Nuclear (ITN), Sacavem (Portugal); CERN, Geneva (Switzerland). ISOLDE
2014-10-15
30 keV {sup 111m}Cd and 50 keV {sup 199m}Hg beams from ISOLDE were used to implant on preformed targets of C{sub 60} with a thickness of 1 mg cm{sup -2}. Endofullerene compounds, viz. {sup 111m}Cd rate at C{sub 60} and {sup 199m}Hg rate at C{sub 60} formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151-245keV cascade of {sup 111m}Cd and the 374-158 keV cascade of {sup 199m}Hg on a six LaBr{sub 3}(Ce) detector system coupled with digital electronics. The results for {sup 111m}Cd rate at C{sub 60} indicate a single static component (27 %) and a fast relaxing component (73 %), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C{sub 60} are ω{sub Q} = 8.21(36) Mrad s{sup -1} and η = 0.41(9), respectively. The fast relaxation constant is 0.0031(4) ns{sup -1}. Similarly, mercury atoms also exhibit a single static and a fast component. The static site has a quadrupole frequency ω{sub Q} = 283.0(12.4) Mrad s{sup -1} and η = 0 with a fraction of 30 %. The fast relaxation constant is 0.045(8) ns{sup -1} with a fraction of 70 %, very similar to that of cadmium.
International Nuclear Information System (INIS)
Auffray, J.P.
1997-01-01
The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)
DEFF Research Database (Denmark)
Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.
2002-01-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due to t...
Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
Jose, K V Jovan; Artrith, Nongnuch; Behler, Jörg
2012-05-21
An accurate determination of the potential energy is the crucial step in computer simulations of chemical processes, but using electronic structure methods on-the-fly in molecular dynamics (MD) is computationally too demanding for many systems. Constructing more efficient interatomic potentials becomes intricate with increasing dimensionality of the potential-energy surface (PES), and for numerous systems the accuracy that can be achieved is still not satisfying and far from the reliability of first-principles calculations. Feed-forward neural networks (NNs) have a very flexible functional form, and in recent years they have been shown to be an accurate tool to construct efficient PESs. High-dimensional NN potentials based on environment-dependent atomic energy contributions have been presented for a number of materials. Still, these potentials may be improved by a more detailed structural description, e.g., in form of atom pairs, which directly reflect the atomic interactions and take the chemical environment into account. We present an implementation of an NN method based on atom pairs, and its accuracy and performance are compared to the atom-based NN approach using two very different systems, the methanol molecule and metallic copper. We find that both types of NN potentials provide an excellent description of both PESs, with the pair-based method yielding a slightly higher accuracy making it a competitive alternative for addressing complex systems in MD simulations.
International Nuclear Information System (INIS)
Tasaka, Masatoshi; Saito, Osamu; Miyaki, Sumiyo; Watabu, Akiko
1978-01-01
In order to observe clinically the effects of the atomic bomb on the human body (and on the environment), subjects were divided into group A (persons living in Hiroshima city more than 10 years after dropping of the atomic bomb) and group B (persons who changed their residence within 1 month). Group A was divided into two separate groups: group A 1 (persons living in segregated areas), and group A 2 (persons living in other areas). General examinations showed no abnormal findings. Incidence of abnormal ECG findings was higher in subjects living in segregated areas and was also higher in women than in men. (Namekawa, K.)
Influence of the plasma environment on atomic structure using an ion-sphere model
Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel
2015-09-01
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.
2009-02-01
Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.
International Nuclear Information System (INIS)
Grafoute, M.; Petitjean, C.; Rousselot, C.; Pierson, J.F.; Greneche, J.M.
2007-01-01
An iron oxynitride film was deposited on silicon and glass substrates by magnetron sputtering in an Ar-N 2 -O 2 reactive mixture. Rutherford back-scattering spectrometry was used to determine the film composition (Fe 1.06 O 0.35 N 0.65 ). X-ray diffraction revealed the formation of a face-centred cubic (fcc) structure with a lattice parameter close to that of γ'''-FeN. X-ray photoelectron spectroscopy showed the occurrence of Fe-N and Fe-O bonds in the film. The local environment of iron atoms studied by 57 Fe Moessbauer spectrometry at both 300 and 77 K gives clear evidence that the Fe 1.06 O 0.35 N 0.65 is not a mixture of iron oxide and iron nitride phases. Despite a small amount of an iron nitride phase, the main sample consists of an iron oxynitride phase with an NaCl-type structure where oxygen atoms partially substitute for nitrogen atoms, thus indicating the formation of a iron oxynitride with an fcc structure
International Nuclear Information System (INIS)
Bartlett, R.; Kirtman, B.; Davidson, E.R.
1978-01-01
After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references
International Nuclear Information System (INIS)
Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe; Head-Gordon, Teresa; Skylaris, Chris-Kriton; Head-Gordon, Martin
2016-01-01
Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set produces <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.
Perturbative approach to non-Markovian stochastic Schroedinger equations
International Nuclear Information System (INIS)
Gambetta, Jay; Wiseman, H.M.
2002-01-01
In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)
Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.
Shih, Hua-Ju; Shih, Po-Jen
2015-07-28
Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.
He, Xin; Shan, Meijing; Liu, Meng
2018-02-01
An n-species stochastic Lotka-Volterra cooperative model in a polluted environment is proposed and studied. For each species, sufficient conditions for extinction, non-persistence in the mean and weak persistence in the mean are established. The threshold between weak persistence in the mean and extinction is obtained. Several numerical figures are also worked out to validate the theoretical results.
Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang
2017-05-15
In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.
C. Colloca TS/FM
2004-01-01
TS/FM group informs you that, for the progress of the works at the Prévessin site entrance, some perturbation of the traffic may occur during the week between the 14th and 18th of June for a short duration. Access will be assured at any time. For more information, please contact 160239. C. Colloca TS/FM
Influence of the atomic industry branches' on the Kazakhstan environment status
International Nuclear Information System (INIS)
Ibraev, R.; Tugel'baev, S.S.
2001-01-01
In the paper an the atomic industry branches' influence on the Kazakhstan environment status is considered. It is noted that Kazakhstan in only country in the world where nuclear strategic programs (USSR and CIS) were carried out without control, any limits, wide-scaly and in a full cycle. This is mine, reprocessing of strategic ores, preparation (partial), testing and use of nuclear and thermonuclear warheads in both military and peaceful aims, radioactive wastes disposal. Due to non-observance by industry branches of the principal normative requirements of radiation safety (were in existence and present ones) in the republic there is not territorial delimitation of the special objects with control area that caused negative influence of these objected were exposed vast regions both out-side and inter-sites area. So Kazakhstan nature scale-wide contamination is the existing reality. It is stressed, that mining and reprocessing uranium enterprises have negative contribution in the bio-geo-media. In this case it is especially hazard the underground sulfuric leaching technology is applying in the uranium mine industry. The technology is much cheaper but it ecologically in dozen times danger in comparison with applied in other countries the carbonate leaching method
Mills, A. L.; Ford, R. M.; Vallino, J. J.; Herman, J. S.; Hornberger, G. M.
2001-12-01
Restoration of high-quality groundwater has been an elusive engineering goal. Consequently, natural microbially-mediated reactions are increasingly relied upon to degrade organic contaminants, including hydrocarbons and many synthetic compounds. Of concern is how the introduction of an organic chemical contaminant affects the indigenous microbial communities, the geochemistry of the aquifer, and the function of the ecosystem. The presence of functional redundancy in microbial communities suggests that recovery of the community after a disturbance such as a contamination event could easily result in a community that is similar in function to that which existed prior to the contamination, but which is compositionally quite different. To investigate the relationship between community structure and function we observed the response of a diverse microbial community obtained from raw sewage to a dynamic redox environment using an aerobic/anaerobic/aerobic cycle. To evaluate changes in community function CO2, pH, ammonium and nitrate levels were monitored. A phylogenetically-based DNA technique (tRFLP) was used to assess changes in microbial community structure. Principal component analysis of the tRFLP data revealed significant changes in the composition of the microbial community that correlated well with changes in community function. Results from our experiments will be discussed in the context of a metabolic model based the biogeochemistry of the system. The governing philosophy of this thermodynamically constrained metabolic model is that living systems synthesize and allocate cellular machinery in such a way as to "optimally" utilize available resources in the environment. The robustness of this optimization-based approach provides a powerful tool for studying relationships between microbial diversity and ecosystem function.
Energy Technology Data Exchange (ETDEWEB)
Tasaka, M; Saito, O; Miyaki, S; Watabu, A [Fukushima Medical Co-Operative Hospital (Japan)
1978-04-01
In order to observe clinically the effects of the atomic bomb on the human body (and on the environment), subjects were divided into group A (persons living in Hiroshima city more than 10 years after dropping of the atomic bomb) and group B (persons who changed their residence within 1 month). Group A was divided into two separate groups: group A/sub 1/ (persons living in segregated areas), and group A/sub 2/ (persons living in other areas). General examinations showed no abnormal findings. Incidence of abnormal ECG findings was higher in subjects living in segregated areas and was also higher in women than in men.
Yourdkhani, Sirous; Korona, Tatiana; Hadipour, Nasser L
2015-12-15
Intermolecular ternary complexes composed of: (1) the centrally placed trifluoroacetonitrile or its higher analogs with central carbon exchanged by silicon or germanium (M = C, Si, Ge), (2) the benzonitrile molecule or its para derivatives on one side, and (3) the boron trifluoride of trichloride molecule (X = F, Cl) on the opposite side as well as the corresponding intermolecular tetrel- and triel-bonded binary complexes, were investigated by symmetry-adapted perturbation theory (SAPT) and the supermolecular Møller-Plesset method (MP2) at the complete basis set limit for optimized geometries. A character of interactions was studied by quantum theory of atoms-in-molecules (QTAIM). A comparison of interaction energies and QTAIM bond descriptors for dimers and trimers reveals that tetrel and triel bonds increase in their strength if present together in the trimer. For the triel-bonded complex, this growth leads to a change of the bond character from closed-shell to partly covalent for Si or Ge tetrel atoms, so the resulting bonding scheme corresponds to a preliminary stage of the SN2 reaction. Limitations of the Lewis theory of acids and bases were shown by its failure in predicting the stability order of the triel complexes. The necessity of including interaction energy terms beyond the electrostatic component for an elucidation of the nature of σ- and π-holes was presented by a SAPT energy decomposition and by a study of differences in monomer electrostatic potentials obtained either from isolated monomer densities, or from densities resulting from a perturbation with the effective field of another monomer. © 2015 Wiley Periodicals, Inc.
D'Incao, Jose P.; Willians, Jason R.
2015-05-01
Precision atom interferometers (AI) in space are a key element for several applications of interest to NASA. Our proposal for participating in the Cold Atom Laboratory (CAL) onboard the International Space Station is dedicated to mitigating the leading-order systematics expected to corrupt future high-precision AI-based measurements of fundamental physics in microgravity. One important focus of our proposal is to enhance initial state preparation for dual-species AIs. Our proposed filtering scheme uses Feshbach molecular states to create highly correlated mixtures of heteronuclear atomic gases in both their position and momentum distributions. We will detail our filtering scheme along with the main factors that determine its efficiency. We also show that the atomic and molecular heating and loss rates can be mitigated at the unique temperature and density regimes accessible on CAL. This research is supported by the National Aeronautics and Space Administration.
International Nuclear Information System (INIS)
Loibl, Stefan; Schütz, Martin
2014-01-01
In this paper, we present theory and implementation of an efficient program for calculating magnetizabilities and rotational g tensors of closed-shell molecules at the level of local second-order Møller-Plesset perturbation theory (MP2) using London orbitals. Density fitting is employed to factorize the electron repulsion integrals with ordinary Gaussians as fitting functions. The presented program for the calculation of magnetizabilities and rotational g tensors is based on a previous implementation of NMR shielding tensors reported by S. Loibl and M. Schütz [J. Chem. Phys. 137, 084107 (2012)]. Extensive test calculations show (i) that the errors introduced by density fitting are negligible, and (ii) that the errors of the local approximation are still rather small, although larger than for nuclear magnetic resonance (NMR) shielding tensors. Electron correlation effects for magnetizabilities are tiny for most of the molecules considered here. MP2 appears to overestimate the correlation contribution of magnetizabilities such that it does not constitute an improvement over Hartree-Fock (when comparing to higher-order methods like CCSD(T)). For rotational g tensors the situation is different and MP2 provides a significant improvement in accuracy over Hartree-Fock. The computational performance of the new program was tested for two extended systems, the larger comprising about 2200 basis functions. It turns out that a magnetizability (or rotational g tensor) calculation takes about 1.5 times longer than a corresponding NMR shielding tensor calculation
Duan, Sibin; Wang, Rongming; Liu, Jingyue
2018-05-01
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.
Supersingular quantum perturbations
International Nuclear Information System (INIS)
Detwiler, L.C.; Klauder, J.R.
1975-01-01
A perturbation potential is called supersingular whenever generally every matrix element of the perturbation in the unperturbed eigenstates is infinite. It follows that supersingular perturbations do not have conventional perturbation expansions, say for energy eigenvalues. By invoking variational arguments, we determine the asymptotic behavior of the energy eigenvalues for asymptotically small values of the coupling constant of the supersingular perturbation
Challenges and complexities of multifrequency atomic force microscopy in liquid environments.
Solares, Santiago D
2014-01-01
This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.
Radiative transitions from Rydberg states of lithium atoms in a blackbody radiation environment
Glukhov, I. L.; Ovsiannikov, V. D.
2012-05-01
The radiative widths induced by blackbody radiation (BBR) were investigated for Rydberg states with principal quantum number up to n = 1000 in S-, P- and D-series of the neutral lithium atom at temperatures T = 100-3000 K. The rates of BBR-induced decays and excitations were compared with the rates of spontaneous decays. Simple analytical approximations are proposed for accurate estimations of the ratio of thermally induced decay (excitation) rates to spontaneous decay rates in wide ranges of states and temperatures.
Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony
2018-05-18
Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Many body perturbation calculations of photoionization
International Nuclear Information System (INIS)
Kelly, H.P.
1979-01-01
The application of many body perturbation theory to the calculation of atomic photoionization cross sections is reviewed. The choice of appropriate potential for the single-particle state is discussed and results are presented for several atoms including resonance structure. In addition to single photoionization, the process of double photoionization is considered and is found to be significant. (Auth.)
Challenges and complexities of multifrequency atomic force microscopy in liquid environments
Directory of Open Access Journals (Sweden)
Santiago D. Solares
2014-03-01
Full Text Available This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM. The focus is primarily on (i the amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii the momentary excitation of non-driven higher eigenmodes and (iii base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
International Nuclear Information System (INIS)
Shetty, P.G.; Takale, R.A.; Swarnkar, M.; Sahu, S.K.; Pandit, G.G.; Puranik, V.D.
2011-01-01
As a part of the assessment of the environmental impact of the Indian nuclear power programme, radiation surveys are being carried out on continuous basis in the environs of all the nuclear facilities in India using Thermoluminescent Dosimeters. This paper discusses the environmental gamma radiation levels based on the analysis of data generated for year 1989-2009 at twenty-eight locations currently being monitored in and around the environs of NAPS using passive dosimeter. Of these, six are within the exclusion zone (1.6 km) while the remaining twenty two locations are spread over an aerial distance of twenty six km from reactor stack. The annual background gamma levels for NAPS site beyond 1.6 km exclusion zone based on twenty-two monitoring locations are evaluated and seen to be 1.20 ± 0.15 mGy/a. This is comparable with earlier reported pre-operational value 1.24 ± 0.26 mGy/a. From this it can be said that the reactor operations have not contributed to any increase in the gamma radiation levels in the environs of the NAPS region. (author)
Energy Technology Data Exchange (ETDEWEB)
Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp
2017-02-28
Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.
International Nuclear Information System (INIS)
Li Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.
2006-01-01
This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ∼25 μs after the discharge power termination
Makarewicz, Emilia; Gordon, Agnieszka J; Mierzwicki, Krzysztof; Latajka, Zdzislaw; Berski, Slawomir
2014-06-05
Quantum chemistry methods have been applied to study the influence of the Xe atom inserted into the hydrogen-bromine bond (HBr → HXeBr), particularly on the nature of atomic interactions in the HBr···CO2 and HXeBr···CO2 complexes. Detailed analysis of the nature of chemical bonds has been carried out using topological analysis of the electron localization function, while topological analysis of electron density was used to gain insight into the nature of weak nonbonding interactions. Symmetry-adapted perturbation theory within the orbital approach was applied for greater understanding of the physical contributions to the total interaction energy.
International Nuclear Information System (INIS)
Syarbaini; Yatim Sofyan
2000-01-01
Determination of 239 , 240 Pu and 241 Am in the Cisadane river sediment and surface soil samples collected in 1996 from the environment of Atomic Energy Research Establishment (PPT A) of Serpong has been carried out. The objective of research was to evaluate the existence of 239 , 240 Pu and 241 Am in the environment as impact of nuclear activities in the PPT A Serpong. Surface soils were collected from 3 locations and each of location consists of 4 sampling sites. Cisadane river sediment consists of 3 sampling sites. The results showed that the average concentration were founded to be 17.03 ± 2.49 mBq/kg for 239 , 240 Pu and 9.20 ± 2.93 mBq/kg for 241 Am. The observed 239 , 240 Pu 241 Am concentration are low compared to the reported values for some other areas of the world. The Activity ratios of 241 Am/ 239 , 24O Pu and 239 , 240 PU/ 137 Cs in surface soils were found to be in the narrow range 0.32 to 0.53 with a mean value of 0.43 ± 0.09 and 0.017 to 0.029 with a mean value of 0.024 ± 0.005 respectively. This ratio is in excellent agreement with the value of global fallout
International Nuclear Information System (INIS)
Santoso, B.
1976-01-01
Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)
Mishra, S N
2009-03-18
Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in
Developments in perturbation theory
International Nuclear Information System (INIS)
Greenspan, E.
1976-01-01
Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators
Base case and perturbation scenarios
Energy Technology Data Exchange (ETDEWEB)
Edmunds, T
1998-10-01
This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a
International Nuclear Information System (INIS)
Liu Meng; Wang Ke
2012-01-01
Highlights: ► Random population model with pulse toxicant input in polluted environments. ► Threshold between persistence and extinction is obtained. ► Different random noises have different effects on the persistence of the population. ► Impulsive period plays a key role in determining persistence of the population. ► Simulation figures support the analytical findings. - Abstract: Taking both white noises and colored noises into account, a stochastic single-species model with Markov switching and impulsive toxicant input in a polluted environment is proposed and investigated. Sufficient conditions for extinction, non-persistence in the mean, weak persistence and stochastic permanence are established. The threshold between weak persistence and extinction is obtained. Some simulation figures are introduced to illustrate the main results.
