WorldWideScience

Sample records for personal tld dosimeters

  1. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  2. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    International Nuclear Information System (INIS)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L.; Garcia-Talavera, P.; Singi, G.M.; Martin, E.

    2006-01-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of 131 I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  3. X-rays individual dose assessment using TLD dosimeters

    International Nuclear Information System (INIS)

    Salas, Carlos

    2008-01-01

    This paper describes the methodology used in Embalse NPP for measuring individual X-ray dose in dentists and radiologists, who work in areas near the plant. Personnel is provided with TLD personal dosimeters for thoracic use, as well as TLD ring dosimeters. This individual X-ray dosimetry is fundamental in order to know the effective energy coming from the radiation field, since the dosimetry factors depend on it. On the other hand, the response of the TLD crystals also depends of the effective energy; this accentuates the problem when assessing the individual dose. The X-ray dosimeter must simultaneously determine the value of the effective energy and the corresponding dose value. The basic principle for determining effective energy is by using at least two different TLD materials covered by filters of different thickness. The TLD materials used have totally energy responses. Therefore, different readouts from each of the crystals are obtained. The ratio between both readouts provides a factor that depends of the effective energy but that is 'independent' from the exposure values irradiated to the dosimeter. The Personal TLD dosimeter currently in use is Bicron-Harshaw. It comprises a carrier model 8807. This carrier contains a card model 2211 which groups two TLD 200 crystals and two TLD 100 crystals. It has internal filters at each side of the TLD 200 crystals. The periodical calibration of these dosimeters consists in the irradiation of some dosimeters with different X-ray energy beams in the National Atomic Energy Commission (CNEA). This dosimeter was used, by the National Regulatory Authority (ARN) in several comparisons, always getting satisfactory results. (author)

  4. Reproducibility Test for Thermoluminescence Dosimeter (TLD) Using TLD Radpro

    International Nuclear Information System (INIS)

    Nur Khairunisa Zahidi; Ahmad Bazlie Abdul Kadir; Faizal Azrin Abdul Razalim

    2016-01-01

    Thermoluminescence dosimeters (TLD) as one type of dosimeter which are often used to substitute the film badge. Like a film badge, it is worn for a period of time and then must be processed to determine the dose received. This study was to test the reproducibility of TLD using Radpro reader. This study aimed to determine the dose obtained by TLD-100 chips when irradiated with Co-60 gamma source and to test the effectiveness of TLD Radpro reader as a machine to analyse the TLD. Ten chips of TLD -100 were irradiated using Eldorado machine with Co-60 source at a distance of 5 meters from the source with 2 mSv dose exposure. After the irradiation process, TLD-100 chips were read using the TLD Radpro reader. These steps will be repeated for nine times to obtain reproducibility coefficient, r i . The readings of dose obtained from experiment was almost equivalent to the actual dose. Results shows that the average value obtained for reproducibility coefficient, r i is 6.39 % which is less than 10 %. As conclusion, the dose obtained from experiment considered accurate because its value were almost equivalent to the actual dose and TLD Radpro was verified as a good reader to analyse the TLD. (author)

  5. Personal exposure control using TLD

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu; Takeda, Shinso

    1979-01-01

    In the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), for personal exposure control, the switching from film badges to TLD badges (and also finger-ring type local dosimeters) was made in fiscal 1974. The facilities involved are a fuel reprocessing plant, a PuO 2 -UO 2 mixed fuel production facility, and a centrifugal uranium enrichment development facility. The types of radiation concerned are various, such as γ(x), β and n. The situation of personal exposure control with TLD and the dose evaluation methods for respective radiations are explained. The number of personnel subject to exposure control, including transient people, is about 2500 - 3000 per three months. The TLD badges used are a special PNC type with TLDs to measure separately γ(x), β and n. With casings made of ABS resin, the external dimensions are 76 mm x 46 mm. (J.P.N.)

  6. Investigation of a new LiF TLD individual dosimeter for measuring personal dose equivalent Hp(d) on different phantoms

    International Nuclear Information System (INIS)

    Jin, H.; Duftschmid, K.E.; Strachotinsky, C.

    1992-09-01

    The paper describes a new LiF TLD dosimeter designed for measuring personal dose equivalent, H p (d). Its energy and angular response have been studied in detail on a PMMA slab phantom using the conversion factors for TE slab phantom. According to the results obtained with four types of different conversion coefficients and phantoms, i.e. a PMMA slab, Water slab, ICRU sphere and Alderson Rando phantom, the conversion coefficients for the TE slab phantom are suitable for the calibration of TLD individual dosimeters on PMMA slab phantom. In the energy range 17 keV to 1250 KeV the energy response for H p (10) and H p (0.07) is energy independent within -20% to 8.4% for frontal irradiation. For angles within ±60 deg the new TLD dosimeters indicate H p (10) within 0 to 22.5% and H p (0.07) within -11.1% to 1.3%, respectively. (authors)

  7. Investigation of a new LiF TLD individual dosimeter for measuring personal dose equivalent Hp(d) on different phantoms

    International Nuclear Information System (INIS)

    Jin Hua

    1993-01-01

    The paper describes the design of a new LiF TL dosimeter optimized for measuring personal dose equivalent, H p (d). The results obtained with four types of different phantoms, i.e. a PMMA slab, water slab, ICRU sphere and Alderson Rando phantom, and pertinent conversion coefficients show, that the conversion coefficients for the TE slab phantom are suitable for the calibration of TLD individual dosimeters on a PMMA slab phantom. In the energy range 17 keV to 1250 keV the energy response for H 0 (10) and H p (0.07) is within-20% to 8.4% for frontal irradiation. For angles within +- 60 degree the dosimeters indicate H p (10) within 0 to 22.5%, and H p (0.07) within-11.1% to 1.3%. respectively

  8. Ionizing radiation source detection by personal TLD

    International Nuclear Information System (INIS)

    Marinkovic, O.; Mirkov, Z.

    2002-01-01

    The Laboratory for personal dosimetry has about 3000 workers under control. The most of them work in medicine. Some institutions, as big health centers, have different ionizing radiation sources. It is usefull to analyze what has been the source of irradiation, special when appears a dosimeter with high dose. Personal dosimetry equipment is Harshaw TLD Reader Model 6600 and dosimeters consist of two chips LiF TLD-100 assembled in bar-coded cards which are wearing in holders with one tissue-equivalent filter (to determine H(10)) and skin-equivalent the other (to determine H(0.07)). The calibration dosimeters have been irradiated in holders by different sources: x-ray (for 80keV and 100keV), 6 0C o, 9 0S r (for different distances from beta source) and foton beem (at radiotherapy accelerator by 6MeV, 10MeV and 18MeV). The dose ratio for two LiF cristals was calculated and represented with graphs. So, it is possible to calculate the ratio H(10)/H(0.07) for a personal TLD and analyze what has been the source of irradiation. Also, there is the calibration for determination the time of irradiation, according to glow curve deconvolution

  9. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford's mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue

  10. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford`s mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

  11. Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

    1991-12-01

    Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford's mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

  12. Photon energy response of an aluminum oxide TLD environmental dosimeter

    International Nuclear Information System (INIS)

    Olsher, R.H.

    1992-01-01

    Because of aluminum oxide's significant advantage in sensitivity (about a factor of 30) over LiF, minimal fading characteristics and ease of processing, aluminum oxide thermoluminescent dosimeters (TLDS) are being phased in at Los alamos for environmental monitoring of photon radiation. The new environmental dosimeter design consists of a polyethylene holder, about 0. 5 cm thick, loaded with a stack of four aluminum oxide TLD chips, each 1 mm thick and 5 mm in diameter. As part of the initial evaluation of the new design, the photon energy response of the dosimeter was calculated over the range from 10 keV to 1 MeV. Specific goals of the analysis included the determination of individual chip response in the stack, assessment of the response variation due to TLD material (i.e., LiF versus A1 2 O 3 ), and the effect of copper filtration in flattening the response

  13. Thermoluminescent dosimeters (TLD) quality assurance network in the Czech Republic.

    Science.gov (United States)

    Kroutilķková, Daniela; Novotný, Josef; Judas, Libor

    2003-02-01

    The Czech thermoluminescent dosimeters (TLD) quality assurance network was established in 1997. Its aim is to pursue a regular independent quality audit in Czech radiotherapy centres and to support state supervision. The audit is realised via mailed TL dosimetry. The TLD system consists of encapsulated LiF:Mg,Ti powder (type MT-N) read with Harshaw manual reader model 4000. Basic mode of the TLD audit covers measurements under reference conditions, specifically beam calibration checks for all clinically used photon and electron beams. Advanced mode consists of measurements under both reference and non-reference conditions using a solid multipurpose phantom ('Leuven phantom') for photon beams. The radiotherapy centres are instructed to deliver to the TLD on central beam axis absorbed dose of 2 Gy calculated with their treatment planning system for a particular treatment set-up. The TLD measured doses are compared with the calculated ones. Deviations of +/-3% are considered acceptable for both basic and advanced mode of the audit. There are 34 radiotherapy centres in the Czech Republic. They undergo the basic mode of the TLD audit regularly every 2 years. If a centre shows a deviation outside the acceptance level, it is audited more often. Presently, most of the checked beams comply with the acceptance level. The advanced TLD audit has been implemented as a pilot study for the present. The results were mostly within the acceptance limit for the measurements on-axis, whereas for off-axis points they fell beyond the limit more frequently, especially for set-ups with inhomogeneities, oblique incidence and wedges. The results prove the importance of the national TLD quality assurance network. It has contributed to the improvement of clinical dosimetry in the Czech Republic. In addition, it helps the regulatory authority to monitor effectively and regularly radiotherapy centres.

  14. Thermoluminescent dosimeters (TLD) quality assurance network in the Czech Republic

    International Nuclear Information System (INIS)

    Kroutilikova, Daniela; Novotny, Josef; Judas, Libor

    2003-01-01

    Introduction: The Czech thermoluminescent dosimeters (TLD) quality assurance network was established in 1997. Its aim is to pursue a regular independent quality audit in Czech radiotherapy centres and to support state supervision. Materials and methods: The audit is realised via mailed TL dosimetry. The TLD system consists of encapsulated LiF:Mg,Ti powder (type MT-N) read with Harshaw manual reader model 4000. Basic mode of the TLD audit covers measurements under reference conditions, specifically beam calibration checks for all clinically used photon and electron beams. Advanced mode consists of measurements under both reference and non-reference conditions using a solid multipurpose phantom ('Leuven phantom') for photon beams. The radiotherapy centres are instructed to deliver to the TLD on central beam axis absorbed dose of 2 Gy calculated with their treatment planning system for a particular treatment set-up. The TLD measured doses are compared with the calculated ones. Deviations of ±3% are considered acceptable for both basic and advanced mode of the audit. Results: There are 34 radiotherapy centres in the Czech Republic. They undergo the basic mode of the TLD audit regularly every 2 years. If a centre shows a deviation outside the acceptance level, it is audited more often. Presently, most of the checked beams comply with the acceptance level. The advanced TLD audit has been implemented as a pilot study for the present. The results were mostly within the acceptance limit for the measurements on-axis, whereas for off-axis points they fell beyond the limit more frequently, especially for set-ups with inhomogeneities, oblique incidence and wedges. Conclusions: The results prove the importance of the national TLD quality assurance network. It has contributed to the improvement of clinical dosimetry in the Czech Republic. In addition, it helps the regulatory authority to monitor effectively and regularly radiotherapy centres

  15. Comparison of electronic digital alarm dosimeter with TLD

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Pandey, J.P.N.; Shinde, A M.; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Control of exposure of radiation workers on day to day basis has been made easy by use of semiconductor based electronic digital dosimeter. Additional dose constraints of 10 mSv for occupational radiation workers have made it essential to use such type of digital personal monitoring devices. In addition to conventional ionisation chamber based direct reading dosimeters, additional 35 semiconductor based digital dosimeters model MGP DMC 2000 S were used for the monitoring of personal exposure of radiation workers in a spent fuel reprocessing plant. Though better least count and good performance over a wide range of dose rate are claimed by the manufacture, before making use of such dosimeter on large scale, validation of its performance is required to be checked. In this paper, an effort is made to determine the performance of digital dosimeters, by exposing these digital dosimeters in combination with TLDs at different radiation levels and obtained results were compared and analysed

  16. Environmental radiation monitoring of nuclear sites by thermoluminescent dosimeters (TLD)

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Strachotinsky, Ch.

    1978-04-01

    The measurement of environmental radiation doses around nuclear facilities requires the detection of few mrem/year. The properties of the automatic TLD-system Harshaw Mod. 2271 for such measurements have been evaluated under practical conditions and optimized techniques derived. The automatic TLD-system is based on LiF dosimeter cards with two crystals providing gamma and beta dose values. Limit of detection defined as three standard deviations of residuel dose is 1,2 mR. Automatic readout combined with electronic data evaluation are especially useful for large monitoring networks. Practical intercomparisons of this dosimeter with bulb-type CaF 2 detectors have been performed showing good agreement of both detector. Although bulb-dosimeters proved to be extremely sensitive with a limit of detection at 0,012 mR which makes them very suitable for very short exposure times, the automatic LiF system is superior in regards of man power requirement if monthly monitoring periods are sufficient. The system has been tested in practice during two international intercomparisons performed by the US Department of Energy - Health and Safety Laboratory New York and the Physikalisch Technische Bundesanstalt Braunschweig, Germany, showing excellent agreement. Furthermore a routine monitoring network consisting of 12 measurement positions around the Research Center Seibersdorf has been operated with this technique since more than two years. (author)

  17. Nuclear accident dosimeter designed for use with the Panasonic TLD system

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1985-01-01

    A new design for the nuclear accident dosimeter (NAD) compatible with the Panasonic TLD badge has recently been adopted for use at LLNL. This NAD was tested at the 1984 Oak Ridge National Laboratory Intercomparison of Criticality Accident Dosimeters study. We describe the procedures and constants developed to evaluate the NAD components. These constants were averaged to give reasonable results from bare and moderated spectra. Other procedures to evaluate a person's neutron dose using activation of the blood sodium and hair are described. These latter procedures are used to complement the dose determined using the NAD, or to determine a dose if a NAD had not been worn during exposure. If little is known about the configuration of the fissile material or shielding between the material and the exposed person, a procedure which combines the blood and hair activations gives a good estimate of the dose. (DT) 3 refs., 2 figs., 6 tabs

  18. A quality control program for the thermoluminescence dosimeter (TLD) in personnel radiation monitoring

    International Nuclear Information System (INIS)

    Seo, Kyung Won; Kim, Jang Lyul; Lee, Sang Yoon; Lee, Hyung Sub

    1994-01-01

    High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The ministry of science and technology (MOST) issued a ministerial ordinance (No 199-15) about the technical criteria on personnel dosimeter processors on 1992. The purpose of this quality control program is to prescribe the procedures approved by the management of KAERI for implementing a quality badge service by means of TLD for personnel working in an area where they may be exposed to ionization radiation. (Author) 10 refs

  19. NRC [Nuclear Regulatory Commission] TLD [thermoluminescent dosimeter] direct radiation monitoring network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1989-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the second quarter of 1989

  20. NRC TLD [thermoluminescent dosimeter] Direct Radiation Monitoring Network: Progress report, January-March 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1988-06-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the first quarter of 1988

  1. Robust determination of effective atomic numbers for electron interactions with TLD-100 and TLD-100H thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Taylor, M.L.

    2011-01-01

    Lithium fluoride thermoluminescent dosimeters (TLD) are the most commonly implemented for clinical dosimetry. The small physical magnitude of TLDs makes them attractive for applications such as small field measurement, in vivo dosimetry and measurement of out-of-field doses to critical structures. The most broadly used TLD is TLD-100 (LiF:Mg,Ti) and, for applications requiring higher sensitivity to low-doses, TLD-100H (LiF:Mg,Cu,P) is frequently employed. The radiological properties of these TLDs are therefore of significant interest. For the first time, in this study effective atomic numbers for radiative, collisional and total electron interaction processes are calculated for TLD-100 and TLD-100H dosimeters over the energy range 1 keV-100 MeV. This is undertaken using a robust, energy-dependent method of calculation rather than typical power-law approximations. The influence of dopant concentrations and unwanted impurities is also investigated. The two TLDs exhibit similar effective atomic numbers, ranging from approximately 5.77-6.51. Differences arising from the different dopants are most pronounced in low-energy radiative effects. The TLDs have atomic numbers approximately 1.48-2.06 times that of water. The effective atomic number of TLD-100H is consistently higher than that of TLD-100 over a broad energy range, due to the greater influence of the higher-Z dopants on the electron interaction cross sections. Typical variation in dopant concentration does not significantly influence the effective atomic number. The influence on TLD-100H is comparatively more pronounced than that on TLD-100. Contrariwise, unwanted hydroxide impurities influence TLD-100 more than TLD-100H. The effective atomic number is a key parameter that influences the radiological properties and energy response of TLDs. Although many properties of these TLDs have been studied rigorously, as yet there has been no investigation of their effective atomic numbers for electron interactions. The

  2. Study on the angular dependence of personal exposure dosimeter - Focus on thermoluminescent dosimeter and photoluminescent dosimeter

    International Nuclear Information System (INIS)

    Dong, Kyung-Rae; Kweon, Dae Cheol; Chung, Woon-Kwan; Goo, Eun-Hoe; Dieter, Kevin; Choe, Chong-Hwan

    2011-01-01

    Radiation management departments place more emphasis on the accuracy of measurements than on the increase in the average dose and personal exposure dose from the use of radiation equipment and radioactive isotopes. Although current measurements are taken using devices, such as film badge dosimeters, pocket dosimeters and thermoluminescent dosimeters (TLDs), this study compared the angular dependence between the widely used TLDs and photoluminescent dosimeter (PLDs) in order to present primary data and evaluate the utility of PLD as a new dosimeter device. For X-ray fluoroscopy, a whole body phantom was placed on a table with a setting for the G-I technical factors fixed at a range of approximately 40 cm with a range of ±90 o at an interval scale of 15 o from the center location of an average radiological worker for PLDs (GD-450) and TLDs (Carot). This process was repeated 10 times, and at each time, the cumulative dosage was interpreted from 130 dosimeters using TLDs (UD-710R, Panasonic) and PLDs (FGD-650). The TLD and PLD showed a 52% and 23% decrease in the depth dosage from 0 o to -90 o , respectively. Therefore, PLDs have a lower angular dependence than TLDs.

  3. Study of the OSL response of the CaF2:Dy (TLD-200) dosimeter

    International Nuclear Information System (INIS)

    Medeiros, Beatriz M.; Alencar, Marcus A.V. de

    2013-01-01

    The OSL dosimetry has become, in recent years, a successful technique in personal and environmental dosimetry due to high luminescence efficiency, excellent reproducibility, fast readout of signal and repeated and successive OSL measurements of the same dosimeter. Another factor that contributes to the increased use of OSL dosimetry is the use of the aluminum oxide doped with carbon (Al 2 O 3 :C) as dosimeter. Developed initially as thermoluminescent dosimeter, the Al 2 O 3 :C has an excellent OSL sensitivity, high efficiency, good linearity, low or no fading and excellent stability with respect to environmental conditions. However, the OSL dose response for aluminum oxide is linear only for low doses. For intermediate doses (doses in radiotherapy), the response is supralinear. For the values of high doses used in the processes of food irradiation and sterilization of surgical materials, the OSL signal of the aluminum oxide already saturated. Furthermore, the degree of supralinearity and the saturation value vary from sample to sample (∼ 30-300 Gy). Therefore, the use of aluminum oxide as OSL dosimeter is inappropriate in radiotherapy and in the irradiation industrial processes. The objective of this work is the study of the OSL properties of other dosimetric materials irradiated with values of intermediate and high dose to verify the applicability of the OSL dosimetry in radiotherapy and in the processes of food irradiation and sterilization of medical materials. The dosimetric material used in this work is the calcium fluoride doped with dysprosium (CaF 2 :Dy) produced by Harshaw and known commercially as TLD-200. The results demonstrate that the CaF 2 :Dy has OSL signal and the OSL dose response is linear in the range of 10 Gy to 300 Gy. Therefore, the dosimetry OSL with this dosimeter can be used in the evaluation of doses of the order of dozens to hundreds of grays. (author)

  4. Evaluation of personal dosimeters

    International Nuclear Information System (INIS)

    Correa, C. A.

    2007-01-01

    This work makes a screening of the different types of dosimeters present in the international market, to provide operative dosimetry of individual monitoring to measure Hp(10) and Hp(0,07)-specifically for external radiation gamma and beta, as well as to give knowledge of advances of passive and operative dosimetry, and the changes in the regulatory policy relative to these aspects. The data has been extracted from several providers of dosimeters, and the importance has been stressed in a good election of the dosimeter before its use, as well as the important advances in these equipment. (Author) 14 refs

  5. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations.

    Science.gov (United States)

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by (241)Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy(-1) for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy(-1) achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.

  6. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    International Nuclear Information System (INIS)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-01-01

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10 11 Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410 9 Gy/s within 2% (OSL and TLD) and up to 1510 9 Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  7. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Sina, S; Zeinali, B; Karimipourfard, M; Lotfalizadeh, F; Sadeghi, M; Faghihi, R

    2014-01-01

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface of Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities

  8. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Sina, S [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Zeinali, B; Karimipourfard, M; Lotfalizadeh, F; Sadeghi, M [Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of); Faghihi, R [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-06-01

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface of Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities.

  9. Response of TLD-100 LiF dosimeters for X-rays of low energies

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.

    2011-10-01

    In diverse practical applications as the existent in radiological clinics, industrial facilities and research laboratories, the solid state dosimeters are used for the measure of the different types of ionizing radiations. At the present time dosimeters are manufactured with different types of materials that present thermoluminescent properties, to the effects of determining the absorbed radiation dose. Under these conditions, the radiation dose is determined integrated in all the range of energies of the beam of X-rays, since it assumes that the response of these dosimeters is lineal with the energy of the photons or radiant particles. Because interest exists in advancing in the development of a determination method in the way of the X-rays spectrum emitted by a tube of those used in diagnostic or therapy, we have measured the response of TLD-100 LiF dosimeters for low energies, minor at 60 keV, for a several group of these dosimeters. (Author)

  10. Evaluation of personal integrating dosimeters

    International Nuclear Information System (INIS)

    Correa, C.A.; Bisauta, Mauricio A.

    2007-01-01

    The objective of this work is to analyze the different types of dosimeters present in the international market that are used to provide personal dose monitoring, specifically for external gamma and beta radiation, Hp(10) and Hp (0,07), as well as to add comments of advances in the field of passive and operative dosimetry, and the changes that are being produced in the regulating policy in other countries regarding the use of this devices. The technical specification of each dosimeter has been extracted of different catalogues of products. To conclude, the importance has been stressed in a proper selection of dosimeters with its advantages and disadvantages before its use. (author) [es

  11. Personnel dose equivalent monitoring at SLAC using lithium-fluoride TLD's [thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Busick, D.D.

    1987-03-01

    TLD's replaced film badges in the early 1970's for all dose equivalent monitoring, both neutron and photon, and for all locations at SLAC. The photon TLD's, composed of Li-7 loaded teflon discs, are calibrated using conventional gamma-ray sources; i.e., Co-60, Cs-137, etc. For these TLD's a nominal value of 1 nC/mrem is used, and is independent of source energy for 100 keV to 3 MeV. Since measured dose equivalents at SLAC are only a small fraction of the allowable levels, it was not deemed necessary to develop neutron dosimeters which would measure dose equivalent accurately for all possible neutron spectra. Today, wallet TLD's, composed of pairs of Li-7 and Li-6 discs, are used, with the Li-6 measuring only thermal neutrons; i.e., they aren't moderated in any way to make them sensitive to neutrons with energies greater than thermal. The assumption is made that there is a correlation between thermal neutron fluences and fast neutron fluences around the research area where almost all neutron doses (exclusive of sealed sources) are received. The calibration factor for these Li-6 TLD's is 1 nC/mrem of fast neutrons. The method of determining the validity of this calibration is the subject of this note. 4 refs., 9 figs., 1 tab

  12. Approving of personal dosimeter services

    International Nuclear Information System (INIS)

    Bergman, K.; Malmqvist, L.

    2001-09-01

    The Swedish regulation SSI FS 98:5 requires that radiological workers of category A use dosemeters from an approved personal dosimetry service. The regulation also includes certain specific dosimeter requirements, which are based on those presented in the Technical Recommendations by the European Commission (Report EUR 14852 EN, 1994). All services have been tested for their ability to determine Hp(10) and some of them to determine Hp(0.07) at one radiation quality. The test was performed in the interval 0.2 mSv to 100 mSv at three different dose equivalents unknown to the system owner. The 11 services operating in Sweden at the moment use 5 different types of dosimeters. The five unique systems have been tested regarding the angular and energy dependence of the response of the dosimeters. The dosimeters were irradiated to a personal dose equivalent of about 1 mSv at three photon energies and at four angles (0, 20, 40 and 60 deg. resp. ) both vertically and horizontally rotated. Only 2 of the services determine Hp(0.07) for beta and gamma radiation and were tested for this quantity. The test results for Hp(10) are all except two within the trumpet curve. For the unique systems it is shown that the uncertainty related to angular response at a specified energy is within the required ±40 % except for the lowest X-ray quality at 40 kV. The response is more dependent on photon energy than on the direction of the photon radiation and the choice of radiation quality for the calibration is of great importance for the system performance

  13. Parallel analysis of film and TLD application in personal dosimetry of medical staff during application of invasive radiological procedures

    International Nuclear Information System (INIS)

    Misovic, M.; Boskovic, Z.; Spasic-Jokic, V.

    1997-01-01

    Although both types of dosimeters showed similar results for mentioned category of health care workers we wished to emphasize some advantages in use of TLD and film dosemeters in personal dosimetry. The main advantageous of film for dosimetric purposes are that it can provide visual representation of the radiation field and they are cheap, but there are lot of disadvantages. Advantages of TLD are based on: possibility for re-use, practically for whole users working life, small dimensions suitable for results, high precision and specially wide dose range. They are sensitive on low dose, practically for ten times more than film is. Disadvantages of TLD are based on their previous thermal and radiation history and on the fact that information about dose disappears after reading procedure. Considering advantages and disadvantages of both types of dosemeters we decided to propose TLD for routine hospital practice in personal dosimetry. (author)

  14. Operation of Personal Electronic Dosimeters at NRCN

    International Nuclear Information System (INIS)

    Weinstein, M.; Abraham, A.; Tshuva, A.; German, U.

    2004-01-01

    In the recent years, electronic personal dosimeters (EPD's) are increasingly being used at NRCN, replacing the old direct reading dosimeters that are still widely used. The most significant advantage of the new dosimeters is the real time alarm in a radiation field exceeding a pre-determined threshold. The EPD dosimeters are more precise and can measure γ, β and x rays of a wide range of energies. In addition, the electronic dosimeters collects and stores the reading at a fixed pattern (every 10 seconds) and keeps the data until it is downloaded from the dosimeter. This feature gives the ability to build a personal time-dependent exposure report for each worker who carries this device and to analyze, identify and measure the exact dose, time and duration of any exposure event he was involved in. Designing and building a personal electronic dosimeter became possible as a result of the massive technological improvements of semi conductor detectors and the minimization processes of microprocessors and low energy electronic devices. The main purpose for personal electronic dosimeters was to monitor on-line doses for radiation workers.A special reader device enables to download data and upload operational settings of the dosimeters. By means of this communication channel, one can save the data acquired by the dosimeter, clear the dosimeter memory and set the dosimeter operational parameters. There are two possible working patterns. The first is to read and set all the dosimeters at a central point, normally a dosimetry laboratory (single reader) and the second and more expensive one, is to build a network of readers covering the plant for obtaining on-line communication

  15. PorTL - a compact, portable TLD reader for environmental and personal dosimetry

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Bodnar, L.; Csoke, A.; Feher, I.; Pazmandi, T.

    2005-01-01

    Thermoluminescent dosimeters (TLDs) are commonly used for environmental monitoring, for personal and medical dosimetry, for dosimetry in nuclear facilities, etc. Major advantages are their independence of the power supply, small dimension, sensitivity, good stability, wide measuring range, resistance to environmental changes and relatively low cost. The disadvantage is that the detector must be transported for evaluation to a laboratory equipped with a large, heavy and expensive TLD Reader operated by qualified personnel, which considerably increases the costs and delays results. To overcome this disadvantage, the KFKI Atomic Energy Research Institute (KFKI AEKI), in co-operation with BL Electronics (Hungary), has developed a new and unique TLD system containing a small, portable, battery powered and moderate-price reader for commercial use. This paper gives a detailed description and parameters of this system.(author)

  16. A personnel TLD system with person identification

    International Nuclear Information System (INIS)

    Widell, C.O.

    1974-01-01

    The TLD system uses Li 2 B 4 O 7 :Mn, Si sintered tablets which are heated by hot nitrogen. The slide which holds the tablets is coded by a self adhesive polyester-aluminium tape. This tape is BCD coded in an ordinary tape punch. The information on the punched tape includes a ten digit social-security number and a two digit information on location and type of dosimetry. By this system dosimetric data is directly transfered into a central dose register for Sweden. All personnel doses are there stored on social-security numbers. (author)

  17. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    International Nuclear Information System (INIS)

    Stranden, E.; Widmark, A.; Sekse, T.

    2008-01-01

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  18. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    Energy Technology Data Exchange (ETDEWEB)

    Stranden, E.; Widmark, A.; Sekse, T. (Buskerud Univ. College, Drammen (Norway))

    2008-05-15

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  19. Response of TLD-100 LiF dosimeters for X-rays of low energies; Respuesta de dosimetros de TLD-100 de LiF para rayos X de bajas energias

    Energy Technology Data Exchange (ETDEWEB)

    Bonzi, E. V.; Mainardi, R. T. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Av. Haya de la Torre y Av. Medina Allende s/n, Ciudad Universitaria, X5016LEA Cordoba (Argentina)

    2011-10-15

    In diverse practical applications as the existent in radiological clinics, industrial facilities and research laboratories, the solid state dosimeters are used for the measure of the different types of ionizing radiations. At the present time dosimeters are manufactured with different types of materials that present thermoluminescent properties, to the effects of determining the absorbed radiation dose. Under these conditions, the radiation dose is determined integrated in all the range of energies of the beam of X-rays, since it assumes that the response of these dosimeters is lineal with the energy of the photons or radiant particles. Because interest exists in advancing in the development of a determination method in the way of the X-rays spectrum emitted by a tube of those used in diagnostic or therapy, we have measured the response of TLD-100 LiF dosimeters for low energies, minor at 60 keV, for a several group of these dosimeters. (Author)

  20. The dosimeter personal use in controlled area

    International Nuclear Information System (INIS)

    Costa, R. F.

    2015-01-01

    The discovery of X-rays revolutionized medicine because it allowed a patient to be examined internally with no surgery. But also caused damage to health professionals and patients due, its oxidizing action. In the beginning of its discovery, many doctors were exposed and exposed beams to their patients for long periods of time, therefore, they developed diseases caused by radiation and the medical community realized that something was wrong. Then created a radiological protection commission to regulate its use in humans and so limit your exposure. Today we know that many companies still did not fit the standards of radiation protection. So we evaluate the technical professionals in radiology regarding the correct use of personal dosimeter, through a descriptive study with a quantitative approach, we used the information collection technique based on a questionnaire developed for this purpose which was delivered and collected personally. From this survey, we sought to assess the knowledge of the basic guidelines of radiological protection. He concluded that the majority of respondents know the rules of use of the personal dosimeter, but do not use it properly, due mainly to lack of supervision by the company, overwork and neglect. (author)

  1. Measure of the attenuation curve of a beam of X-rays with TLD-100 dosimeters of LiF

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.; Germanier, A.; Delgado, V.

    2011-10-01

    The attenuation curve of a beam of X-rays represents the beam intensity in function of the attenuator thickness interposed between the source and the detector. To know with the major possible precision the attenuation curve is indispensable in procedures of spectral reconstruction. Their periodic measuring also offers valuable information on the correct operation of a tube of X-rays, diagnostic or therapy, when not have a specific detector for that activity. In this work was measured the attenuation curve of a tube of X-rays operated to 50 kV and 0.5 ma, using existent elements in any diagnostic or therapy laboratory with radiations. In the measures commercial aluminum foil was used, bent until 24 times and thermoluminescent dosimeters TLD 100 - LiF. Also, for comparison, was measured this attenuation curve with an ionization chamber brand Capintec model 192. Was determined by X-rays fluorescence the composition of the aluminium foil, since the present elements in the alloy can to affect the form of the attenuation curve. It is interesting to observe that these elements are in very low proportion (ppm) that they do not alter the attenuation capacity of the pure aluminium. Finally in a precision balance we weigh a big piece (30 cm x 100 cm) of aluminium foil and we obtained the thickness in g/c m2. It is possible to obtain attenuation curves of a beam of X-rays, with a high precision procedure and reproducibility. The use of TLD-100 dosimeters of LiF or similar makes that this activity was also quick and simple. (Author)

  2. Assessment of Siemens plessey electronic personal dosimeter

    International Nuclear Information System (INIS)

    Hirning, C.R.; Lopez, S.; Yuen, P.S.

    1994-01-01

    This report presents the results of a laboratory assessment of the performance of a new type of personal dosimeter. The Electronic Personal Dosimeter, or EPD, was developed jointly by the National Radiological Protection Board and Siemens Plessey Controls Limited, both of the United Kingdom. Twenty pre-production units of the EPD and a reader were purchased by Ontario Hydro for the assessment. The tests were conducted jointly by Ontario Hydro's Health and Safety Division and AECL Research's Chalk River Laboratories (CRL), with funding from the Candu Owner's Group. A total of 26 tests were conducted, divided between Ontario Hydro and AECL. The test results were compared with the relevant requirements of three standards. In general, the performance of the EPD was found to be quite acceptable. It met most of the relevant requirements of the three standards and most of the design specifications. However, the following deficiencies were found: slow response time; sensitivity to high-frequency EMF; poor resistance to dropping; and an alarm that is not loud enough. In addition, the response of the EPD to low-energy beta rays may be too low for some applications. There were serious problems with the reliability of operation of the pre production EPDs used in these tests. 9 refs., 34 tabs., 20 figs

  3. Assessment of Siemens plessey electronic personal dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hirning, C R; Lopez, S [Ontario Hydro, Toronto, ON (Canada); Yuen, P S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1994-01-01

    This report presents the results of a laboratory assessment of the performance of a new type of personal dosimeter. The Electronic Personal Dosimeter, or EPD, was developed jointly by the National Radiological Protection Board and Siemens Plessey Controls Limited, both of the United Kingdom. Twenty pre-production units of the EPD and a reader were purchased by Ontario Hydro for the assessment. The tests were conducted jointly by Ontario Hydro`s Health and Safety Division and AECL Research`s Chalk River Laboratories (CRL), with funding from the Candu Owner`s Group. A total of 26 tests were conducted, divided between Ontario Hydro and AECL. The test results were compared with the relevant requirements of three standards. In general, the performance of the EPD was found to be quite acceptable. It met most of the relevant requirements of the three standards and most of the design specifications. However, the following deficiencies were found: slow response time; sensitivity to high-frequency EMF; poor resistance to dropping; and an alarm that is not loud enough. In addition, the response of the EPD to low-energy beta rays may be too low for some applications. There were serious problems with the reliability of operation of the pre production EPDs used in these tests. 9 refs., 34 tabs., 20 figs.

  4. Development of Thermoluminescence Dosimeter CaSO4:Dy as Personal and Environmental Dosimeters

    International Nuclear Information System (INIS)

    Hasnel Sofyan

    2009-01-01

    Development of personal and environmental dosimeters using material phosphors of CaSO 4 :Dy powder in form capillary glass and disc teflon thermoluminescence (TL) dosimeter have been done. TL dosimeter CaSO 4 :Dy powder used can record dose response less than 0.01 mGy. Fading of TL dosimeter capillary glass after 29 days is 25%. In 1 batch, making of CaSO 4 :Dy powder can obtain 2 groups of dosimeter capillaries with coefficient variance smaller than 10%. This discrepancy caused difference in powder making and reading of the TL dosimeter. TL dosimeter CaSO 4 :Dy teflon disc with dia. 5 mm and 0.8 mm thickness is homogeneous mixture between phosphor powder with dia. 80 to 150 mesh and teflon powder dia. 20 μm. The composition of CaSO 4 :Dy and teflon in TL dosimeter influence sensitivity of the dosimeter. It’ concluded that in order to obtain optimal sensitivity of TL dosimeter, the composition of CaSO 4 :Dy and teflon is 3 and 1 with pressured of disc in 700 MPa. (author).

  5. Development of a TL personal dosimeter identifiable PA exposure, and comparison with commercial TL dosimeters

    International Nuclear Information System (INIS)

    Kwon, J.W.; Kim, H.K.; Lee, J.K.; Kim, J.L.

    2004-01-01

    A single-dosimeter worn on the anterior surface of the body of a worker was found to significantly underestimate the effective dose to the worker when the radiation comes from the back. Several researchers suggested that this sort of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. However, use of multiple dosimeters also has disadvantages such as complication in control or incurrence of extra cost. Instead of the common multi-dosimeter approach, in this study, a single dosimeter introducing asymmetric filters which enabled to identify PA exposure was designed, and its dose evaluation algorithm for AP-PA mixed radiation fields was established. A prototype TL personal dosimeter was designed and constructed. The Monte Carlo simulations were utilized in the design process and verified by experiments. The dosimeter and algorithm were applicable to photon radiation having an effective energy beyond 100 keV in AP-PA mixed radiation fields. A simplified performance test based on ANSI N13.11 showed satisfactory results. Considering that the requirements of the International Electrotechnical Commission (IEC) and the American National Standards Institute (ANSI) with regard to the dosimeter on angular dependency is reinforced, the dosimeter and the dose evaluation algorithm developed in this study provides a useful approach in practical personal dosimetry against inhomogeneous high energy radiation fields. (author)

  6. Use of TL - dosimeters of TLD - 500K type for precision estimation of spatial distributions of mixed dose fields in 'Ukryttia' conditions

    CERN Document Server

    Lagutin, I G; Ershova, N N

    2003-01-01

    In some works being currently carried out in ISTC 'Ukryttia' divisions within the framework of 'Complex program of works at 'Ukryttia' object', a necessary arose to estimate local values of radiation dose fields of mixed type (beta + gamma). The most convenient tool for estimation of local values of long - term integrals of such doses are dosimeters fabricated on the basis of thermoluminescent detectors (TLD) having small sensitive volume under sufficient radiating capacity, convenient performance and high reproducibility of results. It was offered to use TL - detectors of TLD-500K type on the basis of sapphire monocrystal (alpha-Al sub 2 O sub 3).

  7. NRC TLD [thermoluminescent dosimeter] Direct Radiation Monitoring Network: Progress report, October--December 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; NcNamara, N.

    1989-04-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1988. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 4 tabs

  8. NRC TLD [Nuclear Regulatory Commission thermoluminescent dosimeter] direct radiation monitoring network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1990-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1989. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  9. Dose measurement during defectoscopic work using electronic personal dosimeters

    International Nuclear Information System (INIS)

    Smoldasova, J.

    2008-01-01

    Personal monitoring of the external radiation of radiation, personnel exposed to sources of ionizing radiation at a workplace is an important task of the radiological protection. Information based on the measured quantities characterizing the level of the exposure of radiation personnel enable to assess the optimum radiological protection at the relevant workplace and ascertain any deviation from the normal operation in time. Different types of personal dosimeters are used to monitor the external radiation of radiation personnel. Basically, there are two types of dosimeters, passive and active (electronic). Passive dosimeters provide information on the dose of exposure after its evaluation, while electronic dosimeters provide this information instantly. The goal of the work is to compare data acquired during different working activities using the DMC 2000 XB electronic dosimeters and the passive film dosimeters currently used at the defectoscopic workplace. (authors)

  10. Dosimetric comparison on tissue interfaces with TLD dosimeters, L-alanine, EDR2 films and Penelope simulation for a Co-60 source and linear accelerator in radiotherapy

    International Nuclear Information System (INIS)

    Vega R, J. L.; Cayllahua, F.; Apaza, D. G.; Javier, H.

    2015-10-01

    Percentage depth dose curves were obtained with TLD-100 dosimeters, EDR2 films and Penelope simulation at the interfaces in an inhomogeneous mannequin, composed by equivalent materials to the human body built for this study, consisting of cylindrical plates of solid water-bone-lung-bone-solid water of 15 cm in diameter and 1 cm in height; plates were placed in descending way (4-2-8-2-4). Irradiated with Co-60 source (Theratron Equinox-100) for small radiation fields 3 x 3 cm 2 and 1 x 1 cm 2 at a surface source distance of 100 cm from mannequin. The TLD-100 dosimeters were placed in the center of each plate of mannequin irradiated at 10 Gy. The results were compared between these measurement techniques, giving good agreement in interfaces better than 97%. This study was compared with the same characteristics of another study realized with other equivalent materials to human body not homogeneous acrylic-bone-cork-bone-acrylic. The percentage depth dose curves were obtained with mini-dosimeters L-alanine of 1 mm in diameter and 3 mm in height and 3.5 to 4.0 mg of mass with spectrometer band K (EPR). The mini-dosimeters were irradiated with a lineal accelerator PRIMUS Siemens 6 MV. The results of percentage depth dose of L-alanine mini-dosimeters show a good agreement with the percentage depth dose curves of Penelope code, better than 97.7% in interfaces of tissues. (Author)

  11. ALGORITHM VERIFICATION FOR A TLD PERSONAL DOSIMETRY SYSTEM

    International Nuclear Information System (INIS)

    SHAHEIN, A.; SOLIMAN, H.A.; MAGHRABY, A.

    2008-01-01

    Dose algorithms are used in thermoluminescence personnel dosimetry for the interpretation of the dosimeter response in terms of equivalent dose. In the present study, an automated Harshaw 6600 reader was vigorously tested prior to the use for dose calculation algorithm according to the standard established by the US Department of Energy Laboratory Accreditation Program (DOELAP). Also, manual Harshaw 4500 reader was used along with the ICRU slab phantom and the RANDO phantom in experimentally determining the photon personal doses in terms of deep dose; Hp(10), shallow dose; Hp(0.07), and eye lens dose; Hp(3). Also, a Monte Carlo simulation program (VMC-dc) free code was used to simulate RANDO phantom irradiation process. The accuracy of the automated system lies well within DOELAP tolerance limits in all test categories

  12. Radiation doses measured by TLD (thermo luminescent dosimeter) in x-ray examination

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hiraki, Motoji; Murakami, Shozo; Nishikawa, Naozo; Yagi, Takayuki

    1977-01-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field. (auth.)

  13. Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD)

    Science.gov (United States)

    Purwaningsih, S.; Lubis, L. E.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    This research was aimed to check the patterns of dose profile on adult and pediatric head scan. We compared measurement result on dose profile along the z- axis rotation at peripheries and center phantom with a variety of pitch, i.e. 0.75, 1, 1.5 for adult and pediatric head protocol, keeping the rest of the scan parameters constant. Measurements were performed on homogeneous, cylindrical PMMA phantom with diameters of 16 and 10 cm using XR-QA2 Gafchromic film and TLD as dosimeters. The measurement result indicated a decrease in the dose about 50% and 47% for adult and pediatric head scan with the increase of pitch. For 0.75 value of pitch adult head scan, dose range for each position were (2.4 - 5.0) cGy, (3.1 - 5.3) cGy, (2.2 - 4.5) cGy, (2.8 - 5.3) cGy, and (3.3 - 5.6) cGy for position of center, 3, 6, 9 and 12 o'clock peripheral phantom position respectively. Dose profile for adult and pediatric head scan protocols has pattern curve with the maximum dose in the middle and tendency of symmetry near the edges, with different the plateau length along z- axis direction in accordance to the measurement position in the phantom.

  14. Synthesis and characterization of Ho3+ doped hafnium oxide TLD for radiation dosimeter

    International Nuclear Information System (INIS)

    Sekar, Nandakumar; Ganesan, Bharanidharan; Sahib, Hajee Reyaz Ali; Aruna, Prakasarao; Ganesan, Singaravelu; Thamilkumar, P.; Rai, R.R.

    2017-01-01

    Cancer is a dreaded disease which is treated by Radiotherapy, Chemotherapy and Surgery. Radiotherapy plays a vital role in treatment of cancer and recently measurements of invivo radiation dosimetric in patient is of great interest due to high dose gradients in advanced technology like IMRT, IGRT etc. Hence, for the last few decades, a great degree of interest has been shown for the hafnium oxide for radiation dosimetric applications, due to its high dielectric constant, wide band gap and better interface properties such as chemical stability, conduction band offset and thermodynamic stability. In the present study, Synthesis and characterization of Ho 3+ doped Hafnium oxide were carried out and its applications towards radiation dosimeter were investigated

  15. Argentine Republic intercomparison programme for personal dosimeters

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.; Papadopulos, Susana B.; Kunst, Juan J.; Cruzate, Juan A.; Saravi, Margarita C.

    2004-01-01

    In 1997 an Intercomparison Program for individual monitoring started in order to test (on a voluntary basis) the performance in absorbed dose and personal dose equivalent determinations. The aim of the program was also to gain some insight into the general aspects related to the type of the personnel dosimeter used, the calibration procedures, the phantom spectral dependence and the management of radiological quantities. The Regional Reference Center for Dosimetry (CCR), of the Argentine National Atomic Energy Commission and the Physical Dosimetry Laboratory of the Argentine National Regulatory Authority, performed the irradiations. Those were done free air and on ICRU phantom, using X-ray, quality ISO: W60, W80, W110 and W200; and 137 Cs and 60 Co gamma rays, normal and angular (0, 30, 60 degrees) incidence. In the framework of the Program, an upgraded workshop took place and the national standard, IRAM 17146, was elaborated as well. In this work, the laboratories performance and its temporal evolution is shown from 1997 up to 2002. The suggestions to improve their performance are also included. (author)

  16. Investigation of self-indicating radiation personal dosimeter

    International Nuclear Information System (INIS)

    Xia Wen; Ye Honsheng; Lin Min; Xu Lijun; Chen Kesheng; Chen Yizhen

    2014-01-01

    A self-indicating radiation personal dosimeter was investigated using radiation sensitive material diacetylene monomer PCDA, which was a component of the polymerization system. The substrate material, solvent, sensitive material, solution temperature, thickness of film and the preparation method were studied. The dosimeter colour changes from white to blue when exposed 0.1-2.5 Gy, and the linearly dependent coefficient of the exposure response is 0.9998, the stability of absorbency in two weeks after exposure is testified well. It can be used as self-indicating radiation alert personal dosimeter. (authors)

  17. Response analysis of TLD-300 dosimeters in heavy-particle beams

    International Nuclear Information System (INIS)

    Loncol, Th.; Hamal, M.; Vynckier, S.; Scalliet, P.; Denis, J.M.; Wambersie, A.

    1996-01-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65)+Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (150 deg. C) and peak 5 (250 deg. C) response of CaF 2 :Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental C-12 heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to Co-60, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the Co-60 reference radiation to the C-12 heavy-ion beam. This parameter was strongly correlated with the change of radiation quality. (author)

  18. An approved personal dosimetry service based on an electronic dosimeter

    International Nuclear Information System (INIS)

    Marshall, T.O.; Bartlett, D.T.; Burgess, P.H.; Campbell, J.I.; Hill, C.E.; Pook, E.A.; Sandford, D.J.

    1991-01-01

    At the Second Conference on Radiation Protection and Dosimetry a paper was presented which, in part, announced the development of an electronic dosimeter to be undertaken in the UK by the National Radiological Protection Board (NRPB) and Siemens Plessey Controls Ltd. This dosimeter was to be of a standard suitable for use as the basis of an approved personal dosimetry service for photon and beta radiations. The project has progressed extremely well and dosimeters and readers are about to become commercially available. The system and the specification of the dosimeter are presented. The NRPB is in the process of applying for approval by the Health and Safety Executive (HSE) to operate as personal monitoring service based on this dosimeter. As part of the approval procedure the dosimeter is being type tested and is also undergoing an HSE performance test and wearer trials. The tests and the wearer trials are described and a summary of the results to date presented. The way in which the service will be organized and operated is described and a comparison is made between the running of the service and others based on passive dosimeters at NRPB

  19. Personal noise dosimeters: Accuracy and reliability in varied settings

    Directory of Open Access Journals (Sweden)

    Sheri Lynn Cook-Cunningham

    2014-01-01

    Full Text Available This study investigated the accuracy, reliability, and characteristics of three brands of personal noise dosimeters (N = 7 units in both pink noise (PN environments and natural environments (NEs through the acquisition of decibel readings, Leq readings and noise doses. Acquisition periods included repeated PN conditions, choir room rehearsals and participant (N = 3 Leq and noise dosages procured during a day in the life of a music student. Among primary results: (a All dosimeters exhibited very strong positive correlations for PN measurements across all instruments; (b all dosimeters were within the recommended American National Standard Institute (ANSI SI.25-1991 standard of ±2 dB (A of a reference measurement; and (c all dosimeters were within the recommended ANSI SI.25-1991 standard of ±2 dB (A when compared with each other. Results were discussed in terms of using personal noise dosimeters within hearing conservation and research contexts and recommendations for future research. Personal noise dosimeters were studied within the contexts of PN environments and NEs (choral classroom and the day in the life of collegiate music students. This quantitative study was a non-experimental correlation design. Three brands of personal noise dosimeters (Cirrus doseBadge, Quest Edge Eg5 and Etymotic ER200D were tested in two environments, a PN setting and a natural setting. There were two conditions within each environment. In the PN environment condition one, each dosimeter was tested individually in comparison with two reference measuring devices (Ivie and Easera while PN was generated by a Whites Instrument PN Tube. In condition two, the PN procedures were replicated for longer periods while all dosimeters measured the sound levels simultaneously. In the NE condition one, all dosimeters were placed side by side on a music stand and recorded sound levels of choir rehearsals over a 7-h rehearsal period. In NE, condition two noise levels were measured

  20. Calibration and performance testing of electronic personal dosimeters (EPD)

    International Nuclear Information System (INIS)

    Banaga, H.A.

