WorldWideScience

Sample records for personnel dosimetry devices

  1. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  2. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  3. Personnel radiation dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    The book contains the 21 technical papers presented at the Technical Committee Meeting to Elaborate Procedures and Data for the Intercomparison of Personnel Dosimeters organizaed by the IAEA on 22-26 April 1985. A separate abstract was prepared for each of these papers. A list of areas in which additional research and development work is needed and recommendations for an IAEA-sponsored intercomparison program on personnel dosimetry is also included

  4. Personnel photographic film dosimetry

    International Nuclear Information System (INIS)

    Keirim-Markus, I.B.

    1981-01-01

    Technology of personnel photographic film dosimetry (PPD) based on the photographic effect of ionizing radiation is described briefly. Kinds of roentgen films used in PPD method are enumerated, compositions of a developer and fixing agents for these films are given [ru

  5. Modern methods of personnel dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.; Herrmann, D.; Kiesewetter, W.

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  6. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1982-01-01

    The measurement of neutron exposures to personnel is an issue that has received increased attention in the last few years. It is important to consider key aspects of the whole dosimetry system when developing dose estimates. This begins with selection of proper dosimeters and survey instruments, and extends through the calibration methods. One must match the spectral response and sensitivity of the dosimeter to the spectral characteristics of the neutron fields. Threshold detectors that are insensitive to large fractions of neutrons in the lower energy portion of reactor spectra should be avoided. Use of two or more detectors with responses that complement each other will improve measurement quality. It is important to understand the spectral response of survey instruments, so that spectra which result in significant overresponse do not lead to overestimation of dose. Calibration sources that do not match operational field spectra can contribute to highly erroneous results. In those situations, in-field calibration techniques should be employed. Although some detection developments have been made in recent years, a lot can be done with existing technology until fully satisfactory, long term solutions are obtained

  7. Personnel dosimetry in fluoroscopy

    International Nuclear Information System (INIS)

    Baechler, S.; Gardon, M.; Bochud, F.; Sans-Merce, M.; Verdun, F.R.; Trueb, Ph.

    2006-01-01

    Physicians who frequently perform fluoroscopic examinations are exposed to high intensity radiation fields and should use protective equipment such as lead aprons, thyroid shields and lead glasses. Standard individual dosimeters are worn under the lead apron in order to measure a dose that is representative of effective dose. However, large parts of the body are not protected by the apron (e.g. arms, head). Given a protection factor for the apron of about 100, an important irradiation of a body part not under the apron could go undetected. A study was conducted to analyse this situation by measuring dose using two dosimeters, one over-apron and one under-apron, for radiologists performing frequent fluoroscopic examinations. Measurements made over six-month period show that, indeed, the use of a single under-apron dosimeter is inadequate for personnel monitoring. Large doses to the head and arms are going undetected by this technique. A method for weighting the doses measured by under- and over-apron dosimeters to obtain a value better representative of the effective dose will be proposed. (authors)

  8. Technical guidelines for personnel dosimetry calibrations

    International Nuclear Information System (INIS)

    Roberson, P.L.; Fox, R.A.; Hadley, R.T.; Holbrook, K.L.; Hooker, C.D.; McDonald, J.C.

    1983-01-01

    A base of technical information has been acquire and used to evaluate the calibration, design, and performance of selected personnel systems in use at Department of Energy (DOE) facilites. A technical document was prepared to guide DOE and DOE contractors in selecting and evaluating personnel dosimetry systems and calibration. A parallel effort was initiated to intercompare the adiological calibrations standards used to calibrate DOE personnel dosimeters

  9. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  10. Personnel radiation dosimetry symposium: program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  11. Personnel radiation dosimetry symposium: program and abstracts

    International Nuclear Information System (INIS)

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry

  12. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  13. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  14. Background dose subtraction in personnel dosimetry

    International Nuclear Information System (INIS)

    Picazo, T.; Llorca, N.; Alabau, J.

    1997-01-01

    In this paper it is proposed to consider the mode of the frequency distribution of the low dose dosemeters from each clinic that uses X rays as the background environmental dose that should be subtracted from the personnel dosimetry to evaluate the doses due to practice. The problems and advantages of this indirect method to estimate the environmental background dose are discussed. The results for 60 towns are presented. (author)

  15. Eleventh DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    1991-01-01

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ''The 1990 Recommendations of the ICRP and their Biological Background.'' The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers

  16. The Seibersdorf TL Personnel Dosimetry Service

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-11-01

    Since 1976 the Department for Radiation Protection of the Austrian Research Centre Seibersdorf has been operating a TLD Personnel Monitoring Service, which presently covers about 18,000 radiation workers in Austria, with monthly monitoring periods. We have been the first accredited monitoring service in Europe, which fully converted from film dosimetry to TLD. From the beginning up to 1991 the service was based on three automated TLD systems Model 2271 from HARSHAW, USA. After extensive testing and comparisons, since almost four years now, the monitoring service has been operating on two HARSHAW 8800 systems, which are described in more detail below. (author)

  17. The Seibersdorf TL Personnel Dosimetry Service

    Energy Technology Data Exchange (ETDEWEB)

    Duftschmid, K E [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1994-11-01

    Since 1976 the Department for Radiation Protection of the Austrian Research Centre Seibersdorf has been operating a TLD Personnel Monitoring Service, which presently covers about 18,000 radiation workers in Austria, with monthly monitoring periods. We have been the first accredited monitoring service in Europe, which fully converted from film dosimetry to TLD. From the beginning up to 1991 the service was based on three automated TLD systems Model 2271 from HARSHAW, USA. After extensive testing and comparisons, since almost four years now, the monitoring service has been operating on two HARSHAW 8800 systems, which are described in more detail below. (author).

  18. Internal dosimetry for occupationally exposed personnel in nuclear medicine

    International Nuclear Information System (INIS)

    Garcia, M.T.; Alfaro, L.M.M.; Angeles, C.A.

    2013-01-01

    Internal dosimetry plays an important role in nuclear medicine dosimetry control of personnel occupationally exposed, and that in recent years there has been a large increase in the use of radionuclides both in medical diagnosis as radiotherapy. But currently, in Mexico and in many parts of the world, this internal dosimetry control is not performed. The Instituto Nacional de lnvestigaciones Nucleares de Mexico (ININ) together with the Centro Oncologico de Toluca (ISEMMYM) have developed a simple and feasible methodology for monitoring of personnel working in these facilities. It was aimed to carry out the dosimetry of the personnel, due to the incorporation of I-131, using the spectrometric devices that the hospital has, a gamma camera. The first step in this methodology was to make a thyroid phantom to meet the specifications of the ninth ANSI. This phantom is compared under controlled conditions with RMC- II phantom used for system calibration of the ININ internal dosimetry (ACCUSCAN - Ll), and with another phantom developed in Brazil with ANSI specifications, in order to determine the variations in measurements due to the density of the material of each of the phantoms and adjust to the system ACCUSCAN, already certificate. Furthermore, necessary counts were performed with the gamma camera of the phantom developed at ININ, with a standard source of 133 Ba which simulates the energy of 131 I. With these data, were determined the counting efficiencies for a distance of 15 to 20 cm between the surface of the phantom and the the plate of the detectors. Another important aspect was to determine the lower limit of detection (LLD). In this paper we present the results obtained from the detectors calibration of the gamma camera of the hospital.

  19. Implications of ISO 9000 for personnel dosimetry

    International Nuclear Information System (INIS)

    Yoder, R.C.

    1995-01-01

    Landauer, Inc. has gained approval to provide personnel dosimetry services in several countries. Each experiene reflects the different concerns adopted by national approval agencies. None have adopted ISO 9000 registration as evidence of a suitable quality system of management. Instead, each organization has prepared its own set of requirements with no provisions for recognizing the results of performance tests or audits conducted by other approval organizations. As ISO 9000 has become a communication symbol for commercial organizations dealing with each other, it has not been similarly viewed by radiation regulation bodies. A key reason arises from a tradition to regulate bodies. A key reason arises from a tradition to regulate, not promote, international trade, not encourage innovation, nor foster economic competition. A second reason is the inability to separate the technical requirements from quality assurance. ISO 9000 may become useful once the national technical organizations learn to trust those of other countries

  20. Characterization of a thermoluminiscence personnel dosimetry system

    International Nuclear Information System (INIS)

    Vazquez Lopez, C.; Saez, J.C.; Labarta, T.

    1989-01-01

    Various tests carried out to characterize a Thermoluminiscence Personnel Dosimetry Automatic System, based on the optical heating of a multielement dosemeter are presented. The dosemeter consists of Lithium Borate (Copper) and Calcium Sulphate (Thallium) phosphors. The Dosimetric System shows some outstanding features, such as its simplicity (no aditional annealing procedures are required), its short reading cycle (160 TLD per hour and its data handling capabilities (RS-232C and Parallel Printer digital ports and four analigic outputs for Glow Curve Adquisition). The tests performed have been designed to conform with the different existing international Standards and Recommendations (ANSI: N13.11-1983; IEC:Draft 45B-1987, ISO:DP 8034-1984) The new radiological quantities (I.C.R.U.-19855) have been used for calibration. The results obtained (linearity, repeatibility, detection threshold, residue, stability of stored information, etc) show the optimum performance of this dosimetric system in its aplication to routine personnel dose monitoring. Based on the dosemeter energy discriminating response, an algorithm for dose assesment has been developed. The method allows personal dose calculations within 10% and gives valuable information on the quality and energy of incident radiation, for photons from 30 to 2000 keV and for Beta penetrating radiation (Sr/Y, U). (Author)

  1. Performing personnel dosimetry investigations and records quality assurance

    International Nuclear Information System (INIS)

    Perle, S.C.

    2002-01-01

    Radiation Safety Officers (RSOs) sometimes face situations in which personnel dosimetry estimates are required after dosimeters issued to radiation workers (film or TLD badges, extremity dosimeters, etc.) are lost or damaged before processing. This article was prepared to help those involved with personnel dosimetry investigations became aquatinted with this process. A factor that contributes to the anxiety of those unfamiliar with dosimetry investigations is the lack of published guidance available in this subject. More printed resources are needed to help radiation safety professionals familiarize themselves and understand personnel dosimetry investigations. Topics discussed in this presentation include the justification of performing dosimetry investigations, recommendations on how to perform them and the advantages of performing such investigations

  2. Tenth ORNL Personnel Dosimetry Intercomparison Study

    International Nuclear Information System (INIS)

    Swaja, R.E.; Chou, T.L.; Sims, C.S.; Greene, R.T.

    1985-03-01

    The Tenth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory during April 9-11, 1984. Dosemeter badges from 31 participating organizations were mounted on 40cm Lucite phantoms and exposed to a range of dose equivalents which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the only source of radiation for eight of the ten irradiations which included a low (approx. 0.50 mSv) and high (approx. 10.00 mSv) neutron dose equivalent run for each of four shield conditions. Two irradiations were also conducted for which concrete- and Lucite-shield reactor irradiations were gamma-enhanced using a 137 Cs source. Results indicated that some participants had difficulty obtaining measurable indication of neutron and gamma exposures at dose equivalents less than about 0.50 mSv and 0.20 mSv, respectively. Albedo dosemeters provided the best overall accuracy and precision for the neutron measurements. Direct interaction TLD systems showed significant variation in accuracy with incident spectrum, and threshold neutron dosemeters (film and recoil track) underestimated reference values by more than 50%. Gamma dose equivalents estimated in the mixed fields were higher than reference values with TL gamma dosemeters generally yielding more accurate results than film. Under the conditions of this study in which participants had information concerning exposure conditions and radiation field characteristics prior to dosemeter evaluation, only slightly more than half of all reported results met regulatory standards for neutron and gamma accuracy. 19 refs., 2 figs., 29 tabs

  3. Current personnel dosimetry practices at DOE facilities

    International Nuclear Information System (INIS)

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository

  4. Personnel dosimetry: specialized industrial services. Jan 1997-Aug 2001

    International Nuclear Information System (INIS)

    Guillen, J.A.

    2001-09-01

    The purpose of this report is to evaluate data from personnel dosimetry of the Servicios Industriales Especializados, that is a licensee with gamma sources for non destructive testing. Data of the period Jan-97 to Aug-01 are evaluated in terms of collective doses. This report was made according to the national regulations that stablish to control that annual limits and reference levels in personnel dosimetry must be controlled

  5. Personnel radiation monitoring by thermoluminescence dosimetry (2000-2001)

    International Nuclear Information System (INIS)

    Mi-Cho-Cho, Daw; Hla-Hla-Win, Daw; Thin-Thin-Kraing

    2001-01-01

    Thermoluminescence dosimetry service was introduced in 1991. Personnel who exposed directly or indirectly to radiation is monitored by thermoluminescent dosimeter. TL materials used for thermoluminescent dosimeter are in the form of thin disc. Personnel whole-body and extremity doses are measured by thermoluminescence dosimetry. The Harshaw Model 4500 TLD reader and Vinten 654E TLD reader are used for TLD evaluation. At present about 600 radiation workers are provided with TLD for routine monitoring. It was found that most personnel had received within permissible dose recommended by the International Commission on Radiological Protection (ICRP). (author)

  6. Tenth DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this workshop is to promote the international exchange of information on neutron dosimetry. The development of an accurate real-time dosemeter is an immediate need which must be met. Assessment of the neutron dose equivalent at low doses with a reasonable degree of accuracy must be accomplished to provide validity to exposure records. These and other aspects of personal neutron dosimetry are discussed. Separate abstracts have been prepared for each paper for inclusion in the Energy Data Base

  7. The personnel dosimetry record keeping system at AEE Winfrith

    International Nuclear Information System (INIS)

    Gill, D.W.

    1979-09-01

    Since May 1978 the exposure of personnel to external radiation has been assessed by Thermoluminescent Dosimetry, (TLD). The dosemeter consists of a TLD card similar to that used by the National Radiological Protection Board, held in a plastic badge designed at AEE Winfrith, and used in conjunction with a D A Pitman Ltd Type 605 Automatic Reader. The report describes the dosemeter, the operation of the dosimetry service and the system for maintaining a computerised record keeping system. (author)

  8. Determining the lower limit of detection for personnel dosimetry systems

    International Nuclear Information System (INIS)

    Roberson, P.L.; Carlson, R.D.

    1992-01-01

    A simple method for determining the lower limit of detection (LLD) for personnel dosimetry systems is described. The method relies on the definition of a critical level and a detection level. The critical level is the signal level above which a result has a small probability of being due to a fluctuation of the background. All results below the critical level should not be reported as an indication of a positive result. The detection level is the net signal level (i.e., dose received) above which there is a high confidence that a true reading will be detected and reported as a qualitatively positive result. The detection level may be identified as the LLD. A simple formula is derived to allow the calculation of the LLD under various conditions. This type of formula is being used by the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry. Participants in either the National Voluntary Laboratory Accreditation Program (NVLAP) for personnel dosimetry or DOELAP can use performance test results along with a measurement of background levels to estimate the LLDs for their dosimetry system. As long as they maintain their dosimetry system such that the LLDs are less than half the lower limit of the NVLAP or DOELAP test exposure ranges, dosimetry laboratories can avoid testing failures due to poor performance at very low exposures

  9. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-01-01

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm 2 /mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90 0 . This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs

  10. TLD personnel dosimetry and its relationship with the radiodiagnostic training

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Gaona C, E.

    2002-01-01

    The personnel dosimetry and the training in radiological protection in radiodiagnostic in Mexico before 1997 were almost nonexistent except few services of public and private radiology, we can to say that the personnel dosimetry and the obligatory training was born in the year 1997, together with the present Mexican Official Standards in radiology. This study has the purpose to make an evaluation of the personnel dosimetry of 110 radiology services distributed in the Mexican Republic for the year 2001 and to estimate the annual and bimonthly mean doses, as well as its trust intervals and its relationships with the personnel training in radiological protection by means of a sampling that was realized in two stages (1997 and 2000) in the metropolitan area of Mexico City. The results show that the received doses by the medical and technical personnel in the participating radiology services are in the 0.03 mSv and 0.94 mSv interval and the mean is 0.25 mSv. The estimated annual personnel dose would be in the 0.18 mSv to 5.64 mSv interval, which are values very lower to the annual dose limit that is 50 mSv and its magnitude is similar to the effective annual dose by natural background radiation. In the first stage in training was found that there is not a significant difference in the response frequencies among the medical and technical personnel with a p < 0.05. The 52% of the occupational exposure personnel of radiology uses dosemeter, but only 17% of them know the dose reports. the 15.8% of personnel considers that dosemeter protects against radiation and only 16.5% knows the annual maximum permissible dose for stochastic effects. The second stage, the results shown that there is a significant difference in the response of frequencies among medical and technical personnel, the same results which are obtained for members and non members of a professional association with a p < 0.05. The 38% has personnel dosimetry, the 19% knows the principles of radiological

  11. Evaluation of Personnel Dosimetry data in Guatemala

    International Nuclear Information System (INIS)

    Guillen, J.A.

    2002-01-01

    The purpose of this report is to present the evaluated data from external exposures of 1268 radiation workers in Guatemala carried out in the period of 1997-2000. The collective dose in medicine, industry and other applications shown a tendency to increase in the period of study, radiology is the practice that shown a trend to decrease, that could be explained as a result of inspections and personnel training carried out in this practice

  12. Personnel dosimetry methods introduced in the Czechoslovak national laboratories

    International Nuclear Information System (INIS)

    Trousil, J.; Singer, J.; Kokta, L.; Prouza, Z.

    1979-01-01

    Personnel dosimetry methods are described that were developed in the Institute for Research, Production and Application of Radioisotopes and that have been or will be introduced in the national personnel dosimetry service. In Czechoslovakia, workers exposed to a radiation risk are divided into two groups, according to the level of the risk. The criterion is the possibility of exceeding one tenth of the MPD. For the higher risk group, a complex dose meter is usually used for dosimetry of photon and beta radiation; it contains a film dose meter and a radiothermoluminescent (RTL) glass dose meter. The RTL glass dose meter also serves as an accident dose meter. For neutron dosimetry, a dose meter comprising a solid-state track detector in combination with fissionable foils has been introduced. For accident dosimetry, a silicon diode of Czechoslovak production is used. For the lower risk group, only the introduction of an RTL dose meter is foreseen. There will be a three month control period; for neutron dosimetry, the track detector in combination with fissionable foils is retained. For measurements of hand doses, a themoluminescent ring dose meter has been introduced. The dose meters are described, giving information on the types of detectors employed, measurement techniques and descriptions of the basic characteristics of the instruments, their basic dosimetric parameters and the dose and energy ranges which can be measured. The results of international comparisons are presented; these have served to confirm the measurement precision. In conclusion, some questions of dose-meter calibration are summarized, and the problems of dose measurement in mixed fields of neutrons and gamma rays are discussed. (author)

  13. Report on the Personnel Dosimetry at AB Atomenergi during 1965

    International Nuclear Information System (INIS)

    Edvardsson, K.A.

    1966-10-01

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1965. No doses exceeding the recommendations of ICRP were reported. For AB Atomenergi the average external total body dose during the year was 60 mrem which corresponds to 89.4 manrem. 31200 gamma films and 5850 neutron films were evaluated. 2067 urine analyses and 692 measurements of body activity were made

  14. Report on the Personnel Dosimetry at AB Atomenergi during 1969

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J; Wahlberg, T

    1971-05-15

    This report presents the results of personnel dosimetry at AB Atomenergi during 1969. 24,200 gamma films and 3,300 neutron films were evaluated. 770 urine analyses and 1,150 measurements of body activity were made. The external total body gamma dose for all employees (quarterly doses < 100 mrem are not reported) corresponds to 136 manrem. The highest external total body gamma dose during 1969 to one person was 4,800 mrem

  15. Report on the Personnel Dosimetry at AB Atomenergi during 1968

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J; Wahlberg, T

    1969-08-15

    This report presents the results of personnel dosimetry at AB Atomenergi during 1968. 25600 gamma films and 3900 neutron films were evaluated. 1737 urine analyses and 1066 measurements of body activity were made. The external total body gamma dose for all employees (quarterly doses {<=} 100 mrem are not reported) corresponds to 136 manrem. The highest external total body gamma dose during 1968 to one person was 4,500 mrem.

  16. Report on the Personnel Dosimetry at AB Atomenergi during 1965

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsson, K A

    1966-10-15

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1965. No doses exceeding the recommendations of ICRP were reported. For AB Atomenergi the average external total body dose during the year was 60 mrem which corresponds to 89.4 manrem. 31200 gamma films and 5850 neutron films were evaluated. 2067 urine analyses and 692 measurements of body activity were made.

  17. Report on the Personnel Dosimetry at AB Atomenergi during 1967

    International Nuclear Information System (INIS)

    Carlsson, J.; Wahlberg, T.

    1968-12-01

    This report presents the results of personnel dosimetry at AB Atomenergi during 1967. The external total body gamma dose for all employees (quarterly doses ≤ 100 mrem are not reported) corresponds to 140 manrem. The highest external total body gamma dose during 1967 to one person was 5700 mrem. 24700 gamma films and 3900 neutron films were evaluated. 1988 urine analyses and 989 measurements of body activity were made

  18. Report on the Personnel Dosimetry at AB Atomenergi during 1967

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J; Wahlberg, T

    1968-12-15

    This report presents the results of personnel dosimetry at AB Atomenergi during 1967. The external total body gamma dose for all employees (quarterly doses {<=} 100 mrem are not reported) corresponds to 140 manrem. The highest external total body gamma dose during 1967 to one person was 5700 mrem. 24700 gamma films and 3900 neutron films were evaluated. 1988 urine analyses and 989 measurements of body activity were made.

  19. Report on the Personnel Dosimetry at AB Atomenergi during 1962

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsson, K A; Hagsgaard, S

    1964-07-15

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1963. No doses exceeding the recommendations of ICRP have been reported. The sum of the reported external total body doses during the year is for AB Atomenergi 64.2 manrem which, distributed over the whole company personnel, corresponds to about 40 mrem per year and person or about 1 % of the maximum permissible dose. 37800 gamma films and 6700 neutron films have been evaluated. The total number of urine analyses is 3603 and of whole body measurements 211.

  20. The Martin Marietta Energy Systems personnel neutron dosimetry program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1991-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages five sites for the US Department of Energy. Personnel dosimetry for four of the five sites is coordinated through a Centralized External Dosimetry System (CEDS). These four sites are the Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant (Y-12), the Oak Ridge K-25 Site (K-25), and the Paducah Gaseous Diffusion Plant (PGDP). The fifth Energy Systems site, Portsmouth Gaseous Diffusion Plant, has an independent personnel dosimetry program. The current CEDS personnel neutron dosimeter was first issued in January 1989, after an evaluation and characterization of the dosimeters' response in the workplaces was performed. For the workplace characterization, Energy Systems contracted with Pacific Northwest Laboratory (PNL) to perform neutron measurements at selected locations at ORNL and Y-12. K-25 and PGDP were not included because their neutron radiation fields were similar to others already planned for characterization at ORNL and Y-12. Since the initial characterization, PNL has returned to Oak Ridge twice to perform follow up measurements, and another visit is planned in the near future

  1. SEVENTH DOE WORKSHOP ON PERSONNEL NEUTRON DOSIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Vallario, E J

    1978-10-24

    This workshop was the seventh of a series and was held on October 23-24. 1978, at the Central Electricity Generating Board, HQ, London, England. Typically~ attendees at the Workshop were concerned with one of three activities: studying and refining existing techniques in an attempt to quantify already-known parameters with greater precision, looking for ways to apply existing neutron dosirr:etry techniques to a specific local problem, identifying the needs and weaknesses of existing systems, with the goal of improving and passibly simplifying field measurements. The types of neutron dosimetry techniques discussed by participants included albedo dosimeters, track etch, and TLD. One speaker reported on NTA film, noting that fading could be eliminated by drying the emulsion in dry nitrogen before field use. There were no reports on tissue equivalent proportional counters or activation analysis. One participant discussed a metal oxide silicon dosimeter. The need to develop a consistent standard terminology, as well as calibration sources and techniques, on both the national and international level was evident. The need for standardization is particularly acute in the U.S. Techniques for evaluating dosimeter response in the field should he standardized, since several different instruments with widely different response characteristics are currently being used. The choice of instruments is often parochial. Also. the type and use of phantoms should be standardized. Neutron dose assignment is significantly affected by the position of the dosimeter on the body. for example, a typical albedo dosimeter may give differences of up to 20% depending on whether it is worn on the belt or chest. Larger errors are encountered with front-to-back (angular} orientation. 1n an attempt to minimize such errors~ at least two European facilities are using neutron dosimeter belts, which provide dosimeters both in front and in back of the wearer. The gamma-to-neutron ratio around nuclear power

  2. Report on the Personnel Dosimetry at AB Atomenergi during 1964

    International Nuclear Information System (INIS)

    Edvardsson, K.A.; Hagsgaard, S.

    1966-01-01

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1964. No doses exceeding the recommendations of ICRP were reported. The sum of the reported external total body doses during the year was for AB Atomenergi 51.5 manrem which, distributed over the whole company personnel, corresponds to an average dose of about 35 mrem per year and person or less than 1 % of the maximum permissible dose. 31,400 gamma films and 5,800 neutron films were evaluated. The films were changed every month. Urine analyses numbered 2,731 and whole body measurements 485. A comparison is made between dose distributions at AB Atomenergi and at institutions in other countries. The fraction of all personnel carrying dosimeters and exposed to more than a nominal dose seems generally to have been less than 10-20 %

  3. Report on the Personnel Dosimetry at AB Atomenergi during 1964

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsson, K A; Hagsgaard, S

    1966-01-15

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1964. No doses exceeding the recommendations of ICRP were reported. The sum of the reported external total body doses during the year was for AB Atomenergi 51.5 manrem which, distributed over the whole company personnel, corresponds to an average dose of about 35 mrem per year and person or less than 1 % of the maximum permissible dose. 31,400 gamma films and 5,800 neutron films were evaluated. The films were changed every month. Urine analyses numbered 2,731 and whole body measurements 485. A comparison is made between dose distributions at AB Atomenergi and at institutions in other countries. The fraction of all personnel carrying dosimeters and exposed to more than a nominal dose seems generally to have been less than 10-20 %.

  4. Personnel radiation monitoring by thermoluminescence dosimetry (1995-96)

    International Nuclear Information System (INIS)

    Daw Mi Cho Cho; Daw Yi Yi Khin; Daw San San; U Maung Maung Tin; Daw Hla Hla Win

    2001-01-01

    Personnel radiation monitoring which is the dose assessment of individual doses from external radiation received by radiation workers has been carried out by Thermoluminescence Dosimetry system consisting of a Vinten Toledo TLD reader, LiF dosimeters and associated equipment. The exposed TLD dosimeters were measured by TLD reader and the dose evaluation and dose registration were done on personal computer. Due to the records of 1995-96, most of the radiation workers complied with the permissible dose recommended by IAEA and ICRP 60. (author)

  5. Report on the Personnel Dosimetry at AB Atomenergi during 1962

    International Nuclear Information System (INIS)

    Edvardsson, K.A.; Hagsgaard, S.

    1963-12-01

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1962. No doses exceeding the recommendations of ICRP have been reported. The sum of the reported external total body doses (≥ 100 mrem/quarter) is for the whole of AB Atomenergi during this year 74. 2 manrem corresponding to about 50 mrem/year and person or 1 % of the maximum permissible dose. 32500 gamma films and 6200 neutron films have been evaluated. The total number of urine analyses is 2700 and of whole body measurements 10

  6. Report on the Personnel Dosimetry at AB Atomenergi during 1962

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsson, K A; Hagsgaard, S

    1963-12-15

    This report presents the results of the personnel dosimetry at AB Atomenergi during 1962. No doses exceeding the recommendations of ICRP have been reported. The sum of the reported external total body doses ({>=} 100 mrem/quarter) is for the whole of AB Atomenergi during this year 74. 2 manrem corresponding to about 50 mrem/year and person or 1 % of the maximum permissible dose. 32500 gamma films and 6200 neutron films have been evaluated. The total number of urine analyses is 2700 and of whole body measurements 10.

  7. Choice of measuring site in external personnel routine dosimetry

    International Nuclear Information System (INIS)

    Rothe, W.

    1975-01-01

    In personnel routine dosimetry the choice of a suitable measuring site is of great importance because there may be great differences between the measured doses and the equivalent doses of the whole body and of single organs, respectively. In the literature there are different points of view with regard to the measuring site particularly if diagnostic X-radiation is used and the body is partly covered with protective clothing. Likewise in most cases the conclusions regarding the most suitable measuring site drawn from measurements of dose distributions on the body surface are not in agreement. (author)

  8. Multisphere system neutron spectrometry applied to dosimetry for the personnel

    International Nuclear Information System (INIS)

    Allinei, P.G.

    1992-01-01

    Neutron dosimetry is a necessity that must be dealt with in order to ensure efficient monitoring of all personnel regarding radiology safety. Dosimetric variables are difficult to measure for they are dependent on complex functions evolving with the energy of neutrons, which forces us to determine their energetic distribution. We have chosen to use the multisphere system associated to an unfolding code in order to perform neutron spectrometry, our purpose being to determine these dosimetric variables. The initial stage consists in modifying a research code, the code SOHO, in order to adapt it to our needs. The resulting new version was subsequently tested and proven successful by means of computerized simulations. Afterwards, we used reference dosimetric and spectral beams to confirm the position results previously obtained. At the time of this test, the code SOHO yielded results coherent with the theoretical values, and even allowed the quantity of radiation diffused by the laboratory structures to be estimated. The final part of this study consists in applying the previously perfected technique to authentic situations. The results thus obtained are compared to those obtained by conventional methods in order to reveal the interest of neutron spectrometry used for dosimetry of the personnel

  9. The calibration procedures in the Studsvik standardized personnel dosimetry system

    International Nuclear Information System (INIS)

    Widell, C.O.

    1978-01-01

    Every large nuclear installation in Sweden reads its own personnel TLDs. In order to supervise this decentralized reading of dose meters, the TLD readers are connected by telephone lines to a central computer for dose registration. This computer is used both for registering the personnel doses and for checking the TLD readers. This checking is performed by the use of pre-irradiated calibration dose meters which are always used when a batch of personnel dose meters are read. The pre-irradiated dose meters are either irradiated using 137 Cs to various doses up to 100mSv(10000mrem) or using a 90 Sr source in a reference dose irradiator to a dose equal to 3mSv(300mrem) from a 137 Cs source. The results from the reading of the pre-irradiated dose meters are processed by the computer and a calibration factor is calculated. The calibration factor is automatically used to calculate the doses to the personnel TLD's. However, if the calibration factor deviates by more than 10% from the previously used factor, this fact is shown to the operator - who then has to decide what calibration factor is going to be used. This calibration and supervisory procedure together with the safety interlocks in the TLD readers has resulted in a very reliable and accurate dosimetry system. (author)

  10. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: [Final report

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs

  11. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  12. Interim status report of the TMI personnel-dosimetry project

    International Nuclear Information System (INIS)

    Rich, B.L.; Alvarez, J.L.; Adams, S.R.

    1981-06-01

    The current 2-chip TLD personnel dosimeter in use at Three Mile Island (TMI) has been shown inadequate for the anticipated high beta/gamma fields during TMI recovery operations in some areas. This project surveyed the available dosimeter systems, set up an Idaho National Engineering Laboratory (INEL) prototype system, and compared this system with those commercial systems that could be made immediately available for comparison. Of the systems tested, the new INEL personnel dosimeter was found to produce the most accurate results for use in recovery operations at TMI-2. The other multiple-chip or multiple-filter systems were found less desirable at present. The most prominent deficiencies in the INEL dosimeter stem from the fact that it lacks a completely automated reader and its x-ray and thermal neutron responses require additional development. A automated prototype reader system may be in operation by the end of CY-1981. Three alternatives for operational dosimetry are discussed. A combination of a modified version of the presently used Harshaw 2-chip dosimeter and the INEL dosimeter is recommended

  13. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  14. Personnel radiation dosimetry laboratory accreditation programme for thermoluminescent dosimeters : a proposal

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Srivastava, J.K.; Iyer, P.S.; Venkatraman, G.

    1993-01-01

    Accreditation for thermoluminescent dosimeters is the process of evaluating a programme intending to use TL personnel dosimeters to measure, report and record dose equivalents received by radiation workers. In order to test the technical competence for conducting personnel dosimetry service as well as to decentralize personnel monitoring service, it has been proposed by Radiological Physics Division (RPhD) to accredit some of the laboratories, in the country. The objectives of this accreditation programme are: (i) to give recognition to competent dosimetry processors, and (ii) to provide periodic evaluation of dosimetry processors, including review of internal quality assurance programme to improve the quality of personnel dosimetry processing. The scientific support for the accreditation programme will be provided by the scientific staff from Radiological Physics Division (RPhD) and Radiation Protection Services Division (RPSD). This paper describes operational and technical requirements for the Personnel Radiation Dosimetry Laboratory Accreditation Programme for Thermoluminescent Dosimeters for Personnel Dosimetry Processors. Besides, many technical documents dealing with the TL Personnel Dosimeter System have been prepared. (author). 5 refs., 2 figs

  15. The US Department of Energy Personnel Dosimetry Evaluation and Upgrade Program

    International Nuclear Information System (INIS)

    Faust, L.G.; Stroud, C.M.; Swinth, K.L.; Vallario, E.J.

    1987-11-01

    The US Department of Energy (DOE) Personnel Dosimetry Evaluation and Upgrade Program is designed to identify and evaluate dosimetry deficiencies and to conduct innovative research and development programs that will improve overall capabilities, thus ensuring that DOE can comply with applicable standards and regulations for dose measurement. To achieve these goals, two programs were initiated to evaluate and upgrade beta measurement and neutron dosimetry. 3 refs

  16. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  17. Quality control and quality assurance philosophy introduced in national personnel dosimetry service

    International Nuclear Information System (INIS)

    Trousil, J.; Zelenka, Z.; Kvasnicka, O.

    2008-01-01

    There in National Personnel Dosimetry Service (NPDS) the implementation of the control system to guarantee the credibility of the measured personal dose equivalents results was given on the basis of the international recommendations published by the European Commission and the IAEA and in particular of the decree of the SUJB No. 132/2008 Coll. The quality control and the quality assurance are carried out in all three personal dosimetry services introduced in NPDS: in the film badge, thermoluminescent (TL) and neutron dosimetry. (authors)

  18. Personnel Dosimetry for Radiation Accidents. Proceedings of a Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation

    International Nuclear Information System (INIS)

    1965-01-01

    Accidents involving the exposure of persons to high levels of radiation have been few in number and meticulous precautions are taken in an effort to maintain this good record. When, however, such an accident does occur, a timely estimate of the dose received can be of considerable help to the physician in deciding whether a particular person requires medical treatment, and in selecting the most appropriate treatment. Individual dosimetry provides the physical basis for relating the observed effects to those in other accident cases, to other human data, and to data from animal experiments, thus providing an important aid to rational treatment and to the accumulation of a meaningful body of knowledge on the subject. It is most important therefore that, where there is a possibility of receiving high-level exposure, methods of personnel dosimetry should be available that would provide the dosimetric information most useful to the physician. Provision of good personnel dosimetry for accidental high-level exposure is in many cases an essential part of emergency planning because the information provided may influence emergency and rescue operations, and can lead to improved accident preparedness. Accordingly, the International Atomic Energy Agency and the World Health Organization jointly organized the Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation for the discussion of such methods and for a critical review of the procedures adopted in some of the radiation accidents that have already occurred. The meeting was attended by 179 participants from 34 countries and from five other international organizations. The papers presented and the ensuing discussions are published in these Proceedings. It is hoped that the Proceedings will be of help to those concerned with the organization and development of wide-range personnel monitoring systems, and with the interpretation of the results provided

  19. Review of the current deficiencies in personnel beta dosimetry, with recommendations

    International Nuclear Information System (INIS)

    Sherbini, S.; Porter, S.W.