Energy Technology Data Exchange (ETDEWEB)
Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik
1976-06-11
In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.
International Nuclear Information System (INIS)
Collins, J.C.
1985-01-01
Progress in quantum chromodynamics in the past year is reviewed in these specific areas: proof of factorization for hadron-hadron collisions, fast calculation of higher order graphs, perturbative Monte Carlo calculations for hadron-hadron scattering, applicability of perturbative methods to heavy quark production, and understanding of the small-x problem. 22 refs
Perturbative and constructive renormalization
International Nuclear Information System (INIS)
Veiga, P.A. Faria da
2000-01-01
These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)
International Nuclear Information System (INIS)
Gallop, R.G.C.; Warren, B.B.; Hannan, A.M.; Saxby, W.N.
1987-01-01
The Atomic Weapons Research Establishment (AWRE) at Aldermaston discharges very small amounts of radioactive materials to the local environment. Calculations based on source information indicate that the resultant dose to the general public is less than 0.1% of the local natural radiation background. This conclusion is confirmed by the detailed and extensive environmental monitoring programme carried out by AWRE in the surrounding locality. (author)
Near relativistic study of binded levels in atoms. Application to alkaline atoms
International Nuclear Information System (INIS)
Varade, A.; Delgado-Barrio, G.; Villarreal, P.
1985-01-01
A model is described for the calculation of the atomic binding energies. The Pauli equation has been solved with a local potential. The results for alkaline atoms are reported here and compared with the perturbative calculation and experimental data. (author)
International Nuclear Information System (INIS)
Mueller, A.H.
1986-03-01
A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)
International Nuclear Information System (INIS)
Vikas; Anoj Kumar; Meena, T.R.; Vikas Kumar; Patra, R.P.; Patil, S.S.; Murali, S.; Singh, Rajvir; Pradeepkumar, K.S.
2014-01-01
Periodic radiological survey and its analysis are useful on a two way approach. First, it will be used to generate baseline dose profile that will be prominently important during any radiological emergency. Secondly, due to some unforeseen human acts if orphan/abandoned radioactive source were present across Bhabha Atomic Research Centre site, the same can be detected and retrieved from the incident location. Periodic radiation survey of Bhabha Atomic Research Centre, Trombay site primarily validate/serve as an indicator of integrity of the various safety measures at the different nuclear fuel cycle facilities and on the prevailing radiological status at the vicinity of the facilities at Bhabha Atomic Research Centre, Trombay site. Radiation dose profile as a quality information has been accumulated in the last five years. Analysis of data has led to the conclusion that there has been no increase in hazard over the years though the quantum of radioactivity processed at the various facilities has undergone wide increase and radiation hazard at the site continues to be very negligible. Nuclear fuel cycle activities at Bhabha Atomic Research Centre do not pose any excess radiation risk at the site
Generalized chiral perturbation theory
International Nuclear Information System (INIS)
Knecht, M.; Stern, J.
1994-01-01
The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs
DEFF Research Database (Denmark)
Valentini, Chiara
2017-01-01
The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....
Non-perturbative methods applied to multiphoton ionization
International Nuclear Information System (INIS)
Brandi, H.S.; Davidovich, L.; Zagury, N.
1982-09-01
The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt
"Phonon" scattering beyond perturbation theory
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations
International Nuclear Information System (INIS)
Orlenko, E. V.; Evstafev, A. V.; Orlenko, F. E.
2015-01-01
A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated
International Nuclear Information System (INIS)
Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75
1992-06-01
The problem of the statistical mechanics of an anyon gas is addressed. A perturbative analysis in the anyonic coupling constant α is reviewed, and the thermodynamical potential is computed at first and second order. An adequate second quantized formalism (field theory at finite temperature) is proposed. At first order in perturbation theory, the results are strikingly simple: only the second virial coefficient close to bosonic statistics is corrected. At second order, however, the complexity of the anyon model appears. One can compute exactly the perturbative correction to each cluster coefficient. However, and contrary to first order, a closed expression for the equation of state seems out of reach. As an illustration, the perturbative expressions of a 3 , a 4 , a 5 and a 6 are given at second order. Finally, using the same formalism, the equation of state of an anyon gas in a constant magnetic field is analyzed at first order in perturbation theory. (K.A.) 16 refs.; 3 figs.; 7 tabs
Energy Technology Data Exchange (ETDEWEB)
Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); LeDuc, P. R., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Departments of Biomedical Engineering and Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)
2014-10-20
With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.
International Nuclear Information System (INIS)
Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F.; LeDuc, P. R.
2014-01-01
With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.
International Nuclear Information System (INIS)
Ecker, G.
1996-06-01
After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)
Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G
2018-05-21
The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .
Preheating curvaton perturbations
International Nuclear Information System (INIS)
Bastero-Gil, M.; Di Clemente, V.; King, S.F.
2005-01-01
We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3
String perturbation theory diverges
International Nuclear Information System (INIS)
Gross, D.J.; Periwal, V.
1988-01-01
We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence
International Nuclear Information System (INIS)
Suslov, I.M.
2005-01-01
Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed
Instantaneous stochastic perturbation theory
International Nuclear Information System (INIS)
Lüscher, Martin
2015-01-01
A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.
Cosmological perturbations in antigravity
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
Solan, Eilon; Vieille, Nicolas
2015-01-01
We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.
Scalar cosmological perturbations
International Nuclear Information System (INIS)
Uggla, Claes; Wainwright, John
2012-01-01
Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)
Generalized perturbation series
International Nuclear Information System (INIS)
Baird, L.C.; Stinchcomb, G.
1973-01-01
An approximate solution of the Green's function equation may be used to generate an exact solution of the Schroedinger equation. This is accomplished through an iterative procedure. The procedure is equivalent to a perturbation expansion if the approximate Green's function is exact with respect to some reference potential
DEFF Research Database (Denmark)
jora, Renata; Schechter, Joseph; Naeem Shahid, M.
2009-01-01
We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos at the unper...... at the unperturbed level....
International Nuclear Information System (INIS)
Krivolutskii, D.A.; Pokarzhevskii, A.D.; Usachev, V.L.; Shein, G.N.; Nadvornyi, V.G.; Viktorov, A.G.
1991-01-01
Investigations of soil fauna populations within a 30-km zone around the Chernobyl Atomic Energy Station between July 1986 and October 1988 showed a marked decrease in the first year after the accident in the species composition of soil microarthropods and in the abundance of their populations in soils of the local pine [Pinus] forests. The soils of agroecosystems showed a decrease in young individuals. In the second year after the accident, the populations of settled species of soil fauna recovered slowly, and recovery of the total abundance of soil fauna in the 30-km zone occurred due to populations of migrating species. After 2-2.5 years, the abundance and biomass of soil fauna populations in polluted areas had recovered
Johansen, Craig; Lincoln, Daniel; Bathel, Brett; Inman, Jennifer; Danehy, Paul
2014-01-01
Simultaneous nitric oxide (NO) and atomic oxygen (O) laser induced fluorescence (LIF) experiments were performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at the NASA Langley Research Center. The data serves as an experimental database for validation for chemical and thermal nonequilibrium models used in hypersonic flows. Measurements were taken over a wide range of stagnation enthalpies (6.7 - 18.5 MJ/kg) using an Earth atmosphere simulant with a composition of 75% N2, 20% O2, and 5% Ar (by volume). These are the first simultaneous measurements of NO and O LIF to be reported in literature for the HYMETS facility. The maximum O LIF mean signal intensity was observed at a stagnation enthalpy of approximately 12 MJ/kg while the maximum NO LIF mean signal intensity was observed at a stagnation enthalpy of 6.7 MJ/kg. Experimental results were compared to simple fluorescence model that assumes equilibrium conditions in the plenum and frozen chemistry in the isentropic nozzle expansion (Mach 5). The equilibrium calculations were performed using CANTERA v2.1.1 with 16 species. The fluorescence model captured the correlation in mean O and NO LIF signal intensities over the entire range of stagnation enthalpies tested. Very weak correlations between single-shot O and NO LIF intensities were observed in the experiments at all of the stagnation enthalpy conditions.
International Nuclear Information System (INIS)
Demchenko, I.N.; Lawniczak-Jablonska, K.; Liliental-Weber, Z.; Zakharov, D.N.; Zhuravlev, K.S.
2005-01-01
In spite of large number of articles dedicated to the investigation of GeSi islands, a lot of problems concerning growth mechanism and island composition, as well as elastic strains inside the QDs, are still unsolved. To solve such problems, the GeSi low dimensional structures were studied by Extended X-Ray Absorption Fine Structure (EXAFS). The aim of this investigation was to get knowledge about the local structure around Ge atoms inside formed quantum dots. The paper presents a series of measurements performed for a single Ge layer buried in the silicon matrix at A1 station at the HASYLAB/DESY (Germany) with the angle of 45 o between the incident beam and sample surface. The fluorescence, total electron yield and the transmission modes of detection were used. To confirm the EXAFS analysis conclusion more measurements were performed using transmission electron microscopy (TEM). The low temperature samples with 8-20 ML of Ge were investigated by cross-section and plan-view TEM. The reported results of TEM studies of the local structure of germanium quantum dots (QDs) in Si/Ge/Si '' sandwich '' structures are in good correlation with EXAFS conclusion
Studying the perturbative Reggeon
International Nuclear Information System (INIS)
Griffiths, S.; Ross, D.A.
2000-01-01
We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ''reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q 2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel. (orig.)
Renormalized Lie perturbation theory
International Nuclear Information System (INIS)
Rosengaus, E.; Dewar, R.L.
1981-07-01
A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another
Nonperturbative perturbation theory
International Nuclear Information System (INIS)
Bender, C.M.
1989-01-01
In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Twisting perturbed parafermions
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2017-07-01
Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.
Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam
2017-02-01
The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.
International Nuclear Information System (INIS)
Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang
2014-01-01
The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)
Directory of Open Access Journals (Sweden)
Georgios S. E. Antipas
2015-01-01
Full Text Available The atomic environments of two chalcogenide glasses, with compositions GeSe4In10 and GeSe4In15, were studied via Reverse Monte Carlo and Density Functional Theory. Indium content demoted Ge–Se bonding in favor of Se-In while the contribution of Se–Se in the first coordination shell order was faint. Upon transition to the richer In glass, there was formation of rich Ge-centered clusters at radial distances further than 4 Å from the RMC box center, which was taken to signify a reduction of Ge–Se interactions. Cluster coordination by Se promoted stability while, very conclusively, In coordination lowered cluster stability by intervening in the Ge–Se and Se–Se networks.
Physics in Screening Environments
Certik, Ondrej
In the current study, we investigated atoms in screening environments like plasmas. It is common practice to extract physical data, such as temperature and electron densities, from plasma experiments. We present results that address inherent computational difficulties that arise when the screening approach is extended to include the interaction between the atomic electrons. We show that there may arise an ambiguity in the interpretation of physical properties, such as temperature and charge density, from experimental data due to the opposing effects of electron-nucleus screening and electron-electron screening. The focus of the work, however, is on the resolution of inherent computational challenges that appear in the computation of two-particle matrix elements. Those enter already at the Hartree-Fock level. Furthermore, as examples of post Hartree-Fock calculations, we show second-order Green's function results and many body perturbation theory results of second order. A self-contained derivation of all necessary equations has been included. The accuracy of the implementation of the method is established by comparing standard unscreened results for various atoms and molecules against literature for Hartree-Fock as well as Green's function and many body perturbation theory. The main results of the thesis are presented in the chapter called Screened Results, where the behavior of several atomic systems depending on electron-electron and electron-nucleus Debye screening was studied. The computer code that we have developed has been made available for anybody to use. Finally, we present and discuss results obtained for screened interactions. We also examine thoroughly the computational details of the calculations and particular implementations of the method.
Non-Perturbative Renormalization
Mastropietro, Vieri
2008-01-01
The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi
Perturbative quantum chromodynamics
1989-01-01
This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu
Perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Radyushkin, A.V.
1987-01-01
The latest achievements in perturbative quantum chromodynamics (QCD) relating to the progress in factorization of small and large distances are presented. The following problems are concerned: Development of the theory of Sudakov effects on the basis of mean contour formalism. Development of nonlocal condensate formalism. Calculation of hadron wave functions and hadron distribution functions using QCD method of sum rules. Development of the theory of Regge behaviour in QCD, behaviour of structure functions at small x. Study of polarization effects in hadron processes with high momentum transfer
Perturbed effects at radiation physics
International Nuclear Information System (INIS)
Külahcı, Fatih; Şen, Zekâi
2013-01-01
Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed
Drukarev, Evgeny G
2016-01-01
This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...
Non-perturbative versus perturbative renormalization of lattice operators
International Nuclear Information System (INIS)
Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.
1995-09-01
Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)
Finite perturbation studies of magnetic susceptibility and shielding with GIAO
International Nuclear Information System (INIS)
Zaucer, M.; Pumpernik, D.; Hladnik, M.; Azman, A.
1977-01-01
The magnetic susceptibility tensor and proton and fluorine magnetic shielding tensors are calculated for F 2 and (FHF) - using an ab initio finite perturbation method with gauge-invariant atomic orbitals (GIAO). The discussion of the basis set deficiency shows that the calculated values for the susceptibilities are reliable. Simple additivity (Pascal rule) for the susceptibility is confirmed. (orig.) [de
International Nuclear Information System (INIS)
Supriyanto, C; Djokowidodo; Isyuniarto; Heri-Wahyudi; Ashar-Andrianto
1996-01-01
The determination of Pb and Cd in environment materials (water, cassava leaves and soil) have been done by atomic absorption spectrophotometry method, The determination of Pb and Cd was done with graphite tube atomizer (GTA) method at optimum condition : wavelength for Pb and Cd 217.0 nm and 228.8 nm; temperature/time ashing 550 o C/37 sec and 350 o C/52 sec; temperature/time atomizing 2000 o C/5.1 sec and 2000 o C/5.2 sec. Modifier for Pb was 3 μL of Mg 1000 μg/ml and Cd was 2 μL of Pd 2000 μg/ml. The content Pb in Spalun river, Hulu Putih river and sea water Lemah Abang was 0.94 ± 0.03; 0.91± 0.02; 4.71 ± 0.26 ng/ml respectively; the Cd content was 1.23 ± 0.11; 0.48 ± 0.01; 0.55 ± 0.01 ng/ml respectively. The Pb dan Cd content in cassava leaves was 163.24 ± 3.72 and 18.45 ± 1.46 ng/g respectively, while the Pb content in soil at the depth variation 0 - 5, 5 - 10, 10 - 20 and 20 - 30 Cm was 2.35 ± 0.15; 2.86 ± 0.16; 1.97 ± 0.11 and 2.19 ± 0.06 μg/g respectively and the Cd content was 43.67 ± 1.52; 37.01 ± 1.01; 31.68 ± 0.17 and 36.97 ± 1.63 ng/g respectively. SRM Citrous leaves from NSB and SRM Soil 7 from the IAEA local used to control the quality of the analyzed method. The Pb, Cd content in SRM was in accordance with the value in the certified legend
Perturbation studies on KAHTER
Energy Technology Data Exchange (ETDEWEB)
Rueckert, M.; Jonas, H.; Neef, R. D.
1974-10-15
The paper describes experimental and analytical results by both transport theory and diffusion theory calculations of perturbation tests in the KAHTER pebble bed critical experiment. The fission-weighted adjoint flux is measured from in-core detector responses by introducing a Cf-source into the core. Adjoint-weighted reactivities are calculated and compared to reactivity measurements for the introduction of a fuel and graphite pebble onto the top of the critical pile, the central rod worth, and the effect of replacing B4C with varying amounts of HfC in the central rod. In addition, analytical studies were made of the sensitivity of criticality to the fuel to graphite pebble ratio as measured in tests and of the effect of the upper void cavity as simulated in tests by placing cadmium layer across the top of the pebble pile to force a zero flux boundary condition.
Introduction to perturbation methods
Holmes, M
1995-01-01
This book is an introductory graduate text dealing with many of the perturbation methods currently used by applied mathematicians, scientists, and engineers. The author has based his book on a graduate course he has taught several times over the last ten years to students in applied mathematics, engineering sciences, and physics. The only prerequisite for the course is a background in differential equations. Each chapter begins with an introductory development involving ordinary differential equations. The book covers traditional topics, such as boundary layers and multiple scales. However, it also contains material arising from current research interest. This includes homogenization, slender body theory, symbolic computing, and discrete equations. One of the more important features of this book is contained in the exercises. Many are derived from problems of up- to-date research and are from a wide range of application areas.
Perturbation theory with instantons
International Nuclear Information System (INIS)
Carruthers, P.; Pinsky, S.S.; Zachariasen, F.
1977-05-01
''Perturbation theory'' rules are developed for calculating the effect of instantons in a pure Yang-Mills theory with no fermions, in the ''dilute gas'' approximation in which the N-instanton solution is assumed to be the sum of N widely separated one-instanton solutions. These rules are then used to compute the gluon propagator and proper vertex function including all orders of the instanton interaction but only to lowest order in the gluon coupling. It is to be expected that such an approximation is valid only for momenta q larger than the physical mass μ. The result is that in this regime instantons cause variations in the propagator and vertex of the form (μ 2 /q 2 )/sup -8π 2 b/ where b is the coefficient in the expansion of the β function: β = bg 3 +...
On the systematic construction of convergent perturbation series
International Nuclear Information System (INIS)
Schmidt, C.
1993-12-01
Starting from the general decomposition of the many-body Hamiltonian parametrized by an operator Λwe derive the class of 'Λ-transformed' perturbation series. Aiming at practical applications we consider many-body perturbation theory of atoms and molecules in finite dimensional Hilbert spaces. Investigation of the analyticity properties of the eigenvalues and eigenstates of the Hamiltonian as functions of the coupling parameter defined by the particular decomposition of H allows for the construction of (minimal) Λoperators mapping an originally divergent series to a convergent one. There exists an operator Λ opt leading to the exact results in first order. Further improvements of the above mentioned minimal Λoperators can be achieved by approximations of Λ opt leading to fast convergent perturbation series. As the size of the remaining perturbation is given by the Λoperator chosen this method provides an a priori estimate of the convergence properties. (orig.)