    2008-04-01

    In modern radiation protection practices, active personal dosimeters are becoming absolutely necessary operational tools for satisfying the ALARA principle. The aim of this work was to carry out calibration and performance testing of ten electronic personal dosimeters (EPD) used for the individual monitoring. The EPDs were calibrated in terms of operation radiation protection quantity, personal dose equivalent, Hp (10). Calibrations were carried out at three of x-ray beam qualities described in ISO 4037 namely 60, 100 and 150 kV in addition to Cs-137 gamma ray quality. The calibrations were performed using polymethylmethacrylate (PMMA) phantom with dimensions 20*20*15 cm 3 . Conversion coefficient Hp (10)/K air for the phantom was also calculated. The response and linearity of the dosimeter at the specified energies were also tested. The EPDs tested showed that the calibration coefficient ranged from 0.60 to 1.31 and an equivalent response for the specified energies that ranged from 0.76 to 1.67. The study demonstrated the possibility of using non standard phantom for calibrating dosimeters used for individual monitoring. The dosimeters under study showed a good response in all energies except the response in quality 100 kV. The linearity of the dosimeters was within ±15%, with the exception of the quality 100 kV where this limit was exceeded.(Author)

  1. A Computerized QC Analysis of TLD Glow Curves for Personal Dosimetry Measurements Using Tag QC Program

    International Nuclear Information System (INIS)

    Primo, S.; Datz, H.; Dar, A.

    2014-01-01

    The External Dosimetry Lab (EDL) at the Radiation Safety Division at Soreq Nuclear Research Center (SNRC) is ISO 17025 certified and provides its services to approximately 13,000 users throughout the country from various sectors such as medical, industrial and academic. About 95% of the users are monitored monthly for X-rays, radiation using Thermoluminescence Dosimeter (TLD) cards that contain three LiF:Mg,Ti elements and the other users, who work also with thermal neutrons, use TLD cards that contain four LiF:Mg,Ti elements. All TLD cards are measured with the Thermo 8800pc reader. Suspicious TLD glow curve (GC) can cause wrong dose estimation so the EDL makes great efforts to ensure that each GC undergoes a careful QC procedure. The current QC procedure is performed manually and through a few steps using different softwares and databases in a long and complicated procedure: EDL staff needs to export all the results/GCs to be checked to an Excel file, followed by finding the suspicious GCs, which is done in a different program (WinREMS), According to the GC shapes (Figure 1 illustrates suitable and suspicious GC shapes) and the ratio between the elements result values, the inspecting technician corrects the data. The motivation for developing the new program is the complicated and time consuming process of our the manual procedure to the large amount of TLDs each month (13,000), similarly to other Dosimetry services that use computerized QC GC analysis. it is important to note that only ~25% of the results are above the EDL recorded level (0.10 mSv) and need to be inspected. Thus, the purpose of this paper is to describe a new program, TagQC, which allows a computerized QC GC analysis that identifies automatically, swiftly, and accurately suspicious TLD GC

  2. Comparison between two kind of power circuits for personal dosimeter

    International Nuclear Information System (INIS)

    Liu Zhengshan; Deng Changming; Guo Zhanjie

    2002-01-01

    Personal Dosimeter is commonly requested using battery for its power supply, and hope the battery life is long. Also with the fall of battery voltage, some performance of instrument as well as drop, Reasonable supply design can protract the battery life. The author introduces two method: power supply with battery directly and supply used power chip conversion. Combine personal dosimeter, the authors carried comparison for battery life, power consumption, cost and volume. Based on the comparison result and instrument fact request, one can choose method of power circuit

  3. Personal neutron monitoring using TLD albedo combined with etched tracks detector

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N.; Momose, T. [Japan Nuclear Cycle Development Institute, Ibarakiken (Japan)

    2002-07-01

    The albedo dosimetry has been carried out in personal neutron monitoring in the MOX fuel plant of JNC Tokai Works, however, it has shortcomings mainly due to the inherently poor energy response. This paper describes our efforts to overcome these difficulties in practical use of albedo dosemeters. The following four subjects are presented: (1) the neutron energy response functions of albedo TLD obtained from the mono-energetic neutron irradiation experiments and the Monte-Carlo calculations, (2) the location- dependent correction factors calculated from the response functions and neutron energy spectra measured in the workplaces, (3) the results of the international personal neutron dosimetry intercomparison program, and (4) the operational comparison program of TLD albedo and etched tracks detector worn by workers engaged in the fabrication process of the MOX fuel plant. Finally, the characteristics of the combination neutron dosemeter using TLD albedo and solid state etched track detector are summarized.

  4. Solid-state personal dosimeter using dose conversion algorithm

    International Nuclear Information System (INIS)

    Lee, B.J.; Lee, Wanno; Cho, Gyuseong; Chang, S.Y.; Rho, S.R.

    2003-01-01

    Solid-state personal dosimeters using semiconductor detectors have been widely used because of their simplicity and real time operation. In this paper, a personal dosimeter based on a silicon PIN photodiode has been optimally designed by the Monte Carlo method and also developed. For performance test, the developed dosimeter was irradiated within the energy range between 50 keV and 1.25 MeV, the exposure dose rate between 3 mR/h and 25 R/h. The thickness of 0.2 mm Cu and 1.0 mm Al was selected as an optimal filter by simulation results. For minimizing the non-linear sensitivity on energy, dose conversion algorithm was presented, which was able to consider pulse number as well as pulse amplitude related to absorbed energies. The sensitivities of dosimeters developed by the proposed algorithm and the conventional method were compared and analyzed in detail. When dose conversion algorithm was used, the linearity of sensitivity was better about 38%. This dosimeter will be used for above 65 keV within the relative response of ±10% to 137 Cs

  5. Measure of the attenuation curve of a beam of X-rays with TLD-100 dosimeters of LiF; Medicion de la curva de atenuacion de un haz de rayos X con dosimetros TLD-100 de LiF

    Energy Technology Data Exchange (ETDEWEB)

    Bonzi, E. V.; Mainardi, R. T. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Av. Haya de la Torre y Av. Medina Allende s/n, Ciudad Universitaria, Cordoba (Argentina); Germanier, A. [Ministerio de Ciencia y Tecnologia, Ceprocor, Unidad de Estudios Fisicos, Alvarez de Arenas 230, X5004AAP Barrio Juniors, Cordoba (Argentina); Delgado, V. [Universidad Complutense de Madrid, Departamento de Fisica Medica, Ciudad Universitaria, 28040 Madrid (Spain)

    2011-10-15

    The attenuation curve of a beam of X-rays represents the beam intensity in function of the attenuator thickness interposed between the source and the detector. To know with the major possible precision the attenuation curve is indispensable in procedures of spectral reconstruction. Their periodic measuring also offers valuable information on the correct operation of a tube of X-rays, diagnostic or therapy, when not have a specific detector for that activity. In this work was measured the attenuation curve of a tube of X-rays operated to 50 kV and 0.5 ma, using existent elements in any diagnostic or therapy laboratory with radiations. In the measures commercial aluminum foil was used, bent until 24 times and thermoluminescent dosimeters TLD 100 - LiF. Also, for comparison, was measured this attenuation curve with an ionization chamber brand Capintec model 192. Was determined by X-rays fluorescence the composition of the aluminium foil, since the present elements in the alloy can to affect the form of the attenuation curve. It is interesting to observe that these elements are in very low proportion (ppm) that they do not alter the attenuation capacity of the pure aluminium. Finally in a precision balance we weigh a big piece (30 cm x 100 cm) of aluminium foil and we obtained the thickness in g/c m2. It is possible to obtain attenuation curves of a beam of X-rays, with a high precision procedure and reproducibility. The use of TLD-100 dosimeters of LiF or similar makes that this activity was also quick and simple. (Author)

  6. A critical assessment of two types of personal UV dosimeters.

    Science.gov (United States)

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  7. Estimation of personal dose based on the dependent calibration of personal dosimeters in interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige; Koshida, Kichiro; Ichikawa, Katsuhiro

    2007-01-01

    The purpose of present study is, in interventional radiology (IVR), to elucidate the differences between each personal dosimeter, and the dependences and calibrations of area or personal dose by measurement with electronic dosimeters in particular. We compare space dose rate distributions measured by an ionization survey meter with the value measured by personal dosimeter: an optically stimulated luminescence, two fluoroglass, and two electronic dosimeters. Furthermore, with electronic dosimeters, we first measured dose rate, energy, and directional dependences. Secondly, we calibrated the dose rate measured by electronic dosimeters with the results, and estimated these methods with coefficient of determination and Akaike's Information Criterion (AIC). The results, especially in electronic dosimeters, revealed that the dose rate measured fell by energy and directional dependences. In terms of methods of calibration, the method is sufficient for energy dependence, but not for directional dependence, because of the lack of stable calibration. This improvement poses a question for the future. The study suggested that these dependences of the personal dosimeter must be considered when area or personal dose is estimated in IVR. (author)

  8. Experimental ratio between the 'real' dose per organ and the calculated dose determined by means of the Embalse nuclear power plant's personal dosimeter

    International Nuclear Information System (INIS)

    Thomasz, E.; Salas, C.A.

    1987-01-01

    The specific purpose of the study was to determine the experimental ratio between the reading of dosimeters used by the personnel of the Embalse nuclear power plant and the 'real' dose absorbed by the worker in different organs. An anthropomorphic phantom ALDERSON internal and externally loaded with approximately 150 TLD crystals was used. This phantom was placed in five enclosures that were usually occupied by workers of the Embalse nuclear power plant. In this way, the average dose per organ and the effective equivalent dosis in each enclosure could be calculated and compared with the personal dosimeters placed over the thorax and the conversion factor rem/rem for each enclosure was determined. The average factor resulting from the five considered enclosures was 0.73 rem/rem. This means that the personal dosimeters over value the real dosis absorbed by the personnel of the Embalse nuclear power plant in approximately 37%. (Author)

  9. Gamma radiation field extremity personal dosimeter. Calibration and implementation

    International Nuclear Information System (INIS)

    Papadopulos, S.B.; Gregori, B.N.; Cruzate, J.A.

    2000-01-01

    The purpose of this paper is to show the extremity dose equivalent-kerma conversion factors obtained theoretical and experimentally in arm and finger for normally incident gamma radiation. Extremity dosemeters, based on termoluminescent dosimeters (TLD) LiF 7 (TLD-700, Harshaw), have been irradiated on designed as finger and arm phantoms. The finger phantom is been characterised as a solid cylinder made of polymethylmethacrylate (PMMA) 19mm diameter and 300mm height. The arm phantom is a cylinder 73mm external diameter with PMMA walls 2.5mm thick filled with water and 300mm height. There were used several radiation sources like Co-60 and Cs-137 from the Regional Reference Dosimetry Centre (CRR) of the National Atomic Energy Commission (CNEA) and from the Nuclear Regulatory Authority (ARN) of Argentina. In the same way RX wide spectrum irradiations were made in the ISO-4037 qualities W60, W110 and W200. At the same time the conversion factors have been theoretically obtained. In order to achieve this, the finger and arm phantoms have been modelled and the photon and electron transport have been done with the Monte Carlo code MCNP-4B. There was a good agreement between the theoretical and experimental results, showing a difference less than 8%. Also the experimental results have been compared with the published data available giving a difference less than 7%. In this work is shown the performance of the extremity dosimeter usually used by the exposed workers of the ARN. It has got a similar energy response in the range of W110-Co-60 (not more than 7%) with respect to the experimental results obtained. The dose equivalent-kerma conversion factors are going to be used in the dose equivalent evaluation of workers mainly hands exposed. Related with the incident energy several applied recommendations have been made. An application is presented in nuclear medicine experiences. In the case of a thyroid treatment with 131 I, the external dose workers have been evaluated

  10. Studies on dosimetric tests applying source irradiation force of Cs-137 for using in chambers for calibration and TLD type dosimeters

    International Nuclear Information System (INIS)

    Ribeiro, Laila Lorena X.; Barbosa, Rugles Cesar; Correa, Rosangela S.

    2011-01-01

    The West Central region of Brazil does not have a basic infrastructure for research, development, training programs, and personnel dosimetry education. All of them applied to environmental, industrial and medical uses. Service deployment for irradiance of TLD, via 137 Cs irradiator J. L. SHEPHERD model 28-8A (444 activity GBq) in CRCN-CO, it is necessary to introduce procedures for calibration of the radiator and other procedures related to dosimetry and calibration. Such procedures should be repeated periodically, as necessary to introduce techniques that make the service of the CRCN-CO a template, and that meet all standards requirements for radioprotection and operation of dosimetry and calibration. The objective of this work was to evaluate the radiation field of Cs-137, and the automatic system which systematizes the calibration procedures attached to a system control target for the radiator/calibration of monitors, and portable dosimeters. (author)

  11. Performance testing of personnel extremity dosimeters by Korean LiF: Mg, Cu, Na, Si TLD(KLT-300)

    International Nuclear Information System (INIS)

    Kim, J.L.; Lee, J.I.; Chang, S.Y.; Choi, H.S.; Lee, D.H.; Han, S.J.

    2005-01-01

    Full text: As the needs and opportunities for utilization of atomic energy and radiation are increasing, the related industries, medicines, environments are developing and the relevant organizations and companies are also becoming diverse. In result, the types and kinds of the radiation related to occupational environments are becoming diversified. For the whole body dosimeters, the methodology and criteria for the performance evaluation and safety regulations and laws have been prepared in some detail, but for the extremity dosimeters, those are not prepared yet in Korea. The extremity dosimeters are required when the extremity part of our body, such as hand, elbow, and arm below the elbow, the foot, knee, and leg below the knee are exposed to the radiation in specific work environments. The dosimeter irradiation conditions are clearly discriminated between the whole body exposure condition and the extremity exposure condition. By the investigation and analysis of the management status and dose evaluation methods of the extremity dosimeters for the local absorbed dose, the personnel monitoring system of the extremity dosimeter services in Korea can be diagnosed, and the performance testing criteria and procedures can be established. Therefore, this study presents the performance testing results of extremity dosimeters on the finger and arm/leg phantoms by the procedures recommended in the ANSI (American National Standard) N13.32 using KLT-300 TL materials (LiF:Mg,Cu,Nas,Si) which were developed in Korea Atomic Energy Research Institute (KAERI). The results show that the performance index for the two types of phantoms are sufficiently satisfied with the prescribed tolerance level in the all of the test categories listed in the ANSI N13.32. These results and procedures used in this study can be applicable for regulatory body to establish the standard criteria for acceptable performance and testing conditions for personnel extremity dosimeters services in the

  12. Electronic personal dosimeter heralds a revolution in legal dosimetry

    International Nuclear Information System (INIS)

    Fletcher, R.

    1991-01-01

    The Electronic Personal Dosimeter (EPD) developed by Siemens Plessey Controls and the UK's national Radiological Protection Board is approaching the pre-production stage. It provides ''legal'' dosimetry and all the features of a personal alarming dosimeter. The EPD uses solid state semiconductor detectors for gamma and beta radiation and has a dose threshold of about 1μ Sv, with a low energy gamma range down to 20 KeV. It has a multi function liquid crystal display for instant readout and audible and visual alarms. Two separates dose stores are maintained. Short term dose for tactical management and long term dose for approved dosimetry service record keeping. The latter can be reset only by an approved dosimetry service and is maintained on a search memory disk which can be read even if the EPD is destroyed. (UK)

  13. Calibration of a TLD system to estimate personal doses in fields of gamma-neutrons radiation

    International Nuclear Information System (INIS)

    Villegas, E.N.; Somarriba, S.I.

    2016-01-01

    Currently Nicaragua has no personal neutron dosimetry system. The calibration of a batch of albedo neutron dosimeters consisting of two pairs of "6LiF and "7LiF (Mg, Ti) detectors was done. The dosimeter and reader sensitivities were obtained using a "1"3"7Cs source, and a neutron calibration factor was found with a "2"4"1AmBe source. Reproducibility and homogeneity tests were performed, and the detection limit of the system was determined. This calibration will allow the beginning of neutron personal monitoring in the country. (author)

  14. Personnel photon dosimeter on the base of TLD sup n sup a sup t LiF

    CERN Document Server

    Kaskanov, G Y

    2003-01-01

    A personnel photon dosemeter on the basis of thermoluminescence detectors (TLD) sup n sup a sup t LiF is described. Experimental responses of the dosemeters in the unit of individual equivalent dose H sub p (10) for energy of photons 59.5, 120, 662, and 1250 keV are presented. It is shown that the dosemeter allows one to measure H sub p (10) with admissible uncertainty in the energy range from 60 to 1250 keV.

  15. Evaluation of the implementation and use of active personal dosimeters for neutrons in Brazil

    International Nuclear Information System (INIS)

    Castro B, C. P.; Wagner P, W.; De Souza P, K. C.

    2014-08-01

    This work was conducted through of a field research based on a questionnaire sent to users of active personal dosimeters. A retrospective study of the last six years was also carried out of the services in the Neutron Metrology Laboratory (2008-2013) referent to the active personal dosimeters, taking into consideration the standards ISO-8529-3 and IEC-61526. The active personal dosimeters are defined as any instrument of individual monitoring with direct reading capacity, used by individuals exposed to ionizing radiation fields. Through research was verified that the active personal dosimeters work associated with other dosimeter types. Considering all dosimeters declared in the questionnaire, only two dosimeters (MGP brand Dmc 2000-GN model and the brand ATOMTEX model AT2503A) have conformity declaration with the international standard IEC-61526: 2005 reported by the manufacturers. (author)

  16. Dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1986-01-01

    This invention relates to a dosimeter for measuring ionizing radiation, and particularly to a dosimeter using an insulated gate field effect transistor (IGFET) as a sensor, having substantially improved accuracy. An IGFET is a field effect transistor fabricated on a silicon substrate and having an oxide insulator between the gate electrode and the silicon substrate. The gate electrode can be either metal or polycrystalline silicon dioxide. This invention overcomes previously-noted problems with IGFET sensors - the variation of threshold voltage with temperature, their inherent zero offset which varies from wafer to wafer, and the zero drift in threshold voltage - by measuring the differential threshold between two IGFET sensors exposed to the same radiation, in which one is biased into its conducting region, and the other is biased either off or to a conducting level less than the first. The measured differential threshold voltage between the two transistors will be a measure of the gamma radiation dose

  17. A TLD-based personal dosemeter system for air crew monitoring

    International Nuclear Information System (INIS)

    Hajek, M.; Berger, T.; Vana, N.

    2003-01-01

    Full text: Due to the complex spectrum of different particles and energies involved, in-flight radiation dosimetry is usually associated with extensive instrumentation. The exposure of air crew personnel to cosmic radiation is paid serious attention, being further enhanced by the release of the European Council Directive 96/29/Euratom which makes the surveillance of crew members an obligatory issue. The high temperature ratio (HTR) method for small and easy-to-handle LiF:Mg,Ti thermoluminescent dosimeters was developed at the Atomic Institute of the Austrian Universities and fulfils these demands by permitting the determination of dose equivalent in radiation fields of unknown composition. The method uses the relative intensity of glow peaks 6 and 7 compared with the dominant peak 5 in the LiF Tl emission as an indication for the average LET and, thus, the mean quality factor of the radiation field. Extensive experiments in various ion beams established a HTR vs. LET calibration curve for the commercially available Tl phosphors TLD-600 and TLD-700. Additionally, the different neutron sensitivity of both types may be exploited for the determination of the dose equivalent delivered from neutrons which dominate at aviation altitudes. However, it is essential that the calibration of the Tl detectors is performed in a neutron environment of similar spectral shape as that encountered in flight. In our case, this constraint was satisfied by the CERN-EU High-Energy Reference Field (CERF). Results of both neutron and total dose equivalent for several different north-bound and trans-equatorial routes are presented, ranging from 2.1 ± 0.1 μSv/h with a 30 % neutron contribution for Vienna-Sydney to 4.9 ± 0.2 μSv/h and a roughly 55 % neutron contribution for Vienna-Tokyo. The measured route doses are compared with CARI-6M calculations. (author)

  18. A Computerized QC Analysis of TLD Glow Curves for Personal Dosimetry Measurements Using TagQC Program

    International Nuclear Information System (INIS)

    Primo, S.; Datz, H.; Dar, A.

    2014-01-01

    The External Dosimetry Lab (EDL) at the Radiation Safety Division at Soreq Nuclear Research Center (SNRC) is ISO 17025 certified and provides its services to approximately 13,000 users throughout the country from various sectors such as medical, industrial and academic. About 95% of the users are monitored monthly for X-rays, and radiation using Thermoluminescence Dosimeter (TLD) cards that contain three LiF:Mg,Ti elements and the other users, who work also with thermal neutrons, use TLD cards that contain four LiF:Mg,Ti elements. All TLD cards are measured with the Thermo 8800pc reader.Suspicious TLD glow curve (GC) can cause wrong dose estimation so the EDL makes great efforts to ensure that each GC undergoes a careful QC procedure. The current QC procedure is performed manually and through a few steps using different softwares and databases in a long and complicated procedure: EDL staff needs to export all the results/GCs to be checked to an Excel file, followed by finding the suspicious GCs, which is done in a different program (WinREMS), According to the GC shapes (Figure 1 illustrates suitable and suspicious GC shapes) and the ratio between the elements result values, the inspecting technician corrects the data

  19. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  20. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  1. Determination of the dose in eyes lens by TLD, in PET/CT by technicians in PET/CT service; Determinacion de la dosis en cristalino por medio de TLD, en personal tecnico de servicio PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Emiliano A., E-mail: eam.marino@gmail.com [Universidad Nacional de Cuyo (UNC), Rio Negro (Argentina). Instituto Balseiro; Arenas, German M. [Fundacion Escuela de Medicina Nuclear (FUESMEN), Mendoza (Argentina)

    2013-11-01

    This work was supported, on the one hand, in a part of the project ORAMED which consisted of a design of a TLD dosimeter for measurements of Hp (3) in areas close to the lens, for interventional radiology physicians. On the other hand, Berhens work proposes using calibrated TLDs Hp (0.07) and Hp (10) to estimate Hp (3) crystal. This resulted in dosimeters calibrated using Hp (10) slab, and mount them on glasses, to estimate the dose to the lens of the technical staff of the Service PET / CT. The value obtained 29mSv/year of Lens Dose Equivalent exceeds the recommended limit. We also demonstrate that, under the current working conditions, the values of Hp (3) reported from whole body dosimeter does not represent faithfully the lens dose.

  2. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters

    DEFF Research Database (Denmark)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim

    2017-01-01

    radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. Methods: We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high......-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale...... with our specialist knowledge as occupational physicians. Conclusions: Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support...

  3. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia; Dosimetria personal TLD 110 en medicos ortopedistas expuestos a radiacion ionizante en Bogota - Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Sierra C, B. Y.; Jimenez, Y. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Fisica Medica, Carrera 45 No. 26-85, Bogota (Colombia); Plazas, M. C. [Hospital Universitario Fundacion Santa Fe de Bogota, Instituto de Oncologia Carlos Ardila Lulle, Calle 119, No. 7-90, 220246 Bogota (Colombia); Eslava S, J. [Universidad Nacional de Colombia, Instituto de Investigaciones Clinicas, Grupo Equidad en Salud, Carrera 45 No. 26-85, Bogota (Colombia); Groot R, H., E-mail: brigith.sierra@gmail.com [Universidad de los Andes, Laboratorio de Genetica Humana, Carrera 1 No. 18A -12, Bogota (Colombia)

    2014-08-15

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  4. Is it really not possible to use electronic personal dosimeters in clinical exposure situations?

    International Nuclear Information System (INIS)

    Borowski, M.; Poppe, B.; Looe, H.K.; Boetticher, H. von

    2010-01-01

    Purpose: Due to significant measuring inaccuracies that can occur under certain conditions, the use of electronic personal dosimeters in statutory measurements in X-ray diagnostics is currently legally restricted. The present study investigates the clinically relevant situations in which measurement errors of more then 20 % can be anticipated. Materials and Methods: Four series of experiments were made, comparing the results of the electronic personal dosimeter EPD Mk2.3 to those of reference dosimeters (TLDs and diagnostic dosimeters). On the one hand, personal doses have been determined in the routine operation of controlled areas in various departments. On the other hand, measurements on phantoms have been conducted in extreme but realistic situations under radiation protection. Experiments were conducted in unweakened scattered radiation as well as in unattenuated and attenuated direct radiation. Results: The tested electronic personal dosimeter type meets the requirements regarding measurement accuracy for 'official' personal dosimeters in all of the examined clinically relevant scattered radiation fields. Only if exposed to radiation directly, an underestimation of the dose can occur and can be greater than 90 %. Conclusion: In the range of scattered radiation of diagnostic X-ray equipment, even in pulsed fields, the use of electronic personal dosimeters is reasonable. Considerable measurement errors can only arise in radiation fields that are not realistic under regular conditions and even in connection with most accidents. (orig.)

  5. PTTL Dose Re-estimation Applied to Quality Control in TLD-100 Based Personal Dosimetry

    International Nuclear Information System (INIS)

    Muniz, J.L.; Correcher, V.; Delgado, A.

    1999-01-01

    A new method for quality control of dose performance in Personal Dosimetry using TLD-100 is presented. This method consists of the application of dose reassessment techniques based on phototransferred thermoluminescence (PTTL). Reassessment is achieved through a second TL readout of the dosemeters worn by the controlled workers, after a reproducible UV exposure. Recent refinements in the PTTL technique developed in our laboratory allow reassessing doses as low as 0.2 mSv, thus extending the reassessment capability to the entire dose range that must be monitored in personal dosimetry. After a one month exposure, even purely environmental doses can be reassessed. This method can be applied for either re-estimation of single doses or of the total dose accumulated after a number of exposures and dose measurements. Several tests to reconfirm low doses in normal working conditions for personal dosimetry have been performed. Each test consisted of several cycles of exposure and TL evaluations and a final PTTL re-estimation of the total accumulated dose in those cycles. The results obtained always showed very good agreement between the sum of the partial doses and the total reassessed dose. The simplicity of the method and the possibility of re-evaluating the doses assessed to the workers employing their own dosemeters are advantageous features to be considered in designing systems for the determination of real performance in personal dosimetry. (author)

  6. Dosimetric comparison on tissue interfaces with TLD dosimeters, L-alanine, EDR2 films and Penelope simulation for a Co-60 source and linear accelerator in radiotherapy; Comparacion dosimetrica en interfaces de tejidos con dosimetros TLD, L-alanina, peliculas EDR2 y simulacion Penelope para una fuente de Co-60 y acelerador lineal en radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, J. L.; Cayllahua, F.; Apaza, D. G.; Javier, H., E-mail: josevegaramirez@yahoo.es [Universidad Nacional de San Agustin, Departamento de Fisica, Av. Independencia s/n, Arequipa (Peru)

    2015-10-15

    Percentage depth dose curves were obtained with TLD-100 dosimeters, EDR2 films and Penelope simulation at the interfaces in an inhomogeneous mannequin, composed by equivalent materials to the human body built for this study, consisting of cylindrical plates of solid water-bone-lung-bone-solid water of 15 cm in diameter and 1 cm in height; plates were placed in descending way (4-2-8-2-4). Irradiated with Co-60 source (Theratron Equinox-100) for small radiation fields 3 x 3 cm{sup 2} and 1 x 1 cm{sup 2} at a surface source distance of 100 cm from mannequin. The TLD-100 dosimeters were placed in the center of each plate of mannequin irradiated at 10 Gy. The results were compared between these measurement techniques, giving good agreement in interfaces better than 97%. This study was compared with the same characteristics of another study realized with other equivalent materials to human body not homogeneous acrylic-bone-cork-bone-acrylic. The percentage depth dose curves were obtained with mini-dosimeters L-alanine of 1 mm in diameter and 3 mm in height and 3.5 to 4.0 mg of mass with spectrometer band K (EPR). The mini-dosimeters were irradiated with a lineal accelerator PRIMUS Siemens 6 MV. The results of percentage depth dose of L-alanine mini-dosimeters show a good agreement with the percentage depth dose curves of Penelope code, better than 97.7% in interfaces of tissues. (Author)

  7. Effect of electromagnetic field in fusion facility on electronic personal dosimeter

    International Nuclear Information System (INIS)

    Yamada, Junya; Kawano, Takao; Uda, Tatsuhiko; Shimo, Michikuni

    2010-01-01

    The effect of electromagnetic field on electronic personal dosimeters in a nuclear fusion facility was examined in a Magnetic Resonance Imaging (MRI) examination room instead of a nuclear fusion facility. Three types of electronic personal dosimeters, the PDM-111, the 112, and the 117, were used as typical ones. We surveyed the electromagnetic field distribution and dosimeters were placed at locations with various strengths of the electromagnetic field. The natural radiation dose was measured for about one week. We found that while dosimeters were not affected by the electric field, they were affected by the magnetic one. Dosimeters detected radiation levels less sensitively as the magnetic field strength was increased up to 150 mT. The dosimeters underestimated the environmental radiation dose rates by about 10-30% when the magnetic field strength was larger than 150 mT. We assumed that hall-effect caused the reduction in radiation sensitivity. We concluded that the strength of the magnetic field needs to be carefully considered when an electronic personal dosimeter is used for monitoring both personal and area dose in a nuclear fusion facility. (author)

  8. Procedure for the delivering of personal short-term visitor dosimeters

    CERN Document Server

    2016-01-01

    Update of the administrative procedure for delivering a personal short-term visitor dosimeter to associated members of CERN’s personnel.   Associated members of the CERN personnel may request a short term visitor dosimeter if working only in Supervised Radiation Areas and for a period of less than two months in a calendar year. Such a dosimeter is delivered without the need to provide the usual regular documents: radiation passport, certificate from the home institute or medical certificate. Periodic verification will ensure that holders of these personal dosimeters do not exceed the maximum allowed personal dose for this type of dosimeter, which is the same as the limit for members of the public at 1 mSv per year. From now on, the two-month period can be spread over a calendar year, offering greater flexibility to users coming to CERN for multiple short periods. Please return unused dosimeters Persons leaving CERN for a period of more than one month should return their dosimeter to the D...

  9. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    1983-12-01

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  10. Limitations of commonly used thick-element personal dosimeters

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1983-01-01

    In the ANSI Standard N13.11, accepted in June 1982, radiation dose depths of 1.0 cm and 0.007 cm in tissue for protection dosimetry have been adopted for deep and shallow dose equivalent estimations respectively. This standard is presently used for a mandatory personnel dosimetry performance testing program in the United States. Estimation of shallow-dose equivalent using a two-element dosimeter is described under the guidelines of this standard and the dosimetry practices followed by most dosimeter processors. A mathematical formulation, correlating a dosimeter response and shallow-dose equivalent factors at different energies, is presented. Also, the performance of a two-element thermoluminescent dosimeter is examined and the shallow-dose equivalent response results, both for the beta particles and photons, are discussed

  11. Development and characterization of real-time wide-energy range personal neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Tsujimura, Norio (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Yamano, Toshiya; Suzuki, Toshikazu; Okamoto, Eisuke

    1994-04-01

    The authors developed a real-time personal neutron dosimeter which could give neutron dose equivalent over wide energy region from thermal to 10 odd MeV by using 2 silicon detectors, fast neutron sensor and slow neutron sensor. The energy response of this dosimeter was evaluated under thermal neutron field, monoenergetic neutron field between 200 keV and 15 MeV, and moderated [sup 252]Cf neutron field. The neutron dose equivalent was estimated by adding neutron dose equivalent below 1 MeV given by slow neutron sensor and that above 1 MeV by fast neutron sensor. It was verified from various field tests that this dosimeter is able to give neutron dose equivalent within a factor of 2 margin of accuracy in reactor, accelerator, fusion research and nuclear fuel handling facilities. This dosimeter has more than one order higher sensitivity than conventional personal neutron dosimeters and is insensitive to [gamma]-rays up to about 500 mSv/h. This dosimeter will soon be commercially available as a personal dosimeter which gives neutron and [gamma]-ray dose equivalents simultaneously by installing [gamma]-ray silicon sensor. (author).

  12. Performance evaluation of vertical feed fully automated TLD badge reader using 0.8 and 0.4 mm teflon embedded CaSO4:Dy dosimeters

    International Nuclear Information System (INIS)

    Ratna, P.; More, Vinay; Kulkarni, M.S.

    2012-01-01

    The personnel monitoring of more than 80,000 radiation workers in India is at present carried out by semi-automated TLD badge Reader systems (TLDBR-7B) developed by Radiation Safety Systems Division, Bhabha Atomic Research Centre. More than 60 such reader systems are in use in all the personnel monitoring centers in the country. Radiation Safety Systems Division also developed the fully automated TLD badge reader based on a new TLD badge having built-in machine readable ID code (in the form of 16x3 hole pattern). This automated reader is designed with minimum of changes in the electronics and mechanical hardware in the semiautomatic version (TLDBR-7B) so that such semi-automatic readers can be easily upgraded to the fully automated versions by using the new TLD badge with ID code. The reader was capable of reading 50 TLD cards in 90 minutes. Based on the feedback from the users, a new model of frilly automated TLD badge Reader (model VEFFA-10) is designed which is an improved version of the previously reported fully Automated TLD badge reader. This VEFFA-10 PC based Reader incorporates vertical loading of TLD bards having machine readable ID code. In this new reader, a vertical rack, which can hold 100 such cards, is mounted from the right side of the reader system. The TLD card falls into the channel by gravity from where it is taken to the reading position by rack and pinion method. After the readout, the TLD card is dropped in a eject tray. The reader employs hot N 2 gas heating method and the gas flow is controlled by a specially designed digital gas flow meter on the front panel of the reader system. The system design is very compact and simple and card stuck up problem is totally eliminated in the reader system. The reader has a number of self-diagnostic features to ensure a high degree of reliability. This paper reports the performance evaluation of the Reader using 0.4 mm thick Teflon embedded CaSO 4 :Dy TLD cards instead of 0.8 mm cards

  13. Development of GM tube electronic personal dosimeter with wide range and multi-purposes

    International Nuclear Information System (INIS)

    Li Jing; Weng Puyu; Chen Mingjun; Hu Zunsu; Huang Chenguang; Lei Jindian

    2003-01-01

    This paper describes the main design features and basic properties of a GM tube electronic personal dosimeter with wide range and multi-purposes. the dosimeter can display dose-rate or accumulative dose or the maximum dose-rate, record accumulative dose and the maximum dose-rate as well as the time of its appearance and at most 160 historical dose values within 8 h. All recorded data can directly be sent to PC by the infrared communication

  14. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1991-12-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the third quarter of 1991

  15. A TLD dose algorithm using artificial neural networks

    International Nuclear Information System (INIS)

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-01-01

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters

  16. Performance testing of selected types of electronic personal dosimeters used in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Yousif, E.H.; Beineen, A.A.; Yousif, B.E.; Hassan, M.

    2010-01-01

    Measurements were carried out for calibration and performance testing of a set of 10 electronic personal dosimeters (EPDs) at the Secondary Standard Dosimetry Laboratory of Sudan. Calibrations were carried out at three X-ray beam qualities described in ISO standard 4037 in addition to 137 Cs and 60 Co gamma ray beams. The experimental was performed with EPDs mounted on ICRU Slab phantom. X-ray and γ-ray beams were characterized in terms of air kerma free-in-air which were converted to the known delivered personal dose equivalent, H p (10) using appropriate the air kerma to personal dose equivalent conversion coefficients. Dosimeters tested showed excellent energy and angular response and relative error of indication within the recommended limit for photon energies from 65 keV to 1.25 MeV. The study showed encouraging results for using electronic dosimeters in personal dosimetry.

  17. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia

    International Nuclear Information System (INIS)

    Sierra C, B. Y.; Jimenez, Y.; Plazas, M. C.; Eslava S, J.; Groot R, H.

    2014-08-01

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  18. SU-E-I-57: Estimating the Occupational Eye Lens Dose in Interventional Radiology Using Active Personal Dosimeters Worn On the Chest

    Energy Technology Data Exchange (ETDEWEB)

    Omar, A; Marteinsdottir, M; Kadesjo, N; Fransson, A [Dept. of Medical Physics, Karolinska University Hospital, Stockholm (Sweden)

    2015-06-15

    Purpose: To provide a general formalism for determination of occupational eye lens dose based on the response of an active personal dosimeter (APD) worn at chest level above the radiation protection apron. Methods: The formalism consists of three factors: (1) APD conversion factor converting the reading at chest level (APDchest) to the corresponding personal dose equivalent at eye level, (2) Dose conversion factor transferring the measured dose quantity, Hp(10), into a dose quantity relevant for the eye lens dose, (3) Correction factor accounting for differences in exposure of the eye(s) compared to the exposure at chest level (e.g., due to protective lead glasses).The different factors were investigated and evaluated based on phantom and clinical measurements performed in an x-ray angiography suite for interventional cardiology. Results: The eye lens dose can be conservatively estimated by assigning an appropriate numerical value to each factor entering the formalism that in most circumstances overestimates the dose. Doing so, the eye lens dose to the primary operator and assisting staff was estimated in this work as D-eye,primary = 2.0 APDchest and D-eye,assisting = 1.0 APDchest, respectively.The annual eye lens dose to three nurses and one cardiologist was estimated to be 2, 2, 2, and 13 mSv (Hp(0.07)), respectively, using a TLD dosimeter worn at eye level. In comparison, using the formalism and APDchest measurements, the respective doses were 2, 2, 2, and 16 mSv (Hp(3)). Conclusion: The formalism outlined in this work can be used to estimate the occupational eye lens dose from the response of an APD worn on the chest. The formalism is general and could be applied also to other types of dosimeters. However, the numerical value of the different factors may differ from those obtained with the APD’s used in this work due to differences in dosimeter properties.

  19. SU-E-I-57: Estimating the Occupational Eye Lens Dose in Interventional Radiology Using Active Personal Dosimeters Worn On the Chest

    International Nuclear Information System (INIS)

    Omar, A; Marteinsdottir, M; Kadesjo, N; Fransson, A

    2015-01-01

    Purpose: To provide a general formalism for determination of occupational eye lens dose based on the response of an active personal dosimeter (APD) worn at chest level above the radiation protection apron. Methods: The formalism consists of three factors: (1) APD conversion factor converting the reading at chest level (APDchest) to the corresponding personal dose equivalent at eye level, (2) Dose conversion factor transferring the measured dose quantity, Hp(10), into a dose quantity relevant for the eye lens dose, (3) Correction factor accounting for differences in exposure of the eye(s) compared to the exposure at chest level (e.g., due to protective lead glasses).The different factors were investigated and evaluated based on phantom and clinical measurements performed in an x-ray angiography suite for interventional cardiology. Results: The eye lens dose can be conservatively estimated by assigning an appropriate numerical value to each factor entering the formalism that in most circumstances overestimates the dose. Doing so, the eye lens dose to the primary operator and assisting staff was estimated in this work as D-eye,primary = 2.0 APDchest and D-eye,assisting = 1.0 APDchest, respectively.The annual eye lens dose to three nurses and one cardiologist was estimated to be 2, 2, 2, and 13 mSv (Hp(0.07)), respectively, using a TLD dosimeter worn at eye level. In comparison, using the formalism and APDchest measurements, the respective doses were 2, 2, 2, and 16 mSv (Hp(3)). Conclusion: The formalism outlined in this work can be used to estimate the occupational eye lens dose from the response of an APD worn on the chest. The formalism is general and could be applied also to other types of dosimeters. However, the numerical value of the different factors may differ from those obtained with the APD’s used in this work due to differences in dosimeter properties

  20. A design comparison of two kinds power circuit for personal dosimeter

    International Nuclear Information System (INIS)

    Deng Changming; Liu Zhengshan; Guo Zhanjie

    2001-01-01

    Personal dosimeter is commonly requested using battery for its power supply, and hope the battery life is long. Also with the fall of battery voltage, some performance of instrument as well as drop. Reasonable supply design can protract the battery life. The paper introduces two method: power supply with battery directly and supply used power chip conversion. Combine personal dosimeter, authors carried through the design comparison for battery life, power consumption, cost and volume. Based on the comparison result and instrument fact request, you can choose method of power circuit

  1. Personal neutron dosimeter using solid-state track detector

    International Nuclear Information System (INIS)

    Mettripan, S.

    1980-01-01

    A cellulose nitrate film coated on both sides with lithium tetraborate was used as a neutron dosimeter for surveillance of personnel exposed to thermal and epithermal neutron. It was found that the optimum etching conditions used were 10% solution of sodium hydroxide, 60 degrees C and 20 minutes etching time and the alpha track densities from the (n,α) reaction on the films were proportional to thermal and epithermal neutron fluxes. The response of the film was found to be 1.068 x 10 -3 tracks per thermal neutron and 3.438 x 10 -4 tracks per epithermal neutron

  2. Pen dosimeters

    CERN Multimedia

    SC/RP Group

    2006-01-01

    The Radiation Protection Group has decided to withdraw all pen dosimeters from the main PS and SPS access points. This will be effective as of January 2006. The following changes will be implemented: All persons working in a limited-stay controlled radiation area must wear an operational dosimeter in addition to their personal DIS dosimeter. Any persons not equipped with this additional dosimeter must contact the SC/RP Group, which will make this type of dosimeter available for temporary loan. A notice giving the phone numbers of the SC/RP Group members to contact will be displayed at the former distribution points for the pen dosimeters. Thank you for your cooperation. The SC/RP Group

  3. Hanford personnel dosimeter supporting studies FY-1981

    International Nuclear Information System (INIS)

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies

  4. Performances of Dose Measurement of Commercial Electronic Dosimeters using Geiger Muller Tube and PIN Diode

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunjun; Kim, Chankyu; Kim, Yewon; Kim, Giyoon; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    There are two categories in personal dosimeters, one is passive type dosimeter such as TLD (thermoluminescence dosimeter) and the other is active type dosimeter such as electronic dosimeter can show radiation dose immediately while TLD needs long time to readout its data by heating process. For improving the reliability of measuring dose for any energy of radiations, electronic dosimeter uses energy filter by metal packaging its detector using aluminum or copper, but measured dose of electronic dosimeter with energy filter cannot be completely compensated in wide radiation energy region. So, in this paper, we confirmed the accuracy of dose measurement of two types of commercial EPDs using Geiger Muller tube and PIN diode with CsI(Tl) scintillator in three different energy of radiation field. The experiment results for Cs-137 was almost similar with calculation value in the results of both electronic dosimeters, but, the other experiment values with Na-22 and Co-60 had higher error comparing with Cs-137. These results were caused by optimization of their energy filters. The optimization was depending on its thickness of energy filter. So, the electronic dosimeters have to optimizing the energy filter for increasing the accuracy of dose measurement or the electronic dosimeter using PIN diode with CsI(Tl) scintillator uses the multi-channel discriminator for using its energy information.

  5. The intercomparison of 137Cs irradiator output measurement and personal dose equivalent, Hp(10), using TLD and film

    International Nuclear Information System (INIS)

    Nazaroh; Susetyo Trijoko; Sri Inang Sunaryati

    2010-01-01

    Intercomparison of output measurement of 137 Cs irradiator and personal dose equivalent, Hp(10) using TLD and film have been carried out in the year of 2006 to 2008. According to IAEA recommendation, intercomparison is one of audit activities but it is performed in the spirit of collaboration and support rather than in the spirit of inspection. The aim of intercomparison of output measurement of 137 Cs irradiator is to verify the dose stated by the participant laboratories. Intercomparison is also to assess the competency of the participant, to keep traceability and consistency of measurement result, to assure that instrument work correctly and the result of evaluation was in agreement, and also for fulfilling one of the clauses of ISO-17025-2005. Besides that, this intercomparison aimed to facilitate link between the system and members of national measurement and transfer of experience in measurement technique and dose evaluation of radiation. The benefit of intercomparison is important among others as tests of proficiency in dose evaluation or measurement, upgrading quality of service and for obeying supervisor body legislation (BAPETEN). TLD was used as a means of output 137 Cs irradiator measurement, whereas film and TLD were used for dose intercomparison. This paper presented result of intercomparison of output measurement and evaluation of personal dose equivalent, Hp(10) in the year of 2006 to 2008 followed by 6 participants: Balai Pengamanan Fasilitas Kesehatan (BPFK) Jakarta, Medan, Surabaya, Makasar, PTLR and Laboratory of Keselamatan dan Kesehatan Lingkungan (KKL)-PTKMR BATAN. In this intercomparison, the dose of TLD stated by participant were compared with the dose measured by Radiation Metrology Laboratory (LMR), and the results showed the differences were within 10 %, so it was satisfied. The results of intercomparison of personal dose equivalent, Hp(10) were evaluated based on ISO/IEC Guide 43-1, 1997 analysis and expressed as E n . The values of E n

  6. On the response of electronic personal dosimeters in constant potential and pulsed X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Margarete C.; Silva, Teogenes; Silva, Claudete R.E., E-mail: margaretecristinag@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Paulo Marcio C. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2015-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed X-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed X-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC X-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed X-rays. (author)

  7. TLD DRD dose discrepancy: role of beta radiation fields

    International Nuclear Information System (INIS)

    Munish Kumar; Pradhan, S.M.; Bihari, R.R.; Bakshi, A.K.; Chougaonkar, M.P.; Babu, D.A.R.; Gupta, Anil

    2014-01-01

    Ionization chamber based direct reading/pocket dosimeters (DRDs), are used along with the legal dosimeters (thermoluminescent dosimeters-TLDs) for day to day monitoring and control of radiation doses received by radiation workers. The DRDs are routinely used along with the passive dosimeters (TLDs) in nuclear industry at different radiation installations where radiation levels could vary significantly and the possibility of receiving doses beyond investigation levels by radiation workers is not ruled out. Recently, recommendations for dealing with discrepancies between personal dosimeter systems used in parallel were issued by ISO. The present study was performed to measure the response of ionization chamber based pocket dosimeters to various beta sources having energy (E max ) ranging from 0.224 MeV-3.54 MeV. It is expected that the above study will be useful in resolving the disparity between TLD and DRD doses at those radiation installations where radiation workers are likely to be exposed simultaneously from photons and beta particles

  8. Development of real time personal neutron dosimeter with two silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Tsujimura, N. [Tohoku Univ., Cyclotron and Radioisotope Center, Aoba, Aramaki, Aoba-ku (Japan); Yamano, T. [Tokyo Factory, Fuji Electric Co. Ltd., Tokyo (Japan)

    1992-07-01

    We developed a real time personal neutron dosimeter by using two types of silicon p-n junction detectors, thermal neutron sensor and fast neutron sensor. The thermal neutron sensor which is {sup 10}B doped n-type silicon with a polyethylene radiator mainly counts neutrons of energy front thermal to I MeV, and the fast neutron sensor which is p-type silicon with a polyethylene radiator is sensitive to neutrons above I MeV. The neutron sensitivity measurements revealed that the dosimeter has a rather flat response for dose equivalent from thermal to 15 MeV, excluding a drop from 50 keV to I MeV. In order to get conversion factor from counts to dose equivalent as accurately as possible, we performed the field test of the dosimeter calibration in several neutron-generating fields. By introducing the two-group dose estimation method, this dosimeter can give the neutron dose equivalent within about 50% errors. (author)

  9. Radiation doses measured by TLD (thermoluminescent dosimeter) in x-ray examination, especially on the skin area beneath of which female gonads situate

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Hiraki, M; Murakami, S; Nishikawa, N; Yagi, T [Nissei Hospital, Osaka (Japan)

    1977-03-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field.

  10. Determination of possible damage/degradation of the Sandia National Laboratories Personal Nuclear Accident Dosimeter (PNAD)

    International Nuclear Information System (INIS)

    Potter, Charles Augustus; Ward, Dann C.