    1983-06-01

    The report describes the design and use of personnel dosimeters used by the nuclear power industry to monitor occupational radiation exposure. It then shows why the monitoring method is inaccurate when personnel are exposed to beta particles. Then the report describes alternatives that would lead to improved measurements. The report also critiques the dosimetry processor testing criteria developed by the Health Physics Society Standards Committee. Survey instruments are shown often to be inaccurate when used to measure beta dose rates

  20. Annual course of retraining for the occupational exposure personnel of the laboratory of internal dosimetry

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-09-01

    The general objective of this report is to instruct the personnel in the basic concepts of radiological protection and in the Manual of Procedures of Radiological Safety of the Laboratory of Internal Dosimetry. Also, to exchange experiences during the activities that are carried out in the laboratory and in the knowledge of abnormal situations. The referred Manual consists of 14 procedures and 5 instructions which are listed in annex of this document. The content of this course consists of three topics: 1. Basic principles of radiological protection to reduce the received dose equivalent. 2. Use of radiation measurer equipment. 3. Emergency procedures of the laboratory of internal dosimetry. (Author)

  1. Personnel β-dosimetry method for reducing energy dependence

    International Nuclear Information System (INIS)

    Gesell, T.F.; Jones, D.E.; Gupta, V.P.; Kalbeitzer, F.L.; Cusimano, J.P.

    1979-03-01

    Current practices for the measurement of skin dose are reviewed and found to be inadequate. The current INEL dosimeter was examined for systematic and random error. Systematic (i.e., variation with energy) error was found to range over a factor of 10 while the random error was reasonably small for the larger β/γ ratios. Other designs with thicker windows as is more common would show even larger systematic errors. Various methods for improving beta dosimetry were reviewed. A new dosimeter design utilizing three chips, each having a window of difference thickness, was proposed. According to the calculations, this dosimeter should markedly reduce systematic error but will introduce somewhat more random error. Preliminary measurements were carried out related to angular dependence and charged particle equilibrium. The proposed dosimeter design was tested with betas from a uranium slab. The average of the seven results was in excellent agreement with the known dose rate and the standard deviation of the result was 16%

  2. Personnel dosimetry in internal radiation exposure by excretory radionuclide measurement

    International Nuclear Information System (INIS)

    Balonov, M.I.; Bruk, G.Ya.; Korelina, N.F.; Likhtarev, I.A.; Repin, V.S.

    1986-01-01

    The collaboration with the SAAS resulted in the development of a mathematical method to calculate radiation doses in human tissues attributed to inhaled radionuclides concerning their retention dynamics in the respiratory system and their uptake into the blood as well as the metabolic pathways in the organs. 'Sanep-stations' and radiation protection service elaborated nomograms for the determination of the commitment doses in the critical organs based on the radionuclide content of a 24-hours urinalysis without intermediate calculations. Recommendations for the use of the method and the nomograms for various radionuclides (solubility classes D and N with MAAD of 1 and 10 μm) are given in the methodological document: 'Indirect dosimetry of inhaled radionuclides in workers'. A calculation method for the annual dose of internal irradiation in tritium workers is also cited

  3. Perofrmance testing of personnel dosimetry services. Final report of a two-year pilot study, October 1977-September 1979

    International Nuclear Information System (INIS)

    Plato, P.; Hudson, G.

    1980-01-01

    A two-year pilot study was conducted of the Health Physics Society Standards Committee (HPSSC) Standard titled, Criteria for Testing Personnel Dosimetry Performance. The objectives of the pilot study were: to give processors an opportunity to correct any problems that are uncovered; to develop operational and administrative prodedures to be used later by a permanent testing laboratory; and to determine whether the proposed HPSSC Standard provides an adequate and practical test of dosimetry performance. Fifty-nine dosimetry processors volunteered to submit dosimeters for test irradiations according to the requirements of the HPSSC Standard. The feasibility of using the HPSSC Standard for a future mandatory testing program for personnel dosimetry processors is discussed. This report shows the results of the pilot study and contains recommendations for revisions in the Standard that will make a mandatory testing program useful to regulatory agencies, dosimetry processors, and radiation workers that use personnel dosimeters

  4. Neutron dosimetry of the Little Boy device

    International Nuclear Information System (INIS)

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements

  5. Participation of the regional reference center for dosimetry of Argentina in the personnel dosimetry intercomparison for Latin America

    International Nuclear Information System (INIS)

    Alvarez, P.; Lindner, C.; Montano, R.G.; Saravi, M.

    1998-01-01

    Full text: A Regional Personnel Dosimetry Intercomparison was organized in the Regional Reference Center for Dosimetry (CRRD), in agreement with the International Atomic Energy Agency (IAEA) and the Nuclear Regulatory Authority (ARN), with the participation of 9 countries of Latin America. For dosimeter irradiations, X-ray, 60 Co γ-ray and 137 Cs γ-ray beams were used during the intercomparison. The air kerma rate was measured with the Secondary Standard NE 2560 and NE 2561 ionisation chamber. In compliance with ISO 4037 guideline, the wide spectrum series W60, W110 and W200 for the X-ray irradiations were chosen, determining their quality by the HVL method. Prior to the intercomparison, these beams were checked by the Physikalish Technische Bundesanstalt (PTB) using thermoluminescence dosimeters 'pill box', which were irradiated in air and in ICRU phantom. As result of this check, only one 'X ray beam got a deviation of 7%, while the rest of them were less than 3%. Periodic checks of the beams by a Primary Standard Dosimetry Laboratory such as PTB give reliability to the irradiations performed by this CRRD. (author) [es

  6. Quality assurance manual for the Department of Energy laboratory accreditation program for personnel dosimetry systems

    International Nuclear Information System (INIS)

    1987-02-01

    The overall purpose of this document is to establish a uniform approach to quality assurance. This will ensure that uniform, high-quality personnel dosimetry practices are followed by the participating testing laboratories. The document presents guidelines for calibrating and maintaining measurement and test equipment (M and TE), calibrating radiation fields, and subsequently irradiating and handling personnel dosimeters in laboratories involved in the DOE dosimetry systems testing program. Radiation energies for which the test procedures apply are photons with approximately 15 keV to 2 MeV, beta particles above 0.3 MeV, neutrons with approximately 1 keV to 2 MeV. 12 refs., 4 tabs

  7. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    International Nuclear Information System (INIS)

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these

  8. Personnel-dosimetry intercomparison studies at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1982-01-01

    Since 1974, seven annual personnel dosimetry intercomparison studies have been conducted at the Oak Ridge National Laboratory using the Health Physics Reactor. These studies have produced more than 2000 measurements by 72 participating organizations of neutron and gamma dose equivalents between 0.1 to 15.0 mSv in six mixed radiation fields. The relative performance of three basic types of personnel neutron dosimeters (nuclear emulsion film, thermoluminescent, and track-etch) and two basic types of gamma dosimeters (film and thermoluminescent) was assessed based on experimental results obtained during the seven intercomparisons

  9. Some questions of optimization in the personnel dosimetry at NPP

    International Nuclear Information System (INIS)

    Liberman, A.N.; Petrov, V.I.; Bronshtejn, I.Eh.

    1978-01-01

    Some possible ways of optimizing the radiation monitoring of personnel of nuclear power plants (NPP) are considered. For premises within the zone of a strict operating regime, it is proposed that the intervals between periods of monitoring be shortened if the operating conditions are normal. To improve the monitoring of activity of water in the primary circuit, it is considered desirable to provide all NPP with a system of automatic radiation monitoring having input to the control panel. Where the work involves opening of primary circuit communications or deactivation of equipment and also in cases of emergency, it is proposed that, in addition to routine monitoring, gamma-spectrometric or radiochemical analysis of the isototip composition of contaminants be carried out. Because of the absence of measurable quantities of incorporated radionuclides in the vast majority of those working in the strict regime zone, it is suggested that the number of persons subject to systematic individual monitoring of internal radiation be limited

  10. Personnel neutron dosimetry using TLD elements at PNC

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu

    1985-01-01

    The evaluation method of neutron dose equivalent was studied on the basis of the albedo type neutron dosimetory to design the personnel dosimeter. The dosimeter was composed of three 6 Li 2 10 B 4 O 7 (Cu) TL elements and one 7 Li 2 11 B 4 O 7 (Cu) element. The equations for assessing thermal, epithermal and fast neutron dose equivalents were derived by 252 Cf, 241 Am-Be and PuO 2 neutron sources. The minimum detectable amount of 6 Li 2 10 B 4 O 7 (Cu) element to thermal neutron was 0.02 m rem. The neutron dose equivalent and the gamma one were evaluated separately within about 20 % error in the mixed radiation field. (author)

  11. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    International Nuclear Information System (INIS)

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites

  12. Department of Energy standard for the performance testing of personnel dosimetry systems

    International Nuclear Information System (INIS)

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs

  13. A fluence device for precise radiation dosimetry

    International Nuclear Information System (INIS)

    Arnott, R.G.T.; Peak, M.J.

    1979-01-01

    An instrument is described which has been designed to ensure precise positioning of samples and sensing devices in three dimensions at all times during irradiation procedures. The system, which is both robust and sensitive, overcomes difficulties experienced when slight variations in the positioning of a sample under irradiation results in large changes in fluence. (UK)

  14. New devices for individual neutron dosimetry

    International Nuclear Information System (INIS)

    Barthe, J.; Bordy, J.M.; Mourgues, M.; Lahaye, T.; Boutruche, B.

    1994-01-01

    This paper deals with the design and fabrication of three new dosimetric sensors to be used in personal radiation monitoring. The first two sensors, double diode and streamer chamber, are based on the same particle detection principle, the last is a multicellular tissue-equivalent proportional counter. Each dosimetric sensor has a preferential range of applications. The double diode dosemeter, called DIAC, is the least sensitive, but can be reduced to the size of an ''electronic credit card'' weighing a few 10s of grams. Two versions of the streamer chamber have been developed, the first corresponding to a personal device called DINE and the second to an ambient device called DANE. These two sensors are much more sensitive than the DIAC. The last sensor, studied in the SDOS laboratory, is a multicellular proportional counter called MC-TEPC. Giving both the dose and the dose equivalent quantities, it is more suitable for a good evaluation of the radiation risk but many problems due to gas aging have to be solved. (author)

  15. Machine vision applications for physical security, quality assurance and personnel dosimetry

    International Nuclear Information System (INIS)

    Kar, S.; Shrikhande, S.V.; Suresh Babu, R.M.

    2016-01-01

    Machine vision is the technology used to provide imaging-based solutions to variety of applications, relevant to nuclear facilities and other industries. It uses computerized image analysis for automatic inspection, process control, object sorting, parts assembly, human identity authentication, and so on. In this article we discuss the in-house developed machine vision systems at EISD, BARC for three specific areas: Biometric recognition for physical security, visual inspection for QA of fuel pellets, and fast neutron personnel dosimetry. The advantages in using these systems include objective decision making, reduced man-rem, operational consistency, and capability of statistical quantitative analysis. (author)

  16. Dosimetry of typical transcranial magnetic stimulation devices

    Science.gov (United States)

    Lu, Mai; Ueno, Shoogo

    2010-05-01

    The therapeutic staff using transcranial magnetic stimulation (TMS) devices could be exposed to magnetic pulses. In this paper, dependence of induced currents in real human man model on different coil shapes, distance between the coil and man model as well as the rotation of the coil in space have been investigated by employing impedance method. It was found that the figure-of-eight coil has less leakage magnetic field and low current density induced in the body compared with the round coil. The TMS power supply cables play an important role in the induced current density in human body. The induced current density in TMS operator decreased as the coil rotates from parallel position to perpendicular position. Our present study shows that TMS operator should stand at least 110 cm apart from the coil.

  17. Performance of neutron and gamma personnel dosimetry in mixed radiation fields

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1981-01-01

    From 1974 to 1980, six personnel dosimetry intercomparison studies (PDIS) were conducted at the Oak Ridge National Laboratory (ORNL) to evaluate the performance of personnel dosimeters in a variety of neutron and gamma fields produced by operating the Health Physics Research Reactor (HPRR) in the steady state mode with and without spectral modifying shields. A total of 58 different organizations participated in these studies which produced approximately 2000 measurements of neutron and gamma dose equivalents on anthropomorphic phantoms for five different reactor spectra. Based on these data, the relative performance of three basic types of neutron dosimeters [nuclear emulsion film, thermoluminescent (TLD), and track-etch] and two basic types of gamma dosimeters (film and TLD) in mixed radiation fields was assessed

  18. Facilities and procedures used for the performance testing of DOE personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.L.; Fox, R.A.; Hogan, R.T.; Holbrook, K.L.; Hooker, C.D.; Yoder, R.C.

    1983-04-01

    Radiological calibration facilities for personnel dosimeter testing were developed at the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) to provide a capability for evaluating the performance of DOE personnel dosimetry systems. This report includes the testing methodology used. The informational presented here meets requirements specified in draft ANSI N13.11 for the testing laboratory. The capabilities of these facilities include sealed source irradiations for /sup 137/Cs, several beta-particle emitters, /sup 252/Cf, and machine-generated x-ray beams. The x-ray beam capabilities include filtered techniques maintained by the National Bureau of Standards (NBS) and K-fluorescent techniques. The calibration techniques, dosimeter irradiation procedures, and dose-equivalent calculation methods follow techniques specified by draft ANSI N13.11 where appropriate.

  19. Facilities and procedures used for the performance testing of DOE personnel-dosimetry systems

    International Nuclear Information System (INIS)

    Roberson, P.L.; Fox, R.A.; Hogan, R.T.; Holbrook, K.L.; Hooker, C.D.; Yoder, R.C.

    1983-04-01

    Radiological calibration facilities for personnel dosimeter testing were developed at the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) to provide a capability for evaluating the performance of DOE personnel dosimetry systems. This report includes the testing methodology used. The informational presented here meets requirements specified in draft ANSI N13.11 for the testing laboratory. The capabilities of these facilities include sealed source irradiations for 137 Cs, several beta-particle emitters, 252 Cf, and machine-generated x-ray beams. The x-ray beam capabilities include filtered techniques maintained by the National Bureau of Standards (NBS) and K-fluorescent techniques. The calibration techniques, dosimeter irradiation procedures, and dose-equivalent calculation methods follow techniques specified by draft ANSI N13.11 where appropriate

  20. Characterization of electronics devices for computed tomography dosimetry

    International Nuclear Information System (INIS)

    Paschoal, Cinthia Marques Magalhaes

    2012-01-01

    Computed tomography (CT) is an examination of high diagnostic capability that delivers high doses of radiation compared with other diagnostic radiological examinations. The current CT dosimetry is mainly made by using a 100 mm long ionization chamber. However, it was verified that this extension, which is intended to collect ali scattered radiation of the single slice dose profile in CT, is not enough. An alternative dosimetry has been suggested by translating smaller detectors. In this work, commercial electronics devices of small dimensions were characterized for CT dosimetry. The project can be divided in five parts: a) pre-selection of devices; b) electrical characterization of selected devices; e) dosimetric characterization in Iaboratory, using radiation qualities specific to CT, and in a tomograph; d) evaluation of the dose profile in CT scanner (free in air and in head and body dosimetric phantom); e) evaluation of the new MSAD detector in a tomograph. The selected devices were OP520 and OP521 phototransistors and BPW34FS photodiode. Before the dosimetric characterization, three configurations of detectors, with 4, 2 and 1 OP520 phototransistor working as a single detector, were evaluated and the configuration with only one device was the most adequate. Hence, the following tests, for all devices, were made using the configuration with only one device. The tests of dosimetric characterization in laboratory and in a tomograph were: energy dependence, response as a function of air kerma (laboratory) and CTDI 100 (scanner), sensitivity variation and angular dependence. In both characterizations, the devices showed some energy dependence, indicating the need of correction factors depending on the beam energy; their response was linear with the air kerma and the CTDI 100 ; the OP520 phototransistor showed the largest variation in sensitivity with the irradiation and the photodiode was the most stable; the angular dependence was significant in the laboratory and

  1. Performance comparisons of selected personnel-dosimetry systems in use at Department of Energy facilities

    International Nuclear Information System (INIS)

    Roberson, P.L; Holbrook, K.L.; Yoder, R.C.; Fox, R.A.; Hadley, R.T.; Hogan, B.T.; Hooker, C.D.

    1983-10-01

    Dosimeter performance data were collected to help develop a uniform approach to the calibration and use of personnel dosimetry systems for Department of Energy (DOE) laboratories. Eleven DOE laboratories participated in six months of testing using the American National Draft Standard, Criteria for Testing Personnel Dosimetry Performance, ANSI N13.11, and additional testing categories. The tests described in ANSI N13.11 used a pass/fail system to determine compliance with the draft standard. Recalculation to PNL irradiations showed that the 137 Cs, 90 Sr/ 90 Y, and 252 Cf categories can be recalibrated to have acceptable performance for nearly all participant systems. Deficient dosimeter design or handling techniques caused poor performance in the x-ray category for nearly half of the participants. Too little filtration for the deep-dose element caused poor performance in the beta/photon mixture category for one participant. Two participants had excessively high standard deviations in the neutron category due to dosimeter design or handling deficiencies. The participating dosimetry systems were separated into three categories on their dose evaluation procedure for low-energy photons. These were film dosimeters, fixed-calibration thermoluminescent (TL) dosimeters, and variable-calibration TL dosimeters. The performance of the variable-calibration design was best while the film dosimeters performed considerably worse than either TL dosimeter design. Beta energy dependence studies confirmed a strong correlation between sensitive element thickness, shallow element filtration and low-energy beta response. Studies of neutron calibration conditions for each participant suggested a relationship between response and calibration facility design

  2. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  3. Fast neutron personnel dosimetry by CR-39 plastics a new electrochemical etching procedure

    International Nuclear Information System (INIS)

    Djeffal, S.

    1984-07-01

    In the first part of this work a brief description of solid state nuclear track detectors, the principles of track registration and the different reading techniques are given. In the experimental part of the present work we systematically analysed different etching procedures and set a new electrochemical etching method, which enables us to develop a new fast neutron dosimeter. This fast neutron dosimeter makes possible the measurement of low neutron doses in the energy range from 10 Kev to 20 Mev with a reasonably flat energy response. These new developments are very attractive in personnel neutron dosimetry where nuclear emulsions are still used despite their insensitivity to neutron energies down to 500 Kev (i.e. the energy range one often encounters around nuclear facilities)

  4. Implementation of a dosimetry service for the occupationally exposed personnel of the ESFM-IPN

    International Nuclear Information System (INIS)

    Hernandez A, Y.; Sanchez R, A. A.; Ceron R, P. V.; Rivera M, T.; Vega C, H. R.

    2014-10-01

    Because the ionizing radiations handling implies a risk for the health, is necessary to take a control of the radiation quantity that the occupationally exposed personnel receives during their daily work with ionizing radiations. For this purpose there are several types of dosimetry and companies that provide the service, but taking advantage that the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (ESFM-IPN) possesses a thermoluminescence equipment (Tl) was decided to develop a personnel dosimetry service for gammas, with thermoluminescent glasses of type TLD-100. First one carries out a glasses characterization, for which the glasses were washed with a methyl alcohol solution, without rubbing them for not damaging them; after the drying, they were subjected to a temperature of 400 C during one hour and later on 100 grades C for two hours in order to erasing them the bottom information that they could have. 200 glasses were exposed to gamma radiation coming from a Cobalt 60 source property of ESFM-IPN in order to selecting the glasses that had a response whose precision was inside a standard deviation. Of this characterization 80 dosimeters were selected that had better response according to the obtained readings as well as of their shine curves. These selected TLD-100 glasses were irradiated to different dose of gamma radiation and with those readings it was built a dose response curve in m R against readings of electric load in pick Coulombs (pCou). The response curve was a direct line or calibration curve. As final exercise some glasses of this selected lot were subjected to irradiation dose not known by the person that carried out the readings and this way was proven that the results were appropriate with the calibration curve. Finally these dosimeters were placed in port-dosimeters and erased guides of dosimeters, of equipment use and dosimeters lecture were also elaborated. (Author)

  5. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  6. A Test of Reliability of the Personnel Dosimetry Services Authorized by CSN using Photon Beams

    International Nuclear Information System (INIS)

    Brosed, A.; Delgado, A.; Granados, C. E.; Lopez Ortiz, G.

    1987-01-01

    In 1987 the Consejo de Seguridad Nuclear (CSN) had eight Personnel Dosimetry Services (PDS) authorized to asses the equivalent doses to the spanish occupationally exposed workers, by means of the readings from the dosemeters wear by them. An audit was carried on the PDS on behalf of CSN under the control of CIEMAT. Batches of dosemeters from each one of the PDS were irradiated to dose equivalent values which were well established by CIEMAT but kept hidden from the PDS. By comparing the true values with those obtained by the PDS, it was possible to evaluate the Services according to the analysis of the quantity Q= I B I -I- S where B is the average of the individual deviations between the dosemeters belonging to the same group and the true value as established by CIEMAT, whereas S is the standard deviation of the values inside of this same group. The results of the evaluation, which was made using the new ICRU quantities for personnel monitoring, are presented. (Author) 8 refs

  7. Eleventh ORNL personnel dosimetry intercomparison study, May 22-23, 1985

    International Nuclear Information System (INIS)

    Swaja, R.E.; Oyan, R.; Sims, C.S.

    1986-07-01

    The Eleventh Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory (ORNL) during May 22-23, 1985. Dosimeter badges from 44 participating organizations were mounted on Lucite block phantoms and exposed to four mixed-radiation fields with neutron dose equivalents around 5 mSv and gamma dose equivalents between 0.1 and 0.7 mSv. Results of this study indicated that no participants had difficulty obtaining measurable indication of neutron exposure at the provided dose equivalent levels, and very few had difficulty obtaining indication of gamma exposure at dose equivalents as low as 0.10 mSv. Average neutron results for all dosimeter types were within 20% of reference values with no obvious spectrum dependence. Different dosimeter types (albedo, direct interaction TLD, film, recoil track, and combination albedo-track) with 10 or more reported measurements provided average results within 35% of reference values for all spectra. With regard to precision, about 80% of the reported neutron results had single standard deviations within 10% at the means which indicates that precision is not a problem relative to accuracy for most participants. Average gamma results were greater than reference values by factors of 1.07 to 1.52 for the four exposures with TLD systems being more accurate than film. About 80% of all neutron results and 67% of all gamma results met regulatory standards for measurement accuracy and approximately 70% of all neutron data satisfied national dosimetry accreditation criteria for accuracy plus precision. In general, neutron dosimeter performance observed in this intercomparison was much improved compared to that observed in the prior studies while gamma dosimeter performance was about the same

  8. Evaluation of different polymers for fast neutron personnel dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Gammage, R.B.; Cotter, S.J.

    1977-01-01

    There is considerable optimism for the enhancement by electrochemical etching of fast neutron-induced recoil tracks in polycarbonate for the purpose of personnel dosimetry. The threshold energy, however, is rather high. A desirable improvement would be to lower this energy below 1 MeV. With this objective in mind, we have commenced an investigation of cellulose acetate, triacetate, and acetobutyrate in addition to polycarbonate. These cellulose derivatives are chemically more reactive and physically weaker than polycarbonate. It might, therefore, be possible to initiate the electrochemical amplification at the sites of shorter recoil atom damage tracks than is possible with polycarbonate. Some characteristics important for electrochemically etching in aqueous electrolytes are listed. Chemical etching is combined with treeing, an electrical breakdown process that starts when the dielectric strength is exceeded. These mechanical and electrical properties pertain to the dry plastics. The absorption of water molecules and electrolyte ions will cause these values to be reduced. Results and conclusions of the study are presented

  9. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o...... of the order of +/-5% (1 sigma) for both Co-60 and electron beam plants. (C) 2000 Elsevier Science Ltd. All rights reserved....

  10. The introduction of the personnel dosimetry information system in Greece designed as a relational database and the improvements achieved

    International Nuclear Information System (INIS)

    Drikos, G.; Psaromiligos, J.; Geotgiou, G.; Kamenopoulou, V.K.

    1997-01-01

    Dose record keeping is the making and keeping of personnel dose records for radiation workers. It is an essential part of the process of monitoring the exposure of individuals to radiation and shares in the same objectives. The dose record keeping is becoming more and more critical because of the importance of statistical analysis and epidemiological studies in radiation protection, and of the increasing cooperation and exchange of personnel between countries.The GAEC's personnel dosimetry laboratory assures the personnel dosimetry all over the country and keeps the official central dose record.The personnel dosimetry information system had been established in an electronic form on 1989 in Cobol language. Since then appeared various arguments that imposed the change of the data base used. Some of them are: 1. There was no distinction between establishments and their laboratories. 2. The workers did not have a unique code number. consequently, the total dose of a person working in more than one place could not't be estimated. The workers were directly related to their workplace, so if somebody changed his working place he was treated as a new entry, resulting an overestimation of the number of monitored workers introducing an source of errors in the collective and average dose calculations. 3. With the increasing applications of the ionising radiations many types of dosemeters became indispensable e.g. for beta and gamma, for neutrons and for the extremities. Also, the new category of outside workers appeared requesting a special treatment. All these distinctions were not achievable with the previous system. 4. Last years appeared an increasing, interesting in statistical analysis of the personal doses. A program written in Cobol does not't offer many possibilities and has no flexibility for such analysis. The new information system has been rebuilt under the design of a relational database with more possibilities and more flexibility. (authors)

  11. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  12. Historical review of personnel dosimetry development and its use in radiation protection programs at Hanford 1944 to the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1987-02-01

    This document is an account of the personnel dosimetry programs as they were developed and practiced at Hanford from their inception in 1943 to 1944 to the 1980s. This history is divided into sections covering the general categories of external and internal measurement methods, in vivo counting, radiation exposure recordkeeping, and calibration of personnel dosimeters. The reasons and circumstances surrounding the inception of these programs at Hanford are discussed. Information about these programs was obtained from documents, letters, and memos that are available in our historical records; the personnel files of many people who participated in these programs; and from the recollections of many long-time, current, and past Hanford employees. For the most part, the history of these programs is presented chronologically to relate their development and use in routine Hanford operations. 131 refs., 38 figs., 23 tabs.

  13. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  14. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  15. Synthetic diamond devices for medical dosimetry applied to radiotherapy

    International Nuclear Information System (INIS)

    Descamps, C.

    2007-06-01

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  16. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic

    International Nuclear Information System (INIS)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner

    2013-01-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers

  17. Dosimetry of the Occupational Exposure Personnel and not exposure of the INNSZ

    International Nuclear Information System (INIS)

    Ruiz J, A.

    1999-01-01

    In this work, was measured the equivalent dose of all the personnel of Nuclear medicine and personnel of the Institute which by its activities remain in the Department, by time determined, through thermoluminescent dosemeters and the results were that the personnel presents variable equivalent dose and it is proportional to the time and radionuclide type which use for their work. By this it is allowed to secure what the work watched with respect to radiological protection to fulfil with the International Standards standing for personnel in the Institute. (Author)

  18. Present status of fast neutron personnel dosimetry system based on CR-39 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Pal, Rupali; Sathian, Deepa; Jayalakshmi, V.; Bakshi, A.K.; Chougaonkar, M.P.; Mayya, Y.S.; Kumar, Valli; Babu, Rajesh; Kar, S.; Joshi, V.M.

    2011-08-01

    Neutron sources are of different types depending upon the method of production such as nuclear reactors, particle accelerators and laboratory sources. Neutron sources depending upon their energy, flux, size etc. are used for variety of applications in basic and applied sciences, neutron scattering experiments and in industry such as oil well - digging, coal mining and processing, ore processing etc. Personnel working in nuclear installations such as reactors, accelerators, spent fuel processing plants, nuclear fuel cycle operations and those working in various industries such as oil refining, oil well-digging, coal mining and processing, ore processing, etc. need to be monitored for neutron exposures, if any. Neutron monitoring is especially necessary in view of the fact that the radiation weighting factor for neutron is much higher than gamma rays and also it varies with energy. Radiological Physics and Advisory Division is involved in monitoring of personnel working in neutron fields. Around 2100 workers from 70 institutions (DAE and Non-DAE) are monitored on a quarterly basis. Neutron personnel monitoring, carried out in the country is based on Solid State Nuclear Track Detection (SSNTD) technique. In this technique, neutrons interact with hydrogen in CR-39 polymer to produce recoil protons. These protons create damages in the polymer, which are enlarged and appear as tracks when subjected to electrochemical etching (ECE). These tracks are counted in an optical system to evaluate the neutron dose. The neutron dosimetry system based on SSNTD has undergone a significant development, since it was started in 1990. The development includes upgradation of image analysis system for counting tracks, introduction of chemical etching (CE) at elevated temperatures for evaluation of dose equivalents above 10 mSv and use of carbon laser for cutting of CR-39 detectors. The entire dose evaluation process has been standardized, which includes calibration and performance tests

  19. Type tests performed on a personnel dosimetry system according to IEC 61066

    International Nuclear Information System (INIS)

    Castillo, Romel; Huamanlazo, Paula; Rojas, Enrique

    2015-01-01

    In this study, the verification of the Harshaw 6600 Plus TLD personal dosimetry system was made using the method of the IEC-61066 type tests and the recommendations of the ISO 4037 standards. For this purpose, five dosimeters were irradiated over a water phantom using an irradiator with a 137 Cs source; five dosimeters as control were also used. The evaluated parameters were homogeneity, detection limit, residual reading, linearity, reproducibility, droppings and temperature and humidity variations. The obtained results show that the Harshaw 6600 TLD dosimetric system fulfills the IEC 61066 criteria. (author)

  20. Clothing, equipment and devices for personnel protection: Its selection according to occupational risks

    International Nuclear Information System (INIS)

    1989-01-01

    This Venezuelan standard establishes the selection of the type of clothing, equipment and devices for personnel protection, to be used by workers according to the occupational risk they deal with, in order to avoid or to reduce the factors that can, directly or indirectly, affect their physical integrity. For the risks not contemplated in this norm, the selection of the type of clothing, equipment and devices for personnel protection, must be done following the corresponding international standard [es

  1. Use of CR-39 foils for personnel neutron dosimetry: improved electrochemical etching chambers and procedures

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.G.; Westermark, J.

    1986-01-01

    The electrochemical etching procedures for the new dosimetry system that uses foils of CR-39 plastic has been improved. During 1985, the etching chambers were modified to correct several problems and the changes to the etching procedures were studied, which gave a more uniform track density and size. The currently recommended etch parameters are given. A new generation of CR-39 material from the manufacturer proved to have a considerably lower background track density and a higher sensitivity; the new foils are also more uniform in thickness, which eliminates the need to numerically compensate for thickness variations. The energy dependence of the CR-39 using monoenergetic neutrons from accelerators at Battelle Northwest Laboratories and at Los Alamos National Laboratory was determined. Some variation was found in the energy dependence, but it is believed this was caused by changes in the etching procedures and by uncertainties in the fluences of the neutrons from the accelerators. A means by which the counting of CR-39 tracks may be automated is suggested; this would be very useful in adapting the CR-39 dosimetry system to large-scale use

  2. The dielectric track and thermoluminescent detectors applied to neutron dosimetry in personnel monitoring

    International Nuclear Information System (INIS)

    Mebhah, D.

    1984-03-01

    The personnal dosimeter for neutron based on the detection of fission fragments from 237 Np and 232 Th by a polycarbonate 10 gm, and lithium fluorite 6 LIF/ 7 LIF, allow to cover an energy spectrum from 0.05 eV to 14 MeV with a easy neutron gamma discrimination. In criticality dosimetry, the energy spectrum of the incident neutrons can be defined by two components: the fast component by E b exp(-ae) with E between 0.1 and 14 MeV, a and b determined by a combination of 237 Np and 232 Th track detector responses, and the epithermal component in 1/E, the thermal component having a minor contribution to the total equivalent dose. We took into account the body influence on the detectors response by introducing effective cross section. The equivalent dose obtained by this dosimeter is 20% overestimated in low doses dosimetry. The interpretation of the detectors responses is based on the definition of a factor and a calibration parameter for each zone in which the spectrum is constant. The knowledge of this parameter for individual dosimeters allows to account for the variations of the conditions of calibration

  3. TLD personnel dosimetry and its relationship with the radiodiagnostic training; Dosimetria personal TLD y su relacion con la capacitacion en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [DEHA, Universidad Autonoma Metropolitana-Xochimilco, Mexico D.F. (Mexico); Gaona C, E. [Universidad Tecnologica de Mexico, Mexico D.F. (Mexico)

    2002-07-01

    The personnel dosimetry and the training in radiological protection in radiodiagnostic in Mexico before 1997 were almost nonexistent except few services of public and private radiology, we can to say that the personnel dosimetry and the obligatory training was born in the year 1997, together with the present Mexican Official Standards in radiology. This study has the purpose to make an evaluation of the personnel dosimetry of 110 radiology services distributed in the Mexican Republic for the year 2001 and to estimate the annual and bimonthly mean doses, as well as its trust intervals and its relationships with the personnel training in radiological protection by means of a sampling that was realized in two stages (1997 and 2000) in the metropolitan area of Mexico City. The results show that the received doses by the medical and technical personnel in the participating radiology services are in the 0.03 mSv and 0.94 mSv interval and the mean is 0.25 mSv. The estimated annual personnel dose would be in the 0.18 mSv to 5.64 mSv interval, which are values very lower to the annual dose limit that is 50 mSv and its magnitude is similar to the effective annual dose by natural background radiation. In the first stage in training was found that there is not a significant difference in the response frequencies among the medical and technical personnel with a p < 0.05. The 52% of the occupational exposure personnel of radiology uses dosemeter, but only 17% of them know the dose reports. the 15.8% of personnel considers that dosemeter protects against radiation and only 16.5% knows the annual maximum permissible dose for stochastic effects. The second stage, the results shown that there is a significant difference in the response of frequencies among medical and technical personnel, the same results which are obtained for members and non members of a professional association with a p < 0.05. The 38% has personnel dosimetry, the 19% knows the principles of radiological

  4. Annual course of retraining for the occupational exposure personnel of the laboratory of internal dosimetry; Curso anual de reentrenamiento para el POE del laboratorio de dosimetria interna

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-09-15

    The general objective of this report is to instruct the personnel in the basic concepts of radiological protection and in the Manual of Procedures of Radiological Safety of the Laboratory of Internal Dosimetry. Also, to exchange experiences during the activities that are carried out in the laboratory and in the knowledge of abnormal situations. The referred Manual consists of 14 procedures and 5 instructions which are listed in annex of this document. The content of this course consists of three topics: 1. Basic principles of radiological protection to reduce the received dose equivalent. 2. Use of radiation measurer equipment. 3. Emergency procedures of the laboratory of internal dosimetry. (Author)

  5. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-15

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, gamma) process in Na sup 2 sup 3 , giving rise to Na sup 2 sup 4 , which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na sup 2 sup 4 , is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na sup 2 sup 3 in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na sup 2 sup 4 /Na sup 2 sup 3 in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R sub B reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzmann transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given

  6. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-01

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, {gamma}) process in Na{sup 23}, giving rise to Na{sup 24}, which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na{sup 24}, is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na{sup 23} in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na{sup 24}/Na{sup 23} in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R{sub B} reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzman transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given. A summary of the 4{pi

  7. Personnel neutron dosimetry applications of track-size distributions on electrochemically etched CR-39 foils

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.G.; Westermark, J.

    1988-01-01

    The track-size distribution on electrochemically etched CR-39 foils can be used to obtain some limited information on the incident neutron spectra. Track-size distributions on CR-39 foils can also be used to determine if the tracks were caused by neutrons or if they are merely background tracks (which have a significantly different track-size distribution). Identifying and discarding the high-background foils reduces the number of foils that must be etched. This also lowers the detection limit of the dosimetry system. We have developed an image analyzer program that can more efficiently determine the track density and track-size distribution, as well as read the laser-cut identification numbers on each foil. This new image analyzer makes the routine application of track-size distributions on CR-39 foils feasible. 2 refs., 3 figs

  8. Personnel dosimetry of fast neutrons by silver activation in nuclear emulsions

    International Nuclear Information System (INIS)

    Francois, H.; Heilmann, C.; Jung, M.; Kappler, A.; Oppel, R.; Demoulin, R.

    1982-01-01

    This neutron dosimetry method may be extended to the radiological monitoring of a large number of workers. It uses photographic emulsion, a detector with long-established properties. The reproducibility of the detection characteristics is guaranteed by industrial manufacture. The method has been thoroughly tested and is now sufficiently under control for the application stage to be contemplated. The activation method has shown moreover that the optical counting technique accounts for only half the signal available. Owing to its sensitivity, energy response from 100 keV onwards, capacity to measure the neutron and electromagnetic (γ or X) doses simultaneously and complete automation the method may now be considered ready for extensive use in radioprotection [fr

  9. Development of a drift tissue equivalent proportional counter for radiation protection personnel dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.