International Nuclear Information System (INIS)
McIntyre, A.D.; Turnbull, R.G.H.
1992-01-01
The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)
Singular perturbation of simple eigenvalues
International Nuclear Information System (INIS)
Greenlee, W.M.
1976-01-01
Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem
A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks
Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.
2011-01-01
A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.
Photoionization cross sections and Auger rates calculated by many-body perturbation theory
International Nuclear Information System (INIS)
Kelly, H.P.
1976-01-01
Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates
International Nuclear Information System (INIS)
Wiorkowski, P.; Walther, H.
1990-01-01
Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented
Energy Technology Data Exchange (ETDEWEB)
Shanmugam, Ramasamy [Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu 625 009 (India); National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India); Thamaraichelvan, Arunachalam [Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Kelambakkam, Tamilnadu 603 103 (India); Ganesan, Tharumeya Kuppusamy [Department of Chemistry, The American College, Madurai, Tamilnadu 625 002 (India); Viswanathan, Balasubramanian, E-mail: bvnathan@iitm.ac.in [National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India)
2017-02-28
Highlights: • On interaction with adsorbate CO{sub 2,} the adsorbent changes its configuration around the metal. • Electron transfer is faster in low coordinative environment of Cu. • CO formation is more favorable on Cu sites with even coordination number. • Cu at coordination number two has a over potential of −0.35 V. - Abstract: Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO{sub 2} to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO{sub 2} to CO at an applied potential of −0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO{sub 2} to various value added chemicals.
Interaction and dynamics of add-atoms with 2-dimensional structures
The interaction and dynamics of add-atoms with graphene, graphene-derivate structures and, later, MoSi$_2$, two-dimensional – single and few – atomic layers will be studied with the Perturbed Angular Correlation – PAC – technique. Graphene is also envisaged as new platform for growing semiconductor nanostructure devices, such as quantum dots and as a particularly powerful catalyst. Understanding nucleation of nanostructures and clusters on graphene and related phases in wet conditions as they are used in chemical methods in research and industry require complementary studies. These systems will therefore be studied systematically using radioactive probe atoms attaching via a transfer media (e.g., water in catalysis process) or being deposited with soft-landing techniques under vacuum and UHV conditions, as put in place at the ASPIC setup at ISOLDE. The hyperfine fields obtained under different environments are expected to reveal basic information on the rich atomic and physical mechanisms associated w...
Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian
2017-02-01
Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.
Atomic energy and the environment
International Nuclear Information System (INIS)
Marley, W.G.
1972-12-01
A review is given of the radiation doses used as criteria for protecting populations from the effects of a nuclear power programme. These include the levels recommended by ICRP for doses to the population and the acceptable variations in the natural background. The latest available data on risks of radiation-induced biological effects are discussed. Estimates of the radiation doses to the public from the current nuclear power programmes are very low and even the predicted values in the year 2000 are only 2 x 10 -3 of the dose from natural background. This level of dose taken in conjunction with our present knowledge of risks shows that the biological impact on the world population is negligibly small. Finally, a comment is made on the sources of population exposure from radioactivity associated with possible thermonuclear reactors. (author)
International Nuclear Information System (INIS)
Harada, Masayasu
2009-01-01
Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)
International Nuclear Information System (INIS)
Fabris, J.D.
1977-01-01
The electric quadrupolar interaction in some hafnium complexes, measured at the metal nucleus level is studied. For that purpose, the technique of γ-γ perturbed angular correlation is used: the frequencies of quadrupolar interaction are compared with some hafnium α-hydroxicarboxilates, namely glycolate, lactate, mandelate and benzylate; the influence of the temperature on the quadrupolar coupling on the hafnium tetramandelate is studied; finally, the effects associated with the capture of thermal neutrons by hafnium tetramandelate are examined locally at the nuclear level. The first group of results shows significant differences in a series of complexes derived from glycolic acid. On the other hand, the substitution of the protons in hafnium tetramandelate structure by some alkaline cations permits to verify a correlation between the variations in the quadrupolar coupling and the electronegativities of the substituent elements. Measurements at high temperatures show that this complex is thermally stable at 100 and 150 0 C. It is possible to see the appearance of two distinct sites for the probe nucleus, after heating the sample at 100 0 C for prolonged time. This fact is attributed to a probable interconversion among the postulated structural isomers for the octacoordinated compounds. Finally, measurements of angular correlation on the irradiated complex show that there is an effective destruction of the target molecule by neutron capture [pt
Perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-12-01
The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures
International Nuclear Information System (INIS)
Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh
2002-01-01
We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
CERN. Geneva
2013-01-01
Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.
Propagation of Ion Acoustic Perturbations
DEFF Research Database (Denmark)
Pécseli, Hans
1975-01-01
Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....
On summation of perturbation expansions
International Nuclear Information System (INIS)
Horzela, A.
1985-04-01
The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)
Continual integral in perturbation theory
International Nuclear Information System (INIS)
Slavnov, A.A.
1975-01-01
It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)
International Nuclear Information System (INIS)
Balykin, V. I.; Jhe, W.
1999-01-01
Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)
On dark energy isocurvature perturbation
International Nuclear Information System (INIS)
Liu, Jie; Zhang, Xinmin; Li, Mingzhe
2011-01-01
Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data
Directory of Open Access Journals (Sweden)
Elham Azimzadeh
2013-01-01
Full Text Available Objectives: Falling is a main cause of mortality in elderly. Balance training exercises can help to prevent falls in older adults. According to the principle of specificity of training, the perturbation-based trainings are more similar to the real world. So these training programs can improve balance in elderly. Furthermore, exercising in an aquatic environment can reduce the limitations for balance training rather than a non-aquatic on. The aim of this study is comparing the effectiveness of perturbed and non-perturbed balance training programs in water on static and dynamic balance in aforementioned population group. Methods & Materials: 37 old women (age 80-65, were randomized to the following groups: perturbation-based training (n=12, non-perturbation-based training (n=12 and control (n=13 groups. Static and dynamic balance had been tested before and after the eight weeks of training by the postural stability test of the Biodex balance system using dynamic (level 4 and static platform. The data were analyzed by one sample paired t-test, Independent t-test and ANOVA. Results: There was a significant improvement for all indexes of static and dynamic balance in perturbation-based training (P<0.05. However, in non-perturbed group, all indexes were improved except ML (P<0.05. ANOVA showed that perturbed training was more effective than non-perturbed training on both static and dynamic balances. Conclusion: The findings confirmed the specificity principle of training. Although balance training can improve balance abilities, these kinds of trainings are not such specific for improving balance neuromuscular activities.The perturbation-based trainings can activate postural compensatory responses and reduce falling risk. According to results, we can conclude that hydrotherapy especially with perturbation-based programs will be useful for rehabilitation interventions in elderly .
A general-model-space diagrammatic perturbation theory
International Nuclear Information System (INIS)
Hose, G.; Kaldor, U.
1980-01-01
A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete model space (all possible occupancies of the partially-filled shells) is avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, as a complete model space spans a very broad energy range and leaves out states within that range, leading to poor or no convergence of the perturbation series. The method presented here would be particularly useful for such states. The solution of a model problem (He 2 excited Σ + sub(g) states) is demonstrated. (Auth.)
International Nuclear Information System (INIS)
Hla, Saw Wai
2014-01-01
Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)
Disformal transformation of cosmological perturbations
Directory of Open Access Journals (Sweden)
Masato Minamitsuji
2014-10-01
Full Text Available We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (nonconservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.
Disformal transformation of cosmological perturbations
International Nuclear Information System (INIS)
Minamitsuji, Masato
2014-01-01
We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame
Cosmological perturbations beyond linear order
CERN. Geneva
2013-01-01
Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.
Instabilities in mimetic matter perturbations
Energy Technology Data Exchange (ETDEWEB)
Firouzjahi, Hassan; Gorji, Mohammad Ali [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161 Shahrood (Iran, Islamic Republic of)
2017-07-01
We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.
Perturbation theory of effective Hamiltonians
International Nuclear Information System (INIS)
Brandow, B.H.
1975-01-01
This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
The power of perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)
2017-05-10
We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.
Dynamical polarizability of atoms
International Nuclear Information System (INIS)
Mukhopadhyay, G.; Lundqvist, S.
1980-07-01
The frequency-dependent polarizability of a closed-shell atom is considered in an RPA type approximation. This is usually done using many-body perturbation theory but can also be recast into the form of equations for the density oscillations as previously shown by the authors. The latter approach is known to lead to a non-hermitian problem because of the structure of the interaction kernel. This note shows that this is also true if using the reaction matrix method. The main result is to derive the expression for the polarizability function taking into account the non-hermitian nature of the problem. (author)
Relativistic heavy-atom effects on heavy-atom nuclear shieldings
Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha
2006-11-01
The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal
Tunnelling instability via perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)
1984-10-21
The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.
Perturbation theory of quantum resonances
Czech Academy of Sciences Publication Activity Database
Durand, P.; Paidarová, Ivana
2016-01-01
Roč. 135, č. 7 (2016), s. 159 ISSN 1432-2234 Institutional support: RVO:61388955 Keywords : Partitioning technique * Analytic continuation * Perturbative expansion Subject RIV: CF - Physical ; Theoretical Chemistry
Perturbation Theory of Embedded Eigenvalues
DEFF Research Database (Denmark)
Engelmann, Matthias
project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...
Perturbative tests of quantum chromodynamics
International Nuclear Information System (INIS)
Michael, C.
1978-01-01
A review is given of perturbation theory results for quantum chromodynamics and of tests in deep inelastic lepton scattering, electron-positron annihilation, hadronic production of massive dileptons and hadronic large-momentum-transfer processes. (author)
Large-order perturbation theory
International Nuclear Information System (INIS)
Wu, T.T.
1982-01-01
The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams
Review of chiral perturbation theory
Indian Academy of Sciences (India)
Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Perturbation theory in light-cone gauge
International Nuclear Information System (INIS)
Vianello, Eliana
2000-01-01
Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories
Among transition-metal oxides, the molybdenum oxide compounds are particularly attractive due to the structural (2D) anisotropy and to the ability of the molybdenum ion to change its oxidation state. These properties make it suitable for applications on, e.g., chemical sensors, solar cells, catalytic and optoelectronic devices. At ISOLDE we aim studying the incorporation of selected dopants by ion implantation, using the nuclear techniques of Perturbed Angular Correlations (PAC) and Mössbauer spectroscopy (MS). Both techniques make use of highly diluted radioactive probe nuclei, which interact – as atomic-sized tips – with the host atoms and defects. The objectives of this project are to study at the atomic scale the probe’s local environment, its electronic configuration and polarization, the probe’s lattice sites, point defects and its recombination dynamics. In the case of e-$\\gamma$ PAC, the electron mobility on the host can be further studied, e.g., as a function of temperature.
Modified method of perturbed stationary states. I
International Nuclear Information System (INIS)
Green, T.A.
1978-10-01
The reaction coordinate approach of Mittleman is used to generalize the method of Perturbed Stationary States. A reaction coordinate is defined for each state in the scattering expansion in terms of parameters which depend on the internuclear separation. These are to be determined from a variational principle described by Demkov. The variational result agrees with that of Bates and McCarroll in the limit of separated atoms, but is generally different elsewhere. The theory is formulated for many-electron systems, and the construction of the scattering expansion is discussed for simple one-, two-, and three-electron systsm. The scattering expansion and the Lagrangian for the radial scattering functions are given in detail for a heteronuclear one-electron system. 2 figures
International Nuclear Information System (INIS)
Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.
2015-01-01
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed
Energy Technology Data Exchange (ETDEWEB)
Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)
2015-01-22
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.
Foot, Christopher J
2007-01-01
This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen
Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien
2018-06-01
A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.
Nuclear and atomic physics at one gigaflop
International Nuclear Information System (INIS)
Bottcher, C.; Strayer, J.B.
1989-01-01
A three-day workshop on problems in atomic and nuclear physics which depend on and are, at present, severely limited by access to supercomputing at effective rates of one gigaflop or more, was held at Oak Ridge, Tennessee, April 14-16, 1988. The participants comprised researchers from universities, industries and laboratories in the United States and Europe. In this volume are presented talks from that meeting on atomic and nuclear physics topics and on modern parallel processing concepts and hardware. The physics topics included strong fields in atomic and nuclear physics, the role of quarks in nuclear physics, the nuclear few-body problem, relativistic descriptions of heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques for many-body problems, precision calculation of atomic QED effects, classical simulation of atomic processes, atomic structure, atomic many-body perturbation theory, quantal studies of small and large molecular systems, and multi-photon atomic and molecular problems
International Nuclear Information System (INIS)
Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.
1984-01-01
The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)
DEFF Research Database (Denmark)
Krüger, Peter; Hofferberth, S.; Haller, E.
2005-01-01
Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...
Modified perturbation theory for strongly correlated electron systems
International Nuclear Information System (INIS)
Takagi, Osamu; Saso, Tetsuro
1999-01-01
We propose a modified scheme for calculating the single-particle excitation spectrum of the impurity Anderson model. It is based on the second order perturbation theory, but modifies the self-energy so as to reproduce the correct atomic limit and to fulfill the Friedel sum rule. Therefore, it offers a simple scheme valid over wide range of excitation energy and parameters, and would be useful also for potential application to the lattice problems. (author)
Perturbation theory in large order
International Nuclear Information System (INIS)
Bender, C.M.
1978-01-01
For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures
Energy Technology Data Exchange (ETDEWEB)
Wen, Jialin; Ma, Tianbao [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Zhang, Weiwei; Psofogiannakis, George; Duin, Adri C.T. van [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Lei; Qian, Linmao [Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031 (China); Hu, Yuanzhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)
2016-12-30
Highlights: • New ReaxFF reactive force field was applied to simulate the tribochemical wear process at Si/SiO{sub 2} interface. • Wear of silicon atoms is due to the breaking of Si–O–Si bonds and Si–Si–O–Si bond chains on the Si substrate. • Interfacial bridge bonds play an important role during the tribochemical wear process. • Higher pressures applied to the silica phase can cause more Si atoms to be removed by forming more interfacial bridge bonds. • Water plays an opposing role in the wear process because of its both chemical and mechanical effects. - Abstract: In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO{sub 2} interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si–O–Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si–Si bonds in the stretched Si–Si–O–Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si–O–Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si–O–Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.
Perturbations of the Friedmann universe
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.; Heintzmann, H.
1982-01-01
Correcting and extending previous work by Hawking (1966) and Olson (1976) the complete set of perturbation equations of a Friedmann Universe in the quasi-Maxwellian form is derived and analized. The formalism is then applied to scalar, vector and tensor perturbations of a phenomenological fluid, which is modelled such as to comprise shear and heat flux. Depending on the equation of state of the background it is found that there exist unstable (growing) modes of purely rotational character. It is further found that (to linear order at least) any vortex perturbation is equivalent to a certain heat flux vector. The equation for the gravitational waves are derived in a completely equivalent method as in case of the propagation, in a curved space-time, of electromagnetic waves in a plasma endowed with some definite constitutive relations. (Author) [pt
Analytic continuation in perturbative QCD
International Nuclear Information System (INIS)
Caprini, Irinel
2002-01-01
We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)
Many body calculations in atomic physics
International Nuclear Information System (INIS)
Kelly, H.P.
1985-01-01
The use of the many-body perturbation theory for atomic calculations are reviewed. The major emphasis is on the use of the linked-cluster many-body perturbation theory derived by Brueckner and Goldstone. Applications of many-body theory to calculations of hyperfine structure are examined. Auger rates and parity violation are discussed. Photoionization is reviewed, and the authors show how many-body perturbation theory can be applied to problems ranging from structural properties such as correlation energies and hyperfine structure to dynamical properties such as transitions induced by weak neutral currents and photoionization cross sections
International Nuclear Information System (INIS)
Spruch, G.M.; Spruch, L.
1974-01-01
The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)
International Nuclear Information System (INIS)
Anon.
1976-01-01
Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton
Perturbative coherence in field theory
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt
Cosmological perturbation theory and quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)
2016-08-04
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
Chaotic inflation with metric and matter perturbations
International Nuclear Information System (INIS)
Feldman, H.A.; Brandenberger, R.H.
1989-01-01
A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)
The hydrogen atom in D = 3 - 2ɛ dimensions
Adkins, Gregory S.
2018-06-01
The nonrelativistic hydrogen atom in D = 3 - 2 ɛ dimensions is the reference system for perturbative schemes used in dimensionally regularized nonrelativistic effective field theories to describe hydrogen-like atoms. Solutions to the D-dimensional Schrödinger-Coulomb equation are given in the form of a double power series. Energies and normalization integrals are obtained numerically and also perturbatively in terms of ɛ. The utility of the series expansion is demonstrated by the calculation of the divergent expectation value .
Born, Max
1969-01-01
The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.
Indian Academy of Sciences (India)
https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...
International Nuclear Information System (INIS)
Kodling, K.
1981-01-01
Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru
International Nuclear Information System (INIS)
Horvath, D.; Lambrecht, R.M.
1984-01-01
This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)
Basics of QCD perturbation theory
International Nuclear Information System (INIS)
Soper, D.E.
1997-01-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs
Current issues in perturbative QCD
International Nuclear Information System (INIS)
Hinchliffe, I.
1994-12-01
This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets
New results in perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1986-01-01
Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures
Perturbation theory from stochastic quantization
International Nuclear Information System (INIS)
Hueffel, H.
1984-01-01
By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)
Seven topics in perturbative QCD
International Nuclear Information System (INIS)
Buras, A.J.
1980-09-01
The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics
Reggeon interactions in perturbative QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-08-01
We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)
Basics of QCD perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Status of chiral perturbation theory
International Nuclear Information System (INIS)
Ecker, G.
1996-10-01
A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)
Principles of chiral perturbation theory
International Nuclear Information System (INIS)
Leutwyler, H.
1995-01-01
An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)
Superfield perturbation theory and renormalization
International Nuclear Information System (INIS)
Delbourgo, R.
1975-01-01
The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
Perturbative QCD and exclusive processes
International Nuclear Information System (INIS)
Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.
1991-01-01
The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable
Perturbative treatment of nuclear rotations
International Nuclear Information System (INIS)
Civitarese, O.