    2008-01-01

    This report describes the results of an inspection performed on the existing stock of SNL Personal Nuclear Accident Dosimeters (PNADs). The current stock is approximately 20 years old, and has not been examined since their initial acceptance. A small random sample of PNADs were opened (a destructive process) and the contents visually examined. Sample contents were not degraded and indicate that the existing stock of SNL PNADs is acceptable for continued use

  11. Intercomparison of personal dose equivalent measurements by active personal dosimeters. Final report of a joint IAEA-EURADOS project

    International Nuclear Information System (INIS)

    2007-11-01

    Active personal dosimeters (APD) are widely used in many countries, i.e. in the medical field and as operational dosimeters in nuclear power plants. Their use as legal dosimeters is already established in a few countries, and will increase in the near future. In the majority of countries, APDs have not undergone accreditation programmes or intercomparisons. In 2001, an EURADOS (European Radiation Dosimetry Group) Working Group on harmonization of individual monitoring was formed, funded by the European Commission, in the fifth framework programme, and by the participating institutes. The work addressed four issues; inter alia also an inventory of new developments in individual monitoring with an emphasis on the possibilities and performance of active (electronic) dosimeters for both photon/beta and neutron dosimetry. Within the work on this issue, a catalogue of the most extensively used active personal dosimeters (APDs) suitable for individual monitoring was made. On the basis of the knowledge gained in this activity, the organization of an international intercomparison, which would address APDs, was considered of great value to the dosimetric community. The IAEA in cooperation with EURADOS organized such an intercomparison in which most of the testing criteria as described in two internationally accepted standards (IEC61526 and IEC61283) were used. Additionally, simulated workplace fields were used for testing the APD reactions to pulsed X ray fields and mixed gamma/X ray fields. This is the first time that results of comparisons of such types are published, which is of great importance for APD end users in medical diagnostic and surgery X ray applications. Nine suppliers from six countries in Europe and the USA participated in the intercomparison with 13 different models. One of the models was a special design for extremity dose measurements. Irradiations and readout was done by two accredited calibration laboratories in Belgium and France and the French

  12. The development of new generation electronic personal dosimeters

    International Nuclear Information System (INIS)

    Aoyama, Kei; Nagase, Yoshiyuki; Suzuki, T.; Watanabe, Shinichi; Taniguchi, Kazufumi; Muramatsu, Kunihiro; Fujita, Mikio; Fujii, Yutaka

    2000-01-01

    We have developed two types of new small, light, electronic personal dosemeters (EPDs) which can be used for dose management of workers at nuclear power plants without additional dosemeters. The one is a card size dosemeter to measure gamma exposure dose and the other is a multi sensor dosemeter to measure gamma, beta and neutron dose respectively. With direct reading, alarm and instant readout, these EPDs have ruggedness and if failure happens, memory readout facility can read dose data in the dosemeter. These dosemeters have enough performance characteristics and reliability for use as a dose record dosemeter. The gamma dosemeter has a lightweight credit card size body to reduce workers' burden of wearing it. The multi sensor dosemeter has four hetero junction silicon detectors that detect gamma, beta, thermal and fast neutron respectively and it is smaller and lighter than conventional alarm dosemeters presently used at nuclear power plant. Thermal neutron detector has thin Boron layer deposited on silicon surface and fast neutron detector has polyethylene radiator in front of silicon wafer. These dosemeters with a rechargeable battery can operate more than 15 hours continuously. The data transmission can be made with radiofrequency wave in area smaller than 30 cm distance between dosemeter and readout system. These dosemeters were introduced into Tokai nuclear power plant on October 1997, Tsuruga nuclear power plant on December 1997 of Japan Atomic Power Company and have been operating satisfactorily. At now these EPD have been used as secondary dosemeters. The performance characteristics comparison between EPD and film badge(FB) have been continuing to assure EPD suitable for use as a primary dosemeter. Near future Japco will abolish FB and establish the radiation control system based on the electronic personal dosemeters as a dose record dosemeter. (author)

  13. OCCUPATIONAL DOSE DURING ADULT INTERVENTIONAL CARDIOLOGY: FIRST VALUES WITH PERSONAL ACTIVE DOSIMETERS IN CHILE.

    Science.gov (United States)

    Ubeda, Carlos; Morales, Claudio; Gutiérrez, Diego; Oliveira, Marcus; Manterola, Carlos

    2018-05-11

    The objective of this article is to present initial occupational dose values using digital active personal dosimeters for medical staff during adult interventional cardiology procedures in a public hospital in Chile. Personal dose equivalent Hp(10) over the lead apron of physician, nurse and radiographer were measured during 59 procedures. Mean values of occupational dose Hp(10) per procedure were 47.6, 6.2 and 4.3 μSv for physician, nurse and radiographer, respectively. If no protective tools are used, physician dose can exceed the new eye lens dose limit.

  14. Development and underground testing of the α dosimeter: a solid state electronic personal radiation dosimeter for uranium miners

    International Nuclear Information System (INIS)

    Parkinson, R.N.; Roze, V.; Shepherd, R.

    1981-01-01

    The αDOSIMETER is a complete, integrated system designed to monitor the immediate worksite of underground miners where the disintegration for radon daughters is a risk to the health of mining personnel. The dosimeter weighing little more than one pound is worn by each miner throughout the entire shift and is powered by the miner's cap lamp battery. After this integration period, the unit is connected to a reading network whereupon the day's data is dumped, calculated and stored. Beginning in July 1980, prototype units were subjected to vigorous underground testing in uranium mines in Canada and the United States and in tin mines in Cornwall, UK. The testing results are summarized and proposals advanced for a typical mine monitoring system utilizing the αDOSIMETER

  15. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    Directory of Open Access Journals (Sweden)

    HosseiniAliabadi S. J.

    2015-06-01

    Full Text Available Background: The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective: A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method: Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result: The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion: This system can be utilized in large scale environmental monitoring with a higher accuracy

  16. Improving the Success Rate of Delivering Annual Occupational Dosimetry Reports to Persons Issued Temporary External Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, Michael Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-09

    Workers who are not routinely monitored for occupational radiation exposure at LANL may be issued temporary dosimeters in the field. Per 10CFR835 and DOE O 231.1A, the Laboratory's radiation protection program is responsible for reporting these results to the worker at the end of the year. To do so, the identity of the worker and their mailing address must be recorded by the delegated person at the time the dosimeter is issued. Historically, this data has not been consistently captured. A new online application was developed to record the issue of temporary dosimeters. The process flow of the application was structured such that: 1) the worker must be uniquely identified in the Lab's HR database, and 2) the mailing address of record is verified live time via a commercial web service, for the transaction to be completed. A COPQ savings (Type B1) of $96K/year is demonstrated for the new application.

  17. Suitability of CR-39 dosimeters for personal dosimetry around CANDU reactors

    International Nuclear Information System (INIS)

    Cross, W.G.

    1992-08-01

    The capabilities and limitations of CR-39 damage track detectors have been evaluated for their use as personal neutron dosimeters around CANDU reactors. Since the energy response is a critical characteristic, the neutron energy spectra expected within CANDU containments were studied. In the boiler rooms, around the moderator cooling systems, and in most of the fueling machine vaults, the spectra vary considerably, but the majority of the dose is expected to be delivered by neutrons above 80 keV, the approximate threshold for electrochemically-etched CR-39 detectors. In the Pickering A fueling machine vault, and in areas in other stations to which neutrons from reactors have been multiply scattered, lower energy neutrons may be important. In nearly all areas where people work, it appears that working times will be limited by gamma rays rather than by neutrons. The characteristics of other neutron dosimeters - bubble and superheated drop detectors, albedo detectors, and Si real-time detectors - were also reviewed. For workers who typically receive neutron doses that are small compared with regulatory limits, CR-39 is the most suitable available dosimeter for demonstrating compliance. All single dosimeters have poor angular response over the range 0 to 180 degrees because of the shielding of the body. Albedo and Si detectors have particularly poor energy responses over the energy range of importance. Bubble and superheated drop detectors have the advantages of immediate readout and high sensitivity, but the disadvantages of inability to integrate doses over a long period, temperature dependence, very limited range and higher cost. (Author) (110 refs., 45 figs.)

  18. Type tests to the automatic thermoluminescent dosimetry system acquired by the CPHR for personal dosimetry

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez G, A.

    2006-01-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF:Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  19. NRC TLD Direct Radiation Monitoring Network. Progress report, January-June 1981

    International Nuclear Information System (INIS)

    1982-04-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of 55 NRC-licensed facility sites throughout the country for the first half of 1981. The program objectives, scope, and methodology are given. The TLD system, dosimeter location, data processing scheme, and quality assurance program are outlined

  20. Management of radiation sources and personal dosimeters based on the optical identification using two-dimensional barcode

    International Nuclear Information System (INIS)

    Takao, Hideaki; Yoshida, Masahiro; Kaneko, Mamoru; Miura, Miwa; Hayashida, Rika; Okumura, Yutaka; Matsuda, Naoki

    2006-01-01

    For accurate and efficient radiation safety management in facilities using radioisotopes, two-dimensional barcode (2-DC) was applied to the optical identification of radiation sources and personal dosimeters. The mobile personal computer (PC) equipped with a barcode reader, which has imported inventory records from the pre-existing radiation management system, enabled us to finish inventory procedures for 170 2-DC-labelled radiation sources in as short as 20min by one person. Identification of 270 personal dosimeters in their monthly replacement procedures also successfully completed within 20 min by incorporating pre-labeled 2-DC to PC installed with inventory records of dosimeters and radiation workers. As equipments and software required for 2-DC are affordable, easy to operate, and potentially expandable, the introduction of 2-DC system may help to establish practically higher level of radiation management. (author)

  1. Personal solar UVR exposure studies using a new miniature electronic dosimeter/datalogger

    International Nuclear Information System (INIS)

    Gies, H.P.; Roy, C.R.; Toomey, S.; Borland, R.; Dixon, H.

    1996-01-01

    Full text: The Australian Radiation Laboratory (ARL) has been involved in a number of different collaborative studies around Australia using polysulphone (PS) film dosimeters in the measurement of personal exposure to solar ultraviolet radiation (UVR) (Herlihy E et al, Photochem Photobiol 60:288-294, 1994; Gies HP et al, Photochem Photobiol 62:1015-1021, 1995). These PS dosimeters have proven useful in measuring cumulative exposures during different outdoor occupational and recreational activities. Recent advances in both UV photodiodes and miniature dataloggers have allowed the development of UV dosimeters which can log the incident UVR exposure with time (Diffey BL and Saunders PJ, Photochem Photobiol 61:615-618, 1995). This provides information on the variation of UVR exposure with time of day and also on the effect of variations in local environment, activity and possibly behaviour on exposure. A pilot study to examine the performance of the UV dosimeter/ datalogger and to refine a suitable questionnaire for a much larger follow up study was undertaken in 1995. Two of the new dosimeter/dataloggers were available and a third, less portable unit was used to monitor ambient solar UVR. The site chosen was a recreation park within 5 km of ARL where calibrated ambient UVR monitoring occurs. The UVR exposures of people undertaking outdoor activities were measured. The subjects wore the UV detector attached to clothing on their back, so that it was out of sight and therefore less likely to cause them to consciously modify their behaviour during their activity. On completion the subjects were asked a number of standard questions about their activities while wearing the UV dosimeters. Of particular interest was whether the data collected could be used to determine whether subjects have modified their behaviour when in the sun as a result of educational campaigns on sun exposure run by the Cancer Councils. Comparison of the subjects UV data record with the simultaneous

  2. Comparison Study of the Response of Several Passive PDA Based Personal Dosimeter to Gamma and X-Ray Radiation

    International Nuclear Information System (INIS)

    Cohen, S.; Abraham, A.; Pelled, O.; Tubul, Y.; Kresner, E.; Ashkenazi, A.; Yaar, I.

    2014-01-01

    In the case of a radiological terror event or a nuclear accident, there is a need to perform a fast and reliable personal dosimetry measurements for first responders and other intervention forces. The dosimeters should be simple, instant and cumulative readout small and lightweight energy independent (iv) wide dose range (v) withstand intense environments cheap, and disposable. In the last decade, two simple dosimeters were presented for radiological emergencies self-indicating radiation alert dosimeters (SIRAD) and (ii) RADview by J.P Labs and M/s RADeCO, respectively. Both dosimeters contain radio-chromic films based on PDA (poly-di-acetylene) material that change the colors in their active window as a function of radiation dose. In the current study, the dose response of SIRAD and RADview personal dosimeters to 137Cs and M150 X-Ray radiation at the range of 0.01-11 Sv is presented. In addition, the environmental, fading effects and usage effects on the response of these dosimeters is evaluated

  3. Type tests to the automatic thermoluminescent dosimetry system acquired by the CPHR for personal dosimetry; Pruebas tipo al sistema de dosimetria termoluminiscente automatico adquirido por el CPHR para dosimetria personal

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Pernas S, R.; Martinez G, A. [Centro de Proteccion e Higiene de las Radiaciones (CPHR), Calle 20 No. 4113 e/41 y 47. Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba)

    2006-07-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF:Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  4. A new fully automated TLD badge reader

    International Nuclear Information System (INIS)

    Kannan, S.; Ratna, P.; Kulkarni, M.S.

    2003-01-01

    At present personnel monitoring in India is being carried out using a number of manual and semiautomatic TLD badge Readers and the BARC TL dosimeter badge designed during 1970. Of late the manual TLD badge readers are almost completely replaced by semiautomatic readers with a number of performance improvements like use of hot gas heating to reduce the readout time considerably. PC based design with storage of glow curve for every dosimeter, on-line dose computation and printout of dose reports, etc. However the semiautomatic system suffers from the lack of a machine readable ID code on the badge and the physical design of the dosimeter card not readily compatible for automation. This paper describes a fully automated TLD badge Reader developed in the RSS Division, using a new TLD badge with machine readable ID code. The new PC based reader has a built-in reader for reading the ID code, in the form of an array of holes, on the dosimeter card. The reader has a number of self-diagnostic features to ensure a high degree of reliability. (author)

  5. TLD territorial network in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kroutilikova, D. [National Radiation Protection Institute, Prague (Czech Republic)

    1996-12-31

    At present, there are 236 measuring points practically homogeneously distributed on the territory of the Czech Republic. 98 measuring points are distributed as local TLD-networks in the surroundings of Czech two nuclear power plants. Both of the TLD-networks are operated by the National Radiation Protection Institute in Prague. The dosimeters hitherto used are the CaSO{sub 4}:Dy-teflon detectors placed in TL-badges and shielded on both sides by energy compensation filters composed of lead and tin. Recently, a new modernization of the measuring system, type of dosimeter and methods of evaluation is under way. From 1996 the Czech Radiation Monitoring Network will be used the TLD system HARSHAW 4000, along with the type 8807 ENVIRONMENTAL DOSIMETER. The dosimeter is composed of four TL-elements - two LiF and two CaF{sub 2}, placed in a plastic badge. In addition, the CaF{sub 2} elements are shielded on both sides by energy compensation filters composed of tantalum and lead. Before the routine use of the new system a testing of the dosimeters was made. The following text summarizes the obtained results (J.K.). 4 tabs.

  6. Personal and environmental dosimetric measurements using TLD method in Cardiac Catheterization Laboratory (CathLab) at the Rzeszow's Regional Hospital No 2, Poland

    International Nuclear Information System (INIS)

    Kisielewicz, K.; Truszkiewicz, A.; Wach, S.; Budzanowski, M.

    2007-01-01

    Complete test of publication follows. One of the basic problem in CathLab is the monitoring of ionizing radiation, calculations of doses for workers and finally to build a system to prevent workers from X-ray radiation. To measure doses from X-rays a passive method with thermoluminescent dosemeters (TLD) were applied. Experimental part was based on creating 3D grid of Tl environmental dosemeters with 2 high sensitive TL detectors based on MCP-N (LiF:Mg,Cu,P). Dosemeters were placed evenly (as far as staff's work conditions allowed such positioning) in operating room and a control room. Grid of about 100 dosemeters was designed to measure X-ray dose distribution present during interventional cardiology procedures. That part of the project was especially important for hospital's employee, because it has brought an information about most radiative dangerous areas of each room. Patient dosimetry measurements have been also made using TLD method just during the interventional cardiology procedures. Every patient got a few dosemeters dor different parts of body. Experimental part consists of measurements of absorbed dose equivalent, mean dose rate of absorbed dose equivalent, and mean dose of effective dose per each body part. That last measurements were accomplished by placing TLD's near patient's head, chest and gonads. Personal dosimetry for employees, has been made using TLD's during hemodynamics procedures. Every employee (medical doctors, nurses, technicians and charwoman) has received few dosemeters also based on high sensitive MCP-N detectors. The main dosimetry was done for whole body covered by led gown and additionally for unprotected parts: (hands, arm, eyes and protected by gown: chest, gonads). For individual dosimetry Hp(10) in mSv was calculated, while using environmental dosemeters KERMA in air in mGy. This work will present results obtained from ca. 100 environmental placed in CathLab room. Additionally personal doses for whole body and for parts of

  7. Thermoluminescent dosimeters for low dose X-ray measurements

    International Nuclear Information System (INIS)

    Del Sol Fernández, S.; García-Salcedo, R.; Sánchez-Guzmán, D.; Ramírez-Rodríguez, G.; Gaona, E.; León-Alfaro, M.A. de; Rivera-Montalvo, T.

    2016-01-01

    The response of TLD-100, CaSO_4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold. All dosimeters were exposed at the available air kerma values of 14.69 mGy within a field 10×10 cm"2 at 80 cm of SSD. Results of LiF:Mg,Cu,P X-ray irradiated showed 4.8 times higher sensitivity than TLD-100. Meanwhile, TL response of CaSO_4:Dy exposed at the same dose was 5.6 time higher than TLD-100. Experimental results show for low dose X-ray measurements a better linearity for LiF:Mg,Cu,P compared with that of TLD-100. CaSO_4:Dy showed a linearity from 0.1 to 60 mGy - Highlights: • Low dose X-ray doses for personal dosimetry were measured. • Radiation dose (µGy ) for environmental dosimetry were determined. • Scattering radiation dose were measured by TLDs. • Linearity of pair TLD system was successful in the range of microgray. • Pair TLDs composed by CaSO_4:Dy and by LiF:Mg,Cu,P. is suggested for clinical dosimetry.

  8. Type tests to the automatic system of thermoluminescent dosimetry acquired by the CPHR for personnel dosimetry; Pruebas tipo al sistema de dosimetria termoluminiscente automatico adquirido por el CPHR para dosimetria personal

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Pernas S, R. [Centro de Proteccion e Higiene de las Radiaciones (CPHR), Calle 20, No. 4113 e/ 41 y 47, Miramar, Ciudad de la Habana (Cuba)]. e-mail: daniel@cphr.edu.cu

    2005-07-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF: Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  9. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    Science.gov (United States)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed

  10. Dosimetric Characteristics of Radio-Photoluminescent Glass Dosimeters for Medical Applications: Linearity

    Energy Technology Data Exchange (ETDEWEB)

    Shehzadi, N. N.; Jeong, J. P.; Kim, B. C.; Kim, I. J.; Yi, C. Y. [Center for Ionizing Radiation, Korea Research Institute of Standards and Science, Seoul (Korea, Republic of)

    2017-04-15

    Radio-photoluminescent glass dosimeter (GD) has advantage of non-destructive reading process, negligible fading and superior radiation detection characteristics than other personal dosimeters like thermoluminescent dosimeters (TLD) or film dosimeters. In this study, one dosimetric characteristic of GDs, dose linearity was evaluated with two different approaches: one for each set of GDs selected and another for a batch of them using accumulated doses of same set of GDs and GDs in a batch, respectively. Within a dose range upto 10 Gy, not only each set of GDs but also a batch of them showed excellent linearity. Within a dose range upto 10 Gy, not only each set of GDs but also a batch of them showed excellent linearity.

  11. Application of Glow Curve Deconvolution Method to Evaluate Low Dose TLD LiF

    International Nuclear Information System (INIS)

    Kurnia, E; Oetami, H R; Mutiah

    1996-01-01

    Thermoluminescence Dosimeter (TLD), especially LiF:Mg, Ti material, is one of the most practical personal dosimeter in known to date. Dose measurement under 100 uGy using TLD reader is very difficult in high precision level. The software application is used to improve the precision of the TLD reader. The objectives of the research is to compare three Tl-glow curve analysis method irradiated in the range between 5 up to 250 uGy. The first method is manual analysis, dose information is obtained from the area under the glow curve between pre selected temperature limits, and background signal is estimated by a second readout following the first readout. The second method is deconvolution method, separating glow curve into four peaks mathematically and dose information is obtained from area of peak 5, and background signal is eliminated computationally. The third method is deconvolution method but the dose is represented by the sum of area of peak 3,4 and 5. The result shown that the sum of peak 3,4 and 5 method can improve reproducibility six times better than manual analysis for dose 20 uGy, the ability to reduce MMD until 10 uGy rather than 60 uGy with manual analysis or 20 uGy with peak 5 area method. In linearity, the sum of peak 3,4 and 5 method yields exactly linear dose response curve over the entire dose range

  12. Calibration of an ALBEDO termoluminiscent dosimeter for its use in personal dosimetry

    International Nuclear Information System (INIS)

    Diaz Bernal, E.; Molina Perez, D.; Cornejo Diaz, N.; Carrazana Gonzalez, J.

    1996-01-01

    The dosimetric studies began after the Radiological Individuals Surveillance Department from the Radiation Protection and Hygiene Center acquired the albedo thermoluminescent dosimeters model JR1104. This paper reviews the response of those dosimeters to the different spectrums and incidence angles of neutronic radiation

  13. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rosado, P.H.G.; Cunha, P.G. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  14. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Science.gov (United States)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  15. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    International Nuclear Information System (INIS)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da; Rosado, P.H.G.; Cunha, P.G.

    2017-01-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  16. Is it really not possible to use electronic personal dosimeters in clinical exposure situations?; Sind elektronische Personendosimeter in klinischen Expositionssituationen grundsaetzlich nicht einsetzbar?

    Energy Technology Data Exchange (ETDEWEB)

    Borowski, M. [Klinikum Braunschweig (Germany). Inst. fuer Roentgendiagnostik und Nuklearmedizin; Poppe, B.; Looe, H.K. [Carl von Ossietzky Univ. und Pius-Hospital Oldenburg (Germany). Arbeitsgebiet Medizinische Strahlenphysik; Boetticher, H. von [Klinikum Links der Weser, Bremen (Germany). Inst. fuer Radiologie und Seminar fuer Strahlenschutz

    2010-09-15

    Purpose: Due to significant measuring inaccuracies that can occur under certain conditions, the use of electronic personal dosimeters in statutory measurements in X-ray diagnostics is currently legally restricted. The present study investigates the clinically relevant situations in which measurement errors of more then 20 % can be anticipated. Materials and Methods: Four series of experiments were made, comparing the results of the electronic personal dosimeter EPD Mk2.3 to those of reference dosimeters (TLDs and diagnostic dosimeters). On the one hand, personal doses have been determined in the routine operation of controlled areas in various departments. On the other hand, measurements on phantoms have been conducted in extreme but realistic situations under radiation protection. Experiments were conducted in unweakened scattered radiation as well as in unattenuated and attenuated direct radiation. Results: The tested electronic personal dosimeter type meets the requirements regarding measurement accuracy for 'official' personal dosimeters in all of the examined clinically relevant scattered radiation fields. Only if exposed to radiation directly, an underestimation of the dose can occur and can be greater than 90 %. Conclusion: In the range of scattered radiation of diagnostic X-ray equipment, even in pulsed fields, the use of electronic personal dosimeters is reasonable. Considerable measurement errors can only arise in radiation fields that are not realistic under regular conditions and even in connection with most accidents. (orig.)

  17. Dosimetry service participation of CIEMAT in intercomparisons 2008-2010 for personal dosimeters EURADOS; Participacion del servicio de dosimetria del CIEMAT en las intercomparaciones EURADOS 2008-2010 para dosimetros personales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jimenez, R.; Romero Gutierrez, A. M.; Lopez Moyano, J. L.

    2011-07-01

    Individual monitoring of workers exposed to ionizing radiation requires the use of personal dosimeters. EURADOS (European Radiation Dosimetry Group) recently organized three intercomparison exercises External Personal Dosimetry Services (EPDS): two for body dosimeters in 2008 and 2010 and one for extremity dosimeters in the year 2009.El paper shows and analyzes the results obtained by CIEMAT SDPE participation in all exercises.

  18. Effects of electromagnetic shielding cases for semiconductor-type electronic personal dosimeters on preventing electromagnetic interference

    International Nuclear Information System (INIS)

    Deji, Shizuhiko; Ito, Shigeki; Nishizawa, Kunihide; Saze, Takuya; Mori, Kazuyuki

    2005-01-01

    Performance of electromagnetic shielding cases for preventing malfunction of semiconductor-type electronic personal dosimeters (SEPDs) caused by high frequency electromagnetic fields emitted from a digital cellular telephone (cell phone) and a card reader of access control system were analyzed. The cases were handcrafted by using cloth of activated carbon fiber, polyester film laminated metal, and two kinds of metal netting. Five kinds of SEPDs put in the cases were exposed to the high frequency electromagnetic fields for 50 sec or 1 min. The cases prevented perfectly the malfunction due to the cell phone. The cases shortened distances required to prevent the malfunction due to the card reader, but did not prevent the malfunction. The electromagnetic immunity level of SEPD inserted in the cases increased from greater than 11.2 to greater than 18.7 times for the cell phone and from 1.1 to greater than 4.3 times for the card reader. The maximum of electromagnetic shielding effectiveness of each case was greater than 18.7 times for the cell phone and greater than 4.3 times for the card reader. (author)

  19. Characterization of the personal dosimeter Rn-disk for monitoring radon exposure

    International Nuclear Information System (INIS)

    Orlando, P.; Arcovito, G.; Amici, M.; Orlando, C.; Cardellini, F.; Fiorentino, A.; Trevisi, R.

    2009-01-01

    Rn-disk is a new passive device for measuring occupational exposure to radon 222, are presented the results of tests for the characterization of the dosimeter as a tool for estimating the individual dose for workers. [it

  20. A Medipix-Based Small Personal Space Radiation Dosimeter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort will take the first step in improving the existing Medipix dosimeter technology in terms of advancing the technique now used to couple the actual...

  1. QA Programme of the TLD laboratory of the University of Costa Rica: IEC 61066 testing

    International Nuclear Information System (INIS)

    Mora, Patricia; Porras Chaverria, Mariela

    2008-01-01

    The Thermoluminescence Personal Dosimetry Laboratory of the University of Costa Rica provides dose measurements for around 90% of occupational radiation workers in the country. The assessment of doses to workers routinely exposed to external sources of radiation constitutes an integral part of any radiation protection programme and helps national authorities to ensure acceptably safe and satisfactory radiological conditions in workplaces. Harshaw Readers Model 4000 and 4500, dosimeter holders Type 8814 with TLD-100 in 0110 cards and loose TLD-100 chips are used to monitor personal dose equivalent, Hp(10) and Hp(0.07). In order to provide a reliable measurement of the operational quantities, a study was undertaken to verify the fulfillment of international requirements in our system (Model 4500 with cards) against the Thermoluminescence dosimetry systems for personal and environmental monitoring CEI IEC 61066 (1991 -2012). The type tests performed were nine in total: batch homogeneity, reproducibility, linearity, detection threshold, effect of climate conditions on reader, effect of light exposure on dosimeters, isotropy, transient voltage and dropping on dosimeters. A Cesium-137 source was used to irradiate the dosimeters and all procedures follow the indications given on the standard. Results showed that all IEC criteria were met by our Laboratory. Acceptable uncertainties were also studied under the ICRP recommendations; the analysis of the Trumpet Curve was done with satisfactory results (for doses above 0.5 mSv; quotient of measure to real dose less than 3%). For purposes of accreditation (ISO/IEC 17025:2005) and performance testing this work is very relevant since the University of Costa Rica wants to establish a solid individual monitoring programme for external radiation exposure that will provide users, registrants, licensees and regulatory bodies with information that can be used for the optimization of protection and dose limitation of Costa Rican workers

  2. NRC TLD direct radiation monitoring network: Progress report, April--June 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1988-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the second quarter of 1988

  3. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique.

    Science.gov (United States)

    Lee, YoungJu; Won, Yuho; Kang, Kidoo

    2015-04-01

    Passive integrating dosemeters [thermoluminescent dosimeter (TLD) and optically stimulated luminescence (OSL)] are the only legally permitted individual dosemeters for occupational external radiation exposure monitoring in Korea. Also its maximum issuing cycle does not exceed 3 months, and the Korean regulations require personal dosemeters for official assessment of external radiation exposure to be issued by an approved or rather an accredited dosimetry service according to ISO/IEC 17025. KHNP (Korea Hydro & Nuclear Power, LTD), a unique operating company of nuclear power plants (NPPs) in Korea, currently has a plan to extend a TLD issuing cycle from 1 to 3 months under the authors' fading error criteria, ±10%. The authors have performed a feasibility study that minimises post-irradiation fading effects within their maximum reading cycle employing pre-heating technique. They repeatedly performed irradiation/reading a bare TLD chip to determine optimum pre-heating conditions by analysing each glow curve. The optimum reading conditions within the maximum reading cycle of 3 months were decided: a pre-heating temperature of 165°C, a pre-heating time of 9 s, a heating rate of 25°C s(-1), a reading temperature of 300°C and an acquisition time of 10 s. The fading result of TLD-600 and TLD-700 carried by newly developed time temperature profile (TTP) showed a much smaller fading effect than that of current TTP. The result showed that the fading error due to a developed TTP resulted in a ∼5% signal loss, whereas a current TTP caused a ∼15% loss. The authors also carried out a legal performance test on newly developed TTP to confirm its possibility as an official dosemeter. The legal performance tests that applied the developed TTP satisfied the criteria for all the test categories. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Establishing personal dosimetry procedure using optically stimulated luminescence dosimeters in photon and mixed photon-neutron radiation fields

    International Nuclear Information System (INIS)

    Le Ngoc Thiem; Bui Duc Ky; Trinh Van Giap; Nguyen Huu Quyet; Ho Quang Tuan; Vu Manh Khoi; Chu Vu Long

    2017-01-01

    According to Vietnamese Law on Atomic Energy, personal dosimetry (PD) for radiation workers is required periodically in order to fulfil the national legal requirements on occupational radiation dose management. Since the radiation applications have become popular in Vietnamese society, the thermal luminescence dosimeters (TLDs) have been used as passive dosimeters for occupational monitoring in the nation. Together with the quick increase in radiation applications and the number of personnel working in radiation fields, the Optically Stimulated Luminescence Dosimeters (OSLDs) have been first introduced since 2015. This work presents the establishment of PD measuring procedure using OSLDs which are used for measuring photons and betas known as Inlight model 2 OSL (OSLDs-p,e) and for measuring mixed radiations of neutrons, photons and betas known as Inlight LDR model 2 (OSLDs-n,p,e). Such following features of OSLDs are investigated: detection limit, energy response, linearity, reproducibility, angular dependency and fading with both types of OSLDs-p,e and OSLDs-n,p,e. The result of an intercomparison in PD using OSLDs is also presented in the work. The research work also indicates that OSL dosimetry can be an alternative method applied in PD and possibly become one of the most popular personal dosimetry method in the future. (author)

  5. Measurement system for the determination of the individual exposure of low frequency electric and magnetic fields on humans (personal dosimeter)

    International Nuclear Information System (INIS)

    Huber, E.

    1998-07-01

    The current doctorate introduces a free body electronic personal dosimeter for measuring the vector components of ELF-fields. In contrast to a conventional field strength meter not the undisturbed fields are used as a measure, but the inhomogeneous fields near the human body, measured over a long time (dosimetric concept). Based on an analytical and numerical 'dosimetric' model, the field signal together with the frequency information can be transformed for further evaluation in the average inner body current density. Here the current density is considered as a dose relevant measure. According to demands in industrial safety, requirements for a dosimeter are derived and developmental goals defined. These goals are realized by investigations and proficiency testings of electric and magnetic highly sensitive field sensors, the development of low-power electronics with good performance and the implementation of digital data processing on different platforms. The characterization of the influence of possible environmental variables on the realized prototype, the determination of the technical characteristics under various boundary conditions and an error analysis are further important parts of this work. The calibration of the INPEDO (individual personal dosimeter) measurement system in special calibration facilities (three axis Helmholtz coils for the magnetic and parallel plates according to the IEEE833-standard for the electric field) as well as first measurements taken under real operating conditions conclude this report. (orig.) [de

  6. The characteristics of CaF2:Tm crystals (TLD-300) irradiated by electromagnetic radiation

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Yona, S.; Laichter, Y.; German, U.; Weiser, G.

    1985-09-01

    The main characteristics of the CaF 2 :Tm crystals (TLD-300), as a dosimeter, were measured: the glow curve, sensitivity, linearity, fading and energy dependence for photons, and compared to those of LiF (TLD-100) and CaF 2 :Dy (TLD-200). It was found that CaF 2 :Tm can be used for environmental dosimetry by reading the crystals after four days. (Author)

  7. A personal radio-frequency dosimeter with cumulative-dose recording capabilities

    International Nuclear Information System (INIS)

    Rochelle, R.W.; Moore, M.R.; Thomas, R.S.; Ewing, P.D.; Hess, R.A.; Hoffheins, B.S.

    1990-01-01

    The radio-frequency (rf) dosimeter developed by the Oak Ridge National Laboratory is a portable, pocket-sized cumulative-dose recording device designed to detect and record the strengths and durations of electric fields present in the work areas of naval vessels. The device measures an integrated dose and records the electric fields that exceed the permissible levels set by the American National Standards Institute. Features of the rf dosimeter include a frequency range of 30 MHz to 10 GHz and a three-dimensional sensor. Data obtained with the rf dosimeter will be used to determine the ambient field-strength profile for shipboard personnel over an extended time. Readings are acquired and averaged over a 6-min period corresponding to the rise time of the core body temperature. These values are stored for up to 6 months, after which the data are transferred to a computer via the dosimeter's serial port. The rf dosimeter should increase knowledge of the levels of electric fields to which individuals are exposed. 13 refs., 16 figs., 2 tabs

  8. US progress on the development of CR-39 based neutron dosimeters

    International Nuclear Information System (INIS)

    Hadlock, D.E.

    1987-06-01

    Historically at US nuclear facilities, two types of personnel neutron dosimeters have been in routine use: nuclear track emulsion-Type A (NTA) film and thermoluminescent dosimeter (TLD)-albedo. Both of these dosimeters have energy-dependent responses. Therefore, the neutron energy spectra must be known, to interpret the dosimeter results properly. A new state-of-the-art dosimetry system has been developed within the US Department of Energy (US DOE) Personnel Neutron Dosimeter Evaluation and Upgrade Program. This system is called the combination thermoluminescent dosimeter/track etch dosimeter (TLD/TED). This paper briefly describes US DOE research currently being conducted to further enhance the TED portion of the combination TLD/TED system. The research areas involved include dose sensitivity, neutron energy range, specialized radiators, self-developing dosimeters, and neutron spectrometry. 1 fig., 1 tab

  9. Evaluation of the implementation and use of active personal dosimeters for neutrons in Brazil; Evaluacion de la implementacion y del uso de los dosimetros individuales activos para neutrones en el Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Castro B, C. P.; Wagner P, W.; De Souza P, K. C., E-mail: karla@ird.gov.br [Instituto de Radioprotecao e Dosimetria, Av. Salvador Allende s/n, Recreio Bandeirantes, 22780-160 Rio de Janeiro (Brazil)

    2014-08-15

    This work was conducted through of a field research based on a questionnaire sent to users of active personal dosimeters. A retrospective study of the last six years was also carried out of the services in the Neutron Metrology Laboratory (2008-2013) referent to the active personal dosimeters, taking into consideration the standards ISO-8529-3 and IEC-61526. The active personal dosimeters are defined as any instrument of individual monitoring with direct reading capacity, used by individuals exposed to ionizing radiation fields. Through research was verified that the active personal dosimeters work associated with other dosimeter types. Considering all dosimeters declared in the questionnaire, only two dosimeters (MGP brand Dmc 2000-GN model and the brand ATOMTEX model AT2503A) have conformity declaration with the international standard IEC-61526: 2005 reported by the manufacturers. (author)

  10. Analysis of QUADOS problem on TLD-ALBEDO personal dosemeter responses using discrete ordinates and Monte Carlo methods

    International Nuclear Information System (INIS)

    Kodeli, I.; Tanner, R.

    2005-01-01

    In the scope of QUADOS, a Concerted Action of the European Commission, eight calculational problems were prepared in order to evaluate the use of computational codes for dosimetry in radiation protection and medical physics, and to disseminate 'good practice' throughout the radiation dosimetry community. This paper focuses on the analysis of the P4 problem on the 'TLD-albedo dosemeter: neutron and/or photon response of a four-element TL-dosemeter mounted on a standard ISO slab phantom'. Altogether 17 solutions were received from the participants, 14 of those transported neutrons and 15 photons. Most participants (16 out of 17) used Monte Carlo methods. These calculations are time-consuming, requiring several days of CPU time to perform the whole set of calculations and achieve good statistical precision. The possibility of using deterministic discrete ordinates codes as an alternative to Monte Carlo was therefore investigated and is presented here. In particular the capacity of the adjoint mode calculations is shown. (authors)

  11. TLD system for the monitoring of the environmental radioactivity

    International Nuclear Information System (INIS)

    Stochioiu, Ana; Sahagia, Maria; Tudor, Ion

    2008-01-01

    The paper presents a high sensitivity TLD system, designed for the survey of the environmental radioactivity. It is based on the use of TL detectors type LiF:Mg, Cu, P, commercially known as GR-200A. The dosimeter designed in our Institute, contains 3 detectors, and the measurement value is calculated as the arithmetic mean. A very sensitive, TL Reader, READER ANALYSER RA'94 was chosen and an optimal thermal cycle was designed, such as to enhance the measurement performances. For each placement, a set of 3 dosemeters is used, and survey intervals from 1 to 100 days, depending on the radioactivity level and reporting requirements, are selected. The technical characteristics of the system were determined by exposing the dosimeters in reference X and gamma radiation fields, such as required by the IEC standard 61066:iun.2006 'Thermoluminescence dosimetry systems for personal and environmental monitoring'. The main technical parameters are of highest quality and recommend it for use in the survey of the environmental radioactivity, at the level of ambient dose equivalent rate, due to normal natural radioactivity, in open areas. The paper describes the method of characterisation and measurement results, as well as their relevance. (author)

  12. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    Science.gov (United States)

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  13. A radon (thoron) daughter personal alpha-dosimeter of the passive type using a diffused-junction detector and an electrostatic collector

    International Nuclear Information System (INIS)

    Bigu, J.; Frattini, A.

    1984-05-01

    A solid-state alpha-dosimeter has been designed and found to be suitable for personal and environmental radon-thoron daughter monitoring. The dosimeter basically consists of an electrostatic collector and an alpha-particle counting system with spectroscopy capabilities. The sensitive volume (∼20 cm 3 ) of the electrostatic collector consists of a cylindrically-shaped metal wire screen and a diffused-junction silicon alpha-detector covered with a thin aluminized mylar sheet. A DC voltage (∼450 V) is applied between the wire screen and the mylar sheet, the latter held at negative potential relative to the metal screen. Data can be retrieved during or after sampling by means of a micro-computer (Epson HX20) via a RS-232 communcation interface unit. The dosimeter has been calibrated in a large (26 m 3 ) radon/thoron test facility. A linear relationship was found between radon gas concentration and radon daughter Working Level, and the dosimeter's alpha-count. The dosimeter is mounted on top of an ordinary miner's cap lamp battery and is ideally suited for personal monitoring in underground uranium mines and other working areas. The dosimeter presented here is a considerably improved version of an earlier prototype

  14. Development of measurement method using TLD for workers occupation personally exposed to 125I seed source in the implant

    International Nuclear Information System (INIS)

    Luo Suming; He Zhijian; Yuan Jilong; Yue Baorong; Wei Kedao

    2011-01-01

    Objective: To explore the method for measuring and calculating both absorbed dose and effective dose received in organ and tissues of occupational workers by using TLDs for the implantation of 125 I seed sources. Methods The experiments with 60 Co γ-rays were carried out for the stability. A group of TLD chips was exposed to 125 I seed sources to establish standard dose curve for air kerma. During the 125 I seed implantation, the TLD chips were pasted to 13 locations like thyroid inside and outside the lead aprons worn by occupational workers to measure average absorbed dose and calculate the absorbed doses and effective to organs and tissues. Results: For 3 cases of prostate cancers with implantation of 125 I seeds, the worker's organs and tissues received the absorbed dose 0.02 -3.80 μ Gy and effective dose 0.06- 1.81 μSv outside lead aprons and the highest absorbed dose 2.35 μ Gy and effective 0.02 μSv inside lead aprons, respectively, with more than 65.9% of rays shielded. For 3 cases of brain cancers with implantation of 125 I seeds, the workers received the absorbed dose 0.23 - 11.31 μGy and effective dose 0.88-4.07 μSv outside lead aprons and the highest absorbed dose 2.22 μ Gy and effective dose 0.09 μSv inside lead aprons, respectively, with more than 54.5% of rays shielded. For 3 cases of lung cancers with implantation of 125 I seeds, the workers received the absorbed dose 0.03 - 14.78 μGy and effective dose 0.35 -7.59 μSv outside lead aprons and the highest absorbed dose 4.09 μGy and effective 0.22 μSv inside lead aprons, respectively, with more than 58.4% of rays shielded. For 2 cases of mediastinum cancers with implantation of 125 Iseeds, the workers received the absorbed dose 0.06 - 74.91 μGy and effective dose 0.83-17.96 μSv outside lead aprons and the highest absorbed dose 10.29 μGy and effective 0.5 μSv inside lead aprons, respectively, with more than 85% of rays shielded. For one case of ovary cancer with implantation of 125

  15. Neutron area monitor with TLD pairs

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R.

    2011-11-01

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)

  16. Electronic Personal Dosimeters Open a New Dimension in Radon Dose Management

    International Nuclear Information System (INIS)

    Streil, T.; Oeser, V.

    2001-01-01

    Full text: Electronic Radon dosimeters enable the installation of completely automated dose management systems in Radon exposed areas for the first time. In opposition to passive dosimeters, the actual dose value will be displayed online. The alarm function indicates the reaching of the permissible doses and prevents exceeding of given levels. The immediate availability of all user- and measurement information leads to a new level of quality assurance within complex dose management systems. Furthermore, the sequentially stored data give an exact assignment of concentration and dose values to the real time and location. This information is very important for staff planning and the assessment of Radon affected objects (local dosimeters). The measurement of Radon concentration is based on the alpha spectroscopy. The gas diffuses through a membrane into the measurement chamber. Progeny inside the chamber ionised after decay will be collected at the detector surface forced by the electric field. All incoming events will be processed by a Multi Channel Analyser (MCA). A integral spectrum and a record of five peak-areas (each assigned to a single nuclide) at every time step will be stored for computing concentration and dose values. The sensitivity of the device was determined to 0.25 counts/(minkBq/m 3 ). An average concentration of 200 Bq/m 3 during an eight-hours work day gives an error of ±20%. The response time (95% of final value) only depends on half live times of 218 Po and 214 Po (10 minutes using fast mode, 2 hours in slow mode) and is not affected by the diffusion membrane. Further tests at high levels (up to several MBq/m 3 ) were carried out successfully during soil gas and water measurements. (author)

  17. Radiation dosimeter

    International Nuclear Information System (INIS)

    Lowe, D.

    1980-01-01

    A radiation dosimeter is described, comprising a thermoluminescent phosphor incorporated in matrix of polyethersulphone. The dosimeter is preferably a thin film formed by spreading a suspension of a powdered phosphor in a solution of polyethersulphone onto a flat surface. The solvent for the polyethersulphone is a mixture of a n-methyl-2-pyrrolidone and xylene in equal proportions. A thin, inert film of polyethersulphone can be cemented to one surface of the dosimeter so as to provide a skin dosimeter. (author)

  18. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  19. Alarm pocket dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, H; Kitamura, S [Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan)

    1975-04-01

    This instrument is a highly reliable pocket dosimeter which has been developed for personal monitoring use. The dosimeter generates an alarm sound when the exposure dose reaches a preset value. Using a tiny GM tube for a radiation detector and measuring the integrated dose by means of a digital counting method, this new pocket dosimeter has high accuracy and stability. Using a sealed alkali storage battery for the power supply, and with an automatic control charger, this dosimetry system is easy and economical to operate and maintain. Detectable radiation by the dosimeter are X and ..gamma.. rays. Standard preset dose values are 30, 50, 80 and 100 mR. Detection accuracy is betwen +10% and -20%. The dosimeter is continuously usable for more than 14 hours after charging for 2 hours. The dosimeter has the following features; good realiability, shock-proof loud and clear alarm sound, the battery charger also serves as a stock container for the dosimeters, and no switching operation required for the power supply due to the internal automatic switch. Therefore, the dosimetry system is very useful for personal monitoring management in many radiation industry establishments.

  20. Mexican gems as thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Azorin N, J.

    1979-01-01

    The possibility of using naturally ocurring mexican gems as thermoluminescent dosimeters (TLD) was investigated. Twelve types of gems were irradiated with X and gamma rays in order to determinate their dosimetric properties. Three of these gems showed favorable thermoluminescent characteristics compared with commercial thermoluminescent dosimeters. The plots of their thermoluminescent response as a function of gamma dose are straight lines on full log paper in the dose range 10 -2 to 10 2 Gy. The energy dependence is very strong to low energies of the radiation. Their fading was found to be about 5%/yr. and they may be annealed as reused without loss in sensitivity. Therefore, these gems can be used as X and gamma radiation dosimeters. (author)

  1. Evaluation of TLD dose response compared to MCNP-5 simulation of diagnostic X ray equipment - radiation diagnostic image

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, R.; Cavalieri, T. A.; De Paiva, F.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares, Centro de Engenharia Nuclear / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rodrigues F, M. A. [Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Dermatologia e Radioterapia, Av. Prof. Montenegro s/n, Rubiao Junior, 18601-970 Botucatu (Brazil); Vivolo, V., E-mail: chancez@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares, Gerencia de Metrologia das Radiacoes / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The thermo luminescent dosimeter (TLD) is used as a radiation dosimeter and can be used as environmental and staff personnel monitoring. The TLD measures ionizing radiation exposure by a process in which the amount of radiation collected by the dosimeter is converted in visible light when the crystal is heated. The amount of emitted light is proportional to the radiation exposure, and then the response of the TLD must be the related to the real dose. In this work it was used twenty four TLD 700 in order to obtain eight values of doses from a diagnostic X-ray equipment. The TLD-700 is a LiF TLD enriched with {sup 7}Li isotope. One way to compare and study the response of TLD is by Monte Carlo method, which has been used as a computational tool to solve problems stochastically. This method can be applied to any geometry, even those where the boundary conditions are unknown, making the method particularly useful to solve problems a priori. In this work it was modeled the X-ray tube exactly as the one used to irradiate the TLD, after the simulation and the TLD irradiation the results of dose value from both were compared. (Author)

  2. Evaluation of TLD dose response compared to MCNP-5 simulation of diagnostic X ray equipment - radiation diagnostic image

    International Nuclear Information System (INIS)

    Sanchez G, R.; Cavalieri, T. A.; De Paiva, F.; Dalledone S, P. de T.; Yoriyaz, H.; Rodrigues F, M. A.; Vivolo, V.

    2014-08-01

    The thermo luminescent dosimeter (TLD) is used as a radiation dosimeter and can be used as environmental and staff personnel monitoring. The TLD measures ionizing radiation exposure by a process in which the amount of radiation collected by the dosimeter is converted in visible light when the crystal is heated. The amount of emitted light is proportional to the radiation exposure, and then the response of the TLD must be the related to the real dose. In this work it was used twenty four TLD 700 in order to obtain eight values of doses from a diagnostic X-ray equipment. The TLD-700 is a LiF TLD enriched with 7 Li isotope. One way to compare and study the response of TLD is by Monte Carlo method, which has been used as a computational tool to solve problems stochastically. This method can be applied to any geometry, even those where the boundary conditions are unknown, making the method particularly useful to solve problems a priori. In this work it was modeled the X-ray tube exactly as the one used to irradiate the TLD, after the simulation and the TLD irradiation the results of dose value from both were compared. (Author)

  3. Manufacture of thermoluminescent dosimeter of LiF(Mg) by sintherization technique

    International Nuclear Information System (INIS)

    Borges, V.; Elbern, A.W.

    1984-01-01

    A technique to produce solid state dosemeters, that can be used in personal dosimetry, using LiF powder is described. Many differents baths of cold compacted and sinterized dosimeters were investigated as a function of the dopant concentration and the sinterization time. Some termoluminescent characteristics were measured, and compared to those of the extruded TLD-100 dosemeters, which are used as an international reference. The experimental methodology and the obtained results, with their respective analyses, are the subject of this paper. (M.A.C.) [pt

  4. Characteristics of radiophotoluminescent glass dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masashi; Shiraishi, Akemi; Murakami, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    In Japan Atomic Energy Research Institute, a film badge is recently replaced by a new type radiophotoluminescent (RPL) glass dosimeter for external personal monitoring. Some fundamental characteristics of this dosimeter, such as dose dependence linearity, energy dependence, angular dependence, dose evaluation accuracy at mixed irradiation conditions, fading, etc., were examined at the Facility of Radiation Standard (FRS), JAERI. The results have proved that the RPL glass dosimeter has sufficient characteristics for practical use as a personal dosimeter for all of the items examined. (author)

  5. Personal dose assessment using region of interest analysis compared with harshaw TLD WinREMS software evaluation

    International Nuclear Information System (INIS)

    Adjei, D.

    2010-06-01

    Personal dose equivalents, Hp(10), have been evaluated manually using Region of Interest (ROI) analysis and compared with the automated computerized WinREMS software for the occupationally exposed in medical, industrial and research/teaching applications for 2008 and 2009. The mean annual effective dose estimated by the WinREMS software for medical, industrial and research/teaching applications for the study period are 0.459 mSv, 0.549mSv and 0.447 mSv, respectively compared with ROI analysis are 0.424 mSv, 0.520 mSv and 0.407 mSv respectively. The mean annual collective doses evaluated by the WinREMS software for medical, industrial and research/teaching applications for the two-year study period are 0.258 man-Sv, 0.084 man-Sv and 0.032 man-Sv respectively, compared with the ROI analysis with values: 0.238 man-Sv, 0.080 man-Sv and 0.029 man-Sv respectively. The individual doses for the occupationally exposed in Ghana fall within the typical range of individual doses in the UNSCEAR 2008 report. In calibration mode, the WinREMS method overestimated the personal dose equivalent by 51.3% for doses below 1 mSv and 12.0% above 1 mSv. The corresponding values for the Region of Interest analysis method are 13.2% and 6.5%. The results from the study indicate that the ROI analysis provides a better alternative to estimating the personal doses (au).