    1992-04-01

    A new multicellular geometry for proportional counter has been developed. It is made of several drift regions which are some holes drilled in the cathode in front of anodes wires. The present work is made of 3 parts: 1) A theoretical evaluation of the multicellular counter characteristics: the sensitivity increases by a factor 15 vs the Tinelli Merlin-Gerin counter; the chord length distribution study shows the possibility to use a Dirac function for the dosimetry calculations; a tissue equivalent gas mixture based on argon and propane is designed. 2) The production of a monocellular prototype made of a hole and a needle shaped anode. 3) An experimental study of the prototype electrical characteristics and a computation of the electrical field in the counter. The focalization and the electron drift into the hole, the proportional operating mode are shown. Irradiations in front of photon and neutron sources verify these results

  10. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes

    International Nuclear Information System (INIS)

    Louwe, R.J.W.; Tielenburg, R.; Ingen, K.M. van; Mijnheer, B.J.; Herk, M.B. van

    2004-01-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%±1.5% (1 SD), and -0.6%±1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program

  11. Dosimetry in patients and exposed personnel in endoscopic retrograde cholangio-pancreaticography

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, W; Ulrich, F; Richter, K; Schulz, H J [Akademie der Wissenschaften der DDR, Berlin-Buch. Forschungszentrum fuer Molekularbiologie und Medizin

    1983-01-01

    The gonadal dose for males and the radiation dose of the personnel in endoscopic retrograde cholangio-pancreaticography were determined. The equipment used was a DIAGNOST 70 (Philips-Mueller) with X-ray generator TuR D 1500. Doses were measured with a Kondiometer (Phys. techn. Werkstaetten Dr. Pychlau) using several cylinder and sphere chambers. The gonadal dose per investigation measured for 30 male patients was (124 +- 66) ..mu..Gy or (12.4 +- 6.6) mR, what is appreciably lower than values given by other authors. It is equivalent to a dose value quoted by Radtke for oral or infusion cholegraphy. Additional measurements for smaller groups of patients allow the following conclusions: Radiation burden in the scrotal region of an image-intensifier fluorograph, screen film radiograph and one minute of fluoroscopy are related as 1:10:60. This rule of thumb can be useful for the radiologist for estimating the radiation burden. A calculation of gonadal doses using the procedure-specific mean values of doses shows an agreement by approximately 10%. The fluoroscopy dose fraction was 84% while the intensifier-fluorograms added only 5%. The values for personnel are generally lower than comparable values from the literature, except for the upper arm of the physician handling the endoscope. They are in accordance with hand doses in other types of X-ray investigations.

  12. Dosimetry in patients and exposed personnel in endoscopic retrograde cholangio-pancreaticography

    International Nuclear Information System (INIS)

    Steinbach, W.; Ulrich, F.; Richter, K.; Schulz, H.J.

    1983-01-01

    The gonadal dose for males and the radiation dose of the personnel in endoscopic retrograde cholangio-pancreaticography were determined. The equipment used was a DIAGNOST 70 (Philips-Mueller) with X-ray generator TuR D 1500. Doses were measured with a Kondiometer (Phys. techn. Werkstaetten Dr. Pychlau) using several cylinder and sphere chambers. The gonadal dose per investigation measured for 30 male patients was (124 +- 66) μGy or (12.4 +- 6.6) mR, what is appreciably lower than values given by other authors. It is equivalent to a dose value quoted by Radtke for oral or infusion cholegraphy. Additional measurements for smaller groups of patients allow the following conclusions: Radiation burden in the scrotal region of an image-intensifier fluorograph, screen film radiograph and one minute of fluoroscopy are related as 1:10:60. This rule of thumb can be useful for the radiologist for estimating the radiation burden. A calculation of gonadal doses using the procedure-specific mean values of doses shows an agreement by approximately 10%. The fluoroscopy dose fraction was 84% while the intensifier-fluorograms added only 5%. The values for personnel are generally lower than comparable values from the literature, except for the upper arm of the physician handling the endoscope. They are in accordance with hand doses in other types of X-ray investigations. (author)

  13. An extended role for thermoluminescent phosphors in personnel, environmental and accident dosimetry using sensitisation, re-estimation and fast fading

    International Nuclear Information System (INIS)

    Charles, M.W.

    1983-01-01

    This paper summarises some techniques for extending the usefulness of conventional phosphors in personnel, environmental and accident dosimetry. An optimised procedure for utilising radiation sensitisation and UV re-estimation in thermoluminescent LiF is presented. In particular it is shown that optimum performance is achieved by using a UV wavelength of 250 +- 10 nm for both the UV/thermal anneal following sensitisation, and for the UV re-estimation procedure. In the case of Harshaw Lif Chips (3x3x0.9 mm 3 ) the sensitivity is increased by a factor of 4-5 to achieve a minimum detectable dose of approx.=10 μGy (2sigma) and a minimum re-estimable dose of 50-100 mGy (2sigma), dependent on batch. Sensitized LiF also exhibits improved tissue equivalence, extended linearity and improved precision at low doses. The information from fast-fading glow peaks, which is normally rejected, is shown to have a useful application to the evaluation of short-term increases in environmental dose rates such as may occur following accidental releases of radioactivity. (orig.)

  14. Health surveillance of medical personnel occupationally exposed to ionizing radiation sources: Biomonitoring and dosimetry

    International Nuclear Information System (INIS)

    Brumen, V.; Prlic, I.; Radalj, Z.; Horvat, D.; Cerovac, H.

    1996-01-01

    The aim of this work is to present the complete results of periodical health surveillance of medical personnel occupationally exposed to ionizing radiation sources, conducted according to established law regulations in Croatia. The report comprises a total of 21 examinees (11 female, 10 male), mean age 43,19 ± 9,85 years, originating from different professional groups and working in a radiation zone 14,7 ± 8,27 years on the average. Within the framework of this study, the results of their biomonitoring, including haematological parameters (whole blood count), ophthalmological findings (fundus oculi), cytogenetic test (conventional structural chromosomal aberration analysis) and peripheral blood flow survey (capillaroscopy and dermothermometry) will be presented. Filmdosimetric data for the referred period will also be reported. (author)

  15. Dosimetry in mixed (n,gamma) fields in relation to personnel monitoring

    International Nuclear Information System (INIS)

    Nikodemova, D.; Hrabovcova, A.; Kubu, M.

    1987-01-01

    Neutron spectra were determined using neutron detection with a set of moderating spheres and the SAND computer method. A 6 LiI crystal or a pair of 6 LiF- 7 LiF thermoluminescence detectors was placed in the centre of 7 moderating spheres of 5 to 30 cm in diameter. 252 Cf and 241 Am-Be source were used in the calibration of the multisphere spectrometer. Neutron scattering from the walls, floor and ceiling was taken into consideration. The contribution of scattered neutrons was also determined for the case of measuring the 241 Am-Be spectrum with the source placed behind a water wall 10 cm thick. It is shown how the neutron energy distribution and the values of dose quantities altered as a result of the presence of scattered neutrons. The result of the presence of scattered neutrons. The results are discussed with respect to personnel monitoring. (author)

  16. The cardiac catheterization laboratory personnel TLD dosimetry in Dr. Faghihi Hospital in Shiraz

    International Nuclear Information System (INIS)

    Derakhshan, Sh.

    2004-01-01

    In this study all of the personnel of Angiography of Dr.Faghihi hospital used TLD service During 2002-2003. This service was given by center for Radiation Protection and Application of the Shiraz University. These staff were divided in two group, one groups was technicians and the other group was the nurses. The result of this research shows that the maximum dose received to Technicians and nurses were 0.4mSv and 0.55mSV respectively. The average annual dose to technicians and nurses were 0.02 mSv and 0.19 mSv. This result shows that the nurses of this hospital receive more dose than the techniques

  17. Safety Features of Material and Personnel Movement Devices. Module SH-25. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety features of material and personnel movement devices is one of 50 modules concerned with job safety and health. This module covers safe conditions and operating practices for conveyors, elevators, escalators, moving walks, manlifts, forklifts, and motorized hand trucks. Following the introduction, 10 objectives (each…

  18. The use of an electronic portal imaging device for exit dosimetry and quality control measurements

    International Nuclear Information System (INIS)

    Kirby, Michael C.; Williams, Peter C.

    1995-01-01

    Purpose: To determine ways in which electronic portal imaging devices (EPIDs) could be used to (a) measure exit doses for external beam radiotherapy and (b) perform quality control checks on linear accelerators. Methods and Materials: When imaging, our fluoroscopic EPID adjusts the gain, offset, and frame acquisition time of the charge coupled device (CCD) camera automatically, to allow for the range of photon transmissions through the patient, and to optimize the signal-to-noise ratio. However, our EPID can be programmed to act as an integrating dosemeter. EPID dosemeter measurements were made for 20 MV photons, for different field sizes and thicknesses of unit density phantom material placed at varying exit surface to detector distances. These were compared with simultaneous Silicon diode exit dose measurements. Our exit dosimetry technique was verified using an anthropomorphic type phantom, and some initial measurements have been made for patients treated with irregularly shaped 20 MV x-ray fields. In this dosimetry mode, our EPID was also used to measure certain quality control parameters, x-ray field flatness, and the verification of segmented intensity modulated field prescriptions. Results: Configured for dosimetry, our EPID exhibited a highly linear response, capable of resolving individual monitor units. Exit doses could be measured to within about 3% of that measured using Silicon diodes. Field flatness was determined to within 1.5% of Farmer dosemeter measurements. Segmented intensity modulated fields can be easily verified. Conclusions: Our EPID has the versatility to assess a range of parameters pertinent to the delivery of high quality, high precision radiotherapy. When configured appropriately, it can measure exit doses in vivo, with reasonable accuracy, perform certain quick quality control checks, and analyze segmented intensity modulated treatment fields

  19. A pilot study of implantable cardiac device interrogation by emergency department personnel.

    Science.gov (United States)

    Neuenschwander, James F; Hiestand, Brian C; Peacock, W Frank; Billings, John M; Sondrup, Cole; Hummel, John D; Abraham, William T

    2014-03-01

    Implanted devices (eg, pacemakers and defibrillators) provide valuable information and may be interrogated to obtain diagnostic information and to direct management. During admission to an emergency department (ED), significant time and cost are spent waiting for device manufacturer representatives or cardiologists to access the data. If ED personnel could safely interrogate implanted devices, more rapid disposition could occur, thus leading to potentially better outcomes at a reduced cost. This was a pilot study examining the feasibility of ED device interrogation. This was a prospective convenience sample study of patients presenting to the ED with any chief complaint and who had an implantable device capable of being interrogated by a Medtronic reader. After obtaining informed consent, study patients underwent device interrogation by ED research personnel. After reviewing the device data, the physician documented their opinions of the value of data in aiding care. Patients were followed up at intervals ranging from 30 days out to 1 year to determine adverse events relating to interrogation. Forty-four patients underwent device interrogation. Their mean age was 56 ± 14.7 years (range, 28-83), 75% (33/44) were male and 75% (33/44) were hospitalized from the ED. The interrogations took less than 10 minutes 89% of the time. In 60% of the cases, ED physicians reported the data-assisted patient care. No adverse events were reported relating to the ED interrogations. In this pilot study, we found that ED personnel can safely and quickly interrogate implantable devices to obtain potentially useful clinical data.

  20. Variations in daily quality assurance dosimetry from device levelling, feet position and backscatter material

    International Nuclear Information System (INIS)

    Ceylan, Abdurrahman; Cullen, Ashley; Butson, Martin; Yu, Peter K.N.; Alnawaf, Hani

    2012-01-01

    Daily quality assurance procedures are an essential part of radiotherapy medical physics. Devices such as the Sun Nuclear, DQA3 are effective tools for analysis of daily dosimetry including flatness, symmetry, energy, field size and central axis radiation dose measurement. The DQA3 can be used on the treatment couch of the linear accelerator or on a dedicated table/bed for superficial and orthovoltage x-ray machines. This device is levelled using its dedicated feet. This work has shown that depending on the quantity of backscatter material behind the DQA3 device, the position of the levelling feet can affect the measured central axis dose by up to 1.8 % (250 kVp and 6 MV) and that the introduction of more backscatter material behind the DQA3 can lead to up to 7.2 % (6 MV) variations in measured central axis dose. In conditions where no backscatter material is present, dose measurements can vary up to 1 %. As such this work has highlighted the need to keep the material behind the DQA3 device constant as well as maintaining the accuracy of the feet position on the device to effectively measure the most accurate daily constancy achievable. Results have also shown that variations in symmetry and energy calculations of up to 1 % can occur if the device is not levelled appropriately. As such, we recommend the position of the levelling feet on the device be as close as possible to the device so that a constant distance is kept between the DQA3 and the treatment couch and thus minimal levelling variations also occur. We would also recommend having no extra backscattering material behind the DQA3 device during use to minimise any variations which might occur from these backscattering effects.

  1. Overview of 3-year experience with large-scale electronic portal imaging device-based 3-dimensional transit dosimetry

    NARCIS (Netherlands)

    Mijnheer, Ben J.; González, Patrick; Olaciregui-Ruiz, Igor; Rozendaal, Roel A.; van Herk, Marcel; Mans, Anton

    2015-01-01

    To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results. In our institution, routine in vivo dose verification of all treatments is performed by means of 3D

  2. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    International Nuclear Information System (INIS)

    Grigsby, P.W.; Perez, C.A.; Eichling, J.; Purdy, J.; Slessinger, E.

    1991-01-01

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2 mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01)

  3. X-ray spectroscopy and dosimetry with a portable CdTe device

    International Nuclear Information System (INIS)

    Abbene, Leonardo; La Manna, Angelo; Fauci, Francesco; Gerardi, Gaetano; Stumbo, Simone; Raso, Giuseppe

    2007-01-01

    X-ray spectra and dosimetry information are very important for quality assurance (QA) and quality control (QC) in medical diagnostic X-ray systems. An accurate knowledge of the diagnostic X-ray spectra would improve the patient dose optimization, without compromising image information. In this work, we performed direct diagnostic X-ray spectra measurements with a portable device, based on a CdTe solid-state detector. The portable device is able to directly measure X-ray spectra at high photon fluence rates, as typical of clinical radiography. We investigated on the spectral performances of the system in the mammographic energy range (up to ∼40 keV). Good system response to monoenergetic photons was measured (energy resolution of 5% FWHM at 22.1 keV). We measured the molybdenum X-ray spectra produced by a mammographic X-ray unit (GE Senographe DMR) at 28 kV and 30 kV under clinical conditions. The results showed the good reproducibility of the system and low pile-up distortions. Preliminary dosimetric measurements have been regarded as exposure and half value layer (HVL) values obtained from direct measurements and from measured X-ray spectral data, and a good agreement between exposure attenuation curves and the HVL values was obtained. The results indicated that the portable device is suitable for mammographic X-ray spectroscopy under clinical conditions

  4. Development of DosiMap: dosimetry device for radiotherapy quality assurance

    International Nuclear Information System (INIS)

    Frelin, A.M.

    2006-10-01

    This thesis deals with the development of a new dosimetry device for the control of radiotherapy beams. This device is composed of a plane plastic scintillator which is set within a polystyrene phantom. When the 'DosiMap' is irradiated, light is produced. This light is composed of scintillation and Cerenkov radiation, and is accurately measured by a C.C.D. camera. The analysis of the light distribution enables us to deduce the dose distribution in the scintillator plan. This device has many advantages such as tissue equivalence, a good spatial resolution, and a linear response with regard to energy. It also provides immediate measurements, and as a consequence, it is a very adapted tool for clinical use. After the introduction about the basic notions of radiotherapy, the different steps of the 'DosiMap' development are exposed in this thesis. In a first time, plastic scintillators have been tested to determine the best one for this application. Then, the deconvolution of scintillation and Cerenkov radiation have been studied, because we only use scintillation to calculate the dose distribution. The camera being in the irradiation room, a lead shield has also been developed to protect the C.C.D. detector from scattered radiations. Finally, the dose calibration and the dose response of 'DosiMap' are exposed. All this work made feasible the measurement of dose distributions with a precision which turns out to be better than 2% for homogeneous photon beams. Excellent results were also obtained when modulated intensity beams are used. (author)

  5. Transmission dosimetry with a liquid-filled electronic portal imaging device

    International Nuclear Information System (INIS)

    Boellaard, R.; Van Herk, M.; Mijnheer, B.J.

    1995-01-01

    The aim of transmission dosimetry is to correlate transmission dose values with patient dose values. A liquid-filled electronic portal imaging device (EPID) has been developed. After determination of the dose response relationship, i.e. the relation between pixel value and dose rate, for clinical situations it was found that the EPID is applicable for two-dimensional dosimetry with an accuracy of about 1%. The aim of this study was to investigate transmission dose distributions at different phantom-detector distances to predict exit dose distributions from transmission dose images. An extensive set of transmission dose measurements below homogeneous phantoms were performed with the EPID. The influence of several parameters such as field size, phantom thickness, phantom-detector distance and phantom-source distance on the transmission dose and its distribution were investigated. The two-dimensional transmission dose images were separated into two components: a primary dose and a scattered dose distribution. It was found that the scattered dose is maximal at a phantom thickness of about 10 cm. The scattered dose distribution below a homogeneous phantom has a Gaussian shape. The width of the Gaussian is small at small phantom-detector distances and increases for larger phantom-detector distances. The dependence of the scattered dose distribution on the field size at various phantom-detector distances has been used to estimate the dose distribution at the exit site of the phantom. More work is underway to determine the exit dose distributions for clinical situations, including the presence of inhomogeneities

  6. Transmission dosimetry with a liquid-filled electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, R; Van Herk, M; Mijnheer, B J [Nederlands Kanker Inst. ` Antoni van Leeuwenhoekhuis` , Amsterdam (Netherlands)

    1995-12-01

    The aim of transmission dosimetry is to correlate transmission dose values with patient dose values. A liquid-filled electronic portal imaging device (EPID) has been developed. After determination of the dose response relationship, i.e. the relation between pixel value and dose rate, for clinical situations it was found that the EPID is applicable for two-dimensional dosimetry with an accuracy of about 1%. The aim of this study was to investigate transmission dose distributions at different phantom-detector distances to predict exit dose distributions from transmission dose images. An extensive set of transmission dose measurements below homogeneous phantoms were performed with the EPID. The influence of several parameters such as field size, phantom thickness, phantom-detector distance and phantom-source distance on the transmission dose and its distribution were investigated. The two-dimensional transmission dose images were separated into two components: a primary dose and a scattered dose distribution. It was found that the scattered dose is maximal at a phantom thickness of about 10 cm. The scattered dose distribution below a homogeneous phantom has a Gaussian shape. The width of the Gaussian is small at small phantom-detector distances and increases for larger phantom-detector distances. The dependence of the scattered dose distribution on the field size at various phantom-detector distances has been used to estimate the dose distribution at the exit site of the phantom. More work is underway to determine the exit dose distributions for clinical situations, including the presence of inhomogeneities.

  7. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-05-15

    Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate the model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously

  8. High mobility AlGaN/GaN devices for β{sup −}-dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martin; Howgate, John; Ruehm, Werner [Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Thalhammer, Stefan, E-mail: stefan.thalhammer@physik.uni-augsburg.de [Universität Augsburg, Universitätsstraße 1, 86159 Augsburg (Germany)

    2016-05-21

    There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β{sup −}-emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β{sup −}-particle interactions with a metallic surface covering. We demonstrate that the source–drain current is modulated in dependence on the kinetic energy of the incident β{sup −}-particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β{sup −}-dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.

  9. High mobility AlGaN/GaN devices for β"−-dosimetry

    International Nuclear Information System (INIS)

    Schmid, Martin; Howgate, John; Ruehm, Werner; Thalhammer, Stefan

    2016-01-01

    There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β"−-emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β"−-particle interactions with a metallic surface covering. We demonstrate that the source–drain current is modulated in dependence on the kinetic energy of the incident β"−-particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β"−-dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.

  10. Quality Control in the Dosimetric System of the Personnel Dosimetry Service of the Spanish National Health Service

    Energy Technology Data Exchange (ETDEWEB)

    Casal, E.; Gil, J.A.; Roig, F.; Soriano, A. [Valencia (Spain)

    1999-07-01

    The main operating and quality control procedures implemented at the Centro Nacional de Dosimetria (CND) of the Spanish National Health Service to ensure the acceptance of the dosimetry service are described. The operating procedures are routinely performed at every step, since the dosemeters are received from the manufacturer until the doses are assigned to the dosimetric history and their main aim is to ensure the traceability of the doses. They make use of control and background dosemeters and frequent cross reference (automatic and manual) of different sources of data. The control procedures are performed at the end of each monthly process to detect possible errors or systematic bias in the dosimetry service and include analysis of the measurements of quality control dosemeters irradiated at the CND's laboratory and randomly read. The results of this analysis since 1996 are presented. (author)

  11. Quality Control in the Dosimetric System of the Personnel Dosimetry Service of the Spanish National Health Service

    International Nuclear Information System (INIS)

    Casal, E.; Gil, J.A.; Roig, F.; Soriano, A.

    1999-01-01

    The main operating and quality control procedures implemented at the Centro Nacional de Dosimetria (CND) of the Spanish National Health Service to ensure the acceptance of the dosimetry service are described. The operating procedures are routinely performed at every step, since the dosemeters are received from the manufacturer until the doses are assigned to the dosimetric history and their main aim is to ensure the traceability of the doses. They make use of control and background dosemeters and frequent cross reference (automatic and manual) of different sources of data. The control procedures are performed at the end of each monthly process to detect possible errors or systematic bias in the dosimetry service and include analysis of the measurements of quality control dosemeters irradiated at the CND's laboratory and randomly read. The results of this analysis since 1996 are presented. (author)

  12. Report of the results of the second phase of Research Coordinated Program of IAEA ''Regional Intercomparison of Personnel Dosimetry''

    International Nuclear Information System (INIS)

    Morales, J.; Diaz, E.; Hernandez, E.; Capote, E.

    1998-01-01

    In this report the results of an intercomparison program within a research coordinated program are presented. This is a second phase of the study that consisted in to evaluate the implementation of the new ICRU quantities for individual monitoring by the dosimetry laboratories. In this report the organization aspects, quality control of the irradiations performed by the reference laboratory (SSDL of the Centro de Proteccion e Higiene de las radiaciones) as well the results of the participant laboratories are included

  13. Dosimetry problems when evaluating radiation effects on the personnel, restoration work participants, and human population due to the Chernobyl accident

    International Nuclear Information System (INIS)

    Abramov, Yu.V.; Osanov, D.P.; Gimadova, T.I.; Gus'kov, V.M.; Kruchkov, V.P.; Pavlov, D.A.; Shaks, A.I.

    1993-01-01

    System of radiation monitoring operations of the Chernobyl NPP personnel is described for the period from the date of accident up to present time as well as of persons worked in the Chernobyl NPP 30 km zone, servicemen, and human population. Unsatisfactory organization of radiation on monitoring is marked and causes of this fact are considered. 8 refs.; 3 figs

  14. Characterization of a high-elbow, fluoroscopic electronic portal imaging device for portal dosimetry

    International Nuclear Information System (INIS)

    Boer, J.C.J. de; Visser, A.G.

    2000-01-01

    The application of a newly developed fluoroscopic (CCD-camera based) electronic portal imaging device (EPID) in portal dosimetry is investigated. A description of the EPID response to dose is presented in terms of stability, linearity and optical cross-talk inside the mechanical structure. The EPID has a relatively large distance (41 cm on-axis) between the fluorescent screen and the mirror (high-elbow), which results in cross-talk with properties quite different from that of the low-elbow fluoroscopic EPIDs that have been studied in the literature. In contrast with low-elbow systems, the maximum cross-talk is observed for points of the fluorescent screen that have the largest distance to the mirror, which is explained from the geometry of the system. An algorithm to convert the images of the EPID into portal dose images (PDIs) is presented. The correction applied for cross-talk is a position-dependent additive operation on the EPID image pixel values, with a magnitude that depends on a calculated effective field width. Deconvolution with a point spread function, as applied for low-elbow systems, is not required. For a 25 MV beam, EPID PDIs and ionization chamber measurements in the EPID detector plane were obtained behind an anthropomorphic phantom and a homogeneous absorber for various field shapes. The difference in absolute dose between the EPID and ionization chamber measurements, averaged over the four test fields presented in this paper, was 0.1±0.5% (1 SD) over the entire irradiation field, with no deviation larger than 2%. (author)

  15. Development of DosiMap: dosimetry device for radiotherapy quality assurance; Developpement du DosiMap: instrument de dosimetrie pour le controle qualite en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frelin, A M

    2006-10-15

    This thesis deals with the development of a new dosimetry device for the control of radiotherapy beams. This device is composed of a plane plastic scintillator which is set within a polystyrene phantom. When the 'DosiMap' is irradiated, light is produced. This light is composed of scintillation and Cerenkov radiation, and is accurately measured by a C.C.D. camera. The analysis of the light distribution enables us to deduce the dose distribution in the scintillator plan. This device has many advantages such as tissue equivalence, a good spatial resolution, and a linear response with regard to energy. It also provides immediate measurements, and as a consequence, it is a very adapted tool for clinical use. After the introduction about the basic notions of radiotherapy, the different steps of the 'DosiMap' development are exposed in this thesis. In a first time, plastic scintillators have been tested to determine the best one for this application. Then, the deconvolution of scintillation and Cerenkov radiation have been studied, because we only use scintillation to calculate the dose distribution. The camera being in the irradiation room, a lead shield has also been developed to protect the C.C.D. detector from scattered radiations. Finally, the dose calibration and the dose response of 'DosiMap' are exposed. All this work made feasible the measurement of dose distributions with a precision which turns out to be better than 2% for homogeneous photon beams. Excellent results were also obtained when modulated intensity beams are used. (author)

  16. Personnel monitoring

    International Nuclear Information System (INIS)

    1965-01-01

    This film stresses the need for personnel monitoring in work areas where there is a hazard of exposure to radiation. It illustrates the use of personnel monitoring devices (specially the film dosimeter), the assessment of exposure to radiation and the detailed recording of the results on personnel filing cards

  17. Personnel monitoring

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-12-31

    This film stresses the need for personnel monitoring in work areas where there is a hazard of exposure to radiation. It illustrates the use of personnel monitoring devices (specially the film dosimeter), the assessment of exposure to radiation and the detailed recording of the results on personnel filing cards

  18. Personnel Monitoring Department - DEMIN

    International Nuclear Information System (INIS)

    1989-01-01

    The activities and purposes of the Personnel Monitoring Dept. of the Institute of Radioprotection and Dosimetry of the Brazilian CNEN are presented. A summary of the personnel monitoring service is given, such as dosemeters supply, laboratorial inspections, and so on. The programs of working, publishing, courses and personnel interchange are also presented. (J.A.M.M.)

  19. SU-F-T-283: A Novel Device to Enable Portal Dosimetry for Flattening Filter Free Beams

    Energy Technology Data Exchange (ETDEWEB)

    Faught, A; Wu, Q; Adamson, J [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Varian’s electronic portal imaging device (EPID) based portal dosimetry tool is a popular and effective means of performing IMRT QA. EPIDs for older models of the TrueBeam accelerator utilize a 40cmx30cm Image Detection Unit (IDU) that saturates at the center for standard source to imager distances with high dose rate flattening filter free (FFF) beams. This makes portal dosimetry not possible and an alternative means of IMRT QA necessary. We developed a filter that would attenuate the beam to a dose rate measureable by the IDU for portal dosimetry IMRT QA. Methods: Multipurpose 304 stainless steel plates were placed on an accessory tray to attenuate the beam. Profiles of an open field measured on the IDU were acquired with varying number of plates to assess the thickness needed to reduce the maximum dose rates of 6XFFF and 10XFFF beams to measurable levels. A new portal dose image prediction (PDIP) model was commissioned based on open field measurements with plates in position, and a modified beam profile was input to portal dosimetry calibration at the console to empirically correct for attenuation and scatter. The portal dosimetry tool was used to assess agreement between predicted and measured doses for open 25×25cm{sup 2} fields and intensity modulated fields using 6XFFF and 10XFFF beams. Results: Thicknesses of 2.5cm and 3.8cm of steel were required to reduce the highest dose rates to a measureable level for 6XFFF and 10XFFF, respectively. Gamma analysis using a 3%/3mm relative criterion with the filter in place and using the new PDIP model resulted in 98.2% and 93.6% of pixels passing while intensity modulated fields showed passing rates of 98.2% and 99.0%. Conclusion: Use of the filter allows for portal dosimetry to be used for IMRT QA of FFF plans in place of purchasing a second option for IMRT QA.

  20. Aircrew personnel dosimetry at airline companies in the Czech Republic. Selection of the method and its experimental testing

    International Nuclear Information System (INIS)

    Spurny, F.; Malusek, A.; Kovar, I.; Turek, K.; Vlcek, B.; Hlavaty, V.; Kolar, B

    2002-01-01

    The report gives the results of the first stages of analysis of the problem, performed based on a contract between the Czech airline company CSA and the Radiation Dosimetry Department, Institute of Nuclear Physics, Academy of Sciences of the Czech Republic. First, the contributions of the aircraft type and of the flight route to the aircrew radiation burden was investigated based on 1997 and 1998 data. At the same time, the effect of variations in the flight parameters on the exposure level was examined based on calculations by using an internationally recognized computer code. In the next part of the report, the results of measurement of the aircrew exposure level performed during the period of March to November 1999 are given and analyzed. The measurements encompassed 8 European flight routes, 2 routes over the northern regions of the Atlantic and one route to south-eastern Asia. Data were obtained for the low-LET component (mostly high-energy electrons and protons) as well as the high-LET component (mostly neutrons). To refine the interpretation of the data, calibration measurements were performed in the reference fields of high energy radiations at CERN. The results of measurement were compared with the results of calculation by the CARI code. The data provided by the latest CARI 6 version approach the observed values reasonably closely. (author)

  1. Development of DosiMap: dosimetry device for radiotherapy quality assurance; Developpement du DosiMap: instrument de dosimetrie pour le controle qualite en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frelin, A.M

    2006-10-15

    This thesis deals with the development of a new dosimetry device for the control of radiotherapy beams. This device is composed of a plane plastic scintillator which is set within a polystyrene phantom. When the 'DosiMap' is irradiated, light is produced. This light is composed of scintillation and Cerenkov radiation, and is accurately measured by a C.C.D. camera. The analysis of the light distribution enables us to deduce the dose distribution in the scintillator plan. This device has many advantages such as tissue equivalence, a good spatial resolution, and a linear response with regard to energy. It also provides immediate measurements, and as a consequence, it is a very adapted tool for clinical use. After the introduction about the basic notions of radiotherapy, the different steps of the 'DosiMap' development are exposed in this thesis. In a first time, plastic scintillators have been tested to determine the best one for this application. Then, the deconvolution of scintillation and Cerenkov radiation have been studied, because we only use scintillation to calculate the dose distribution. The camera being in the irradiation room, a lead shield has also been developed to protect the C.C.D. detector from scattered radiations. Finally, the dose calibration and the dose response of 'DosiMap' are exposed. All this work made feasible the measurement of dose distributions with a precision which turns out to be better than 2% for homogeneous photon beams. Excellent results were also obtained when modulated intensity beams are used. (author)

  2. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  3. Film dosimetry using a smart device camera: a feasibility study for point dose measurements.

    Science.gov (United States)

    Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie

    2017-10-03

    In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.

  4. Film dosimetry using a smart device camera: a feasibility study for point dose measurements

    Science.gov (United States)

    Aland, Trent; Jhala, Ekta; Kairn, Tanya; Trapp, Jamie

    2017-10-01

    In this work, a methodology for using a smartphone camera, in conjunction with a light-tight box operating in reflective transmission mode, is investigated as a proof of concept for use as a film dosimetry system. An imaging system was designed to allow the camera of a smartphone to be used as a pseudo densitometer. Ten pieces of Gafchromic EBT3 film were irradiated to doses up to 16.89 Gy and used to evaluate the effects of reproducibility and orientation, as well as the ability to create an accurate dose response curve for the smartphone based dosimetry system, using all three colour channels. Results were compared to a flatbed scanner system. Overall uncertainty was found to be best for the red channel with an uncertainty of 2.4% identified for film irradiated to 2.5 Gy and digitised using the smartphone system. This proof of concept exercise showed that although uncertainties still exceed a flatbed scanner system, the smartphone system may be useful for providing point dose measurements in situations where conventional flatbed scanners (or other dosimetry systems) are unavailable or unaffordable.

  5. Photographic film dosimetry for high-energy accelerator radiation

    International Nuclear Information System (INIS)

    Komochkov, M.M.; Salatskaya, M.I.

    1981-01-01

    A technique for personnel photographic film dosimetry (PPFDN) of wide energy spectrum neutrons intended for measuring the effect of accelerating device radiation on personnel is described. Procedures of data measurement and processing as well as corrections to hadron contribution are presented. It is noted that the PPFDN method permits to measure a neutron dose equivalent for personnel in the range from 0.01 to 0.02 up to 100 rem, if the relativistic neutron contribution to a total dose does not exceed 5%. The upper limit of the measured dose reduced several times for a greater contribution of relativistic neutrons to the total dose [ru

  6. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    In May 1983, the authors proposed a dosimetry system for use by the Radiation Effects Research Foundation (RERF) that would incorporate the new findings and calculations of the joint United States - Japan working groups on the reassessment of A-bomb dosimetry. The proposed dosimetry system evolved from extensive discussions with RERF personnel, numerous meetings of the scientists from Japan and the United States involved in the dosimetry reassessment research, and requirements expressed by epidemiologists and radiobiologists on the various review panels. The dosimetry system proposed was based on considerations of the dosimetry requirements for the normal work of RERF and for future research in radiobiology, the computerized input data on A-bomb survivors available in the RERF data base, the level of detail, precision, and accuracy of various components of the dosimetric estimates, and the computer resources available at RERF in Hiroshima. These discussions and our own experience indicated that, in light of the expansion of computer and radiation technologies and the desire for more detail in the dosimetry, an entirely new approach to the dosimetry system was appropriate. This resulted in a complete replacement of the T65D system as distinguished from a simpler approach involving a renormalization of T65D parameters to reflect the new dosimetry. The proposed dosimetry system for RERF and the plan for implementation was accepted by the Department of Energy (DOE) Working Group on A-bomb Dosimetry chaired by Dr. R.F. Christy. The dosimetry system plan was also presented to the binational A-bomb dosimetry review groups for critical comment and was discussed at joint US-Japan workshop. A prototype dosimetry system incorporating preliminary dosimetry estimates and applicable to only a limited set of A-bomb survivors was installed on the RERF computer system in the fall of 1984. This system was successfully operated at RERF and provided an initial look at the impact of

  7. Standard practice for application of thermoluminescence-dosimetry (TLD) systems for determining absorbed dose in radiation-hardness testing of electronic devices. ASTM standard

    International Nuclear Information System (INIS)

    1998-05-01

    This practice is under the jurisdiction of ASTM Committee E-10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.07 on Radiation Dosimetry for Radiation Effects on Materials and Devices. Current edition approved Jun. 10, 1997. Published May 1998. Originally published as E 668-78. Last previous edition E 668-93

  8. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  9. In-vivo dosimetry in external radiotherapy with amorphous silicon Portal Imaging Devices: from method to clinical validation

    International Nuclear Information System (INIS)

    Boissard, Philippe

    2012-01-01

    In vivo dose verification is used to prevent major deviations between the prescribed dose and the dose really delivered to the patient. This quality control was, nationally and internationally, widely recommended by scientific organizations. In France, its implementation and its use are now regulated. To do this, small detectors are fixed on the patient skin at the beginning of the treatment. However, the treatment delay is increased and not all treatment techniques could be assessed, such as IMRT plans (Intensity Modulated Radiation Therapy). In this context, Transit dosimetry performed with Electronic Portal Imaging Devices (EPIDs) appears as an interesting alternative for in vivo dose verification. During the treatment session, a transit dose is measured with the EPID, in two dimensions, and the dose in the patient is estimated from back projection of the portal dose. This work presents a quick and simple alternative method for verification of dose delivered to the patient using photon beams. Verifications in cases of complexes patient shapes and Intensity Modulated Radiation Therapy (IMRT) have been improved by using a Clarkson-Cunningham's integration method. 46 phantom test cases were designed to assess the accuracy of the method for 4, 6, 10 and 20 MV photon beams. For some points of interest the dose reconstructed by the method is compared to the dose measured with an ionization chamber. An additional in vivo uncertainty due to day to day deviations is defined and investigated. In the same time, a clinical study was driven during three years. In vivo dosimetry was performed for 494 patients treated for various tumors sites. Most of the patients were treated for a prostate cancer using IMRT. The in vivo dose is here compared to the dose calculated by the Treatment Planning System, TPS. The results of these two ways of validations are within the accepted tolerance of classical in vivo dosimetry. From the phantom study, we have estimated that the standard

  10. A novel synthetic single crystal diamond device for in vivo dosimetry

    International Nuclear Information System (INIS)

    Marinelli, Marco; Prestopino, G.; Tonnetti, A.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagalà, P.; Pimpinella, M.; Guerra, A. S.; De Coste, V.