1980-01-01
In this work, it is described the case corresponding to perturbative quantum treatment of a fermion system in free rotation and the divergences which resulted from the 'break' in symmetry, associated by the adoption of a deformed basis as a non pertubed solution. (A.C.A.S.) [pt
International Nuclear Information System (INIS)
2010-01-01
The 31st Annual Conference of the CNS and 34th Annual Student Conference of the CNS and CNA was held in Montreal, Quebec, Canada on May 24-27, 2010. The theme of the conference, 'Atoms for Power, Health, and the Environment', brought together scientists, engineers, technologists and students interested in all aspects and applications of energy from the atom. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. There were over 400 attendees and more than 100 technical papers, as well as plenary sessions that addressed broad industrial and commercial developments in the field.
Atomic physics through astrophysics
International Nuclear Information System (INIS)
Dalgarno, A.
1987-01-01
Astronomical environments encompass an extreme range of physical conditions of temperature, density, pressure and radiation fields and unusual situations abound. In this lecture, the author describes some of the objects found in the Universe and discussed the atomic processes that occur. 45 references, 8 figures
Chen, Weifeng; Ni, Jinzhi
2017-05-01
The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Classical approach in atomic physics
International Nuclear Information System (INIS)
Solov'ev, E.A.
2011-01-01
The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)
Dissipative motion perturbation theory and exact solutions
International Nuclear Information System (INIS)
Lodder, J.J.
1976-06-01
Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion
Atomic fusion, Gerrard atomic fusion
International Nuclear Information System (INIS)
Gerrard, T.H.
1980-01-01
In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)
Interaction of strong electromagnetic fields with atoms
International Nuclear Information System (INIS)
Brandi, H.S.; Davidovich, L.; Zagury, N.
1982-06-01
Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt
Superradiators created atom by atom
Meschede, Dieter
2018-02-01
High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.
Generalizing genetical genomics: getting added value from environmental perturbation.
Li, Yang; Breitling, Rainer; Jansen, Ritsert C
2008-10-01
Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across multiple environments. We propose a generalization of genetical genomics, which combines genetic and sensibly chosen environmental perturbations, to study the plasticity of molecular networks. This strategy forms a crucial step toward understanding why individuals respond differently to drugs, toxins, pathogens, nutrients and other environmental influences. Here we outline a strategy for selecting and allocating individuals to particular treatments, and we discuss the promises and pitfalls of the generalized genetical genomics approach.
Perturbations in electromagnetic dark energy
International Nuclear Information System (INIS)
Jiménez, Jose Beltrán; Maroto, Antonio L.; Koivisto, Tomi S.; Mota, David F.
2009-01-01
It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of ΛCDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as ΛCDM
Perturbative instabilities in Horava gravity
International Nuclear Information System (INIS)
Bogdanos, Charalampos; Saridakis, Emmanuel N
2010-01-01
We investigate the scalar and tensor perturbations in Horava gravity, with and without detailed balance, around a flat background. Once both types of perturbations are taken into account, it is revealed that the theory is plagued by ghost-like scalar instabilities in the range of parameters which would render it power-counting renormalizable, that cannot be overcome by simple tricks such as analytic continuation. Implementing a consistent flow between the UV and IR limits seems thus more challenging than initially presumed, regardless of whether the theory approaches general relativity at low energies or not. Even in the phenomenologically viable parameter space, the tensor sector leads to additional potential problems, such as fine-tunings and super-luminal propagation.
The status of perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1988-10-01
The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs
Scalar perturbations and conformal transformation
International Nuclear Information System (INIS)
Fabris, J.C.; Tossa, J.
1995-11-01
The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs
Perturbative QCD at finite temperature
International Nuclear Information System (INIS)
Altherr, T.
1989-03-01
We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
International Nuclear Information System (INIS)
Baudon, J.; Robert, J.
2004-01-01
Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)
Correlation effects of third-order perturbation in the extended Hubbard model
International Nuclear Information System (INIS)
Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.
1989-01-01
Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs
Perturbation analysis of nonlinear matrix population models
Directory of Open Access Journals (Sweden)
Hal Caswell
2008-03-01
Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.
Gauge-invariant cosmological density perturbations
International Nuclear Information System (INIS)
Sasaki, Misao.
1986-06-01
Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)
Perturbation of an exact strong gravity solution
International Nuclear Information System (INIS)
Baran, S.A.
1982-10-01
Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)
Theory of multiphoton ionization of atoms
International Nuclear Information System (INIS)
Szoeke, A.
1986-03-01
A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs
Local atomic structure of α-Pu
International Nuclear Information System (INIS)
Espinosa, F. J.; Villella, P.; Lashley, J. C.; Conradson, S. D.; Cox, L. E.; Martinez, R.; Martinez, B.; Morales, L.; Terry, J.; Pereyra, R. A.
2001-01-01
The local atomic structure of α-Pu was investigated using x-ray absorption fine structure (XAFS) spectroscopy. XAFS spectra were obtained for a zone-refined α-Pu and the results were compared to 32-year-old and Ce-doped (0.34 at.%) samples. X-ray diffraction (XRD) patterns were also measured for the zone-refined and 32-year-old materials. The extent of the Bragg peaks showed that amorphization of the 32-year-old sample had not occurred despite the prolonged exposure to self-radiation. Analogous to metastable δ-Pu alloys, the local atomic structure around Pu for the zone-refined material shows the possible presence of noncrystallographic Pu-Pu distances. Conversely, the Ce and the 32-year-old sample show no evidence for such noncrystallographic distances. Disorder in the Pu local environment was found to be impurity dependent. The Ce-doped sample presented a larger Pu-Pu nearest neighbor disorder than the aged sample, although the total amount of Am, U, and He impurities was actually higher in the aged sample. The local environment around U and Ce impurities is consistent with these elements being in substitutional lattice sites. In addition, U and Ce do not introduce significant lattice distortion to their nearest neighbors. This is consistent with disorder being more related to the perturbation of the coupling between the electronic and crystal structure, or the Peierls--Jahn-Teller distortion that generates the monoclinic α-Pu structure, and less to strain fields produced in the vicinity of the impurities
International Nuclear Information System (INIS)
Skogmar, G.
1979-01-01
The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)
Bounds and estimates for the linearly perturbed eigenvalue problem
International Nuclear Information System (INIS)
Raddatz, W.D.
1983-01-01
This thesis considers the problem of bounding and estimating the discrete portion of the spectrum of a linearly perturbed self-adjoint operator, M(x). It is supposed that one knows an incomplete set of data consisting in the first few coefficients of the Taylor series expansions of one or more of the eigenvalues of M(x) about x = 0. The foundations of the variational study of eigen-values are first presented. These are then used to construct the best possible upper bounds and estimates using various sets of given information. Lower bounds are obtained by estimating the error in the upper bounds. The extension of these bounds and estimates to the eigenvalues of the doubly-perturbed operator M(x,y) is discussed. The results presented have numerous practical application in the physical sciences, including problems in atomic physics and the theory of vibrations of acoustical and mechanical systems
Non-perturbative approach for laser radiation interactions with solids
International Nuclear Information System (INIS)
Jalbert, G.
1985-01-01
Multiphoton transitions in direct-gap crystals are studied considering non-perturbative approaches. Two methods currently used for atoms and molecules are revised, generalized and applied to solids. In the first one, we construct an S-matrix which incorporates the eletromagnetic field to all orders in an approximated way leading to analytical solution for the multiphoton transition rates. In the second one, the transition probability is calculated within the Bloch-Floquet formalism applieed to the specific case of solids. This formalism is interpreted as a classical approximation to the quantum treatment of the field. In the weak field limit, we compare our results with the usual perturbation calculations. We also incorporate, in the first approach, the non homogeneity and the multimodes effects of a real laser. (author) [pt
Geometric Hamiltonian structures and perturbation theory
International Nuclear Information System (INIS)
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging
Multiplicative perturbations of local C-semigroups
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S(⋅) may not be densely defined and the perturbation operator is a bounded linear operator from ¯D(A) into () such that = ...
Multiplicative perturbations of local C-semigroups
Indian Academy of Sciences (India)
In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S ( ⋅ ) may not be densely defined and the perturbation operator is a bounded linear operator from D ( A ) ¯ into () such that = on D ( A ) ¯ ...
FRW Cosmological Perturbations in Massive Bigravity
Comelli, D; Pilo, L
2014-01-01
Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.
International Nuclear Information System (INIS)
Sweet, W.
1979-01-01
An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press
Reconstructing the ideal results of a perturbed analog quantum simulator
Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael
2018-04-01
Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.
International Nuclear Information System (INIS)
Anon.
1996-01-01
In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
Hadronic Structure from Perturbative Dressing
Energy Technology Data Exchange (ETDEWEB)
Arash, Firooz [Physics Department, Tafresh University, Tafresh, Iran and Center for theoretical physics and Mathematics, AEOI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: farash@cic.aut.ac.ir
2005-09-15
Perturbative dressing of a valence quark in QCD produces the internal structure of an extended object, the so-called Valon. The valon structure is universal and independent of the hosting hadron. Polarized and unpolarized proton and pion structure functions are calculated in the valon representation. One finds that although all the available data on g{sub 1}{sup p,n,d} are easily reproduced, a sizable orbital angular momentum associated with the partonic structure of the valon is required in order to have a spin 1/2 valon.
Perturbations in loop quantum cosmology
International Nuclear Information System (INIS)
Nelson, W; Agullo, I; Ashtekar, A
2014-01-01
The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB
Perturbation calculations with Wilson loop
International Nuclear Information System (INIS)
Peixoto Junior, L.B.
1984-01-01
We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt
Mobile ankle and knee perturbator.
Andersen, Jacob Buus; Sinkjaer, Thomas
2003-10-01
A mobile ankle and knee perturbator has been developed. It consists of a functional joint with an integrated clutch. Four Bowden wires connect the joint to a powerful motor and a double pneumatic cylinder. When needed during any time of the gait cycle, it is possible to impose an ankle rotation by engaging the clutch and rotating the ankle or knee joint with a predefined displacement. The system is designed to investigate electrophysiological and biomechanical features of the human ankle or knee joint during gait.
Zeeman effect: new outlook on old perturbation theory
International Nuclear Information System (INIS)
Turbiner, A.V.
1980-01-01
The problem of hydrogen atom placed in constant external magnetic field is studied. The properties of ordinary perturbation theory (in powers of the field) in the framework of a new approach proposed earlier are investigated. The ground state are considered in detailed while the excited states are discussed only in brief. It is shown that the ''wave function corrections'' with in this approach are simpler than within ordinary one and contain a finite number of harmonics with polynomial coefficients. Some coefficients of these polynomials are found explicitly
Quantum-mechanical transport equation for atomic systems.
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
Could Atomic clocks be affected by neutrinos?
Hanafi, Hanaa
2016-01-01
An atomic clock is a clock device that uses an electronic transition frequency of the electromagnetic spectrum of atoms as a frequency standard in order to derive a time standard since time is the reciprocal of frequency. If the electronic transition frequencies are in an "optical region", we are talking in this case about optical atomic clocks. If they are in an "microwave region" these atomic clocks are made of the metallic element cesium so they are called Cesium atomic clocks. Atomic clocks are the most accurate time and frequency standards known despite the different perturbations that can affect them, a lot of researches were made in this domain to show how the transitions can be different for different type of perturbations..Since atomic clocks are very sensitive devices, based on coherent states (A coherent state tends to loose coherence after interacting). One question can arise (from a lot of questions) which is why cosmic neutrinos are not aﬀecting these clocks? The answer to this question requir...
Perturbation theory for Alfven wave
International Nuclear Information System (INIS)
Yoshida, Z.; Mahajan, S.M.
1995-01-01
The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena
International Nuclear Information System (INIS)
Radvanyi, P.; Bordry, M.
1988-01-01
Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)
International Nuclear Information System (INIS)
Held, B.
1991-01-01
This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr
Baltrusaitis, Jonas; Grassian, Vicki H
2012-09-13
In this study, alternating current (AC) mode atomic force microscopy (AFM) combined with phase imaging and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of nitrogen dioxide (NO2) adsorption on calcium carbonate (CaCO3) (101̅4) surfaces at 296 K in the presence of relative humidity (RH). At 70% RH, CaCO3 (101̅4) surfaces undergo rapid formation of a metastable amorphous calcium carbonate layer, which in turn serves as a substrate for recrystallization of a nonhydrated calcite phase, presumably vaterite. The adsorption of nitrogen dioxide changes the surface properties of CaCO3 (101̅4) and the mechanism for formation of new phases. In particular, the first calcite nucleation layer serves as a source of material for further island growth; when it is depleted, there is no change in total volume of nitrocalcite, Ca(NO3)2, particles formed whereas the total number of particles decreases. This indicates that these particles are mobile and coalesce. Phase imaging combined with force curve measurements reveals areas of inhomogeneous energy dissipation during the process of water adsorption in relative humidity experiments, as well as during nitrocalcite particle formation. Potential origins of the different energy dissipation modes within the sample are discussed. Finally, XPS analysis confirms that NO2 adsorbs on CaCO3 (101̅4) in the form of nitrate (NO3(-)) regardless of environmental conditions or the pretreatment of the calcite surface at different relative humidity.
Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions
International Nuclear Information System (INIS)
Ishikawa, Y.; Quiney, H.M.
1993-01-01
A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence
Perturbations i have Known and Loved
Field, Robert W.
2011-06-01
A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go
New Methods in Non-Perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)
2017-01-31
In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.
International Nuclear Information System (INIS)
Hunt, D.F.; Sethi, S.K.
1980-01-01
Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables
International Nuclear Information System (INIS)
Kawamura, H.; Shiraishi, K.; Igarashi, Y.; Sakurai, Y.
1988-01-01
The major source of artificial radioactivities in Japan has been the atmospheric nuclear weapons testing. Some results obtained for activities of Sr-90 in bone, particulary in Japanese, are mentioned, including trends in levels, distribution in bone, transfer from diet to bone and absorbed doses. Some litterature data on pathways of Sr-90 from environment to man are referred to, that is on contribution of different foods to the ingestion intake and transfer of Sr-90 from soil to crops. Recent topics of radioecological studies on soil-plant relationships are shortly introduced
Nahavandi, Amir; Korayem, Moharam Habibnejad
2015-10-01
The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.
Perturbativity in the seesaw mechanism
International Nuclear Information System (INIS)
Asaka, Takehiko; Tsuyuki, Takanao
2016-01-01
We consider the Standard Model extended by right-handed neutrinos to explain massive neutrinos through the seesaw mechanism. The new fermion can be observed when it has a sufficiently small mass and large mixings to left-handed neutrinos. If such a particle is the lightest right-handed neutrino, its contribution to the mass matrix of active neutrinos needs to be canceled by that of a heavier one. Yukawa couplings of the heavier one are then larger than those of the lightest one. We show that the perturbativity condition gives a severe upper bound on the mixing of the lightest right-handed neutrino, depending on the masses of heavier ones. Models of high energy phenomena, such as leptogenesis, can be constrained by low energy experiments.
Initial conditions for cosmological perturbations
Ashtekar, Abhay; Gupt, Brajesh
2017-02-01
Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.
Initial conditions for cosmological perturbations
International Nuclear Information System (INIS)
Ashtekar, Abhay; Gupt, Brajesh
2017-01-01
Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations . (paper)
Curvature perturbations from dimensional decoupling
Giovannini, Massimo
2005-01-01
The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.
DEFF Research Database (Denmark)
Ruban, Andrei; Simak, S.I.; Korzhavyi, P.A.
2002-01-01
-electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic-sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless, a simple parametrization of the screened Coulomb interactions...... for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parametrization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system....
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
Theoretical studies of atomic transitions. Progress report, March 15, 1985-March 14, 1986
International Nuclear Information System (INIS)
Fischer, C.F.
1986-01-01
A brief description of the research program for atomic studies is given. The program includes an effort to combine the Multi-Configuration Hartree-Fock (MCHF) method with Many-Body Perturbation Theory and the development of a database system for atomic data generated by the atomic structure package. 6 refs
International Nuclear Information System (INIS)
Wang, Chen-Wen; Zhu, Chaoyuan; Lin, Sheng-Hsien; Yang, Ling; Yu, Jian-Guo
2014-01-01
Damped harmonic oscillators are utilized to calculate Franck-Condon factors within displaced harmonic oscillator approximation. This is practically done by scaling unperturbed Hessian matrix that represents local modes of force constants for molecule in gaseous phase, and then by diagonalizing perturbed Hessian matrix it results in direct modification of Huang–Rhys factors which represent normal modes of solute molecule perturbed by solvent environment. Scaling parameters are empirically introduced for simulating absorption and fluorescence spectra of an isolated solute molecule in solution. The present method is especially useful for simulating vibronic spectra of polycyclic aromatic hydrocarbon molecules in which hydrogen atom vibrations in solution can be scaled equally, namely the same scaling factor being applied to all hydrogen atoms in polycyclic aromatic hydrocarbons. The present method is demonstrated in simulating solvent enhanced X 1 A g ↔ A 1 B 1u absorption and fluorescence spectra of perylene (medium-sized polycyclic aromatic hydrocarbon) in benzene solution. It is found that one of six active normal modes v 10 is actually responsible to the solvent enhancement of spectra observed in experiment. Simulations from all functionals (TD) B3LYP, (TD) B3LYP35, (TD) B3LYP50, and (TD) B3LYP100 draw the same conclusion. Hence, the present method is able to adequately reproduce experimental absorption and fluorescence spectra in both gas and solution phases
Kato expansion in quantum canonical perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)
2016-06-15
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
Perturbative spacetimes from Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)
2017-04-12
The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.
Kato expansion in quantum canonical perturbation theory
International Nuclear Information System (INIS)
Nikolaev, Andrey
2016-01-01
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
Perturbation methods for power and reactivity reconstruction
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Estiot, J.C.; Broccoli, U.; Bruna, G.; Gomit, J.M.
1987-01-01
This paper deals with recent developments and applications in perturbation methods. Two types of methods are used. The first one is an explicit method, which allows the explicit reconstruction of a perturbed flux using a linear combination of a library of functions. In our application, these functions are the harmonics (i.e. the high order eigenfunctions of the system). The second type is based on the Generalized Perturbation Theory GPT and needs the calculation of an importance function for each integral parameter of interest. Recent developments of a particularly useful high order formulation allows to obtain satisfactory results also for very large perturbations
On adiabatic perturbations in the ekpyrotic scenario
International Nuclear Information System (INIS)
Linde, A.; Mukhanov, V.; Vikman, A.
2010-01-01
In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario
Atom-surface potentials and atom interferometry
International Nuclear Information System (INIS)
Babb, J.F.