  6. The neutron response of a 7 LiF thermoluminescent dosimeter incorporated in the UKAEA criticality dosimeter

    International Nuclear Information System (INIS)

    Eid, A.M.; Delafield, H.J.

    1976-04-01

    There are practical advantages in incorporating a 7 LiF thermoluminescent dosimeter (TLD) for the measurement of γ-ray dose, into the personnel criticality dosimeter. This paper investigated the corrections necessary for the inherent direct response of the TLD neutrons, and its enhanced indirect response from prompt γ-rays resulting from neutron interactions with the metallic foils contained in the criticality dosimeter. The response of the TLD to fast fission neutrons was measured to be 0.02 γ rad/n rad. The indirect response of the TLD to thermal neutrons was measured to be 4.8 x 10 -10 rad n -1 cm 2 for dosimeters exposed in free air, and 7 x 10 -10 rad n -1 cm 2 for dosimeters worn on the body respectively. Application of these correction factors to TLD measurements made at International Dosimetry Intercomparisons (sponsored by the I.A.E.A.) gave improved agreement with the values given by other participants. (author)

  7. Environmental monitoring with TLD in Costa Rica

    International Nuclear Information System (INIS)

    Mora, P.; Mora, E.

    2003-01-01

    Using thermoluminescent dosimeters (Harshaw TLD-200) the first set of costarican data on absorbed doses in air from natural radiation is obtained. During the period from September 1996 to october 2000 eight different sites throughout the country were chosen to instal the TLD stations. Each station had eight cards (five were changed every three months and three changed annually). The dosimeters were read in the Applied Nuclear Physics Laboratory using a 4000 Harshaw reader and with the help a mathematical algorithm and the equipment calibration factors the dose rate in air (nGy h -1 ) was calculated. The national average is 108.9 ± 32.4 nGy h -1 , the lowest values (in nGy h -1 ) were obtain at sea level at Quebrada Honda with 53 ± 11 and the highest values (in nGy h -1 ) at Cartago with 160 ± 19. A slight increase with altitude is observed even though the Cartago station was always the highest. The values found agree with reported worldwide values for environmental doses in air. (Author) [es

  8. Practical consequences for the use of a personal dosimeter for fast neutrons based on CR39 exposed up to one year

    International Nuclear Information System (INIS)

    Boschung, Markus; Fiechtner, Annette; Mayer, Sabine; Wernli, Christian

    2008-01-01

    Full text: At the Paul Scherrer Institut a personal neutron dosimetry system based on chemically etched CR-39 detectors and automatic track counting is in routine use since 1998. In its original design, the dosimeter is sensitive to thermal neutrons and to neutrons in the energy range from 200 keV up to several MeV. The standard exposition period is 3 months. Recently, a novel concept for individual monitoring was implemented at CERN. In this concept, each worker who possibly enters a radiation zone is equipped with a combined dosimeter for the measurement of personal photon and neutron doses. The dosimeter for photon dose measurement has an instant readout capability and dose measurements are done monthly. The dosimeter for neutron measurement is based on CR-39 detectors and is sensitive to fast neutrons only. The CR-39 detector is only evaluated and a neutron dose determined if the monthly personal photon dose exceeds 2 mSv or if the exposition period of the neutron dosimeter exceeds one year. This novel regime of use of the neutron dosimeter has had some important consequences for its practical implementation. A priori, the wearing period of a neutron dosimeter is not known and can range from 1 month up to 12 or even more months. A good knowledge of the long-term behaviour and characteristics of the detector material is needed. But also organisational and administrative issues have to be considered. The paper will outline the adopted procedure covering not only technical but also organisational aspects. The long-term behaviour of background track density and response to 241 Am-Be over one year are described as well as calibrations performed with 241 Am-Be and 252 Cf sources and in the High-Energy Reference Field Facility at CERN (CERF). The concept of individual monitoring at CERN could be transferred to other locations with high energy accelerators such as PSI and DESY. The experience gained with the neutron dosimeter based on CR-39 since introduction of the

  9. Methods on TLD management be applicable in nuclear power plantsunder the multi-reactor operational mode

    International Nuclear Information System (INIS)

    Luo Huiyong; Wen Qinghua; Li Ruirong; Yu Enjian

    2006-01-01

    This paper discusses the methods on management of TLD dosimeters adopted in DNMC and other NPPs, analyzes and evaluates their both defects and advantages. Facing the coming of the multi-reactor operational mode applied in NPPs, a new method intelligent management mode is put forward, this optimized method not only assures the accuracy of TLD's measurement but also reduces the cost of production and improves the efficiency of management greatly. (authors)

  10. Feasibility of smartphone diaries and personal dosimeters to quantitatively study exposure to ultraviolet radiation in a small national sample.

    Science.gov (United States)

    Køster, Brian; Søndergaard, Jens; Nielsen, Jesper B; Allen, Martin; Bjerregaard, Mette; Olsen, Anja; Bentzen, Joan

    2015-09-01

    In 2007, a national skin cancer prevention campaign was launched to reduce the UV exposure of the Danish population. To improve campaign evaluation a questionnaire validation using UV-dosimeters was initiated. To show the feasibility of dosimeters for national representative studies and of smartphones as a data collection tool. Participants were sent a dosimeter which they wore for 7 days, received a short diary questionnaire by text message each day and subsequently a longer questionnaire. Correlation between responses from questionnaire, smartphone diaries and dosimeters were examined. This study shows a 99.5% return rate (n = 205) of the dosimeters by ordinary mail and high response-rates for a smartphone questionnaire dairy. Correlation coefficients for outdoor-time reported through smartphones and dosimeters as average by week 0.62 (0.39-0.77), P questionnaire and dosimeters were 0.42 (0.11-0.64), P = 0.008. The subjective perception of the weather was the only covariate significantly influencing questionnaire estimates of actual outdoor exposure. We showed that dosimeter studies are feasible in national settings and that smartphones are a useful tool for monitoring and collecting UV behavior data. We found diary data reported on a daily basis through smartphones more strongly associated with actual outdoor time than questionnaire data. Our results demonstrate tools and possible considerations for executing a UV behavior questionnaire validation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Feasibility of smartphone diaries and personal dosimeters to quantitatively study exposure to ultraviolet radiation in a small national sample

    DEFF Research Database (Denmark)

    Køster, Brian; Søndergaard, Jens; Nielsen, Jesper B

    2015-01-01

    studies and of smartphones as a data collection tool. MATERIALS AND METHODS: Participants were sent a dosimeter which they wore for 7 days, received a short diary questionnaire by text message each day and subsequently a longer questionnaire. Correlation between responses from questionnaire, smartphone...... diaries and dosimeters were examined. RESULTS: This study shows a 99.5% return rate (n = 205) of the dosimeters by ordinary mail and high response-rates for a smartphone questionnaire dairy. Correlation coefficients for outdoor-time reported through smartphones and dosimeters as average by week 0.62 (0...... that dosimeter studies are feasible in national settings and that smartphones are a useful tool for monitoring and collecting UV behavior data. CONCLUSION: We found diary data reported on a daily basis through smartphones more strongly associated with actual outdoor time than questionnaire data. Our results...

  12. Radiation dosimeters for medical use

    International Nuclear Information System (INIS)

    Risticj, S. Goran

    2013-01-01

    The several personal radiation dosimeter types for medical use, which look like promising for this kind of application, as pMOS (RADFET) dosimeter, direct ion storage (DIS) dosimeters, thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimeters, are described, and their advantages and disadvantages are analyzed. The p-channel metal-oxide-semiconductor (pMOS) dosimetric transistors allow dose measurements in vivo in real time, and they are especially important for radiotherapy. Direct ion storage (DIS) dosimeters are a hybrid of ion chamber and floating gate MOSFETs (FGMOSFETs), show very high sensitivity. Radiative processes that happen during the exposure of crystal to radiation are classified as prompt luminescence or radioluminescence (RL). In the case of an emission during stimulation, this phenomenon is referred to thermoluminescence or optically stimulated luminescence depending on whether the stimulation source is heat or light. TL and OSL dosimeters are natural or synthetic materials, which the intensity of emitted light is proportional to the irradiation dose. (Author)

  13. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF:Mg,Cu,P thermoluminescence dosimeters for use in diagnostic radiology

    International Nuclear Information System (INIS)

    Dong, S.L.; Chu, T.C.; Lan, G.Y.; Wu, T.H.; Lin, Y.C.; Lee, J.S.

    2002-01-01

    Monitoring radiation exposure during diagnostic radiographic procedures has recently become an area of interest. In recent years, the LiF:Mg,Cu,P thermoluminescence dosimeter (TLD-100H) and the highly sensitive metal oxide semiconductor field effect transistor (MOSFET) dosimeter were introduced as good candidates for entrance skin dose measurements in diagnostic radiology. In the present study, the TLD-100H and the MOSFET dosimeters were evaluated for sensitivity, linearity, energy, angular dependence, and post-exposure response. Our results indicate that the TLD-100H dosimeter has excellent linearity within diagnostic energy ranges and its sensitivity variations were under 3% at tube potentials from 40 Vp to 125 kVp. Good linearity was also observed with the MOSFET dosimeter, but in low-dose regions the values are less reliable and were found to be a function of the tube potentials. Both dosimeters also presented predictable angular dependence in this study. Our findings suggest that the TLD-100H dosimeter is more appropriate for low-dose diagnostic procedures such as chest and skull projections. The MOSFET dosimeter system is valuable for entrance skin dose measurement with lumbar spine projections and certain fluoroscopic procedures

  14. Assessment of effective dose with personal dosimeters: Account of the effect of anisotropy of workplace fields

    International Nuclear Information System (INIS)

    Chumak, Vadim V.; Bakhanova, Elena V.

    2008-01-01

    Proposed is a method for better estimation of effective dose E based on readouts of personal dosemeter calibrated in terms of personal dose equivalent Hp(10). This method uses data on anisotropy of workplace radiation fields and parameters of distributions of conversion coefficient between Hp(10) and E. Distributions of conversion coefficients for a randomly oriented phantom were obtained by stochastic simulation for several ranges of anisotropy factor introduced for classification of workplaces. The 95 percentile of the conversion coefficient distribution applied to Hp(10) is proposed as the reasonably conservative approximation of the effective dose for moderately anisotropic photon fields

  15. Use of wrist albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1983-01-01

    We are developing a wrist dosimeter that can be used to measure the exposure at the wrist to x-rays, gamma rays, beta-particles, thermal neutrons and fast neutrons. It consists of a modified Hankins Type albedo neutron dosimeter and also contains three pieces of CR-39 plastic. ABS plastic in the form of an elongated hemisphere provides the beta and low energy x-ray shielding necessary to meet the requirement of depth dose measurements at 1 cm. The dosimeter has a beta window located in the side of the hemisphere oriented towards an object being held in the hands. A TLD 600 is positioned under the 1 cm thick ABS plastic and is used to measure the thermal neutron dose. At present we are using Velcro straps to hold the dosimeter on the inside of the wrist. 9 figures

  16. Evaluation of fading factor and self-dose for glass dosimeter and thermoluminescence dosimeter

    International Nuclear Information System (INIS)

    Yamasaki, T.; Yamanishi, H.; Miyake, H.; Komura, K.

    2000-01-01

    The glass dosimeter (GD) and thermoluminescence dosimeter (TLD) are both passive radiation detectors. They are often used for measuring environmental radiation. In order to measure low dose rate preciously, it is important to evaluate decreased dose due to fading and self-dose during the exposure period. We evaluate the fading factor and self-dose of thee passive detectors, GD and TLD. We select Ogoya tunnel for the experiment. The tunnel is suitable field for measuring faded dose and self-dose because it is low cosmic radiation. At the center of the tunnel, the intensity of cosmic ray is reduced to about 1/177 than the outside of the funnel. We prepared two sets of dosimeters. One set consists of five GDs, five TLDs and some pre-irradiated GDs and TLDs that are exposed to standard radiation of 4 mGy by Cs-137. These dosimeters are put in the 10 cm thick lead box in order to shield the terrestrial gamma ray. One set is located at the center of the tunnel and the other is the outside of the funnel. The dosimeters were exposed for ten months, from May 1998 to March 1999. After the exposure, the readers of dosimeters are carried into the funnel to read out the signals promptly as soon as taking out the dosimeters. As a result of the measurement, four kinds of data are taken for GD and TLD respectively. Assumed that the self-dose and cosmic ray are constant during exposure, the four independent unknown quantities, a self-dose a dose due to cosmic ray and a fading coefficient at the center of the tunnel and at the outside, are considered. Therefore four simultaneous equations should be obtained. From these examinations, the faded dose of GD is less than 1%, but that of TLD is about 16% during ten months. The coefficient for compensation of fading of GD and TLD is given as the half of the each value. At the outside of the tunnel, the measured dose rate of cosmic ray that can pass through the 10 cm lead is evaluated to be about 16 nGy/h by both detectors. The self

  17. Automating the personnel dosimeter monitoring program

    International Nuclear Information System (INIS)

    Compston, M.W.

    1982-12-01

    The personnel dosimetry monitoring program at the Portsmouth uranium enrichment facility has been improved by using thermoluminescent dosimetry to monitor for ionizing radiation exposure, and by automating most of the operations and all of the associated information handling. A thermoluminescent dosimeter (TLD) card, worn by personnel inside security badges, stores the energy of ionizing radiation. The dosimeters are changed-out periodically and are loaded 150 cards at a time into an automated reader-processor. The resulting data is recorded and filed into a useful form by computer programming developed for this purpose

  18. Cell-phone interference with pocket dosimeters

    International Nuclear Information System (INIS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A

    2005-01-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  19. Cell-phone interference with pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A [Department of Radiation Oncology, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521 (United States)

    2005-05-07

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  20. Development of a Real-time Personal Dosimeter System and its Application to Hanul Unit-4

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kidoo; Cho, Moonhyung; Son, Jungkwon [Korea Hydro Nuclear Power Co., Seoul (Korea, Republic of)

    2013-10-15

    The main reasons to adopt the system are to minimize unnecessary exposure, to calculate one's dose faster, to provide a possible alternatives of personnel such as radiation safety manager. The KHNP's Remote radiation Monitoring System (KRMS) is characterized as integrated, less bulky, lighter comparing to existing instrument although it have multifunction of real-time dosimetry and voice communication. After laboratory test in Central Research Institute (CRI) and field test in Hanbit unit-3 and 4, KRMS was applied to main radiation works in Hanul unit-4. KHNP-CRI has developed real-time personal dose monitoring system and applied to Hanul overhaul which include steam generator replacement. It took 5 days to install the system in reactor building and the optimal location for the repeater was 3 points at 122ft and 3 points at 100ft. Owing to the optimization of repeater and high sensitivity antenna, there was no shaded area of wireless network and no loss of dose data in spite of wearing lead jacket. The average deviation of personal dose received by KRMS and existing ADR is about 2%, which tell us it matches well. The lessons learned in Hanul unit-4 are it needs simplification of operating system and it requires a function to be able to check battery level at remote area.

  1. Personnel ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Williams, R.A.

    1975-01-01

    A dosimeter and method for use by personnel working in an area of mixed ionizing radiation fields for measuring and/or determining the effective energy of x- and gamma radiation; beta, x-, and gamma radiation dose equivalent to the surface of the body; beta, x-, and gamma radiation dose equivalent at a depth in the body; the presence of slow neutron, fast neutron dose equivalent; and orientation of the person wearing the dosimeter to the source of radiation is disclosed. Optionally integrated into this device and method are improved means for determining neutron energy spectrum and absorbed dose from fission gamma and neutron radiation resulting from accidental criticality

  2. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    Science.gov (United States)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  3. To the attention of all dosimeter users

    CERN Multimedia

    2005-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include a compulsory monthly read-out of the dosimeter. Therefore we would like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350.-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short term visitor dosimeter (VCT). This dosimeter has a limited validity period but without for a compulsory periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service Bldg. 24 E 011 http://cern.ch/rp-dosimetry

  4. To the attention of all dosimeter users

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include the compulsory monthly read-out of the dosimeter. Therefore we would like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350.-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short term visitor dosimeter (VCT). This dosimeter has a limited validity period but without for a compulsory periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service Bld 24 E 011 http://cern.ch/rp-dosimetry

  5. To the attention of all dosimeter users

    CERN Multimedia

    Dosimetry Service

    2006-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include the compulsory monthly read-out of the dosimeter. We would therefore like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350,-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short-term visitor dosimeter (VCT). This dosimeter has a limited validity period but does not require a periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service - Bldg. 24 E 011 - http://cern.ch/rp-dosimetry

  6. Assessment of the effectiveness of attenuation of leaded aprons through TLD dosimetry and Monte Carlo simulation method

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Diaz M, J. A.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Were performed experimental setups using an X-ray equipment continuous emission Pantak DXT-3000 and three types of leaded aprons with thickness of 0.25, 0.5 and 0.75 mm coated with Mylar Fiber coated Mylar on its surface. Apron was located at a distance of 2.5 m with respect focus in order to cover a radiation field size of a meter in diameter. At the beam output were added aluminum filtration in order to reproduce qualities of narrow beams N-40 (E{sub efective} = 33 keV), N-80 (E{sub efective} = 65 keV) and N-100 (E{sub efective} = 83 keV) according to the ISO standard 4037 (1-3). Each lead apron were fixed 10 TLD dosimeters over its surface, 5 dosimeters before and 5 dosimeters after with respect to X-ray beam and were calibrated for Harshaw 4500 thermoluminescent reader system order to assess the attenuation of each apron. Were performed dosimeters readings and were calculated the attenuation coefficients for each effective energy of X-ray quality. In order to confirm the method of effective energy of ISO-4037 and evaluate effectiveness of lead aprons based on energy range for each medical practice was made a Monte Carlo simulation using code GEANT-4, calculating the fluence and absorbed dose in each one of the dosimeters Monte Carlo, then coefficients of linear attenuation were calculated and compared with the experimental data and reported by the National Institute of Standards and Technology (Nist). Finally, results are consistent between theoretical calculation and experimental measures. This work will serve to make assessments for other personalized leaded protections. (Author)

  7. Assessment of the effectiveness of attenuation of leaded aprons through TLD dosimetry and Monte Carlo simulation method

    International Nuclear Information System (INIS)

    Olaya D, H.; Diaz M, J. A.; Martinez O, S. A.; Vega C, H. R.

    2016-10-01

    Were performed experimental setups using an X-ray equipment continuous emission Pantak DXT-3000 and three types of leaded aprons with thickness of 0.25, 0.5 and 0.75 mm coated with Mylar Fiber coated Mylar on its surface. Apron was located at a distance of 2.5 m with respect focus in order to cover a radiation field size of a meter in diameter. At the beam output were added aluminum filtration in order to reproduce qualities of narrow beams N-40 (E_e_f_e_c_t_i_v_e = 33 keV), N-80 (E_e_f_e_c_t_i_v_e = 65 keV) and N-100 (E_e_f_e_c_t_i_v_e = 83 keV) according to the ISO standard 4037 (1-3). Each lead apron were fixed 10 TLD dosimeters over its surface, 5 dosimeters before and 5 dosimeters after with respect to X-ray beam and were calibrated for Harshaw 4500 thermoluminescent reader system order to assess the attenuation of each apron. Were performed dosimeters readings and were calculated the attenuation coefficients for each effective energy of X-ray quality. In order to confirm the method of effective energy of ISO-4037 and evaluate effectiveness of lead aprons based on energy range for each medical practice was made a Monte Carlo simulation using code GEANT-4, calculating the fluence and absorbed dose in each one of the dosimeters Monte Carlo, then coefficients of linear attenuation were calculated and compared with the experimental data and reported by the National Institute of Standards and Technology (Nist). Finally, results are consistent between theoretical calculation and experimental measures. This work will serve to make assessments for other personalized leaded protections. (Author)

  8. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1992-06-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the first quarter of 1992. All radiation measurements are made using small, passive detectors called thermoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility

  9. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stone, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-30

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  10. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  11. Positional glow curve simulation for thermoluminescent detector (TLD) system design

    International Nuclear Information System (INIS)

    Branch, C.J.; Kearfott, K.J.

    1999-01-01

    Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design

  12. Study of physical factors affecting the TLD readout

    International Nuclear Information System (INIS)

    Ahmed, Amira Abd Elrhman Ebrahim

    2015-10-01

    The aim of the study was to study the effects of physical factors in TLD reading. The dosimeters have been irradiated with x rays of (0.5 mGy to 5 mGy) using plastic holder with Aluminum filters with dimensions 1.5 x 0.8 mm and 0.5 mm in thickness to obtain the equivalent dose Hp (10) flux of nitrogen gas and annealing after data collection by TLD Reader Analyzer 04 (Version 0.9.400 micro lab (krakow 2012). The count and dose analysis shows that; The count/s given by TLD appears to be higher in case of using filtration which was 7189.9 eps in contrast with reading without filter which was 4055.8 eps. There was proportional linear relationship between the applied dose and the TLD count for both cases with and without filter. And the correlation could be fitted in the form of equations: y=423.9 x + 1023 and y = 432.5 x + 405.3 for filtered and y refers to count/s. Such increment in count is ascribed to increasing applied radiation dose as well it indicates and confirms the linearity of TLD in measuring the radiation dose since R 2 = 0.9. However the count with filter for the applied radiation dose in mGy was greater than that without filter. The that measured with pellets annealing (reading of zero doses). TLD pellets reading without zero dose measurement usually gives greater dose ( 441.8 and 563.6 μGy) relative to the case where the zero doses have been measured which were 289.6 and 429.2 μGy, respectively. While the effect of using filtration is so obvious and leads to increase of zero dose, respectively relative to dose s of un reading of zero dose, and reading of zero dose, but without filter.(Author)

  13. Effects of smartphone diaries and personal dosimeters on behavior in a randomized study of methods to document sunlight exposure

    DEFF Research Database (Denmark)

    Køster, Brian; Søndergaard, Jens; Nielsen, Jesper Bo

    2016-01-01

    study. We examined the effects of wearing dosimeters and filling out diaries, measurement period and recall effect on the sun-related behavior in Denmark in 2012.Our sample included 240 participants eligible by smartphone status and who took a vacation during weeks 26-32 in 2012, randomized by gender...

  14. Electron beam energy monitoring using thermoluminescent dosimeters and electron back scattering

    International Nuclear Information System (INIS)

    Nelson, Vinod; Gray, Alison

    2013-01-01

    Periodic checks of megavoltage electron beam quality are a fundamental requirement in ensuring accurate radiotherapy treatment delivery. In the present work, thermoluminescent dosimeters (TLDs) positioned on either side of a lead sheet at the surface of a water equivalent phantom were used to monitor electron beam quality using the electron backscattering method. TLD100 and TLD100H were evaluated as upstream detectors and TLD200, TLD400 and TLD500 were evaluated as downstream detectors. The evaluation assessed the test sensitivity and correlation, long and short term reproducibility, dose dependence and glow curve features. A prototype of an in-air jig suitable for use in postal TLD dose audits was also developed and an initial evaluation performed. The results indicate that the TLD100-TLD200 combination provides a sensitive and reproducible method to monitor electron beam quality. The light weight and easily fabricated in-air jig was found to produce acceptable results and has the potential to be used by radiation monitoring agencies to carry out TLD postal quality assurance audits, similar to audits presently being conducted for photon beams. -- Highlights: ► Monitoring electron beam quality via electron backscattering was investigated. ► Different thermoluminescent materials were evaluated as detectors. ► A TLD100-TLD200 combination produced the most sensitive and reproducible results. ► An in-air jig was evaluated to allow measurements via postal dose audits

  15. Performance and type testing of selected dosimeters used for individual monitoring

    International Nuclear Information System (INIS)

    Almhena, E. H. Y.

    2010-07-01

    This study describes calibration and performance testing carried out for a set of 14 electronic personal dosimeters (EPDs) and thermoluminescence dosimeters (TLDs ) at the Secondary Standard Dosimetry Laboratory of Sudan. Also the conversion coefficients from air kerma have been determined. Dosimeters tested are belonging to three manufactures representing most commonly used types in Sudan. Calibrations were carried out at three X-ray qualities: 80, 120 and 150 kV, ISO 'narrow' spectra and for ''1''3''7Cs, '' 60 Co gamma rays. The experiments were carried out using ICRU Slab phantom with dimension 30x30x15 cm. Secondary standard ionization chamber was used to measure the personal dose equivalent, Hp(10) as standard dosimetric quantity of interest. parameters tested include: The variation of response with radiation energy and angle of incident in addition to dose rate dependence. The angular dependence factors have been experimentally determined for the same qualities and for different angles (0, ±20, ±40, ±60u) + were performed in accordance to the relevant international standards. Excellent energy, angular and dose rate response was demonstrated for 662 137 Cs, 1250 60 Co beam and (118, 100,65 keV) x-ray beam qualities exception the EPD at PM1203M are slightly larger but still with the acceptable. The response of electronic dosimeters were found to in limits of acceptable performance. For the mean response of all energies is range of EPDs Type RADOS 60, Greatz ED 150, Polimaster PM1203M, TLD were (0.75 ±0.08- 1.13±0.13), (0.83±0.29 -1.06±0.07), (1.08±0.14-1.27±0.09), (0.99±0.05 - 1.14±0.13) respectively. The majority of the dosimeters tested showed good energy and angular response. (Author)

  16. Working conditions analysis according T.L. personal dosimetry results

    International Nuclear Information System (INIS)

    Marinkovic, O.; Jovanovic, S.

    2006-01-01

    Laboratory for personal dosimetry in the Institute of Occupational and Radiological Health, Belgrade, used TLD more than twenty years. Before that, film dosimetry was main method in external monitoring. T.L. dosimetry was started with Reader Toledo 654 and crystals Mg B 4 O 7 . Finally, from 1992 laboratory has Harshaw TLD Reader Model 6600. Dosimeters are crystals LiF type 100, card packed, worn in standard filtrated holders. Personal dosimetry data are keeping 30 years for each worker according to regulations. The data from 1990 are in electronic form. Long experience enables conclusion that new technique means more advantages in practice. Recommendation from this laboratory practice refers to TLD read-out cycle. The longest period should be one month. LiF is recommended crystal. Glow curve deconvolution gives information about chronological irradiation. It is very important to conclude was dosimetry irradiated by 'one-shot' or continuously. Preparing calibration for determination the time since accident laboratory has to define adequate dose calibration methodology including low temperature peaks. Possibility to follow working conditions analyzing TLD glow curve is much more important than low decrease of dose severity. Time depend analyze is not possible if TLD would be read-out more than (approximately) six weeks after irradiation. If ionizing sources produce such low dose and has negligible probability of accidental exposure (according nowadays regulation read-out frequency could be once in three month), the recommendation is not to use external personal monitoring. Reading personal dosimeters once in three months deemed not useful. Complete and successful personal dosimetry dictates using system that enables glow curve shape representation to be sure that signal is ionizing irradiation result or not. Time depend analyze imparts information about protection permanence. In special circumstance, it is possible to estimate the time of exposure. This is extremely

  17. Citizen's dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Klemic, Gladys [Naperville, IL; Bailey, Paul [Chicago, IL; Breheny, Cecilia [Yonkers, NY

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  18. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  19. Analysis of uncertainties in the IAEA/WHO TLD postal dose audit system

    Energy Technology Data Exchange (ETDEWEB)

    Izewska, J. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, Vienna (Austria)], E-mail: j.izewska@iaea.org; Hultqvist, M. [Department of Medical Radiation Physics, Karolinska Institute, Stockholm University, Stockholm (Sweden); Bera, P. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, Vienna (Austria)

    2008-02-15

    The International Atomic Energy Agency (IAEA) and the World Health Organisation (WHO) operate the IAEA/WHO TLD postal dose audit programme. Thermoluminescence dosimeters (TLDs) are used as transfer devices in this programme. In the present work the uncertainties in the dose determination from TLD measurements have been evaluated. The analysis of uncertainties comprises uncertainties in the calibration coefficient of the TLD system and uncertainties in factors correcting for dose response non-linearity, fading of TL signal, energy response and influence of TLD holder. The individual uncertainties have been combined to estimate the total uncertainty in the dose evaluated from TLD measurements. The combined relative standard uncertainty in the dose determined from TLD measurements has been estimated to be 1.2% for irradiations with Co-60 {gamma}-rays and 1.6% for irradiations with high-energy X-rays. Results from irradiations by the Bureau international des poids et mesures (BIPM), Primary Standard Dosimetry Laboratories (PSDLs) and Secondary Standards Dosimetry Laboratories (SSDLs) compare favourably with the estimated uncertainties, whereas TLD results of radiotherapy centres show higher standard deviations than those derived theoretically.

  20. Advances in the development of Cr-39 based neutron dosimeters

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.

    1987-12-01

    A combination thermoluminescent dosimeter (TLD) and track etch dosimeter (TED), which can be used for detecting neutrons over a wide energy range, has been developed through recent research in passive neutron dosimetery. This dosimeter uses Li-600 TLDs to detect thermal and low energy neutrons reflected from the body, and the TED polymer of CR-39, to detect fast neutrons from proton recoil interactions with the polyethylene radiator or with CR-39 itself. Some form of the combination dosimeter is currently in use at several US Department of Energy (DOE) facilities, and its use is expected to expand over the next year to include all DOE facilities where significant neutron exposures may occur. The extensive research conducted on the TED component over the past six years has continually focused on material improvements, reduction in processing time and dosimeter handling, and ease of sample readout with the goal of automating the process as much as possible. 1 fig

  1. Chemical dosimeter

    International Nuclear Information System (INIS)

    Baker, W.B.; Clark, D.G.

    1979-01-01

    The dosimeter may be carried by individuals e.g. at the belt and serves to monitor for vinyl-chloride vapors in industrial plants and for toxic radon gas and toxic radon gas products in mines. It contains a pump, sucking an air flow through an orifice and a filter, as well as a sensor circuit for detecting low air flow rates and a battery testing circuit. (DG) 891 HP/DG 892 MKO [de

  2. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  3. Dosimetry Measurements around the Angiography Units Using Thermoluminescence Detectors (TLD)

    International Nuclear Information System (INIS)

    Salah El-den, T.; Shahein, A.Y.; Gomaa, M.A.

    2008-01-01

    The thermoluminescent dosimeters (TLDs) are widely used not only in the field of personnel monitoring (dosimetry) service for ionizing radiation to medical, and research communities, but also for measurements of X-rays emitted from different angiography's unit. Measurements ionizing radiation around the bed area during cardiac catheterization procedures using X-rays was measured. TLD Badges used to determine the annual effective doses, the safe distance for the staff to minimize radiation exposure and the effectiveness of shield and used leaded apron. The results indicated that annual effective dose for by angiography cardiac Catheterization room may exceed the limits

  4. Calibration of personal dosemeters in terms of the ICRU operational quantities

    International Nuclear Information System (INIS)

    McDonald, J.C.; Hertel, N.E.

    1992-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosimeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The U.S. personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethylmethacrylate (PMMA) phantom; therefore it is necessary to relate the response of dosimeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosimeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors. (author)

  5. Optimal selection of TLD chips

    International Nuclear Information System (INIS)

    Phung, P.; Nicoll, J.J.; Edmonds, P.; Paris, M.; Thompson, C.

    1996-01-01

    Large sets of TLD chips are often used to measure beam dose characteristics in radiotherapy. A sorting method is presented to allow optimal selection of chips from a chosen set. This method considers the variation

  6. Design of photon energy compensation filters for the new four element CaSO4:Dy TLD badge

    International Nuclear Information System (INIS)

    Mishra, D.R.; Kulkarni, M.S.; Pradeep, Ratna; Kannan, S.

    2001-01-01

    A new four element TLD badge using CaSO 4 :Dy is being developed for the estimation of personal dose equivalents Hp(10) and Hp(0.07) and to discriminate them in the mix field (low energy x-ray and high energy γ-ray). Design of energy compensation filters for the new TLD badge is discussed. The total metal filter thickness is kept less than 1 mm. The first and second elements of the badge are planned to be open and plastic (≅180 gm/cm 2 ) window. For the third element a combination of 0.2 mm Sn + 0.7mm Cu + 0.1 mm Al with mass thickness ≅ 1100 mg/cm 2 is proposed which gives energy dependent response similar to Hp(10) within ± 20% (above 80 keV). For the fourth dosimeter a filter combination of 0.4 mm Al + 0.07 mm Sn is proposed which gives Hp(10)xR response for diagnostic x-rays within ± 10% in the mix field. (author)

  7. Optical dosimeter

    International Nuclear Information System (INIS)

    Drukaroff, I.; Fishman, R.

    1984-01-01

    A reflecting optical dosimeter is a thin block of optical material having an input light pipe at one corner and an output light pipe at another corner, arranged so that the light path includes several reflections off the edges of the block to thereby greatly extend its length. In a preferred embodiment, one corner of the block is formed at an angle so that after the light is reflected several times between two opposite edges, it is then reflected several more times between the other two edges

  8. Status of services, overexposure and QAC in TLD PMS to defence

    International Nuclear Information System (INIS)

    Rathore, A.S.; Gupta, D.K.; Samaria, H.C.; Chouhan, R.L.; Mishra, M.; Goyal, J.K.; Gautam, M.; Kalla, R.

    2008-01-01

    Individual monitoring has always played an important role in radiological protection. There is continuous development in the field of dosimetry systems and many changes have taken place in last many years. The use of radiation for peaceful purposes is increasing with advancement of technological growth in the country. Thermo luminescence dosimeters (TLDs) have emerged as one of the best alternatives for personal monitoring. Defence sector has nearly 2100 persons, who are working in various Military Hospitals, Military Colleges, DRDO Labs, Defence Ordinance factories and many others CPMFs like CISF, BSF, who are likely to receive radiation doses. Defence Laboratory, Jodhpur is providing the TLD personal monitoring service since Jan 1999 as per the guideline by B.A.R.C. to all the institutions mentioned above. This paper brings out salient features of this service in terms of facility available, procedures fulfilling the requirement of accreditation, over exposure reported, quality measures adopted and quality assurance results conducted by BARC, utility and suggestions for such type of services. (author)

  9. Portable dosimeter

    International Nuclear Information System (INIS)

    Buffa, A.; Caley, R.; Pfaff, K.

    1986-01-01

    A simple but very accurate portable dosimeter is described for indicating the intensity of ionizing radiation, comprising, as a unit: (a) a radiation-detection chamber having a pair of parallel, facing, electrically-conducting, radiation-permeable electrodes spaced from each other to define a volume for a gas which is ionized by the radiation when exposed thereto; (b) electric potential supply means connected across the electrodes for attracting the gas ions to the electrodes and transferring their charge to the electrodes; (c) detection circuit means connected across the electrodes and having at least one of high-frequency electromagnetic- and radiation-sensitive components for detecting the charge on the electrodes and indicating therefrom a representation of the intensity of the radiation; (d) radiation shield means surrounding the radiation-sensitive components of the detection circuit means for shielding the latter from the ionizing radiation; (e) electric shield means surrounding the sensitive components of the detection circuit means for shielding the latter from electromagnetic interference including any caused by the ionizing radiation; and (f) ion shield means potting the ion-sensitive components for shielding them from radiation-caused ambient ionization; whereby the entire dosimeter may be assembled as the unit and portably transported into various radiation sources

  10. Desk-top computer assisted processing of thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Archer, B.R.; Glaze, S.A.; North, L.B.; Bushong, S.C.

    1977-01-01

    An accurate dosimetric system utilizing a desk-top computer and high sensitivity ribbon type TLDs has been developed. The system incorporates an exposure history file and procedures designed for constant spatial orientation of each dosimeter. Processing of information is performed by two computer programs. The first calculates relative response factors to insure that the corrected response of each TLD is identical following a given dose of radiation. The second program computes a calibration factor and uses it and the relative response factor to determine the actual dose registered by each TLD. (U.K.)

  11. Measurement of TLD Albedo response on various calibration phantoms

    International Nuclear Information System (INIS)

    Momose, T.; Tsujimura, N.; Shinohara, K.; Ishiguro, H.; Nakamura, T.

    1996-01-01

    The International Commission on Radiation Units and Measurements (ICRU) has recommended that individual dosemeter should be calibrated on a suitable phantom and has pointed out that the calibration factor of a neutron dosemeter is strongly influenced by the the exact size and shape of the body and the phantom to which the dosemeter is attached. As the principle of an albedo type thermoluminescent personal dosemeter (albedo TLD) is essentially based on a detection of scattered and moderated neutron from a human body, the sensitivity of albedo TLD is strongly influenced by the incident neutron energy and the calibration phantom. (1) Therefore for albedo type thermoluminescent personal dosemeter (albedo TLD), the information of neutron albedo response on the calibration phantom is important for appropriate dose estimation. In order to investigate the effect of phantom type on the reading of the albedo TLD, measurement of the TLD energy response and angular response on some typical calibration phantoms was performed using dynamitron accelerator and 252 Cf neutron source. (author)

  12. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  13. Hanford beta-gamma personnel dosimeter prototypes and evaluation

    International Nuclear Information System (INIS)

    Fix, J.J.; Holbrook, K.L.; Soldat, K.L.

    1983-04-01

    Upgraded and modified Hanford dosimeter prototypes were evaluated for possible use at Hanford as a primary beta-gamma dosimeter. All prototypes were compatible with the current dosimeter card and holder design, as well as processing with the automated Hanford readers. Shallow- and deep-dose response was determined for selected prototypes using several beta sources, K-fluorescent x rays and filtered x-ray techniques. All prototypes included a neutron sensitive chip. A progressive evaluation of the performance of each of the upgrades to the current dosimeter is described. In general, the performance of the current dosimeter can be upgraded using individual chip sensitivity factors to improve precision and an improved algorithm to minimize bias. The performance of this dosimeter would be adequate to pass all categories of the ANSI N13.11 performance criteria for dosimeter procesors, provided calibration techniques compatible with irradiations adopted in the standard were conducted. The existing neutron capability of the dosimeter could be retained. Better dosimeter performance to beta-gamma radiation can be achieved by modifying the Hanford dosimeter so that four of the five chip positions are devoted to calculating these doses instead of the currently used two chip positions. A neutron sensitive chip was used in the 5th chip position, but all modified dosimeter prototypes would be incapable of discriminating between thermal and epithermal neutrons. An improved low energy beta response can be achieved for the current dosimeter and all prototypes considered by eliminating the security credential. Further improvement can be obtained by incorporating the 15-mil thick TLD-700 chips

  14. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  15. People maintain their sun exposure behaviour in a 5-7-year follow-up study using personal electronic UVR dosimeters

    DEFF Research Database (Denmark)

    Thieden, Elisabeth; Heydenreich, Jakob; Philipsen, Peter A

    2013-01-01

    The main purpose of this study was to investigate whether people change their sun behaviour over a period of 7 years. Thus 32 volunteers, who had all participated in earlier sun exposure studies in 1999-2001, were enrolled in a follow-up study in 2006. They were selected to represent a previous low......, medium and high UVR exposure. They participated for mean 121 days (range 65-157 days) wearing a personal, electronic wrist-borne UVR dosimeter and completed sun exposure diaries. No statistically significant differences were seen from year to year in the estimated annual UVR dose, mean UVR dose per day...... they received a mean for the previous participation years (1999-2001) of 236 SED (median 153 SED, range 24-980 SED). The estimated annual UVR dose for each of the previous sun years and the estimated annual dose for 2006 correlated significantly (R(2) = 0.51; p...

  16. measurement of the supralinearity of 7LiF thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Hancock, I.B.

    1978-04-01

    A study has been made of the supralinearity of the 7 LiF thermoluminesecent dosimeter (T.L.D.) used in the UKAEA personnel criticality dosimeter by exposure to a 60 Co source. the response of the T.L.D. was linear up to approximately 450 rad, above which it became increasingly supralinear, over-reading by about 50% at 2000 rad. The results have been used to produce a correction graph, as a function of apparent dose up to 3500 rad, for routine use in nuclear accident dosimetry. (author)

  17. Estimation of uncertainty in TLD calibration

    International Nuclear Information System (INIS)

    Hasabelrasoul, H. A.

    2013-07-01

    In this study thermoluminescence dosimeter TLD was use of individual control devices to make sure the quality assurance and quality control in individual monitoring. The uncertainty measured in reader calibration coefficients for tow reader and uncertainty in radiation dose after irradiate in SSDL laboratory. Fifty sample was selected for the study was placed in the oven at a temperature of 400 for an hour to get zero or background and took zero count by or background and took zero count by reader (1) and reader (2) and then irradiate in SSDL by cesium-137 at a dose of 5 mGy and laid back in the oven at degrees 100 and degrees 10 minutes, to 10 chips for calibration and readout count by reader one and reader two. The RCF was found for each reader above 1.47 and 1.11, respectively, and found the uncertainty RCF was found for each reader above 1.47 and 1.11, respectively, and found the uncertainly RCF 0.430629 and 0.431973. Radiation dose was measured for fifty samples irradiate to dose of 5 mGy and read the count by reader 1 and reader 2 the uncertainty was found for each reader 0.490446 and 0.587602.(Author)

  18. The application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2001-01-01

    This paper introduce the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 Reader and TLD-100M chips on the measurement of hard X-ray pulse energy spectrum. The idea, using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV), is discussed in details. Considering all the factors of the measuring surroundings, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device -high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  19. Verification or treatment planning system of radiotherapy using TLD-100; Verificacion de los sistemas de planificacion de tratamiento de radioterapia empleando TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Pinuela, J., E-mail: jcpinuela@hotmail.co [Hospital Central de Maracay (Venezuela, Bolivarian Republic of). Servicio de Radioterapia

    2010-07-01

    The evaluation of the treatment planning system (TPS) used in radiotherapy Precise Plan, was carried out using TLD-100 dosimeters, comparing the dose obtained with an ionization chamber. The TLD-100 were calibrated using secondary standard of SSDL, selecting dosimeters which had a standard deviation less than 1% for dosimeter calibration and less than 5% for dosimeter of field, for the tests conducted in TPS, The Alderson Phantom was used to evaluate the wedge and bolus, and Lucy 3D allowed us to evaluate correspondence of CT numbers, volume expansion, beam shaping, precise dose and beam weigh assignment. It was observed that the results of Lucy 3D were within the values expected except the volume expansion process with more than 10% difference, the evaluation of beam modulators systems with wedges and bolus as beam shaping yielded values within the expected with variations less than 5% and to assess the supply of specific doses, it was observed that the values obtained were precise and accurate since the same variation was less than 0.5% for the test. The importance of assessing the TPS lies in our country there is no procedure to verify that system and these tests provide a basis for future comparisons. (author)

  20. Data processing of personnel exposure in TLD and film systems

    International Nuclear Information System (INIS)

    Lerner, A.; Liav, N.; Eisen, Y.

    1979-01-01

    The program for the processing and storage of data on the personnel irradiation exposure in Israel is built on the data base of the Weizmann Institute of Science; it is a general program suitable for both TLD and film dosimetry. The TSO system helped bring up-to-date the data of the various collections in an interactive way. The introduction of the TLD dosemeters in the badge service required certain changes in the thinking line - this because the TLD being a personal dosemeter is returned into service after having been deciphered. This demands following up the dosemeter when the worker moves from unit to unit or after he had finished his work. The program takes into account the internal exposures,too and conforms to the new recommendation published in ICRP-26. (B.G.)

  1. Environmental effects on TLD 100

    International Nuclear Information System (INIS)

    Lilley, E.; Howard, R.

    1976-01-01

    Reference is made to a recent paper by Dhar et al (Health Phys.; 25:427 (1973)) in which significant differences in the sensitivity of TLD 100 crystals following the same heat treatments in different environments, were reported. Similar work is here reported on TLD 100 at 400 0 C with half the crystals being heat treated in vacuum, irradiated and readout an then annealed in air, irradiated and readout while the other half of the crystals were air annealed and readout before vacuum annealing and readout. In both cases no significant change was detected in contrast to the results of Dhar et al. (U.K.)

  2. Optimization of the temperature profiles due to a nitrogen jet impinging on a TLD detector

    International Nuclear Information System (INIS)

    Cohen, I.; Bar-Kohany, T.; German, U.; Ziskind, G.

    2014-01-01

    A study was conducted to simulate the temperature profiles during readout in a typical, commercial thermo-luminescence dosimeter (TLD) chip and to optimize the readout conditions. The study makes use of a previously developed numerical model which calculates the crystal's temperature profile evolution inside a TLD crystal compound. The calculated profiles were implemented in the Randall-Wilkins equation to obtain the estimated glow curve. A number of jet temperature profiles were investigated in order to optimize the readout process. - Highlights: • The temperature profiles in a TLD chip compound were simulated. • Some non-routine heating profiles are proposed. • A better efficiency and shorter time can be obtained with these profiles. • The resulting glow curves were evaluated as well

  3. Design, construction and characterization of a dosimeter for neutron radiation

    International Nuclear Information System (INIS)

    Souto, Eduardo de Brito

    2007-01-01

    An individual dosimeter for neutron-gamma mixed field dosimetry was design and developed aiming monitoring the increasing number of workers potentially exposed to neutrons. The proposed dosimeter was characterized to an Americium-Beryllium source spectrum and dose range of radiation protection interest (up to 20 mSv). Thermoluminescent albedo dosimetry and nuclear tracks dosimetry, traditional techniques found in the international literature, with materials of low cost and national production, were used. A commercial polycarbonate, named SS-1, was characterized for solid state tack detector application. The chemical etching parameters and the methodology of detectors evaluation were determined. The response of TLD-600, TLD-700 and SS-1 were studied and algorithms for dose calculation of neutron and gamma radiation of Americium- Beryllium sources were proposed. The ratio between thermal, albedo and fast neutrons responses, allows analyzing the spectrum to which the dosimeter was submitted and correcting the track detector response to variations in the radiation incidence angle. The new dosimeter is fully characterized, having sufficient performance to be applied as neutron dosimeter in Brazil. (author)

  4. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  5. Performance testing of the environmental TLD system for the Three Mile Island Nuclear Station.

    Science.gov (United States)

    Toke, L F; Carson, B H; Baker, G G; McBride, M H; Plato, P A; Miklos, J A

    1984-05-01

    Panasonic UD-801 thermoluminescent dosimeters ( TLDs ) containing two calcium sulfate phosphors were tested under Performance Specification 3.1 established by the American National Standard Institute ( ANSI75 ) and in the U.S. Nuclear Regulatory Commission's Regulatory Guide 4.13 ( NRC77 ). The specific qualifying tests included TLD uniformity, reproducibility, energy dependence and directional dependence. The overall measurement uncertainties and associated confidence levels are within the prescribed guidelines defined in the qualifying requirements for environmental TLDs .

  6. Thermoluminescence and phosphate glass dosimeter systems in the low dose range

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1978-06-01

    This report describes a standard test program for TLD and RPL systems worked out by the Working Party on 'Dose Measurement of External Radiation' by the Fachverband fuer Strahlenschutz e.V. to demonstrate the performance of dosimeter systems to be employed in environmental monitoring and in personnel dosimetry. The results of an intercomparison study are outlined in which 17 laboratories from the German speaking countries participated with 43 dosimeter systems. (orig.) [de

  7. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A.; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M.; Dhote, Dipak S.; Deshpande, Deepak D.

    2009-01-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.

  8. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy.

    Science.gov (United States)

    Kinhikar, Rajesh A; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M; Dhote, Dipak S; Deshpande, Deepak D

    2009-09-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.

  9. The study of new calibration features in the Harshaw TLD system

    International Nuclear Information System (INIS)

    Luo, L.Z.

    2005-01-01

    Full text: In the Harshaw TLD system, there are three key calibration procedures; the reader, the dosimeter and the algorithm. These procedures must be properly calibrated for the system to achieve the optimum results. For the conventional reader and dosimeter calibration, Harshaw recommends a pre-fade and a post-fade of 24 - 48 hours when calibrating the system. Harshaw also emphasizes that keeping the fade time consistent is important to maintain the quality of the system performance. In recent years, new calibration features have been introduced into the operating system. These new features are auto calibration, auto QC and auto blank, and they give the user the ability to set up the clear-expose-read performed automatically in a sequence for each dosimeter. This saves processing time and keeps the fade time the same. However, since the fade time is near zero, will it affect the TLD system calibration factors? What should the user expect? This paper presents a study of the effect of auto calibration / auto QC to the TLD operation. (author)

  10. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    Science.gov (United States)

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film

  11. Minimizing TLD-DRD differences

    International Nuclear Information System (INIS)

    Riley, D.L.; McCoy, R.A.; Connell, W.D.

    1987-01-01

    When substantial differences exist in exposures recorded by TLD's and DRD's, it is often necessary to perform an exposure investigation to reconcile the difference. In working with several operating plants, the authors have observed a number of causes for these differences. This paper outlines these observations and discusses procedures that can be used to minimize them

  12. Implementing a new TLD system

    International Nuclear Information System (INIS)

    Rhea, T.A.

    1988-01-01

    Martin Marietta Energy Systems will soon be issuing new personnel dosimeters at four of their five Department of Energy (DOE) facilities, The Piketon, Ohio uranium enrichment facility is not included in this dosimetry upgrade program. This talk will focus on the ORNL perspective of this program, especially the new beta-gamma dosimeter. Neutron dosimetry will be discussed briefly. The objective of this upgrade is to put in place a state-of-the-art personnel dosimetry system and to meet the recent DOE Laboratory Accreditation Program performance criteria. Processing such a large number of dosimeters will require stringent quality controls. Approximately 18,000 beta-gamma dosimeters are scheduled for issue in January 1989. 15 figs

  13. A new TLD system for space research

    International Nuclear Information System (INIS)

    Feher, I.; Deme, S.; Szabo, B.; Vagvoelgyi, J.; Szabo, P.P.; Csoeke, A.; Ranky, M.; Akatov, Yu.A.