    2015-01-01

    Purpose: Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of “Tor Vergata” University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. Methods: The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with "6"0Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. Results: The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. Conclusions: The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams

  11. Ghosting effect in Siemens electronic portal imaging devices (EPIDs) for step and shoot IMRT dosimetry

    International Nuclear Information System (INIS)

    Deshpande, S.; Vial, P.; Goozee, G.; Holloway, L.

    2010-01-01

    Full text: To assess the ghosting effect of a Siemens EPID (Optivue 1000: while acquiring IMRT fluence with step and shoot delivery. Six sets of segmented fields with 1,2,3,5, J( and 20 monitor units (MU) per segment were designed. Each set consisted of ten segments of equal MU and field size (J 0 x 10 cm 2 ) Standard single fields (non-segmented) of the same total MU as the segmented fields were also created (10-200 MU). EPID images for these fields were acquired with multi-frame acquisition mode. The integrated EPID response was determined as the mean central 20 x 21 pixel readout multiplied by the number of frames. The same fields wen measured with an ionization chamber at a depth of dose maximum in, solid water phantom. The total signal measured from the segmented fields was compared to the corresponding non-segmented fields. The ratio of EPID response between segmented and non-segmented delivery indicates an under-response for segmented fields by 5, 4, 2.5 and 2% for 1,2,3, and 5 MU per segment exposures respectively compared to ionisation chamber response (se Fig. I). The ratio was within 2% for 5 MU per segment and above. Th error bar in Fig. I indicate the intra-segment response variation. The Siemens EPID exhibited significant ghosting effect and variation in response for small M U segments. EPID dosimetry ( IMRT fields with less than 5 MU per segment requires corrections t maintain dose calibration accuracy to within 2%. (author)

  12. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  13. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  14. 11. International conference on solid radiation dosimetry

    International Nuclear Information System (INIS)

    Krylova, I.V.

    1996-01-01

    The main problems discussed during the international conference on solid radiation dosimetry which took place in June 1995 in Budapest are briefly considered. These are the basic physical processes, materials applied for dosimetry, special techniques, personnel monitoring, monitoring of environmental effects, large-dose dosimetry, clinic dosimetry, track detector used for dosimetry, dosimetry in archaeology and geology, equipment and technique for dosimetric measurements. The special attention was paid to superlinearity in the TLD-100 (LiF, Mg, Ti) response function when determining doses of gamma radiation, heavy charged particles, low-energy particle fluxes in particular. New theoretical models were considered

  15. Two-dimensional exit dosimetry using a liquid-filled electronic portal imaging device and a convolution model

    International Nuclear Information System (INIS)

    Boellaard, Ronald; Herk, Marcel van; Uiterwaal, Hans; Mijnheer, Ben

    1997-01-01

    Background and purpose: To determine the accuracy of two-dimensional exit dose measurements with an electronic portal imaging device, EPID, using a convolution model for a variety of clinically relevant situations. Materials and methods: Exit doses were derived from portal dose images, obtained with a liquid-filled EPID at distances of 50 cm or more behind the patient, by using a convolution model. The resulting on- and off-axis exit dose values were first compared with ionization chamber exit dose measurements for homogeneous and inhomogeneous phantoms in open and wedged 4,8 and 18 MV photon beams. The accuracy of the EPID exit dose measurements was then determined for a number of anthropomorphic phantoms (lung and larynx) irradiated under clinical conditions and for a few patients treated in an 8 MV beam. The latter results were compared with in vivo exit dose measurements using diodes. Results: The exit dose can be determined from portal images with an accuracy of 1.2% (1 SD) compared with ionization chamber measurements for open beams and homogeneous phantoms at all tested beam qualities. In the presence of wedges and for inhomogeneous phantoms the average relative accuracy slightly deteriorated to 1.7% (1 SD). For lung phantoms in a 4 MV beam a similar accuracy was obtained after refinement of our convolution model, which requires knowledge of the patient contour. Differences between diode and EPID exit dose measurements for an anthropomorphic lung phantom in an 8 MV beam were 2.5% at most, with an average agreement within 1% (1 SD). For larynx phantoms in a 4 MV beam exit doses obtained with an ionization chamber and EPID agreed within 1.5% (1 SD). Finally, exit doses in a few patients irradiated in an 8 MV beam could be determined with the EPID with an accuracy of 1.1% (1 SD) relative to exit dose measurements using diodes. Conclusions: Portal images, obtained with our EPID and analyzed with our convolution model, can be used to determine the exit dose

  16. Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

    International Nuclear Information System (INIS)

    Yeo, Inhwan Jason; Patyal, Baldev; Mandapaka, Anant; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh

    2013-01-01

    Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams.Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 × 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 × 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 × 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared.Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame acquisition rate, thereby causing no frame missing

  17. Dosimetry of the Occupational Exposure Personnel and not exposure of the INNSZ; Dosimetria del Personal Ocupacionalmente Expuesto (POE) y no expuesto del INNSZ

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz J, A [Departamento de Medicina Nuclear, Instituto nacional de la nutricion Salvador Zubiran, Mexico D.F. C.P. 14100 (Mexico)

    1999-07-01

    In this work, was measured the equivalent dose of all the personnel of Nuclear medicine and personnel of the Institute which by its activities remain in the Department, by time determined, through thermoluminescent dosemeters and the results were that the personnel presents variable equivalent dose and it is proportional to the time and radionuclide type which use for their work. By this it is allowed to secure what the work watched with respect to radiological protection to fulfil with the International Standards standing for personnel in the Institute. (Author)

  18. College grade point average as a personnel selection device: ethnic group differences and potential adverse impact.

    Science.gov (United States)

    Roth, P L; Bobko, P

    2000-06-01

    College grade point average (GPA) is often used in a variety of ways in personnel selection. Unfortunately, there is little empirical research literature in human resource management that informs researchers or practitioners about the magnitude of ethnic group differences and any potential adverse impact implications when using cumulative GPA for selection. Data from a medium-sized university in the Southeast (N = 7,498) indicate that the standardized average Black-White difference for cumulative GPA in the senior year is d = 0.78. The authors also conducted analyses at 3 GPA screens (3.00, 3.25, and 3.50) to demonstrate that employers (or educators) might face adverse impact at all 3 levels if GPA continues to be implemented as part of a selection system. Implications and future research are discussed.

  19. The use of active personal dosemeters as a personal monitoring device: Comparison with TL dosimetry

    International Nuclear Information System (INIS)

    Boziari, A.; Koukorava, C.; Carinou, E.; Hourdakis, C. J.; Kamenopoulou, V.

    2011-01-01

    The use of active personal dosemeters (APDs) not only as a warning device but also, in some cases, as an official and hence stand-alone dosemeter is rapidly increasing. A comparison in terms of dose, energy and angle dependence, among different types of APD and a routinely used whole-body thermoluminescence dosemeter (TLD) has been performed. Significant differences were found between the TLD readings and mainly some not commonly used APDs. The importance of choosing the best adapted APD according to the radiation field characteristics is pointed out. (authors)

  20. Textbook of dosimetry. 4. ed.

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1999-01-01

    This textbook of dosimetry is devoted to the students in physics and technical physics of high education institutions, confronted with different application of atomic energy as well as with protection of population and environment against ionizing radiations. Atomic energy is highly beneficial for man but unfortunately incorporates potential dangers which manifest in accidents, the source of which is either insufficient training of the personnel, a criminal negligence or insufficient reliability of the nuclear facilities. The majority of the incident and accident events have had as origin the personnel errors. This was the case with both the 'Three Miles Island' (1979) and Chernobyl (1986) NPP accidents. The dosimetry science acquires a vital significance in accident situations since the data obtained by its procedures are essential in choosing the correct immediate actions, behaviour tactics, orientation of liquidation of accident consequences as well as in ensuring the health of population. An important accent is placed in this manual on clarification of the nature of physical processes taken place in dosimetric detectors, in establishing the relation between radiation field characteristics and the detector response as well as in defining different dosimetric quantities. The terminology and the units of physical quantities is based on the international system of units. The book contains the following 15 chapters: 1. Ionizing radiation field; 2. Radiation doses; 3. Physical bases of gamma radiation dosimetry; 4. Ionization dosimetric detectors; 5. Semiconductor dosimetric detectors; 6. Scintillation detection in the gamma radiation dosimetry; 7. Luminescent methods in dosimetry; 8. The photographic and chemical methods of gamma radiation dosimetry; 9. Neutron dosimetry; 10. Dosimetry of high intensity radiation; 11. Dosimetry of high energy Bremsstrahlung; 12. Measurement of the linear energy transfer; 13. Microdosimetry; 14. Dosimetry of incorporated

  1. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device

    International Nuclear Information System (INIS)

    Duque, Hildanielle Ramos

    2015-01-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  2. Personnel dose assignment practices

    International Nuclear Information System (INIS)

    Fix, J.J.

    1993-04-01

    Implementation of DOE N 5480.6 Radiological Control Manual Article 511(3) requirements, to minimize the assignment of personnel dosimeters, should be done only under a broader context ensuring that capabilities are in place to monitor and record personnel exposure both for compliance and for potential litigation. As noted in NCRP Report No. 114, personnel dosimetry programs are conducted to meet four major objectives: radiation safety program control and evaluation; regulatory compliance; epidemiological research; and litigation. A change to Article 511(3) is proposed that would require that minimizing the assignment of personnel dosimeters take place only following full evaluation of overall capabilities (e.g., access control, area dosimetry, etc.) to meet the NCRP objectives

  3. Radiation protection of medical staff: a coordinated action by EURADOS on extremely dosimetry and the use of active personnel dosemeters (CONRAD)

    International Nuclear Information System (INIS)

    Struelens, L.; Vanhavere, F.

    2009-01-01

    Monitoring of workers constitutes an integral part of any radiological protection program. However, unresolved issues in radiation protection of medical staff still remain. Research and establishment of guidelines are necessary on a variety of issues such as extremity dosimetry (fingers, eye lenses, etc), the use of double dosimetry above and below lead aprons, or the use of electronic personal dosimeters in interventional procedures. Medical practices are also evolving fast, and new techniques with ionising radiation emerge very regularly, thus implying the need of radiation protection measures for medical staff, and the implementation of new monitoring programs. In some medical applications of radiation there is an increased risk of high local exposures because of direct handling of sources or the use of beta-emitters. However, despite the large number of workers that are exposed in the medical field worldwide, only few measurements of extremity doses have been reported in the literature. Some activities of EURADOS Working Group 9 (WG9) were sponsored by the European Commission in the CONRAD project. This CONRAD project was aiming at the coordination of research on radiation protection at the workplace. Working group 9 has been involved in the coordination and promotion of European research in the field of Radiation Protection Dosimetry for Medical Staff. One of the objectives of this working group was to formulate the state of the art and to identify areas in which improvements were needed. For some of these medical applications the skin of the fingers is the limiting organ from the point of view of individual monitoring of external radiation. The wide variety of radiation field characteristics in a medical environment, and the difficulty of measuring a local dose that is representative for the maximum skin dose (usually with one single detector), makes it difficult to perform extremity dosimetry with an accuracy similar to whole-body dosimetry. Therefore a

  4. Photon and neutron doses of the personnel using moisture and density measurement devices

    Energy Technology Data Exchange (ETDEWEB)

    Carinou, E.; Papadomarkaki, E.; Tritakis, P.; Hourdakis, C.I.; Kamenopoulou, V. [Greek Atomic Energy Commission, Agia Paraskevi, Attiki, 60092 (Greece)

    2006-07-01

    The objective of this study is to present the evolution of the photon doses received by the workers who use mobile devices for measuring the moisture and the density in various materials and to estimate the neutron doses. The workers employed in more than 30 construction companies in Greece were 76 in 2004. The devices used for that purpose incorporate a {sup 137}Cs source for density measurements and an {sup 241}Am-Be source for moisture measurements of soil, asphalt or concrete. Photon and neutron measurements were performed occasionally during the on site inspections. The results of the measurements showed that the photon and neutron dose rates were not negligible. The workers were monitored for photon radiation using film badges (Kodak Type 2, Holder NRPB type) till the year 2000 and then TLD badges issued by the Greek Atomic Energy Commission (GAEC), on a monthly basis. Since the neutron dose rates measured by a rem-meter were not so high, no neutron dosemeters were issued for them. Their personal dose equivalent data for photons are kept in the National Dose Registry Information System (N.D.R.I.S.) in G.A.E.C. and were used for statistical analysis for the period from 1997 till 2004. As far as the neutrons are concerned, a Monte Carlo code was used to simulate the measuring devices and the working positions in order to calculate the neutron individual doses. (authors)

  5. Photon and neutron doses of the personnel using moisture and density measurement devices

    International Nuclear Information System (INIS)

    Carinou, E.; Papadomarkaki, E.; Tritakis, P.; Hourdakis, C.I.; Kamenopoulou, V.

    2006-01-01

    The objective of this study is to present the evolution of the photon doses received by the workers who use mobile devices for measuring the moisture and the density in various materials and to estimate the neutron doses. The workers employed in more than 30 construction companies in Greece were 76 in 2004. The devices used for that purpose incorporate a 137 Cs source for density measurements and an 241 Am-Be source for moisture measurements of soil, asphalt or concrete. Photon and neutron measurements were performed occasionally during the on site inspections. The results of the measurements showed that the photon and neutron dose rates were not negligible. The workers were monitored for photon radiation using film badges (Kodak Type 2, Holder NRPB type) till the year 2000 and then TLD badges issued by the Greek Atomic Energy Commission (GAEC), on a monthly basis. Since the neutron dose rates measured by a rem-meter were not so high, no neutron dosemeters were issued for them. Their personal dose equivalent data for photons are kept in the National Dose Registry Information System (N.D.R.I.S.) in G.A.E.C. and were used for statistical analysis for the period from 1997 till 2004. As far as the neutrons are concerned, a Monte Carlo code was used to simulate the measuring devices and the working positions in order to calculate the neutron individual doses. (authors)

  6. Comparison of radiation doses obtained for radiation monitoring of controlled areas with radiation doses obtained for personnel dosimetry in radiodiagnosis centers

    International Nuclear Information System (INIS)

    Lescano, Roberto; Caspani, Carlos; Universidad Nacional del Litoral, Santa Fe

    2001-01-01

    In this paper we propose to search an indicator that shows, at an objective way, the quality of the radioprotection actions. The method is about to determine doses, measured in the work area, connecting them with the workload, and finally get the dose for the center. Them we make a comparison with the personal film dosimetry data. We discuss the final results, evaluating the radioprotection conditions in daily work. (author)

  7. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  8. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    Hernández-Ruiz, L.; Jimenez-Flores, Y.; Rivera-Montalvo, T.; Arias-Cisneros, L.; Méndez-Aguilar, R.E.; Uribe-Izquierdo, P.

    2012-01-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  9. Implementation of a dosimetry service for the occupationally exposed personnel of the ESFM-IPN; Implementacion de un servicio de dosimetria para el personal ocupacionalmente expuesto de la ESFM-IPN

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, Y. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Sanchez R, A. A. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico); Ceron R, P. V.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia y Tecnologia Avanzada, Unidad Legaria, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico); Vega C, H. R., E-mail: yamani.hernandez@cnsns.gob.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    Because the ionizing radiations handling implies a risk for the health, is necessary to take a control of the radiation quantity that the occupationally exposed personnel receives during their daily work with ionizing radiations. For this purpose there are several types of dosimetry and companies that provide the service, but taking advantage that the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (ESFM-IPN) possesses a thermoluminescence equipment (Tl) was decided to develop a personnel dosimetry service for gammas, with thermoluminescent glasses of type TLD-100. First one carries out a glasses characterization, for which the glasses were washed with a methyl alcohol solution, without rubbing them for not damaging them; after the drying, they were subjected to a temperature of 400 C during one hour and later on 100 grades C for two hours in order to erasing them the bottom information that they could have. 200 glasses were exposed to gamma radiation coming from a Cobalt 60 source property of ESFM-IPN in order to selecting the glasses that had a response whose precision was inside a standard deviation. Of this characterization 80 dosimeters were selected that had better response according to the obtained readings as well as of their shine curves. These selected TLD-100 glasses were irradiated to different dose of gamma radiation and with those readings it was built a dose response curve in m R against readings of electric load in pick Coulombs (pCou). The response curve was a direct line or calibration curve. As final exercise some glasses of this selected lot were subjected to irradiation dose not known by the person that carried out the readings and this way was proven that the results were appropriate with the calibration curve. Finally these dosimeters were placed in port-dosimeters and erased guides of dosimeters, of equipment use and dosimeters lecture were also elaborated. (Author)

  10. Calibration of instrument and personnel monitoring in radiological protection

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamad Ramli; Wan Saffiey Wan Abdullah

    1987-01-01

    It is difficult to choose radioprotection equipments that are not too expensive and suit the purpose. Some of the dosimetric characteristics of good dosemeters outlined by ISO 4071-1978 (E) namely scale linearity, energy dependence, radiation quality dependence and angular dependence for some of the commercially available dosemeters are discussed. The calibration procedures practised at the National Secondary Standard Dosimetry Laboratory (SSDL), of the Nuclear Energy Unit (NEU) is also explained. The radiological equipments for personnel monitoring such as film badge and TLD are widely used to estimate the radiation dose delivered to the whole or partial body of a personnel. Both of the personnel monitoring procedures have been established at the NEU. The objective, use and maintenance of the devices are also discussed in detail. The evaluation of the monthly dose received by a personnel from various establishments in the country are also presented. (author). 17 figs

  11. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual DosimetryWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MAY/JUNE will be available from their usual dispatchers on Tuesday 2 May.Please have your films changed before the 12 May.The colour of the dosimeter valid in is MAY/JUNE is YELLOW.Individual Dosimetry Service will be closed on Friday 28 April.

  12. A Test of Reliability of the Personnel Dosimetry Services Authorized by CSN using Photon Beams; Control de los servicios de dosimetria personal autorizados por el CSN, usando haces de fotones

    Energy Technology Data Exchange (ETDEWEB)

    Brosed, A; Delgado, A; Granados, C E; Lopez Ortiz, G

    1987-07-01

    In 1987 the Consejo de Seguridad Nuclear (CSN) had eight Personnel Dosimetry Services (PDS) authorized to asses the equivalent doses to the spanish occupationally exposed workers, by means of the readings from the dosemeters wear by them. An audit was carried on the PDS on behalf of CSN under the control of CIEMAT. Batches of dosemeters from each one of the PDS were irradiated to dose equivalent values which were well established by CIEMAT but kept hidden from the PDS. By comparing the true values with those obtained by the PDS, it was possible to evaluate the Services according to the analysis of the quantity Q= I B I -I- S where B is the average of the individual deviations between the dosemeters belonging to the same group and the true value as established by CIEMAT, whereas S is the standard deviation of the values inside of this same group. The results of the evaluation, which was made using the new ICRU quantities for personnel monitoring, are presented. (Author) 8 refs.

  13. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  14. Long-term efficacy of an ergonomics program that includes patient-handling devices on reducing musculoskeletal injuries to nursing personnel.

    Science.gov (United States)

    Garg, Arun; Kapellusch, Jay M

    2012-08-01

    The aim of this study was to evaluate long-term efficacy of an ergonomics program that included patient-handling devices in six long-term care facilities (LTC) and one chronic care hospital (CCH). Patient handling is recognized as a major source of musculoskeletal disorders (MSDs) among nursing personnel, and several studies have demonstrated effectiveness of patient-handling devices in reducing those MSDs. However, most studies have been conducted in a single facility, for a short period, and/or without a comprehensive ergonomics program. Patient-handling devices along with a comprehensive ergonomics program was implemented in six LTC facilities and one CCH. Pre- and postintervention injury data were collected for 38.9 months (range = 29 to 54 months) and 51.2 months (range = 36 to 60 months), respectively. Postintervention patient-handling injuries decreased by 59.8% (rate ratio [RR] = 0.36, 95% confidence interval [CI] [0.28, 0.49], p nursing staff were fairly low. A vast majority of patients found the devices comfortable and safe. Longer transfer times with the use of devices was not an issue. Implementation of patient-handling devices along with a comprehensive program can be effective in reducing MSDs among nursing personnel. Strategies to expand usage of patient-handling devices in most health care settings should be explored.

  15. Selected references on thermoluminescent dosemeters for personnel monitoring

    International Nuclear Information System (INIS)

    Lawson, Helen

    1976-08-01

    This bibliography contains references on: specific thermoluminescent dosemeters used for personnel dosimetry; comparisons of thermoluminescent and other dosemeters for personnel monitoring and read-out apparatus for thermoluminescent dosemeters. An appendix contains selected foreign language references. (author)

  16. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  17. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    1999-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry ServiceWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period JANUARY/FEBRUARY will be available from their usual dispatchers on Monday the third of January 2000.Please have your films changed:before the 12 January.The colour of the dosimeter valid in JANUARY/FEBRUARY is WHITE.

  18. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry Service.We inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MARCH/APRIL will be available from their usual dispatchers on the third of March 2000.Please have your films changed before the 13th of March.The colour of the dosimeter valid in MARCH/APRIL is BLUE.

  19. The LLNL CR-39 personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1987-01-01

    We developed a personnel neutron dosimetry system based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This CR-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. 3 refs., 4 figs

  20. New ISO standard - personnel photographic film dosemeters

    International Nuclear Information System (INIS)

    Brabec, D.

    1980-01-01

    The ISO Standard 1757 ''Personnel Photographic Film Dosemeters'', issued in June 1980, is briefly described. UVVVR's own dosemeter developed for use in the national film dosimetry service in Czechoslovakia is evaluated in relation to this ISO Standard. (author)

  1. Experience in the patients management which received treatments with radioactive iodine (131I). Measurements and dosimetry pertaining to the personnel related

    International Nuclear Information System (INIS)

    Ruiz J, A.

    1999-01-01

    In the INNSZ there are administering ablative doses of radioactive iodine to patients with problems of the thyroid gland from 40 years ago. Starting from 1992 was initiated the restlessness to inform to the patients verbally and in writing over the measurements of radiological safety that must be followed for the protection of their families. In this work it is commented, the benefits obtained with the patients and the teachings to give to the personnel what attend the patients which receive treatments with iodine-131 and must be hospitalized. It is commented too over the standardization standing of the patients discharged whom received radioactive material and lastly, it was make a dosimetric study of the nurses, radiotherapeutic and control area. (Author)

  2. Database to manage personal dosimetry Hospital Universitario de La Ribera

    International Nuclear Information System (INIS)

    Melchor, M.; Martinez, D.; Asensio, M.; Candela, F.; Camara, A.

    2011-01-01

    For the management of professionally exposed personnel dosimetry, da La are required for the use and return of dosimeters. in the Department of Radio Physics and Radiation Protection have designed and implemented a database management staff dosimetry Hospital and Area Health Centers. The specific objectives were easily import data from the National Center dosimetric dosimetry, consulting records in a simple dosimetry, dosimeters allow rotary handle, and also get reports from different periods of time to know the return data for users, services, etc.

  3. Dosimetry of hands and human factor

    International Nuclear Information System (INIS)

    Harr, R.

    2008-12-01

    The human factor in facilities where open radioactive sources are managed it can be controlled through the use of the ring dosimetry, however, that these devices only provide qualitative information that is not extrapolated to legislative limits. lt is present the case analysis of hands dosimetry of female person with responsibility for professional standards and a very high profile with ratings that allow her to have a high level of knowledge of the basic standards, and because with an attitude and a culture rooted of radiation protection, among other qualities. Their records reveal a trend in which monthly doses are below the 7 mSv, and only occasionally are between 7 and 12 mSv per month and hand. The other case correspond to a technician, trained in radiological techniques, also with a high profile, with two courses for occupationally exposed personnel more than 10 annual retraining, and work experience of over 10 years as occupationally exposed personnel, in which knowledge of standards and because of the entrenched culture of radiation protection and their interest degree in the care of their exposure is still in a phase half, in this case also shows a trend in the monthly dose where found registers between 7 and 11 mSv per month and hand. The third case is of a second technician with less experience and most basic knowledge, his dose register not show a real trend, sometimes be found reads of irregular values as if the dosimeter is not used and some other times as if misused by exposing to purpose (was observed at least one reading above the monthly 30 mSv). By way of conclusion, it is noted that the hands dosimetry is a useful tool to monitor transactions through the data compilation susceptible to analysis with variations which can be placed in the context of the human factor. (Author)

  4. [Evaluation of radiation exposure of personnel in an orthopaedic and trauma operation theatre using the new real-time dosimetry system "dose aware"].

    Science.gov (United States)

    Müller, M C; Strauss, A; Pflugmacher, R; Nähle, C P; Pennekamp, P H; Burger, C; Wirtz, D C

    2014-08-01

    There is a positive correlation between operation time and staff exposure to radiation during intraoperative use of C-arm fluoroscopy. Due to harmful effects of exposure to long-term low-dose radiation for both the patient and the operating team it should be kept to a minimum. AIM of this study was to evaluate a novel dosimeter system called Dose Aware® (DA) enabling radiation exposure feedback of the personal in an orthopaedic and trauma operation theatre in real-time. Within a prospective study over a period of four month, DA was applied by the operation team during 104 orthopaedic and trauma operations in which the C-arm fluoroscope was used in 2D-mode. During ten operation techniques, radiation exposure of the surgeon, the first assistant, the theatre nurse and the anaesthesiologist was evaluated. Seventy-three operations were analysed. The surgeon achieved the highest radiation exposure during dorsolumbar spinal osteosynthesis, kyphoplasty and screw fixation of sacral fractures. The first assistant received a higher radiation exposure compared to the surgeon during plate osteosynthesis of distal radius fractures (157 %), intramedullary nailing of pertrochanteric fractures (143 %) and dorsolumbar spinal osteosynthesis (240 %). During external fixation of ankle fractures (68 %) and screw fixation of sacral fractures (66 %) radiation exposure of the theatre nurse exceeded 50 % of the surgeon's radiation exposure. During plate osteosynthesis of distal radius fractures (157 %) and intramedullary splinting of clavicular fractures (115 %), the anaesthesiologist received a higher radiation exposure than the surgeon. The novel dosimeter system DA provides real-time radiation exposure feedback of the personnel in an orthopaedic and trauma operation theatre for the first time. Data of this study demonstrate that radiation exposure of the personnel depends on the operation type. The first assistant, the theatre nurse and the anaesthesiologist might be

  5. Planned Procedures for Fast Determination of Radiation Levels and Personnel Dosimetry in Connection with Radiological Accidents; Methodes de Dosimetrie Rapide du Personnel en Cas d'Accident Radiologique; 041f 041b 0410 041d 0414 ; Servicio Organizado de Determinacion Rapida de los Niveles de Radiacion y de Dosimetria del Personal en Caso de Accidente Radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsson, K. -A.; Wahlberg, T. [AB Atomenergi, Studsvik (Sweden)

    1965-06-15

    'exterieur. En matiere de dosimetrie du personnel, il est souhaitable d'obtenir aussitot que possible des donnees preliminaires approximatives sur les debits d'exposition externe et interne et de recevoir egalement dans des delais raisonnables des donnees assez precises sur la dose de rayonnement a laquelle chaque personne a ete exposee. Des equipes de controle dosimetrique font une enquete rapide sur les lieux afin de proceder a une evaluation generale des risques. Ces equipes entrent en action des le declenchement du signai d'alarme; munies d'appareils portatifs, elles se deplacent en voiture selon des itineraires sur le site determines. Des essais pratiques ont montre que les renseignements recueillis par ces equipes parviennent au poste central dans les 10 a 15 minutes qui suivent l'alarme et permettent de se faire une idee de l'intensite des rayonnements a l'interieur et a l'exterieur des differents batiments. Les appareils portatifs comportent des echantillonneurs d'air a prelevement tres rapide, fonctionnant suivant le principe de la pompe a vide. Les doses individuelles d'exposition externe sont evaluees a l'aide de films dosimetres, par activation des dosimetres de criticite et par les analyses de la radioactivite des cheveux et du sang. La contamination interne est determinee par anthroporadiametrie et analyses radiometriques des excreta. Afin de delimiter les champs de rayonnement crees par un accident, plusieurs postes de controle fixes sont dotes de differents types de dosimetres dont les indications sont egalement relevees aussitot que possible en cas d'accident presume. (author) [Spanish] La AB Atomenergi de Suecia cuenta con un servicio para casos de urgencia que empieza a actuar tan pronto como se recibe una senal de alarma indicadora de que se ha planteado una situacion extraordinaria que entrana considerables riesgos de irradiacion. Este servicio actua desde una oficina central en la que se encuentra almacenado el correspondiente equipo y que dispone de varios

  6. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  7. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  8. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  9. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  10. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  11. A system for measuring and processing personnel dosimetric data

    International Nuclear Information System (INIS)

    Neetzel, C.R.; Rochetti, Luis

    1981-01-01

    An operative system for the measurement and on-line processing of personnel dosimetry data is described. The aim is to organize and rationalize the work involved in a personnel dosimetry service. The method considers the application to other areas of radiation protection, as well as the connection and exchange of files among the different personnel monitoring groups. The system can be interfaced with different computers (M.E.L.) [es

  12. Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers recommended procedures for the use of dosimeters, such as thermoluminescent dosimeters (TLD's), to determine the absorbed dose in a region of interest within an electronic device irradiated using a Co-60 source. Co-60 sources are commonly used for the absorbed dose testing of silicon electronic devices. Note 1—This absorbed-dose testing is sometimes called “total dose testing” to distinguish it from “dose rate testing.” Note 2—The effects of ionizing radiation on some types of electronic devices may depend on both the absorbed dose and the absorbed dose rate; that is, the effects may be different if the device is irradiated to the same absorbed-dose level at different absorbed-dose rates. Absorbed-dose rate effects are not covered in this practice but should be considered in radiation hardness testing. 1.2 The principal potential error for the measurement of absorbed dose in electronic devices arises from non-equilibrium energy deposition effects in the vicinity o...

  13. Internal dosimetry and control

    International Nuclear Information System (INIS)

    Rich, B.L.

    1990-05-01

    This internal dosimetry and control report provides guidance for EG ampersand G Idaho, Inc., field programs in detecting, evaluating, and controlling personnel exposure resulting from uptake of radionuclides by the body. Procedures specific to each program or facility are required to define the details of guidance from this report. Fundamental principles related to philosophy, policies, monitoring guidelines, and dose evaluation are discussed. Specific numerical guides and action levels are developed to guide the programs in evaluating the significance of specific analytical results. The requirement to thoroughly document the results and provide a formal technical base for each policy and/or practice is outlined and explained. 8 refs., 3 figs., 7 tabs

  14. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual Dosimetry ServiceWe inform all staffs and users under regular dosimetric control that the dosimeters for the monitoring period JULY/AUGUST are available from their usual dispatchers.Please have your films changed before the 10th of July.The colour of the dosimeter valid in JULY/AUGUST is PINK.

  15. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  16. Guidelines for the calibration of personnel dosimeters

    International Nuclear Information System (INIS)

    Roberson, P.L.; Holbrook, K.L.

    1984-01-01

    This guide describes minimum acceptable performance levels for personnel dosimetry systems used at Department of Energy (DOE) facilities. The goal is to improve both the quality of radiological calibrations and the methods of comparing reported occupational doses between DOE facilities. Reference calibration techniques are defined. A standard for evaluation of personnel dosimetry systems and recommended design parameters for personnel dosimeters are also included. Approximate intervals for the radiation energies for which these guidelines are appropriate are 15 keV to 2 MeV for photons; above 0.3 MeV for beta particles; and 1 keV to 2 MeV for neutrons. An analysis of ANSI N13.11 was completed using performance evaluations of selected personnel dosimetry systems in use at DOE facilities. The results of this analysis are incorporated in the guidelines

  17. Personal dosimetry and information platforms

    International Nuclear Information System (INIS)

    Sanchez Hidalgo, M.; Galan Montenegro, P.; Bodineau Gil, C.; Hernandez Rodriguez, R.; Jimenez Nartin, A.; Cano Sanchez, J. J.

    2011-01-01

    One question often raised by the hospital personnel dosimetry is the high incidence in the no monthly turnover of dosimeters, which is currently a high number of administrative dose assignments. The high number of workers with personal dosimetry and in many cases, the dispersion of workplaces makes it impossible to personalized management. To make a more direct and personal, and transmit information quickly and with guaranteed reception, has developed and implemented a system of personalized dosimetric information through messaging Short Message Service (SMS) and access to the history of dosimetric dosimetric and management through web space Service Hospital Radio physics.

  18. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  19. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    Johnson, J.R.

    1989-03-01

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226 Ra, 228 Ra, and 224 Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226 Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224 Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  20. Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: A radiochromic EBT film dosimetry study in phantom

    International Nuclear Information System (INIS)

    Chiu-Tsao, Sou-Tung; Chan, Maria F.

    2010-01-01

    Purpose: In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. Methods: For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. Results: In contrast with 20% relative dose [(RD) dose relative to d max on central axis] at 0.0153 cm in the film layer for 6 MV 10x10 cm 2 open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150% (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with and without

  1. Neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Stillwagon, G.B.; Morgan, K.Z.

    1977-01-01

    Registration of α-tracks and fast-neutron-induced recoils tracks by the electrochemical etching technique as applied to sensitive polymer foils (e.g., polycarbonate) provides a simple, sensitive and inexpensive means of fast neutron personnel dosimetry as well as a valuable research tool for microdosimetry. When tracks were amplified by our electrochemical technique and the etching results compared with conventional etching technique a striking difference was noted. The electrochemically etched tracks were of much larger diameter (approx. 100 μm) and gave superior contrast. Two optical devices--the transparency projector and microfiche reader--were adapted to facilitate counting of the tracks appearing on our polycarbonate foils. The projector produced a magnification of 14X for a screen to projector distance of 5.0 meter and read's magnification was 50X. A Poisson distribution was determined for the number of tracks located in a particular area of the foil and experimentally verified by random counting of quarter sections of the microfiche reader screen. Finally, in an effort to determine dose equivalent (rem), a conversion factor is being determined by finding the sensitivity response (tracks/neutron) of recoil particle induced tracks as a function of monoenergetic fast neutrons and comparing results with those obtained by others

  2. SU-G-BRB-15: Verifications of Absolute and Relative Dosimetry of a Novel Stereotactic Breast Device: GammaPodTM

    Energy Technology Data Exchange (ETDEWEB)

    Becker, S; Mossahebi, S; Yi, B; Prado, K; Mutaf, Y [University of Maryland School Of Medicine (United States); Niu, Y [Xcision Medical Systems, Rockville, MD (United States); Yu, C [University of Maryland School Of Medicine (United States); Xcision Medical Systems, Rockville, MD (United States)

    2016-06-15

    Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breast cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient treatments

  3. Personnel thermoluminescent dosimetry of plane pilots

    International Nuclear Information System (INIS)

    Azorin V, J.C.; Rivera M, T.; Azorin N, J.

    1999-01-01

    In this work are presented the results of the research realized in the pilots of commercial planes of the different flight equipment existing. The results obtained show that the pilots receive during their work, doses of ionizing radiation greater than the limit recommended by the International Commission of Radiological Protection. (Author)

  4. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    International Nuclear Information System (INIS)

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  5. Development and implementation of own software for dosimetry multichannel film

    International Nuclear Information System (INIS)

    Jimenez Feltstrom, D.; Reyes Garcia, R.; Luis Simon, F. J.; Carrasco Herrera, M.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2013-01-01

    The objective of this work is to develop its own software for multichannel film dosimetry Radiochromic EBT2. Compare the results obtained with its use in multichannel and single-channel dosimetry. Check that the multi-channel dosimetry eliminates much of the artifacts caused by dirt, fingerprints, scratches, etc. Radiochromic in film and scanner devices. (Author)

  6. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  7. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  8. Terminal digit bias is not an issue for properly trained healthcare personnel using manual or semi-automated devices - biomed 2010.