1998-01-01
Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)
Nonlinear spectroscopy of the Rydberg atoms
International Nuclear Information System (INIS)
Delone, N.B.; Krajnov, V.P.; Shepelyanskij, D.L.
1984-01-01
The results of investigation into perturbation of Rydberg states (RS) of atoms in an outer alternating field (OAF) are discussed. Both highly excited states of hydrogen atom at the energy Esub(n)=-1/2n -2 (n>>1 - basic quantum number) and excited states of compound atoms with energy Esub(nl)=-1/2(n*) -2 where n*=n-delta sub(e)-effective basic quantum number, delta sub(e)-quantum defect, are implied by RS. Perturbation of atomic state in the OAF is determined not only by field strength E, but by its frequency ω as well. During OAF inclusion the initial state Esub(lambda) transits to quasienergetic at the energy Esub(lambda)(E)+-kω, where K=0, +-1, +-2, .... Solutions of the problem of quasienergetic level population is obtained only for some simple particular cases. A simple case, when a real multilevel atom is replaced by a model system comprising one bound electron state with the basic quantum number n-model of the insulated level (MIL) is considered. Conditions of MIL applicability are discussed. Estimation of critical OAF strength at which MIL approximation becomes faulty are discussed. It is stated that any consideration of RS perturbation in OAF claiming to exceeding MIL frames should comprise consideration of ionization processes. If one keeps to the frames of OAF; the strength of which is lower than the determined critical values then MIL is true and use of this model permits to correctly describe the main features of RS perturbation in an alternating field
Efficient atomization of cesium metal in solid helium by low energy (10 μJ) femtosecond pulses
Melich, M.; Dupont-Roc, J.; Jacquier, Ph.
2009-10-01
Metal atoms in solid and liquid helium-4 have attracted some interest either as a way to keep the atoms in a weakly perturbing matrix, or using them as a probe for the helium host medium. Laser sputtering with nanosecond pulsed lasers is the most often used method for atom production, resulting however in a substantial perturbation of the matrix. We show that a much weaker perturbation can be obtained by using femtosecond laser pulses with energy as low as 10 μJ. As an unexpected benefit, the atomic density produced is much higher.
Martin, Alexandre; Torrent, Marc; Caracas, Razvan
2015-03-01
A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).
International Nuclear Information System (INIS)
Kunselman, R.
1993-01-01
The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation
Perturbed angular correlations and distributions
International Nuclear Information System (INIS)
Makaryunas, K.
1976-01-01
The present index comprises original works and review papers on the perturbed angular correlations (PAC) and distributions (PAD). The articles published in the Soviet and foreign journals as well as the materials of conferences, monographs and collections published in the USSR and abroad, the preprints produced by various institutes and abstracts of disertations are included from 1948 up to 1973. The whole material compiled in this index is divided into three parts. Part one is a bibliographic index. All papers in this part are divided into three sections. Section one comprises the papers devoted to the theoretical works on PAC, review papers, monographs, materials of conferences. Section two deals with the works of methodical character where correlation spectrometers as well as the treatment of experimental data are described. In section three experimental works with concrete nuclei are compiled. Part two gives the characteristic of works performed with concrete nuclei. This part is presented in the form of the table in which the works are systematized according to the chemical elements and isotopes. The table shows the characteristics of the nuclear levels used in the investigations by PAC as well as brief characteristics of experiments and results obtained. Part three - appendix contains alphabetic index of the authors, the list of the used editions with the abbreviations of the titles of these editions. The lists indicating the dynamic of the quantity of works on PAC and the distribution according to the literature sources are also given
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Massive states in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)
1995-08-01
It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)
On the non-perturbative effects
International Nuclear Information System (INIS)
Manjavidze, J.; Voronyuk, V.
2004-01-01
The quantum correspondence principle based on the time reversibility is adopted to take into account the non-Abelian symmetry constrains. The main properties of the new strong-coupling perturbation theory which take into account non-perturbative effects are described. (author)
Scalar Quantum Electrodynamics: Perturbation Theory and Beyond
International Nuclear Information System (INIS)
Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.
2006-01-01
In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory
Atom Skimmers and Atom Lasers Utilizing Them
Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.
2005-01-01
Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.
Description of the general properties of pionic atoms
International Nuclear Information System (INIS)
Cervantes S, B.R.
1979-01-01
The effects of the finite dimension of the nucleus and the strong interaction effects in the energy levels ls and 2p of pionic atoms are considered. The energy transition between these two levels are calculated using the method of perturbations of first order, considering a uniform distribution of nuclear charge, for the effect of the finite dimension of the nucleus and one local optical potential as a model for the strong interaction. The calculations were realized for 13 elements and the results were compared with the experimentally obtained, founding a relative difference around of 4%. In conclusion the author observed that the effects of the finite dimension and the strong interaction can be considered as first order perturbations in light atoms, and for heavy atoms this effects can be considered as of second order or higher perturbations. (author)
Model analysis of molecular conformations in terms of weak interactions between non bonded atoms
International Nuclear Information System (INIS)
Lombardi, E.
1988-01-01
The aim of the present paper is to establish a reliable basis for the evaluation of stable conformations and rotational barriers for molecules, with possible applications to systems of biological interest. It is proceeded in two steps: first, the effect of chemical environment on orbitals of a given atom is studied for diatomic units, adopting a valence-bond approach and considering, as prototypes, the two simplest series of diatomic molecules with one valence electron each, i.e. the alkali diatomics and the alkali hydrides. In the model, the orbital of the hydrogen atom by a simple (''1S'') gaussian function, the valence orbital of an alkali atom by a function (r 2 -a 2 ) times a simple gaussian (''2S'' gaussian). Dissociation energies D e and equilibrium distances R e are calculated using a scanning procedure. Agreement with experiment is quantitative for the alkali diatomics. For alkali hydrides, good agreement is obtained only if validity of a rule β e R e =constant, for the two atoms separately, is postulated; β e is the characteristic parameter of a ''1S'' gaussian (hydrogen) or a ''2S'' gaussian (alkali atom) function. In a second step, the authors assume validity of the same rule in conformational analysis for any single bonded A-B molecule with A=C, O, N, P, Si, Ge and B=H, or a halogen atom. Gauge β e values for H, F and C are obtained by fitting experimental rotational barriers in C 2 H 6 , C 2 F 6 and C 3 H 8 . Stable conformation of, and barriers to rotation in, ethane-like rotors are determined, applying first-order exchange perturbation theory, in terms of two- and many-center exchange interactions in cluster of non-bonded atoms. Some 60 molecules are analyzed. Agreement with experiments is strikngly good except for a few systematic deviation. Reasons for such discrepancies are discussed
The fundamentals of atomic and molecular physics
Brooks, Robert L
2013-01-01
The Fundamentals of Atomic and Molecular Physics is intended as an introduction to the field for advanced undergraduates who have taken quantum mechanics. Each chapter builds upon the previous, using the same tools and methods throughout. As the students progress through the book, their ability to use these tools will steadily increase, along with their confidence in their efficacy. The book treats the two-electron atom as the simplest example of the many-electron atom—as opposed to using techniques that are not applicable to many-electron atoms—so that it is unnecessary to develop additional equations when turning to multielectron atoms, such as carbon. External fields are treated using both perturbation theory and direct diagonalization and spontaneous emission is developed from first principles. Only diatomic molecules are considered with the hydrogen molecular ion and neutral molecule treated in some detail. This comprehensive coverage of the quantum mechanics of complex atoms and simple diatomic mole...
Experimental evidence for πK-atoms
International Nuclear Information System (INIS)
Amsler, C.
2009-01-01
We present evidence for the first observation of electromagnetically bound pion-kaon pairs (πK- atoms) with the DIRAC-II experiment at the CERN-PS. The mean life of πK-atoms is related to the s-wave πK-scattering lengths, a measurement of which is relevant to low energy QCD, in particular chiral perturbation theories including the s-quarks. The atoms are produced by a 24 GeV/c proton beam in a thin Pt-target and the dissociated pions and kaons analyzed in a two-arm magnetic spectrometer. The observed enhancement at low relative momentum corresponds to the production of 173± 54 πK-atoms. From these first data we derive a lower limit for the mean life of 0.8 fs at the 90 % confidence level. (author)
Shishkin, G. I.
2015-11-01
An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.
International Nuclear Information System (INIS)
Robinson, R.
2009-10-01
As Australia's national nuclear science organisation, ANSTO provides advice and undertakes research on all things nuclear. This can range from advising the Government on uranium mining issues to using nuclear technology to tackle problems in the environment, in health, and in materials science.
Chameleon induced atomic afterglow
International Nuclear Information System (INIS)
Brax, Philippe; Burrage, Clare
2010-01-01
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.
Chameleon Induced Atomic Afterglow
Brax, Philippe
2010-01-01
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.
Chameleon induced atomic afterglow
International Nuclear Information System (INIS)
Brax, Philippe
2010-09-01
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)
Chameleon induced atomic afterglow
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-09-15
The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)
On the atomic-state dressing effect by an intense electromagnetic radiation
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Diaz, P.F.; Garcia-Fernandez, P.
1985-11-01
Perturbation of the atomic energy levels by an intense electromagnetic field is theoretically investigated. A dressing interaction Hamiltonian is constructed in the second-quantization formalism and the correct transitional Hamiltonian formulated. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru
2000-08-15
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.
Theoretical evaluation of matrix effects on trapped atomic levels
International Nuclear Information System (INIS)
Das, G.P.; Gruen, D.M.
1986-06-01
We suggest a theoretical model for calculating the matrix perturbation on the spectra of atoms trapped in rare gas systems. The model requires the ''potential curves'' of the diatomic system consisting of the trapped atom interacting with one from the matrix and relies on the approximation that the total matrix perturbation is a scalar sum of the pairwise interactions with each of the lattice sites. Calculations are presented for the prototype systems Na in Ar. Attempts are made to obtain ab initio estimates of the Jahn-Teller effects for excited states. Comparison is made with our recent Matrix-Isolation Spectroscopic (MIS) data. 10 refs., 3 tabs
Strings as perturbations of evolving spin networks
International Nuclear Information System (INIS)
Smolin, Lee
2000-01-01
One step in the construction of a background independent formulation of string theory is detailed, in which it is shown how perturbative strings may arise as small fluctuations around histories in a formulation of non-perturbative dynamics of spin networks due to Markopoulou. In this formulation the dynamics of spin network states and their generalizations is described in terms of histories which have discrete analogues of the causal structure and many fingered time of Lorentzian spacetimes. Perturbations of these histories turn out to be described in terms of spin systems defined on 2-dimensional timelike surfaces embedded in the discrete spacetime. When the history has a classical limit which is Minkowski spacetime, the action of the perturbation theory is given to leading order by the spacetime area of the surface, as in bosonic string theory. This map between a non-perturbative formulation of quantum gravity and a 1+1 dimensional theory generalizes to a large class of theories in which the group SU(2) i s extended to any quantum group or supergroup. It is argued that a necessary condition for the non-perturbative theory to have a good classical limit is that the resulting 1+1 dimensional theory defines a consistent and stable perturbative string theory
Perturbation analysis of linear control problems
International Nuclear Information System (INIS)
Petkov, Petko; Konstantinov, Mihail
2017-01-01
The paper presents a brief overview of the technique of splitting operators, proposed by the authors and intended for perturbation analysis of control problems involving unitary and orthogonal matrices. Combined with the technique of Lyapunov majorants and the implementation of the Banach and Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the feedback synthesis problem and pole assignment problem in particular, as well as other important problems in control theory and linear algebra. Key words: perturbation analysis, canonical forms, feedback synthesis
Kerr-CFT and gravitational perturbations
International Nuclear Information System (INIS)
Dias, Oscar J.C.; Reall, Harvey S.; Santos, Jorge E.
2009-01-01
Motivated by the Kerr-CFT conjecture, we investigate perturbations of the near-horizon extreme Kerr spacetime. The Teukolsky equation for a massless field of arbitrary spin is solved. Solutions fall into two classes: normal modes and traveling waves. Imposing suitable (outgoing) boundary conditions, we find that there are no unstable modes. The explicit form of metric perturbations is obtained using the Hertz potential formalism, and compared with the Kerr-CFT boundary conditions. The energy and angular momentum associated with scalar field and gravitational normal modes are calculated. The energy is positive in all cases. The behaviour of second order perturbations is discussed.
Resolution of ambiguities in perturbative QCD
International Nuclear Information System (INIS)
Nakkagawa, Hisao; Niegawa, Akira.
1984-01-01
In the perturbative QCD analyses of the deeply inelastic processes, the coupling constant depends on at least two mass-scales, the renormalization scale and the factorization scale. By integrating the coupled renormalization group equations with respect to these two mass-scales, the running coupling constant is defined. A perturbative approximation then introduces a new ambiguity, the integration-path dependence, into the theory. We show that the problem of this new ambiguity is resolved by imposing Stevenson's principle of minimal sensitivity. Together with the analogous analysis of the operator matrix element or the cut vertex, we can completely solve the problem of getting an unambiguous perturbative QCD prediction. (author)
Mass generation in perturbed massless integrable models
International Nuclear Information System (INIS)
Controzzi, D.; Mussardo, G.
2005-01-01
We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order to address the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this approach is more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting information can be obtained already at first order, such as the identification of the operators which create a mass gap and those which induce the confinement of the massless particles in the perturbed theory
Non-perturbative effects in supersymmetry
International Nuclear Information System (INIS)
Veneziano, G.
1987-01-01
Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures
On perturbation theory for distance dependent statistics.
Energy Technology Data Exchange (ETDEWEB)
Mashkevich, S V
1994-12-31
It is known that perturbation theory for anyons has to be modified near Bose statistics in order to get correct finite results. For ``distance dependent statistics`` or anyons with smeared flux tubes, perturbation theory is in principle applicable directly but gives results which hold for too small values of the statistical parameter and, in particular, are not valid as the flux tube radius tends to zero. In this paper we discuss the way to modify perturbation theory for this situation, which allows to obtain the appropriate results. (author). 6 refs.
Solitonic Integrable Perturbations of Parafermionic Theories
Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L
1997-01-01
The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.
Critical behaviors of gravity under quantum perturbations
Directory of Open Access Journals (Sweden)
ZHANG Hongsheng
2014-02-01
Full Text Available Phase transition and critical phenomenon is a very interesting topic in thermodynamics and statistical mechanics. Gravity is believed to have deep and inherent relation to thermodynamics. Near the critical point,the perturbation becomes significant. Thus for ordinary matter (governed by interactions besides gravity the critical behavior will become very different if we ignore the perturbations around the critical point,such as mean field theory. We find that the critical exponents for RN-AdS spacetime keep the same values even when we consider the full quantum perturbations. This indicates a key difference between gravity and ordinary thermodynamic system.
Spontaneous emission by moving atoms
International Nuclear Information System (INIS)
Meystre, P.; Wilkens, M.
1994-01-01
It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs
Atomic reactor thermal engineering
International Nuclear Information System (INIS)
Kim, Gwang Ryong
1983-02-01
This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.
International Nuclear Information System (INIS)
Ramanna, R.
1978-01-01
Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy
Stability under persistent perturbation by white noise
International Nuclear Information System (INIS)
Kalyakin, L
2014-01-01
Deterministic dynamical system which has an asymptotical stable equilibrium is considered under persistent perturbation by white noise. It is well known that if the perturbation does not vanish in the equilibrium position then there is not Lyapunov's stability. The trajectories of the perturbed system diverge from the equilibrium to arbitrarily large distances with probability 1 in finite time. New concept of stability on a large time interval is discussed. The length of interval agrees the reciprocal quantity of the perturbation parameter. The measure of stability is the expectation of the square distance from the trajectory till the equilibrium position. The method of parabolic equation is applied to both estimate the expectation and prove such stability. The main breakthrough is the barrier function derived for the parabolic equation. The barrier is constructed by using the Lyapunov function of the unperturbed system
Inflation and the theory of cosmological perturbations
International Nuclear Information System (INIS)
Riotto, A.
2003-01-01
These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)
't Hooft loops and perturbation theory
De Forcrand, Philippe; Noth, D; Forcrand, Philippe de; Lucini, Biagio; Noth, David
2005-01-01
We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny deviations from the ratio of Casimirs, down to nearly T_c. In contrast, individual tensions differ markedly from the perturbative expression. In all cases, the required precision Monte Carlo measurements are made possible by a simple but powerful modification of the 'snake' algorithm.
Isocurvature perturbations in the Ekpyrotic Universe
International Nuclear Information System (INIS)
Notari, A.; Riotto, A.
2002-01-01
The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the kinetic terms between the brane modulus parameterizing the position of the five-brane in the bulk and the dilaton and volume moduli. We show how to separate explicitly the adiabatic and isocurvature modes by performing a rotation in field space. Our results indicate that adiabatic and isocurvature perturbations might be cross-correlated and that curvature perturbations might be entirely seeded by isocurvature perturbations
Simple Perturbation Example for Quantum Chemistry.
Goodfriend, P. L.
1985-01-01
Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.
Thiede, Erik; VAN Koten, Brian; Weare, Jonathan
For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.
Renormalization scheme-invariant perturbation theory
International Nuclear Information System (INIS)
Dhar, A.
1983-01-01
A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)
Cosmological perturbations in the new Higgs inflation
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr, 37 80333 Muenchen (Germany); Kehagias, Alex, E-mail: cristiano.germani@lmu.de, E-mail: kehagias@central.ntua.gr [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2010-05-01
We study the cosmological perturbations created during the New Higgs inflationary phase. In the New Higgs Inflation, the Higgs boson is kinetically coupled to the Einstein tensor and only three perturbative degrees of freedom, a scalar and two tensorial (gravitational waves), propagate during Inflation. Scalar perturbations are found to match the latest WMAP-7yrs data within Standard Model Higgs parameters. Primordial gravitational waves also, although propagating with superluminal speed, are consistent with present data. Finally, we estimate the values of the parameter of the New Higgs Inflation in relation to the Higgs mass, the spectral index and amplitude of the primordial scalar perturbations showing that the unitarity bound of the theory is not violated.
Prospects of inflation with perturbed throat geometry
International Nuclear Information System (INIS)
Ali, Amna; Chingangbam, R.; Panda, Sudhakar; Sami, M.