    1980-06-01

    A small, portable, vibration and shock resistant thermoluminescent dosemeter (TLD) system was developed to measure the cosmic radiation dose on board of a spacecraft. The TLD system consists of a special bulb dosemeter and a TLD reader. The measuring dose range of the TLD system is from 10 μGy up to 100 mGy. The TLD reader can operate on a battery; its electrical power consumption is about 5 W, its volume is about 1 dm 3 and its mass is about 1 kg. Details are given of the construction and technical parameters of the dosemeter and reader. (author)

  14. Towards an automated TLD system that meets international requirements

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Vanamo, V.

    1988-01-01

    The new recently introduced fully automated TLD system developed by Alnor OY on the basis of the Riso prototype, is intended to meet draft IEC/ISO proposals and ANSI requirements. Part of the system is a personal dosemeter badge and an environmental dosemeter package following ICRU recommendations. The overall system consists of a software-controlled automated reader, a programable irradiator/calibrator, a computer, and dosemeters for environmental, whole body, extremity and clinical applications. The personal TLD badge that contains four TLD pellets is designed to agree with ICRU H p (10) and H s (0.07) quantities for determining dose equivalent. The badge can accommodate a large variety of the most commonly used solid TL dosemeter products. A special effort was put into the evaluation of skin dose by considering the use of graphite-mixed hot-sintered LiF pellets. The TLD system is described and results from a performance test that comprised measurements of photon energy response, angular dependence, and reproducibility are presented

  15. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  16. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  17. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    Kry, S.

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  18. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  19. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    International Nuclear Information System (INIS)

    Mosia, G.J.; Chamberlain, A.C.

    2007-01-01

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60 Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32x0.32 cm 2 ), placed at d max perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning

  20. Use of MCNP to compare the response of dose deposited in the TLD 100, TLD 600 and TLD 700 in radiation fields due to {sup 60}Co and {sup 241}AmBe source; Uso do MCNP para comparacao das respostas de dose depositada nos TLD 100, TLD 600 e TLD 700 em campos de irradiacao devido a fontes de {sup 60}Co e {sup 241}AmBe

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio A.; Castro, Vinicius A.; Siqueira, Paulo T.D., E-mail: tassio.cavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-08-15

    The successes of Boron Neutron Capture Therapy (BNCT) depend on the ability to deliver an adequate irradiation field to the target cells. Neutron beams used in BNCT are mostly driven from reactors and therefore, not only have a neutron energy range which far exceeds the thermal region but also do have a great gamma component. Beam characterization and dosimetry are consequently one of the essential procedures to be overcome to properly apply this technique. One of the methods currently used in mixed field (field containing both neutron and gamma) characterization, lies on the use of a pair of detectors with distinct responses to each beam component. But this technique needs to be better understood of how each thermoluminescent dosimeter (TLD) behaves in a mixed field or in a pure field. This work presents the results of a set of simulations performed in order to analyze the response of three ordinary types of TLDs - TLD 100, TLD 600 and TLD 700 - submitted to different irradiation fields from a Cobalt source and an Americium-Beryllium source inside a paraffin disk. And is also a possible method for performing the selection and calibration of theses TLDs. (author)

  1. A new TLD badge with machine readable ID for fully automated readout

    International Nuclear Information System (INIS)

    Kannan, S. Ratna P.; Kulkarni, M.S.

    2003-01-01

    The TLD badge currently being used for personnel monitoring of more than 40,000 radiation workers has a few drawbacks such as lack of on-badge machine readable ID code, delicate two-point clamping of dosimeters on an aluminium card with the chances of dosimeters falling off during handling or readout, projections on one side making automation of readout difficult etc. A new badge has been designed with a 8-digit identification code in the form of an array of holes and smooth exteriors to enable full automation of readout. The new badge also permits changing of dosimeters when necessary. The new design does not affect the readout time or the dosimetric characteristics. The salient features and the dosimetric characteristics are discussed. (author)

  2. Performance test of a portable TLD system for accidental doses

    International Nuclear Information System (INIS)

    Mihelic, M.; Stuhec, M.; Mitic, D.; Vekic, B.; Miljanic, S.; Ban, R.

    2005-01-01

    Full text: A portable TLD measuring system was constructed at the J. Stefan Institute many years ago, motivated by the thread of a catastrophic nuclear event. It was designed for fast measurements in accidental dosimetry mainly for military and civil protection use. The system consists of a robust portable measuring unit built for measurements in field conditions, sized about 40 cm in diameter and weighting 5 kg. Dosimeters are based on CaF 2 :Mn ceramic tablets closed in water resistant plastic housings. In original design producer assured measuring range from cGy to kGy. Specially designed energy compensating filters are used to satisfy requirements for energy response from 0,1 to 3 MeV. Stability of readings is maintained with the temperature stabilized light source. Measuring time for manually driven heating-reading cycle of one dosimeter is about 30 sec. Many systems of the type with sets of dosimeters were stored unused for some years in depositories of different institutions. Modernization of equipment in last years raised questions of applicability of such measurement systems for contemporary needs. The system was thus tested in a secondary standards dosimetry laboratory for compliance with up to date requirements for accidental individual monitoring. Dosimeter characteristics as repeatability, linearity and directional response were of particular interest. As a result of the tests, technical improvements are suggested to extent systems measuring capabilities in order to meet new standards. Possibilities of its use in different fields of dosimetry are discussed, where quick in field measurements of high doses is required as for example in medicine or in civil protection motivated by the new threads of terrorist attacks. (author)

  3. External assurance program in radiotherapy dose by TLD: implementation of a quality system and extension to complex treatments

    International Nuclear Information System (INIS)

    Mojsiejczuk, N.; Lohr, J.; Molina, L.; Vallejos, M.; Montaño, G.; Stefanic, A.; Zaretzky, A.

    2011-01-01

    Until now, the Regional Reference Center with secondary patterns for dosimetry ('Centro Regional de Referencia con Patrones Secundarios para Dosimetria' (CRRD)) has done dosimetry verifications with thermoluminescent dosimeters (TLD) in radiotherapy in square and rectangular fields. The objective of this paper is to inform about the first tests done to span new verification conditions in irradiations with multi-leaf collimator using regular and irregular field shapes. On the other hand, it will briefly describe the progress in the implementation of a quality management system adopted by the CRRD, regarding the TLD verification service. (author)

  4. Calcium flouride (CaF2) from oyster shell as a raw material for thermoluminescence dosimeter

    International Nuclear Information System (INIS)

    Coloma, Lyra C.; Fanuga, Lyn N.; Ocreto, Cherries Ann; Rodriguez, Richita

    2006-03-01

    This study aims to develop a thermoluminescence dosimeter raw material made of calcium fluoride from locally available seashells that is suitable for personal radiation monitoring. Oyster shells were collected and grounded as powder samples and analyzed for calcium fluoride (CaF 2 ) content using XRF and XRD testing. Samples include pure CaF 2 , pure oyster shell, and oyster shells treated with acid. Based from the XRF results, natural oyster shell (w/ and w/o HNO 3 ) had high percentage of calcium about 49.64% and 47.45%, next to the pure calcium fluoride of 51.08%. X-ray diffractrogram shows that oyster sample had the nearest desired structure of CaF 2 compared with two seashells relative to the pure CaF 2 as standard materials. Results show that all of the natural oyster samples displayed TL emission glow curves at the temperature range 200-300 o C. It was also found that pure oyster sample has better TL response as compared to the treated ones. The researchers concluded that the calcium fluoride from oyster shells (without acid and heated) is a potentially good low-cost TLD raw material and may be used as an alternative for the much more expensive LiF dosimeters. (Authors)

  5. Evaluation of LiF:Mg,Ti (TLD-100 for Intraoperative Electron Radiation Therapy Quality Assurance.

    Directory of Open Access Journals (Sweden)

    Raffaele Liuzzi

    Full Text Available Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs response to intraoperative electron radiation therapy (IOERT beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters.LiF:Mg,Ti dosimeters (TLD-100 were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy.The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05.This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.

  6. Traceability of a panoramic gamma irradiator using different TLD systems as transfer instruments

    International Nuclear Information System (INIS)

    Romero, A.M.; Saez, J.C.

    1994-01-01

    This work shows the calibration in terms of the new operational radiological quantities Hp(10) and H*(10) for different TLD systems (Harshaw TLD-100 and Panasonic UD-802) used in personal and environmental monitoring. The irradiations were performed in the Spanish Reference Laboratory in radiation protection levels, managed by the CIEMAT Metrology of ionizing radiations Unit. With these data, different calibrations of a panoramic gamma irradiator in terms of the radiological quantity for unit of time were established, providing the traceability of the irradiator to the Reference Laboratory using the corresponding TLD systems as transfer instruments. (Author) 9 refs

  7. Traceability of a panoramic gamma irradiator using different TLD systems as transfer Instruments

    International Nuclear Information System (INIS)

    Romero, A. M.; Saez, J. C

    1994-01-01

    This work shows the calibration in terms of the new operational radiological quantities Hp (10) and H(10) for different TLD systems (Harshaw TLD-100 and Panasonic UD-002) used in personal and environmental monitoring. The irradiations were performed in the Spanish Reference Laboratory in radiation protection levels, managed by the CIEMAT Metrology of ionizing radiations Unit. With those data, different calibrations of a panoramic gamma irradiator in terms of the radiological quantity for unit of time were established, providing the traceability of the irradiator to the Reference Laboratory using the corresponding TLD systems as transfer instruments. (Author) 9 refs

  8. The results of dosimetric type tests on the sample of LiF:Mg,Ti thermoluminescence dosimeters produced in Iran

    International Nuclear Information System (INIS)

    Jafarizadeh, M.; Hosseini Pooya, S. M.; Firoozi, B.; Kamali Shoroodani, A. R.; Mohammadi, Kh.

    2011-01-01

    In this investigation, the standard type tests performed on the LiF:Mg,Ti chip samples which have been produced in Iran. The dosimetry tests are consisting of sensitivity, homogeneity, linearity, reproducibility, minimum measurable dose, self and residual doses. The obtained results show that some of the tests such as sensitivity, minimum measurable dose, self and residual doses fulfill the criteria given by IEC 61066 and ASTM E668 standards; however, the remaining tests show some discrepancies in comparison with the standards. Also the sensitivity was measured to be 0.92 of that of commercially available TLD-100 (Harshaw) sample. So, the produced LiF:Mg,Ti dosimeter can be used in a routine personal/environmental and medical dosimetry with considering its precision.

  9. Evaluation of the response to xenon-133 radiations by thermoluminescent dosimeters used during the accident at Three Mile Island.

    Science.gov (United States)

    Riley, R J; Zanzonico, P B; Masterson, M E; St Germain, J M; Laughlin, J S

    1982-03-01

    An evaluation is presented of the accuracy and sensitivity of three types of TLD's used during the accident at the Three Mile Island Nuclear Station. This evaluation indicated that, due to the method of calibration, all the dosimeters over-responded to 133Xe radiations. The response ranged from slightly above unity to almost two. Exposures of the TLD's were of two types, namely, the characteristic X-rays either were or were not filtered from the beam. The angular sensitivity of the dosimeters is also reported.

  10. Periodicity of TLD badge personnel monitoring service in India

    International Nuclear Information System (INIS)

    Kher, R.K.; Joshi, V.D.; Kaushik, Aruna; Sharma, Amiy; Chatterjee, S.

    2003-01-01

    The periodicity of an individual monitoring service is an important aspect. Presently minimum period for TLD badge service is maintained as 'calendar month' and choice of quarterly service is also offered. The periodicity of the TLD service for a given category/application type of institution, is to be fixed taking into account level of average occupational doses in all or typical institutions of given category and other information indicating the status of safety and possible fluctuations of exposure levels and potential for overexposure cases. This paper presents the status on the periodicity of TLD Badge Service as is evolved and adopted for the four broad categories i.e. DAE (Nuclear Fuel Cycle) Institutions, Industrial, Medical, Research institutions. It is concluded that quarterly service is a convenient option for institution categories where type of work/workload, and work practices are such that occupational exposures could be normally kept below about one mSv or so in the monitoring period, average annual dose less than 1 mSv and persons receiving annual dose >10 mSv is less than 1% of total in the category. Also, the judicious use of the flexibility in the periodicity of TLD Badge service would help (i) to keep the monitoring related workload to the optimum for the monitoring units and (ii) to keep the expenses incurred by the institution towards monitoring to the minimum without sacrificing radiation safety (iii) to focus the extra monitoring efforts on the applications/situations requiring improvement in radiation safety. (author)

  11. Evaluation of discrepancies between thermoluminescent dosimeter and direct-reading dosimeter results

    International Nuclear Information System (INIS)

    Shaw, K.R.

    1993-07-01

    Currently at Oak Ridge National Laboratory (ORNL), the responses of thermoluminescent dosimeters (TLDs) and direct-reading dosimeters (DRDs) are not officially compared or the discrepancies investigated. However, both may soon be required due to the new US Department of Energy (DOE) Radiological Control Manual. In the past, unofficial comparisons of the two dosimeters have led to discrepancies of up to 200%. This work was conducted to determine the reasons behind such discrepancies. For tests conducted with the TLDs, the reported dose was most often lower than the delivered dose, while DRDs most often responded higher than the delivered dose. Trends were identified in personnel DRD readings, and ft was concluded that more training and more control of the DRDs could improve their response. TLD responses have already begun to be improved; a new background subtraction method was implemented in April 1993, and a new dose algorithm is being considered. It was concluded that the DOE Radiological Control Manual requirements are reasonable for identifying discrepancies between dosimeter types, and more stringent administrative limits might even be considered

  12. Direct reading dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1985-01-01

    This invention is a direct reading dosimeter which is light, small enough to be worn on a person, and measures both dose rates and total dose. It is based on a semiconductor sensor. The gate threshold voltage change rather than absolute value is measured and displayed as a direct reading of the dose rate. This is effected by continuously switching the gate of an MOS transistor from positive to negative bias. The output can directly drive a digital readout or trigger an audible alarm. The sensor device can be a MOSFET, bipolar transistor, or MOSFET capacitor which has its electrical characteristics change due to the trapped charge in the insulating layer of the device

  13. Hanford environmental CaF2:Mn thermoluminescent dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Fix, J.J.; Miller, M.L.

    1978-03-01

    The TLD-400 chips combined with the Pb-Ta field capsule provide a sensitive method of measuring penetrating ambient radiation in the environment. The method is best used for field deployments of about 1 month or less to minimize problems associated with fading. A correction factor of about 10% is necessary for the readings obtained for a 28-day field deployment and a 1-day wait before readout. Integration of reader output from 150/sup 0/C to 280/sup 0/C provides a good signal-to-noise ratio for TLD-400 chips exposed to 5 mR for the reader and planchet described herein. Visual inspection of the glow curves is recommended during startup of any new program or following any major instrument repair. The glow curves can be easily drawn with an X-Y recorder. Because of the large energy dependence of bare TLD-400 chips, an energy-flattening filter is necessary to allow a direct conversion from a reference exposure to observed field exposures. The field capsule used, consisting of 10 mil of tantalum and 2 mil of lead, provides an approximate uniform energy response above 70 keV. Below 70 keV, the response decreases rapidly because of the shielding. Experiments conducted have not shown the TLD-400 chips to be sensitive to the extremes of summer temperature (approximately 50/sup 0/C) occasionally encountered at Hanford. Although the field dosimeter exhibits a directional dependence, this is of primary concern during calibration, in which the axis of the dosimeter should be normal to the photon beam. The procedures used to interpret the TLD chip reader output in terms of dose are fully described in the text.

  14. Application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2003-01-01

    This paper introduces the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 reader and GR-100 M chips on the measurement of hard X-ray pulse energy spectrum. The idea using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV) is discussed in details. Considering all the factors of the measuring surrounding, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device-high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  15. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  16. Quality control of the breast cancer treatments on Hdr brachytherapy with TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Torres H, F. [Universidad de Cordoba, Materials and Applied Physics Group, 230002 Monteria, Cordoba (Colombia); De la Espriella V, N. [Universidad de Cordoba, Grupo Avanzado de Materiales y Sistemas Complejos, 230002 Monteria, Cordoba (Colombia); Sanchez C, A., E-mail: franciscotorreshoyos@yahoo.com [Universidad de Cordoba, Departamento de Enfermeria, 230002 Monteria, Cordoba (Colombia)

    2014-07-01

    An anthropomorphic Phantom, a female trunk, was built with a natural bone structure and experimental material coated, glycerin and water-based material called JJT to build soft tissue equivalent to the muscle of human tissue, and a polymer (styrofoam) to build the lung as critical organ to simulate the treatment of breast cancer, with high dose rate brachytherapy (Hdr) and sources of Ir-192. The treatments were planned and calculated for the critical organ: Lung, and injury of 2 cm in diameter in breast with Micro Selectron Hdr system and the software Plato Brachytherapy V 14.1 of the Nucletron (Netherlands) which uses the standard protocol of radiotherapy for brachytherapy treatments. The dose experimentally measured with dosimeters TLD-100 LiF: Mg; Ti, which were previously calibrated, were placed in the same positions and bodies mentioned above, with less than 5% uncertainty. The reading dosimeters was carried out in a Harshaw TLD 4500. The results obtained for calculated treatments, using the standard simulator, and the experimental with TLD-100, show a high concordance, as they are on average a ± 1.1% making process becomes in a quality control of this type of treatments. (Author)

  17. Mensuration of equivalent dose with personal dosemeters and instruments of radiological protection in the new operative quantities ICRU, for external fields of beta radiation. Part II. I study of the angular response of personal dosemeters TLD-100 in secondary patron fields of beta radiation (90Sr / 90Y)

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1994-01-01

    The objective of this work is to carry out one of the possible ones test type for personal dosemeters TLD, under the recomendations of the ICRU 39, ICRU 43 and the draft of the norm ISO 6980,(1992), with the purpose of verifying the capacity of these detectors to carry out the operative unit: H' (0.07;α). Since H' (O. 07;α) this defined one in an expanded field, one of these tests type consist on determining the angular response of these detectors. 20 personal dosemeters TLD-100 was used, (card marks: Harshaw, Model: G-1, with two glasses of TLD-100 absorbed in teflon; the portadosemeters has two windows, a free one and another with a filter of Pb of 171.0 mg cm -2 ); these dosemeters they were previously selected, [to see, S tudy of the Homogeneity of the response of Personal Dosemeters (Cards G-l, TLD-100) in Radiation of Countrysides of 60 Co , J.T. Alvarez R. Technician Report GSR/IT/0001/94].The irradiations to effectued in secondary countryside of radiation beta of 90 Sr/ 90 Y. The study was undertaken by means of an experimental design of blocks random that contemplate the following variables: intensity of the radiation source, (1850 MBq and 74 MBq); position of irradiation, (four positions); incidence of angle of the radiation (0, 15, 30, 45, 60 and 75 grades) and the absorbed dose in air, (0.005, 0.010, 0.020, 0.050 and 0.100 Gy). Then null hypothesis it was to suppose that there was not difference among the stockings of each treatment, to used the statistical of Duncan to carry out tests of stockings at a level of significance of 5%.These tests of stockings throw the following results in those variables of the experimental design: The irradiations carried out so much with the source pattern secondary of 90 Sr/ 90 Y of 1850 MBq and of 74 MBq, they are equivalent reason why they can be used indistinctly. The responses of each one of the glasses of the card are strongly anisotropic for each glass; four positions of irradiation is used: glass 1 (window of

  18. Do you know DIS? a novel passive individual dosimeterd. Direct Ion Storage dosimeter DIS-1 officially approved in Switzerland

    International Nuclear Information System (INIS)

    Fiechtner, A.; Wernli, C.

    2001-01-01

    For individual monitoring film and TLD are the most often used types of dosimeters. On a smaller scale phosphate glasses and detectors based on optically stimulated luminescence (OSL) are also in use. As a new addition to the list of available personnel dosimeters the direct ion storage (DIS) system became legally approved for the first time in Switzerland. At the Paul Scherrer Institute (PSI) the RADOS dosimetry system DIS-1 is in official use since beginning of 2001. (orig.) [de

  19. The application of artificial neural networks to TLD dose algorithm

    International Nuclear Information System (INIS)

    Moscovitch, M.

    1997-01-01

    We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)

  20. Dosimeter design specifications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The combination dosimeter and security credential holder was developed as part of the effort involved to provide an automated readout and thermoluminescent dosimetry capability at Hanford. The holder is designed to accomodate the thermoluminescent dosimeter card, appropriate filters, the security credential and a snap type clip. The body of the holder is ABS plastic (acrylontrile-butadiene-styrene). The dosimeter holder and card is mold casted providing uniformity of construction

  1. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Energy Technology Data Exchange (ETDEWEB)

    Bauk, Sabar, E-mail: sabar@usm.my [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)

    2016-01-22

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  2. Intercomparison measurements with albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Alberts, W.G.; Kluge, H.

    1994-01-01

    Since the introduction of the albedo dosimeter as the official personal neutron dosimeter the dosimetry services concerned have participated in intercomparison measurements at the PTB. Their albedo dosimeters were irradiated in reference fields produced by unmoderated and D 2 O-moderated 252 Cf neutron sources in the standard irradiation facility of the PTB. Six fields with fluences different in energy and angle distribution could be realised in order to determine the response of the albedo dosimeter. The dose equivalent values evaluated by the services were compared with the reference values of the PTB for the directional dose equivalent H'(10). The results turned out to be essentially dependent on the evaluation method and the choice of the calibration factors. (orig.) [de

  3. Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink

    Science.gov (United States)

    Sousa, Felipe L. N.; Mojica-Sánchez, Lizeth C.; Gavazza, Sávia; Florencio, Lourdinha; Vaz, Elaine C. R.; Santa-Cruz, Petrus A.

    2016-04-01

    This work presents ‘intelligent papers’ obtained by functional inks printed on cellulose-sheets by DoD inkjet technology and their performance as a photonic device for UV-radiation dosimetry. The dosimeter operation is based on the photodegradation of the active part of a photonic ink, btfa (4,4,4-trifluoro-1-phenyl-1,3-butanedione) ligands in Eu(III) complex, as a function of the UV dose (Jcm-2), and the one-way device is read by the luminescence quenching of (5D0 → 7F2) Eu3+ transition after UV exposure of the printed paper. The printed dosimeter presented an exponential behavior, measured here up to 10 Jcm-2 for UV-A, UV-B and UV-C, and it was shown that the number of jetted layers could fit the dosimeter sensitivity.

  4. Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink

    International Nuclear Information System (INIS)

    Sousa, Felipe L N; Mojica-Sánchez, Lizeth C; Vaz, Elaine C R; Santa-Cruz, Petrus A; Gavazza, Sávia; Florencio, Lourdinha

    2016-01-01

    This work presents ‘intelligent papers’ obtained by functional inks printed on cellulose-sheets by DoD inkjet technology and their performance as a photonic device for UV-radiation dosimetry. The dosimeter operation is based on the photodegradation of the active part of a photonic ink, btfa (4,4,4-trifluoro-1-phenyl-1,3-butanedione) ligands in Eu(III) complex, as a function of the UV dose (Jcm −2 ), and the one-way device is read by the luminescence quenching of ( 5 D 0  →  7 F 2 ) Eu 3+ transition after UV exposure of the printed paper. The printed dosimeter presented an exponential behavior, measured here up to 10 Jcm −2 for UV-A, UV-B and UV-C, and it was shown that the number of jetted layers could fit the dosimeter sensitivity. (paper)

  5. Environmental monitoring with a portable TLD system

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, P P; Feher, I; Deme, S; Szabo, B; Vagvoelgyi, J; German, E [Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics

    1984-01-01

    Two types of TLD systems are used for environmental dose monitoring. One is based on an NHZ-203 laboratory TLD reader and CaSO/sub 4/:Dy powder. The other is based on CaSO/sub 4/:Tm bulbs and a small, portable TLD reader built into a cross-country car and operated by means of the car battery. The laboratory TLD system has been used for many years for environmental monitoring and it has been tested and proved satisfactory at international intercomparisons for environmental dosemeters. The new portable TLD system has the advantage of being able to establish the dose in a few minutes at the environmental station. The transport dose is omitted as the TLDs are evaluated at the field site. The evaluation of a bulb needs only a few minutes and the measured dose value can be reported back by radio - an important aspect during an emergency situation.

  6. Development and extension of TLD audit in radiation therapy in the Czech Republic

    International Nuclear Information System (INIS)

    Valenta, J.; Ekendahl, D.

    2005-01-01

    A comprehensive and adequate quality assurance (QA) program is a crucial factor in minimizing gross errors and in reducing uncertainties caused during any of consecutive steps of radiation therapy process. Since 1997, the measuring centre of National Radiation Protection Institute in Prague (NRPI) has been performing TLD audit in external beam radiation therapy via mailed TL dosimeters, as a part of comprehensive QA program. The objective of TLD audit is to check dose delivery accuracy at radiation therapy centers and to inform the State Office for Nuclear Safety (SONS) on the situation. The flexibility of the method enables NRPI to inspect each centre at least once every two years. Compared with the EU average, situation in the Czech Republic seems to be similar. 95 % of measurements show deviation up to 5 % (97 % in the EQUAL network). Nevertheless, the acceptance level is stricter (3 %) in the Czech Republic. This is affordable because o(the small size of the country, and better ability to confirm the results promptly , if tolerance levels are exceeded. Still, 84 % of results meet the criteria of 3 %. Both basic and advanced modes of TLD audit may discover deviations in clinical dosimetry or in treatment planning for reference and non reference .conditions, although they do not provide enough data for proper interpretation of errors. The results show the importance of independent TLD audit as a flexible and operational part of the comprehensive quality assurance program. (authors)

  7. Operating experience of an automated TLD dispensing system at CORAL facility

    International Nuclear Information System (INIS)

    Ajoy, K.C.; Dhanasekaran, A.; Arun, R.; Yuvaraj, N.; Karthikeyan, D.; Dheeraj, R.; Akila, R.; Santhanam, R.; Rajagopal, V.; Kumar, Amudhu Ramesh

    2016-01-01

    Monitoring of exposures to occupational workers on individual basis is a regulatory requirement to demonstrate compliance that the dose to the workers is well within the dose limit. Over three decades for monitoring of external exposures, CaSO 4 based Thermo luminescence dosimeters (TLDs), which exhibit the required accuracy, reliability and ruggedness have been employed. TLD cards with unique identification number are loaded in plastic cassettes along with photographs are placed in wooden racks at the entry of the controlled area of the plant. However, there is always a chance that a TLD may be misplaced, used by others or there could be a deliberate act of misuse or abuse. To circumvent this it was decided to install an automated TLD dispensing system with individual TLD tracking as well as locking arrangement. CORAL reprocessing facility at IGCAR was the first to install one such system at Kalpakkam and the operating experience of the system for the last two years is brought out in this paper

  8. Electronic stability and reproducible accuracy of HARSHAW 2000(A,B) TLD-analyzer

    International Nuclear Information System (INIS)

    Yossef, S.K.; Henaish, B.A.

    1985-01-01

    Nowadays, the thermoluminescence techniques utilizing natural materials and assorted chemical compound of various geometrical configurations are widely and popularly used on the international scale as a dose evaluation system. The main problems which are usually encounting the accuracy of the evaluated dose by means of such various dosimeter forms are the long and short term stability of the measuring system. Also this manuscript is a very essential details stated out the principle mechanisms which cause that produced TL-readers instability. As it is stated out through the different sections of this issue, it is mainly due to the interior mechanisms of the TLD measuring systems. Further more, the various detailed discussions availed through the different sections of such issue are mainly accompanied by long term experiences gained by the authors. A novel heating cycle mechanism applied to HARSHOW 2000(A and b) TLD analyzer is tested experimentally. Also long and short term stability beside the reproducibility of the TLD reader system were experimentally tested under various seasonable environmental thermal conditions. The results of experimental measurements were noted for a total duration of six months during continuous operation of the TLD reader for one year. 1 fig., 3 tab

  9. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D2O-moderated 252Cf source

    International Nuclear Information System (INIS)

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li 2 B 4 O 7 , alone or in combination with CaSO 4 , (69%), 7 LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from 252 Cf moderated by 15-cm of D 2 O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a 238 PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li 2 B 4 O 7 type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, 7 LiF, and film. 12 refs., 1 fig., 5 tabs

  10. Study and characterization of dosimeter LiF:Mg,Cu,P for using in aeronautical dosimetry

    International Nuclear Information System (INIS)

    Flavia, Hanna; Federico, Claudio; Lelis, Odair; Pereira, Heloisa; Pereira, Marlon

    2014-01-01

    The effects of cosmic ionizing radiation incidents in aircraft components and crews has been a source of concern and motivated increasingly studies and improvements in the area. The low dose rates involved in this radiation field in aircraft flight altitudes imply Dosimetric necessity of using materials with high efficiency of detection, to enable studies lower cumulative doses resulting in shorter routes or lower altitude. The choice of thermoluminescent dosimeters LiF: Mg, Cu, P was done by having a detection efficiency of about fifteen times higher than its predecessor (LiF: Mg, Ti), and therefore, applied in very low doses dosimetry, and environmental dosimetry . The implementation of the use of pair dosimetric TLD-600H and 700H-TLD will serve as support for testing and studies on the effects of low doses of cosmic radiation in environmental dosimetry applied in the aviation environment in the usual flight altitudes. In this paper are presented the results of development of a methodology for dosimetry low doses of gamma radiation and neutrons using the pair dosimetric TLD-600H and 700H-TLD. The results demonstrate a sensitivity of dosimeters well above the dosimeters LiF: Mg, Ti confirming its suitability for dosimetry of low doses

  11. Influence of the modification of protocol internal of change of dosimeters in the personal dosimetry control; Influencia de la modificacion del protocolo internao de cambio de dosimetros en el control de la dosimetria personal

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M. A.; Ramirez Ros, J. c.; Lobat Munoz, M.; Jodar Lopez, C. A.; Jerez Sainz, M. I.; Pamos Urena, M.; Carrasco Rodriguez, J. L.

    2013-07-01

    The linking of the correct use of the dosimeter with economical remuneration received by the worker is very useful, since it has allowed us to lower the number of assignments of administrative, due to various incidents doses, as they are not repeated shipments, lost dosimeters or anomalous readings. (Author)

  12. Further characteristics important in the operation of ceramic BeO TLD

    International Nuclear Information System (INIS)

    Gammage, R.B.

    1977-01-01

    There is now a considerable volume of published research dealing with ceramic BeO--TLD (Crase and Gammage, 1975; Yamashita et al., 1974; Scarpa et al., 1971). Its high sensitivity to radiation (1 mR), cheapness, commercial availability, non-toxicity, chemical stability, an atomic number of near tissue equivalence, and resistance to thermal fading, suggest that it should, by now, have found widespread acceptance as a TLD phosphor. It has not. There are only a small handful of reports dealing with the practical application of this type of dosimeter (Puite et al., 1974; Gammage and Haywood, 1976; Gesell et al., 1975). It seems wise, therefore, to look at the phosphor more closely and to focus on characteristics likely to cause problems under real operating conditions, especially those which are acting as a deterrent to its widespread acceptance. Operational characteristics were studied and the results are discussed

  13. Thermoluminescent dosimeter system

    International Nuclear Information System (INIS)

    Felice, P.E.; Gonzalez, J.L.; Seidel, J.G.

    1979-01-01

    An improved thermoluminescent dosimeter system and apparatus for sensing alpha particle emission is described. A thermoluminescent body is sealed between a pair of metallized plastic films. The dosimeter is mounted within a protective inverted cup or a tube closed at one end, which is disposed in a test hole for exposure to radioactive radon gas which is indicaive of uranium deposits

  14. SDI-100 radiation dosimeter

    International Nuclear Information System (INIS)

    Zheng Zheng; Zhao Yongfu; Dai Honggui

    1995-01-01

    An intelligent radiation dosimeter, with such functions as signal collection and data processing, store, print and display, has been developed. Its detector is made of a micro-semiconductor. This dosimeter can be used in laboratories for agricultural 60 Co irradiators, radiotherapeutic facilities and other small and medium-size 60 Co irradiators

  15. Dosimetric studies of the lens of the eye using a new dosimeter - polls in two departments of Interventional Radiology of the autonomous city of Buenos Aires

    International Nuclear Information System (INIS)

    Pirchio, R.; Sánchez, H.; Domazet, W

    2013-01-01

    During interventional radiology (IR) and cardiology (IC) procedures, medical staff can receive high doses to their eye lenses. The Retrospective Evaluation of Lens Injuries and Dose (RELID) study organized in Argentina in 2010 found incipient opacity in 50% of IC physicians and 41% of IC technicians/nurses. These results, added to the recommendations of the International Commission on Radiological Protection (ICRP), which lowered their former occupational equivalent dose limit for the lens, led us to assess the eye lens dose, Hp(3), during interventional procedures. To this end, a new dosemeter was designed and calibrated at the National Atomic Energy Commission (CNEA) of Argentina to evaluate Hp(3). Personal dose equivalent (Hp(10)), and Hp(3) were assessed for 3 months in two IC and IR departments of Buenos Aires City using thermoluminescent dosimeters (TLD) and electronic personal dosimeter (EPD). An Rando Alderson phantom was used to simulate monthly exposures of five occupational staff members. Hp(3) and Hp(10) were obtained monthly for 14 occupational staff members exposed to 121 IR and IC procedures. We concluded that the annual effective dose and Hp(3) were lower than 0.3 and 10 mSv, respectively. An occupational annual dose constraint of 0.3 mSv was calculated. Average cumulative Hp(3) for working life of 40 years should be lower than 400 and 200 mSv for physicians and technicians/scrub nurse, respectively. Also we concluded that a calibrated EPD worn on a pocket in the lead apron and a TLD dosemeter worn on the collar thyroid (both at the maximal radiation side) could be used as guidance to the lens dose. Finally, To reduce doses of medical staff, actions should be promoted to maximize radiation protection in interventional procedures with appropriate training, using personal dosimetry and protection instruments as lead glasses, ceiling-suspended shields and others. (author)

  16. Passive radon daughter dosimeters

    International Nuclear Information System (INIS)

    McElroy, R.G.C.; Johnson, J.R.

    1986-03-01

    On the basis of an extensive review of the recent literature concerning passive radon daughter dosimeters, we have reached the following conclusions: 1) Passive dosimeters for measuring radon are available and reliable. 2) There does not presently exist an acceptable passive dosimeter for radon daughters. There is little if any hope for the development of such a device in the foreseeable future. 3) We are pessimistic about the potential of 'semi-passive dosimeters' but are less firm about stating categorically that these devices cannot be developed into a useful radon daughter dosimeter. This report documents and justifies these conclusions. It does not address the question of the worker's acceptance of these devices because at the present time, no device is sufficiently advanced for this question to be meaningful. 118 refs

  17. Comparison of laboratory and in situ evaluation of environmental TL dosimeters

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.; Osvay, M.

    1996-01-01

    The passive environmental gamma-radiation dosimetry is mainly based on TL (thermoluminescent) dosimetry. This method offers considerable advantages due to its high precision, low cost, wide range, etc.. At the same time its application involves uncertainty caused by the dose collected during the transport from the point of annealing to the place of exposure and back to the place of evaluation. Should an accident occur read-out is delayed due to the need to transport to a laboratory equipped with a TLD reader. A portable reader capable of reading out the TL dosimeter at the place of exposure (in situ TLD reader) eliminates the disadvantages mentioned above. A microprocessor based portable TLD reader was developed by us for monitoring environmental gamma-radiation doses. Using a portable reader for in situ evaluation there are several disadvantages as well. The method requires the transport of the reader instead of dosimeters. The portable reader should be battery operated with low power consumption. Due to this requirement the temperature stabilization of the reader requests different solution as in laboratory type devices. Comparison of recently developed in situ and traditional laboratory evaluation methods of environmental TL dosimeters is given in recent paper. The comparison was made in the same conditions. The most characteristic - for environmental monitoring - numerical TL data (dose range, reproducibility, fading, self dose etc.) are given for manufactured by us CaSO 4 :Dy bulbs (portable reader) and very advantageous, high sensitive Al 2 O 3 :C dosimeters (laboratory evaluation). (author)

  18. The system of personal monitoring and the evaluation of occupational exposure to external ionizing radiation in Cuba

    International Nuclear Information System (INIS)

    Molina, Daniel; Castro, Ailza; Martinez, Ernesto; Pernas, Rene

    2008-01-01

    Full text: Personal monitoring of workers is recommended or required by the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. In our country the personal monitoring of external exposure to ionizing radiation is carried out by External Dosimetry Laboratory (LDE) of the Center for Radiation Protection and Hygiene (CPHR). We have implemented an individual monitoring service based on thermoluminescence dosimetry system. The service includes whole body and extremity dosimeters. We have two systems; one is base on a manual Toledo TLD reader and the other on an automatic RADOS TLD system. This service is recognized by the National Regulatory Authority in the field of radiation protection and safety. We have implemented a quality assurance (QA) programme designed according to the recommendations of the ISO/IEC 17025 standards. The papers deals with the presentation of these QA programme which includes administrative data and information, technical checking of the equipment, acceptance tests of new dosimeters and equipment, issuing and processing of the dosimeters, dose evaluation, record keeping and reporting, traceability, handling of complaints, internal reviews and external audits. The papers also describe the results of occupational exposure for the different practices during 2006-2007 period. (author)

  19. Application of solid dosimeter to radiation control

    International Nuclear Information System (INIS)

    Tsujimoto, Tadashi

    1988-01-01

    Individual exposure dose measuring devices are used to measure the dose of each person in facilities using radiations. Major devices of this type currently used in Japan include the film badge, thermoluminescence dosimeter, portable radiation dosimeter and fluorescent glass dosimeter. All of these devices except the portable radiation dosimeter are of a solid type. Various portable-type spatial dose rate measuring devices, generally called survey meters, are available to determine the spatial distribution of radiations. Major survey meters incorporates an ionization chamber, GM counter tube or scintillation counter, while BF 3 counting tubes are available for neutron measurement. Of these, the scintillation dosimeter is of a solid type. A new scintillation survey meter has recently been developed which incorporated a discrimination bias modulation circuit. Dosimeters incorporating an ionization chamber or a GM counter tube are generally used as portable alarms. Recently, a new solid-type alarm has been developed which incorporates a solicon radiation detector. Microcomputers are also used for self-diagnosis, data processing, automatic calibration, etc. (Nogami, K.)

  20. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bogani, F. [Florence Univ. (Italy). Dipt. di Energetica; Borchi, E. [Florence Univ. (Italy). Dipt. di Energetica; Bruzzi, M. [Florence Univ. (Italy). Dipt. di Energetica; Leroy, C. [Florence Univ. (Italy). Dipt. di Energetica; Sciortino, S. [Florence Univ. (Italy). Dipt. di Energetica

    1997-04-01

    The thermoluminescent (TL) response of chemical vapour deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters. (orig.).

  1. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    Science.gov (United States)

    Bogani, F.; Borchi, E.; Bruzzi, M.; Leroy, C.; Sciortino, S.

    1997-02-01

    The thermoluminescent (TL) response of Chemical Vapour Deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters.

  2. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    International Nuclear Information System (INIS)

    Bogani, F.; Borchi, E.; Bruzzi, M.; Leroy, C.; Sciortino, S.

    1997-01-01

    The thermoluminescent (TL) response of chemical vapour deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters. (orig.)

  3. An automated thermoluminescence dosimetry (TLD) system

    International Nuclear Information System (INIS)

    Kicken, P.J.H.; Huyskens, C.J.

    1979-01-01

    In the Health Physics Division of the Eindhoven University of Technology work is going on in developing an automated TLD-system. Process automization, statistical computation, dose calculation as well as dose recording are carried out, using a microcomputer and floppy disk unit. The main features of this TLD-system are its low costs, flexibility, easy to operate, and the feasibility for use in routine dosimetry as well as in complex TLD research. Because of its modular set-up several components of the system are multifunctional in other operations. The system seems suited for medium sized Health Physics groups. (Auth.)

  4. Mensuration of equivalent dose with personal dosemeters and instruments of radiological protection in the new operative quantities ICRU, for external fields of beta radiation. Part II. I study of the angular response of personal dosemeters TLD-100 in secondary patron fields of beta radiation ({sup 90}Sr / {sup 90}Y); Medicion de dosis equivalente con dosimetros personales e instrumentos de proteccion radiologica en las nuevas magnitudes operativas ICRU, para campos de radiacion beta externos. Parte II. Estudio de la respuesta angular de dosimetros personales TLD-100 en campos patrones secundarios de radiacion beta ({sup 90}Sr/{sup 90}Y)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1994-01-15

    The objective of this work is to carry out one of the possible ones test type for personal dosemeters TLD, under the recomendations of the ICRU 39, ICRU 43 and the draft of the norm ISO 6980,(1992), with the purpose of verifying the capacity of these detectors to carry out the operative unit: H' (0.07;{alpha}). Since H' (O. 07;{alpha}) this defined one in an expanded field, one of these tests type consist on determining the angular response of these detectors. 20 personal dosemeters TLD-100 was used, (card marks: Harshaw, Model: G-1, with two glasses of TLD-100 absorbed in teflon; the portadosemeters has two windows, a free one and another with a filter of Pb of 171.0 mg cm{sup -2}); these dosemeters they were previously selected, [to see, {sup S}tudy of the Homogeneity of the response of Personal Dosemeters (Cards G-l, TLD-100) in Radiation of Countrysides of {sup 60}Co{sup ,} J.T. Alvarez R. Technician Report GSR/IT/0001/94].The irradiations to effectued in secondary countryside of radiation beta of {sup 90}Sr/{sup 90}Y. The study was undertaken by means of an experimental design of blocks random that contemplate the following variables: intensity of the radiation source, (1850 MBq and 74 MBq); position of irradiation, (four positions); incidence of angle of the radiation (0, 15, 30, 45, 60 and 75 grades) and the absorbed dose in air, (0.005, 0.010, 0.020, 0.050 and 0.100 Gy). Then null hypothesis it was to suppose that there was not difference among the stockings of each treatment, to used the statistical of Duncan to carry out tests of stockings at a level of significance of 5%.These tests of stockings throw the following results in those variables of the experimental design: The irradiations carried out so much with the source pattern secondary of {sup 90}Sr/{sup 90}Y of 1850 MBq and of 74 MBq, they are equivalent reason why they can be used indistinctly. The responses of each one of the glasses of the card are strongly anisotropic for each glass

  5. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    Science.gov (United States)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  6. Similarities and differences between two different types of the thermoluminescence dosimeters belonging to the LiF family

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, A.M. [Ionizing Radiation Metrology Department, National Institute for Standards, Giza (Egypt); Khamis, F. [Physics Department, University of Tripoli, Tripoli (Lebanon); Polymeris, George S. [Institute of Nuclear Science, Ankara University, Besevler, Ankara (Turkey); Carinou, E. [Greek Atomic Energy Commission (GAEC), Ag. Paraskevi (Greece); Kitis, G. [Nuclear Physics and Elementary Particles Physics Section, Physics Department, Aristotle University of Thessaloniki, Makedonia (Greece)

    2017-01-15

    The kinetic parameters of the glow-peaks of Harshaw - LiF:Mg, Ti (TLD) and Poland - LiF:Mg,Ti (MTS) dosimeters were investigated at different dose levels using the computerized glow-curve deconvolution (CGCD) algorithm. The results showed that the glow-curve structure and the kinetic parameters of the MTS - 6 and the TLD dosimeter are identical. In addition, the glow-curve structure and the kinetic parameters of the MTS - N and MTS - 7 dosimeters. However, unusual low activation energy (∝1.67 eV) and frequency factor (∝10{sup 15} s{sup -1}) values were detected for peak 5 of MTS - N, and MTS - 7 at the 50 Gy dose-level. Moreover, unlike the activation energy and the frequency factor of peak 5 of the TLD dosimeters, the activation energy and the frequency factor of peak 5 of MTS - N and MTS - 7 are substantially dependent on the absorbed dose level. The results also showed that peak 2 of the same dosimeters has also unusual low activation energy and frequency factor values. However, these values showed high stability over the different dose levels. The explanations of these unusual behaviors of peak 5 were discussed and a correlation between peak 2 and peak 5 was pointed out. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Automated TLD system for gamma radiation monitoring

    International Nuclear Information System (INIS)

    Nyberg, P.C.; Ott, J.D.; Edmonds, C.M.; Hopper, J.L.

    1979-01-01

    A gamma radiation monitoring system utilizing a commercially available TLD reader and unique microcomputer control has been built to assess the external radiation exposure to the resident population near a nuclear weapons testing facility. Maximum use of the microcomputer was made to increase the efficiency of data acquisition, transmission, and preparation, and to reduce operational costs. The system was tested for conformance with an applicable national standard for TLD's used in environmental measurements

  8. Determination of the dose in eyes lens by TLD, in PET/CT by technicians in PET/CT service

    International Nuclear Information System (INIS)

    Marino, Emiliano A.

    2013-01-01

    This work was supported, on the one hand, in a part of the project ORAMED which consisted of a design of a TLD dosimeter for measurements of Hp (3) in areas close to the lens, for interventional radiology physicians. On the other hand, Berhens work proposes using calibrated TLDs Hp (0.07) and Hp (10) to estimate Hp (3) crystal. This resulted in dosimeters calibrated using Hp (10) slab, and mount them on glasses, to estimate the dose to the lens of the technical staff of the Service PET / CT. The value obtained 29mSv/year of Lens Dose Equivalent exceeds the recommended limit. We also demonstrate that, under the current working conditions, the values of Hp (3) reported from whole body dosimeter does not represent faithfully the lens dose

  9. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  10. Evaluation of thermoluminescent dosimeters using water equivalent phantoms for application in clinical electrons beams dosimetry

    International Nuclear Information System (INIS)

    Bravim, Amanda

    2010-01-01

    The dosimetry in Radiotherapy provides the calibration of the radiation beam as well as the quality control of the dose in the clinical routine. Its main objective is to determine with greater accuracy the dose absorbed by the tumor. This study aimed to evaluate the behavior of three thermoluminescent dosimeters for the clinical electron beam dosimetry. The performance of the calcium sulfate detector doped with dysprosium (CaSO 4 : Dy) produced by IPEN was compared with two dosimeters commercially available by Harshaw. Both are named TLD-100, however they differ in their dimensions. The dosimeters were evaluated using water, solid water (RMI-457) and PMMA phantoms in different exposure fields for 4, 6, 9, 12 and 16 MeV electron beam energies. It was also performed measurements in photon beams of 6 and 15 MV (2 and 5 MeV) only for comparison. The dose-response curves were obtained for the 60 Co gamma radiation in air and under conditions of electronic equilibrium, both for clinical beam of photons and electrons in maximum dose depths. The sensitivity, reproducibility, intrinsic efficiency and energy dependence response of dosimeters were studied. The CaSO 4 : Dy showed the same behavior of TLD-100, demonstrating only an advantage in the sensitivity to the beams and radiation doses studied. Thus, the dosimeter produced by IPEN can be considered a new alternative for dosimetry in Radiotherapy departments. (author)

  11. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    Science.gov (United States)

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-07-08

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in

  12. Acceptance Testing of Thermoluminescent Dosimeter Holders.

    Science.gov (United States)

    Romanyukha, Alexander; Grypp, Matthew D; Sharp, Thad J; DiRito, John N; Nelson, Martin E; Mavrogianis, Stanley T; Torres, Jeancarlo; Benevides, Luis A

    2018-05-01

    The U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS). The dosimeter consists of four LiF:Mg,Cu,P elements, mounted in Teflon® on an aluminum card and placed in a plastic holder. The holder contains a unique filter for each chip made of copper, acrylonitrile butadiene styrene (ABS), Mylar®, and tin. For accredited dosimetry labs, the ISO/IEC 17025:2005(E) requires an acceptance procedure for all new equipment. The Naval Dosimetry Center (NDC) has developed and tested a new non-destructive procedure, which enables the verification and the evaluation of embedded filters in the holders. Testing is based on attenuation measurements of low-energy radiation transmitted through each filter in a representative sample group of holders to verify that the correct filter type and thickness are present. The measured response ratios are then compared with the expected response ratios. In addition, each element's measured response is compared to the mean response of the group. The test was designed and tested to identify significant nonconformities, such as missing copper or tin filters, double copper or double tin filters, or other nonconformities that may impact TLD response ratios. During the implementation of the developed procedure, testing revealed a holder with a double copper filter. To complete the evaluation, the impact of the nonconformities on proficiency testing was examined. The evaluation revealed failures in proficiency testing categories III and IV when these dosimeters were irradiated to high-energy betas.

  13. The measurement of dose at 70 micrometres' depth using thermoluminescent dosimeters (tlds)

    International Nuclear Information System (INIS)

    Jones, A.R.

    1989-01-01

    The measurement of dose with thermoluminescent dosimeters (TLD) at a tissue-equivalent depth of 70 μm can be done in three ways. These are by using: very thin TLDs (made by cementing fine, powdered, TLD particles to a high-temperature plastic film); opaque TLDs whose surface alone is sensitive. (Light emitted at a greater depth has a low probability of emergence and, thus, they behave as if they were thin.); at least three TLDs covered with absorbers of differing thickness. The approaches were studied using examples of dosimeter arrangements of the three types. The characteristics which were measured to form a basis of comparison were: the performance at high and low doses; the effect of changing angle of incidence and beta-ray energy; the effect on performance of repeated irradiation, annealing and reading. It was concluded that the very thin TLDs (powdered) are the best suited to the measurement of doses at 70 μm depth

  14. The study on production of CaSO4 (Dy) dosimeters

    International Nuclear Information System (INIS)

    Sriratchatchaval, V.