    Science.gov (United States)

    Butler, Kenneth R; Minor, Deborah S; Benghuzzi, Hamed A; Tucci, Michelle

    2010-01-01

    The objective of this study was to evaluate terminal digit preference in blood pressure (BP) measurements taken from a sample of clinics at a large academic health sciences center. We hypothesized that terminal digit preference would occur more frequently in BP measurements taken with manual mercury sphygmomanometry compared to those obtained with semi-automated instruments. A total of 1,393 BP measures were obtained in 16 ambulatory and inpatient sites by personnel using both mercury (n=1,286) and semi-automated (n=107) devices For the semi-automated devices, a trained observer repeated the patients BP following American Heart Association recommendations using a similar device with a known calibration history. At least two recorded systolic and diastolic blood pressures (average of two or more readings for each) were obtained for all manual mercury readings. Data were evaluated using descriptive statistics and Chi square as appropriate (SPSS software, 17.0). Overall, zero and other terminal digit preference was observed more frequently in systolic (?2 = 883.21, df = 9, p manual instruments, while all end digits obtained by clinic staff using semi-automated devices were more evenly distributed (?2 = 8.23, df = 9, p = 0.511 for systolic and ?2 = 10.48, df = 9, p = 0.313 for diastolic). In addition to zero digit bias in mercury readings, even numbers were reported with significantly higher frequency than odd numbers. There was no detectable digit preference observed when examining semi-automated measurements by clinic staff or device type for either systolic or diastolic BP measures. These findings demonstrate that terminal digit preference was more likely to occur with manual mercury sphygmomanometry. This phenomenon was most likely the result of mercury column graduation in 2 mm Hg increments producing a higher than expected frequency of even digits.

  9. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel

    International Nuclear Information System (INIS)

    Haddad, W.S.

    1997-01-01

    Each year, innocent human lives are lost in collapsed structures as a result of both natural and man-made disasters. We have developed a prototype device, called the Rubble Rescue Radar (RRR) as a aid to workers trying to locate trapped victims in urban search and rescue operations. The RRR is a motion sensor incorporating Micropower Impulse Radar and is capable of detecting human breathing motions through reinforced concrete. It is lightweight, and designed to be handled by a single operator for local searches in areas where trapped victims are expected. Tests of the first prototype device were conducted on site at LLNL using a mock rubble pile consisting of a reinforced concrete pipe with two concrete floor slabs placed against one side, and random concrete and asphalt debris piled against the other. This arrangement provides safe and easy access for instruments and/or human subjects. Breathing signals of a human subject were recorded with the RRR through one floor slab plus the wall of the pipe, two slabs plus the wall of the pipe, and the random rubble plus the wall of the pipe. Breathing and heart beat signals were also recorded of a seated human subject at a distance of 1 meter with no obstructions. Results and photographs of the experimental work are presented, and a design concept for the next generation device is described

  10. Use of data libraries in dosimetry control systems

    International Nuclear Information System (INIS)

    Babenko, V.V.; Babenko, M.I.; Kazimirov, A.S.

    2002-01-01

    Analysis, prediction and planning of dose loads, adequacy in dose management of personnel, evaluation of expediency and sufficiency of existing radiation protection system can be realized with the help of database system of dosimetry control in 'Ukrytie'-shelter

  11. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT.

    Science.gov (United States)

    Ludlow, J B; Davies-Ludlow, L E; Brooks, S L; Howerton, W B

    2006-07-01

    Cone beam computed tomography (CBCT), which provides a lower dose, lower cost alternative to conventional CT, is being used with increasing frequency in the practice of oral and maxillofacial radiology. This study provides comparative measurements of effective dose for three commercially available, large (12'') field-of-view (FOV), CBCT units: CB Mercuray, NewTom 3G and i-CAT. Thermoluminescent dosemeters (TLDs) were placed at 24 sites throughout the layers of the head and neck of a tissue-equivalent human skull RANDO phantom. Depending on availability, the 12'' FOV and smaller FOV scanning modes were used with similar phantom positioning geometry for each CBCT unit. Radiation weighted doses to individual organs were summed using 1990 (E(1990)) and proposed 2005 (E(2005 draft)) ICRP tissue weighting factors to calculate two measures of whole-body effective dose. Dose as a multiple of a representative panoramic radiography dose was also calculated. For repeated runs dosimetry was generally reproducible within 2.5%. Calculated doses in microSv [corrected] (E(1990), E(2005 draft)) were NewTom3G (45, 59), i-CAT (135, 193) and CB Mercuray (477, 558). These are 4 to 42 times greater than comparable panoramic examination doses (6.3 microSv [corrected] 13.3 mSv). Reductions in dose were seen with reduction in field size and mA and kV technique factors. CBCT dose varies substantially depending on the device, FOV and selected technique factors. Effective dose detriment is several to many times higher than conventional panoramic imaging and an order of magnitude or more less than reported doses for conventional CT.

  12. SU-E-T-335: Transit Dosimetry for Verification of Dose Delivery Using Electronic Portal Imaging Device (EPID)

    Energy Technology Data Exchange (ETDEWEB)

    Baek, T [Korea University, Seoul (Korea, Republic of); National Health Insurance Co.Ilsan Hospital, Ilsan (Korea, Republic of); Chung, E [National Health Insurance Co.Ilsan Hospital, Ilsan (Korea, Republic of); Lee, S [Cheil General Hospital and Women Healthcare Center, Kwandong University, Seoul (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To evaluate the effectiveness of transit dose, measured with an electronic portal imaging device (EPID), in verifying actual dose delivery to patients. Methods: Plans of 5 patients with lung cancer, who received IMRT treatment, were examined using homogeneous solid water phantom and inhomogeneous anthropomorphic phantom. To simulate error in patient positioning, the anthropomorphic phantom was displaced from 5 mm to 10 mm in the inferior to superior (IS), superior to inferior (SI), left to right (LR), and right to left (RL) directions. The transit dose distribution was measured with EPID and was compared to the planed dose using gamma index. Results: Although the average passing rate based on gamma index (GI) with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 94.34 % for the transit dose with homogeneous phantom, it was reduced to 84.63 % for the transit dose with inhomogeneous anthropomorphic phantom. The Result also shows that the setup error of 5mm (10mm) in IS, SI, LR and SI direction can Result in the decrease in values of GI passing rates by 1.3% (3.0%), 2.2% (4.3%), 5.9% (10.9%), and 8.9% (16.3%), respectively. Conclusion: Our feasibility study suggests that the transit dose-based quality assurance may provide information regarding accuracy of dose delivery as well as patient positioning.

  13. The U.S. food and drug administration's dosimetry program

    International Nuclear Information System (INIS)

    Baratta, E.

    2005-01-01

    Full text: The U. S. Public Health Service's (PHS) Food and Drug Administration (FDA) (part of the PHS) has had a Dosimetry Program at the Winchester Engineering and Analytical Center (WEAC) (formerly the Northeastern Radiological Health Laboratory). This Dosimetry Program has been in place since 1961. In 1967 it was augmented by the construction of a Whole Body Counter at WEAC for measuring internal dose. The FDA's Center for Medical Devices and Radiological Health had been handling these dosimeters since 1961 and in 2000 the WEAC took over total responsibility for this program for the FDA's Office of Regulatory affairs. This program was originally setup for the radiation workers (analysts and support personnel) and later included investigators personnel working in the medical and dental x-ray field. The field laboratories began using radionuclides in 1972 and were also issued radiation dosimeters. Investigators station at border import station alter 2003 were issued as well as radiation pages as a precaution when checking imported food and other FDA regulated products. This paper will discuss the results of radiation exposure received by analyst (including whole body measurements) at WEAC and field laboratories. Also discussed will be exposures to investigators in the medical and dental field. The exposure to the investigators at the import border stations will be included even though they have not been carrying dosimeters for slightly more than a year. In general, the exposures have been well below the Nuclear Regulatory Commission regulations for radiation workers. (author)

  14. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  15. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic; Sistema de gerenciamento da dosimetria pessoal baseado na ISO 9001:2008 para radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner, E-mail: brasilrad@brasilrad.com.br [Brasilrad Consultoria em Radioprotecao, Florianopolis, SC (Brazil)

    2013-07-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers.

  16. Occupational exposure to the personnel regarded by NRB-76/87 to B category

    Energy Technology Data Exchange (ETDEWEB)

    Gubatova, D; Balode, G; Nemiro, E [Medical Institute, Riga (USSR)

    1990-01-01

    During the decades use of radioactive sources in all branches of national economy has increased. Due to this tendency the number of exposed individuals from artificial sources including those exposed only occasionally (the so-called B category) increases. For this category the personnel dosimetry is not obligatory, and radioactive monitoring of their working and living places would do. Nevertheless, the thermoluminescent personnel monitoring data derived by us show that occupational exposure of this category is near, and occasionally even higher than B category exposure limit. So, for example, anesthesiologists annual exposure makes 4.5 mSv, that of surgeons 6.5 mSv, of anesthetic nurses 4.0 mSv (Traumatological and Orthopedic Institute personnel). Annual exposure of 'Medtekhnika' factory electromechanics ought to repair, set up and check up X-ray devices in 1987 was 5 mSv. (author).

  17. Automating the personnel dosimeter monitoring program

    International Nuclear Information System (INIS)

    Compston, M.W.

    1982-12-01

    The personnel dosimetry monitoring program at the Portsmouth uranium enrichment facility has been improved by using thermoluminescent dosimetry to monitor for ionizing radiation exposure, and by automating most of the operations and all of the associated information handling. A thermoluminescent dosimeter (TLD) card, worn by personnel inside security badges, stores the energy of ionizing radiation. The dosimeters are changed-out periodically and are loaded 150 cards at a time into an automated reader-processor. The resulting data is recorded and filed into a useful form by computer programming developed for this purpose

  18. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, Hanno; Rozendaal, Roel; Camargo, Priscilla; Mans, Anton; Wendling, Markus; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; van Herk, Marcel; Mijnheer, Ben

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the

  19. Direct ion storage dosimetry systems for photon, beta and neutron radiation with instant readout capabilities

    International Nuclear Information System (INIS)

    Wernli, C.; Kahilainen, J.

    2001-01-01

    The direct ion storage (DIS) dosemeter is a new type of electronic dosemeter from which the dose information for both H p (10) and H p (0.07) can be obtained instantly at the workplace by using an electronic reader unit. The number of readouts is unlimited and the stored information is not affected by the readout procedure. The accumulated dose can also be electronically reset by authorised personnel. The DIS dosemeter represents a potential alternative for replacing the existing film and thermoluminescence dosemeters (TLDs) used in occupational monitoring due to its ease of use and low operating costs. The standard version for normal photon and beta dosimetry, as well as a developmental version for neutron dosimetry, have been characterised in several field studies. Two new small size variations are also introduced including a contactless readout device and a militarised version optimised for field use. (author)

  20. Hematological dosimetry

    International Nuclear Information System (INIS)

    Fluery-Herard, A.

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues [fr

  1. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  2. Recent developments in detectors/phantoms for dosimetry, X-ray quality assurance and imaging

    International Nuclear Information System (INIS)

    Sankaran, A.

    2009-01-01

    During the past years, many new developments have taken place in detectors/phantoms for high energy photon and electron dosimetry (for radiotherapy), protection monitoring, X-ray quality assurance and X-ray imaging (for radiodiagnosis). A variety of detectors and systems, quality assurance (QA) gadgets and special phantoms have been developed for diverse applications. This paper discusses the important developments with some of which the author was actively associated in the past. For dosimetry and QA of 60 Co and high energy X-ray units, state-of-the-art radiation field analyzers, matrix ion chambers, MOSFET devices and Gafchromic films are described. OSL detectors find wide use in radiotherapy dosimetry and provide a good alternative for personnel monitoring. New systems introduced for QA/dosimetry of X-ray units and CT scanners include: multi-function instruments for simultaneous measurement of kVp, dose, time, X-ray waveform and HVT on diagnostic X-ray units; pencil chamber with head and body phantoms for CTDI check on CT scanners. Examples of phantoms used for dosimetry and imaging are given. Advancements in the field of diagnostic X-ray imaging (with applications in portal imaging/dosimetry of megavoltage X-ray units) have led to emergence of: film-replacement systems employing CCD-scintillator arrays, computed radiography (CR) using storage phosphor plate; digital radiography (DR), using a pixel-matrix of amorphous selenium, or amorphous silicon diode coupled to scintillator. All these provide (a) in radiotherapy, accurate dose delivery to tumour, saving the surrounding tissues and (b) in radiodiagnosis, superior image quality with low patient exposure. Lastly, iPODs and flash drives are utilized for storage of gigabyte-size images encountered in medical and allied fields. Although oriented towards medical applications, some of these have been of great utility in other fields, such as industrial radiography as well as a host of other research areas. (author)

  3. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  4. Personnel monitoring of radiations with thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Miano, S.C.

    1987-01-01

    The basics of personnel dosimetry technics, used by the Radiologic Protetion and Assessorie Service (SAPRA) are presented, consisting on use of thermoluminescent and CaSO 4 :Dy monitors in aggregated pellets by Teflon. The characteristics of this dosemeters, relating to the sensitivity, energetic dependence, spike temperature, characteristic emission curve, decay and light effect are shown. The thermoluminescent dosemeter measure system and the personnel monitoring system are also described. (C.G.C.) [pt

  5. The personal dosimetry in Mexico

    International Nuclear Information System (INIS)

    Salazar, M.A.

    2006-01-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  6. Non-conventional personal dosimetry techniques

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1984-01-01

    Established dosimetry has achieved a high standard in personnel monitoring. This applies particularly to photon dosimetry. Nevertheless, even in photon dosimetry, improvements and changes are being made. The reason may be technological progress, or the introduction of new tasks on the basis of the recommendations of international bodies (e.g. the new ICRU measurement unit) of national legislation. Since we are restricting ourselves here to technical trends the author would like to draw attention to various activities of current interest, e.g. the computation of receptor-related conversion coefficients from personal dose to organ or body doses, taking into account the conditions of exposure with respect to differential energy and angular distribution of the radiation field. Realistic data on exposure geometry are taken from work place analyses. Furthermore, the data banks of central personal dosimetry services are subject to statistical evaluation and radiation protection trend analysis. Technological progress and developments are considered from the point of view of personal dosimetry, partial body or extremity dosimetry and accidental dosimetry

  7. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  8. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  9. Some aspects on neutron dosimetry

    International Nuclear Information System (INIS)

    Henaish, B.A.; Youssef, S.K.

    1988-01-01

    The American National Council on Radiation Protection and measurements (1) has recently issued a statement regarding dose limitation system for neutrons. The changes proposed in that statement presented substantial problems regarding the personnel exposure to neutrons and had pointed out the need to reassess an adequate current neutron dosimetry practice. Generally, the same types of dosimeters i.e. Nuclear Track (NTA films) and TLD-Albedo, have been used at major nuclear facilities over the past 15 years. here recently, other dosimetry methods such as track etch with polycarbonates such as CR-39 have been developed. However these should be recognized as local systems aiming to the development of better and more applicable dosimeters. 4 tab

  10. Calibration of the indium foil used for criticality accident dosimetry in the UCC-ND employee identification badge

    International Nuclear Information System (INIS)

    Ryan, M.T.; Butler, H.M.; Gupton, E.D.; Sims, C.S.

    1982-05-01

    The UCC-ND Employee Identification Badge contains an indium foil disc that is intended for use as a dosimetry screening device in the event of a criticality accident. While it is recognized that indium is not a precise mixed neutron-gamma dosimeter, its activation by neutrons provides adequate means for separating potentially exposed persons into three groups. These groups are: (1) personnel exposed below annual dose limits, (2) personnel exposed above annual dose limits but below 25 rem, and (3) personnel exposed above 25 rem. This screening procedure is designed to facilitate dosimeter processing in order to meet regulatory reporting requirements. A quick method of interpreting induced activity measurements is presented and discussed

  11. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  12. Personnel Preparation.

    Science.gov (United States)

    Fair, George, Ed.; Stodden, Robert, Ed.

    1981-01-01

    Three articles comprise a section on personnel preparation in vocational education. Articles deal with two inservice programs in career/vocational education for the handicapped and a project to train paraprofessionals to assist special educators in vocational education. (CL)

  13. Characterization of commercial MOSFETS electron dosimetry

    International Nuclear Information System (INIS)

    Carvajal, M. A.; Simancas, F.; Guirado, D.; Banqueri, J.; Vilches, M.; Lallena, A. M.; Palma, A. J.

    2011-01-01

    In recent years there have been commercial dosimetry devices based on transistors Metal-Oxide-Semiconductor (MOSFET) having a number of advantages over traditional systems for dosimetry in medical applications. These include the portability of the sensor element and a reading process quick and relatively simple dose, linearity, and so on. The use of electron beams is important in modern radiotherapy include its use in intra-operative radiotherapy (RIO). This paper presents an initial characterization of different business models MOSFET, not specific for radiation detection, to demonstrate their potential as sensors for electron beam dosimetry. (Author)

  14. Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system

    International Nuclear Information System (INIS)

    Gagnon, Louis-Philippe; Beddar, Sam; Beaulieu, Luc

    2015-01-01

    Purpose: To compare the signal-to-noise ratio (SNR), dose sensitivity and stability, and reproducibility of a lens-less charge-coupled device (CCD) photon-counting system with those of a traditional CCD + lens photon-counting system for plastic scintillation detectors (PSDs). Methods: The PSD used in this study was made from a 1-mm diameter, 2-mm long BCF60 scintillating fiber (emission peak at 530 nm) coupled to a 2.6-m Eska GH-4001 clear plastic fiber. This PSD was coupled to either a fiber-taper-based photon-counting system (FTS) or a lens-based photon-counting system (LS). In the FTS, the fiber-taper was attached to a 2048 × 2048 pixel, uncooled Alta 4020 polychromatic CCD camera. The LS consisted of a 1600 × 1200 pixel Alta 2020 polychromatic CCD camera (cooled to −18 °C) with a 50-mm lens with f/# = 1. Dose measurements were made under the same conditions for each system (isocentric setup; depth of 1.5 cm in solid water using a 10 × 10 cm 2 field size and 6-MV photon beam). The performance of each system was determined and compared, using the chromatic Čerenkov removal method to account for the stem effects produced in the clear plastic fiber. Results: The FTS increased the light collected by a factor of 4 compared with the LS, for the same dose measurements. This gain was possible because the FTS was not limited by the optical aberration that comes with a lens system. Despite a 45 °C operating temperature difference between the systems, the SNR was 1.8–1.9 times higher in the FTS than in the LS, for blue and green channels respectively. Low-dose measurements of 1.0 and 0.5 cGy were obtained with an accuracy of 3.4% and 5.6%, respectively, in the FTS, compared with 5.8% and 15.9% in the LS. The FTS provided excellent dose measurement stability as a function of integration time, with at most a 1% difference at 5 cGy. Under the same conditions, the LS system produced a measurement difference between 2 and 3%. Conclusion: Our results showed that

  15. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  16. 5th symposium on neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F

    1985-03-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of /sup 252/Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.).

  17. 5th symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    Spurny, F.

    1985-01-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of 252 Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.)

  18. Radiation dosimetry

    International Nuclear Information System (INIS)

    Harper, M.W.; Thomas, B.; Conway, J.

    1977-01-01

    A dosemeter is described that is based on the TSCD principle (thermally stimulated current dosimetry). Basically this involves irradiating a responsive material and then heating it,whereby an electric current is produced. If the material is heated in an electric field the peak value of the thermally stimulated current or alternatively the total charge released by heating, can be related to the radiation dose received. The instrument described utilises a sheet coated with a thermoplastic polymer, such as a poly4-methylpent-l-ene. The polymer should have a softening point not lower than 150 0 C with an electrical resistivity of at least 10 16 chms/cm at 150 0 C. The polymer may also be PTFE. Heating should be in the range 150 0 C to 200 0 C and the electric field in the range 50 to 10,000V/mm. (U.K.)

  19. Organ dosimetry

    International Nuclear Information System (INIS)

    Kaul, Dean C.; Egbert, Stephen D.; Otis, Mark D.; Kuhn, Thomas; Kerr, George D.; Eckerman, Keith F.; Cristy, Mark; Ryman, Jeffrey C.; Tang, Jabo S.; Maruyama, Takashi

    1987-01-01

    This chapter describes the technical approach, complicating factors, and sensitivities and uncertainties of calculations of doses to the organs of the A-bomb survivors. It is the object of the effort so described to provide data that enables the dosimetry system to determine the fluence, kerma, absorbed dose, and similar quantities in 14 organs and the fetus, specified as being of radiobiological interest. This object was accomplished through the use of adjoint Monte Carlo computations, which use a number of random particle histories to determine the relationship of incident neutrons and gamma rays to those transported to a target organ. The system uses these histories to correlate externally-incident energy- and angle-differential fluences with the fluence spectrum (energy differential only) within the target organ. In order for the system to work in the most efficient manner possible, two levels of data were provided. The first level, represented by approximately 6,000 random adjoint-particle histories, enables the computation of the fluence spectrum with sufficient precision to provide statistically reliable (± 6 %) mean doses within any given organ. With this limited history inventory, the system can be run rapidly for all survivors. Mean organ dose and dose uncertainty are obtainable in this mode. The second mode of operation enables the system to produce a good approximation to fluence spectrum within any organ or to produce the dose in each of an array of organ subvolumes. To be statistically reliable, this level of detail requires far more random histories, approximately 40,000 per organ. Thus, operation of the dosimetry system in this mode (i.e., with this data set) is intended to be on an as-needed, organ-specific basis, since the system run time is eight times that in the mean dose mode. (author)

  20. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    International Nuclear Information System (INIS)

    Cummings, F.M.; Carlson, R.D.; Gesell, T.F.; Loesch, R.M.

    1992-01-01

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  1. Scanning personnel for internal deposition of radioactive material with personnel contamination whole body friskers and portal monitors

    International Nuclear Information System (INIS)

    Lobdell, J.L.

    1996-01-01

    The potential for using personnel contamination devices such as whole body friskers and portal monitors for internal contamination monitoring was evaluated. Internally deposited radioactive material is typically determined with whole body counting systems. Whole body counts have traditionally been performed on personnel when they report for work, on a periodic basis (i.e., annually), when an uptake is suspected, and on termination. These counts incur significant expense. The monitored personnel pass through whole body friskers and portal monitors daily. This investigation was performed to determine if the external contamination monitors could provide an alternative to the more Costly whole body counting. The ability to detect 1% of a DAC for critical radioisotopes was applied as a detection criteria for this investigation. The results of whole body counts were used to identify the typical internal contamination radionuclides. From this list, the radioisotopes that would be the most difficult to measure were identified. From this review, 60 Co and 131 I were determined to be the critical radionuclides. One percent of a DAC for each isotope was placed, one at a time, in a humanoid phantom. The phantom was placed in the whole body frisker and open-quotes countedclose quotes. The phantom was carried through the portal monitor at a speed equivalent to a person walking through the monitor. Frequency of detection was derived for both systems. Practical aspects of integrating this screening system with traditional internal dosimetry programs are discussed

  2. Quo vadis, personnel monitoring

    International Nuclear Information System (INIS)

    Becker, K.

    1975-01-01

    With the increasing use of nuclear power and radiation sources, the selection of optimum systems for personnel monitoring is becoming a matter of worldwide concern. The present status of personnel dosimetry, sometimes characterized by unstable and inaccurate detectors and oversimplified interpretation of the results, leaves much to be desired. In particular, photographic film, although having certain advantages with regard to economics and information content, undergoes rapid changes in warm and humid climates. Careful sealing reduces, but does not prevent, these problems. The replacement of film by solid-state dosimeters, primarily thermoluminescence dosimeters, is in progress or being considered by an increasing number of institutions and requires a number of decisions concerning the choice of the optimum detector(s), badge design, and evaluation system; organizational matters, such as the desirability of automation and computerized bookkeeping; etc. The change also implies the potential use of such advanced concepts as different detectors and monitoring periods for the large number of low-risk persons and the small number of high-risk radiation workers. (auth)

  3. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  4. Personnel radiation protection. Situation of the dosimetry surveillance of external exposure in 2003; La radioprotection des travailleurs. Bilan de la surveillance dosimetrique de l'exposition externe en 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The situation of external exposure of workers for the year 2003 has been realised according to the same method than this one of the year 2002. It does not show big variations of trends, both in term of workforce watched and collective doses alike associated in the different sectors of activity. Some differences observed between the two years can explain by real evolutions of situations. For example, the 2800 workers registered in the veterinary sector are the result of a better awareness of this profession for the radiation protection during the last months. Some variations can be the results of artefacts in the data processing. The centralization at I.R.S.N. of the whole of dosimetry data should allow to make easy the data treatment and to improve the statistics of occupational exposure. (N.C.)

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2006-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records & Information Capture Architecture (ERICA) database

  6. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  7. Individual monitoring dosimetry in Europe

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1991-01-01

    This report discusses the various types of individual monitoring systems presently in use within the European community and neutron dosimetry research being coordinated by the EURADOS working group. Research is currently being conducted on nuclear track dosimeters, primarily with CR-39 (TM), and TLD-albedo dosimeters. Studies are being conducted on the energy and angular response of each type of dosimeter. Because the response of dosimeters depends on the energy of the neutrons, it is necessary to have spectral information to accurately assess the dose. Neutron energy spectrum measurements are being performed in typical work place environments. Work is also progressing on development of calibration sources which will be representative of the neutron energy spectrum found in typical neutron exposure situations. This work utilizes 14 MeV neutrons incident on a uranium block with various other filters. Research is also continuing on neutron dosimetry using tissue equivalent proportional counters and microdosimetric techniques. The results of intercomparisons between several different instruments are discussed. In addition to personnel dosimetry, these systems are being used to record the dose to passengers and flight crews aboard commercial aircraft

  8. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  9. Performance testing of UK personal dosimetry laboratories

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  10. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  11. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  12. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  13. OSL and TL of Resistors of Mobile Phones for Retrospective Accident Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Pradhan, A. S.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    work place and in the public rather than actual health hazard due to radiation exposure. Therefore, a quick demonstration of measurement of doses following the accident is needed to reassure those receiving insignificant or low level of exposures that they are quite safe and need no treatment. This confidence building also becomes an important aspect of dosimetry. As the ranges of doses which could be encountered in such situations may vary from the background level to significantly high doses depending on the type of accident / incident and the location of personnel, it becomes important that the techniques used in retrospective dosimetry should be very sensitive and should be able to measure doses in a wide range from background level to several Gy. More recently, with the increasing apprehensions of nuclear terrorism / dirty bomb, research and developments in retrospective dosimetry has gained a new momentum the world over. Among the TL and OSL sensitive materials, the extraction and the processing of the materials from bricks and roof tiles is a very time consuming process and gives indirect estimate of individual doses. On the other hand, TL and OSL properties of components of electronic devices mobile phones, i-pods, black-berries, mp3 players and USB sticks containing ceramics with luminescence properties (e.g resistors, capacitors, resonators, antenna switches, transistors etc.) and chip cards containing silica epoxy (e.g. credit cards, bank cards, social security card, telephone card, SIM cards, ID cards e.g) are being considered very attractive and being evaluated. In this study, the TL and OSL properties of the electronic components of mobile phones are investigated and dose recovery potential is evaluated with a presumption that a mobile phone has become a part of body belongings masses of almost ages

  14. OSL and TL of Resistors of Mobile Phones for Retrospective Accident Dosimetry

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, J. L.; Pradhan, A. S.; Chang, I.; Kim, B. H.

    2012-01-01

    and in the public rather than actual health hazard due to radiation exposure. Therefore, a quick demonstration of measurement of doses following the accident is needed to reassure those receiving insignificant or low level of exposures that they are quite safe and need no treatment. This confidence building also becomes an important aspect of dosimetry. As the ranges of doses which could be encountered in such situations may vary from the background level to significantly high doses depending on the type of accident / incident and the location of personnel, it becomes important that the techniques used in retrospective dosimetry should be very sensitive and should be able to measure doses in a wide range from background level to several Gy. More recently, with the increasing apprehensions of nuclear terrorism / dirty bomb, research and developments in retrospective dosimetry has gained a new momentum the world over. Among the TL and OSL sensitive materials, the extraction and the processing of the materials from bricks and roof tiles is a very time consuming process and gives indirect estimate of individual doses. On the other hand, TL and OSL properties of components of electronic devices mobile phones, i-pods, black-berries, mp3 players and USB sticks containing ceramics with luminescence properties (e.g resistors, capacitors, resonators, antenna switches, transistors etc.) and chip cards containing silica epoxy (e.g. credit cards, bank cards, social security card, telephone card, SIM cards, ID cards e.g) are being considered very attractive and being evaluated. In this study, the TL and OSL properties of the electronic components of mobile phones are investigated and dose recovery potential is evaluated with a presumption that a mobile phone has become a part of body belongings masses of almost ages

  15. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  16. Interest of numerical dosimetry in radiation protection: mean of substitution or measurements consolidation?; Interet de la dosimetrie numerique en radioprotection: moyen de substitution ou de consolidation des mesures?

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, T.; Chau, Q. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DPHD/SDOS), Service Dosimetrie, 92 - Fontenay-aux-Roses (France); Ferragut, A.; Gillot, J.Y. [SAPHYMO, 91 - Massy (France)

    2003-07-01

    The use of calculation codes allows to reduce the costs and the time limits. These codes brings to operators elements to reinforce their projected dosimetry. In the cases of accidental overexposure, the numerical dosimetry comes in complement of clinical and biological investigations to give an estimation as precise as possible of the received dose. For particular situations where it does not exist an adapted instrumentation, the numerical dosimetry can substitute to conventional techniques used by regulatory dosimetry (project for aviation personnel). (N.C.)

  17. Dosimetric characterization of an electronic portal imaging device (EPID) and development of a portal dosimetry simple model; Caracterizacion dosimetrica de un dispositivo electronico de imagen portal (EPID) y desarrollo de un modelo simple de dosimetria portal

    Energy Technology Data Exchange (ETDEWEB)

    Ripol ValentIn, O.; GarcIa Romero, A.; Hernandez Vitoria, A.; Jimenez Albericio, J.; Cortes Rodicio, J.; Millan Cebrian, E.; Ruiz Manzano, P.; Canellas Anoz, M.

    2010-07-01

    The use of the Electronic Portal Imaging Devices (EPID) for the quality control of linear accelerators of electrons is increasingly extended in practice. In this work the dosimetric characteristics of an EPID OptiVue{sup TM}1000 ST were studied and a friendly and simple method for the absorbed dose calibration was suggested. This method is based on a simple mathematical model, including: an absorbed dose transformation coefficient and image lag and field shape corrections. Software tools were developed in order to process the information and the results were validated by comparing them with the measured data with ionization chambers. The studied device showed suitable characteristics for its use for EPID dosimetry and the calculated results fitted satisfactorily with the dose planes obtained with the ionization chambers. Keeping in mind the model limitations, we concluded that it is possible to start the use of the EPID for the accelerator quality control and improvements for the current model should be studied, as well as other suitable applications: e.g. the Intensity Modulated Radiation Therapy (IMRT) treatment verification procedures. (Author).

  18. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  19. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  20. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  1. Interest of numerical dosimetry in radiation protection: mean of substitution or measurements consolidation?

    International Nuclear Information System (INIS)

    Lahaye, T.; Chau, Q.; Ferragut, A.; Gillot, J.Y.

    2003-01-01

    The use of calculation codes allows to reduce the costs and the time limits. These codes brings to operators elements to reinforce their projected dosimetry. In the cases of accidental overexposure, the numerical dosimetry comes in complement of clinical and biological investigations to give an estimation as precise as possible of the received dose. For particular situations where it does not exist an adapted instrumentation, the numerical dosimetry can substitute to conventional techniques used by regulatory dosimetry (project for aviation personnel). (N.C.)

  2. Radiation dosimetry and standards at the austrian dosimetry laboratory

    International Nuclear Information System (INIS)

    Leitner, A.

    1984-10-01

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60 Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources ( 60 Co and 137 Cs) and a reference source system with six gamma ray sources ( 60 Co and 137 Cs). In addition a set of calibrated beta ray sources are provided ( 147 Pm, 204 Tl and 90 Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137 Cs and 60 Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  3. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  4. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  5. Personnel ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Williams, R.A.

    1975-01-01

    A dosimeter and method for use by personnel working in an area of mixed ionizing radiation fields for measuring and/or determining the effective energy of x- and gamma radiation; beta, x-, and gamma radiation dose equivalent to the surface of the body; beta, x-, and gamma radiation dose equivalent at a depth in the body; the presence of slow neutron, fast neutron dose equivalent; and orientation of the person wearing the dosimeter to the source of radiation is disclosed. Optionally integrated into this device and method are improved means for determining neutron energy spectrum and absorbed dose from fission gamma and neutron radiation resulting from accidental criticality

  6. RCT: Module 2.04, Dosimetry, Course 8769

    Energy Technology Data Exchange (ETDEWEB)

    Hillmer, Kurt T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-11

    This course will introduce the types of instruments used to measure external and internal radiation to people. Dosimetry is the quantitative assessment of radiation received by the human body. Several types of dosimeters are used worldwide. This information is valuable to all radiological control personnel because dosimeters are the only direct method to measure and document personnel radiation exposure and ensure regulatory compliance with applicable limits. This course will cover dosimetry terms, Department of Energy (DOE) limits, Los Alamos National Laboratory (LANL) administrative guidelines, thermoluminescent dosimeters (TLDs), LANL dosimetry, and bioassay assessment methods. This course will prepare the student with the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and providing in-thefield skills.

  7. Graphite mixed magnesium borate TL dosemeters for beta ray dosimetry

    DEFF Research Database (Denmark)

    Prokic, M; Christensen, Poul

    1984-01-01

    Sintered MgB4O7:Dy dosemeters with graphite contents from 1 to 10% were investigated for application for personnel dosimetry. Data are given on dose response, dose threshold, reproducibility, beta energy response and fading. Furthermore, results from practical field experiments are presented...

  8. Radiation dosimetry of computed tomography x-ray scanners

    International Nuclear Information System (INIS)

    Poletti, J.L.; Williamson, B.D.P.; Le Heron, J.C.

    1983-01-01

    This report describes the development and application of the methods employed in National Radiation Laboratory (NRL) surveys of computed tomography x-ray scanners (CT scanners). It includes descriptions of the phantoms and equipment used, discussion of the various dose parameters measured, the principles of the various dosimetry systems employed and some indication of the doses to occupationally exposed personnel

  9. The use of film badges for personnel monitoring

    International Nuclear Information System (INIS)

    Ehrlich, M.

    1962-01-01

    Photographic film is fairly inexpensive and durable and as a result of irradiation its radiosensitive components undergo relatively permanent changes. With proper calibration the optical density of the development and fixed photographic film can be related to radiation exposure. Personnel monitoring with photographic film is the method of choice in many laboratories, and this manual gives guidelines for the use of photographic film in personnel dosimetry.

  10. Proceedings of the third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  11. Proceedings of the third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database

  12. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  13. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  14. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  15. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  16. Medical radiation dosimetry with radiochromic film

    International Nuclear Information System (INIS)

    Butson, M.J.; Cancer Services, NSW; Cheung, T.; Yu, P.K.N.; Metcalfe, P.

    2004-01-01

    Full text: Photon, electron and proton radiation are used extensively for medical purposes in diagnostic and therapeutic procedures. Dosimetry of these radiation sources can be performed with radiochromic films, devices that have the ability to produce a permanent visible colour change upon irradiation. Within the last ten years, the use of radiochromic films has expanded rapidly in the medical world due to commercial products becoming more readily available, higher sensitivity films and technology advances in imaging which have allowed scientists to use two-dimensional dosimetry more accurately and inexpensively. Radiochromic film dosimeters are now available in formats, which have accurate dose measurement ranges from less than 1 Gy up to many kGy. A relatively energy independent dose response combined with automatic development of radiochromic film products has made these detectors most useful in medical radiation dosimetry. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  17. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  18. Storage of radioactive material - accidents - precipitation - personnel monitoring

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-12-01

    This volume covers the reports on four routine tasks concerned with safe handling of radioactive material and influence of nuclear facilities on the environment. The tasks performed were as follows: Storage of solid and liquid radioactive material; actions in case of accidents; radiation monitoring of the fallout, water and ground; personnel dosimetry

  19. Mathematical operations in cytogenetic dosimetry: Dosgen

    International Nuclear Information System (INIS)

    Garcia L, O.; Zequera J, T.