2009-01-01
We study brane inflation in a warped deformed conifold background that includes general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi-Yau space. We focus specifically, on the perturbation by chiral operator of dimension 3/2 in the CFT. We find that the effective potential in this case can give rise to required number of e-foldings and the spectral index n S consistent with observation. The tensor to scalar ratio of perturbations is generally very low in this scenario. The COBE normalization, however, poses certain difficulties which can be circumvented provided model parameters are properly fine tuned. We find the numerical values of parameters which can give rise to enough inflation, observationally consistent values of density perturbations, scalar to tensor ratio of perturbations and the spectral index n S .
Bremsstrahlung in atom-atom collisions
International Nuclear Information System (INIS)
Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.
1985-01-01
It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon
The relationship between vacuum and atomic collisions in solids
International Nuclear Information System (INIS)
Carter, G.; Armour, D.G.
1980-01-01
Atomic collision events in solids are frequently stimulated by external irradiation with energetic heavy ions. This requires production, acceleration and manipulation of ion beams in vacuum system with ensuing problems arising in perturbations to ion beam quality from gas phase collisions. In addition the dynamic interaction between the gas phase and any surfaces at which atomic collisions are under investigation can lead to perturbation to the collision events by adsorbed contaminant. This review discusses both gas phase requirements for ion accelerators to minimize deleterious effects and outlines some of the processes which occur in atomic collisions due to the presence of adsorbed impurities. Finally it is shown how certain atomic collision processes involving elastic scattering may be employed to investigate surface adsorption and related effects. (author)
Discrete state perturbation theory via Green's functions
International Nuclear Information System (INIS)
Rubinson, W.
1975-01-01
The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on
Algebraic renormalization. Perturbative renormalization, symmetries and anomalies
International Nuclear Information System (INIS)
Piguet, O.
1995-01-01
This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)
A new perturbative approach to QCD
International Nuclear Information System (INIS)
Pervushin, V.N.; Kallies, W.; Sarikov, N.A.
1988-01-01
For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model
Cylindrical dust acoustic waves with transverse perturbation
International Nuclear Information System (INIS)
Xue Jukui
2003-01-01
The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation
The triangulation in a perturbed Friedmann universe
International Nuclear Information System (INIS)
Kasai, Masumi.
1987-12-01
A formula for the parallax distance in a general space-time is shown and it is applied to the linearly perturbed Friedmann universe. Its invariance under any coordinate-gauge transformations and any infinitesimal affine transformations is also shown. Then it is applied to the Einstein-de Sitter background model, and it is found that the perturbed space-time behaves as a Friedmann-like universe with the direction-dependent H 0 and q 0 . (author)
Alternative perturbation approaches in classical mechanics
International Nuclear Information System (INIS)
Amore, Paolo; Raya, Alfredo; Fernandez, Francisco M
2005-01-01
We discuss two alternative methods, based on the Lindstedt-Poincare technique, for the removal of secular terms from the equations of perturbation theory. We calculate the period of an anharmonic oscillator by means of both approaches and show that one of them is more accurate for all values of the coupling constant. We believe that present discussion and comparison may be a suitable exercise for teaching perturbation theory in advanced undergraduate courses on classical mechanics
Double soft theorem for perturbative gravity
Saha, Arnab
2016-01-01
Following up on the recent work of Cachazo, He and Yuan \\cite{arXiv:1503.04816 [hep-th]}, we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.
On perturbations of a quintom bounce
International Nuclear Information System (INIS)
Cai Yifu; Qiu Taotao; Zhang Xinmin; Brandenberger, Robert; Piao Yunsong
2008-01-01
A quintom universe with an equation of state crossing the cosmological constant boundary can provide a bouncing solution dubbed the quintom bounce and thus resolve the big bang singularity. In this paper, we investigate the cosmological perturbations of the quintom bounce both analytically and numerically. We find that the fluctuations in the dominant mode in the post-bounce expanding phase couple to the growing mode of the perturbations in the pre-bounce contracting phase
Computer fan performance enhancement via acoustic perturbations
Energy Technology Data Exchange (ETDEWEB)
Greenblatt, David, E-mail: davidg@technion.ac.il [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel); Avraham, Tzahi; Golan, Maayan [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel)
2012-04-15
Highlights: Black-Right-Pointing-Pointer Computer fan effectiveness was increased by introducing acoustic perturbations. Black-Right-Pointing-Pointer Acoustic perturbations controlled blade boundary layer separation. Black-Right-Pointing-Pointer Optimum frequencies corresponded with airfoils studies. Black-Right-Pointing-Pointer Exploitation of flow instabilities was responsible for performance improvements. Black-Right-Pointing-Pointer Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin-Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.
Secondary isocurvature perturbations from acoustic reheating
Ota, Atsuhisa; Yamaguchi, Masahide
2018-06-01
The superhorizon (iso)curvature perturbations are conserved if the following conditions are satisfied: (i) (each) non adiabatic pressure perturbation is zero, (ii) the gradient terms are ignored, that is, at the leading order of the gradient expansion (iii) (each) total energy momentum tensor is conserved. We consider the case with the violation of the last two requirements and discuss the generation of secondary isocurvature perturbations during the late time universe. Second order gradient terms are not necessarily ignored even if we are interested in the long wavelength modes because of the convolutions which may pick products of short wavelength perturbations up. We then introduce second order conserved quantities on superhorizon scales under the conditions (i) and (iii) even in the presence of the gradient terms by employing the full second order cosmological perturbation theory. We also discuss the violation of the condition (iii), that is, the energy momentum tensor is conserved for the total system but not for each component fluid. As an example, we explicitly evaluate second order heat conduction between baryons and photons due to the weak Compton scattering, which dominates during the period just before recombination. We show that such secondary effects can be recast into the isocurvature perturbations on superhorizon scales if the local type primordial non Gaussianity exists a priori.
Computer fan performance enhancement via acoustic perturbations
International Nuclear Information System (INIS)
Greenblatt, David; Avraham, Tzahi; Golan, Maayan
2012-01-01
Highlights: ► Computer fan effectiveness was increased by introducing acoustic perturbations. ► Acoustic perturbations controlled blade boundary layer separation. ► Optimum frequencies corresponded with airfoils studies. ► Exploitation of flow instabilities was responsible for performance improvements. ► Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin–Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.
Beyond perturbation introduction to the homotopy analysis method
Liao, Shijun
2003-01-01
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity.This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra''s population model, Von Kármán swirling viscous flow, and nonlinear progressive waves in deep water.Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be ...
Causality problem in atomic physics
Energy Technology Data Exchange (ETDEWEB)
Bor, N
1985-10-01
The casuality problem in atomic physics is analysed by Bohr in a wide methodological context. The first part of the paper is a short historical essay picturing the entry of statistical concepts into physics. Bohr underlines a close relationship between an unavoidably probabilitic nature of the quantum theory and quantum postulates introducing the alien-to-classical-physics concepts of integrity, individuality of atomic processes. In the second central part of the paper Bohr discusses the casuality problems in atomic physics in detail and shows that their solution requires a careful analysis of the observation process. Proceeding from the program methodological requirement to describe the measuring instrumentation operation and observation results in the language of classical physics, he explains that the statistical character of the uncertainty relationships expresses a substantial specifically quantum constraint to the applicifically of classical conceptions analyses of microphenomena. Then Bohr refines in principle the notion ''phenomenon'', as one of the central notions among those he employed for the formulation of his complementarity principle. According to bohr a phenomenon should be under-stood as an unambiguously present situation of a completed experiment. Therefore, it is erroneous to speak of the phenomenon perturbation by the observation. The final part of the article deals with the discussion of methodological parallels of the quantum theory and relativity theory.
Two centre problems in relativistic atomic physics
Energy Technology Data Exchange (ETDEWEB)
McConnell, Sean R.
2013-01-09
The work contained within this thesis is concerned with the explanation and usage of a set of theoretical procedures for the study of static and dynamic two-centre problems in the relativistic framework of Dirac's equation. Two distinctly different theories for handling time-dependent atomic interactions are reviewed, namely semi-classical perturbation theory and a non-perturbative numerical technique based on the coupled channel equation to directly solve the time-dependent, two-centre Dirac equation. The non-perturbative numerical technique has been developed independently and the calculations performed with it are entirely new. Calculations for ionisation cross sections and state occupancies are conducted for both these methods. The non-perturbative technique for relativistic two-centre problems is extensively explained and, given its novelty, a probity test is conducted between this technique and that of the well established perturbation theory in calculating K-and L-shell ionisation cross sections for the alpha decay of initially Hydrogen-like Polonium. To that end, an in depth outline of the perturbative technique is also made for both collision and decay processes. As well as the comparison test mentioned, this technique is also applied to the analysis of cross sections of the promotion of a single electron into the positive continuum from either a K- or L-shell due to the alpha decay of heavy, neutral nuclei (Gadolinium, Polonium and Thorium). Dirac-Coulomb eigenfunctions centred on the parent nucleus of the decay pair are taken as the basis for use in the cross section calculations utilising first order, semi-classical pertubation theory. The excellent congruence between both techniques justifies the usage of the non-perturbative algorithms in the subsequent analysis of collisions between very heavy, highly charged ions. As such, a set of calculations are performed examining the bound and continuum state occupancy of the electronic levels during a
Suppression of Runaway Electrons by Resonant Magnetic Perturbations in TEXTOR Disruptions
International Nuclear Information System (INIS)
Lehnen, M.; Bozhenkov, S. A.; Abdullaev, S. S.; TEXTOR Team,; Jakubowski, M. W.
2008-01-01
The generation of runaway electrons in the international fusion experiment ITER disruptions can lead to severe damage at plasma facing components. Massive gas injection might inhibit the generation process, but the amount of gas needed can affect, e.g., vacuum systems. Alternatively, magnetic perturbations can suppress runaway generation by increasing the loss rate. In TEXTOR disruptions runaway losses were enhanced by the application of resonant magnetic perturbations with toroidal mode number n=1 and n=2. The disruptions are initiated by fast injection of about 3x10 21 argon atoms, which leads to a reliable generation of runaway electrons. At sufficiently high perturbation levels a reduction of the runaway current, a shortening of the current plateau, and the suppression of high energetic runaways are observed. These findings indicate the suppression of the runaway avalanche during disruptions
Development of the Atomic-Resolution Environmental Transmission Electron Microscope
DEFF Research Database (Denmark)
Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta
2016-01-01
The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....
[Electron transfer, ionization and excitation in atomic collisions
International Nuclear Information System (INIS)
1991-01-01
The research being carried out at Penn State by Winter and Alston addresses the fundamental atomic-collision processes of electron transfer, ionization, and excitation. Winter has focussed attention on intermediate and, more recently, higher collision energies -- proton energies of at least about 50 keV -- for which coupled-state approaches are appropriate. Alston has concentrated on perturbative approaches to symmetric ion-ion/atom collisions at high energies and to asymmetric collisions at intermediate to high energies
Communication: Random phase approximation renormalized many-body perturbation theory
International Nuclear Information System (INIS)
Bates, Jefferson E.; Furche, Filipp
2013-01-01
We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations
International Nuclear Information System (INIS)
1994-01-01
This document lists all sales publications of the International Atomic Energy Agency dealing with Environment issued during the period 1980-1993. It gives a short abstract and contents of these issues along with their costs in Austrian Schillings
Li, Fei; Li, Peng; Xu, Wenjian; Peng, Yuxing; Bo, Xiaochen; Wang, Shengqi
2010-01-15
The propagation of perturbations in protein concentration through a protein interaction network (PIN) can shed light on network dynamics and function. In order to facilitate this type of study, PerturbationAnalyzer, which is an open source plugin for Cytoscape, has been developed. PerturbationAnalyzer can be used in manual mode for simulating user-defined perturbations, as well as in batch mode for evaluating network robustness and identifying significant proteins that cause large propagation effects in the PINs when their concentrations are perturbed. Results from PerturbationAnalyzer can be represented in an intuitive and customizable way and can also be exported for further exploration. PerturbationAnalyzer has great potential in mining the design principles of protein networks, and may be a useful tool for identifying drug targets. PerturbationAnalyzer can be accessed from the Cytoscape web site http://www.cytoscape.org/plugins/index.php or http://biotech.bmi.ac.cn/PerturbationAnalyzer. Supplementary data are available at Bioinformatics online.
Atomic weight versus atomic mass controversy
International Nuclear Information System (INIS)
Holden, N.E.
1985-01-01
A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives
Efficient atomization of cesium metal in solid helium by low energy (10 $\\mu$J) femtosecond pulses
Melich, Mathieu; Dupont-Roc, Jacques; Jacquier, Philippe
2009-01-01
International audience; Metal atoms in solid and liquid helium-4 have attracted some interest either as a way to keep the atoms in a weakly perturbing matrix, or using them as a probe for the helium host medium. Laser sputtering with nanosecond pulsed lasers is the most often used method for atom production, resulting however in a substantial perturbation of the matrix. We show that a much weaker perturbation can be obtained by using femtosecond laser pulses with energy as low as 10 µJ. As an...
Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions
International Nuclear Information System (INIS)
Perreault, John D.; Cronin, Alexander D.
2005-01-01
The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm
Stepping stability: effects of sensory perturbation
Directory of Open Access Journals (Sweden)
Krebs David E
2005-05-01
Full Text Available Abstract Background Few tools exist for quantifying locomotor stability in balance impaired populations. The objective of this study was to develop and evaluate a technique for quantifying stability of stepping in healthy people and people with peripheral (vestibular hypofunction, VH and central (cerebellar pathology, CB balance dysfunction by means a sensory (auditory perturbation test. Methods Balance impaired and healthy subjects performed a repeated bench stepping task. The perturbation was applied by suddenly changing the cadence of the metronome (100 beat/min to 80 beat/min at a predetermined time (but unpredictable by the subject during the trial. Perturbation response was quantified by computing the Euclidian distance, expressed as a fractional error, between the anterior-posterior center of gravity attractor trajectory before and after the perturbation was applied. The error immediately after the perturbation (Emax, error after recovery (Emin and the recovery response (Edif were documented for each participant, and groups were compared with ANOVA. Results Both balance impaired groups exhibited significantly higher Emax (p = .019 and Emin (p = .028 fractional errors compared to the healthy (HE subjects, but there were no significant differences between CB and VH groups. Although response recovery was slower for CB and VH groups compared to the HE group, the difference was not significant (p = .051. Conclusion The findings suggest that individuals with balance impairment have reduced ability to stabilize locomotor patterns following perturbation, revealing the fragility of their impairment adaptations and compensations. These data suggest that auditory perturbations applied during a challenging stepping task may be useful for measuring rehabilitation outcomes.
Perturbations of ultralight vector field dark matter
Energy Technology Data Exchange (ETDEWEB)
Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)
2017-02-13
We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with k{sup 2}≪Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with k{sup 2}≫Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c{sub s}{sup 2}≃k{sup 2}/m{sup 2}a{sup 2}. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order (Φ−Ψ)/Φ∼c{sub s}{sup 2}. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/Φ∼c{sub s}{sup 2}. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-09-01
Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.
Periodicity and chaos in strongly perturbed classical orbitals for Coulomb interactions
Energy Technology Data Exchange (ETDEWEB)
Klar, H
1986-01-01
Within the framework of classical mechanics two prototypes of strongly perturbed orbitals, the diamagnetism in hydrogen and electronic double excitation, are analyzed near critical phase space points (fixed points). The motion of the hydrogen electron under the joint influence of the Coulomb field and the magnetic field is periodic for any field strengths. For a two-electron atom however the author finds a chaotic time evolution of the electron pair correlation, causing presumably irregular spectral patterns. (Auth.).
Application of linear and higher perturbation theory in reactor physics
International Nuclear Information System (INIS)
Woerner, D.
1978-01-01
For small perturbations in the material composition of a reactor according to the first approximation of perturbation theory the eigenvalue perturbation is proportional to the perturbation of the system. This assumption is true for the neutron flux not influenced by the perturbance. The two-dimensional code LINESTO developed for such problems in this paper on the basis of diffusion theory determines the relative change of the multiplication constant. For perturbations varying the neutron flux in the space of energy and position the eigenvalue perturbation is also influenced by this changed neutron flux. In such cases linear perturbation theory yields larger errors. Starting from the methods of calculus of variations there is additionally developed in this paper a perturbation method of calculation permitting in a quick and simple manner to assess the influence of flux perturbation on the eigenvalue perturbation. While the source of perturbations is evaluated in isotropic approximation of diffusion theory the associated inhomogeneous equation may be used to determine the flux perturbation by means of diffusion or transport theory. Possibilities of application and limitations of this method are studied in further systematic investigations on local perturbations. It is shown that with the integrated code system developed in this paper a number of local perturbations may be checked requiring little computing time. With it flux perturbations in first approximation and perturbations of the multiplication constant in second approximation can be evaluated. (orig./RW) [de
International Nuclear Information System (INIS)
Kleppner, D.; Littman, M.G.; Zimmerman, M.L.
1981-01-01
Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before
Laser-assisted atom-atom collisions
International Nuclear Information System (INIS)
Roussel, F.
1984-01-01
The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)
Atoms, Radiation, and Radiation Protection
Turner, James E
2007-01-01
Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of
Joint General Atomic-TAERF fusion program
Energy Technology Data Exchange (ETDEWEB)
Kerst, D W [John Jay Hopkins Laboratory for Pure and Applied Science, General Atomic Division of General Dynamics Corporation, San Diego, CA (United States)
1958-07-01
The experimental work has consisted of several parts: the study of charge exchange in hydrogen ionic and atomic collisions, the study of some linear pinch discharge systems with high stabilizing axial magnetic fields, developments on a small scale for a large toroidal geometry, and experiments with various diagnostic methods, including electrical, optical, and shock-tube methods. The experiments on atomic collisions have consisted of measurements of cross sections for the ionization, the excitation of Lyman-alpha radiation, and elastic scattering for the case of electron bombardment. In addition, charge-exchange cross sections between deuterons and deuterium atoms have been measured. The calculations of Dalgarno and Yadav, using a perturbed stationary-state approximation are close to the experimental results which show a very large cross section for charge exchange.
Interaction of Rydberg atoms with two contrapropagating ultrashort laser pulses
International Nuclear Information System (INIS)
Lugovskoy, A. V.; Bray, I.