    1989-05-01

    The purpose of this experiment is to find out the techniques of preparation and production and to study the characteristic of Thermoluminescence Dosimeter (TLD); CaSO 4 (Dy). This dosimeter is produced as pellets with 1.0 mm thickness and diameter 4.8 mm, which is suitable for gamma rays and X-rays detector. CeSO 4 (Dy) is prepared by adding Dy 2 O 3 (0.2 mole %Dy) to CaSO 4 .2H 2 O then taking this mixture to crystallize in conc. H 2 SO 4 at 300 0 C responds linearly to gamma rays in the range of 0.01-100 mGy and gives the highest peak at 205 0 C. This TLD is fading 3% per month, low sensitivity to light and the response of signal depends on the energy level of gamma rays

  15. Quality control in medical radiology using T.L.D

    International Nuclear Information System (INIS)

    Rolemberg Silva, F.A.; Nascimento Souza, D. do

    2006-01-01

    In this work tests of quality control in beams of X rays have been carried out, at diagnostic level, of two radiological services equipments of Brazilian hospitals (Aracaju, SE). We obtained the air kerma and kerma rate values, the beams efficiency, the coherence between the luminous fields and the referring fields of irradiation and half-value layer to each equipment and set of parameters. The measures of direct form have been obtained using two ionization chambers, one cylindrical and another one with parallel plates. An optional method for accomplishment some of the tests were carried out with CaSO 4 :Dy + Teflon thermoluminescent dosimeters. The values of air kerma were evaluated for three tube voltage, 40, 60 and 81 kV at 1.0 m from the focus of the equipments. For each one of the voltages three distinct current values were chosen besides a fixed value of exposition time. The results showed that the values of air kerma varied between 8.0 μGy and 0.35 μGy. The T.L.D. have revealed useful for the measures if the response to the dose is previously known for each set of beam parameters used for the irradiations. Otherwise, the tests with the dosimeters can serve to evaluate the beams conditions and their reproducibility. The evaluation results of coherence between the luminous fields and the irradiation fields demonstrated that the difference between the radiation and the luminous fields did not exceed 2% of the distance between the focal point and the film. We found satisfactory values for half-value layer. (author)

  16. Reproducibility and calibration studies of TLD 600, TLD 700 and TLD 400

    International Nuclear Information System (INIS)

    Cavalieri, T.A.; Castro, V.A.; Siqueira, P.T.D.

    2013-01-01

    A new method to study of reproducibility of the thermoluminescent dosimeters (TLDs) and their calibration was carried on and compared with the method previously used by the BNCT research group of IPEN/CNEN. In this new method, aimed to identify the relations between the individual response of certain types of TLDs with their average response, it was observed a relation approximately constant even at different irradiations. From these relations, normalization of TLDs responses were made, and this method was compared with the method previously adopted by BNCT research group of IPEN/CNEN given better responses. With this new method, the dose response calibration o were made for two gamma sources, with different energies, 60 Co and 137 Cs, for doses ranging from 20 mGy to 1 Gy, and it has been possible to observe the response dependence of these TLDs on energy. (author)

  17. Environmental monitoring system with TLD

    International Nuclear Information System (INIS)

    Aguerre, L.; Carelli, J.; Gregori, B.

    2006-01-01

    Presently work the methodology used by the Laboratory of Thermoluminescent Dosimetry (TLD) of the Nuclear Regulatory Authority (RNA) to gauge it system of environmental monitoring in function of the media absorbed dose rate in free air and the environmental dose equivalent, H * (10), according to the recommendation ICRU Report 47 is described. It was studied the response of the environmental dosemeter (DA) in fields of photonic radiation of energies W60, Wl 10, W200 and 137 Cs. The irradiations were carried out following the recommendations of the standard ISO:4037. It was analyzed the response in the DA of the detectors LiF: Mg, Ti and CaF 2 : Dy for the different radiation qualities and the relative response at 137 Cs of both. The methodology used in the evaluation of the dose includes: the correction of the readings of both detectors by fading, gotten experimentally, the witness of transfers, the energy answer and the value of the zero. The dose is calculated applying the average pondered in uncertainty of the dose obtained for each type of detector. Its were analyzed and calculated the uncertainties that affect to the measurement following the recommendation of the Argentine standard IRAM 35050. The detection limit of the absorbed dose rate in free air of this system it is 3.5 n Gy/h for a period of sampling of 3 months. With this detection limit environmental dose equivalent rates of the order of 70 n Sv/h are measured with an expanded uncertainty of the order of 10% with a cover factor k = 2. (Author)

  18. The effect of the build-up wall at the TLD calibration using Co-60

    International Nuclear Information System (INIS)

    Nariyama, N.

    2000-01-01

    Absorbed dose in thermoluminescent dosimeter (TLD) material at the calibration using Co-60 gamma rays depends on the TLD thickness and the wall material used for electric equilibrium condition. The relation was examined for LiF, BeO and CaF 2 TLDs sandwiched with PMMA, Teflon and Pyrex glass walls using a Monte Carlo transport code and compared with cavity ionization theory calculations. For the mismatched combination of LiF, BeO/Pyrex glass and CaF 2 /PMMA, it was found that the energy deposition did not change monotonously with TLD thickness from small cavity to large cavity value: a depression observed around 1-mm thickness for LiF/Pyrex glass and a peak around 0.6-mm thickness for CaF 2 /PMMA. The phenomena were explained by using different exponential attenuation coefficients β and β' for the weighting functions of cavity theory. Moreover, use of large cavity values was found to lead possibly to 3-5% errors in the calibration of thin TLDs. (author)

  19. Work place monitoring in accelerator facilities using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Osima, A.M.; Rodriguez, D.L.; Carvalho, R.N.; Somessari, R.N.

    1998-01-01

    The increase in the use of large amounts of energy and large particles accelerators in development or in industrial processes for the reticulation, polymerization and sterilization of cables and wires allowed to discover and monitor work places in facilities having particle accelerators at the Institute of Energy and Nuclear Inquiries Comissao National de Energy Nuclear. Measures previously taken by technicians in routine monitoring, show that radiation doses found in the beams tube and at the door of the accelerator area is high enough to require routine programs to monitor work places at the installation. That is why, fifteen thermoluminescent dosimeters (TLD) where placed in different points of the facility where doses must be measured along a three month period and at the same time readings must be taken from control dosimeters kept within a shielded container. The monitor had a small double layer with three pellets of TLD CaSO4 Dy inside of a route carrier adopted in routine workers dosimetry usually. Outcomes show that the radiological protection program must be implemented to ameliorate and guarantee safety procedures

  20. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    This patent describes a portable radon daughter dosimeter unit used to measure radon gas alpha daughters in ambient air. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as in uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout displays the result in terms of working level-hours

  1. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    A portable radon daughter dosimeter unit used to measure Radon gas alpha daughters in ambient air is described. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout diplays the result in terms of working level-hours

  2. Fundamentals of Polymer Gel Dosimeters

    Science.gov (United States)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  3. Radiation dosimeter assembly

    International Nuclear Information System (INIS)

    Seidel, J.G.

    1982-01-01

    A technique is disclosed for securing a thermoluminescent radiation dosimeter, used for monitoring underground radon gas in uranium prospecting, to a cup-like support member made of heavy gauge aluminum foil. A metalized film, consisting of an aluminum layer and a high tensile strength plastic layer, covers an aperture in the support members for the dosimeter. The film is secured by a high temperature adhesive to the support member, and both are capable of withstanding an annealing temperature of up to 300 0 C

  4. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters

    Czech Academy of Sciences Publication Activity Database

    Kodaira, S.; Tolochek, R. V.; Ambrožová, Iva; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.

    2014-01-01

    Roč. 53, č. 1 (2014), s. 1-7 ISSN 0273-1177 Institutional support: RVO:61389005 Keywords : space radiation dosimetry * water shield * dose reduction * passive dosimeters * CR-39 * TLD Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.358, year: 2014

  5. Malaysia Participation in the IAEA/ WHO TLD Postal Dose Quality Audit Service: Data Analysis From 2011-2015

    International Nuclear Information System (INIS)

    Norhayati Abdullah; Taiman Kadni

    2016-01-01

    In this paper, we report the dosimetry methodology used and the results of 22 Malaysian radiotherapy centres participated in the Thermoluminescent Dosimeter (TLD) Postal Dose Quality Audit Service organised by the International Atomic Energy Agency (IAEA) in collaboration with World Health Organisation (WHO) from 2011 to 2015. In this audit, a set of three capsules of TLD (encapsulated with Lithium Flouride powder) including a control TLD were sent to the participating centres for irradiation with 2 Gy of absorbed dose to water under reference condition. In this period, a total of 70 photon beams consists of 43 beams and 27 beams produced by 6 MV and 10 MV photon beams, respectively have been audited. The results demonstrated that all participating centres comply with the acceptance limits of ±5 % as recommended by the International Commission on Radiation Units and Measurements (ICRU) Report 24, except eight photon beams from six centres. However, these centres presented better compliance results after followed up with a second round of TLD irradiation. (author)

  6. Clinical use of carbon-loaded thermoluminescent dosimeters for skin dose determination

    International Nuclear Information System (INIS)

    Ostwald, Patricia M.; Kron, Tomas; Hamilton, Christopher S.; Denham, James W.

    1995-01-01

    Purpose: Carbon-loaded thermoluminescent dosimeters (TLDs) are designed for surface/skin dose measurements. Following 4 years in clinical use at the Mater Hospital, the accuracy and clinical usefulness of the carbon-loaded TLDs was assessed. Methods and Materials: Teflon-based carbon-loaded lithium fluoride (LiF) disks with a diameter of 13 mm were used in the present study. The TLDs were compared with ion chamber readings and TLD extrapolation to determine the effective depth of the TLD measurement. In vivo measurements were made on patients receiving open-field treatments to the chest, abdomen, and groin. Skin entry dose or entry and exit dose were assessed in comparison with doses estimated from phantom measurements. Results: The effective depth of measurement in a 6 MV therapeutic x-ray beam was found to be about 0.10 mm using TLD extrapolation as a comparison. Entrance surface dose measurements made on a solid water phantom agreed well with ion chamber and TLD extrapolation measurements, and black TLDs provide a more accurate exit dose than the other methods. Under clinical conditions, the black TLDs have an accuracy of ± 5% (± 2 SD). The dose predicted from black TLD readings correlate with observed skin reactions as assessed with reflectance spectroscopy. Conclusion: In vivo dosimetry with carbon-loaded TLDs proved to be a useful tool in assessing the dose delivered to the basal cell layer in the skin of patients undergoing radiotherapy

  7. Study of analysis techniques of thermoluminescent dosimeters response

    International Nuclear Information System (INIS)

    Castro, Walber Amorim

    2002-01-01

    The Personal Monitoring Service of the Centro Regional de Ciencias Nucleares uses in its dosemeter the TLD 700 material . The TLD's analysis is carried out using a Harshaw-Bicron model 6600 automatic reading system. This system uses dry air instead of the traditional gaseous nitrogen. This innovation brought advantages to the service but introduced uncertainties in the reference of the detectors; one of these was observed for doses below 0,5 mSv. In this work different techniques of analysis of the TLD response were investigated and compared, involving dose values in this interval. These techniques include thermal pre-treatment, and different kinds of the glow curves analysis methods were investigated. Obtained results showed the necessity of developing a specific software that permits the automatic background subtraction for the glow curves for each dosemeter . This software was developed and it bean tested. Preliminary results showed the software increase the response reproducibility. (author)

  8. Mensuration of equivalent dose with personal dosemeters and instruments of radiological protection in the new operative magnitudes ICRU, for external fields of beta radiation. Part I. Study of the homogeneity of the response personal dosemeters leaves (cards G-1, TLD-100), in radiation fields of Co60

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1994-01-01

    A sample of 40 composed personal dosemeters by cards model: G-l, (each card is made up of two TLD-100 crystals encapsulated in teflon), Harshaw trademark; those personal dosemeters present a free window and another with a filter of A1 of 171.7 mg cm -2 of mass thickness.The objective of the work is to select of this sample of 40 personal dosemeters a population with the same stocking and standard deviation. The technique used is that of comparison of stockings, (ANOVA; Variance Analysis, when samples of the same one were had size; and/or GLM, Widespread Lineal Models, when the samples were of different size), by means of the use of those Duncan statistics, SNK, Tukey, Gabriel; the results are validated proving the kindness of adjustment of the experimental data to a Normal distribution by means of the Shapiro-Wilks statistics.The experimental design used consists on a test of two vias: a via is the variable card with two levels, (crystal 1 and 2), the other via is the variable irradiation position with four levels, (LS=left superior, SR= right superior, LI= left Inferior, IR = right inferior). The irradiations carried out in blocks of four personal dosemeters in a gamma radiation beam range of Cobalt 60; carrying out three repetitions of the design. With object of proving the homogeneity of the filter of A1 in those personal dosemeters the experimental design was executed for those cards without personal dosemeters.They were also carried out tests of stockings to the readings of bottom and sensibility of the reader equipment, (Harshaw, model marks 2271), certain that doesn t exist differences for sequence of reading, but if in the stockings of the sensibility, (they were 4 different populations). The responses of the dosemeters were corrected subtracting him the reading correspondence of bottom and by sensibility of the reader equipment before subjecting them to the tests of stockings mentioned. Of the results of the tests of stockings for the cards with and

  9. A study on the development of personal radiation dosimetry system based on the pulsed optically stimulated luminescence of α-Al2O3:C

    International Nuclear Information System (INIS)

    Lee, Sang Yoon

    2000-02-01

    High quality radiation dosimetry is for workers who rely upon personal dosimeters to record the amount of radiation to which they are exposed. Radiation physicists have been exploring thermoluminescence dosimeter (TLD) for personal monitoring since the mid 1960s, although, widespread use has only occurred in the last 20 years as automated analytical systems and high quality TLD crystals became commercially available. nowadays, multiple TLD (thermoluminescence dosimeter) chips with appropriate physical filters are generally used for measurements of the personal dose equivalent quantities, H p (d). Though the TLD offers several advantages not possessed by radiological film, it does not offer the some type of advantages as films: re-analysis of an exposure situation is prohibited because the analysis process clears all of the useful dosimetric traps and a record of the luminescence intensity in the form of a glow curve is all that is available after analysis. In addition, the high heating temperatures restrict packaging methods and prevent competitively priced thin films of TLD crystal powders. Optically stimulated luminescence (OSL) technology avoids many engineering limitations imposed by the high heating temperatures used for TLD technology. OSL crystalline powders can be dispersed in various plastics unable to withstand the TLD heating regimen. With uniform dispersion in the plastic, mass-manufacturing techniques can produce large quantities of identically performing detectors. The first proposal conducted by Markey et al. for applications and potentials of α-AI 2 O 3 :C for OSL dosimetry opened a new era for this phosphor. Pulsed and continuous wave OSL studies carried out on α-AI 2 O 3 :C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of this study is to develop a multi-area personal OSL dosimetry system using α-AI 2 O 3 :C by taking advantage of its optical properties and

  10. Thermoluminescence dosimeter reader

    International Nuclear Information System (INIS)

    Robertson, M.E.A.; Marshall, J.; Brabants, J.A.P.; Davies, M.E.

    1975-01-01

    An electric circuit arrangement is described including a photomultiplier tube and a high voltage source therefor also includes a feedback loop from the output of the tube to the high voltage source, and loop providing automatic gain stabilization for the tube. The arrangement is used in a dosimeter reader to provide sensitivity correction for the reader each time the reader is to be used

  11. TLD-100 glow-curve deconvolution for the evaluation of the thermal stress and radiation damage effects

    CERN Document Server

    Sabini, M G; Cuttone, G; Guasti, A; Mazzocchi, S; Raffaele, L

    2002-01-01

    In this work, the dose response of TLD-100 dosimeters has been studied in a 62 MeV clinical proton beams. The signal versus dose curve has been compared with the one measured in a sup 6 sup 0 Co beam. Different experiments have been performed in order to observe the thermal stress and the radiation damage effects on the detector sensitivity. A LET dependence of the TL response has been observed. In order to get a physical interpretation of these effects, a computerised glow-curve deconvolution has been employed. The results of all the performed experiments and deconvolutions are extensively reported, and the TLD-100 possible fields of application in the clinical proton dosimetry are discussed.

  12. Hand book on the use of TLD badge based on CaSO4:Dy teflon TLD discs for individual monitoring

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Adtani, M.M.; Varadharajan, G.; Bakshi, A.K.; Srivastava, Kshama; Bihari, R.R.

    2002-10-01

    Individual monitoring is one of the most important aspects of a radiation protection programme. In India, an official and centralized personnel monitoring service to radiation workers started in 1952. With the indigenous development of a TLD badge system in 1975 at Bhabha Atomic Research Centre, decentralization of monitoring service was initiated. At present, about 40,000 radiation workers are monitored using this system through twelve TLD units located in different parts of the country, including a private accredited laboratory. Regulatory and other inspecting bodies have often asked outstation TLD units to produce a duly approved document on the procedures being practiced for the assessment of personal doses. A need for such a document has also been felt to ensure the uniformity in processing of dosemeters, recording and reporting of doses by different TLD units and to provide guidelines regarding the infrastructure requirement. This document in the form of a handbook has been prepared to cater to the above needs. The handbook is expected to provide necessary guidelines not only to the newcomers/ forthcoming units and the existing laboratories but also to help the regulators, inspectors and assessors. (author)

  13. An environmental TLD for nuclear power plants

    International Nuclear Information System (INIS)

    Marcinowski, F.

    1988-01-01

    In this paper a dosimeter is proposed for the purpose of detecting noble gas releases (principally Xe-133) from nuclear power plants. The dosimeter consists of two Li 2 B 4 O 7 :Cu (LiBO) elements and one CaSO 4 :Tm (CaSO) element. One LiBO element is enclosed only in plastic and is used to determine shallow dose, while the LiBO and CaSO pair, which are used to determine deep dose, are enclosed in a 1070 mg/cm 2 aluminum sphere and plastic. The dosimeter is designed to overcome the three major problems involved in monitoring for Xe-133: the effect of angular response, differences in irradiation geometry (overhead plume vs. submersion), and interference from naturally occurring high-energy gamma rays. Laboratory test data are presented to demonstrate the proposed dosimeter's response characteristics

  14. Characterization of MOSFET dosimeters for low‐dose measurements in maxillofacial anthropomorphic phantoms

    Science.gov (United States)

    Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-01-01

    The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However

  15. Development of a TLD mailed system for remote dosimetry audit for 192Ir HDR and PDR sources

    International Nuclear Information System (INIS)

    Roue, Amelie; Venselaar, Jack L.M.; Ferreira, Ivaldo H.; Bridier, Andre; Dam, Jan van

    2007-01-01

    Background and purpose: In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. Materials and methods: A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from 192 Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an 192 Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1 s). Results: To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. Conclusion: A method of absorbed dose to water determination in the vicinity of an 192 Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The

  16. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    Science.gov (United States)

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a

  17. Measurement of the Dose to the Family Members Taking Care of Thyroid Cancer Patients Undergoing I-131 Therapy in Nuclear Medicine Using TLD-100.

    Science.gov (United States)

    Zehtabian, M; Dehghan, N; Danaei Ghazanfarkhani, M; Haghighatafshar, M; Sina, S

    2017-05-01

    The family members or friends of the patients undergoing treatment using radioiodine in nuclear medicine are inevitably exposed to ionization radiation. The purpose of this study is measurement of the dose received by the people taking care of the thyroid cancer patients treated by 131I. For this purpose, the dose amounts received by 29 people accompanying patients were measured using thermoluminescence dosimeters. A badge containing three TLD-100 chips was given to each caregiver. The people were asked to wear the badges for 24 days, when they are taking care of the patients. Finally the dose to each person was estimated by averaging the readings of the three TLDs. The measured dose amounts to the people were compared with the recommendations of international commitions. According to the results obtained in this study, the amounts of dose received by the caregivers were between 0.03 and 0.38 mSv, with the average of 0.12 mSv. By comparison of the results of this study with the recommendations of International Commission on Radiological Protection (ICRP), it can be observed that the dose to family members of the patients is less than the dose constraints. However, it is recommended that the caregivers be aware of the radiation protection principles in order to reduce their dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Measurement of the dose to the family members taking care of thyroid cancer patients undergoing I-131 therapy in nuclear medicine using TLD-100

    International Nuclear Information System (INIS)

    Zehtabian, M.; Dehghan, N.; Danaei Ghazanfarkhani, M.; Haghighatafshar, M.; Sina, S.

    2017-01-01

    The family members or friends of the patients undergoing treatment using radioiodine in nuclear medicine are inevitably exposed to ionization radiation. The purpose of this study is measurement of the dose received by the people taking care of the thyroid cancer patients treated by "1"3"1I. For this purpose, the dose amounts received by 29 people accompanying patients were measured using thermoluminescence dosimeters. A badge containing three TLD-100 chips was given to each caregiver. The people were asked to wear the badges for 24 days, when they are taking care of the patients. Finally the dose to each person was estimated by averaging the readings of the three TLDs. The measured dose amounts to the people were compared with the recommendations of international commissions. According to the results obtained in this study, the amounts of dose received by the caregivers were between 0.03 and 0.38 mSv, with the average of 0.12 mSv. By comparison of the results of this study with the recommendations of International Commission on Radiological Protection (ICRP), it can be observed that the dose to family members of the patients is less than the dose constraints. However, it is recommended that the caregivers be aware of the radiation protection principles in order to reduce their dose. (authors)

  19. Comparative study of different Al_2O_3:C dosimeters using OSL technique for dosimetry on Volumetric Modulated Arc Radiotherapy Treatment (VMAT)

    International Nuclear Information System (INIS)

    Villani, Daniel; Campos, LetIcia L.; Mancini, Anselmo; Haddad, Cecilia M.K.

    2016-01-01

    In modern radiotherapy, the VMAT technique has become a successful treatment alternative. Due to its complexity, a quality assurance program must be established by evaluating, among other items, the dosimetric factors. This paper aims to compare the performance between the OSL aluminum oxide (Al_2O_3:C) nanoDot™ dosimeters (Inlight™ system) manufactured by Landauer Inc. and TLD-500 Al_2O_3:C dosimeters manufactured by Rexon™ for VMAT dosimetry using an anthropomorphic phantom. The results showed that both type of Al_2O_3:C dosimeters presented good repeatability and agreement between the doses measured and calculated by planning system. However, the need of sophisticated readers to OSL analysis of the TLD-500, turns it less practical for routine usage, comparing to Inlight™ system. (author)

  20. In vivo TLD-measurement of the radiation burden after intake of sup(99m)Tc-labelled compounds

    International Nuclear Information System (INIS)

    Kletter, K.; Frischauf, H.; Dudczak, R.; Nowotny, R.

    1978-01-01

    Organ and whole-body radiation doses by sup(99m)Tc labelled preparations were measured on patients subjected to scintigraphy of liver (+spleen), thyroid of kidneys. Body surface doses were determined by means of TLD-100 (LiF) dosimeters. From these values organ doses were calculated by inference from surface and organ measurements on a Remcal - Alderson phantom which also served to examine the influence of variable fat layers on the surface doses. The results were compared with data calculated from pharmacokinetic measurements of organ uptake as well as blood and urine activity. Both methods gave corresponding results. (author)

  1. Electron-energy deposition in skin and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mei, G.T.Y.

    1986-01-01

    The primary object of this study was to investigate the relations between dosimeter response and skin dose resulting from beta-particle irradiation. This object was achieved by combining evaluation of beta-source energy spectra, calculation of flux energy spectra, and employment of a Monte-Carlo electron-transport computer program for determination of depth-dose distribution in multislab geometries. Intermediate results from three steps of evaluation were compared individually with experimental data or with other theoretical results and showed excellent agreement. The combined method is applicable for the electron agreement. The combined method is applicable for the electron energy range of 1 keV to 5 MeV for both monoenergetic electrons and energy-distributed electrons. Determination of dosimeter response - skin dose relationships for homogeneous atmospheric beta-particle sources and for two specific configurations of LiF TLD's have been carried out in this study. Information based on these calculations is of value in designing beta-particle dosimeters as well as in assessing potential occupational and public health risks associated with the nuclear power industry

  2. Dosimeter characteristics and service performance requirements

    International Nuclear Information System (INIS)

    Ambrosi, P.; Bartlett, D.T.

    1999-01-01

    The requirements for personal dosimeters and dosimetry services given by ICRP 26, ICRP 35, ICRP 60 and ICRP 75 are summarised and compared with the requirements given in relevant international standards. Most standards could be made more relevant to actual workplace conditions. In some standards, the required tests of energy and angular dependence of the response are not sufficient, or requirements on overall uncertainty are lacking. (author)

  3. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber

    International Nuclear Information System (INIS)

    Guzman Calcina, Carmen S; Oliveira, Lucas N de; Almeida, Carlos E de; Almeida, Adelaide de

    2007-01-01

    Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm 2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium

  4. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co

    International Nuclear Information System (INIS)

    Reed, J. L.; Micka, J. A.; Culberson, W. S.; DeWerd, L. A.; Rasmussen, B. E.; Davis, S. D.

    2014-01-01

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for 125 I and 103 Pd brachytherapy sources relative to 60 Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a 60 Co teletherapy source. The brachytherapy sources measured were the Best 2301 125 I seed, the OncoSeed 6711 125 I seed, and the Best 2335 103 Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the 60 Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the 60 Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for 125 I and 103 Pd relative to 60 Co. Results: The relative TLD intrinsic energy dependences (relative to 60 Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for 125 I and 103 Pd sources relative to 60 Co. TLD measurements of absolute dose around 125 I and 103 Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy

  5. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.

    Science.gov (United States)

    Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A

    2014-12-01

    To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  6. Commissioning and characteristics of MOSFET dosimeter

    International Nuclear Information System (INIS)

    Gopiraj, A.; Billimagga, Ramesh S.; Rekha, M.; Ramasubramaniam, V.

    2007-01-01

    The verification of the dose delivered to a patient is an important part of the quality assurance in radiotherapy. Thermoluminescent dosimeters (TLDs) and semiconductor diodes were mostly used for this purpose. Recently Metal Oxide Semiconductor field effect transistors (MOSFET) have been proposed for the application in radiotherapy. Each type of detector has its own advantages and disadvantages. The TLD size is very small and therefore can be used both for measurement and dose delivered to a patient and for measurements of dose distribution in a humanoid phantom. The main disadvantages of the TLDs are the time required by the preparation procedure and the limited accuracy which depends on the experience of the user. Additionally, TLDs do not allow an immediate readout. The main disadvantages of semiconductor diodes are the necessity of using a cable which can disturb normal clinical work especially when in vivo measurements are carried out, and the necessity of applying of many correction factors to achieve high accuracy. We procured MOSFET system from Thomson and Nielsen Electronic Ltd. The reproducibility as a function of dose and linearity and calibration factor of the MOSFET detectors were measured. The effects of energy, field size and accumulated dose on the response of the detectors were investigated

  7. CRRES dosimeter simulations

    International Nuclear Information System (INIS)

    Auchampaugh, G.; Cayton, T.

    1993-04-01

    Conflicting data have been obtained from electron instruments aboard CRRES (Combined Release and Radiation Effects Satellite). To gain insight and to help in the interpretation of the data, we have calculated electron- and proton-flux and dose response functions for the four domes of the CRRES dosimeters using the Los Alamos Monte Carlo radiation transport codes. The response functions were calculated for electron and proton energies representative of those present in the space radiation environment. We also calculated the response of the dosimeters to a model radiation environment for orbit 607, which occurred on April 1, 1991 and compared the results to the measured values. The electron and proton components of the radiation environment were calculated using the solar maximum versions of the AE8 and AP8 models, namely, AE8MAX and AP8MAX. To facilitate the second task, we wrote two FORTRAN programs (CRRESunderscoreSIMP for AP8MAX and CRRESunderscoreSIME for AE8MAX) to read in a standard CRRES data file and to produce a comparison file of the calculated and measured values for all four dosimeter domes.The FORTRAN code will be available to the Phillips Laboratory for their use in making comparisons to other orbital data

  8. Implementation of a dosimetry service for the occupationally exposed personnel of the ESFM-IPN; Implementacion de un servicio de dosimetria para el personal ocupacionalmente expuesto de la ESFM-IPN

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, Y. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Sanchez R, A. A. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico); Ceron R, P. V.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia y Tecnologia Avanzada, Unidad Legaria, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico); Vega C, H. R., E-mail: yamani.hernandez@cnsns.gob.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    Because the ionizing radiations handling implies a risk for the health, is necessary to take a control of the radiation quantity that the occupationally exposed personnel receives during their daily work with ionizing radiations. For this purpose there are several types of dosimetry and companies that provide the service, but taking advantage that the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (ESFM-IPN) possesses a thermoluminescence equipment (Tl) was decided to develop a personnel dosimetry service for gammas, with thermoluminescent glasses of type TLD-100. First one carries out a glasses characterization, for which the glasses were washed with a methyl alcohol solution, without rubbing them for not damaging them; after the drying, they were subjected to a temperature of 400 C during one hour and later on 100 grades C for two hours in order to erasing them the bottom information that they could have. 200 glasses were exposed to gamma radiation coming from a Cobalt 60 source property of ESFM-IPN in order to selecting the glasses that had a response whose precision was inside a standard deviation. Of this characterization 80 dosimeters were selected that had better response according to the obtained readings as well as of their shine curves. These selected TLD-100 glasses were irradiated to different dose of gamma radiation and with those readings it was built a dose response curve in m R against readings of electric load in pick Coulombs (pCou). The response curve was a direct line or calibration curve. As final exercise some glasses of this selected lot were subjected to irradiation dose not known by the person that carried out the readings and this way was proven that the results were appropriate with the calibration curve. Finally these dosimeters were placed in port-dosimeters and erased guides of dosimeters, of equipment use and dosimeters lecture were also elaborated. (Author)

  9. Dental tissue as a thermoluminescence dosimetry dosimeter

    International Nuclear Information System (INIS)

    Solaimani, F.; Zahmatkesh, M.H.; Akhlaghpoor, Sh.

    2003-01-01

    Background: Thermoluminescence dosimetry is one of the dosimetry procedures used widely as routine and personal dosimeters. In order to extend this kind of dosimeters, dental tissue has been examined and was found promising as a Thermoluminescence Dosimetry dosimeter. Materials and Methods: In this study, 70 health teeth were collected. The only criterion, wich was considered for selection of the teeth, was the healthiness of them regardless of age and gender of the donors. All collected samples were washed and cleaned and milled uniformly. The final powder had a uniform grain size between 100-300 micrometer. The sample was divided into four groups. Group A and B were used for measurement of density and investigation of variation of thermoluminescent characteristics with temperature respectively. Groups C and D were used for investigation of variation of thermoluminescent intensity with dose and fading of this intensity with time. In all cases the results obtained with dental tissue were compared to a standard LiF, thermoluminescence dosimetry dosimeter. Results: It was found that, average density of the dental tissue was 1.570 g/cm 3 , which is comparable to density of LiF, which is 1.612g/cm 3 . It was also concluded that the range of 0-300 d ig C , dental tissue has a simple curve with two specific peaks at 140 and 25 d ig C respectively. The experiment also showed that, the variation of relative intensity versus dose is linear in the range of 0.04-0.1 Gy. The fading rate of dental tissue is higher than LiF but still in the acceptable range (14% per month in compare to 5.2% per month). Conclusion: Dental tissue as a natural dosimeter is comparable with Thermoluminescence Dosimetry and can be used in accidental events with a good approximation

  10. Improvements of RGD3 TLD reader

    International Nuclear Information System (INIS)

    Zhao Jianxing; Wang Jiaqi; Li Yuanfang; Wu Furong; Xiao Wuyun

    1999-01-01

    The author summarized the main features of the improved RGD3 TLD reader. Through a large number of experiments some persuasive data are obtained, which show that an remarkable improvement has been achieved, especially in its stability to the standard illuminates, data dispersivity, and effectiveness to glow curves analysis. Working with the newly developed data processing software, the comprehensive performance of the whole system will be enhanced greatly

  11. Determination of the TLD-100 physical parameters

    International Nuclear Information System (INIS)

    Paucar J, J.; Picon C, C.

    1998-01-01

    This study was realized in the Physics service at the Radiotherapy Department of the National Institute of Neoplasic Diseases in Lima, Peru, it was determined the activation energy, the kinetic order and the frequency factor of the fifth peak of the TLD-100 thermoluminescent spectra using different algorithms. This was carried out in parallel with the implementation and design of a software and an interface associated with the Tl lecturer which allows a semiautomatic control for a thermoluminescent lecturer process. (Author)

  12. Microcomputer control of automated TLD reader

    International Nuclear Information System (INIS)

    Bjarland, Bert.

    1979-10-01

    The interfacing electronics, the control algorithms and the developed programs of a 6800 microcomputer controlled automated TLD reader are described. The TL reading system is implemented with a photomultiplier tube and a charge-to-pulse converter. The gain of the TL reading system is controlled through the use of a temperature compensated LED reference light source. Automatic compensation of PM tube dark current is optional. The short term stability of TL readings is better than 3 %. (author)

  13. Development of a miniaturized watch-type dosimeter using a silicon printed-circuit board

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Sakamaki, Tsuyoshi; Matsumoto, Iwao; Aoyama, Kei; Nakamura, Takashi

    2008-01-01

    The electrical personal dosimeter using a silicon semiconductor sensor has the advantage of real time response and alarm function, which can prevent unexpected over-exposure. We tried to develop a miniaturized watch-type dosimeter by incorporating the silicon semiconductor sensor on a silicon printed-circuit board. Thin film resistors, capacitors and wiring patterns are formed on a downsized printed-circuit board. Electronic parts including transistors are mounted by soldering on the silicon printed-circuit board. The dosimeter is further miniaturized by downsizing the amplifier circuit, the semiconductor radiation sensor, the power supply circuit, setting parts and alarm part. The performance of the developed dosimeter was evaluated with respect to the gamma-ray spectra, angular dependence and linearity to dose equivalent rate, and it was confirmed that this dosimeter has the performance equivalent to a commercially available electrical personal dosimeter. (author)

  14. Next Generation Model 8800 Automatic TLD Reader

    International Nuclear Information System (INIS)

    Velbeck, K.J.; Streetz, K.L.; Rotunda, J.E.

    1999-01-01

    BICRON NE has developed an advanced version of the Model 8800 Automatic TLD Reader. Improvements in the reader include a Windows NT TM -based operating system and a Pentium microprocessor for the host controller, a servo-controlled transport, a VGA display, mouse control, and modular assembly. This high capacity reader will automatically read fourteen hundred TLD Cards in one loading. Up to four elements in a card can be heated without mechanical contact, using hot nitrogen gas. Improvements in performance include an increased throughput rate and more precise card positioning. Operation is simplified through easy-to-read Windows-type screens. Glow curves are displayed graphically along with light intensity, temperature, and channel scaling. Maintenance and diagnostic aids are included for easier troubleshooting. A click of a mouse will command actions that are displayed in easy-to-understand English words. Available options include an internal 90 Sr irradiator, automatic TLD calibration, and two different extremity monitoring modes. Results from testing include reproducibility, reader stability, linearity, detection threshold, residue, primary power supply voltage and frequency, transient voltage, drop testing, and light leakage. (author)

  15. Evaluation of thermoluminescent dosimeters (TLDs) of two different designs for beta particle and low energy photon dosimetry

    International Nuclear Information System (INIS)

    Nugent, K.J.; Ahmed, A.B.; Groer, P.G.

    1992-11-01

    The purpose of this research was to compare the response of the thermoluminescent dosimeters (TLDs) currently used at Martin Marietta Energy Systems with that of a newly designed TLD which is now under consideration. The new TLD consists of a thicker chip in element No. 3 and a thinner, more opaque mylar filter over this same element. The goals were to determine if the new (proposed) TLD would perform significantly different from the old (current) TLD when measuring dose equivalents from beta particles and low energy photons (x-rays) and to find out if changing from the old to the new design would require that modifications be made to the calibration factors currently used in the dose calculation algorithm. To accomplish these objectives, tests were performed using both types of dosimeters placed under identical conditions. Their responses were then compared and analyzed. It was concluded that the new TLDs would allow for the detection of lower levels of radiation and give more precise readouts at very low (i.e., background) levels in addition to the obvious advantages of the new design, such as, a thicker, more durable chip and a more opaque mylar. It was also determined that no adjustments to the calibration factors would be necessary in switching to the new design

  16. UVB DNA dosimeters analyzed by polymerase chain reactors

    International Nuclear Information System (INIS)

    Yoshida, Hiroko; Regan, J.D.; Florida Inst. of Tech., Melbourne, FL

    1997-01-01

    Purified bacteriophage λ DNA was dried on a UV-transparent polymer film and served as a UVB dosimeter for personal and ecological applications. Bacteriophage λ DNA was chosen because it is commercially available and inexpensive, and its entire sequence is known. Each dosimeter contained two sets of DNA sandwiched between UV-transparent polymer films, one exposed to solar radiation (experimental) and another protected from UV radiation by black paper (control). The DNA dosimeter was then analyzed by a polymerase chain reaction (PCR) that amplifies a 500 base pair specific region of λ DNA. Photoinduced damage in DNA blocks polymerase from synthesizing a new strand; therefore, the amount of amplified product in UV-exposed DNA was reduced from that found in control DNA. The dried λ DNA dosimeter is compact, robust, safe and transportable, stable over long storage times and provides the total UVB dose integrated over the exposure time. (author)

  17. Traceability of a panoramic gamma irradiator using different TLD systems as transfer Instruments; Trazabilidad de un irradiador panoramico mediante sistemas de dosimetria TL

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A. M.; Saez, J. C

    1994-07-01

    This work shows the calibration in terms of the new operational radiological quantities Hp (10) and H(10) for different TLD systems (Harshaw TLD-100 and Panasonic UD-002) used in personal and environmental monitoring. The irradiations were performed in the Spanish Reference Laboratory in radiation protection levels, managed by the CIEMAT Metrology of ionizing radiations Unit. With those data, different calibrations of a panoramic gamma irradiator in terms of the radiological quantity for unit of time were established, providing the traceability of the irradiator to the Reference Laboratory using the corresponding TLD systems as transfer instruments. (Author) 9 refs.

  18. Traceability of a panoramic gamma irradiator using different TLD systems as transfer instruments; Trazabilidad de un irradiador panoramico mediante sistemas de dosimetria TL

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A.M.; Saez, J.C.

    1994-08-01

    This work shows the calibration in terms of the new operational radiological quantities Hp(10) and H*(10) for different TLD systems (Harshaw TLD-100 and Panasonic UD-802) used in personal and environmental monitoring. The irradiations were performed in the Spanish Reference Laboratory in radiation protection levels, managed by the CIEMAT Metrology of ionizing radiations Unit. With these data, different calibrations of a panoramic gamma irradiator in terms of the radiological quantity for unit of time were established, providing the traceability of the irradiator to the Reference Laboratory using the corresponding TLD systems as transfer instruments. (Author) 9 refs.

  19. Mensuration of equivalent dose with personal dosemeters and instruments of radiological protection in the new operative magnitudes ICRU, for external fields of beta radiation. Part I. Study of the homogeneity of the response personal dosemeters leaves (cards G-1, TLD-100), in radiation fields of Co{sub 60}; Medicion de dosis equivalente con dosimetros personales e instrumentos de proteccion radiologica en las nuevas magnitudes operativas ICRU, para campos de radiacion beta externos. Parte I. Estudio de la homogeneidad de la respuesta dosimetros personales (tarjetas G-1, TLD-100), en campos de radiacion de Co{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1994-01-15

    A sample of 40 composed personal dosemeters by cards model: G-l, (each card is made up of two TLD-100 crystals encapsulated in teflon), Harshaw trademark; those personal dosemeters present a free window and another with a filter of A1 of 171.7 mg cm{sup -2} of mass thickness.The objective of the work is to select of this sample of 40 personal dosemeters a population with the same stocking and standard deviation. The technique used is that of comparison of stockings, (ANOVA; Variance Analysis, when samples of the same one were had size; and/or GLM, Widespread Lineal Models, when the samples were of different size), by means of the use of those Duncan statistics, SNK, Tukey, Gabriel; the results are validated proving the kindness of adjustment of the experimental data to a Normal distribution by means of the Shapiro-Wilks statistics.The experimental design used consists on a test of two vias: a via is the variable card with two levels, (crystal 1 and 2), the other via is the variable irradiation position with four levels, (LS=left superior, SR= right superior, LI= left Inferior, IR = right inferior). The irradiations carried out in blocks of four personal dosemeters in a gamma radiation beam range of Cobalt 60; carrying out three repetitions of the design. With object of proving the homogeneity of the filter of A1 in those personal dosemeters the experimental design was executed for those cards without personal dosemeters.They were also carried out tests of stockings to the readings of bottom and sensibility of the reader equipment, (Harshaw, model marks 2271), certain that doesn{sup t} exist differences for sequence of reading, but if in the stockings of the sensibility, (they were 4 different populations). The responses of the dosemeters were corrected subtracting him the reading correspondence of bottom and by sensibility of the reader equipment before subjecting them to the tests of stockings mentioned. Of the results of the tests of stockings for the cards with

  20. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Jiménez, Salvador, E-mail: zoid-9861@yahoo.com.mx; Gamboa-deBuen, Isabel, E-mail: gamboa@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 DF (Mexico); Lárraga-Gutiérrez, José Manuel, E-mail: jose.larraga.gtz@gmail.com, E-mail: amanda.garcia.g@gmail.com; García-Garduño, Olivia Amanda, E-mail: jose.larraga.gtz@gmail.com, E-mail: amanda.garcia.g@gmail.com [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur 3877, 14269 DF (Mexico)

    2014-11-07

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (1×1×1 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurología y Neurocirugía (INNN). Thermoluminescent response as a function of dose was determined for doses in water between 0.5 and 3 Gy and two field sizes (2×2 cm2 and 10×10 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.

  1. Evaluation of the uncertainties in the TLD radiosurgery postal dose system

    Science.gov (United States)

    Campos, L. T.; Leite, S. P.; de Almeida, C. E. V.; Magalhães, L. A. G.

    2018-03-01

    Stereotactic radiosurgery is a single-fraction radiation therapy procedure for treating intracranial lesions using a stereotactic apparatus and multiple narrow beams delivered through noncoplanar isocentric arcs. To guarantee a high quality standard, a comprehensive Quality Assurance programme is extremely important to ensure that the measured dose is consistent with the tolerance considered to improve treatment quality. The Radiological Science Laboratory operates a postal audit programme in SRT and SRS. The purpose of the programme is to verify the target localization accuracy in known geometry and the dosimetric conditions of the TPS. The programme works in such a way those thermoluminescence dosimeters, consisting of LiF chips, are sent to the centre where they are to be irradiated to a certain dose. The TLD are then returned, where they are evaluated and the absorbed dose is obtained from TLDs readings. The aim of the present work is estimate the uncertainties in the process of dose determination, using experimental data.

  2. Preparation Of Thermoluminescence Dosimeters For External Radiotherapy Beam Audit In Malaysia

    International Nuclear Information System (INIS)

    Norhayati Abdullah; Siti Sara Deraman; Taiman Kadni; Mohd Taufik Dollah; Norhayati Salleh

    2014-01-01

    The external beam audit is a part of the Quality Assurance Programme (QAP) in radiotherapy that should be carried out to check the accuracy of dose delivered by the radiotherapy treatment units are within the tolerance limit of A ± 5 % as recommended by the International Commission of Radiation Units and Measurements (ICRU) Report No. 24. In this work, thermoluminescence dosimeters (TLD) in powder form were chosen to be used in the dose quality audit for the radiotherapy treatment units in Malaysia. As a preparation, the characterizations of a new batch of TLD-100 powders were studied. The studies include checks for the response of TLD-100 before and after pre-annealing process, reproducibility and linearity of TL signal. Results show that the response of TLD-100 powder after pre-annealing increases by 65 % compared with before pre-annealing process. These TLD-100 powders also provide reliable and consistent readings for the absorbed dose to water within the range of 150 cGy to 250 cGy with the maximum standard uncertainty of 0.554 μC. Finally, the calibration curves for 6 MV and 10 MV photon beams were established. These curves will be used in determining the absorbed dose to water (Dw) from user's irradiated TLDs. The expanded uncertainty (coverage factor k=2) of Dw determination was estimated to be 4.1 %. As a conclusion, these TLD-100 powders are ready to be used as a transfer detector for evaluating the accuracy of user's delivery dose in the radiotherapy beam audit program in Malaysia. (author)

  3. How to diagnose any type of TLD Reader?; Como diagnosticar cualquier tipo de TLD Reader?

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Manuel Lopez; Garcia, Jose A. Tamayo; Gil, Alex Vergara; Lores, Stefan Gutierrez; Acosta, Andry Romero; Villanueva, Gilberto Alonso, E-mail: manolo@cphr.edu.cu, E-mail: jotag@cphr.edu.cu, E-mail: alex@cphr.edu.cu, E-mail: stefan@cphr.edu.cu, E-mail: andy@cphr.edu.cu, E-mail: gilberto@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)

    2013-07-01

    The acquisition of know how of practical experiences obtained in the repair and maintenance of readers TLD RADOS for five years of work and the request by the International Atomic Energy for signing new Research Contracts (CRP), made possible the CRP 13328, in which the specialist is committed in the course of a year, to deliver educational software in order to train personnel associated with the operation of the TLD readers RADOS. Due to the importance of continuous transfer of knowledge for new generations of technicians and specialists who join our laboratories, the idea came when the first interactive CD that grouped 19 videos, divided into three blocks was ready: learning, repair and maintenance; it was suggested to expand the training for any TLD reader. Thus a much more complete than the first version package emerged. 7 cases were subsequently published in an IAEA TECDOC, 1599 were included.

  4. RFID based TLD monitoring system - a prospective development

    International Nuclear Information System (INIS)

    Jeevanram, S.S.; Pawar, S.T.; Mahule, K.N.; Rath, D.P.

    2008-01-01

    Thermo Luminescence Dosimetry (TLD) is an established method of monitoring the radiation dose received by workers in radiation environments. In Radiometallurgy Laboratory, BARC, the TLD movement inside a nuclear facility is completely carried out by a radiation worker. However, there is a chance that the TLDs may get lost in laboratories or some places without the knowledge of the concerned TLD user or health physicist. It may later lead to a false effective dose. Effort is being done to initiate a RFID based TLD monitoring system so that the use of TLD can be acknowledged through a self operating software which can prevent misuse of the detector. A novel method of improving the administrative control through Radio Frequency Identification (RFID) based monitoring to avoid such inadvertent misplacement of TLD, is in progress. This paper discusses the method and techniques through which administrative control can be exercised to reduce the number of such in explainable exposures. (author)

  5. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    International Nuclear Information System (INIS)

    Benton, E.R.; Deme, S.; Apathy, I.

    2006-01-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca 2 SO 4 :Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET ∞ H 2 O ≥ 10 keV/μm, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component ≥ 10 keV/μm measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/μm measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 μGy/day and dose equivalent rates ranging from 340 to 450 μSv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  6. Protection of persons undergoing radiological examinations ...

    African Journals Online (AJOL)

    Protection was in the form of gonad shields, lead apron to shield the unwanted parts during examinations and coning the X-ray field before exposure. The staff had Thermoluminscent Dosimeters (TLD) to monitor dose levels received by such staff every three months. They wore hand gloves, lead aprons and stayed behind ...

  7. SU-G-201-08: Energy Response of Thermoluminescent Microcube Dosimeters in Water for Kilovoltage X-Ray Beams

    Energy Technology Data Exchange (ETDEWEB)

    Di Maso, L; Lawless, M; Culberson, W; DeWerd, L [University of Wisconsin- Madison, Madison, WI (United States)

    2016-06-15

    Purpose: To characterize the energy dependence for TLD-100 microcubes in water at kilovoltage energies. Methods: TLD-100 microcubes with dimensions of (1 × 1 × 1) mm{sup 3} were irradiated with kilovoltage x-rays in a custom-built thin-window liquid water phantom. The TLD-100 microcubes were held in Virtual Water™ probes and aligned at a 2 cm depth in water. Irradiations were performed using the M-series x-ray beams of energies ranging from 50-250 kVp and normalized to a {sup 60}Co beam located at the UWADCL. Simulations using the EGSnrc Monte Carlo Code System were performed to model the x-ray beams, the {sup 60}Co beam, the water phantom and the dosimeters in the phantom. The egs-chamber user code was used to tally the dose to the TLDs and the dose to water. The measurements and calculations were used to determine the intrinsic energy dependence, absorbed-dose energy dependence, and absorbed-dose sensitivity. These values were compared to TLD-100 chips with dimensions of (3.2 × 0.9 × 0.9) mm{sup 3}. Results: The measured TLD-100 microcube response per dose to water among all investigated x-ray energies had a maximum percent difference of 61% relative to {sup 60}Co. The simulated ratio of dose to water to the dose to TLD had a maximum percent difference of 29% relative to {sup 60}Co. The ratio of dose to TLD to the TLD output had a maximum percent difference of 13% relative to {sup 60}Co. The maximum percent difference for the absorbed-dose sensitivity was 15% more than the used value of 1.41. Conclusion: These results confirm that differences in beam quality have a significant effect on TLD response when irradiated in water. These results also indicated a difference in TLD-100 response between microcube and chip geometries. The intrinsic energy dependence and the absorbed-dose energy dependence deviated up to 10% between TLD-100 microcubes and chips.

  8. TLD postal dose quality audit service for Co-60 beams in reference conditions in Cuba

    International Nuclear Information System (INIS)

    Gutierrez Lores, S.; Walwyn Salas, G.; Alonso Villanueva, G.