    1996-01-01

    Handling of formulas and mathematical procedures for fitting and using of dose-response relationships in cytogenetic dosimetry is often difficulted by the absence of collaborators specialized in mathematics and computation. DOSGEN program contains the main mathematical operations which are used in cytogenetic dosimetry. It is able to run in IBM compatible Pc's by non-specialized personnel.The program possibilities are: Poisson distribution fitting test for the number of aberration per cell, dose assessment for whole body irradiation, dose assessment for partial irradiation and determination of irradiated fraction. The program allows on screen visualization and printing of results. DOSGEN has been developed in turbo pascal and is 33Kb of size. (authors). 4 refs

  20. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device; Principais acoes de protecao radiologica para equipe medica como primeiros respondedores frente a um evento com dispositivo de dispersao radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Hildanielle Ramos

    2015-07-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  2. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  3. Theoretical basis for dosimetry

    International Nuclear Information System (INIS)

    Carlsson, G.A.

    1985-01-01

    Radiation dosimetry is fundamental to all fields of science dealing with radiation effects and is concerned with problems which are often intricate as hinted above. A firm scientific basis is needed to face increasing demands on accurate dosimetry. This chapter is an attempt to review and to elucidate the elements for such a basis. Quantities suitable for radiation dosimetry have been defined in the unique work to coordinate radiation terminology and usage by the International Commission on Radiation Units and Measurements, ICRU. Basic definitions and terminology used in this chapter conform with the recent ''Radiation Quantities and Units, Report 33'' of the ICRU

  4. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  5. Dosimetry work and calculations in connection with the irradiation of large devices in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.

    1982-01-01

    For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle

  6. Personal nuclear accident dosimetry at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%

  7. Development and clinical application of In Vivo dosimetry for radiotherapy

    International Nuclear Information System (INIS)

    Honda, Hirofumi; Oita, Masataka; Tominaga, Masahide; Oto, Yoshihiro

    2016-01-01

    In practical radiotherapy, it is important to deliver radiation to the target correctly and safely according to the treatment planning. The control of radiation dose delivered to each patient in radiotherapy mainly relies on the prediction based on the result of pre-treatment verification and irradiation accuracy of treatment machines. In Vivo dosimetry in radiotherapy is the procedure of quality assurance by the way of direct measurement for the patient whether the calculated prescribed dose in the treatment planning is delivered precisely. The history of In Vivo dosimetry is relatively long, and the TLD dosimetry for clinical radiotherapy started in early 1970's. After 1980's, owing to the development of semiconductor devices such as diode detectors, semiconductor arrays, the clinical applications for the dosimetry and diagnostic radiation imaging devices which contributed to the development of electric portal imaging devices and 2D semiconductor detectors were introduced. In recent years, these radiation measurement devices and non-invasive methods have been developed, they are becoming widespread as clinical practice. In this paper, we reviewed the In Vivo dosimetry devices and their characteristics, and technical application for radiotherapy. (author)

  8. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  9. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  10. Next decade in external dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1988-01-01

    In recent years, a number of external dosimetry problems have been solved. However, changes in standards and legal concepts relating to the application of dosimetry results will require further enhancements in measurement techniques and philosophy in the next 10 y. The introduction of effective dose equivalent and the legal use of probability of causation will require that much greater attention be given to determination of weighted organ dose from external exposure. An imminent change--an increase in the fast neutron quality factor--will require a new round of technology development in a field that has just received a decade of close scrutiny. For the future, we must take advantage of developments in microelectronics. The use of random access memory (RAM) and metal-on-silicon (MOS) devices as detector elements, particularly for neutron dosimetry, has exciting possibilities that are just beginning to be explored. Advances in microcircuitry are leading, and will continue to lead, in the development of a new generation of small, rugged and smart radiation survey instruments that will make the most of detector data. It has become possible with very compact instruments to obtain energy spectra, linear-energy-transfer (LET) spectra, and quality factors in addition to the usual integrated dosimetric quantities: exposure, absorbed dose, and dose equivalent. These instruments will be reliable and easy to use. The user will be able to select the level of sophistication that is required for any specific application. Moreover, since the processing algorithms can be changed, changes in conversion factors can be accommodated with relative ease. During the next decade, the use of computers will continue to grow in value to the health physicist

  11. JENDL Dosimetry File

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Iguchi, Tetsuo; Kobayashi, Katsuhei; Iwasaki, Shin; Sakurai, Kiyoshi; Ikeda, Yujiro; Nakagawa, Tsuneo.

    1992-03-01

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d, n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form. (author) 76 refs

  12. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  13. JENDL Dosimetry File

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Masaharu; Iguchi, Tetsuo [Tokyo Univ. (Japan). Faculty of Engineering; Kobayashi, Katsuhei [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Iwasaki, Shin [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Sakurai, Kiyoshi; Ikeda, Yujior; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1992-03-15

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d,n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form.

  14. Charge transport and X-ray dosimetry performance of a single crystal CVD diamond device fabricated with pulsed laser deposited electrodes

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.A.E.; Abdel-Rahman, M.A.E.; Lohstroh, A.; Bryant, P.; Jayawardena, I.

    2013-01-01

    recommended by the IAEA (∼ 0.5 %) and hence minor improvements in processing parameters and device geometry have the potential to fulfil this requirement.

  15. Radiation processing dosimetry - past, present and future

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1999-01-01

    Since the two United Nations Conferences were held in Geneva in 1955 and 1958 on the Peaceful Uses of Atomic Energy and the concurrent foundation of the International Atomic Energy Agency in 1957, the IAEA has fostered high-dose dosimetry and its applications. This field is represented in industrial radiation processing, agricultural programmes, and therapeutic and preventative medicine. Such dosimetry is needed specifically for pest and quarantine control and in the processing of medical products, pharmaceuticals, blood products, foodstuffs, solid, liquid and gaseous wastes, and a variety of useful commodities, e.g. polymers, composites, natural rubber and elastomers, packaging, electronic, and automotive components, as well as in radiotherapy. Improvements and innovations of dosimetry materials and analytical systems and software continue to be important goals for these applications. Some of the recent advances in high-dose dosimetry include tetrazolium salts and substituted polydiacetylene as radiochromic media, on-line real-time as well as integrating semiconductor and diamond-detector monitors, quantitative label dosimeters, photofluorescent sensors for broad dose range applications, and improved and simplified parametric and computational codes for imaging and simulating 3D radiation dose distributions in model products. The use of certain solid-state devices, e.g. optical quality LiF, at low (down to 4K) and high (up to 500 K) temperatures, is of interest for materials testing. There have also been notable developments in experimental dose mapping procedures, e.g. 2D and 3D dose distribution analyses by flat-bed optical scanners and software applied to radiochromic and photofluorescent images. In addition, less expensive EPR spectrometers and new EPR dosimetry materials and high-resolution semiconductor diode arrays, charge injection devices, and photostimulated storage phosphors have been introduced. (author)

  16. Instrumentation for Dosimetry. Chapter 21

    Energy Technology Data Exchange (ETDEWEB)

    Hourdakis, J. C. [Greek Atomic Energy Commission, Athens (Greece); Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    Measurements of absorbed dose (or air kerma) are required in varying situations in diagnostic radiology. The radiation fields vary from plain, slit and even point projection geometry, and may be stationary or moving, including rotational. Owing to the use of low photon energies for these fields, it is important that dosimeters have a satisfactory energy response. In general, the requirements for dosimeter accuracy are less stringent than those in radiation therapy; however, the dose and dose rate measurements cover a large range. Patient dosimetry (see Chapter 22) is a primary responsibility of the medical physicist specializing in diagnostic radiology and is required by legislation in many countries. Dose data are also required in the optimization of examinations for image quality and dose. Radiation measurement is also critical for occupational and public exposure control (see Chapter 24). Dose measurements are essential in acceptance testing and quality control (see Chapter 19). Several types of dosimeter can be used, provided that they have a suitable energy response, but typically, ionization chambers of a few cubic centimetres in volume, or solid state detectors specifically designed for such measurements, are used. If dosimeters are used to make measurements during an examination, they must not interfere with the examination. These devices are also used for determination of the half value layer (HVL). Special types of ionization chamber are employed for computed tomography (CT), mammography and interventional radiology dosimetry.

  17. Energy response study of modified CR-39 neutron personnel dosimeter

    International Nuclear Information System (INIS)

    Sathian, Deepa; Bakshi, A.K.; Datta, D.; Nair, Sreejith S.; Sathian, V.; Mishra, Jitendra; Sen, Meghnath

    2018-01-01

    Personnel neutron dosimetry is an integral part of radiation protection. No single dosimeter provides the satisfactory energy response, sensitivity, angular dependence characteristics and accuracy necessary to meet the requirement of an ideal personnel neutron dosimeter. The response of a personnel neutron dosimeter is critically dependent upon the energy distribution of the neutron field. CR-39 personnel neutron dosimeters were typically calibrated in the standard neutron field of 252 Cf and 241 Am-Be in our laboratory, although actual neutron fields may vary from the calibration neutron spectrum. Recently the badge cassette of the personnel neutron dosimeter was changed due to frequent damage of the PVC badge used earlier. This paper discusses energy response of CR-39 solid state nuclear track detector loaded in this modified badge cassette as per latest ISO recommendation

  18. Image in nuclear dosimetry using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Guinsburg, G.; Matsuoka, M.; Watanabe, S.

    1987-01-01

    A low cost methodology to produce images of internal sick organs by radioisotopic intake, is presented. Dosimetries of thermoluminescent material and Teflon (ratio:50%) in bidimensional matrix shape are used with a Pb collimator. This collimator-bidimensional matrix system was tested ''in vivo'' and in thyroid phantoms using 99m Tc. A comparative evaluation between this method and the scintigraphy one is presented. (M.A.C.) [pt

  19. DOE personnel neutron dosimetry evaluation and upgrade program

    International Nuclear Information System (INIS)

    Faust, L.G.; Stroud, C.M.; Vallario, E.J.

    1988-01-01

    The US Department of Energy (DOE) sponsors an extensive research program to improve the methods, dosimeters, and instruments available to DOE facilities for measuring neutron dose and assessing its effects on the work force. The Total Dose Meter was recently developed for measuring in real time the absorbed dose of mixed neutron and gamma radiation and for calculating the dose equivalent. The Field Neutron Spectrometer was developed to provide a portable instrument for determining neutron spectra in the workplace for flux-to-dose equivalent conversion and quality factor calculation. The Combination Thermoluminescence/Track Etch Dosimeter (TLD/TED) was developed to extend the effective neutron energy range of the conventional TLDs to improve detection of fast-energy neutrons. An Optically Stimulated Luminescence Dosimeter is presently being developed for application to gamma, neutron, and beta radiation. An Effective Dose Equivalent System is being developed to provide guidance in implementing the January 1987 Presidential Directive to determine effective dose equivalent. Superheated Drop Detectors are being investigated for their potential as real time neutron dosimeters. This paper includes discussions of these improvements brought about by the DOE research program

  20. Need for improved standards in neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1976-01-01

    There is a continuing need for standards in neutron monitoring. A discussion of special problem areas and the benefits of intercomparisons is given. The RBE for leukemia induction in the survivors of the nuclear bombings of Hiroshima and Nagasaki is greater than ten for absorbed doses in the bone marrow of less than 100 rads; this may have an important impact on neutron standards preparation

  1. Radiation protection instrumentation for personnel dosimetry, area and environmental monitoring

    International Nuclear Information System (INIS)

    Jones, A.R.

    1978-04-01

    Several kinds of personal dosimeter exist and their performance is reviewed in the light of requirements for an ideal instrument. The requirements of portable instruments are reviewed and the extent to which they are met in one example is described. Where permitted environmental doses are larger than the fluctuations in natural backgrounds, certain types of thermoluminescent dosimeters provide a cheaper and reliable alternative measuring system

  2. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    Three alternative methods are outlined by which substantial improvements of the capabilities of existing routine monitoring systems for skin dose assessment can be obtained. The introduction of a supplementary skin dosemeter may be an attractive method for systems with badges that have a capability for an additional dosemeter already built-in. The two-side reading method has limited possibilities because of reduced accuracy for mixed radiation and technical difficulties in using it for TLD systems with planchet heating. The use of a boron diffused LiF layer for skin dose assessment seems to be most attractive method since the only modification needed here is replacement of a dosemeter. However the study of this method is so far only in a preliminary stage and further investigations are needed. (U.K.)

  3. A personnel TLD system with person identification

    International Nuclear Information System (INIS)

    Widell, C.O.

    1974-01-01

    The TLD system uses Li 2 B 4 O 7 :Mn, Si sintered tablets which are heated by hot nitrogen. The slide which holds the tablets is coded by a self adhesive polyester-aluminium tape. This tape is BCD coded in an ordinary tape punch. The information on the punched tape includes a ten digit social-security number and a two digit information on location and type of dosimetry. By this system dosimetric data is directly transfered into a central dose register for Sweden. All personnel doses are there stored on social-security numbers. (author)

  4. Nuclear radiation monitoring instruments for personnel in nuclear disaster for defence needs

    International Nuclear Information System (INIS)

    Bhatnagar, P.K.; Vaijapurkar, S.G.; Yadav, Ashok

    2005-01-01

    Ever since the tragedy of nuclear device exploding over Japan by USA in 1945 awareness exists amongst the armed forces personnel all over the world that a requirement of implementing radiological protection is imminent. Towards this adoption of radiological safety programme is a criterion. In a nuclear war disaster scenario, one encounters initial nuclear radiation (gamma and neutron radiations), gamma radiations from fallout, heat and blast. At certain distances Tanks/ armoured vehicles will survive and 4 R/s radiation level sensing to actuate relays for closing the ports of vehicles is essential, leading to reduction in inhalation, ingestion of fallout radioactivity and reduction in radiation dose received by occupants of the vehicle. Towards this sturdy radiation monitors to indicate gamma dose rate of the order of 1000 R/h, gamma and neutron dosimeters of the order of 1000 cGy with reading instruments are to be developed. These must work in harsh environment and sustain JSS 55555 conditions of army. Defence Laboratory, Jodhpur over past one decade has been involved in developing personnel, area and field monitoring instruments like dosimeters, survey meters, which are useful, acceptable to army personnel, armoured and personnel carrier vehicles, field structures/shelters. Technology transfer after satisfaction of armed forces, product ionisation and supply, maintenance, training has been the endeavor of the DRDO. Herein it is proposed to highlight the techno electronics nuclear radiation monitoring sensors and associated electronics systems developed first time in the country and productionised in bulk for Services for implementing personnel protection. The sensors developed and described are - Radiophotoluminescent Glass (RPLG) for gamma radiation dosimetry , neutron sensitive PIN diode for fast neutron dosimetry, gamma radiation sensitive PIN diode, superheated liquid neutron and gamma sensors. The dosimeter, dose rate meter and field/area instruments are

  5. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia

    International Nuclear Information System (INIS)

    Sierra C, B. Y.; Jimenez, Y.; Plazas, M. C.; Eslava S, J.; Groot R, H.

    2014-08-01

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  6. Contribution of the operational dosimetry in the radiation protection optimization in a nuclear medicine service

    International Nuclear Information System (INIS)

    Herit, S.; Cosculluela, S.; Lambert, B.; Gras, H.

    2007-01-01

    Beyond its contribution in the personnel dosimetric surveillance, the operational dosimetry is a very efficient educational tool, of easy use. This study is lengthened by the setting up in 2007 of a job study in order to redefine the service zoning and by an evaluation of the extremities dosimetry with the help of thermoluminescent rings, in order to optimize the practices during the phase of preparation and injection. (N.C.)

  7. Interactive and automated systems for nuclear track measurements with applications to fast neutron dosimetry

    International Nuclear Information System (INIS)

    Roberts, J.H.; Gold, R.; McNeece, J.P.; Preston, C.C.; Ruddy, F.H.

    1983-12-01

    Interactive and automatic track measuring systems have been developed primarily for fast neutron dosimetry in and around reactors. The interactive system is used for proton recoil measurements in nuclear research emulsions and the automatic systems for counting fission fragment tracks in Muscovite mica. The status of these systems, along with illustrative applications, are presented, particularly with regard to their relationship to neutron personnel dosimetry. 16 references, 12 figures

  8. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-01-01

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report

  9. The thermoluminscent dosimetry service of the radiation protection bureau

    International Nuclear Information System (INIS)

    1978-12-01

    Thermoluminescent materials have been used in radiation dosimetry for many years, but their application to nationwide personnel dosimetry has been scarce. An undertaking of this nature requires that methods be established for identification of dosimeters and for fast interpretation and communication of dose to the users across the country. It is also necessary that records of cumulative dose of individual radiation workers be continuously updated, and such records be maintained for a prolonged period. To do this many problems pertinent to associated equpment, vis. the computer, TL reader, their interfacing, and to the operational procedures of the service had to be resolved. Since April 1977, the Radiation Protection Bureau has been providing a Thermoluminescent Dosimetry Service to Canadian radiation workers. This document describes the RPB dosimeter, its characteristics, various aspects of the service, objectives of the service, and how the objective goals of the service are achieved. (auth)

  10. Development and implementation of own software for dosimetry multichannel film; Desarrollo e implementacion de un software propio para la dosimetria multicanal con pelicula radiocromica EBT2

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Feltstrom, D.; Reyes Garcia, R.; Luis Simon, F. J.; Carrasco Herrera, M.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2013-07-01

    The objective of this work is to develop its own software for multichannel film dosimetry Radiochromic EBT2. Compare the results obtained with its use in multichannel and single-channel dosimetry. Check that the multi-channel dosimetry eliminates much of the artifacts caused by dirt, fingerprints, scratches, etc. Radiochromic in film and scanner devices. (Author)

  11. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  12. Recommendations about criticality accident dosimetry

    International Nuclear Information System (INIS)

    1975-07-01

    The aims of criticality accident dosimetry and the characteristics peculiar to a critical burst being defined, the requirements to be fulfilled by a dosimetric system applied to this type of measurements are presented. The devices chosen by the C.E.A. Radiation Survey Divisions, simple and cheap, are described along with the main processes to be carried out in order to evaluate doses after an accident. The apparatus necessary for detector counting and the directions for use are presented in detail, allowing standardization of measurements. A set of linear formula enables to obtain, from these measurements, all required informations about neutron fluences and spectra, along with the suitable components of the dose at the irradiated people locations [fr

  13. Audits for advanced treatment dosimetry

    Science.gov (United States)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  14. Audits for advanced treatment dosimetry

    International Nuclear Information System (INIS)

    Ibbott, G S; Thwaites, D I

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits

  15. Dosimetry of x-ray beams: The measure of the problem

    International Nuclear Information System (INIS)

    de Castro, T.M.

    1986-08-01

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs

  16. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  17. Improving neutron dosimetry using bubble detector technology

    International Nuclear Information System (INIS)

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research

  18. Thermocurrent dosimetry with high purity aluminum oxide

    International Nuclear Information System (INIS)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al 2 O 3 ) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces

  19. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  20. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  1. A method for neutron dosimetry in ultrahigh flux environments

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Wemple, C.A.; Rogers, J.W.

    1996-01-01

    A method for neutron dosimetry in ultrahigh flux environments is developed, and devices embodying it are proposed and simulated using a Monte Carlo code. The new approach no longer assumes a linear relationship between the fluence and the activity of the nuclides formed by irradiation. It accounts for depletion of the original ''foil'' material and for decay and depletion of the formed nuclides. In facilities where very high fluences are possible, the fluences inferred by activity measurements may be ambiguous. A method for resolving these ambiguities is also proposed and simulated. The new method and proposed devices should make possible the use of materials not traditionally considered desirable for neutron activation dosimetry

  2. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  3. Energy dependence of fast neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Morgan, K.Z.

    1978-01-01

    Registration of fast-neutron induced recoil tracks by the electrochemical etching technique as applied to sensitive Lexan polycarbonate foils provides a simple and inexpensive means of fast neutron personnel dosimetry. The sensitivity (tracks/neutron) of recoil particle registration is given as a function of neutron energy. Neutrons of 7 Li (p,n) 7 Be, 3 T (d,n) 4 He and 9 B, respectively. Results are compared with other studies using other neutron sources and conventional etching method

  4. Nuclear accident dosimetry. Revision of emergency data sheets

    International Nuclear Information System (INIS)

    Delafield, H.J.

    1976-09-01

    The Emergency Data Sheets on Nuclear Accident Dosimetry have been revealed following the publication of a three part manual on this subject (Delafield, Dennis and Gibson, AERE-R 7485/6/7, 1973). This memo provides an explanation of the action levels adopted for the initial segregation of irradiated persons following a criticality accident, by monitoring the activity of indium foils contained in personnel dosimeters and the induced body sodium activity. The data sheets are given as an Appendix. They provide basic information on; the segregation of irradiated persons, the estimation of radiation exposure, and the assessment of personnel γ-ray and neutron doses. (author)

  5. Specification ''E'' of the CEFRI concerning the enterprises employing personnel of A or B category working in nuclear facilities

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document aims to specify the organization dispositions which have to bee taken by the enterprises employing personnel of A or B category to work in nuclear facilities. These dispositions should allow to respect the demands of the CEFRI in matter of formation, medical control and personnel dosimetry. (A.L.B.)

  6. Personnel preferences in personnel planning and scheduling

    OpenAIRE

    van der Veen, Egbert

    2013-01-01

    Summary The personnel of an organization often has two conflicting goals. Individual employees like to have a good work-life balance, by having personal preferences taken into account, whereas there is also the common goal to work efficiently. By applying techniques and methods from Operations Research, a subfield of applied mathematics, we show that operational efficiency can be achieved while taking personnel preferences into account. In the design of optimization methods, we explicitly con...

  7. New advanced TLD system for space dosimetry

    International Nuclear Information System (INIS)

    Feher, I.; Szabo, B.; Vagvoelgyi, J.; Deme, S.; Szabo, P.P.; Csoeke, A.

    1983-10-01

    A new version of the TLD reader type PILLE has been developed for space applications. The earlier compact and portable device could also be used for measurements during space flights but its range was limited. A new bulb detector with easier handling has also been developed with an upper limit of linear dose response of 10 Gy. The range of this new and more versatile reader, NA206S, (1μGy-10 Gy) is 3 orders of magnitude higher than that of the earlier system; it also has increased sensitivity and decreased mass. It can be used not only in space applications but also for environmental monitoring or even in accident dosimetry. The measured dose value is displayed on a four-digit display with automatic range switch. Another new version, the NA206E, has been developed for environmental dosimetry; it can be operated from a battery or from the mains. (author)

  8. Dosimetry of pion beams

    International Nuclear Information System (INIS)

    Dicello, J.F.

    1975-01-01

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  9. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  10. Group: radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    1990-01-01

    The main activities of the radiation dosimetry group is described, including the calibration of instruments, sources and radioactive solutions and the determination of neutron flux; development, production and market dosimetric materials; development radiation sensor make the control of radiation dose received by IPEN workers; development new techniques for monitoring, etc. (C.G.C.)

  11. Glucinium dosimetry in beryl

    International Nuclear Information System (INIS)

    Kremer, M.

    1949-05-01

    The application of the method developed by Kolthoff and Sandell (1928) for the dosimetry of glucinium (beryllium) in beryl gives non-reproducible results with up to 20% discrepancies. This method recommends to separate beryllium and aluminium using 8 hydroxyquinoline and then to directly precipitate glucinium in the filtrate using ammonia. One possible reason of the problems generated by this method should be the formation of a volatile complex between beryllium and the oxine. This work shows that when the oxine is eliminated before the precipitation with ammonia the dosimetry of beryllium becomes accurate. The destruction of the oxine requires the dry evaporation of the filtrate, which is a long process. Thus the search for a reagent allowing the quantitative precipitation of beryllium in its solutions and in presence of oxine has been made. It has been verified also that the quantitative precipitation of the double beryllium and ammonium phosphate is not disturbed by the oxine in acetic buffer. This method, which gives good results, has also the advantage to separate beryllium from the alkaline-earth compounds still present in the filtrate. The report details the operation mode of the method: beryllium dosimetry using ammonium phosphate, aluminium-beryllium separation, application to beryl dosimetry (ore processing, insolubilization of silica, precipitation with ammonia, precipitation with oxine, precipitation of PO 4 NH 4 Gl, preciseness). (J.S.)

  12. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  13. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  14. Monitoring of overalls and personnel skin contamination

    International Nuclear Information System (INIS)

    Turkin, N.F.

    1980-01-01

    Organization of monitoring of overalls and personnel skin contamination wastes is considered. The devices used for this purpose are enumerated. In sanitary sluices through which the personnel leaving the repair zone it is recommended to particularly thoroughly control hand skin contamination and most contaminated parts of overalls (sleeves, breeches lower parts, pockets, stomack region). In sanitary check points during personnel leaving the operator zone monitoring of overalls and skin contamination is performed. The overalls and other individual protective clothing are subjected to control in a special loundry before and after washing (decontamination) [ru

  15. A relational database for personnel radiation exposure management

    International Nuclear Information System (INIS)

    David, W.; Miller, P.D.

    1993-01-01

    In-house utility personnel developed a relational data base for personnel radiation exposure management computer system during a 2 1/2 year period. The (PREM) Personnel Radiation Exposure Management System was designed to meet current Nuclear Regulatory Commission (NRC) requirements related to radiological access control, Radiation Work Permits (RWP) management, automated personnel dosimetry reporting, ALARA planning and repetitive job history dose archiving. The system has been operational for the past 18 months which includes a full refueling outage at Clinton Power Station. The Radiation Protection Department designed PREM to establish a software platform for implementing future revisions to 10CFR20 in 1993. Workers acceptance of the system has been excellent. Regulatory officials have given the system high marks as a radiological tool because of the system's ability to track the entire job from start to finish

  16. The Role of Dosimetry in High-Quality EMI Risk Assessment

    National Research Council Canada - National Science Library

    2006-01-01

    The Final Proceedings for The role of EMF dosimetry in high quality risk assessment 13 September 2006 - 15 September 2006 In the last three decades the use of devices that emit electromagnetic fields (EMF...

  17. Current status of personnel monitoring for beta particles

    International Nuclear Information System (INIS)

    Plato, P.; Miklos, J.

    1983-01-01

    From 1975 to 1982, a concerted effort was made to develop a uniform procedure to test the performance of personnel dosimetry processors throughout the United States. The heart of this effort is a standard developed by the Health Physics Society Standards Committee (HPSSC) and adopted by the American National Standards Institute (ANSI) as ANSI N13.11-1982. The US Nuclear Regulatory Commission (NRC) sponsored a five year pilot study of this Standard which included three trial tests in which approximately 80 dosimetry processors participated. The Standard has made several contributions to the art and science of personnel monitoring for beta particles. First, the Standard defines test categories for beta particles and mixtures of beta particles plus gamma rays in addition to test categories for other types of radiation. Second, it defines a reference beta-particle source for test purposes. Third, it provides test criteria which are used to determine acceptable performance by a processor. The pilot study provided information on the state of the art of personnel monitoring within the bounds of the Standard. In addition, since the pilot study was advertised as the forerunner of a future mandatory certification program for dosimetry processors throughout the United States, considerable attention was given to personnel monitoring in general, and beta particles in particular. This paper discusses specific contibutions of the HPSSC/ANSI Standard and the pilot study to beta-particle dosimetry. The results of the three tests of the pilot study are summarized. The paper also amplifies on the needs to define the monitoring particle sources clearly

  18. Type tests to the automatic system of thermoluminescent dosimetry acquired by the CPHR for personnel dosimetry

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.

    2005-01-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF: Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  19. French nuclear tests: the medical follow up of Cea participating personnel

    International Nuclear Information System (INIS)

    2004-01-01

    For the personnel exposed to the risk of ionizing radiations, two types of examinations, in the aim of detecting any track of internal contamination were practiced at regular interval, at the arrival and at the departure from the site. A gamma spectrometry, and radio toxicological examination of feces and urines were practiced. furthermore, the exposed personnel received a specific film devoted to measure their external dosimetry. The same examinations were made for the local personnel and for the personnel of intervening societies. (N.C.)

  20. A new development in personnel monitoring

    International Nuclear Information System (INIS)

    Fletcher, R.J.

    1993-01-01

    For several years the UK National Radiological Protection Board (NRPB) has felt that the next major development in personal dosimetry should be an electronic dosemeter which would read out directly, to improve control of exposures and achieve a reduction in individual doses. This became a possibility when an arrangement of solid-state detectors and filters was developed at the NRPB which was suitable for the measurement of the individual photon dose equivalent. Since then, further development has taken place at the NRPB for the measurement of the individual dose equivalent superficial for β-radiation. The measurements are made in the quantities Hp(10) and Hs(0.07), as recommended by the ICRU for individual monitoring. Thus, the basic detector system for the development of an electronic dosemeter has been established. The device is now being manufactured and marketed. An electronic personal dosimetry service is described, together with the procedure which is being adopted to gain approval in the UK for monitoring the exposure of classified workers. The NRPB considers this to be the next logical development in personal dosimetry, and it has been shown that the device offers a number of advantages for this purpose. (Author)

  1. Cytogenetic diagnostic of 3 populations of occupationally exposed personnel

    International Nuclear Information System (INIS)

    Guerrero C, C.; Arceo M, C.

    2013-10-01

    In the year 2000 the first service of biological dosimetry was requested to the Instituto Nacional de Investigaciones Nucleares (ININ), and until the year 2012 have been assisted 52 cases approximately. Most of the cases correspond to workers dedicated to the industrial radiography, followed by the occupationally exposed personnel either in the hospital area or health services and the minority corresponds to individuals linked to research institutions. The incident with more serious consequences to the individual happened to workers that ingested I-131 in the year 2003. Using the biological dosimetry to estimate exposure dose by damage in the lymphocyte chromosomes of each worker has been possible to establish the exposure dose in each one of them, or also to discard the supposed exposure. The dosimetry demonstrates to be an useful tool for situations with exposure suspicion, for example when the reading of thermoluminescent dosimeter of a occupationally exposed personnel does not correspond to the event, or when the personnel forgets to carry his dosimeter, the exposure dose can be determined. (Author)

  2. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  3. Interlaboratory niobium dosimetry comparison

    International Nuclear Information System (INIS)

    Wille, P.

    1980-01-01

    For an interlaboratory comparison of neutron dosimetry using niobium the 93 sup(m)Nb activities of irradiated niobium monitors were measured. This work was performed to compare the applied techniques of dosimetry with Nb in different laboratories. The niobium monitors were irradiated in the fast breeder EBRII, USA and the BR2, Belgium. The monitors were dissolved and several samples were prepared. Their niobium contents were determined by the 94 Nb-count rates. since the original specific count rate was known. The KX radiations of the 93 sup(m)Nb of the samples and of a calibrated Nb-foil were compared. This foil was measured by PTB, Braunschweig and CBNM, Geel, which we additionally compared with the KX radiation of 88 Sr produced by a thin 88 Y source from a 88 Y-standard solution (PTB). (orig.) [de

  4. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  5. Thermo-luminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Reither, M; Schorn, B; Schneider, E

    1981-01-01

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber. The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field.

  6. Legal aspects of dosimetry

    International Nuclear Information System (INIS)

    Pomarola, H.

    1976-01-01

    The use of ionizing radiations is regulated in France in all fields of application. The main principles governing inspection activities in the food industry are outlined. Conventional preservation methods are mentioned, after which a discussion is devoted to the preservation of food products by irradiation treatment and the increasing importance given to this technique. Consumer protection automatically implies the obligatory use of dosimetry by inspection organisms if the irradiated merchandise is likely to serve for human or animal consumption. Irradiation treatment permits are granted in a context of specific statutory texts mentioned here. Supervision is constant, but always both realistic and flexible. Each aspect of this treatment is discussed in maximum detail if not quite exhaustively, with special emphasis on dosimetry as an indispensable safety factor [fr

  7. WIPP radiation dosimetry program

    International Nuclear Information System (INIS)

    Wu, C.F.

    1991-01-01

    Radiation dosimetry is the process by which various measurement results and procedures are applied to quantify the radiation exposure of an individual. Accurate and precise determination of radiation dose is a key factor to the success of a radiation protection program. The Waste Isolation Pilot Plant (WIPP), a Department of Energy (DOE) facility designed for permanent repository of transuranic wastes in a 2000-foot-thick salt bed 2150 feet underground, has established a dosimetry program developed to meet the requirements of DOE Order 5480.11, ''Radiation Protection for Occupational Workers''; ANSI/ASME NQA-1, ''Quality Assurance Program Requirements for Nuclear Facilities''; DOE Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements''; and other applicable regulations

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  9. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  10. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2007-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records and Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  11. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  12. Automated personal dosimetry monitoring system for NPP

    International Nuclear Information System (INIS)

    Chanyshev, E.; Chechyotkin, N.; Kondratev, A.; Plyshevskaya, D.

    2006-01-01

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using thermoluminescent

  13. Quantitative imaging for clinical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bardies, Manuel [INSERM U601, 9 Quai Moncousu, 44093 Nantes (France)]. E-mail: manu@nantes.inserm.fr; Flux, Glenn [Department of Physics, Royal Marsden NHS Trust, Sutton (United Kingdom); Lassmann, Michael [Department of Nuclear Medicine, Julis-Maximilians University, Wuerzburg (Germany); Monsieurs, Myriam [Department of Health Physics, University of Ghent, 9000 Ghent (Belgium); Savolainen, Sauli [Department of Physical Sciences, University of Helsinki and HUS, Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland); Strand, Sven-Erik [Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University (Sweden)

    2006-12-20

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  14. Dosimetry for Crystals Irradiation

    CERN Document Server

    Lecomte, Pierre

    2005-01-01

    Before shipment to CMS, all PbWO4 crystals produced in China are irradiated there with 60 Co , in order to insure that the induced absorption coefficient is within specifications. Acceptance tests at CERNand at ENEA also include irradiation with gamma rays from 60 Co sources. There were initially discrepancies in quoted doses and doserates as well as in induced absorption coefficients. The present work resolves the discrepancies in irradiation measurements and defines common dosimetry methods for consistency checks between irradiation facilities.

  15. Personal radon daughter dosimetry

    International Nuclear Information System (INIS)

    Stocker, H.

    1979-12-01

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  16. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  17. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  18. In vivo dosimetry in external beam radiotherapy

    International Nuclear Information System (INIS)

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-01-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors’ opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks

  19. Software tool for portal dosimetry research.

    Science.gov (United States)

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

  20. In vivo dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mijnheer, Ben [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX (Netherlands); Beddar, Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Izewska, Joanna [Division of Human Health, International Atomic Energy Agency, Vienna 1400 (Austria); Reft, Chester [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois 60637 (United States)

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  1. Dosimetry: an ARDENT topic

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  2. Dosimetry in dentistry.

    Science.gov (United States)

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  3. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  4. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  5. Personnel radiation exposure in the Asse saltmine repository during 1967 to 2008. Health monitoring Asse

    International Nuclear Information System (INIS)

    2011-02-01

    The health monitoring Asse includes the following chapters: Introduction, background information including handling of radioactive materials and radiation protection issues, data on radiation exposure (personnel dosimetry, incorporation surveillance, local dose rate measurements, exhaust monitoring, radioactivity in the salt mine air and in the brine, contamination), concept of the data base, interrogation of the personnel, quantification of the individual radiation doses, results of the radiation exposure quantification; significance of the results and perspectives.

  6. Personnel preferences in personnel planning and scheduling

    NARCIS (Netherlands)

    van der Veen, Egbert

    2013-01-01

    Summary The personnel of an organization often has two conflicting goals. Individual employees like to have a good work-life balance, by having personal preferences taken into account, whereas there is also the common goal to work efficiently. By applying techniques and methods from Operations

  7. A review of lyoluminescence dosimetry and a new readout method using liquid scintillation techniques

    International Nuclear Information System (INIS)

    Ziemer, P.L.; Hanig, R.; Fayerman, L.K.

    1978-01-01

    Lyoluminescence dosimetry is useful as a personnel monitor and also as a neutron dosimeter. A review of lyoluminescence is given including readout systems, the machanisms of light emission, radiometric characteristics of lyoluminescence dosimeters, factor affecting response and liquid scintillation lyoluminscence readout

  8. State of the art in thermoluminescent dosimetry using dosemeters with automated read-out

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1979-01-01

    In the beginning, the results obtained with automated read-out TLD have been quite disappointing, both for manufacturers and users. In response to this, industry then seeked advice and assistance from those experienced in the practical use of dosemeters, and the development of the second generation of automated TLD has been a common task of manufacturers and purchosers. As a preliminary achievement of development work along this line, a dosemeter has been presented by a Japanese manufacturer, meeting the requirements in quite a satisfactory way. The device is characterized by a frequency of disturbance of -5 , a microprocessor for controlling the measuring and control functions, possibility of active input of device parameters and boundary conditions, extensive self-control of operating functions, complete data protection, and thin-film detector technique. Pursuing this line of development, and taking into account future recommentations, automated thermoluminescent dosimetry does seem to be a promising alternative to current measuring techniques in personnel monitoring. (orig./RW) [de

  9. Internal Dosimetry for Nuclear Power Program

    International Nuclear Information System (INIS)

    Wo, Y.M.