2006-01-01
In this paper we investigate how Rydberg atoms respond to perturbation by two contrapropagating ultrashort laser pulses. We consider the case where the durations of both pulses τ 1 and τ 2 are shorter than the inverse of the initial-state energy ε i -1 . When acting alone such a pulse passes through the atom without noticeable alteration in the atomic state. The situation is different if two such pulses interfere in the region of atom localization. In this case the atomic response is significantly enhanced. This is due to the nonzero momentum transferred to the electron by the interplay of the electric field of one pulse and the magnetic field of the other. The sudden perturbation approximation is used to evaluate the transition probabilities. They are shown to depend on the atom position with respect to the pulse interference region. This dependence is determined by the relationship between the atomic diameter d i and the interference-region size l=c(τ 1 +τ 2 ) (c is the speed of light). If d i i >>l the transition probabilities are sensitive to the electron density distribution along the propagation direction. The probabilities of the initial-state destruction and atom ionization drop as l/d i irrespective of the characteristics of the pulses
Energy Technology Data Exchange (ETDEWEB)
Franceschini, V.; Grecchi, V.; Silverstone, H.J.
1985-09-01
The resonance energies for the hydrogen atom in an electric field, both the real and imaginary parts, have been calculated together from the real Rayleigh-Schroedinger perturbation series by Borel summation. Pade approximants were used to evaluate the Borel transform. The numerical results compare well with values obtained by the complex-coordinate variational method and by sequential use of Pade approximants.
Local perturbations perturb—exponentially–locally
International Nuclear Information System (INIS)
De Roeck, W.; Schütz, M.
2015-01-01
We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate
Mode coupling of Schwarzschild perturbations: Ringdown frequencies
International Nuclear Information System (INIS)
Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel
2010-01-01
Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m=±2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.
Supersymmetry restoration in superstring perturbation theory
International Nuclear Information System (INIS)
Sen, Ashoke
2015-01-01
Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.
Supersymmetry restoration in superstring perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)
2015-12-14
Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.
Code ATOM for calculation of atomic characteristics
International Nuclear Information System (INIS)
Vainshtein, L.A.
1990-01-01
In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)
The Confined Hydrogen Atom with a Moving Nucleus
Fernandez, Francisco M.
2010-01-01
We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…
Perturbation theory of intermolecular interactions: What is the problem, are there solutions?
International Nuclear Information System (INIS)
Adams, W.H.
1990-01-01
We review the nature of the problem in the framework of Rayleigh-Schroedinger perturbation theory (the polarization approximation) considering explicitly two examples: the interaction of two hydrogen atoms and the interaction of Li with H. We show, in agreement with the work of Claverie and of Morgan and Simon, that the LiH problem is dramatically different from the H 2 problem. In particular, the physical states of LiH are higher in energy than an infinite number of discrete, unphysical states and they are buried in a continuum of unbound, unphysical states, which starts well below the lowest physical state. Clavrie has shown that the perturbation expansion, under these circumstances, is likely to converge to an unphysical state of lower energy than the physical ground state, if it converges at all. We review, also, the application of two classes of exchange perturbation theory to LiH and larger systems. We show that the spectra of three Eisenschitz-London (EL) class, exchange perturbation theories have no continuum of unphysical states overlaying the physical states and no discrete, unphysical states below the lowest physical state. In contrast, the spectra of two Hirschfelder-Silbey class theories differ hardly at all from that found with the polarization approximation. Not one of the EL class of perturbation theories, however, eliminates all of the discrete unphysical states
The exhibition Lumiere d'Atomes (Atoms light)
International Nuclear Information System (INIS)
Foos, Jacques
1995-01-01
Full text: This exhibition has been conceived in order to show for everybody, whatever his scientific level, the peaceful uses of transformations (natural or made by Man) and energetic possibilities of the atomic nucleus. The key-ideas of this exhibition were-: - nuclear applications a world of high technology; - nuclear industry men as the others; - nuclear energy an energetic independence. 6 themes were proposed: 1- Atoms and radioactivity; 2- The nuclear power stations; 3- The nuclear fuel cycle; 4- Surety and environment; 5- The other uses of radioactivity; 6- The French choice: The world nuclear data. This exhibition that comprises information posters, paintings, demonstration models, films and video games, was shown for the first time in Paris in april 1991. From this time, it was shown in many regional cities, with the help of SFEN members. 'Lumiere d'Atomes' received in 1991 the SFEN prize for its information on nuclear energy. (author)
DEFF Research Database (Denmark)
Sadegh, Payman; Spall, J. C.
1998-01-01
simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...
Decoherence, discord, and the quantum master equation for cosmological perturbations
Hollowood, Timothy J.; McDonald, Jamie I.
2017-05-01
We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.
Tension perturbations of black brane spacetimes
International Nuclear Information System (INIS)
Traschen, Jennie; Fox, Daniel
2004-01-01
We consider black brane spacetimes that have at least one spatial translation Killing field that is tangent to the brane. A new parameter, the tension of a spacetime, is defined. The tension parameter is associated with spatial translations in much the same way that the ADM mass is associated with the time translation Killing field. In this work, we explore the implications of the spatial translation symmetry for small perturbations around a background black brane. For static-charged black branes we derive a law which relates the tension perturbation to the surface gravity times the change in the horizon area, plus terms that involve variations in the charges and currents. We find that as a black brane evaporates the tension decreases. We also give a simple derivation of a first law for black brane spacetimes. These constructions hold when the background stress-energy is governed by a Hamiltonian, and the results include arbitrary perturbative stress-energy sources
Perturbation measurement of waveguides for acoustic thermometry
Lin, H.; Feng, X. J.; Zhang, J. T.
2013-09-01
Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.
Microfluidic mixing through oscillatory transverse perturbations
Wu, J. W.; Xia, H. M.; Zhang, Y. Y.; Zhu, P.
2018-05-01
Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.
One dimensional systems with singular perturbations
International Nuclear Information System (INIS)
Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P
2011-01-01
This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.
Perturbations of higher-dimensional spacetimes
Energy Technology Data Exchange (ETDEWEB)
Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2011-02-07
We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.
On the domain of string perturbation theory
International Nuclear Information System (INIS)
Davis, S.
1989-06-01
For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
MCNP perturbation technique for criticality analysis
International Nuclear Information System (INIS)
McKinney, G.W.; Iverson, J.L.
1995-01-01
The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and/or second order terms of the Taylor Series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Criticality analyses can benefit from this technique in that predicted changes in the track-length tally estimator of K eff may be obtained for multiple perturbations in a single run. A key advantage of this method is that a precise estimate of a small change in response (i.e., < 1%) is easily obtained. This technique can also offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response
Gravitational perturbation theory and synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik
1975-01-01
This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.
Gribov ambiguity, perturbation theory, and confinement
International Nuclear Information System (INIS)
Greensite, J.P.
1978-01-01
The generating functional proposed for gauge theories by Bender, Eguchi, and Pagels (BEP) is shown to be equivalent to a truncated form of the functional integral, in which only one field configuration from each gauge-equivalent Gribov set contributes to the functional integration. The standard perturbation technique provides a method of realizing this truncation condition. It is shown that any gauge-covariant quantity (such as the quark N-point functions), evaluated by perturbating around a field configuration gauge-equivalent to A = 0, is related by a gauge transformation to the same quantity evaluated perturbatively around the trivial vacuum. It follows that, contrary to the conclusion of BEP, the existence of degeneracies in the Coulomb gauge-fixing condition (the Gribov ambiguity) is not directly related to the physics of confinement
Non-Perturbative Quantum Geometry III
Krefl, Daniel
2016-08-02
The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.
Redshift-space distortions from vector perturbations
Bonvin, Camille; Durrer, Ruth; Khosravi, Nima; Kunz, Martin; Sawicki, Ignacy
2018-02-01
We compute a general expression for the contribution of vector perturbations to the redshift space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus in principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.
Operator Decomposition Framework for Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Abdel-Khalik, Hany S.; Wang, Congjian; Bang, Young Suk [North Carolina State University, Raleigh (United States)
2012-05-15
This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies
Schroedinger operators with singular perturbation potentials
International Nuclear Information System (INIS)
Harrell, E.M. II.
1976-01-01
This is a perturbative analysis of the eigenvalues and eigenfunctions of Schroedinger operators of the form -Δ + A + lambda V, defined on the Hilbert space L 2 (R/sup n/). A is a potential function (a smooth, real multiplication operator), and V is a ''spikelike'' perturbation, i.e., a perturbative potential function which diverges at some finite point. Lambda is a small real or complex parameter. The emphasis is on one-dimensional problems, and in particular the typical example is the ''spiked harmonic oscillator'' Hamiltonian, -d 2 /dx 2 + x 2 + lambda x/sup -α/, where α is a positive constant. An earlier study by L. Detwiler and J. R. Klauder [Phys. Rev. D 11 (1975) 1436] indicated that the lowest-order corrections to the ground-state eigenvalue of the spiked harmonic oscillator with lambda greater than 0 were proportional to lambda ln lambda when α = 3, and to lambda/sup 1/(α-2) when α is greater than 3. These and analogous results for a large class of operators and arbitrary eigenvalues are proved. Explicit constants in a modified perturbation series with a complicated dependence on lambda are determined and exhibited. Higher-order corrections for real lambda and lowest-order corrections for complex lambda are also discussed. While the substance of the dissertation is mathematical, its main applications are to quantum physics. The immediate cause of interest in such problems was the use of their peculiar convergence properties by J. R. Klauder as models for the behavior of nonrenormalizable quantum field theories. However, the results of this study are likely to be of greater importance in chemical or nuclear physics, as positive spikelike perturbations represent repulsive core interactions for quantum mechanical particles. The modified perturbation series are a new calculation technique for this situation
Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms
Energy Technology Data Exchange (ETDEWEB)
Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)
2006-04-24
We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.
Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms
International Nuclear Information System (INIS)
Romero, Rodolfo H.; Gomez, Sergio S.
2006-01-01
We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown
A model for the interaction between F centers and H atoms in ionic crystals
International Nuclear Information System (INIS)
Dumke, V.R.; Souza, M. de
1975-01-01
The interaction between an F center and neutral hydrogen atoms, the most simple paramagnetic defects in ionic crystals, is described in terms of a perturbation theory of two square potential wells. The good agreement with experimental data indicates that lattice distortion due to the presence of the hydrogen atoms is negligible [pt
Perturbation expansions generated by an approximate propagator
International Nuclear Information System (INIS)
Znojil, M.
1987-01-01
Starting from a knowledge of an approximate propagator R at some trial energy guess E 0 , a new perturbative prescription for p-plet of bound states and of their energies is proposed. It generalizes the Rayleigh-Schroedinger (RS) degenerate perturbation theory to the nondiagonal operators R (eliminates a RS need of their diagnolisation) and defines an approximate Hamiltonian T by mere inversion. The deviation V of T from the exact Hamiltonian H is assumed small only after a substraction of a further auxiliary Hartree-Fock-like separable ''selfconsistent'' potential U of rank p. The convergence is illustrated numerically on the anharmonic oscillator example
On algebraically special perturbations of black holes
International Nuclear Information System (INIS)
Chandrasekhar, S.
1984-01-01
Algebraically special perturbations of black holes excite gravitational waves that are either purely ingoing or purely outgoing. Solutions, appropriate to such perturbations of the Kerr, the Schwarzschild, and the Reissner-Nordstroem black-holes, are obtained in explicit forms by different methods. The different methods illustrate the remarkable inner relations among different facets of the mathematical theory. In the context of the Kerr black-hole they derive from the different ways in which the explicit value of the Starobinsky constant emerges, and in the context of the Schwarzschild and the Reissner-Nordstroem black-holes they derive from the potential barriers surrounding them belonging to a special class. (author)
Primordial perturbations with pre-inflationary bounce
Cai, Yong; Wang, Yu-Tong; Zhao, Jin-Yun; Piao, Yun-Song
2018-05-01
Based on the effective field theory (EFT) of nonsingular cosmologies, we build a stable model, without the ghost and gradient instabilities, of bounce-inflation (inflation is preceded by a cosmological bounce). We perform a full simulation for the evolution of scalar perturbation, and find that the perturbation spectrum has a large-scale suppression (as expected), which is consistent with the power deficit of the cosmic microwave background (CMB) TT-spectrum at low multipoles, but unexpectedly, it also shows itself one marked lower valley. The depth of valley is relevant with the physics around the bounce scale, which is model-dependent.
Perturbative evaluation of the Thermal Wilson Loop
International Nuclear Information System (INIS)
Gava, E.; Jengo, R.
1981-06-01
The Thermal Wilson Loop 0 sup(β) dtauA 0 (tau, x-vector)>, representing an order parameter for the gauge theory and expected to be zero in the confining phase, is perturbatively evaluated up to the O(g 4 ) included for an SU(N) pure Yang-Mills theory. This evaluation should be meaningful at high temperature, β → 0. Its behaviour is discussed and a possible need for non-perturbative instanton-like contributions is pointed out. (author)
A generalized perturbation program for CANDU reactor
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)
1999-12-31
A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)
Pre-inflation physics and scalar perturbations
International Nuclear Information System (INIS)
Hirai, Shiro
2005-01-01
The effect of pre-inflation physics on the power spectrum of scalar perturbations is investigated. Considering various pre-inflation models with radiation-dominated or matter-dominated periods before inflation, the power spectra of curvature perturbations for large scales are calculated, and the spectral index and running spectral index are derived. It is shown that pre-inflation models in which the length of inflation is near 60 e-folds may reproduce some key properties implied by the Wilkinson microwave anisotropy probe data
Non-perturbative QCD and hadron physics
International Nuclear Information System (INIS)
Cobos-Martínez, J J
2016-01-01
A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Free-boundary perturbed MHD equilibria
International Nuclear Information System (INIS)
Nührenberg, C
2012-01-01
The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].
Death to perturbative QCD in exclusive processes?
Energy Technology Data Exchange (ETDEWEB)
Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)
1994-04-01
The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.
Perturbative and nonperturbative renormalization in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)
2010-03-15
We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)
A generalized perturbation program for CANDU reactor
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)
1998-12-31
A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)
Scaling violations and perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Barbieri, R.; d'Emilio, E.; Caneschi, L.; Curci, G.
1979-01-01
The authors try to understand the meaning of the recent data on scaling violations of the moments of the structure function F 3 measured in γ and anti γ deep inelastic scattering, and their relevance as a test of QCD. This is done by reducing to the minimum the theoretical machinery and prejudices and stressing the perturbative nature of the problem. This leads to a definition of the perturbation coupling constant αsub(s) (Q = 2.5 GeV) = 0.61 +- 0.06, in terms of which the corrective terms for all quantities computed so far turn out to be relatively small. (Auth.)
Non-Gaussianity from isocurvature perturbations
Energy Technology Data Exchange (ETDEWEB)
Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)
2008-11-15
We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.
A perturbative DFT approach for magnetic anisotropy
Energy Technology Data Exchange (ETDEWEB)
Khoo, Khoong Hong; Laskowski, Robert, E-mail: rolask@ihpc.a-star.edu.sg
2017-04-15
We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin–orbit Hamiltonian for selected spin polarizations, as in the conventional “force theorem” approach, we show that the effect can be cast into a redefined form of the spin–orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.
Contribution to coherent atom optics - Design of multiple wave devices
International Nuclear Information System (INIS)
Impens, F.
2008-03-01
The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)
Gauge-invariant perturbations in a spatially flat anisotropic universe
International Nuclear Information System (INIS)
Den, Mitsue.
1986-12-01
The gauge-invariant perturbations in a spatially flat anisotropic universe with an arbitrary dimension (= N) are studied. In a previous paper the equations for the perturbations with a wave vector k a in one of the axial directions were derived and their solutions were shown. In this paper the perturbations with k a in arbitrary directions are treated. The remarkable properties are that all three types (scalar, vector, and tensor) of perturbations are generally coupled, so that a density perturbation can be produced also by vector or tensor perturbations. The formulation is quite general, but the behavior of the perturbations is discussed in a simple case such that N = 4 and k a is orthogonal to one of the axial directions. In this case, the perturbations are divided into two groups which are dynamically decoupled from each other. The asymptotic behavior of the perturbations in the group containing the density perturbation is discussed. (author)
Theory and applications of atomic and ionic polarizabilities
Energy Technology Data Exchange (ETDEWEB)
Mitroy, J [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Safronova, M S [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Clark, Charles W, E-mail: jxm107@rsphysse.anu.edu.a, E-mail: msafrono@udel.ed, E-mail: charles.clark@nist.go [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8410 (United States)
2010-10-28
Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)
Theory and applications of atomic and ionic polarizabilities
International Nuclear Information System (INIS)
Mitroy, J; Safronova, M S; Clark, Charles W
2010-01-01
Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)
Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration
DEFF Research Database (Denmark)
Maciejewski, A.; Pasenkiewicz-Gierula, M.; Cramariuc, O.
2014-01-01
validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule....... In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Moller-Plesset perturbation theory (MP2), and (3...... one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM)....
Analytical theory for the nuclear level shift of hadronic atoms
International Nuclear Information System (INIS)
Kudryavtsev, A.E.; Lisin, V.I.; Popov, V.S.
1982-01-01
The spectrum problem in the Coulomb potential distorted at small distances is considered. Nuclear shifts of 3-levels in p anti p and Σ - p atoms are calculated. The probabilities of radiative transitions from p-states to the shifted s-states in hadronic atom are also given. It is shown that the reconstruction of atomic levels switches to oscillation regime when absorption increases. The limits of applicability of the perturbation theory in terms of the scattering length for different values of absorption is discussed. An exactly solvable model, Coulomb plus Yamaguchi potential, is considered
Atomic fountain and applications
International Nuclear Information System (INIS)
Rawat, H.S.
2000-01-01
An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed
International Nuclear Information System (INIS)
Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.
1992-01-01
Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)
International Nuclear Information System (INIS)
Pen'kov, F.M.
1998-01-01
The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example
Stable atomic hydrogen: Polarized atomic beam source
International Nuclear Information System (INIS)
Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.
1984-01-01
We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)
Time reversal violating nuclear polarizability and atomic electric dipole moment
International Nuclear Information System (INIS)
Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.
2000-01-01
Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation
Generation of Bell, NOON and W states via atom interferometry
Energy Technology Data Exchange (ETDEWEB)
Islam, Rameez-ul; Saif, Farhan [Department of Electronics, Quaid-i-Azam University, Islamabad (Pakistan); Khosa, Ashfaq H [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2008-02-14
We propose atom interferometric techniques for the generation of Bell, NOON and W states of an electromagnetic field in high-Q cavities. The fundamental constituent of these techniques is off-resonant Bragg diffraction of atomic de Broglie waves. We show good success probabilities for these schemes under the currently available experimental environment of atom interferometry.