    2008-01-01

    This report presents the methodology and experience of the Cuban's Secondary Standard Dosimetry Laboratory for the implementation of postal dose quality audits service for Co-60 beams in reference conditions, using TLDs. Under coordinated research project (Contract 10794) were bought (TLD -100) Tl rods type JR 1152F made in China, with dimensions of 6 mm x 1 mm x 1 mm. All of these rods were identified individually with a consecutive number made over one of its sides, using a fine tip of graphite. The method used to determinate the individual sensibility of the TL detectors was: irradiating a group of them, with the same history of irradiation and readout (100 rods approximately), four serial times in the same geometrical conditions, to read them out and to attribute to each of them a sensitivity factor. This sensitivity factor is equal to average for the 4 cycle of irradiation and readout of the quote between the TL readout from dosimeter i and the mean of all values for each cycle. The TLD signal was read using HARSHAW 2000C/B reader. The results obtained in the external verification of the accuracy of the dose determination by the TLD system were performed in cooperation with IAEA Dosimetry Laboratory at Seibersdorf in different years are shown, the results obtained of the quality audits carried out to the different services of radiotherapy of the country are analysed also. The quality audits are an useful tool for the improvement of the accuracy in the dosimetry of clinical beams of radiotherapy with Co-60, contributing this way to the improvement of the life quality to cancer patients of the Cuban system of health. (author)

  9. Measurements of environmental background radiation levels by TLD in and around the Jahangirnagar University Campus

    International Nuclear Information System (INIS)

    Mollah, A.S.; Aleya Begum; Idris Miah, M.; Yunus, Afrozi

    1997-01-01

    The background radiation levels at 30 locations in and around the Jahangirnagar University Campus (JUC) were measured using a LiF(TLD-100) thermoluminescent dosimeter (TLD). In addition, dose rates at three pre-selected locations were measured on a monthly as well as quarterly basis for one year period (July 1993 - June 1994). The dose rate ranges from 1016 to 2167 μSv.y -1 (101.6 to 216.7 mrem.y -1 ) with a mean value of 1595 μSv.y -1 (159.5 mrem.y -1 ). These values are comparable with those of pre- and post-operational values for the reactor site. The estimated average annual effective dose equivalent to the inhabitants at the study areas was found to be 1276 μSv (127.6 mrem). Variation of background radiation level with meteorological parameters, namely, temperature, rainfall, relative humidity and pressure was also studied. The influence on the dose rate of the meteorological parameters was observed. (author)

  10. TLD personnel monitoring dose estimation- extending the upper limit of the dose range

    International Nuclear Information System (INIS)

    Popli, K.L.; Sathian, Deepa; Divakaran, T.; Massand, O.P.

    2001-01-01

    TLD personnel monitoring was introduced in the year 1975 in India and at present nearly 41,000 radiation workers are being monitored by 13 monitoring laboratories all over India. The BARC- TLD being used for personnel monitoring is based on CaSO 4 :Dy embedded in PTFE and semi-automatic TL reader using hot N 2 Gas for heating the dosimeters. This reader has the range to measure γ dose from ten μSv to 3 μSv and x-ray dose form 1 μ Sv to 0.3 Sv due to the higher sensitivity of CaSO 4 : Dy to lower energy photons (20keV-50 keV) generated by diagnostic x-ray units. The x-ray radiation workers are at present nearly 35% of the total radiation workers monitored and this number is expected to grow as more and more number of x-ray workers are covered under this service. The upper limit of the x-ray dose range of the instrument is 0.3 Sv, whereas in the past one year it has been observed that at least 25% of the total overexposures reported in case of x-ray workers have recorded the dose more than 0.3 Sv. This paper presents the technique developed to extend the upper limit of the range from 0.3 Sv to 1 Sv for x-rays and 10 Sv for γ rays

  11. Development and physical characteristics of a novel compound radiophotoluminescent glass dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.-M. [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155, Li-Nong Street Sec. 2, Pei-tou, Taipei 112, Taiwan (China)], E-mail: d49220003@ym.edu.tw; Yang, H.-W. [Department of Material Science and Engineering, National United University, No. 1, Lien Da, Miao-Li 360, Taiwan (China); Huang, David Y.C. [Facutly of Memorial Sloan-Kettering Cancer Center at Mercy Medical Center, 1000 N, Village Avenue, Rockville Centre, NY (United States); Hsu, W.-L.; Lu, C.-C. [Department of Material Science and Engineering, National United University, No. 1, Lien Da, Miao-Li 360, Taiwan (China); Chen, W.-L. [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155, Li-Nong Street Sec. 2, Pei-tou, Taipei 112, Taiwan (China)

    2008-02-15

    The thermoluminescent dosimeters (TLDs) are widely used for measuring the radiation dose. However, the luminescence centers of TLD disappeared by reading process, and then repetition of measurement is impossible. Radiophotoluminescent glass dosimeters (RPLGDs) can be repeatedly read and keep the luminescence centers for a long time. When machine errors occurred, RPLGD data can be re-analyzed to ensure the reliability of measurement results. Our previous study revealed that the RPLGD is one of the most important radiation dose measurement instruments as compared with TLD. Nevertheless, this RPLGD cannot measure the neutron dose. The aims of this study are to develop the novel compound of RPLGD to detect neutrons, and investigate their physical characteristics. In this study, some series self-fabricated glass dosimeters were prepared from reagent powders of AgCl, AgNO{sub 3}, AgPO{sub 3}, Al(OH){sub 3}, NaPO{sub 3}, Na{sub 2}CO{sub 3}, Na{sub 3}PO{sub 4} and P{sub 2}O{sub 5}. Based on this study, we found that the absorption spectra of irradiated glass wavelength maxima typically occurred in the 300-350 nm. Moreover, 0.1 mol% of sliver consist in our newly developed RPLGD showed the highest gamma ray detection sensitivity. The development of a novel compound RPLGD progress will be continuously improved in our laboratory.

  12. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.

    1994-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1993. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  13. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1993-03-01

    This report present the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1992. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program

  14. Postal TLD audit in radiotherapy in the Czech Republic

    International Nuclear Information System (INIS)

    Kapucianova, M.; Ekendah, D. l.; Bulanek, B.

    2014-01-01

    The postal TLD audit in radiotherapy is an independent check of dose applied by radiotherapy centers. Our poster provides basic information on the methodology of dose determination within the TLD audit. An overview of different versions of the TLD audit that are focused on specific techniques in radiotherapy is given. We also present results of so called basic version of the TLD audit that is performed regularly for purposes of the State Office for Nuclear Safety. Moreover, results of intercomparison measurements organized by the IAEA (International Atomic Energy Agency), in which our laboratory takes part every year, are shown.The methodology of dose determination is based on TL measurement of LiF:Mg,Ti powder. The TL dosemeter (TLD) has form of a plastic capsule containing approximately 160 mg of this material. Before the TL reading, the powder of each particular irradiated dosemeter is divided into 9 identical samples by means of an accurate dispenser. The dosemeter response is given as average of TL responses of the 9 samples. The dose absorbed in water is computed from the TLD response by application of calibration factor and correction coefficients for elimination of energy dependence, supra-linearity and fading of the TL material. The evaluation of the TLD audit is based on comparison of the dose measured by the TLD and the dose stated by a radiotherapy center. Relative deviation between these doses is calculated. Several versions of the TLD audit are available. (authors)

  15. A new radiochromic dosimeter film

    Science.gov (United States)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  16. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei

    2017-01-01

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  17. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei, E-mail: sifenni@163.com

    2017-05-15

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  18. Environmental gamma radiation monitoring at Visakhapatnam using thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Swarnkar, M.; Sahu, S.K.; Takale, R.A.; Shetty, P.G.; Pundit, G.G.; Puranik, V.D.

    2012-01-01

    The gamma rays are the most significant part of environmental dose due to its large range and deep penetrating power. The environmental gamma radiation is mainly originated from two sources natural radiation and artificially produced radiation. The natural radiation dose arises from the cosmic radiation (galactic and solar) and from the Earth (terrestrial) surface. In the last few decades there is a growing concern all over the world about radiation and their exposure to population. Thus it is necessary to conduct radiological environmental surveillance. The radiation survey data are useful to establish the natural background gamma radiation levels. Extensive gamma radiation survey was carried out around the surroundings of Vishakhapatnam using Thermoluminescence Dosimeters (TLDs). The CaSO 4 :(0.2 mole %) Dy Teflon TLD discs, specifically designed for environmental gamma radiation monitoring purpose were used. These TLD badge are having very high TL sensitivity, a negligible fading rate and a stable TL response. TLDs were deployed on quarterly basis for two years to obtain the cumulative gamma background radiation levels in the study area. The radiological survey was also carried out by using a calibrated radiation survey meter. The annual dose rates were computed from quarterly values actually found and normalised to 365 days. The environmental gamma radiation levels around Vishakhapatnam were found to be in the range of 0.79 mGy/y to 1.86 mGy/y. It is clearly seen from the results that location to location there is a large variation in external gamma radiation levels. During the cycle of the TLD survey, spot readings of the background radiation levels were taken, both while placing the TLDs and while removing them. The instantaneous dose rates measured using survey meter, are also following the large variation as found in TLDs. It varies between 110 nGy/hr to 210 nGy/hr. (author)

  19. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Lin, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Chen, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Tsai, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Healthy Aging Research Center, Chang Gung University, Linkou, Taoyuan, Taiwan (China)

    2015-06-15

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  20. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    International Nuclear Information System (INIS)

    Chen, Y; Lin, Y; Chen, H; Tsai, H

    2015-01-01

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ( 6 LiF: Mg, Ti) and TLD-700 ( 7 LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  1. Reproducibility study of TLD-100 micro-cubes at radiotherapy dose level

    International Nuclear Information System (INIS)

    Rosa, Luiz Antonio R. da; Regulla, Dieter F.; Fill, Ute A.

    1999-01-01

    The precision of the thermoluminescent response of Harshaw micro-cube dosimeters (TLD-100), evaluated in both Harshaw thermoluminescent readers 5500 and 3500, for 1 Gy dose value, was investigated. The mean reproducibility for micro-cubes, pre-readout annealed at 100 deg. C for 15 min, evaluated with the manual planchet reader 3500, is 0.61% (1 standard deviation). When micro-cubes are evaluated with the automated hot-gas reader 5500, reproducibility values are undoubtedly worse, mean reproducibility for numerically stabilised dosimeters being equal to 3.27% (1 standard deviation). These results indicate that the reader model 5500, or, at least, the instrument used for the present measurements, is not adequate for micro-cube evaluation, if precise and accurate dosimetry is required. The difference in precision is apparently due to geometry inconsistencies in the orientation of the imperfect micro-cube faces during readout, requiring careful and manual reproducible arrangement of the selected micro-cube faces in contact with the manual reader planchet

  2. Colorimetric gas dosimeter

    International Nuclear Information System (INIS)

    McConnaughey, P.W.; McKee, E.S.

    1984-01-01

    A gas dosimeter comprises a stack of porous sheets, impregnated with a reagent that changes color on contact with the gas to be determined, contained in a housing which has an opening to expose one end of the stack to the atmosphere to be tested. The gas to be determined penetrates by diffusion the layers of porous sheets, causing the sheets in the stack to change color sequentially from the end of the stack exposed to the atmosphere. The degree of penetration through the layers of porous sheets is a function of dosage exposure. The housing may be transparent with each superposed sheet in the stack being larger than the adjacent underlying sheet, so that each sheet is visible through the housing endwall

  3. Experience of TLD personnel monitoring laboratory

    International Nuclear Information System (INIS)

    Jakhete, Prashant

    2002-01-01

    Full text: Renentech Laboratories is the first Private Enterprise in India to have been chosen to provide Personnel radiation monitoring services to radiation workers at different parts of the country. Since 1992 the Company has been manufacturing TLD phosphor powder of requisite quality and from 1995 commenced the production of TLD cards for radiation monitoring. After getting the necessary approval from the competent authorities in the country, the company undertook a rigorous quality assurance programme and received the accreditation in 1999 to carry out the personnel monitoring of radiation. Since then the trained staff of the Company is covering 1200 institutions in 16 states where radiation is being used. This translates to processing of 60,000 Till cards annually, the maximum limit permitted by BARC. Processing of exposure data is done strictly according well-laid guidelines. Any cases of overexposure are immediately referred to Calibration and Dose Record Section of BARC to meet the regulatory requirements. Necessary procedural guidelines are followed to handle such cases. In this lecture, learning, operation and implementation experience of a typical Private Company in a task, which, hitherto had been regarded as exclusive responsibility of state owned institution, is enumerated

  4. The intelligence of dosimeter for ionization radiation

    International Nuclear Information System (INIS)

    He Jinglun

    1992-01-01

    The connection of dosimeter with microcomputer system is described, which has the functions of sampling, data handling, display and printing dose values in legal units of measurement. The accuracy and speed of measurement for dosimeters are also raised, thereby the dosimeters are made to have intelligence and the application range of dosimeter is enlarged

  5. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  6. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1991-04-01

    This report presents the results of the NRC [Nuclear Regulatory Commission] Direct Radiation Monitoring Network for the fourth quarter of 1990. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs

  7. Combination TLD/TED dose assessment

    International Nuclear Information System (INIS)

    Parkhurst, M.A.

    1992-11-01

    During the early 1980s, an appraisal of dosimetry programs at US Department of Energy (DOE) facilities identified a significant weakness in dose assessment in fast neutron environments. Basing neutron dose equivalent on thermoluminescence dosimeters (TLDS) was not entirely satisfactory for environments that had not been well characterized. In most operational situations, the dosimeters overrespond to neutrons, and this overresponse could be further exaggerated with changes in the neutron quality factor (Q). Because TLDs are energy dependent with an excellent response to thermal and low-energy neutrons but a weak response to fast neutrons, calibrating the dosimetry system to account for mixed and moderated neutron energy fields is a difficult and seldom satisfactory exercise. To increase the detection of fast neutrons and help improve the accuracy of dose equivalent determinations, a combination dosimeter was developed using TLDs to detect thermal and low-energy neutrons and a track-etch detector (TED) to detect fast neutrons. By combining the albedo energy response function of the TLDs with the track detector elements, the dosimeter can nearly match the fluence-to-dose equivalent conversion curve. The polymer CR-39 has neutron detection characteristics superior to other materials tested. The CR-39 track detector is beta and gamma insensitive and does not require backscatter (albedo) from the body to detect the exposure. As part of DOE's Personnel Neutron and Upgrade Program, we have been developing a R-39 track detector over the past decade to address detection and measurement of fast neutrons. Using CR-39 TEDs in combination with TLDs will now allow us to detect the wide spectrum of occupational neutron energies and assign dose equivalents much more confidently

  8. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Huang, Chih-Jen [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Hsiao-Yun [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chang, Gia-Hsin [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Tsao, Min-Jen [Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China)

    2016-10-01

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skin dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT.

  9. Establishing the standard X-ray beam qualities for calibration of dosimeters used in diagnostic radiology following IAEA-TRS457

    International Nuclear Information System (INIS)

    Duong Van Trieu; Ho Quang Tuan; Bui Duc Ky

    2014-01-01

    The determination of the patient dose needs to provide a reference dose for the patient that reference dose levels to assess the relative risk during X- ray diagnostic. This mission, We had established a number of standard beam qualities to perform calibrations of diagnostic dosimeters and methods of measuring patient dose in X-ray diagnostic. At radiation dosimetry room, we had establish RQR2, RQR3, RQR4, RQR5, RQR6 beam qualities based on IAEA-TRS457 documentation with homogeneity coefficient (h) for each beam quality in the range 0.7 - 0.8, and haft-value layers HVL1, HVL2 of experimental and IAEA is different about 10%. Established calibration method for diagnostic dosimeters as KAP meters, UNFORS dosimeters, and the TLD dosimeters, practical measurements of entrance surface air kerma on Shimadzu X-ray machines used phantom. (author)

  10. Evaluation of the breast plan using the TLD and MOSFET for the skin dose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Myeong; Kim, Young Bum; Bak, Sang Yun; Lee, Sang Rok; Jeong, Se Young [Dept. of Radiation Oncology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-12-15

    The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% - 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner' was highest in the MOSFET. Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay

  11. Evaluation of the breast plan using the TLD and MOSFET for the skin dose

    International Nuclear Information System (INIS)

    Kim, Seon Myeong; Kim, Young Bum; Bak, Sang Yun; Lee, Sang Rok; Jeong, Se Young

    2015-01-01

    The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% - 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner' was highest in the MOSFET. Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay

  12. Metal filters for the compensation of photon energy dependence of the response of CaSO4: Dy - Teflon TLD Discs

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Bhatt, R.C.

    1979-01-01

    Metal filters of aluminium, stainless steel, copper, cadmium, tin and lead were studied for compensation of the photon energy dependence of the response of CaSO 4 : Dy Teflon TLD Discs. It was found that metals such as cadmium and tin (which are normally used for this purpose) with their K absorption edges around 30 keV, are poor compensators of photon energy dependence. However, if either cadmium or tin is used in combination with either copper or stainless steel (with the lower Z filter nearer to the TLD dosimeter disc) a better compensation of photon energy dependence is achieved. Consequently, for personnel monitoring of X and gamma radiations, a TLD badge with CaSO 4 : Dy Teflon TLD discs and two sets of combination filters has been recommended. In the range of 27 keV -1.25 MeV this badge offers a photon energy response which varies within +-15%. This is a considerable improvement on the corresponding limits of +-65% on using a single filter. (orig.)

  13. Heater design for reading radiation dosimeters

    International Nuclear Information System (INIS)

    Seidel, J.G.; Felice, P.E.

    1982-01-01

    The nichrome heating element of a conventional dosimeter reading apparatus has been redesigned to include a flat-bottomed depression big enough to hold a thermoluminescent dosimeter. A thin glass plate is positioned in the recess on top of the dosimeter to retain it in the recess during the heating and reading process. This technique of securing the dosimeter in contact with the heating element avoids physical scratching or damage to the dosimeter

  14. Wallac automatic alarm dosimeter type RAD21

    International Nuclear Information System (INIS)

    Burgess, P. H.; Iles, W.J.

    1980-02-01

    The Automatic Alarm Dosimeter type RAD 21 is a batterypowered personal dosemeter and exposure rate alarm monitor, designed to be worn on the body, covering an exposure range from 0.1 to 999.9 mR and has an audible alarm which can be pre-set over the range 1 mR h -1 to 250 mR h -1 . The instrument is designed to measure x- and γ radiation over the energy range 50 keV to 3 MeV. The facilities and controls, the radiation, electrical, environmental and mechanical characteristics, and the manual, have been evaluated. (U.K.)

  15. LOW-COST PERSONNEL DOSIMETER.

    Science.gov (United States)

    specification was achieved by simplifying and improving the basic Bendix dosimeter design, using plastics for component parts, minimizing direct labor, and making the instrument suitable for automated processing and assembly. (Author)

  16. An Emergency Dosimeter for Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J; Nilsson, R

    1960-05-15

    A neutron dosimeter suitable for single emergency exposures is described. The dosimeter is furnished with detectors for thermal, epi-thermal and fast neutrons. This means that three of the constants by which the spectrum of the incident neutron flux is approximated, can be determined. The dose calculated from these approximated spectra is compared to the dose from spectra obtained in different standard spectra of types which may be expected in a radiation accident.

  17. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  18. Preparation of CaF{sub 2}:Dy chips as thermoluminescent dosimeters for environmental measurements using a Harshaw 2080 TL picoprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Leite, Barbara Eliodora [Centro Tecnologico da Marinha em Sao Paulo (CTMSP/CEA), Ipero, SP (Brazil). Centro Experimental Aramar; Nunes, Maira Goes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the necessary steps to prepare the dosimeters for application in environmental measurements. The material used was calcium fluoride doped with dysprosium (CaF{sub 2}: Dy), commercially supplied by Harshaw as TLD-200. It were carried out four initial irradiations (Co-60 source gamma - 0.8 mGy from Dosimetric Material Laboratory LMD/GMP) in a new batch of TLD-200 dosimeters to achieve a stable response and four more irradiations to separate them, according to their response range. A batch of pre-selected 197 dosimeters from 263 was used to finally obtained two batches of 99 (9.2{+-}0.7nC) and 93 (10.5{+-}0.6nC) dosimeters. A calibration curve was prepared relating the thermoluminescent response of the phosphor and the radiation exposure (0 to 600{mu}Gy), obtained by irradiation with Co-60 source of 4P geometry and measurements using a Harshaw Picoprocessor 2080 TL equipment. Repeatability of the measurements was determined for 100{mu}Gy (CV= 5.09%) and 300{mu}Gy (CV=4.18%) and the minimum detectable dose was evaluated as 2{mu}Gy. The fading was determined by irradiating the dosimeters with 0.8 mGy and reading then after 1, 5, 7, 8, 15, 29, 50, 70 and 90 days. (author)

  19. Determination of the TLD-100 physical parameters; Determinacion de parametros fisicos del TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Paucar J, J.; Picon C, C. [Instituto Nacional de Enfermedades Neoplasicas. INEN. Av. Angamos Este 2520, Lima 34 (Peru)

    1998-12-31

    This study was realized in the Physics service at the Radiotherapy Department of the National Institute of Neoplasic Diseases in Lima, Peru, it was determined the activation energy, the kinetic order and the frequency factor of the fifth peak of the TLD-100 thermoluminescent spectra using different algorithms. This was carried out in parallel with the implementation and design of a software and an interface associated with the Tl lecturer which allows a semiautomatic control for a thermoluminescent lecturer process. (Author)

  20. New advanced TLD system for space dosimetry

    International Nuclear Information System (INIS)

    Feher, I.; Szabo, B.; Vagvoelgyi, J.; Deme, S.; Szabo, P.P.; Csoeke, A.

    1983-10-01

    A new version of the TLD reader type PILLE has been developed for space applications. The earlier compact and portable device could also be used for measurements during space flights but its range was limited. A new bulb detector with easier handling has also been developed with an upper limit of linear dose response of 10 Gy. The range of this new and more versatile reader, NA206S, (1μGy-10 Gy) is 3 orders of magnitude higher than that of the earlier system; it also has increased sensitivity and decreased mass. It can be used not only in space applications but also for environmental monitoring or even in accident dosimetry. The measured dose value is displayed on a four-digit display with automatic range switch. Another new version, the NA206E, has been developed for environmental dosimetry; it can be operated from a battery or from the mains. (author)

  1. The IAEA/WHO TLD postal programme for radiotherapy hospitals

    International Nuclear Information System (INIS)

    Izewska, J.; Andreo, P.

    2000-01-01

    Since 1969 the International Atomic Energy Agency (IAEA), together with the World Health Organization (WHO), has performed postal TLD audits to verify the calibration of radiotherapy beams in developing countries. A number of changes have recently been implemented to improve the efficiency of the IAEA/WHO TLD programme. The IAEA has increased the number of participants and reduced significantly the total turn-around time to provide results to the hospitals within the shortest possible time following the TLD irradiations. The IAEA has established a regular follow-up programme for hospitals with results outside acceptance limits of ±5%. The IAEA has, over 30 years, verified the calibration of more than 3300 clinical photon beams at approximately 1000 radiotherapy hospitals. Only 65% of those hospitals who receive TLDs for the first time have results within the acceptance limits, while more than 80% of the users that have benefited from a previous TLD audit are successful. The experience of the IAEA in TLD audits has been transferred to the national level. The IAEA offers a standardized TLD methodology, provides Guidelines and gives technical back-up to the national TLD networks. The unsatisfactory status of the dosimetry for radiotherapy, as noted in the past, is gradually improving however, the dosimetry practices in many hospitals in developing countries need to be revised in order to reach adequate conformity to hospitals that perform modern radiotherapy in Europe, USA and Australia. (author)

  2. Digital neutron dosimeter

    International Nuclear Information System (INIS)

    Ramondetta, P.W.; Groeber, E.O.Jr.

    1978-01-01

    Design features for a portable battery-operated neutron dosimeter are described. The system employs a 50-mil PIN detector diode, whose forward voltage increases with exposure to fast neutrons. Because this change is permanent and cumulative, the system is able to integrate small doses (from 0 to 1000 rad) over long periods of time. The system is temperature compensated over its operating range of -40 C to +52C. Display accuracies of +-20 rad for readings below 100 rad and +-20% for readings above 100 rad are maintained throughout the range. Temperature correction is performed digitally after an initial analog-to-digital conversion of both the forward diode voltage and the ambient temperature. System flexibility is promoted with the use of a replaceable ROM for the final voltage-to-dose conversion table. This digital approach to temperature compensation, combined with the extensive use of CMOS circuitry, suggests the use of custom large-scale integration as a means of further reducing system weight and size. This possibility, as well as others, is discussed as a means of reducing system size. Test and evaluation results are also included. (author)

  3. The Calvet calorimetric dosimeter

    International Nuclear Information System (INIS)

    Puig, J.R.; Romano, F.

    1965-01-01

    This report describes a dosimeter based on the conduction calorimetry principle, and designed to operate in swimming-pool type nuclear reactors. The properties of the apparatus are as follows: 1 - the measurement is independent of the specific heat of the calorimetric elements; 2 - each calorimetric element is fitted with an electrical calibration; 3 - the apparatus is made up of two independent calorimetric elements; 4 - the nature of the calorimetric elements makes it possible to analyse the radiation received; 5 - the measurable intensities of the absorbed radiation vary from 4 to 4000 M/rads per hour; 6 - the sensitive part of the apparatus is fitted inside a cylinder 5 cm high and 2 cm in diameter. One pre-production unit made up of graphite and beryllium cores has been tried out in the reactor Siloe with radiation intensities of about 1 to 2 watts per gram. It absorbed an accumulated dose of 1.2*1O 12 rads without any weaknesses appearing. (authors) [fr

  4. Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer

    International Nuclear Information System (INIS)

    Hsi, Wen C.; Fagundes, Marcio; Zeidan, Omar; Hug, Eugen; Schreuder, Niek

    2013-01-01

    Purpose: To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. Methods: TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markers were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. Results: A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and −10% of the planning dose with a mean of −2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between −10% and −20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10–20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Conclusions: Our results show that image-guided TLD

  5. TLD audit in radiotherapy in the Czech Republic

    International Nuclear Information System (INIS)

    Kroutilikova, D.; Zackova, H.; Judas, L.

    1998-01-01

    National Radiation Protection Institute in Prague organizes the TLD audit. The aim of the TLD postal audit is to provide control of the clinical dosimetry in the Czech Republic for purposes of state supervision in radiotherapy, to investigate and to reduce uncertainties involved in the measurements of absorbed dose and to improve consistency in dose determination in the regional radiotherapy centers. TLD audit covers absorbed dose measurements under reference conditions for 60 Co and 137 Cs beams, high-energy X-ray and electron beams of of linear accelerators and betatrons. The thermo-luminescence dosemeters are sent regularly to all radiotherapy centers. Absorbed dose measures by the TLD is compared to absorbed dose stated by radiotherapy center. Encapsulated LiF:Mg, Ti powder is used for the measurement. Deviation of 3% between stated and TLD measured dose is considered for photons and ±5% for electron beams. First TLD audit was started in 1997. A total of 135 beams was checked. There were found seven major deviations (more than ±6%), which were very carefully investigated. Medical Physicists from these departments reported a set-up mistake. However, at most of those hospitals with major deviations, an in situ audit in details was made soon after TLD audit. There were found discrepancies of clinical dosimetry but also bad technical state of some of the irradiation units. In 1998, second course TLD audit was started. No major deviation was found. Regular TLD audit seems to be a good way to eliminate big mistakes in the basic clinical dosimetry. Repeated audit in the regional radiotherapy centers that had major deviation during the first audit exhibited improvement of their dosimetry. It is intended to broaden the method and to control also beam parameters by means of a multi-purpose phantom. (authors)

  6. Area monitoring dosimeter program for the Pacific Northwest National Laboratory: Results for CY 1997

    International Nuclear Information System (INIS)

    Bivins, S.R.; Stoetzel, G.A.

    1998-07-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the US Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)--(3) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years (CY) 1993--1996 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 93 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during CY 1997. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusions that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas

  7. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 1998

    International Nuclear Information System (INIS)

    GA Stoetzel; SR Bivins

    1999-01-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-1997 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 97 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during calendar year 1998. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas

  8. Thyroid dose measurement in patients undergoing to digital orthopantomography using optical stimulation dosimeters

    International Nuclear Information System (INIS)

    Gutierrez M, J. G.; Lopez V, A.; Rivera M, T.; Avalos P, L. Y.

    2016-10-01

    In this paper we present the study of the thyroid equivalent dose in 300 patients undergoing to digital orthopantomography for dental treatment purposes using optical stimulation dosimeters (OSL) as in-vivo dosimeters, in order to verify if this is within acceptable parameters to prevent stochastic risks and to evaluate the possible risks caused by the technique used for this type of study (66 kv, 5 m A, 14.1 s). Three OSL dosimeters were used per patient, which were placed by the physician on the skin above the thyroid gland (using anatomical references and palpation); the information of the patients was divided by neck size and sex, finding a slight increase in the equivalent dose for female and small size patient, this combination being the group that was submitted to a higher dose. The results obtained were compared with similar studies performed on anthropomorphic mannequins with TLD dosimeters obtaining lower results. The equivalent dose found even though is below the threshold stochastic damage must be motorized for radiological protection and registration purposes. (Author)

  9. Measurement of annual dose on porcelain using surface TLD method

    International Nuclear Information System (INIS)

    Xia Junding; Wang Weida; Leung, P.L.

    2001-01-01

    In order to improve accuracy of TL authentication test for porcelain, a method of measurement of annual dose using ultrathin (CaSO 4 :Tm) dosage layer on porcelain was studied. The TLD was placed on the part of porcelain without glaze. A comparison of measurement of annual dose for surface TLD, inside TLD and alpha counting on porcelain was made. The results show that this technique is suitable for measuring annual dose and improving accuracy of TL authentication test for both porcelain and pottery

  10. Numerical simulation of a TLD pulsed laser-heating scheme for determination of shallow dose and deep dose in low-LET radiation fields

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Han, S.; Wagner, E.C.; Samei, E.; Wang, C.-K.C.

    2000-01-01

    A new method is described to determine the depth-dose distribution in low-LET radiation fields using a thick thermoluminescent dosimeter (TLD) with a pulsed laser-heating scheme to obtain TL glow output. The computational simulation entails heat conduction and glow curve production processes. An iterative algorithm is used to obtain the dose distribution in the detector. The simulation results indicate that the method can predict the shallow and deep dose in various radiation fields with relative errors less than 20%

  11. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lye, Jessica, E-mail: jessica.lye@arpansa.gov.au; Dunn, Leon; Kenny, John; Alves, Andrew [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia); Lehmann, Joerg; Williams, Ivan [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and School of Applied Science, RMIT University, Melbourne 3000 (Australia); Kron, Tomas [School of Applied Science, RMIT University, Melbourne 3000, Australia and Peter MacCallum Cancer Centre, Melbourne 3008 (Australia); Oliver, Chris; Butler, Duncan; Johnston, Peter [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia); Franich, Rick [School of Applied Science, RMIT University, Melbourne 3000 (Australia)

    2014-03-15

    Purpose: On 1 July 2012, the Australian Clinical Dosimetry Service (ACDS) released its Optically Stimulated Luminescent Dosimeter (OSLD) Level I audit, replacing the previous TLD based audit. The aim of this work is to present the results from this new service and the complete uncertainty analysis on which the audit tolerances are based. Methods: The audit release was preceded by a rigorous evaluation of the InLight® nanoDot OSLD system from Landauer (Landauer, Inc., Glenwood, IL). Energy dependence, signal fading from multiple irradiations, batch variation, reader variation, and dose response factors were identified and quantified for each individual OSLD. The detectors are mailed to the facility in small PMMA blocks, based on the design of the existing Radiological Physics Centre audit. Modeling and measurement were used to determine a factor that could convert the dose measured in the PMMA block, to dose in water for the facility's reference conditions. This factor is dependent on the beam spectrum. The TPR{sub 20,10} was used as the beam quality index to determine the specific block factor for a beam being audited. The audit tolerance was defined using a rigorous uncertainty calculation. The audit outcome is then determined using a scientifically based two tiered action level approach. Audit outcomes within two standard deviations were defined as Pass (Optimal Level), within three standard deviations as Pass (Action Level), and outside of three standard deviations the outcome is Fail (Out of Tolerance). Results: To-date the ACDS has audited 108 photon beams with TLD and 162 photon beams with OSLD. The TLD audit results had an average deviation from ACDS of 0.0% and a standard deviation of 1.8%. The OSLD audit results had an average deviation of −0.2% and a standard deviation of 1.4%. The relative combined standard uncertainty was calculated to be 1.3% (1σ). Pass (Optimal Level) was reduced to ≤2.6% (2σ), and Fail (Out of Tolerance) was reduced to >3

  12. Electronic dosimeter characteristics and new developments

    International Nuclear Information System (INIS)

    Thompson, I.M.G.

    1999-01-01

    Electronic dosimeters are very much more versatile than existing passive dosimeters such as TLDs and film badges which have previously been the only type of dosimeters approved by national authorities for the legal measurement of doses to occupationally exposed workers. Requirements for the specifications and testing of electronic dosimeters are given in the standards produced by the International Electrotechnical Commission Working Group IEC SC45B/B8. A description is given of these standards and the use of electronic dosimeters as legal dosimeters is discussed. (author)

  13. Study and characterization of dosimeter LiF:Mg,Cu,P for using in aeronautical dosimetry; Estudo e caracterizacao do dosimetro de LiF:Mg,Cu,P para utilizacao em dosimetria aeronautica

    Energy Technology Data Exchange (ETDEWEB)

    Flavia, Hanna, E-mail: hannasantana.f@gmail.com [Universidade Paulista (UNIP), Sao Jose dos Campos, SP (Brazil); Federico, Claudio; Lelis, Odair; Pereira, Heloisa; Pereira, Marlon, E-mail: claudiofederico@ieav.cta.br [Instituto de Estudos Avancados (EFA-A/IEAV), Sao Jose dos Campos, SP (Brazil). Div. de Fisica Aplicada

    2014-07-01

    The effects of cosmic ionizing radiation incidents in aircraft components and crews has been a source of concern and motivated increasingly studies and improvements in the area. The low dose rates involved in this radiation field in aircraft flight altitudes imply Dosimetric necessity of using materials with high efficiency of detection, to enable studies lower cumulative doses resulting in shorter routes or lower altitude. The choice of thermoluminescent dosimeters LiF: Mg, Cu, P was done by having a detection efficiency of about fifteen times higher than its predecessor (LiF: Mg, Ti), and therefore, applied in very low doses dosimetry, and environmental dosimetry . The implementation of the use of pair dosimetric TLD-600H and 700H-TLD will serve as support for testing and studies on the effects of low doses of cosmic radiation in environmental dosimetry applied in the aviation environment in the usual flight altitudes. In this paper are presented the results of development of a methodology for dosimetry low doses of gamma radiation and neutrons using the pair dosimetric TLD-600H and 700H-TLD. The results demonstrate a sensitivity of dosimeters well above the dosimeters LiF: Mg, Ti confirming its suitability for dosimetry of low doses.

  14. Passive dosimeters other than film and TLDs [thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1986-01-01

    This presentation will describe CR-39 plastic as a personnel neutron dosimeter. Recent research at LLNL and elsewhere has resulted in the development of a dosimetry system that is superior to any personnel neutron dosimeter previously available. The author describes the features of the dosimetry system and the new etching procedures and techniques in detail. Most of the research was done at the LLNL and has been supported as a part of the DOE Neutron Dosimetry Upgrade Program. 10 refs., 4 figs., 1 tab

  15. TLD audit in the radiotherapy at the national level

    International Nuclear Information System (INIS)

    Kroutilikova, D.; Zackova, H.; Novotny, J.; Pridal, I.

    1998-01-01

    Czech legislation requires that all radiotherapy departments undertake quality independent audit annually. An authorized auditing group was created as a body of the National Radiation Protection Institute. It has been decided that TLD postal audit combined with film dosimetry would alternate with in situ audit every two or three years. For this, a local TLD measuring network has been established. The methods applied in the TLD audit were taken from EROPAQ and EURAQA projects in 1996 and modified to comply with Czech local circumstances. First TLD audits were started in February 1997. During the February to September period, 60 beams were checked: 26 Co-60 beams, 10 Cs-137 beams, 15 X-ray beams, and 9 electron beams. Details of the measurements and their results are given. (P.A.)

  16. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  17. Calibration of personal dosimeters: Quantities and terminology

    International Nuclear Information System (INIS)

    Aleinikov, V.E.

    1999-01-01

    The numerical results obtained in the interpretation of individual monitoring of external radiation depend not only on the accurate calibration of the radiation measurement instruments involved, but also on the definition of the quantities in term of which these instruments are calibrated The absence of uniformity in terminology not only makes it difficult to understand properly the scientific and technical literature but can also lead to incorrect interpretation of particular concepts and recommendations. In this paper, brief consideration is given to definition of radiation quantities and terminology used in calibration procedures. (author)

  18. Measuring thermo-luminescence efficiency of TLD-2000 detectors to different energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei Min; Chen, Bao Wei; Han, Yi; Yang, Zhong Jian [China Institute for Radiation Protection, Taiyuan (China)

    2016-06-15

    As an important detecting device, TLD is a widely used in the radiation monitoring. It is essential for us to study the property of detecting element. The aim of this study is to calculate the thermo-luminescence efficiency of TL elements. A batch of thermo-luminescence elements were irradiated by the filtered X-ray beams of average energies in the range 40-200 kVp, 662 keV {sup 137}Cs gamma rays and then the amounts of lights were measured by the TL reader. The deposition energies in elements were calculated by theory formula and Monte Carlo simulation. The unit absorbed dose in elements by photons with different energies corresponding to the amounts of lights was calculated, which is called the thermo luminescent efficiency (η(E)). Because of the amounts of lights can be calculated by the absorbed dose in elements multiply η(E), the η(E) can be calculated by the experimental data (the amounts of lights) divided by absorbed dose. The deviation of simulation results compared with theoretical calculation results were less than 5%, so the absorbed dose in elements was calculated by simulation results in here. The change range of η(E) value, relative to 662 keV {sup 137}Cs gamma rays, is about 30% in the energy range of 33 keV to 662 keV, is in accordance by the comparison with relevant foreign literatures. The η(E) values can be used for updating the amounts of lights that are got by the direct ratio assumed relations with deposition energy in TL elements, which can largely reduce the error of calculation results of the amounts of lights. These data can be used for the design of individual dosimeter which used TLD-2000 thermo-luminescence elements, also have a certain reference value for manufacturer to improve the energy-response performance of TL elements by formulation adjustment.

  19. CVD diamond detectors and dosimeters

    International Nuclear Information System (INIS)

    Manfredotti, C.; Fizzotti, F.; LoGiudice, A.; Paolini, C.; Oliviero, P.; Vittone, E.; Torino Univ., Torino

    2002-01-01

    Natural diamond, because of its well-known properties of tissue-equivalence, has recorded a wide spreading use in radiotherapy planning with electron linear accelerators. Artificial diamond dosimeters, as obtained by Chemical Vapour Deposition (CVD) could be capable to offer the same performances and they can be prepared in different volumes and shapes. The dosimeter sensitivity per unit volume may be easily proved to be better than standard ionization microchamber. We have prepared in our laboratory CVD diamond microchamber (diamond tips) in emispherical shape with an external diameter of 200 μm, which can be used both as X-ray beam profilometers and as microdosimeters for small field applications like stereotaxy and also for in vivo applications. These dosimeters, which are obtained on a wire substrate that could be either metallic or SiC or even graphite, display good performances also as ion or synchrotron X-rays detectors

  20. Neutron dosimeter utilizing CR-39

    International Nuclear Information System (INIS)

    Souza, H.V.C. de.

    1991-05-01

    A personnel neutron dosimeter has been developed with discretization in a wide range of energies of real interest, utilizing the CR-39 polymer, to detect recoil protons in the fast range, and alpha particles in the thermal and epithermal ranges, with possibility to be disposed in the IRD/CNEN's conventional film badge suport. They are presented, abstractly, the difficulties and importance of the neutron dosimetry, beyond the general objectives that motivated this work execution. The details of the materials utilized in the dosimeter confection, and the experimental methodology employed to obtain the performance curves are presented. The results about linearity response of the dosimeter with respect to equivalent dose, in a wide range of doses, and about the verified angular dependence are analysed. (author)

  1. Dose measurements using thermoluminescent dosimeters and DoseCal software at two paediatric hospitals in Rio de Janeiro

    International Nuclear Information System (INIS)

    Mohamadain, K.E.M.; Azevedo, A.C.P.; Rosa, L.A.R. da; Guebel, M.R.N.; Boechat, M.C.B.

    2003-01-01

    A dosimetric survey in paediatric radiology is currently being carried out at the paediatric units of two large hospitals in Rio de Janeiro city: IPPMG (Instituto de Pediatria e Puericultura Martagao Gesteira, University Hospital of Federal University of Rio de Janeiro) and IFF (Instituto Fernandes Figueira, FIOCRUZ). Chest X-ray examination doses for AP, PA and LAT projections of paediatric patients have been obtained with thermoluminescent dosimeters (TLDs) and with use of a software package DoseCal. In IPPMG and IFF 100 patients have been evaluated with the use of the TLDs and another group of 100 patients with the DoseCal software. The aim of this work was to estimate the entrance skin dose (ESD) for frontal, back and lateral chest X-rays exposure of paediatric patients. For ESD evaluation, three different TL dosimeters have been used, namely LIF:Mg, Ti (TLD100), CaSO 4 :Dy and LiF:Mg, Cu, P (TLD100H). The age intervals considered were 0-1, 1-5, 5-10 and 10-15 years. The results obtained with all dosimeters are similar, and it is in good agreement with the DoseCal software, especially for AP and PA projections. However, some larger discrepancies are presented for the LAT projection

  2. X-ray quality control using TLD-100

    International Nuclear Information System (INIS)

    Rojas S, D. A.; Garcia V, E.; Azorin N, J.; Gaona, E.

    2017-10-01

    The use of thermoluminescent dosimeters in the area of medical physics and especially in radiology is of great importance to guarantee the quality of a given study, for this reason the need to verify by means of measurements for quality control in X-rays using thermoluminescent dosimeters of LiF:Mg,Ti was raised. For this, measurements of air Kerma, beam efficiency (reproducibility and linearity) and determination of the hemi-reductive layer were carried out, where previously the dosimeters were used, the graphs of the linear equation were used to obtain the absorbed dose of each dosimeter and thus the results of the absorbed dose calculated analytically against the value estimated by an electronic dosimeter were compared; it was found that the values of the absorbed dose are quantities similar to those stipulated by the electronic dosimeter. These measurements made it possible to verify the quality of the equipment that was used in the comparison. (Author)

  3. Dosimetric characteristics of a TLD dosemeter with extremities; Caracteristicas dosimetricas de un dosimetro TLD de extremidades

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Diaz B, E.; Lien V, R. [Centro de Proteccion e Higiene de las Radiaciones, CPHR, Apdo.Postal 6195, Habana 6, CP 10600, Ciudad Habana (Cuba)

    1999-07-01

    It was designed a TLD dosemeter for the monitoring of the extremities. This one consists in a metallic ring with a circular orifice where is arranged a T L detector of LiF: Mg,Ti (Model JR1152C) 5 x 5 x 0.8 mm{sup 3} covered by a polyethylene fine layer. In this work were studied the dosimetric properties of the dosemeter for its application in the dosimetry of extremities for photonic radiation. the results obtained allow conclude that the designed dosemeter can be used for the extremities monitoring. (Author)

  4. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  5. On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.

    Science.gov (United States)

    Eakins, Jonathan

    2009-02-01

    The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.

  6. Beta response of CaSO4:Dy based TLD badge and its angular dependence studies for personnel monitoring applications

    International Nuclear Information System (INIS)

    Kumar, Munish; Rakesh, R.B.; Sneha, C.; Ratna, P.; Bakshi, A.K.; Datta, D.

    2016-01-01

    In India, shallow/skin doses received by radiation workers from beta particles are measured using CaSO 4 :Dy based Teflon embedded TLD badge. The beta particles having maximum energy E max > 0.6 MeV - ≥ 3.54 MeV are monitored. The ratio of the response of discs under open and plastic regions (D Open/ D Perspex ) is used to estimate the energy of the beta source and to apply response correction factor. This is required as the disc dosimeters are thick and exhibit energy dependent response. Due to lack of comprehensive information regarding disc ratios and associated beta multiplication/response correction factors, present study was performed

  7. Automated dose estimation for lost or damaged dosimeters

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deininger, R.J.

    1988-01-01

    This paper reports that some dosimetry vendors will compute doses for their customers' lost/damaged dosimeters based upon an average of recent dosimeter readings. However, the vendors usually require authorization from the customer for each such occurrence. Therefore, the tedious task of keeping track of the overdue status of each missing dosimeter and constantly notifying the vendor is still present. Also, depending on the monthly variability of a given person's doses, it may be more valid to use the employee's average dose, his/her highest dose over a recent period, an average dose of other employees with similar job duties for that period, or the maximum permissible dose. Thus, the task of estimating doses for lost/damaged dosimeters cannot be delegated to dosimetry vendor. Instead, the radiation safety department must sue the data supplied by the vendor as input for performing estimates. The process is performed automatically at the Medical Center Hospital of Vermont using a personal computer and a relational database

  8. Personnel neutron dosimeter evaluation and upgrade program

    International Nuclear Information System (INIS)

    Fix, J.J.; Brackenbush, L.W.; McDonald, J.C.; Roberson, P.L.; Holbrook, K.L.; Endres, G.W.R.; Faust, L.G.

    1983-01-01

    Evaluation of neutron dosimeters from twelve DOE laboratories involved about 2500 dosimeter irradiations at both PNL and the National Bureau of Standards (NBS) using neutrons of several energies and doses and several irradiations for good statistical analysis. The data and their analyses will be published later. The information evaluates accuracy, precision, lower dose detection, and energy response of dosimeters

  9. Dosimeter charging and/or reading apparatus

    International Nuclear Information System (INIS)

    Fine, L.T.; Jackson, T.P.

    1980-01-01

    A device is disclosed for charging and/or reading a capacitor associated with an electrometer incorporated in a radiation dosimeter for the purpose of initializing or ''zeroing'', the dosimeter at the commencement of a radiation measurement cycle or reading it at any time thereafter. The dosimeter electrometer has a movable electrode the position of which is indicative of the charge remaining on the dosimeter capacitor and in turn the amount of radiation incident on the dosimeter since it was zeroed. The charging device also includes means for discharging, immediately upon conclusion of the dosimeter capacitor charging operation, stray capacitance inherent in the dosimeter by reason of its mechanical construction. The charge on the stray capacitance, if not discharged at the conclusion of the dosimeter capacitor charging operation, leaks off during the measurement cycle, introducing measurement errors. A light source and suitable switch means are provided for automatically illuminating the movable electrode of the dosimeter electrometer as an incident to charging the dosimeter capacitor to facilitate reading the initial, or ''zero'', position of the movable electrometer electrode after the dosimeter capacitor has been charged and the stray capacitance discharged. Also included is a manually actuatable switch means, which is operable independently of the aforementioned automatic switch means, to energize the lamp and facilitate reading of the dosimeter without charging

  10. Experimental comparison of profiles of acquired small fields with ionization chambers, diodes, radiochromic s and TLD films; Comparacion experimental de perfiles de campos pequenos adquiridos con camaras de ionizacion, diodos, peliculas radiocromicas y TLD

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, D.; Garrigo, E. [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina); Filipuzzi, M. [Instituto Balseiro, Centro Atomico Bariloche, Av. Bustillo 9500, 8400 Bariloche - Rio Negro (Argentina); Germanier, A., E-mail: devenencia@radioncologia-zunino.org [Centro de Excelencia en Productos y Procesos, Santa Maria de Punilla, 5164 Cordoba (Argentina)

    2014-08-15

    The use of radiation small fields, introduced by new techniques, can bring a considerable uncertainty in the precision of the acquired profiles, due to the conditions of lateral electronic non-equilibrium and the perturbations introduced by the detectors (volume effect and alteration of the charged particles flowing) [Das et al., 2007]. The development of new miniature detectors looks to diminish the uncertainty created by the material and the size of the sensitive volume of the dosimeter. For this reason, comparative measurements for three sizes of square field were carried out (20 mm, 10 mm and 5 mm, of side) using a detectors series: 3 ionization chambers (PTW-31003, IBA-CC04, PTW-31016), 2 diodes (PTW-60012, IBA-Sfd), thermoluminescent detectors micro-cubes of 1 mm of edge (TLD-700) and radiochromic s films EBT-3. These last two were used as reference detectors, due to their spatial high resolution and similar performance with Monte Carlo simulations [Francescon et al., 1998]. So much the thermoluminescent detectors as the radiochromic films resolved the profiles in a similar way. Both diodes responded correctly, but the rest of the detectors overestimated the gloom of the fields, which allows conclude that the used TLD (and both diodes) can resolve field sizes correctly, usually utilized in radio-surgery, without producing significant alterations in the acquired data. (author)

  11. Biokinetics of radiolabeled Iodophenylpentadecanoic acid (I-123-IPPA) and thallium-201 in a rabbit model of chronic myocardial infarction measured using a series of thermoluminescent dosimeters

    Science.gov (United States)

    Medich, David Christopher

    1997-09-01

    The biokinetics of Iodophenylpentadecanoic acid (123I-IPPA) during a chronic period of myocardial infarction were determined and compared to 201Tl. IPPA was assessed as a perfusion and metabolic tracer in the scintigraphic diagnosis of coronary artery disease. The myocardial clearance kinetics were measured by placing a series of thermoluminescent dosimeters (TLDs) on normal and infarcted tissue to measure the local myocardial activity content over time. The arterial blood pool activity was fit to a bi-exponential function for 201Tl and a tri-exponential function for 123I-IPPA to estimate the left ventricle contribution to TLD response. At equilibrium, the blood pool contribution was estimated experimentally to be less than 5% of the total TLD response. The method was unable to resolve the initial uptake of the imaging agent due in part to the 2 minute TLD response integration time and in part to the 30 second lag time for the first TLD placement. A noticeable disparity was observed between the tracer concentrations of IPPA in normal and ischemic tissue of approximately 2:1. The fitting parameters (representing the biokinetic eigenvalue rate constants) were related to the fundamental rate constants of a recycling biokinetic model. The myocardial IPPA content within normal tissue was elevated after approximately 130 minutes post injection. This phenomenon was observed in all but one (950215) of the IPPA TLD kinetics curves.