    2011-01-01

    Internal dosimetry which refers to dosage estimation from internal part of an individual body is an important and compulsory component in order to ensure the safety of the personnel involved in operational of a Nuclear Power Program. Radionuclides particle may deposit in the human being through several pathways and release wave and/or particle radiation to irradiate that person and give dose to body until it been excreted or completely decayed from the body. Type of radionuclides of concerning, monitoring program, equipment's and technique used to measure the concentration level of such radionuclides and dose calculation will be discussed in this article along with the role and capability of Malaysian Nuclear Agency. (author)

  10. Radiation protection and dosimetry: basis. 9. ed.

    International Nuclear Information System (INIS)

    Tauhata, Luiz; Salati, Ivan; Di Prinzio, Renato; Di Prinzio, Antonieta R.

    2013-11-01

    A revised book 'Radiation Protection and Dosimetry: Fundamentals , prepared to meet the training courses offered by the Instituto de Radioprotecao e Dosimetria - IRD, Rio de Janeiro, RJ, Brazil and people interested in the subject, is presented. Concepts have been updated, especially the chapter on Radiological Magnitudes, due to upgrade of Standard CNEN-NN-3.01-Basic Guidelines on Radiological Protection, published in the Diario Oficial da Uniao on September 1, 2011. A chapter related to Waste Management, another on the Transport of Radioactive Materials and three annexes on: Standards of CNEN, Ionizing Radiation and Personnel Legislation and Determination of shields in Radiotherapy were included. Were also added several tables for use in radiological protection, to facilitate consultation

  11. High sensitivity MOSFET-based neutron dosimetry

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Konstantakos, V.; Zamani, M.; Siskos, S.; Laopoulos, T.; Sarrabayrouse, G.

    2010-01-01

    A new dosemeter based on a metal-oxide-semiconductor field effect transistor sensitive to both neutrons and gamma radiation was manufactured at LAAS-CNRS Laboratory, Toulouse, France. In order to be used for neutron dosimetry, a thin film of lithium fluoride was deposited on the surface of the gate of the device. The characteristics of the dosemeter, such as the dependence of its response to neutron dose and dose rate, were investigated. The studied dosemeter was very sensitive to gamma rays compared to other dosemeters proposed in the literature. Its response in thermal neutrons was found to be much higher than in fast neutrons and gamma rays.

  12. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  13. Personnel Policy and Profit

    DEFF Research Database (Denmark)

    Bingley, Paul; Westergård-Nielsen, Niels Chr.

    2004-01-01

    personnel structure variation. It is found that personnel policy is strongly related to economic performance. At the margin, more hires are associated with lower profit, and more separations with higher profit. For the average firm, one new job, all else equal, is associated with ?2680 (2000 prices) lower...

  14. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  15. The personal dosimetry in Mexico; La dosimetria personal en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.A. [Proxtronics/ Asesoria Integral en Dosimetria Termoluminiscente S.A. de C.V., Canal de Miramontes 2030-14, Col. Educacion, 04400 Mexico D.F. (Mexico)]. e-mail: aidtsa@avantel.net

    2006-07-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  16. The LHC personnel safety system

    International Nuclear Information System (INIS)

    Ninin, P.; Valentini, F.; Ladzinski, T.

    2011-01-01

    Large particle physics installations such as the CERN Large Hadron Collider require specific Personnel Safety Systems (PSS) to protect the personnel against the radiological and industrial hazards. In order to fulfill the French regulation in matter of nuclear installations, the principles of IEC 61508 and IEC 61513 standard are used as a methodology framework to evaluate the criticality of the installation, to design and to implement the PSS.The LHC PSS deals with the implementation of all physical barriers, access controls and interlock devices around the 27 km of underground tunnel, service zones and experimental caverns of the LHC. The system shall guarantee the absence of personnel in the LHC controlled areas during the machine operations and, on the other hand, ensure the automatic accelerator shutdown in case of any safety condition violation, such as an intrusion during beam circulation. The LHC PSS has been conceived as two separate and independent systems: the LHC Access Control System (LACS) and the LHC Access Safety System (LASS). The LACS, using off the shelf technologies, realizes all physical barriers and regulates all accesses to the underground areas by identifying users and checking their authorizations.The LASS has been designed according to the principles of the IEC 61508 and 61513 standards, starting from a risk analysis conducted on the LHC facility equipped with a standard access control system. It consists in a set of safety functions realized by a dedicated fail-safe and redundant hardware guaranteed to be of SIL3 class. The integration of various technologies combining electronics, sensors, video and operational procedures adopted to establish an efficient personnel safety system for the CERN LHC accelerator is presented in this paper. (authors)

  17. Special workshop on lung dosimetry

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1983-01-01

    A Special Workshop on Lung Dosimetry was convened in Salt Lake City, Utah, on April 21-22, 1982, to stimulate the use of improved radiation dosimetry and to formulate a stronger basis for dose-response relationships for inhaled radionuclides. The two-day workshop was held in conjunction with the 30th Annual Meeting of the Radiation Research Society. Publication is planned

  18. Storage of radioactive material - accidents - precipitation - personnel monitoring; Stokiranje radioaktivnih materijala - akcidenti - padavine - kontrola osoblja

    Energy Technology Data Exchange (ETDEWEB)

    Matijasic, A; Gacinovic, O [Institute of Nuclear Sciences Boris Kidric, Radioloska zastita, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This volume covers the reports on four routine tasks concerned with safe handling of radioactive material and influence of nuclear facilities on the environment. The tasks performed were as follows: Storage of solid and liquid radioactive material; actions in case of accidents; radiation monitoring of the fallout, water and ground; personnel dosimetry.

  19. Dosimetry practices at the Radiation Technology Centre (Ghana)

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Ennison, I.

    1997-01-01

    Dosimetry practices undertaken to support research and pilot scale gamma irradiation activities at the Radiation Technology Centre of the Ghana Atomic Energy Commission are presented. The Fricke dosemeter was used for calibrating the gamma field of the gammacell-220. The Fricke system and the gammacell-220 were then used to calibrate the ethanol chlorobenzene (ECB) dosemeter. The Fricke and ECB dosemeter systems have become routine dosemeters at the centre. Dosimetry work has covered a wide range of research specimens and pilot scale products to establish the relevant irradiation protocol and parameters for routine treatment. These include yams, pineapple explants, blood for feeding tsetseflies, cocoa bud wood and cassava sticks. Pilot scale dosimetry studies on maize, medical devices like intravenous infusion sets and surgical gauze have also been completed. The results and observations made on some of these products are reported. (author). 4 refs., 5 figs

  20. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  1. Aqueous chemical dosimetry

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1982-01-01

    Aqueous chemical dosimetry based on ceric and ferrous sulfate solutions and on a number of fluorescence-induced systems is reviewed. Particular attention is given to the factors affecting the response of these dosimeters to radiation and the corrections necessary for more accurate dosimetry under various irradiation conditions. The effect of cerous and ceric ion, oxygen, and sulfuric acid concentration on the ceric dosimeter is discussed together with the effects of temperature, energy of radiation, degraded energy spectra, and peroxysulfuric acids. Practical aspects of ceric/cerous dosimetry are given. Although ferrous sulfate solution is the most important and widely studied reference dosimeter, general agreement has not been reached on the ''best'' value for the molar extinction coefficient of ferric ions nor on the correction necessary to the G(Fe 3 - ) value for irradiations at temperatures significantly different from 25 0 C. New data are presented which indicate that the larger temperature coefficients given in the literature are more accurate. The ferrous sulfate system has been of great importance in establishing the primary radiolytic yields for 0.4 M sulfuric acid solution; it is shown how the failure to take into account the effect of oxygen and ferrous sulfate concentrations has led to erroneously high estimates of the zero solute concentration values in acid solutions. Some of the methods for extending the dose ranges measurable with ferrous sulfate-based solutions are reviewed. Substances which on irradiation give highly fluorescent products are among the most sensitive aqueous chemical dosimeters. These include benzoate and terephthalate solutions and the more recent coumarin and trimesate solutions. Advantages and disadvantages system are discussed. (author)

  2. Training of nonlicensed personnel

    International Nuclear Information System (INIS)

    Hetrick, D.E.

    1975-01-01

    The safety and efficiency with which a station operates is a function of the competence and proficiency of all personnel. This includes the nonlicensed personnel who make up the bulk of the station staff. Thus the training of these members of the station complement is an important function in overall station performance. Standards, regulations, regulatory guides, and codes provide guidance to the training requirements for such personnel. Training needs and objectives must be established, a plan prepared and then all incorporated into a training program. A well planned and operated training program will stimulate effective communications between the different groups within the station and between the station and off site support groups

  3. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  4. Basic requirements for personnel monitoring. 1980 ed

    International Nuclear Information System (INIS)

    1980-01-01

    This Code of Practice sets forth the objectives of an adequate system of personnel monitoring for radiation workers. It covers individual dosimetry, including internal radiation monitoring, and area monitoring to the extent required for the assessment of individual radiation doses. The responsibilities of authorities for organizing monitoring of radiation workers are discussed, together with brief descriptions of monitoring methods and the rules governing their application. The general principles to be considered in selecting instrumentation and the appropriate monitoring techniques are described, as well as calibration techniques, methods of data handling and record keeping. Current concepts and recommendations of the International Commission on Radiological Protection, as presented in ICRP Publication No.26, have been incorporated. New developments in techniques and instruments have been reflected, and several sections such as calibration and record keeping have been elaborated. The bibliography has been updated and new annexes added.

  5. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  6. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Hoefert, M.; Nielsen, M.

    1996-01-01

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  7. NRPB patient dosimetry service

    International Nuclear Information System (INIS)

    Shrimpton, P.; Hillier, M.; Bungay, D.; Wall, B.

    1994-01-01

    For nearly 20 years, thermoluminescent dosemeters (TLDs) have been used by NRPB to investigate the doses received by patients undergoing diagnostic examinations with x-rays, and these measurements have formed the basis for national recommendations on patient protection. Monitoring typical levels of patient dose should represent an essential element of routine quality assurance in x-ray departments. In order to promote more widespread measurements in hospitals, NRPB has drawn on a wealth of experience to establish a high-quality service providing TLDs for medical dosimetry by post. (author)

  8. Dosimetry in Radiology

    International Nuclear Information System (INIS)

    Andisco, D.; Blanco, S.; Buzzi, A.E

    2014-01-01

    The steady growth in the use of ionizing radiation in diagnostic imaging requires to maintain a proper management of patient’s dose. Dosimetry in Radiology is a difficult topic to address, but vital for proper estimation of the dose the patient is receiving. The awareness that every day is perceived in our country on these issues is the appropriate response to this problem. This article describes the main dosimetric units used and easily exemplifies doses in radiology through internationally known reference values. (authors) [es

  9. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period

  10. Current status of personnel monitoring for β particles

    International Nuclear Information System (INIS)

    Plato, P.; Miklos, J.

    1984-01-01

    From 1975 to 1982, a concerted effort was made to develop a uniform procedure to test the performance of personnel dosimetry processors throughout the United States. The heart of this effort is a standard developed by the Health Physics Society Standards Committee (HPSSC) and adopted by the American National Standards Institute (ANSI) as ANSI N13.11-1982. The US Nuclear Regulatory Commission (NRC) sponsored a five year pilot study of this Standard which included three trial tests in which approximately 80 dosimetry processors participated. This paper addresses two major questions. First, what have the HPSSC/ANSI Standard and the NRC-sponsored pilot study contributed toward improvements in personnel monitoring for β particles. Second, what additional improvements are necessary. The Standard defines test categories for β particles and mixtures of β particles plus γ rays in addition to test categories for other types of radiation. It also defines a reference β-particle source for test purposes. Third, it provides test criteria which are used to determine acceptable performance by a processor. The pilot study provided information on the state of the art of personnel monitoring within the bounds of the Standard. In addition, since the pilot study was advertised as the forerunner of a future mandatory certification program for dosimetry processors throughout the United States, considerable attention was given to personnel monitoring in general, and β particles in particular, that otherwise would have been given to other squeaky wheels. The results of the three tests of the pilot study are summarized. The paper also amplifies on the needs to define the monitoring problems of the work place and to define appropriate β-particle sources clearly

  11. Nevada test site neutron dosimetry-problems/solutions

    International Nuclear Information System (INIS)

    Sygitowicz, L.S.; Bastian, C.T.; Wells, I.J.; Koch, P.N.

    1991-01-01

    Historically, neutron dosimetry at the NTS was done using NTA film and albedo LiF TLD's. In 1987 the dosimeter type was changed from the albedo TLD based system to a CR-39 track etch based system modeled after the program developed by D. Hankins at LLNL. Routine issue and return is performed quarterly for selected personnel using bar-code readers at permanent locations. The capability exists for work site issue as-needed. Issue data are transmitted by telephone to a central computer where it is stored until the dosimeter is returned, processed and read, and the dose calculation is performed. Dose equivalent calculations are performed using LOTUS 123 and the results are printed as a hard copy record. The issue and dose information are hand-entered into the Dosimetry database. An application is currently being developed to automate this sequence

  12. Specification ''I'' of the CEFRI concerning the interim job enterprises proposing personnel of A or B category to work in nuclear facilities

    CERN Document Server

    Int. At. Energy Agency Wien

    2002-01-01

    This document aims to specify the organization dispositions which have to bee taken by the interim job enterprises proposing personnel of A or B category to work in nuclear facilities. These dispositions should allow to respect the demands of the CEFRI in matter of formation, medical control and personnel dosimetry. (A.L.B.)

  13. Civilian Personnel: Career Management

    National Research Council Canada - National Science Library

    2001-01-01

    This revision; (1) Contains changes required by the establishment of a consolidated and realigned management structure for civilian personnel, manpower, and related functions in the Office of the Assistant Secretary of the Army...

  14. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  15. Internal Dosimetry. Chapter 18

    Energy Technology Data Exchange (ETDEWEB)

    Hindorf, C. [Department of Radiation Physics, Skåne University Hospital, Lund (Sweden)

    2014-12-15

    The Committee on Medical Internal Radiation Dose (MIRD) is a committee within the Society of Nuclear Medicine. The MIRD Committee was formed in 1965 with the mission to standardize internal dosimetry calculations, improve the published emission data for radionuclides and enhance the data on pharmacokinetics for radiopharmaceuticals [18.1]. A unified approach to internal dosimetry was published by the MIRD Committee in 1968, MIRD Pamphlet No. 1 [18.2], which was updated several times thereafter. Currently, the most well known version is the MIRD Primer from 1991 [18.3]. The latest publication on the formalism was published in 2009 in MIRD Pamphlet No. 21 [18.4], which provides a notation meant to bridge the differences in the formalism used by the MIRD Committee and the International Commission on Radiological Protection (ICRP) [18.5]. The formalism presented in MIRD Pamphlet No. 21 [18.4] will be used here, although some references to the quantities and parameters used in the MIRD primer [18.3] will be made. All symbols, quantities and units are presented.

  16. Dosimetry of industrial sources

    International Nuclear Information System (INIS)

    Vega C, H.R.; Rodriguez J, R.; Manzanares A, E.; Hernandez V, R.; Ramirez G, J.; Rivera M, T.

    2007-01-01

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of 137 Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  17. Clinical dosimetry using mosfets

    International Nuclear Information System (INIS)

    Ramani, Ramaseshan; Russell, Stephen; O'Brien, Peter

    1997-01-01

    Purpose: The use of metal oxide-silicon field effect transistors (MOSFETs) as clinical dosimeters is demonstrated for a number of patients with targets at different clinical sites. Methods and Materials: Commercially available MOSFETs were characterized for energy response, angular dependency of response, and effect of accumulated dose on sensitivity and some inherent properties of MOSFETs. The doses determined both by thermoluminescence dosimetry (TLD) and MOSFETs in clinical situation were evaluated and compared to expected doses determined by calculation. Results: It was observed that a standard calibration of 0.01 Gy/mV gave MOSFET determined doses which agreed with expected doses to within 5% at the 95% confidence limit for photon beams from 6 to 25 MV and electron beams from 5 to 14 MeV. An energy-dependent variation in response of up to 28% was observed between two orientations of a MOSFET. The MOSFET doses compared very well with the doses estimated by TLDs, and the patients tolerated MOSFETs very well. A standard deviation of 3.9% between expected dose and MOSFET determined dose was observed, while for TLDs the standard deviation was 5.1%. The advantages and disadvantages of using MOSFETs for clinical dosimetry are discussed in detail. Conclusion: It was concluded that MOSFETs can be used as clinical dosimeters and can be a good alternative to TLDs. However, they have limitations under certain clinical situations

  18. Experience from cooperation of medical surveillance personnel and hygiene services in North Moravian Region

    International Nuclear Information System (INIS)

    Hillova, J.

    1988-01-01

    Surveillance in health car institutions with sources of ionizing radiation is discussed. A special group of workers who sat for examinations and were trained in special courses was selected. A number of special publications are put out in the field of radiation protection. Surveillance personnel visit the individual workplaces and point out any shortcomings in the observance of radiation protection principles. Demonstration dosimetry is carried out in the vicinity of radiation sources. Attention is also devoted to radiation technology, and significant exposures of personnel are examined. Also mentioned are the problems of radiaton protection in the region and possible improvement of the work of surveillance personnel. (M.D.)

  19. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  20. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  1. Level of occupational irradiation to medical personnel in Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Gubatova, D.Ya.; Kostenko, I.V.; Nemiro, Ye.A.; Pustovit, I.A.; Semyonov, R.A.; Trautman, N.F. (Latvian Medical Academy, Riga (Latvia))

    1992-06-01

    An automated system for the recording and analysis of mass personal dosimetry data was developed. The results obtained with this system show that the average annual dose for X-ray laboratory assistants in Latvia gradually decreased before 1979 and that since then it has fluctuated without exceeding 5 mSv. The average annual dose for the republic's physicians has amounted to 4 mSv. The contribution of doses in excess of 15 mSv to the collective dose received by the republic's physicians has accounted for about 30 to 40%, which testifies to the fact that working conditons cannot be considered as being quite favourable; these conditions have to be further improved, and personal dosimetry of this category of personnel has to be conducted on a systematic basis. (orig.).

  2. Level of occupational irradiation to medical personnel in Latvia

    International Nuclear Information System (INIS)

    Gubatova, D.Ya.; Kostenko, I.V.; Nemiro, Ye.A.; Pustovit, I.A.; Semyonov, R.A.; Trautman, N.F.

    1992-01-01

    An automated system for the recording and analysis of mass personal dosimetry data was developed. The results obtained with this system show that the average annual dose for X-ray laboratory assistants in Latvia gradually decreased before 1979 and that since then it has fluctuated without exceeding 5 mSv. The average annual dose for the republic's physicians has amounted to 4 mSv. The contribution of doses in excess of 15 mSv to the collective dose received by the republic's physicians has accounted for about 30 to 40%, which testifies to the fact that working conditons cannot be considered as being quite favourable; these conditions have to be further improved, and personal dosimetry of this category of personnel has to be conducted on a systematic basis. (orig.) [de

  3. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  4. Dosimetry Measurements around the Angiography Units Using Thermoluminescence Detectors (TLD)

    International Nuclear Information System (INIS)

    Salah El-den, T.; Shahein, A.Y.; Gomaa, M.A.

    2008-01-01

    The thermoluminescent dosimeters (TLDs) are widely used not only in the field of personnel monitoring (dosimetry) service for ionizing radiation to medical, and research communities, but also for measurements of X-rays emitted from different angiography's unit. Measurements ionizing radiation around the bed area during cardiac catheterization procedures using X-rays was measured. TLD Badges used to determine the annual effective doses, the safe distance for the staff to minimize radiation exposure and the effectiveness of shield and used leaded apron. The results indicated that annual effective dose for by angiography cardiac Catheterization room may exceed the limits

  5. Organization of the internal dosimetry in the Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Manchena, P.; Soliet, E.

    1998-01-01

    From the beginning of the exploitation of the nuclear energy of Espanna, the nuclear facilities have had Services of Personal Dosimetry with the appropriate means to determine the dose. so much internal as external, of the personnel that mentioned facilities works. All the nuclear power stations use advanced systems of teams with object of detecting the radionuclides incorporation in the organism and calculation programs based on the recent recommendations of the International Commission of Radiological Protection (ICRP) for the determination of the derived doses

  6. The application of an automated thermoluminescence dosimetry system to environmental γ-dosimetry

    International Nuclear Information System (INIS)

    Jones, A.R.

    1977-07-01

    A personnel monitoring system comprising thermoluminescent dosimeters (TLDs) and an automatic TLD reader has been applied to environmental gamma dosimetry. For this purpose the accuracy of measurement at low exposures (10 to 100 mR) acquired over long periods (3 or 12 months) is important. To improve the accuracy and reliability of the system for this application the following steps were taken: the dosimeters were sensitized by irradiation with γ-rays and annealed while being irradiated with UV light; the sensitivity of each, identified dosimeter was measured and used to correct exposure measurements; the gasketted holders were modified to contain TLDs mounted on two identified plaques. Measurements of linearity, variability (with and without individual calibration) fading and energy dependence are presented. (author)

  7. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  8. Results of the dosimetry intercomparison

    International Nuclear Information System (INIS)

    Dure, Elsa S.

    2000-07-01

    The appropriate way to verify the accuracy of the results of dose reported by the laboratories that offer lend personal dosimetry service is in the periodic participation of round of intercomparison dosimetry, undertaken by laboratories whose standards are trace (Secondary Laboratory). The Laboratory of External Personal Dosimetry of the CNEA-PY has participated in three rounds of intercomparison. The first two were organized in the framework of the Model Project RLA/9/030 RADIOLOGICAL WASTE SECURITY, and the irradiations were carried out in the Laboratory of Regional Calibration of the Center of Nuclear Technology Development, Belo Horizonte-Brazil (1998) and in the National Laboratory of Metrology of the ionizing radiations of the Institute of Radioprotection and Dosimetry, Rio de Janeiro-Brazil (1999). The third was organized by the IAEA and the irradiations were made in the Physikalisch-Technische Bundesanstalt PTB, Braunschweig - Federal Republic of Germany (1999-2000) [es

  9. Fast neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    Blaize, S.; Ailloud, J.; Mariani, J.; Millot, J.P.

    1958-01-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author) [fr

  10. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  11. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    1990-01-01

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  12. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Kumar, A.; Reddy, A.R.

    1994-01-01

    The last few years have seen a significant increase in the use of ionising radiation in industrial processes and also international trade in irradiated products. With this, the demand for internationally accepted dosimetric techniques, accredited to international standards has also increased which is further stimulated by the emergence of ISO-9000 series of standards in industries. The present paper describes some of the important dosimetric techniques used in radiation processing, the role of IAEA in evolving internationally accepted standards and work carried out at the Defence Laboratories, Jodhpur in the development of a cheap, broad dose range and simple dosimeter for routine dosimetry. For this polyhydroxy alcohols viz., mannitol, sorbitol and inositol were studied using the spectrophotometric read out method. Out of the alcohols studied mannitol was found to be most promising covering a dose range of 0.01 kGy - 100 kGy. (author). 26 refs., 3 figs., 1 tab

  13. Dosimetry of fast neutrons

    International Nuclear Information System (INIS)

    Jahr, R.

    1975-03-01

    Following an explanation of the physical fundamentals of neutron dosimetry, the special needs in medicine and biology are gone into. It is shown that the dose equivalent used in radiation protection simplifies in an undue manner the complicated dependence of the biological effects. The reason for this is the fact that the RBE for heavy recoil nuclei, amongst others, depends on the energy and sort of particle, whereas it is approximately equal to one for electrons independent of the energy. It is thus necessary in the fields of biology and medicine to have additional information on energy spectra of the neutrons as well as of all charged secondary particles as a function of the position in the phantom. These are obtained partly by calculation and partly by special dosemeters. The accuracy achieved so far is 5%. (ORU/LH) [de

  14. Dosimetry of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez C, G; Restrepo, J; Aguirre, C A [Hospital Universitario del Valle, Cali (Colombia)

    1996-08-01

    The systemic therapy of breast cancer has also changed profoundly during the last 60 years, and in this time the integration of treatment modalities involve a major area of investigation. The dosimetry of breast cancer presents different complications which can range from the Physician`s handling of the neoplasia up to the simple aspects of physical simulation, contour design, radiation fields, irregular surfaces and computer programs containing mathematical equations which differ little or largely with the reality of the radiation distribution into the volume to be irradiated. We have studied the problem using two types of measurements to determine how the radiation distribution is in irregular surfaces, and designing an easier skill to be used with each patient, in order to optimize the treatment with respect to the simulation and verification process. (author). 7 refs.

  15. Radioiodotherapy: dosimetry planning

    International Nuclear Information System (INIS)

    Apyan, A.; Mileshin, O.; Klyopov, A.; Shishkanov, N.; Matusevich, E.; Roziev, A.

    2001-01-01

    The results of treatment of 142 case histories of 125 patients who had been treated with radioactive iodine at the Medical Radiological Research Center of Russian Academy of Medicine Sciences from 1983 to 1999 are given in the presentation. Among the patients, 35 cases of diffuse toxic goiter with signs of thyrotoxicosis of a mild degree, 25 cases of Diffuse toxic goiter with severe thyrotoxicosis, 6 cases of differentiated thyroid cancer with metastases to lymph-nodes of the neck, 30 cases of thyroid cancer with metastases to lymph-nodes of the neck and lung and 1 case of thyroid cancer with metastases to bones were diagnosed. This paper gives recommendations for individual dosimetry planning for radioiodine-therapy. (authors)

  16. Advances in electron dosimetry

    International Nuclear Information System (INIS)

    Harder, D.

    1980-04-01

    Starting from the two most important interactions of electrons with matter, energy loss and scattering, a review is given of a number of effects which are important in electron dosimetry. For determining the absorbed dose in a phantom by means of ionization chambers, imformation is required on the electron spectrum at the location of the measurement, on the stopping powers of different materials and on disturbances such as the displacement of the effective point of measurements from the centre of the chamber. By means of figures and photographs of electron traces in bubble chambers, the origin of the formation of the absorbed dose maximum in a phantom is explained. It is shown, how by multiple scattering, the similarity of dose distributions in different media can be explained and how by Monte-Carlo calculations absorbed dose distributions in the surroundings of inhomogeneities (e.g. cavities) in a phantom can be determined. (orig.) [de

  17. Dosimetry of internal emitting: principles and perspectives of the MIRD technology

    International Nuclear Information System (INIS)

    Ferro F, G.

    1999-01-01

    The development of the radiopharmaceutical technology have multiplied the number of radioisotopes with applications in therapeutical nuclear medicine so known as Directed radiotherapy. Assuming the radiation is capable to produce noxious effects in the biological systems, it is important to evaluate appropriately the risks and benefits of the administration of radioactive agents in the patient. The outstanding parameter in this evaluation is the absorbed dose, which is product of the radiation emitted by a radionuclide that is localized or distributed to the interior of the human body in study and whose its estimation helps to predict the efficacy of the treatment. The scheme generalized of MIRD, it was formulated from thirty years ago for evaluating the interior dosimetry at level of organs.The finality of this work is to show the basic principles of the MIRD methodology and its perspectives using innovator tools as the dosimetry for dynamic masses, in particular the personnel dosimetry for the organs of each patient, the dosimetry for the small structures inside the organs (sub organic dosimetry), the distributions of doses in three dimensions (S voxel), the dosimetry at cellular level and the quantitative acquisition of pharmaceutical data. (Author)

  18. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  19. The Vinca dosimetry experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-03-15

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States.

  20. The Vinca dosimetry experiment

    International Nuclear Information System (INIS)

    1962-03-01

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  1. Dosimetry in radionuclide therapy

    International Nuclear Information System (INIS)

    Riccabona, G.

    2001-01-01

    While it is known that therapeutic effects of radionuclides are due to absorbed radiation dose and to radiosensitivity, individual dosimetry in 'Gy' is practiced rarely in clinical Nuclear Medicine but 'doses' are described in 'mCi' or 'MBq', which is only indirectly related to 'Gy' in the target. To estimate 'Gy', the volume of the target, maximum concentration of the radiopharmaceutical in it and residence time should be assessed individually. These parameters can be obtained usually only with difficulty, involving possibly also quantitative SPET or PET, modern imaging techniques (sonography, CT, MRT), substitution of y- or positron emitting radiotracers for β - emitting radiopharmaceuticals as well as whole-body distribution studies. Residence time can be estimated by obtaining data on biological half-life of a comparable tracer and transfer of these data in the physical characteristics of the therapeutic agent. With all these possibilities for gross dosimetry the establishment of a dose-response-relation should be possible. As distribution of the radiopharmaceutical in lesions is frequently inhomogenous and microdosimetric conditions are difficult to assess in vivo as yet, it could be observed since decades that empirically set, sometimes 'fixed' doses (mCi or MBq) can also be successful in many diseases. Detailed dosimetric studies, however, are work- and cost-intensive. Nevertheless, one should be aware at a time when more sophisticated therapeutic possibilities in Nuclear Medicine arise, that we should try to estimate radiation dose (Gy) in our new methods even as differences in individual radiosensitivity cannot be assessed yet and studies to define individual radiosensitivity in lesions should be encouraged. (author)

  2. Dosimetry in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Campos, Laelia Pumilla Botelho

    2000-03-01

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing 32 P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  3. Fifth international radiopharmaceutical dosimetry symposium

    International Nuclear Information System (INIS)

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  4. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  5. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  6. Training of maintenance personnel

    International Nuclear Information System (INIS)

    Rabouhams, J.

    1986-01-01

    This lecture precises the method and means developed by EDF to ensure the training of maintenance personnel according to their initial educational background and their experience. The following points are treated: General organization of the training for maintenance personnel in PWR and GCR nuclear power stations and in Creys Malville fast breeder reactor; Basic nuclear training and pedagogical aids developed for this purpose; Specific training and training provided by contractors; complementary training taking into account the operation experience and feedback; Improvement of velocity, competence and safety during shut-down operations by adapted training. (orig.)

  7. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  8. The Bristol University neutron dosimetry system

    International Nuclear Information System (INIS)

    Worley, A.; Fews, A.P.; Henshaw, D.L.

    1987-01-01

    The neutron dosimetry system developed at Bristol is based on recording recoil proton tracks in conventionally etched PADC plastic using a fully automated image analysis system. Two features contribute to the achievement of a low dose threshold: high quality plastic is manufactured and undergoes extensive quality control tests prior to acceptance for use in dosimetry, and a readout system with high efficiency for rejecting background events is used. The principal dosemeter that has been developed consists of three orthogonal elements, each containing two 3 cm x 1 cm plastics on either side of a polyethylene radiator. On each plastic an area of 0.15 cm 2 is scanned giving a total active area of 0.90 cm 2 . Each plastic is coded for manual identification and for computer recognition. The track counts from the six plastics are added with different weightings to achieve a measure of dose which is independent of irradiation direction when worn on the body. The device has been calibrated using monoenergetic neutrons in the range 100 keV to 14.7 MeV at NPL, and using the recent CENDOS exposure. If the track counts are added without weighting, the device has a nominal response of 120 tracks cm -2 .mSv -1 and an energy threshold at 200 keV. Taken together with a background of 20 track cm -2 , a dose threshold of around 80μSv is implied. A simpler dosemeter, using a single plastic/radiator combination, may also be considered. If a 1 cm 2 device is used for normal incidence exposure, the dose threshold is calculated to be 25 μSv. (author)

  9. Video equipment of tele dosimetry and audio

    International Nuclear Information System (INIS)

    Ojeda R, M.A.; Padilla C, I.

    2007-01-01

    To develop a work in an area with high radiation, it requires of a detailed knowledge of the surroundings work, a communication and effective vision, a near dosimetric control. In a work where the spaces variables and reduced accesses exist, noise that hinders the communication, defendant operative condition, radiation field and taking of decision, it is necessary to have tools that allow a total control of the environment to make opportune and effective decisions, there where the task is developed. Under this elementary concept, it was developed in the Laguna Verde Central a project that it allowed a mechanism, interactive of control in spaces complex; to see, to hear, to speak, to measure. This concept takes to the creation of an equipped system with closed circuit of television, wireless communication systems, tele dosimetry wireless systems, VHS and DVD recording equipment, uninterrupted energy units. The system requires of an electric power socket, and the installation of two cables by CCTV camera. The system is mobilized by a person. He puts on in operation in 5 minutes using a verification list. The concept was developed in the project denominated VETA-1, (Video Equipment of Tele dosimetry and Audio). It is objective of this work to present before the society the development of the VETA-1 tool that conclude in their first prototype in May of the present year. The VETA-1 project arises by a necessity of optimizing dose, it is an ALARA tool, with a countless applications, like it was proven in the 12 recharge stop of the Unit 1. The VETA-1 project integrate a recording system, with the primary end of analyzing in the place where the task is developed the details for an effective and opportune decision, but the resulting information is of utility for the personnel's training and the planning of future works. The VETA-1 system is an ALARA tool of quick response control. (Author)

  10. LANSCE personnel access control system (PACS)

    International Nuclear Information System (INIS)

    Sturrock, J.C.; Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. The Personnel Access Control System (PACS) is a component of the RSS that is designed to prevent personnel access to areas where prompt radiation is a hazard. PACS was designed to replace several older personnel safety systems (PSS) with a single modem unified design. Lessons learned from the operation over the last 20 years were incorporated into a redundant sensor, single-point failure safe, fault tolerant, and tamper-resistant system that prevents access to the beam areas by controlling the access keys and beam stoppers. PACS uses a layered philosophy to the physical and electronic design. The most critical assemblies are battery backed up, relay logic circuits; less critical devices use Programmable Logic Controllers (PLCs) for timing functions and communications. Outside reviewers have reviewed the operational safety of the design. The design philosophy, lessons learned, hardware design, software design, operation, and limitations of the device are described

  11. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe 2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  12. Harmonious personnel scheduling

    NARCIS (Netherlands)

    Fijn van Draat, Laurens; Post, Gerhard F.; Veltman, Bart; Winkelhuijzen, Wessel

    2006-01-01

    The area of personnel scheduling is very broad. Here we focus on the ‘shift assignment problem’. Our aim is to discuss how ORTEC HARMONY handles this planning problem. In particular we go into the structure of the optimization engine in ORTEC HARMONY, which uses techniques from genetic algorithms,

  13. Nuclear Test Personnel Review

    Science.gov (United States)

    FOIA Electronic Reading Room Privacy Impact Assessment DTRA No Fear Act Reporting Nuclear Test Personnel Review NTPR Fact Sheets NTPR Radiation Dose Assessment Documents US Atmospheric Nuclear Test History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak

  14. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  15. Clinical application of in vivo dosimetry for external telecobalt machine

    International Nuclear Information System (INIS)

    Mohammed, H. H. M.