Casimir interaction between gas media of excited atoms
International Nuclear Information System (INIS)
Sherkunov, Yury
2007-01-01
The retarded dispersion interaction (Casimir interaction) between two dilute dielectric media at high temperatures is considered. The excited atoms are taken into account. It is shown that the perturbation technique cannot be applied to this problem due to divergence of integrals. A non-perturbative approach based on kinetic Green functions is implemented. We consider the interaction between two atoms (one of them is excited) embedded in an absorbing dielectric medium. We take into account the possible absorption of photons in the medium, which solves the problem of divergence. The force between two plane dilute dielectric media is calculated at pair interaction approximation. We show that the result of quantum electrodynamics differs from the Lifshitz formula for dilute gas media at high temperatures (if the number of excited atoms is significant). According to quantum electrodynamics, the interaction may be either attractive or repulsive depending on the temperature and the density numbers of the media
Reduction of some perturbed Keplerian problems
Energy Technology Data Exchange (ETDEWEB)
Inarrea, Manuel [Universidad de La Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain)] e-mail: vlancha@dmc.unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain); Salas, J. Pablo [Universidad de La Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain)
2006-01-01
Perturbed Hamiltonian Keplerian systems enjoying some discrete and continuous symmetries can be brought to a one degree of freedom system containing the main qualitative features of the original one. This reduced system is defined in a compact set of the plane where the qualitative dynamics can be studied in a systematic way.
CIRCUMSTELLAR DEBRIS DISKS: DIAGNOSING THE UNSEEN PERTURBER
Energy Technology Data Exchange (ETDEWEB)
Nesvold, Erika R. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Rd., Washington, DC 20015 (United States); Naoz, Smadar; Vican, Laura [Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Farr, Will M. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom)
2016-07-20
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.
Perturbative renormalization of QED via flow equations
International Nuclear Information System (INIS)
Keller, G.; Kopper, C.
1991-01-01
We prove the perturbative renormalizability of euclidean QED 4 with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.)
Perturbative renormalization of QED via flow equations
Energy Technology Data Exchange (ETDEWEB)
Keller, G. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany)); Kopper, C. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany) Inst. fuer Theoretische Physik, Univ. Goettingen (Germany))
1991-12-19
We prove the perturbative renormalizability of euclidean QED{sub 4} with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.).
Perturbation of operators and approximation of spectrum
Indian Academy of Sciences (India)
outside the bounds of essential spectrum of A(x) can be approximated ... some perturbed discrete Schrödinger operators treating them as block ...... particular, one may think of estimating the spectrum and spectral gaps of Schrödinger.
On the divergences of inflationary superhorizon perturbations
Energy Technology Data Exchange (ETDEWEB)
Enqvist, K; Nurmi, S [Physics Department, University of Helsinki, PO Box 64, Helsinki, FIN-00014 (Finland); Podolsky, D; Rigopoulos, G I, E-mail: kari.enqvist@helsinki.fi, E-mail: sami.nurmi@helsinki.fi, E-mail: dmitry.podolsky@helsinki.fi, E-mail: gerasimos.rigopoulos@helsinki.fi [Helsinki Institute of Physics, University of Helsinki, PO Box 64, Helsinki, FIN-00014 (Finland)
2008-04-15
We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.
Effective field theory of cosmological perturbations
International Nuclear Information System (INIS)
Piazza, Federico; Vernizzi, Filippo
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)
Modification of the perturbative QCD towards confinement
International Nuclear Information System (INIS)
Arodz, H.
1981-01-01
Modification of the low momentum behaviour of the perturbative SU(2) gauge theory is proposed. The modification is closely related (although not equivalent) to a nonstandard choice of boundary condition for the Euclidean 2-point gluonic Green function. In the resulting theory already single graphs lead to the confining potential between heavy, static quarks, V(r) = ar 2 for r → infinity. (author)
Geometric perturbation theory and plasma physics
International Nuclear Information System (INIS)
Omohundro, S.M.
1985-01-01
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations
Quenched Chiral Perturbation Theory to one loop
Colangelo, G.; Pallante, E.
The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral
Reduction of some perturbed Keplerian problems
International Nuclear Information System (INIS)
Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Salas, J. Pablo; Yanguas, Patricia
2006-01-01
Perturbed Hamiltonian Keplerian systems enjoying some discrete and continuous symmetries can be brought to a one degree of freedom system containing the main qualitative features of the original one. This reduced system is defined in a compact set of the plane where the qualitative dynamics can be studied in a systematic way
Perturbation theory for arbitrary coupling strength?
Mahapatra, Bimal P.; Pradhan, Noubihary
2018-03-01
We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.
Higher order corrections in perturbative quantum chromodynamics
Indian Academy of Sciences (India)
Since the discovery of asymptotic freedom in non-abelian gauge field theories, like quan- tum chromodynamics (QCD), many perturbative calculations have been performed to ..... The integral above appears in the partial integration with respect to the momentum. &½ of the expression below (see figure 2). ¼. Т&½. ґѕπµТ.
Stratospheric HTO perturbations 1980-1983
Mason, A. S.
1985-02-01
Three perturbations of the stratospheric tritiated water burden have occurred. An atmospheric nuclear detonation in 1980 injected about 2.1 MCi. The massive eruptions of the volcano El Chichon may have contributed to a doubling of the removal rate in 1982. An unusually large wintertime exchange with the upper stratosphere may have occurred between 1982 and 1983.
Perturbed soliton excitations in inhomogeneous DNA
International Nuclear Information System (INIS)
Daniel, M.; Vasumathi, V.
2005-05-01
We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)
Where does cosmological perturbation theory break down?
International Nuclear Information System (INIS)
Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark
2009-01-01
It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.
Analytic continuation and perturbative expansions in QCD
Czech Academy of Sciences Publication Activity Database
Caprini, I.; Fischer, Jan
2002-01-01
Roč. 24, - (2002), s. 127-135 ISSN 1434-6044 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : perturbative expansion * quantum chromodynamics * infrared ambiguity * essential singularities Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.162, year: 2002
Privacy Is Become with, Data Perturbation
Singh, Er. Niranjan; Singhai, Niky
2011-06-01
Privacy is becoming an increasingly important issue in many data mining applications that deal with health care, security, finance, behavior and other types of sensitive data. Is particularly becoming important in counterterrorism and homeland security-related applications. We touch upon several techniques of masking the data, namely random distortion, including the uniform and Gaussian noise, applied to the data in order to protect it. These perturbation schemes are equivalent to additive perturbation after the logarithmic Transformation. Due to the large volume of research in deriving private information from the additive noise perturbed data, the security of these perturbation schemes is questionable Many artificial intelligence and statistical methods exist for data analysis interpretation, Identifying and measuring the interestingness of patterns and rules discovered, or to be discovered is essential for the evaluation of the mined knowledge and the KDD process as a whole. While some concrete measurements exist, assessing the interestingness of discovered knowledge is still an important research issue. As the tool for the algorithm implementations we chose the language of choice in industrial world MATLAB.
Characterizing heterogeneous cellular responses to perturbations.
Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J
2008-12-09
Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.
Perturbations of normally solvable nonlinear operators, I
Directory of Open Access Journals (Sweden)
William O. Ray
1985-01-01
Full Text Available Let X and Y be Banach spaces and let ℱ and be Gateaux differentiable mappings from X to Y In this note we study when the operator ℱ+ is surjective for sufficiently small perturbations of a surjective operator ℱ The methods extend previous results in the area of normal solvability for nonlinear operators.
Transport perturbation theory in nuclear reactor analysis
International Nuclear Information System (INIS)
Nishigori, Takeo; Takeda, Toshikazu; Selvi, S.
1985-01-01
Perturbation theory is formulated on the basis of transport theory to obtain a formula for the reactivity changes due to possible variations of cross sections. Useful applications to cell homogenization are presented for the whole core calculation in transport and in diffusion theories. (author)
Mechanical perturbation control of cardiac alternans
Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan
2018-05-01
Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.
Non-perturbative Heavy Quark Effective Theory
DEFF Research Database (Denmark)
Della Morte, Michele; Heitger, Jochen; Simma, Hubert
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B...
A perturbed martingale approach to global optimization
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Saikat [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Roy, Debasish, E-mail: royd@civil.iisc.ernet.in [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Vasu, Ram Mohan [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)
2014-08-01
A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as ‘coalescence’ and ‘scrambling’. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. - Highlights: • Evolutionary global optimization is posed as a perturbed martingale problem. • Resulting search via additive updates is a generalization over Gateaux derivatives. • Additional layers of random perturbation help avoid trapping at local extrema. • The approach ensures efficient design space exploration and high accuracy. • The method is numerically assessed via parameter recovery of chaotic oscillators.
Proprioceptive perturbations of stability during gait
Duysens, J.; Beerepoot, V.P.; Veltink, Petrus H.; Weerdesteyn, V.; Smits-Engelsman, B.C.M.
2008-01-01
Through recent studies, the role of proprioceptors in reactions to perturbations during gait has been finally somewhat better understood. The input from spindle afferents has been investigated with tendon taps, vibration and other forms of muscle stretches, including some resembling natural
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-01-01
these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing
Gravitational clustering to all perturbative orders
International Nuclear Information System (INIS)
Abdalla, E.; Mohayaee, R.
1999-04-01
We derive the time evolution of the density contrast to all orders of perturbation theory, by solving the Einstein equation for scale-invariant fluctuations. These fluctuations are represented by an infinite series in inverse powers of the radial parameter. In addition to the standard growing modes, we find infinitely many more new growing modes for open and closed universes. (author)
Effective field theory of cosmological perturbations
Piazza, Federico; Vernizzi, Filippo
2013-11-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.
Multiplicative perturbations of local C-semigroups
Indian Academy of Sciences (India)
C-semigroup S(·) may not be densely defined and the perturbation operator B is a ... rems for local C-semigroups on X with densely defined generators. ...... [8] Shaw S-Y and Kuo C-C, Generation of local C-semigroups and solvability of the ...
On-Shell Methods in Perturbative QCD
International Nuclear Information System (INIS)
Bern, Zvi; Dixon, Lance J.; Kosower, David A.
2007-01-01
We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider
Investigation of collisional excitation-transfer processes in a plasma by laser perturbation method
International Nuclear Information System (INIS)
Sakurai, Takeki
1983-01-01
The theoretical background and the experimental method of the laser perturbation method applied to the study of collisional excitation transfer process in plasma are explained. The atomic density at some specified level can be evaluated theoretically. By using the theoretical results and the experimentally obtained data, the total attenuation probability, the collisional transfer probability and natural emission probability were estimated. For the experiments, continuous wave laser (cw) and pulse laser are employed. It is possible by using pulse dye laser to observe the attenuation curve directly, and to bring in resonance to any atomic spectra. At the beginning, the experimental studies were made on He-Ne discharge. The pulse dye laser has been used for the excitation of alkali atoms. The first application of pulse laser to the study of plasma physics was the study on He. The cross section of disalignment has also been studied by the laser perturbation. The alignment of atoms, step and cascade transfer, the confinement of radiation and optogalvanic effect are discussed in this paper. (Kato, T.)
Non-hard sphere thermodynamic perturbation theory.
Zhou, Shiqi
2011-08-21
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics
Cosmological perturbations on the phantom brane
Energy Technology Data Exchange (ETDEWEB)
Bag, Satadru; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Viznyuk, Alexander; Shtanov, Yuri, E-mail: satadru@iucaa.in, E-mail: viznyuk@bitp.kiev.ua, E-mail: shtanov@bitp.kiev.ua, E-mail: varun@iucaa.in [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)
2016-07-01
We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, w {sub eff} < −1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the 'Weyl fluid' or 'dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch ( z ∼< 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.
Growth of matter perturbation in quintessence cosmology
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
Unique Fock quantization of scalar cosmological perturbations
Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.
2012-05-01
We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.
Coulomb states in atoms and solids
International Nuclear Information System (INIS)
Ortalano, D.M.
1988-05-01
In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs
Advances in atomic spectroscopy
Sneddon, J
2000-01-01
This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...
Atomic and molecular manipulation
Mayne, Andrew J
2011-01-01
Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...
Microfabricated Waveguide Atom Traps.
Energy Technology Data Exchange (ETDEWEB)
Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.
Progress in atomic spectroscopy
International Nuclear Information System (INIS)
Beyer, H.J.; Kleinpoppen, H.
1984-01-01
This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes
Effects of an electric field on the confined hydrogen atom in a parabolic potential well
International Nuclear Information System (INIS)
Xie Wenfang
2009-01-01
Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.
Atomic Fisher information versus atomic number
International Nuclear Information System (INIS)
Nagy, A.; Sen, K.D.
2006-01-01
It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number
Proposed general amendments to the atomic energy control regulations
International Nuclear Information System (INIS)
1986-01-01
Canada's Atomic Energy Control Act defines the powers and responsibilities of the Atomic Energy Control Board (AECB). Among these is to make regulations to control the development, application and use of atomic energy. In these proposed general amendments to the Atomic Energy Control Regulations substantial changes are proposed in the designation of the authority of AECB staff, exemptions from licensing, international safeguards, duties of licensees and atomic radiation workers, security of information, and provision for hearings. The scope of the control of atomic energy has been redefined as relating to matters of health, safety, security, international safeguards, and the protection of the environment
Theory of collisional excitation transition between Rydberg states of atoms. Non-inertial mechanism
International Nuclear Information System (INIS)
Kaulakys, B.P.
1982-01-01
The transitions between highly states of an atom due to the collision of its core with another atom are considered. The cross sections of the change of highly excited electron angular momentum, in the case of the transitions when the main quantum number is constant, are expressed in terms of transport cross sections of the perturbing atom scattering on the ion of Rydberg atom. It is shown that the cross sections of the momentum mixing at thermal rapidities are lower than the cross sections of the atom-ion elastic scattering
Atomic-fluorescence spectrophotometry
International Nuclear Information System (INIS)
Bakhturova, N.F.; Yudelevich, I.G.
1975-01-01
Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given
Atoms in molecules, an axiomatic approach. I. Maximum transferability
Ayers, Paul W.
2000-12-01
Central to chemistry is the concept of transferability: the idea that atoms and functional groups retain certain characteristic properties in a wide variety of environments. Providing a completely satisfactory mathematical basis for the concept of atoms in molecules, however, has proved difficult. The present article pursues an axiomatic basis for the concept of an atom within a molecule, with particular emphasis devoted to the definition of transferability and the atomic description of Hirshfeld.
Dynamical Response of Networks Under External Perturbations: Exact Results
Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.
2015-04-01
We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.
Perturbation expansions of stochastic wavefunctions for open quantum systems
Ke, Yaling; Zhao, Yi
2017-11-01
Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.
Evolution of the curvature perturbations during warm inflation
International Nuclear Information System (INIS)
Matsuda, Tomohiro
2009-01-01
This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Non-adiabatic perturbations in multi-component perfect fluids
International Nuclear Information System (INIS)
Koshelev, N.A.
2011-01-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models
Perturbation Theory for Open Two-Level Nonlinear Quantum Systems
International Nuclear Information System (INIS)
Zhang Zhijie; Jiang Dongguang; Wang Wei
2011-01-01
Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)
Experimental investigations of an air curtain device subjected to external perturbations
International Nuclear Information System (INIS)
Havet, M.; Rouaud, O.; Solliec, C.
2003-01-01
Although plane air jets are often used as dynamic barriers to separate two environments, only a few works have explored their sensitivity to perturbations. We investigated the influence of sharp changes of pressure on the flow field of a device designed to avoid air-borne contamination. Laser tomography and tracer gas experiments clearly indicate that the air curtain is strongly sensitive to perturbations such as draughts. The results highlight that the control of air curtains used in open protection devices should be further investigated
Optical Microcavity: Sensing down to Single Molecules and Atoms
Directory of Open Access Journals (Sweden)
Shu-Yu Su
2011-02-01
Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.
International Nuclear Information System (INIS)
Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill
2015-01-01
Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)
Perturbative QCD and electromagnetic form factors
International Nuclear Information System (INIS)
Carlson, C.E.; Gross, F.
1987-01-01
We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs
Cosmological perturbations in transient phantom inflation scenarios
Energy Technology Data Exchange (ETDEWEB)
Richarte, Martin G. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil); Universidad de Buenos Aires, Ciudad Universitaria 1428, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Kremer, Gilberto M. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil)
2017-01-15
We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)
Perturbative search for dead-end CFTs
International Nuclear Information System (INIS)
Nakayama, Yu
2015-01-01
To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as O(10"−"5) and robust against the perturbative corrections. These classes of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Thus, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.
Theory of cosmological perturbations with cuscuton
Energy Technology Data Exchange (ETDEWEB)
Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1 (Canada)
2017-07-01
This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.
Perturbative Universality in Soft Particle Production
Khoze, V A; Ochs, Wolfgang; Khoze, Valery A.; Lupia, Sergio; Ochs, Wolfgang
1998-01-01
The spectrum of partons in a QCD jet becomes independent of the primary energy in the low momentum limit. This follows within the perturbative QCD from the colour coherence in soft gluon branching. Remarkably, the hadrons follow such behaviour closely, suggesting the parton hadron duality picture to be appropriate also for the low momentum particles. More generally, this scaling property holds for particles of low transverse and arbitrary longitudinal momentum, which explains an old experimental observation (``fan invariance''). Further tests of the perturbatively based picture for soft particle production are proposed for three-jet events in e+e- annihilation and di-jet production events in gamma p, gamma-gamma and p\\bar p collisions. They are based upon the difference in the intensity of the soft radiation from primary q\\bar q and gg antennae.
Small-sample-worth perturbation methods
International Nuclear Information System (INIS)
1985-01-01
It has been assumed that the perturbed region, R/sub p/, is large enough so that: (1) even without a great deal of biasing there is a substantial probability that an average source-neutron will enter it; and (2) once having entered, the neutron is likely to make several collisions in R/sub p/ during its lifetime. Unfortunately neither assumption is valid for the typical configurations one encounters in small-sample-worth experiments. In such experiments one measures the reactivity change which is induced when a very small void in a critical assembly is filled with a sample of some test-material. Only a minute fraction of the fission-source neutrons ever gets into the sample and, of those neutrons that do, most emerge uncollided. Monte Carlo small-sample perturbations computations are described
A primer for Chiral Perturbative Theory
International Nuclear Information System (INIS)
Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
Infrared problems in field perturbation theory
International Nuclear Information System (INIS)
David, Francois.
1982-12-01
The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr
A non-perturbative operator product expansion
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.; Goeckeler, M.
2009-10-01
Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photonmomenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This overdetermines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition. (orig.)
Stability of gradient semigroups under perturbations
Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.
2011-07-01
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).