    2011-01-01

    In external beam radiotherapy quality assurance is carried out on the individual components of treatment chain. The patient simulating device, planning system and treatment machine are tested regularly according to set protocols developed by national and international organizations. Even thought these individual systems are not tested for errors which can be made in the transfer between the systems. The best quality assurance for the treatment planning chain. In vivo dosimetry is used as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. It is a proven reliable method of checking overall treatment accuracy, allowing verification of dosimetry and dose calculation as well as patient treatment setup. Accurate in vivo dosimetry is carried out if diodes and thermoluminescence dosimeters (TLDs). the main detector types in use for in vivo dosimetry, are carefully calibrated and the factors influencing their sensitivity are taken into account. The aim of this study was to verify the response of TLDs type (LiF: Mg, Cu, p) use in radiotherapy, to establish calibration procedure for TLDs and to evaluate entrance dose obtained by the treatment planning system with measured dose using thermoluminescence detectors. Calibration of TLDs was done using Cobalt-60 teletherapy machine, linearity and calibration factors were determined. Measurements were performed in random phantom for breast irradiation (for the breast irradiation ( For the breast irradiation technique considered, wedge field was used). All TLDs were processed and analyzed at RICK. In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Thermoluminescent dosimeters are considered the gold stander for in vivo dosimetry and do not require cables for measurements which makes them ideal for mail based studies and have no dose rate or temperature dependence

  16. Proceedings of the second conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base

  17. Proceedings of the second conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R. E.; Sims, C. S. [eds.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  18. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia; Dosimetria personal TLD 110 en medicos ortopedistas expuestos a radiacion ionizante en Bogota - Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Sierra C, B. Y.; Jimenez, Y. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Fisica Medica, Carrera 45 No. 26-85, Bogota (Colombia); Plazas, M. C. [Hospital Universitario Fundacion Santa Fe de Bogota, Instituto de Oncologia Carlos Ardila Lulle, Calle 119, No. 7-90, 220246 Bogota (Colombia); Eslava S, J. [Universidad Nacional de Colombia, Instituto de Investigaciones Clinicas, Grupo Equidad en Salud, Carrera 45 No. 26-85, Bogota (Colombia); Groot R, H., E-mail: brigith.sierra@gmail.com [Universidad de los Andes, Laboratorio de Genetica Humana, Carrera 1 No. 18A -12, Bogota (Colombia)

    2014-08-15

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  19. Electronic portal imaging devices

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  20. Optically stimulated luminescence in electronic components for emergency dosimetry

    International Nuclear Information System (INIS)

    Geber-Bergstrand, T.; Bernhardsson, C.; Mattsson, S.; Raeaef, C.L.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Accidents and, luckily more rarely, attacks involving nuclear or radiological material do occur from time to time. A very possible consequence of an accident or attack of this kind is that nearby people might be exposed to ionising radiation. Since these types of exposure situations, unlike the ones occurring in medicine, are unplanned, there are no radiation-monitoring data available. For several reasons, it is nevertheless of value to find out the dose that these people have received. The first and most urgent reason is after-the-event triage, to be able to carry out proper medical treatments and also to focus the available medical assets to the persons needing it the most. This is where different retrospective dosimetry techniques, such as luminescence, can be employed. Various electronic components from mobile phones and other portable devices have been studied using optically stimulated luminescence for their potential use in retrospective dosimetry. Previous investigations have been performed in laboratory conditions and have showed very promising properties for emergency dosimetry. In this study, the more practical parts of using electronic components in retrospective dosimetry have been considered. In a triage situation, one of the key parameters to consider is time; thus, effort has been made to speed up the readout procedure, yet without the loss of too much accuracy. (authors)

  1. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  2. Fifteenth nuclear accident dosimetry intercomparison study: August 14--22, 1978

    International Nuclear Information System (INIS)

    Sims, C.S.

    1979-05-01

    The fifteenth in the continuing series of Nuclear Accident Dosimetry Intercomparison Studies was held August 14--22, 1978 at the Oak Ridge National Laboratory. The Health Physics Research Reactor, operated in the pulse mode, served as the radiation source. Using different shielding configurations, nuclear accidents with three different neutron and gamma spectra were simulated. Participants from 19 organizations, the most in the history of the studies, exposed dosimeters set up as area monitors as well as dosimeters mounted on phantoms for personnel monitoring. Although many participants performed accurate measurements, the composite dose results, in the majority of cases, failed to meet established nuclear criticality accident dosimetry guidelines which suggest accuracies of +- 25% for neutron dose and +- 20% for gamma dose. This indicates that many participants need to improve their dosimetry systems, their analytical techniques, or both

  3. Thermally stimulated current in PTFE and its application in radiation dosimetry

    International Nuclear Information System (INIS)

    Ozdemir, S.

    1985-01-01

    Thermally Stimulated Current (TSC) measurement was made on PTFE (Polytetrafluoro ethylene) in an attempt to develop an integrating radiation dosimeter material and the system. TSC spectra, dose response, energy response, fading and background charge stability characteristics were used as a measure of suitability of various untreated and heat treated PTFE samples for dosimetry applications. For practical TSC dosimetry system, it was discovered that the PTFE samples should be subjected to a specific heat treatment in order to produce samples with better dosimeter characteristics. A treatment at a temperature of 240 C produces a high dose response and low fading characteristics. It was found that the spurious charges due to storage and low sensitivity to irradiation caused the limitation in the measurement of low doses with PTFE samples for personnel protection. However, a TSC Dosimetry system using PTFE is proposed which is suitable for radiation doses in the radiotherapy range from *approx* 50 to *approx* 800 mGy. (author)

  4. Harmonization of internal dosimetry procedures in Latin America - ARCAL/IAEA project

    Energy Technology Data Exchange (ETDEWEB)

    Melo, D.; Dantas, B.M.; Juliao, L. [Instituto de Radioprotecao e Dosimetria - Av. Salvador Allende S/N, Recreio dos Bandeirantes, RJ 22780-160 (Brazil); Cruz Suarez, R. [International Atomic Energy Agency, Vienna (Austria); Rojo, A.; Serdero, N. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Videla, R. [Comision Chilena de Energia Nuclear, Santiago (Chile); Puerta, J.A. [Universidad Nacional de Colombia, Medellin (Colombia); Lopez, G. [Centro de Proteccion e Higiene de las Radiaciones, Ciudad de la Habana (Cuba); Alfaro, M.M. [Instituto nacional de Investigaciones Nucleares (Mexico); Gonzales, S. [Instituto Peruano de Energia Nuclear, Lima (Peru); Hermida, J.C. [Hospital de Clinicas, Montevideo (Uruguay); Navarro, T. [Centro de Investigaciones Energeticas, Mediciones Ambientales y Tecnologicas - CIEMAT, Madrid (Spain)

    2007-07-01

    Under the auspices of the Regional Coordination Agreement for Latin America, representatives of the eight member states have participated in a project to improve radiological protection for workers exposed to unsealed sources of radiation. The design of the project was based on information obtained from a questionnaire circulated among the participants, from which the initial status of internal dosimetry services in each country was characterised. The objective of the project is to harmonize internal dosimetry procedures, with reference to International Atomic Energy Agency recommendations. After the implementation of new procedures and personnel training, four intercomparison exercises were carried out: measurement of iodine in thyroid phantoms, measurement of gamma emitters in urine samples, measurement of beta emitters in urine samples and internal dose assessments. This project has resulted in important improvements in internal dosimetry services in the region. (authors)

  5. Integrating the DLD dosimetry system into the Almaraz NPP Corporative Database

    International Nuclear Information System (INIS)

    Gonzalez Crego, E.; Martin Lopez-Suevos, C.

    1996-01-01

    The article discusses the experience acquired during the integration of a new MGP Instruments DLD Dosimetry System into the Almaraz NPP corporative database and general communications network, following a client-server philosophy and taking into account the computer standards of the Plant. The most important results obtained are: Integration of DLD dosimetry information into corporative databases, permitting the use of new applications Sharing of existing personnel information with the DLD dosimetry application, thereby avoiding the redundant work of introducing data and improving the quality of the information. Facilitation of maintenance, both software and hardware, of the DLD system. Maximum explotation, from the computer point of view, of the initial investment. Adaptation of the application to the applicable legislation. (Author)

  6. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    Energy Technology Data Exchange (ETDEWEB)

    Daci, Lulzime, E-mail: lulzime.daci@nodlandssykehuset.no [Nordland Hospital Trust, Bodø (Norway); Malkaj, Partizan, E-mail: malkaj-p@hotmail.com [Faculty of Mathematics Engineering and Physics Engineering, Polytechnic University of Tirana (Albania)

    2016-03-25

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  7. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    International Nuclear Information System (INIS)

    Daci, Lulzime; Malkaj, Partizan

    2016-01-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  8. Characterising an aluminium oxide dosimetry system.

    Science.gov (United States)

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  9. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1991-01-01

    During 1988--1990 the magnetic resonance dosimetry project was completed, as were the 250 MeV proton shielding measurements. The first cellular experiment using human cells in vitro at the 1 GeV electron storage ring was also accomplished. More detail may be found in DOE Report number-sign DOE/EV/60417-002 and the open literature cited in the individual progress subsections. We report Kinetic Energy Released in Matter (KERMA), factor measurements in several elements of critical importance to neutron radiation therapy and radiation protection for space habitation and exploration for neutron energies below 30 MeV. The results of this effort provide the only direct measurements of the oxygen and magnesium kerma factors above 20 MeV neutron energy, and the only measurements of the iron kerma factor above 15 MeV. They provide data of immediate relevance to neutron radiotherapy and impose strict criteria for normalizing and testing nuclear models used to calculate kerma factors at higher neutron energies

  10. Dosimetry in radioisotope placentography

    International Nuclear Information System (INIS)

    Sastry, K.G.K.; Reddy, A.R.; Nagaratnam, A.

    1976-01-01

    Radionuclide investigation of the placenta is being widely used in recent years for the diagnosis and management of vaginal bleeding in the third trimester of pregnancy. One is, therefore, concerned about the radiation exposure to the foetus during such procedures. In the present communication a precise method of estimation of radiation doses is presented. A concept termed 'effective absorbed dose constant' is utilized to enable the absorbed fractions and equilibrium absorbed dose constants to be more easily employed in radiation dose estimations. Tables of the effective absorbed dose constants for radionuclides like 131 I, 123 I, sup(113m)Tc, sup(99m)Tc, 67 Ga, and 51 Cr, are given for different masses and shapes. Masses of different organs of both mother and foetus at different periods of pregnancy and the biological turnover data for different radiopharmaceuticals are reviewed and typical values are presented. Radiation doses to different organs of both mother and foetus at the 30th week of pregnancy are finally estimated for 131 I-HSA, 123 I-SHA, sup(99m)Tc-HSA and sup(113m)In-chloride. The advantage of the effective absorbed dose constants in radiation dosimetry in general is discussed. The relative merits of different radiopharmaceuticals for placental investigations are brought out in comparison with antenatal pelvimetric and abdominal X-ray investigations, from the point of view of radiation doses. (author)

  11. Radiation-induced damage analysed by luminescence methods in retrospective dosimetry and emergency response.

    Science.gov (United States)

    Woda, Clemens; Bassinet, Céline; Trompier, François; Bortolin, Emanuela; Della Monaca, Sara; Fattibene, Paola

    2009-01-01

    The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.

  12. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Rosenfeld, A. B.; Cutajar, D.; Lerch, M. L. F.; Takacs, G.; Cornelius, I. M.; Yudelev, M.; Zaider, M.

    2006-01-01

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  13. Fundamentals of x-ray dosimetry

    International Nuclear Information System (INIS)

    Roesch, W.C.

    1976-01-01

    Fundamental information about x-ray dosimetry is presented. Definitions are given and expanded on for dose, absorbed dose including microdosimetry, radiation physics (properties of the radiation that are important to dosimetry), and dosimetry (how the properties are dealt with in determining dose). 5 figs, 12 refs

  14. Modernization of personnel training

    International Nuclear Information System (INIS)

    Haferburg, M.; Rehn, H.

    1997-01-01

    Personnel training in German nuclear power plants adheres to high standards complying with government regulations. The development of PC technology allows the introduction of new training methods, e.g. computer based training (CBT), as well as their integration into existing systems. In Germany, the operators of nuclear power plants have developed their own computer based standards with a screen design, a hardware platform and an assessment standard. 25% of the theoretical training of the shift personnel is covered by CBT. The CBT-Programmes offer multimedia features: videos, photographs, sound, graphs and switching diagrams of existing systems, practice oriented simulations and 3-D animations. Interaction is the most important attribute of an efficient self-learning-programme. A typical example of such an appropriate theme is the CBT-Lesson ''Pressure Surges in Pipes and Components of Power Plants''. (author)

  15. Passive Dosimetry Of Nuclear Medicine Service Staff, Ibn Sina Hospital

    International Nuclear Information System (INIS)

    Sebihi, R.; Talsmat, K.; Cherkaoui, R.; Ben Rais, N.

    2010-01-01

    Full text: Since the implementation of Law No. 00571 of 21 Chaabane 1391 on protection against ionizing radiation and its decrees 2: 2-97-30 and 2-97-132 28 October 1997, surveillance of workers has the subject of major regulatory developments in Morocco, including individual registration delayed for dosimetry. As part of optimizing the protection of medical personnel, a dosimetric study was performed for the first time at the national level, the Nuclear Medicine Service of the Ibn Sina hospital in collaboration with the National Center for Energy Sciences and Nuclear Techniques (CNESTEN). Dosimetric monitoring was conducted for 2 weeks with the use of passive thermoluminescent dosimeters, (GR200A), covering all categories of staff. The administration of samarium (β emitter with energy substantially higher than the energies encountered in conventional nuclear medicine) has been studied, given his first service. Other cases of people concerned our study: a pregnant woman doctor, whose exposure of the unborn child must be reduced as much as possible, and a woman from a private company, working without dosimeter, handles maintenance of premises. To control the conditions imposed on all activities requiring exposure to ionizing radiation, we evaluated the dose at the extremities of operators with the use of ring dosimeters (GR200A) and the dose on the ambient environment of staff (dosimeters ALNOR). This experiment has shown exposure levels below legal limits, without been negligible for certain post. The evaluation results equivalent doses manipulators justify the wearing of dosimeter rings as a complementary dosimeter in Nuclear Medicine service and a way of controlling the normal working conditions. Finally Monitoring ambient dosimetry showed that the environment is low radiation doses. Lessons learned from this study, for the protection of personnel are as follows: from the simple awareness of staff and means of optimizing radiation can maintain a dosimetry annual

  16. Do Military Personnel Patent

    Science.gov (United States)

    2016-12-01

    following questions: In what fields are military personnel most likely to patent, and how do demographics, such as age, race, and gender , along with...technologies, which have transformed how the United States wages war. DARPA continues to develop new technologies and capabilities for the U.S. military today...build the European navies so it instead decided to utilize an innovative ship design to exploit a gap specific to the British Royal Navy. The six

  17. Employment of security personnel

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    If a company or institution hires personnel of a security service company to protect its premises, this kind of employment does not mean the company carries on temporary employment business. Within the purview of section 99, sub-section 1 of the BetrVG (Works Constitution Act), the security service personnel is not 'employed' in the proper sense even if the security tasks fulfilled by them are done at other times by regular employees of the company or institution. The court decision also decided that the Works Council need not give consent to employment of foreign security personnel. The court decision was taken for settlement of court proceedings commenced by Institute of Plasma Physics in Garching. In his comments, W. Hunold accedes to the court's decision and discusses the underlying reasons of this decision and of a previous ruling in the same matter by putting emphasis on the difference between a contract for services and a contract for work, and a contract for temporary employment. The author also discusses the basic features of an employment contract. (orig./HP) [de

  18. Automatic personnel contamination monitor

    International Nuclear Information System (INIS)

    Lattin, Kenneth R.

    1978-01-01

    United Nuclear Industries, Inc. (UNI) has developed an automatic personnel contamination monitor (APCM), which uniquely combines the design features of both portal and hand and shoe monitors. In addition, this prototype system also has a number of new features, including: micro computer control and readout, nineteen large area gas flow detectors, real-time background compensation, self-checking for system failures, and card reader identification and control. UNI's experience in operating the Hanford N Reactor, located in Richland, Washington, has shown the necessity of automatically monitoring plant personnel for contamination after they have passed through the procedurally controlled radiation zones. This final check ensures that each radiation zone worker has been properly checked before leaving company controlled boundaries. Investigation of the commercially available portal and hand and shoe monitors indicated that they did not have the sensitivity or sophistication required for UNI's application, therefore, a development program was initiated, resulting in the subject monitor. Field testing shows good sensitivity to personnel contamination with the majority of alarms showing contaminants on clothing, face and head areas. In general, the APCM has sensitivity comparable to portal survey instrumentation. The inherit stand-in, walk-on feature of the APCM not only makes it easy to use, but makes it difficult to bypass. (author)

  19. Electronic Official Personnel Folder System

    Data.gov (United States)

    US Agency for International Development — The eOPF is a digital recreation of paper personnel folder that stores electronic personnel data spanning an individual's Federal career. eOPF allows employees to...

  20. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: In June: Every morning from 8:30 to 12:00 In July: Mondays, Wednesdays and Fridays from 8:30 to 11:30 Closed all day on Tuesdays and Thursdays From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  1. Fundamentals of Dosimetry. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, E. M. [Universidade de São Paulo, São Paulo (Brazil)

    2014-09-15

    Determination of the energy imparted to matter by radiation is the subject of dosimetry. The energy deposited as radiation interacts with atoms of the material, as seen in the previous chapter. The imparted energy is responsible for the effects that radiation causes in matter, for instance, a rise in temperature, or chemical or physical changes in the material properties. Several of the changes produced in matter by radiation are proportional to the absorbed dose, giving rise to the possibility of using the material as the sensitive part of a dosimeter. Also, the biological effects of radiation depend on the absorbed dose. A set of quantities related to the radiation field is also defined within the scope of dosimetry. It will be shown in this chapter that, under special conditions, there are simple relations between dosimetric and field description quantities. Thus, the framework of dosimetry is the set of physical and operational quantities that are studied in this chapter.

  2. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Western General Hospital, Edinburgh

    1996-01-01

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  3. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  4. 'Hot particle' intercomparison dosimetry

    International Nuclear Information System (INIS)

    Kaurin, D.G.L.; Baum, J.W.; Charles, M.W.; Darley, D.P.J.; Durham, J.S.; Scannell, M.J.; Soares, C.G.

    1996-01-01

    Dosimetry measurements of four 'hot particles' were made at different density thickness values using five different methods. The hot particles had maximum dimensions of 650 μm and maximum beta energies of 0.97, 046, 0.36, and 0.32 MeV. Absorbers were used to obtain the dose at different depths for each dosimeter. Measurements were made using exoelectron dosimeters, an extrapolation chamber, NE Extremity Tape Dosimeters (tm), Eberline RO-2 and RO-2A survey meters, and two sets of GafChromic (tm) dye film with each set read out at a different institution. From these results the dose was calculated averaged over 1 cm 2 of tissue at 18, 70, 125, and 400 μm depth. Comparisons of tissue-dose averaged over 1 cm 2 for 18, 70, and 125 μm depth based on interpolated measured values, were within 30% for the GafChromic (tm) dye film, extrapolation chamber, NE Extremity Tape Dosimeters (tm), and Eberline RO-2 and 2A (tm) survey meters except for the hot particle with 0.46 MeV maximum beta energy. The results for this source showed differences of up to 60%. The extrapolation chamber and NE Extremity Tape dosimeters under-responded for measurements at 400 μm by about a factor of 2 compared with the GafChromic dye films for two hot particles with maximum beta energy of 0.32 and 0.36 MeV which each emitted two 100% 1 MeV photons per disintegration. Tissue doses determined using exoelectron dosimeters were a factor of 2 to 5 less than those determined using other dosimeters, possibly due to failures of the equipment. (author)

  5. Qualification of NPP operations personnel

    International Nuclear Information System (INIS)

    Wang Jiao.

    1987-01-01

    Competence of personnel is one of the important problems for safety operation of nuclear power plant. This paper gives a description of some aspects, such as the administration of NPP, posts, competence of personnel, training, assessing the competence and personnel management

  6. External dosimetry sources and shielding

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    A definition of external dosimetry r external sources dosimetry,physical and mathematical treatment of the interaction of gamma radiation with a minimal area in that direction. Concept of attenuation coefficient, cumulated effect by polyenergetic sources, exposition rate, units, cumulated dose,shielding, foton shielding, depth calculation, materials used for shielding.Beta shielding, consideration of range and maximum β energy , low stopping radiation by use of low Z shielding. Tables for β energy of β emitters, I (tau) factor, energy-range curves for β emitters in aqueous media, gamma attenuation factors for U, W and Pb. Y factor for bone tissue,muscle and air, build-up factors

  7. Characterization of internal dosimetry practices

    International Nuclear Information System (INIS)

    Traub, R.J.; Heid, K.R.; Mann, J.C.

    1983-01-01

    Current practices in internal dosimetry at DOE facilities were evaluated with respect to consistency among DOE Contractors. All aspects of an internal dosimetry program were addressed. Items considered include, but are not necessarily limited to, record systems and ease of information retrieval; ease of integrating internal dose and external dose; modeling systems employed, including ability to modify models depending on excretion data, and verification of computer codes utilized; bioassay procedures, including quality control; and ability to relate air concentration data to individual workers and bioassay data. Feasibility of uranium analysis in solution by laser fluorescence excitation at uranium concentrations of one part per billion was demonstrated

  8. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 to 12.00 and is closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  9. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    CERN Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page http://cern.ch/rp-dosimetry. The Dosimetry Service is open every morning from 8.30 - 12.00, and closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats.

  10. Calorimetric dosimetry of reactor radiation

    International Nuclear Information System (INIS)

    Radak, B.; Markovic, V.; Draganic, I.

    1961-01-01

    Calorimetric dosimetry of reactor radiation is relatively new reactor dosimetry method and the number of relevant papers is rather small. Some difficulties in applying standard methods (chemical dosemeters, ionization chambers) exist because of the complexity of radiation. In general application of calorimetric dosemeters for measuring absorbed doses is most precise. In addition to adequate choice of calorimetric bodies there is a possibility of determining the yields of each component of the radiation mixture in the total absorbed dose. This paper contains a short review of the basic calorimetry methods and some results of measurements at the RA reactor in Vinca performed by isothermal calorimeter [sr

  11. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  12. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  13. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  14. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kerr, G.D.; Mei, G.T.

    1993-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident

  15. New solid-state effects used in neutron detection and dosimetry. 1

    International Nuclear Information System (INIS)

    Doerschel, B.; Hahn, G.

    1981-01-01

    A review is given of radiation effects on solids and their usability for personnel neutron dosimetry. Part 1 covers mechanical effects on the crystal lattice of solids (dislocations in copper foils and changes in the bulk modulus, unclear effects in quartz connected with changes in the oscillation frequency), thermal effects of metals embedded in type I superconductors (superheated colloid detectors) or other materials (superheated drop detectors)

  16. Dosicard: on-site evaluation of a new individual dosimetry system

    International Nuclear Information System (INIS)

    Delacroix, D.; Guelin, M.; Lyron, C.; Feraud, J.P.

    1995-01-01

    Dosicard is a new individual dosimetry system developed to monitor personnel working in the following fields: civil and military nuclear applications, medical environments and research centres: it can also be used to monitor mobile personnel. The system is based on the use of a credit-card sized format electronic badge. The associated computer environment enables management of the dosimetric data acquired. The characteristics of the system are presented in this paper together with an evaluation of the results of six month's use in a nuclear research centre. (author)

  17. Digital dosimetry and personal and environmental monitoring assembly

    International Nuclear Information System (INIS)

    Cerovac, Z.; Radalj, Z.; Prlic, I.; Cerovac, H.

    1996-01-01

    Film+TLD and film or TLD Dosimetry have a certain delay in dose reporting, since the reports on occupational doses are usually available to the users within 40 days after the actual exposure. This is particularly important when the dose is received within the short-time interval or when the radiation source has some technical failures. For this reason, the additional monitoring is recommendable. The common Dosimetry service in Croatia is well established and the data available shows that over 80% of occupationally exposed persons are working in medical facilities, mainly with x-ray sources. Dosimetry services in the country are providing three types of dosemeters, film dosemeter badge, film+TLD dosemeter badge or plane TLD badge. We have decided to introduce the palette of digital pocket dosemeters to be used at different workplaces occupationally exposed to ionizing radiation. After the first experience with the ALARA 1G digital dosemeter it came out that this type of ionizing radiation measuring device is suitable for the various non-occupational purposes. After some technical improvement and with some telecommunication electronics this device is usable as a point environmental measuring station. This means that the probe of the record any change in normal environmental radiation field, send the data to the central station and to raise alarm if necessary. That is why we have made a prototype for environmental monitoring able to be connected to any kind of telecommunication net. (author)

  18. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  19. Personnel policy and management

    International Nuclear Information System (INIS)

    Dangelmaier, P.

    1986-01-01

    In the field of personnel policy and management two main points must be considered and fitted together: the aspects of the applicant and the aspects of the utility. The applicant wishes a position which suits to his abilities, education, training, experience and self-evaluation. The enterprise has beside these qualification criteria to look to some additional points: reliability - not only in the profession of the applicant but also in his daily life. In this examination licensing authorities are involved too; responsibility in a very broad sense and the ability to make correct decisions sometimes under stress situations. (orig.)

  20. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  1. The neutron and low-energy gamma operational dosimetry in Melox plant

    International Nuclear Information System (INIS)

    Devita, A.D.

    2006-01-01

    M.E.L.O.X., subsidiary of A.R.E.V.A., produce M.O.X. fuels, a mixture of uranium and plutonium oxides. With the use in the process of plutonium oxide, there is a risk of external exposure to neutrons and low -energy gamma rays. By their characteristics, both these types of radiation are difficult to measure. The difficulty in measuring neutron doses lies in the fact that the fluence -to-dose equivalent conversion factor varies with the neutron energy level. In low -energy gamma (between 20 and 60 keV) dose measurement, the problem is detection using an electronic system. Just some years ago, very few industrial players were tempted to develop dosimeters in these areas in view of the poor demand and market prospects. Furthermore, radiation protection specialists needed a highly functional and robust direct reading dosimeters or, in other words, a device that was simple, reliable, inexpensive, small, and quick and easy to use in a wide range of working environments that could vary in terms of both the workstation and external exposure. In addition, at sites such as Melox, where company employees work alongside personnel from outside companies, the same types of dosimeters must be used so that dose -related data can be managed globally in one data base. Two technical solutions are available for neutron operational dosimetry - spectrometer-dosimeters and calibration dosimeters. Melox has opted for the use of calibration dosimeters. The reasons for this choice (technical, financial and organizational criteria) are given in this presentation. Before and during the various campaigns of M.O.X. fuels, the spectral characteristics relating to neutron fluence at different workstations and representative of personnel exposure levels were determined. A reference spectrometer was then used to determine the transfer function between fluence and dose in order to calibrate passive and operational dosimeters appropriately.The methodology to be set up should guarantee good

  2. Statistical study of the activity developed in the Unit of Environmental Dosimetry and Personnel of the Radioprotection Service of the National Center of Environmental Health; Estudio estadístico de la actividad desarrollada en la Unidad de Dosimetría Ambiental y Personal del Servicio de Radioprotección del Centro Nacional de Sanidad Ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Gimeno, G.; Moracho, J.; Sánchez, L.; Ballesteros, G.; Medina, P.; Castro, J.

    2016-07-01

    The service of radiation protection of the National Center for Environmental Health, which belongs to the Institute of Health Carlos III, began its activities in the 80’s. This study shows the dosimetry data of professionals working in the fields of health, research and/ or education, and the industry in radioactive installations controlled by the unit between 1992 and 2013. This work presents the different kinds of dosimeter and the evolution of the number of controlled people in the diverse activity fields during these 22 years, the trend of the average annual doses and the highest received doses, as well as the effect of the administrative doses. Finally a summary of the conclusions from these data is presented. [Spanish] El Servicio de Radioprotección (SRP) del Centro Nacional de Sanidad Ambiental, perteneciente al Instituto de Salud Carlos III, inició sus actividades en la década de los 80. Este estudio contiene los datos dosimétricos de los profesionales, que desarrollaron su actividad en instalaciones radiactivas controladas dosimétricamente por la unidad desde el año 1992 hasta 2013, dentro de los campos sanitario, de investigación y/o docencia, e industrial. En él se presenta los tipos de dosímetros utilizados y la evolución durante estos 22 años del número de personas controladas en las distintas ramas de actividad, la tendencia de las dosis individuales medias anuales y las dosis más altas recibidas, así como la incidencia de las dosis administrativas. Finalmente se hace un resumen de las conclusiones obtenidas a partir de estos datos.

  3. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film...

  4. Thermoluminescence dosimetry environmental monitoring system

    International Nuclear Information System (INIS)

    Bortoluzzi, S.

    1989-01-01

    In this report, characteristics and performances of an environmental monitoring system with thermoluminescence dosimetry are presented. Most of the work deals with the main physical parameters necessary for measurements of ambiental dose. At the end of this report some of level doses in the environment around the site of the ENEA Center of Energy Research Salluggia (Italy) are illustrated

  5. Manual of food irradiation dosimetry

    International Nuclear Information System (INIS)

    1977-01-01

    Following items are discussed: Fundamentals of dosimetry; description of irradiators; dose distribution in the product and commissioning the process; plant operation and process control; detailed instructions on using various dose-meter systems; references; glossary of some basic terms and concepts

  6. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  7. Biological dosimetry of irradiation accidents

    International Nuclear Information System (INIS)

    Durand, V.; Chambrette, V.; Le Roy, A.; Paillole, N.; Sorokine, I.; Voisin, P.

    1994-01-01

    The biological dosimetry in radiation protection allows to evaluate the received dose by a potentially irradiated person from biological markers such chromosomal abnormalities. The technologies of Hybridization In Situ by Fluorescence (F.I.S.H) allow the detection of steady chromosomal aberrations of translocation type

  8. Some aspects of the use of proton recoil proportional counters for fast neutron personnel dosimeters

    International Nuclear Information System (INIS)

    Yule, T.J.; Bennett, E.F.

    1984-01-01

    Gas-filled proton recoil proportional counters have been used extensively for the measurement of neutron spectra in degraded fission-spectrum environments. Some considerations relating to the use of these counters for personnel dosimetry are here described. High sensitivity and good accuracy in the determination of dose-equivalent can be obtained if relatively high pressure hydrogen-filled proportional counters are used as the active element in a dosimeter system

  9. Ten years experience with a large computerized TLD-personnel monitoring system

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1986-01-01

    It is now ten years since our Institute for Radiation Protection has fully replaced its filmdosimetry service by a computerized automated TLD system. Presently more than 13000 radiation workers are monthly monitored by three automated TLD readers linked to the computer center. The paper describes system hardware and software and experience gained in long-term routine operation. In particular the introduction of the new ICRU quantities for personnel dosimetry in the existing TLD system is discussed. (Author)

  10. A quality control program for the thermoluminescence dosimeter (TLD) in personnel radiation monitoring

    International Nuclear Information System (INIS)

    Seo, Kyung Won; Kim, Jang Lyul; Lee, Sang Yoon; Lee, Hyung Sub

    1994-01-01

    High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The ministry of science and technology (MOST) issued a ministerial ordinance (No 199-15) about the technical criteria on personnel dosimeter processors on 1992. The purpose of this quality control program is to prescribe the procedures approved by the management of KAERI for implementing a quality badge service by means of TLD for personnel working in an area where they may be exposed to ionization radiation. (Author) 10 refs

  11. Doses of personnel employed in the manufacture of radioisotope thickness gages

    International Nuclear Information System (INIS)

    Kostenetskij, M.I.

    1981-01-01

    Doses of the personnel of one of the plants manifacturing radioisotope thickness gages of different types are determined. Annual doses to the body protected by shielding screens are low and according to the data of individual dosimetry constitute 5x10 -3 -6x10 -3 J/kg (0.5-0.6 rem). A table of radiation doses to hands obtained during all kind of operations, is given. Measures for the further reduction of radiation doses of the personnel are suggested [ru

  12. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    International Nuclear Information System (INIS)

    Souleyrette, M.L.

    1992-01-01

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm 2 filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet

  13. Experience in the patients management which received treatments with radioactive iodine ({sup 131}I). Measurements and dosimetry pertaining to the personnel related; Experiencia en el manejo de pacientes que recibieron tratamientos con yodo radiactivo ({sup 131}I). Mediciones reglamentarias y dosimetria del personal relacionado

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz J, A [Instituto Nacional de la Nutricion Salvador Zubiran, Departamento de Medicina Nuclear, Tlalpan, 14000 Mexico D.F. (Mexico)

    1999-07-01

    In the INNSZ there are administering ablative doses of radioactive iodine to patients with problems of the thyroid gland from 40 years ago. Starting from 1992 was initiated the restlessness to inform to the patients verbally and in writing over the measurements of radiological safety that must be followed for the protection of their families. In this work it is commented, the benefits obtained with the patients and the teachings to give to the personnel what attend the patients which receive treatments with iodine-131 and must be hospitalized. It is commented too over the standardization standing of the patients discharged whom received radioactive material and lastly, it was make a dosimetric study of the nurses, radiotherapeutic and control area. (Author)

  14. Training of personnel

    International Nuclear Information System (INIS)

    1997-01-01

    Selected staffs (in the area of NPPs) are examined by the State Examining Committee established by Nuclear Regulatory Authority of the Slovak Republic (NRA SR's) chairman. The committee consists of representatives of NRA SR , Bohunice NPPs, Mochovce NPP, Research Institute of Nuclear Energy and experts from the Faculty of Electrical Engineering and Information Technology of the Slovak Technical University. The review of selected personnel of NPP V-1, V-2 and Mochovce NPP which passed exams in 1996 is given. NRA SR paid attention to the upgrading training process of individual categories of staff for V-1, V-2 and Mochovce NPPs, simulator training and training with computerized simulation system according to the United criteria of nuclear installation personnel training that started in 1992. During the year, an inspection was performed focused on examination of technical equipment of the simulator of Mochovce NPP, professional eligibility and overall preparation of simulator training including simulator software. Throughout the year launching works continued at the simulator with the deadline of commissioning to trial use operation in the first half of 1997

  15. Personnel training and certification

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1976-01-01

    In order to make the full benefits of neutron radiography available in the nondestructive test (NDT) field, it has been necessary to formalize its application. A group under the Penetrating Radiation Committee of the American Society for Nondestructive Testing (ASNT) was organized to prepare a recommended practice for neutron radiography. The recommended practices require the establishment of an appropriate certification program. The requirements on the employer to establish and maintain a qualification and certification program are outlined. To conduct a program of nondestructive testing using neutron radiography requires the usual three levels of qualified and certified personnel. The program is administered by a Level III person. Routine exposure, reviews, and reporting of test results are the responsibilities of Level I and Level II personnal. The amount of training and nature of the required practical examination are also specified. The recommended practices document assures users that NDT work in the field of neutron radiography is performed by qualified personnel. Although no training courses are available to provide experience in the depth required by the recommended practices document, SNT-TC-1A, short courses are provided at a number of locations to familarize user's representatives with the interpretation of neutron radiographs and capabilities and limitations of the technique

  16. A performance evaluation of personnel identity verifiers

    International Nuclear Information System (INIS)

    Maxwell, R.L.; Wright, L.J.

    1987-01-01

    Personnel identity verification devices, which are based on the examination and assessment of a body feature or a unique repeatable personal action, are steadily improving. These biometric devices are becoming more practical with respect to accuracy, speed, user compatibility, reliability and cost, but more development is necessary to satisfy the varied and sometimes ill-defined future requirements of the security industry. In an attempt to maintain an awareness of the availability and the capabilities of identity verifiers for the DOE security community, Sandia Laboratories continues to comparatively evaluate the capabilities and improvements of developing devices. An evaluation of several recently available verifiers is discussed in this paper. Operating environments and procedures more typical of physical access control use can reveal performance substantially different from the basic laboratory tests

  17. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  18. Personnel Selection Method Based on Personnel-Job Matching

    OpenAIRE

    Li Wang; Xilin Hou; Lili Zhang

    2013-01-01

    The existing personnel selection decisions in practice are based on the evaluation of job seeker's human capital, and it may be difficult to make personnel-job matching and make each party satisfy. Therefore, this paper puts forward a new personnel selection method by consideration of bilateral matching. Starting from the employment thoughts of ¡°satisfy¡±, the satisfaction evaluation indicator system of each party are constructed. The multi-objective optimization model is given according to ...

  19. Real-time volumetric scintillation dosimetry

    International Nuclear Information System (INIS)

    Beddar, S

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential

  20. Commissioning of Portal Dosimetry and characterization of an EPID

    International Nuclear Information System (INIS)

    Olbi, D.S.; Sales, C.P.; Nakandakari, M.V.N.

    2016-01-01

    The development of technologies compensator blocks, MLC, high dose rate accelerators, treatment planning systems, among others, permitted that new treatment techniques in radiotherapy were created. Such techniques have the capacity to modulate radiation beam fluency (IMRT, VMAT), or to deliver high doses in few fractions or unique fractions (SRS). Following the same tendency, quality control of planning became more complex. It is necessary to evaluate the fluency delivered by the accelerator. Its levels of does and its spatial distribution should co-occur with the fluency calculated by TPS. Acquisition of new detector devices in quality control of treatments is fundamental to apply techniques. Portal Vision is a device EPID has the capacity to operate either in image mode or dosimetry mode, with the allowance of Portal Dosimetry. To evaluated planning in IMRT, the device is irradiated using planning e, therefore, the fluency measured is compared with calculated fluency, through gamma analysis. The aim of this work was to perform tests of commissioning of this device. (author)