  12. Comparison of LiF (TLD-100 and TLD-100H) detectors for extremity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Freire, L. [Departamento de Proteccao Radiologica e Seguranca Nuclear, Instituto Tecnologico e Nuclear, E.N. 10, 2683-953 Sacavem (Portugal); Laboratorio de Medicina Nuclear, Lda, Atomedical, Rua Helena Felix, 11D, 1600-121 Lisboa (Portugal); Calado, A.; Cardoso, J.V.; Santos, L.M. [Departamento de Proteccao Radiologica e Seguranca Nuclear, Instituto Tecnologico e Nuclear, E.N. 10, 2683-953 Sacavem (Portugal); Alves, J.G. [Departamento de Proteccao Radiologica e Seguranca Nuclear, Instituto Tecnologico e Nuclear, E.N. 10, 2683-953 Sacavem (Portugal)], E-mail: jgalves@itn.pt

    2008-02-15

    In this work the results aimed at assessing the performance of two types of LiF detectors, TLD-100 and TLD-100H, used in the context of extremity dosimetry are presented. Each detector variety was studied for reproducibility, batch homogeneity, residual dose, linearity and energy dependence using, when appropriate, the {sup 90}Sr/{sup 90}Y radiation source built-in one of the Harshaw 6600 readers, the ISO narrow X-ray beams of N30, N40, N60, N80, N100 and N120 or the gamma radiations of {sup 137}Cs and {sup 60}Co. Two calibration energies (N120 and {sup 137}Cs) were also used. The reproducibility and linearity results indicate that both LiF:Mg,Ti and LiF:Mg,Cu,P performed equally well. However, LiF:Mg,Cu,P presents a higher residual signal. In terms of energy dependence, LiF:Mg,Cu,P shows less variation than LiF:Mg,Ti particularly when N120 is used as calibration radiation. This seems to be a more realistic setup since the energy of the most frequently used radioisotopes in Nuclear Medicine departments with single photon emission computed tomography (SPECT) use gamma radiation energies closer to N120 than to {sup 137}Cs.

  13. Background radiation accumulation and lower limit of detection in thermoluminescent beta-gamma dosimeters used by the centralized external dosimetry system

    International Nuclear Information System (INIS)

    Sonder, E.; Ahmed, A.B.

    1991-12-01

    A value for ''average background radiation'' of 0.75 mR/week has been determined from a total of 1680 thermoluminescent dosimeters (TLD's) exposed in 70 houses for periods up to one year. The distribution of results indicates a rather large variation among houses, with a few locations exhibiting backgrounds double the general average. Some discrepancies in the short-term background accumulation of TLD's have been explained as being due to light leakage through the dosimeter cases. In addition the lower limit of detection (L D ) for deep and shallow dose equivalents has been determined for these dosimeters. The L D for occupational exposure depends strongly on the time a dosimeter is exposed to background radiation in the field. The L D can vary from a low of 2.4 mrem for high energy gamma rays when the background accumulation period is less than a few weeks to values as high as 66 mrem for uranium beta particles when background has been allowed to accumulate for more than 21 weeks

  14. Evaluating secondary neutron doses of a refined shielded design for a medical cyclotron using the TLD approach

    International Nuclear Information System (INIS)

    Lin, Jye-Bin; Tseng, Hsien-Chun; Liu, Wen-Shan; Lin, Ding-Bang; Hsieh, Teng-San; Chen, Chien-Yi

    2013-01-01

    An increasing number of cyclotrons at medical centers in Taiwan have been installed to generate radiopharmaceutical products. An operating cyclotron generates immense amounts of secondary neutrons from reactions such the 18 O(p, n) 18 F, used in the production of FDG. This intense radiation can be hazardous to public health, particularly to medical personnel. To increase the yield of 18 F-FDG from 4200 GBq in 2005 to 48,600 GBq in 2011, Chung Shan Medical University Hospital (CSMUH) has prolonged irradiation time without changing the target or target current to meet requirements regarding the production 18 F. The CSMUH has redesigned the CTI Radioisotope Delivery System shield. The lack of data for a possible secondary neutron doses has increased due to newly designed cyclotron rooms. This work aims to evaluate secondary neutron doses at a CTI cyclotron center using a thermoluminescent dosimeter (TLD-600). Two-dimensional neutron doses were mapped and indicated that neutron doses were high as neutrons leaked through self-shielded blocks and through the L-shaped concrete shield in vault rooms. These neutron doses varied markedly among locations close to the H 2 18 O target. The Monte Carlo simulation and minimum detectable dose are also discussed and demonstrated the reliability of using the TLD-600 approach. Findings can be adopted by medical centers to identify radioactive hot spots and develop radiation protection. - Highlights: • Neutron doses were verified using TLD approach. • Neutron doses were increased at cyclotron centers. • Revised L-shaped shield suppresses effectively the neutrons. • Neutron dose can be attenuated to 1.13×10 6 %

  15. Experimental comparison of profiles of acquired small fields with ionization chambers, diodes, radiochromic s and TLD films

    International Nuclear Information System (INIS)

    Venencia, D.; Garrigo, E.; Filipuzzi, M.; Germanier, A.

    2014-08-01

    The use of radiation small fields, introduced by new techniques, can bring a considerable uncertainty in the precision of the acquired profiles, due to the conditions of lateral electronic non-equilibrium and the perturbations introduced by the detectors (volume effect and alteration of the charged particles flowing) [Das et al., 2007]. The development of new miniature detectors looks to diminish the uncertainty created by the material and the size of the sensitive volume of the dosimeter. For this reason, comparative measurements for three sizes of square field were carried out (20 mm, 10 mm and 5 mm, of side) using a detectors series: 3 ionization chambers (PTW-31003, IBA-CC04, PTW-31016), 2 diodes (PTW-60012, IBA-Sfd), thermoluminescent detectors micro-cubes of 1 mm of edge (TLD-700) and radiochromic s films EBT-3. These last two were used as reference detectors, due to their spatial high resolution and similar performance with Monte Carlo simulations [Francescon et al., 1998]. So much the thermoluminescent detectors as the radiochromic films resolved the profiles in a similar way. Both diodes responded correctly, but the rest of the detectors overestimated the gloom of the fields, which allows conclude that the used TLD (and both diodes) can resolve field sizes correctly, usually utilized in radio-surgery, without producing significant alterations in the acquired data. (author)

  16. Investigation of the dose rate dependency of the PAGAT gel dosimeter at low dose rates

    International Nuclear Information System (INIS)

    Zehtabian, M.; Faghihi, R.; Zahmatkesh, M.H.; Meigooni, A.S.; Mosleh-Shirazi, M.A.; Mehdizadeh, S.; Sina, S.; Bagheri, S.

    2012-01-01

    Medical physicists need dosimeters such as gel dosimeters capable of determining three-dimensional dose distributions with high spatial resolution. To date, in combination with magnetic resonance imaging (MRI), polyacrylamide gel (PAG) polymers are the most promising gel dosimetry systems. The purpose of this work was to investigate the dose rate dependency of the PAGAT gel dosimeter at low dose rates. The gel dosimeter was used for measurement of the dose distribution around a Cs-137 source from a brachytherapy LDR source to have a range of dose rates from 0.97 Gy h −1 to 0.06 Gy h −1 . After irradiation of the PAGAT gel, it was observed that the dose measured by gel dosimetry was almost the same at different distances (different dose rates) from the source, although the points nearer the source had been expected to receive greater doses. Therefore, it was suspected that the PAGAT gel is dose rate dependent at low dose rates. To test this further, three other sets of measurements were performed by placing vials containing gel at different distances from a Cs-137 source. In the first two measurements, several plastic vials were exposed to equal doses at different dose rates. An ionization chamber was used to measure the dose rate at each distance. In addition, three TLD chips were simultaneously irradiated in order to verify the dose to each vial. In the third measurement, to test the oxygen diffusion through plastic vials, the experiment was repeated again using plastic vials in a nitrogen box and glass vials. The study indicates that oxygen diffusion through plastic vials for dose rates lower than 2 Gy h −1 would affect the gel dosimeter response and it is suggested that the plastic vials or (phantoms) in an oxygen free environment or glass vials should be used for the dosimetry of low dose rate sources using PAGAT gel to avoid oxygen diffusion through the vials.

  17. Improved sample holders for the PMMA dosimeters

    International Nuclear Information System (INIS)

    Kobayashi, Toshikazu; Sone, Koji; Iso, Katsuaki

    1994-01-01

    PMMA dosimeters are widely used for high dose dosimetry. Dose is determined by measuring the change in optical density of the irradiated PMMA dosimeter element. Measurement precision depends on the mounting method of a dosimeter element in the sample room of a spectrophotometer. We tried to prepare three types of holders, (holders A, B and C in Figs. 1-3), according to the shape of PMMA dosimeter elements. We measured optical density of the irradiated PMMA dosimeter elements by using the three types of holders. It is revealed that the holder of the type A gives more precise results for the Red 4034 or Gammachrome YR dosimeter than that of the type B. The measurements with a spectrophotometer using the type C holder gives better results for the Red acrylic dosimeter than the case of the measurements by the exclusive reader. (author)

  18. Calibration of Mg2SiO4(Tb) thermoluminescent dosimeters for use in determining diagnostic X-ray doses to Adult Health Study participants

    International Nuclear Information System (INIS)

    Kato, Kazuo; Antoku, Shigetoshi; Sawada, Shozo; Russell, W.J.

    1989-11-01

    Characteristics of Mg 2 SiO 4 (Tb) thermoluminescent dosimeters (TLD) were ascertained preparatory to measuring dose from diagnostic X-ray examinations received by Adult Health Study participants. These detectors are small, relatively sensitive to low-dose X rays, and are appropriate for precise dosimetry. Extensive calibration is necessary for precisely determining doses according to their thermoluminescent intensities. Their sensitivities were investigated, by dose according to X-ray tube voltage, and by exposure direction, to obtain directional dependence. Dosimeter sensitivity lessened due to the fading effect and diminution of the planchet. However, these adverse effects can be avoided by storing the dosimeters at least 1.5 hours and by using fresh silver-plated planchets. Thus, the TLDs, for which sensitivities were determined in this study, will be useful in subsequent diagnostic X-ray dosimetry. (author)

  19. SSDL Preparation for Implementation of the Use of OSL Dosimeters in Malaysia

    International Nuclear Information System (INIS)

    Sangau, J.K.; Taiman Kadni; Ahmad Bazlie Abdul Kadir

    2013-01-01

    Since the early 1980's, film badge has been widely used as a device of personal dose monitoring in Malaysia. Secondary Standard Dosimetry Laboratory (SSDL), as a service center for film badge has obtained the supply of personal monitoring film from Agfa Gevaert, Belgium every year. As the uses of film badge have some weaknesses, it has prompted SSDL to find an alternative dosimeter to replace the film badge. Based on the studies that have been conducted, SSDL has selected OSL dosimeter (Optically Stimulated Luminescent Dosimeter) to replace the film badge and is expected to be fully operational by middle of 2015. This paper aims to explain the selection of OSL dosimeter and planning carried out to ensure the success of their application in Malaysia. (author)

  20. TLD array for precise dose measurements in stereotactic radiation techniques

    International Nuclear Information System (INIS)

    Ertl, A.; Kitz, K.; Griffitt, W.; Hartl, R.F.E.; Zehetmayer, M.

    1996-01-01

    We developed a new TLD array for precise dose measurement and verification of the spatial dose distribution in small radiation targets. It consists of a hemicylindrical, tissue-equivalent rod made of polystyrene with 17 parallel moulds for an exact positioning of each TLD. The spatial resolution of the TLD array was evaluated using the Leskell spherical phantom. Dose planning was performed with KULA 4.4 under stereotactic conditions on axial CT images. In the Leksell gamma unit the TLD array was irradiated with a maximal dose of 10 Gy with an unplugged 14 mm collimator. The doses delivered to the TLDs were rechecked by diode detector and film dosimetry and compared to the computer-generated dose profile. We found excellent agreement of our measured values, even at the critical penumbra decline. For the 14 mm and 18 mm collimator and for the 11 mm collimator combination we compared the measured and calculated data at full width at half maximum. This TLD array may be useful for phantom or tissue model studies on the spatial dose distribution in confined radiation targets as used in stereotactic radiotherapy. (author)

  1. Quantitative relations between beta-gamma mixed-field dosimeter responses and dose-equivalent conversion factors according to the testing standard

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1982-08-01

    The conventional two-element personnel dosimeters, usually having two thick TLD (thermoluminescent dosimetry) ribbons, are used extensively for radiation protection dosimetry. Many of these dosimeters are used for the measurement of beta and gamma radiation doses received in mixed beta-gamma fields. Severe limitations exist, however, on the relative magnitudes and energies of these fields that may be measured simultaneously. Moreover, due to a well-known energy dependence of these dosimeters, particularly for the beta-radiations, systematic errors will occur whenever the differences in workplaces and calibration radiation energies exist. A simple mathematical approach is presented to estimate the deep and shallow dose equivalent values at different energies for such dosimeters. The formulae correlate the dosimeter responses and dose equivalent conversion factors at different energies by taking into account the guidelines of the adopted ANSI Standard N13.11 and the dosimetry practices followed by most dosimeter processors. This standard is to be used in a mandatory testing program in the United States

  2. Bronchial dosimeter for radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, T.K.; Yu, K.N.; Nikezic, D.; Haque, A.K.M.M. [City University of Hong Kong, Hong Kong (China); Vucic, D. [Faculty of Technology, University of Nis, Lescovac (Yugoslavia)

    2000-05-01

    Traditionally, assessments of the bronchial dose from radon progeny were carried out by measuring the unattached fraction (f{sub p}) of potential alpha energy concentration (PAEC), the total PAEC, activity median diameters (AMDs) and equilibrium factor, and then using dosimetric lung models. A breakthrough was proposed by Hopke et al. (1990) to use multiple metal wire screens to mimic the deposition properties of radon progeny in the nasal (N) and tracheobronchial (T-B) regions directly. In particular, they were successful in using four layers of 400-mesh wire screens with a face velocity of 12 cm s{sup -1} for the simulation of radon progeny deposition in the T-B region. Oberstedt and Vanmarcke (1995) carried out precise calibrations for the system, and named the system as the 'bronchial dosimeter'. Based on these, Yu and Guan (1998) proposed a portable bronchial dosimeter similar to a normal measurement system for radon progeny or PAEC and consisted of only a single sampler and employed only one 400-mesh wire screen and one filter. However, all these 'bronchial dosimeters' in fact only determined the fraction of potential alpha energy from radon progeny deposited in the T-B region, which required certain assumptions and calculations to further give the final bronchial dose. In the present work, a true 'bronchial dosimeter' was designed, which consisted of three 400-mesh wire screens and a filter. With a face velocity of 11 cm s{sup -1}, the deposition pattern on the wire screens was found to satisfactorily match the variation of the dose conversion factor (in the unit of mSv/WLM) with the size of radon progeny from 1 to 1000 nm. In this way, this bronchial dosimeter directly gave the bronchial dose from the alpha counts recorded on the wire-screens and the filter paper. With the development of this bronchial dosimeter, the present practice of 'dose estimation' from large-scale radon surveys can be replaced by large

  3. Comparative study of different Al{sub 2}O{sub 3}:C dosimeters using OSL technique for dosimetry on Volumetric Modulated Arc Radiotherapy Treatment (VMAT); Estudo comparativo de diferentes dosimetros de Al{sub 2}O{sub 3}:C pela tecnica OSL na dosimetria de tratamentos Radioterapicos por Arco Modulado Volumetrico (VMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Villani, Daniel; Campos, LetIcia L., E-mail: dvillani@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Mancini, Anselmo; Haddad, Cecilia M.K. [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Centro de Radioterapia

    2016-07-01

    In modern radiotherapy, the VMAT technique has become a successful treatment alternative. Due to its complexity, a quality assurance program must be established by evaluating, among other items, the dosimetric factors. This paper aims to compare the performance between the OSL aluminum oxide (Al{sub 2}O{sub 3}:C) nanoDot™ dosimeters (Inlight™ system) manufactured by Landauer Inc. and TLD-500 Al{sub 2}O{sub 3}:C dosimeters manufactured by Rexon™ for VMAT dosimetry using an anthropomorphic phantom. The results showed that both type of Al{sub 2}O{sub 3}:C dosimeters presented good repeatability and agreement between the doses measured and calculated by planning system. However, the need of sophisticated readers to OSL analysis of the TLD-500, turns it less practical for routine usage, comparing to Inlight™ system. (author)

  4. How to diagnose any type of TLD Reader?

    International Nuclear Information System (INIS)

    Rodriguez, Manuel Lopez; Garcia, Jose A. Tamayo; Gil, Alex Vergara; Lores, Stefan Gutierrez; Acosta, Andry Romero; Villanueva, Gilberto Alonso

    2013-01-01

    The acquisition of know how of practical experiences obtained in the repair and maintenance of readers TLD RADOS for five years of work and the request by the International Atomic Energy for signing new Research Contracts (CRP), made possible the CRP 13328, in which the specialist is committed in the course of a year, to deliver educational software in order to train personnel associated with the operation of the TLD readers RADOS. Due to the importance of continuous transfer of knowledge for new generations of technicians and specialists who join our laboratories, the idea came when the first interactive CD that grouped 19 videos, divided into three blocks was ready: learning, repair and maintenance; it was suggested to expand the training for any TLD reader. Thus a much more complete than the first version package emerged. 7 cases were subsequently published in an IAEA TECDOC, 1599 were included

  5. Development of diffusion-based radon daughter dosimeters

    International Nuclear Information System (INIS)

    Phillips, C.R.; Khan, A.; Leung, H.

    1983-07-01

    The objective of this work is to investigate the possible application of the mechanisms of thermophoresis and electrostatic collection via electrets to the collection of radon daughters with reference to personal alpha dosimeters for use in uranium mines. The potential advantage accruing from adoption of either one of these collection mechanisms is that collection is passive and does not depend upon the use of a pump (active), and is, therefore, intrinsically much more reliable

  6. Electret dosimeter utilizing gas multiplication

    International Nuclear Information System (INIS)

    Ikeya, M.; Miki, T.

    1980-01-01

    It was found that the high electric field around the surface of an electret leads to cascade multiplication of the ionization process in a surrounding gas. Very sensitive charge decay constants of the order of 1mrad, were obtained for electrets composed of polyvinyliden fluoride or teflon polymers. The reduced charge is stable and can be utilized in personnel dosimetry. A simple pocket chamber dosimeter is described consisting of a small speaker or buzzer, a cylindrical chamber filled with air, argon or other gases, a polymer thermoelectret foil and an electrode. The sonic vibration of the foil induces an alternating charge on the electrode which is amplified and detected. The feasibility of this dosimeter and its shock and vibration resistance have been demonstrated. (author)

  7. Development of colored alumilite dosimeter

    CERN Document Server

    Obara, K; Yagi, T; Yokoo, N

    2003-01-01

    In the ITER (International Thermonuclear Experimental Reactor), in-vessel components such as blanket and divertor, which are installed in the vacuum vessel of the ITER, are maintained by remote handling equipment (RH equipment). The RH equipment for maintenance is operated under sever environmental conditions, such as high temperature (50 approx 100 degC), high gamma-ray radiation (approx 1 kGy/h) in an atmosphere of inert gas or vacuum; therefore many components of the RH equipment must have a suitable radiation resistance efficiency for long time operation (10 approx 100 MGy). Typical components of the RH equipment have been extensively tested under an intensive gamma-ray radiation. Monitoring of the radiation dose of the components of the RH equipment is essential to control the operation period of the RH equipment considering radiation resistance. However, the maximum measurable radiation dose of the conventional dosimeters, such as ionization chamber, liquid, glass and plastic dosimeters are limited to b...

  8. RADIATION DOSIMETER AND DOSIMETRIC METHODS

    Science.gov (United States)

    Taplin, G.V.

    1958-10-28

    The determination of ionizing radiation by means of single fluid phase chemical dosimeters of the colorimetric type is presented. A single fluid composition is used consisting of a chlorinated hydrocarbon, an acidimetric dye, a normalizer and water. Suitable chlorinated hydrocarbons are carbon tetrachloride, chloroform, trichloroethylene, trichlorethane, ethylene dichioride and tetracbloroethylene. Suitable acidimetric indicator dyes are phenol red, bromcresol purple, and creosol red. Suitable normallzers are resorcinol, geraniol, meta cresol, alpha -tocopberol, and alpha -naphthol.

  9. Radiation sensitive polymer gel dosimeters

    International Nuclear Information System (INIS)

    Lepage, M.; Back, S.A.J.; Baldock, C.; Whittaker, A.K.; Rintoul, L.

    2000-01-01

    Full text: Radiation sensitive gels are studied for their potential to retain a permanent 3D dose distribution for applications in radiotherapy. Co-monomers dissolved in a tissue-equivalent hydrogel undergo a polymerization reaction upon absorption of ionizing radiation. The polymer formed influences the local spin-spin relaxation time (T 2 ) of the dosimeter that can be determined using magnetic resonance imaging (MRI). The relationship between T2 and the absorbed dose was studied for different initial chemical compositions. The aim was to find a model linking the changes in T 2 with absorbed dose to the initial composition of the dosimeter. It is believed this will help designing new gel dosimeters having desired properties to minimize the uncertainty in the determination of the dose distribution. 1 H, 13 C nuclear magnetic resonance spectroscopy and FT-Raman spectroscopy were used to quantify the amount of monomers still remaining after the absorption of a given dose of radiation. This data is used to model the changes of T2 as a function of the absorbed dose. A model of fast exchange of magnetization between three proton pools was used, where the fraction of protons (f x H ) in the x th pool is obtained from the chemical composition of the dosimeter and the apparent T2 of each pool is determined for a given composition. Initially, the protons are contained in two pools; a mobile (mob), which contains the water protons and the monomers protons, and a gelatin (gela) proton pool. The mobile pool is partially depleted as polymer is formed, the protons are transferred into the polymer (pol) pool. In the figure, the experimental data along with the calculated values are plotted for three different monomer concentrations, with the gelatin concentration fixed. The model is seen to provide a good fit to the experimental data

  10. Direct measurement of annual β dose using TLD on porcelain

    International Nuclear Information System (INIS)

    Leung, P.L.; Stokes, M.J.; Xia Junding; Wang Weida; Zhou Zhixin

    1999-01-01

    In order to improve accuracy of TL authentication test for porcelain, a method of direct measurement of annual β dose using ultrathin TLD (CaSO 4 :Tm) on porcelain was studied. Since the TLD was placed into a hole left after sampling for the TL measurement, the method will not cause any new damage to the studied object. The results show that the technique is suitable for measuring annual β dose and improving accuracy of TL authentication test for both porcelain and pottery

  11. Differences in TLD 600 and TLD 700 glow curves derived from distict mixed gamma/neutron field irradiations

    International Nuclear Information System (INIS)

    Cavalieri, Tassio A.; Castro, Vinicius A.; Siqueira, Paulo T.D.

    2013-01-01

    In Neutron Capture Therapy, a thermal neutron beam shall impinge on a specific nuclide, such as 10 B, to promote a nuclear reaction which releases the useful therapeutic energy. A nuclear reactor is usually used as the neutron source, and therefore field contaminants such as gamma and high energy neutrons are also present in the field. However, mixed field dosimetry still stands as a challenge in some cases, due to the difficulty to experimentally discriminate the dose from each field component. For the mixed field dosimetry, the International Commission on Radiation end Units (ICRU) recommends the use of detector pairs with different responses for each beam component. The TLD 600/700 pair meets this need, because these LiF detectors have different Li isotopes concentration, with distinct thermal neutron responses because 6 Li presents a much higher neutron capture cross section than does 7 Li for low energy neutrons. TLD 600 is 6 Li enriched while TLD 700 is 7 Li enriched. However, depending on the neutron spectrum presented in the mixed field, TLD 700 response to thermal neutrons cannot be disregarded. This work aims to study the difference in TLD 600 and TLD 700 glow curves when these TLDs are submitted to mixed fields of different energy spectra and components balance. The TLDs were irradiated in a pure gamma source, and in mixed fields from an AmBe sealed source and from the IPEN/MB-01 reactor. These TLDs were read and had their two main dosimetric regions analyzed to observe the differences in the glow curves of these TLDs in each irradiation. Field components discrimination was achieved through Monte Carlo simulations run with MCNP radiation transport code. (author)

  12. Methods for implementation of in vivo dosimetry (entrance dose) using thermoluminescent dosimeters during radiotherapy treatment with photon beam

    International Nuclear Information System (INIS)

    Barsanelli, Cristiane

    2006-01-01

    Selection, calibration procedure to convert TLD signal into absorbed dose and physical characteristics at the thermoluminescent dosimeters, as well as the determination of correction factors and the methodology to determine expected entrance dose, are described in this work. Practical aspects and the utility of entrance dose measures with thermoluminescent dosimeters were investigated, as well as the exactness and the reproducibility of the daily dose release. The entrance dose measures were performed in five patients with diagnosis of breast cancer treated with a 6 MV photon beam. The measured dose and the expected dose values agreed in ± 5%, due to excellent treatment equipment stability, to automatic verification system and the good exactness in the daily treatment adjustment. Good precision can be achieved when the correction factors for each parameter of influence in the dosimeter response are carefully determined and applied to convert the thermoluminescent signal into absorbed dose. The study demonstrates the viability of thermoluminescent dosimeters use for in vivo dosimetry and its utility as part of a quality assurance program in a radiation therapy service. (author)

  13. Acoustic evaluation of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Mather, M.L.; De Deene, Y.; Baldock, C.; Whittaker, A.K.

    2002-01-01

    Advances in radiotherapy treatment techniques such as intensity modulated radiotherapy are placing increasing demands on radiation dosimetry for verification of dose distributions in 3D. In response, polymer gel dosimeters that are capable of recording dose distributions in 3D are currently being developed. Recently, a new technique for evaluation of absorbed dose distributions in these dosimeters using ultrasound was introduced. The current work aims to demonstrate the potential of ultrasound as an evaluation technique for polymer gel dosimeters and to investigate the ultrasound properties of two different dosimeter formulations, PAG and MAGIC gels

  14. Fast-neutron solid-state dosimeter

    International Nuclear Information System (INIS)

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-01-01

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300 0 C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO 4 :Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot-pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150 0 C prior to first use dosimeters

  15. Environmental dose measurement with microprocessor based portable TLD reader

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.

    1996-01-01

    Application of TL method for environmental gamma-radiation dosimetry involves uncertainty caused by the dose collected during the transport from the point of annealing to the place of exposure and back to the place of evaluation. Should an accident occur read out is delayed due to the need to transport to a laboratory equipped with a TLD reader. A portable reader capable of reading out the TL dosemeter at the place of exposure ('in situ TLD reader') eliminates the above mentioned disadvantages. We have developed a microprocessor based portable TLD reader for monitoring environmental gamma-radiation doses and for on board reading out of doses on space stations. The first version of our portable, battery operated reader (named Pille - 'butterfly') was made at the beginning of the 80s. These devices used CaSO 4 bulb dosemeters and the evaluation technique was based on analogue timing circuits and analogue to digital conversion of the photomultiplier current with a read out precision of 1 μGy and a measuring range up to 10 Gy. The measured values were displayed and manually recorded. The version with an external power supply was used for space dosimetry as an onboard TLD reader

  16. Development of colored alumilite dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yagi, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yokoo, Noriko [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2003-03-01

    In the ITER (International Thermonuclear Experimental Reactor), in-vessel components such as blanket and divertor, which are installed in the vacuum vessel of the ITER, are maintained by remote handling equipment (RH equipment). The RH equipment for maintenance is operated under sever environmental conditions, such as high temperature (50{approx}100 degC), high gamma-ray radiation ({approx}1 kGy/h) in an atmosphere of inert gas or vacuum; therefore many components of the RH equipment must have a suitable radiation resistance efficiency for long time operation (10{approx}100 MGy). Typical components of the RH equipment have been extensively tested under an intensive gamma-ray radiation. Monitoring of the radiation dose of the components of the RH equipment is essential to control the operation period of the RH equipment considering radiation resistance. However, the maximum measurable radiation dose of the conventional dosimeters, such as ionization chamber, liquid, glass and plastic dosimeters are limited to be approximately 1MGy which is too low to monitor the RH equipment for the ITER. In addition, these conventional dosimeters do not involve sufficient radiation resistance against the high gamma-ray radiation as well as are not easy handling and low cost. Based on the above backgrounds, a new dosimeter with bleaching of an azo group dye to be applied to a radiation monitor has been developed for high gamma-ray radiation use. The colored alumilite dosimeter is composed of the azo group dye (-N=N-) in an anodic oxidation layer of aluminum alloy (Al{sub 2}O{sub 3}). It can monitor the radiation dose by measuring the change of the bleaching of azo dye in the Al{sub 2}O{sub 3} layer due to gamma-ray irradiation. The degree of bleaching is measured as the change of hue (color) and brightness based on the Munsell's colors with a three dimensional universe using spectrophotometer. In the tests, the dependencies such as colors, anodized layer thickness, type of azo

  17. Introducing 2D barcode on TLD cards - a step towards automation in personnel monitoring

    International Nuclear Information System (INIS)

    Ajoy, K.C.; Dhanasekaran, A.; Annalakshmi, O; Rajagopal, V.; Santhanam, R.; Jose, M.T.

    2018-01-01

    As part of personnel monitoring services, TLD lab, RSD, IGCAR issues and receives large numbers of TLD cards every month, for use by occupational workers belonging to various hot facilities at Kalpakkam. Considering the nature of the work being manual, routine, labour intensive and being prone for human errors, introducing automation would be necessary at the TLD lab as well as at the user facility. This requires identification of the individual components of the TLD and embed them with unique identification for the system to accomplish the task. The paper discusses the automation part related to the TLD cards

  18. Operational aspects of the direct ion storage dosimeter system: 18 months of experience at CERN

    International Nuclear Information System (INIS)

    Carbonez, P.; Kotamaki, E.; Otto, Th.

    2006-01-01

    CERN, the European Organization for Nuclear Research, operates a dosimetry service for external exposure. The service monitors approximately 5000 Staff, scientific visitors and contractors personnel working on the organizations sites with personal dosimeters for personal dose equivalent (Hp(10), Hp(0.07)) from gamma, beta and neutron radiation. The dosimetry service is approved by the Swiss Federal Health Office, the competent authority for radiation protection. In 2004, the R.A.D.O.S. D.I.S. -1 dosemeter has been introduced to CERN as a gamma-beta dosemeter. Technical characteristics of this dosimeter, based on the direct ion storage technology, are high sensitivity, excellent linearity of the personal dose response with respect to radiation energy or dose, and long-term physical storage of personal dose-related information without the risk of fading. One important technical feature of the dosemeter is its 'instant reading' capability: the user himself can evaluate the received personal dose nondestructively on specific reader stations. This information is digitized, centralized by the CERN-wide network and stored in a database. The consequence of the 'instant reading' capability is a break with in the traditional organisation of a dosimetry service. The personal dosimeters are no longer exchanged periodically for evaluation, but a monthly value of personal dose is calculated from the readings initiated by the user. After a wearing period of one year, users are invited to exchange the dosimeter against a new, recently calibrated unit. The introduction of the D.I.S.-1 dosimeter has profoundly changed the type of work in CERN dosimetry service. Technical and laboratory work (development of film dosimeters, densitometric evaluation) have made place for computer-based procedures and database management. (authors)

  19. Optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system

    International Nuclear Information System (INIS)

    Shen, L.; Levine, S.H.; Catchen, G.L.

    1987-01-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration

  20. Measurements of low photon doses using LiF:Mg,Cu,P and CaF{sub 2}:Cu dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Prokert, K [Dresden Univ. of Technology (Germany). Inst. of Radiation Protection Physics; Mann, G [Dresden Univ. of Technology (Germany). Inst. of Radiation Protection Physics

    1997-03-01

    The new thermoluminophors LiF:Mg, Cu, P and CaF{sub 2}:Cu in form of pellets exhibit a significantly higher TL-response than the well-known dosimeters of the types TLD-100 (LiF:Mg, Ti), TLD-400 (CaF{sub 2}:Mn), TLD-900 (CaSO{sub 4}:Dy), etc. Furthermore, the thermoluminophor LiF:Mg, Cu, P shows besides its high sensitivity a good tissue equivalence and therefore, only a small variation of the dose response with the photon energy. The lower limits of detection of these new materials are about 5 {mu}Gy and 0.2 {mu}Gy resp. Therefore, short term measurements of absorbed dose can be realised in radiation fields at very low dose rates (environmental radiation, scattering radiation at medical equipment`s etc.) with an accuracy of {+-}10%. In the field of environmental monitoring the period of exposure can be limited to about 10 days. Using CaF{sub 2}:Cu detectors an exposure of 24 hours is sufficient for dose measurements with lower accuracy. The reusability of CaF{sub 2}:Cu pellets is guaranteed without loss of sensitivity independently of the application of different reading and annealing procedures. In the case of LiF:Mg, Cu, P detectors special procedures are needed in order to keep constant TL-properties. The results of dose measurements at low dose levels in different radiation fields demonstrate the advantages of these detector types. (orig.)

  1. Dose Measurements of Parotid Glands and Spinal Cord in Conventional Treatment of Nasopharyngeal Carcinoma Using RANDO Phantom and Thermoluminescent Dosimeters

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2015-07-01

    Full Text Available Introduction Radiotherapy is regarded as the first treatment of choice for nasopharyngeal carcinoma. Despite the advantages of radiotherapy, patients may suffer from a wide range of side-effects due to the presence of many sensitive normal tissues in these regions. If the absorbed dose exceeds the tolerance level in parotid glands and the spinal cord, myelopathy, Lhermitte's sign and xerostomia cannot be avoided. Materials and Methods The head and neck of a RANDO phantom (reference man, which was regarded as a hypothetical patient with nasopharyngeal carcinoma was evaluated. The full course of treatment consisted of three phases. At the beginning of each phase, an oncologist marked conventional fields on the RANDO phantom using a simulator. For measuring the absorbed dose, Thermoluminescent Dosimeters(TLD chips (TLD-100 were utilized.The absorbed dose by TLDs was read by Harshaw 3500 TLD reader. Results The total absorbed dose was calculated by measuring the absorbed dose in each phase, multiplied by the fraction numbers of each phase; the obtained values were summed up. The results showed that the received doses by spinal cord ranged from 15.24 to 54.56 Gy. Also, the absorbed dose of parotid glands was approximately 39.23 Gy. Conclusion Considering the minimum tolerance dose the absorbed doses in the spinal cord and parotid glands were above the tolerance level. The incidence rate of xerostomia and myelopathy were higher in patients, treated by conventional methods.

  2. On the determination of the post-irradiation time from the glow curve of TLD-100

    International Nuclear Information System (INIS)

    Weinstein, M.; German, U.; Dubinsky, S.; Alfassi, Z.B.

    2003-01-01

    The ratio of peak 3 to the sum of peaks 4 + 5 in TLD-100 was measured for various pre-irradiation and post-irradiation time periods, under conditions characteristic of routine personal dosimetry. It was confirmed that the value of this ratio depends only on the elapsed time between the prior readout and the present one, independent of the moment when the irradiation took place during the total time interval (storage time). This effect indicates that fading of peak 3 seems to be due mainly to changes in the unoccupied traps, and not to decay of trapped charges, being almost independent of the presence of electrons or holes in the traps. This observation leads to the conclusion that the suggestions in the past to use the decay of peak 3 in TLD-100 for the measurement of the elapsed time between irradiation and readout may have been wrong. On the other hand, the decay of peak 2 can be used to measure the elapsed time from irradiation, since the rate of decay is different when related to pre-irradiation and post-irradiation times, indicating a much higher decay rate of the trapped charges (Randall-Wilkins decay). However, because of the fast decay rate of peak 2, its use for determination of the elapsed time since irradiation is of little practical significance. (author)

  3. Custom synthesized diamond crystals as state of the art radiation dosimeters

    International Nuclear Information System (INIS)

    Keddy, R.J.; Nam, T.L.; Fallon, P.J.

    1991-01-01

    The fact that as a radiation detector, diamond is a stable, non-toxic and tissue equivalent (Z = 6) material makes it an ideal candidate for in vivo radiation dosimetry or the dosimetry of general radiation fields in environmental monitoring. Natural diamond crystals, however, have the disadvantage that no two crystals can be guaranteed to have the same response characteristics. This disadvantage can be overcome by synthesizing the crystals under controlled conditions and by using very selective chemistry. Such synthetic diamonds can be used as thermoluminescence dosimeters where they exhibit characteristics comparable to presently available commercial TLD's or they can be used as ionization chambers to produce either ionization currents or pulses where the small physical size of the diamond (1 mm 3 ) and possibilities of digital circuitry makes miniaturization an extremely attractive possibility. It has also been found that they can perform as scintillation detectors. Aspects of the performance characteristics of such diamonds in all three modes are described

  4. Dose verification in HDR brachytherapy and IMRT with Fricke gel-layer dosimeters

    International Nuclear Information System (INIS)

    Gambarini, G.; Negri, A.; Bartesaghi, G.; Pirola, L.; Carrara, M.; Gambini, I.; Tomatis, S.; Fallai, C.; Zonca, G.; Stokucova, J.

    2009-10-01

    At the Department of Physics of the Universita degli Studi di Milano in collaboration with the Medical Physics Unit and the Radiotherapy Unit of the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano the research of a dosimetric technique based on Fricke gel layers and optical analysis in under study. In fact, Fricke gel layer dosimeters (FGLD) have various advantages such as the tissue-equivalence for photons in the clinical energy interval, the possibility to obtain the spatial information about continuous dose distribution and not only a point dose distribution as it is for example in the case of ionization chambers, TLD or diodes and the possibility to obtain the information about 3D dose distributions. In this work, specific applications of FGLD to absolute dosimetry in radiotherapy have been studied, i.e. in-phantom measurements of complex intensity modulated radiation therapy fields (IMRT) and complex brachytherapy fields. (Author)

  5. A PC based thin film dosimeter system

    DEFF Research Database (Denmark)

    Miller, A.; Hargittai, P.; Kovacs, A.

    2000-01-01

    A dosimeter system based on the Riso B3 dosimeter film, an office scanner for use with PC and the associated software is presented. The scanned image is analyzed either with standard software (Paint Shop Pro 5 or Excel) functions or with the computer code "Scanalizer" that allows presentation...

  6. General radiographic attributes of optically stimulated luminescence dosimeters: A basic insight

    Science.gov (United States)

    Musa, Y.; Hashim, S.; Ghoshal, S. K.; Bradley, D. A.; Ahmad, N. E.; Karim, M. K. A.; Hashim, A.; Kadir, A. B. A.

    2018-06-01

    We report the ubiquitous radiographic characteristics of optically stimulated luminescence dosimeters (OSLD) so called nanoDot OSLDs (Landauer Inc., Glendwood, IL). The X-ray irradiations were performed in free air ambiance to inspect the repeatability, the reproducibility, the signal depletion, the element correction factors (ECFs), the dose response and the energy dependence. Repeatability of multiple readouts after single irradiation to 10 mGy revealed a coefficient of variation below 3%, while the reproducibility in repeated irradiation-readout-annealing cycles was above 2%. The OSL signal depletion for three nanoDots with simultaneous irradiation to 20 mGy and sequential readouts of 25 times displayed a consistent signal reduction ≈0.5% per readout with R2 values over 0.98. ECFs for individual OSLDs were varied from 0.97 to 1.03. In the entire dose range under 80 kV, a good linearity with an R2 exceeding 0.99 was achieved. Besides, the percentage difference between OSLD and ion-chamber dose was less than 5%, which was superior to TLD. The X-ray photon irradiated energy response factors (between 0.76 and 1.12) in the range of 40-150 kV (26.1-61.2 keV) exhibited significant energy dependence. Indeed, the nanoDot OSLDs disclosed good repeatability, reproducibility and linearity. The OSLDs measured doses were closer to ion-chamber doses than that of TLD. It can be further improved up to ≈3% by applying the individual dosimeter ECF. On top, the energy dependent uncertainties can be minimized using the energy correction factors. It is established that the studied nanoDot OSLDs are prospective for measuring entrance dose in general radiographic practices.

  7. Dosimetric quality control in radiotherapy using TLD methodology

    International Nuclear Information System (INIS)

    Saravi, M.C.; Kessler, C.; Alvarez, P.E.; Feld, D.B.

    2002-01-01

    In the frame of the IAEA Co-ordinated Research Project 'Development of a Quality Assurance Program for Radiation Therapy Dosimetry in Developing Countries' a Dosimetric Quality Control Group was set up in Argentina in 1996, to develop a program in order to improve radiotherapy in the country. Nowadays, this Group, briefly called External Audit Group (EAG), is composed by the national Secondary Standard Dosimetry Laboratory (SSDL), which has the responsibility for dose determinations, traceability to international dosimetry chain and TLD measurements, and two Medical Physicists from CNEA who are working at the Oncology Hospital 'Marie Curie' in Buenos Aires. The present paper reports the activities performed by the EAG with external high energy photon beams in reference conditions and the results of two pilot studies on cobalt 60 beams in non-reference conditions. The first step of the program was to update the existing data base about the radiotherapy centres operating in the country. A form was sent to each of them in order to obtain basic information about their staff, number and type of treatment machines, brachytherapy sources, measuring devices, beam calibration, treatment planning system, simulator and other relevant data. 90 radiotherapy centres were registered in the EAG data base. Forms were completed by 75/90 centres. There are nowadays 69 cobalt 60 units and 42 LINACs operating in the country (18/42 LINACs producing high energy X ray and electron beams). EAG deals with measurements performed with mailed TLD irradiated at radiotherapy centres. Internal quality control on our TLD system is made during each audit by means of reference capsules irradiated by IAEA; external controls consist in blind tests performed by IAEA once a year. The correction factor, K en , determined at our SSDL for high energy X-rays was checked with the collaboration of IAEA and Prague National Radiation Protection Institute (PNRPI) by means of a blind test. Results for 4 MV, 6 MV

  8. An in-house developed resettable MOSFET dosimeter for radiotherapy.

    Science.gov (United States)

    Verellen, Dirk; Van Vaerenbergh, Sven; Tournel, Koen; Heuninckx, Karina; Joris, Laurent; Duchateau, Michael; Linthout, Nadine; Gevaert, Thierry; Reynders, Truus; Van de Vondel, Iwein; Coppens, Luc; Depuydt, Tom; De Ridder, Mark; Storme, Guy

    2010-02-21

    The purpose of this note is to report the feasibility and clinical validation of an in-house developed MOSFET dosimetry system and describe an integrated non-destructive reset procedure. Off-the-shelf MOSFETs are connected to a common PC using an 18 bit/analogue-input and 16 bit/output data acquisition card. A reading algorithm was developed defining the zero-temperature-coefficient point (ZTC) to determine the threshold voltage. A wireless interface was established for ease of use. The reset procedure consists of an internal circuit generating a local heating induced by an electrical current. Sensitivity has been investigated as a function of bias voltage (0-9 V) to the gate. Dosimetric properties have been evaluated for 6 MV and 15 MV clinical photon beams and in vivo benchmarking was performed against thermoluminescence dosimeters (TLD) for conventional treatments (two groups of ten patients for each energy) and total body irradiation (TBI). MOSFETS were pre-irradiated with 20 Gy. Sensitivity of 0.08 mV cGy(-1) can be obtained for 200 cGy irradiations at 5 V bias voltage. Ten consecutive measurements at 200 cGy yield a SD of 2.08 cGy (1.05%). Increasing the dose in steps from 5 cGy to 1000 cGy yields a 1.00 Pearson correlation coefficient and agreement within 2.0%. Dose rate dependence (160-800 cGy min(-1)) was within 2.5%, temperature dependence within 2.0% (25-37 degrees C). A strong angular dependence has been observed for gantry incidences exceeding +/-30 degrees C. Dose response is stable up to 50 Gy (saturation occurs at approximately 90 Gy), which is used as threshold dose before resetting the MOSFET. An average measured-over-calculated dose ratio within 1.05 (SD: 0.04) has been obtained in vivo. TBI midplane-dose assessed by entrance and exit dose measurements agreed within 1.9% with ionization chamber in phantom, and within 1.0% with TLD in vivo. An in-house developed resettable MOSFET-based dosimetry system is proposed. The system has been validated

  9. In vivo dosimetry with thermoluminescent dosimeters in radiotherapy: entrance and exit doses

    International Nuclear Information System (INIS)

    Alves, C.; Lopes, M.C.

    2000-01-01

    In vivo dosimetry, by entrance and exit dose measurements, is a vital part of a radiotherapy quality assurance program. The uncertainty associated with dose delivery is internationally accepted to be within 5% or inferior depending on the tumor pathology. Thermoluminescent dosimetry is one of the dosimetric techniques used to verify the agreement between delivered and prescribed doses. Nevertheless, it requires a very accurate calibration methodology. We have used LiF chips (4.5 mm diameter and 0.8 mm thick) calibrated towards a PTW ionization chamber of 0.3 cc, in three photon energies: Co-60, 4 and 6 MeV. The TLD reader used was a Rialto 688 from NE Technology and the annealing oven the Eurotherm type 815. The calibration methodology relies on the experimental determination of individual correction factors and on a correction factor derived from a control group of dosimeters. The exit and entrance dose measurements are performed in quite different situations. To be able to achieve those two quantities with TLD, these should be independently calibrated according to the measurement conditions. Alternatively, we can use a single calibration, in entrance dose, and convert the result to the exit dose value by introducing some correction factors. These corrections are related to the different measurement depths and to the different backscattering contributions. We have proved that within an acceptable error we can perform a single calibration and adopt the correction factors which are energy and field size dependent. (author)

  10. Environmental monitoring system with TLD; Sistema de monitoreo ambiental con TLD

    Energy Technology Data Exchange (ETDEWEB)

    Aguerre, L.; Carelli, J.; Gregori, B. [Autoridad Regulatoria Nuclear Argentina (Argentina)]. e-mail: laguerre@cae.arn.gov.ar

    2006-07-01

    Presently work the methodology used by the Laboratory of Thermoluminescent Dosimetry (TLD) of the Nuclear Regulatory Authority (RNA) to gauge it system of environmental monitoring in function of the media absorbed dose rate in free air and the environmental dose equivalent, H{sup *}(10), according to the recommendation ICRU Report 47 is described. It was studied the response of the environmental dosemeter (DA) in fields of photonic radiation of energies W60, Wl 10, W200 and {sup 137} Cs. The irradiations were carried out following the recommendations of the standard ISO:4037. It was analyzed the response in the DA of the detectors LiF: Mg, Ti and CaF{sub 2}: Dy for the different radiation qualities and the relative response at {sup 137} Cs of both. The methodology used in the evaluation of the dose includes: the correction of the readings of both detectors by fading, gotten experimentally, the witness of transfers, the energy answer and the value of the zero. The dose is calculated applying the average pondered in uncertainty of the dose obtained for each type of detector. Its were analyzed and calculated the uncertainties that affect to the measurement following the recommendation of the Argentine standard IRAM 35050. The detection limit of the absorbed dose rate in free air of this system it is 3.5 n Gy/h for a period of sampling of 3 months. With this detection limit environmental dose equivalent rates of the order of 70 n Sv/h are measured with an expanded uncertainty of the order of 10% with a cover factor k = 2. (Author)

  11. Statistical Review of surface dose in the period 1995-2010, measured by different types of TLD dosimeters

    International Nuclear Information System (INIS)

    Pastor Antolin, S.; Munoz Blasco, J.; Llansana Arnalot, J.; Gultresa Colomer, J.

    2011-01-01

    We analyzed the evolution of the number of special controls over the period 1985 to 2010 and the evolution of the doses in the period 1995 to 2010. Comparing the standard dose extremities respect to whole body in cases where users use both types of control in the same installation.

  12. Feasibility study on using three element TLD badge based on CaSO4:Dy as environmental dosimeter

    International Nuclear Information System (INIS)

    Choudhary, Sreeletha; BharathiLashmi, G.V.; Yasotha, E.; Devanathan, P.S.; Annalakshmi, O.; Mathiyarasu, R.

    2018-01-01

    A three element thermoluminescence badge based on CaSO 4 :Dy is used for personnel monitoring in India. The three discs of the badge is heated in sequential manner by hot nitrogen gas and from the amount of light emitted while heating, the doses are estimated. This badge was redesigned as a two element system and is used for environmental monitoring. Though the two element badge has some advantages, the software used for processing of TLDs in the semiautomatic reader has to be modified and separate badges has to be maintained for environmental dose measurements. In this work a feasibility study has been carried out to use the three element personnel monitoring badge itself for environmental monitoring also. This study was also carried out to understand the abnormal pattern of the glow curves observed in some field cards

  13. Quality Assurance and Quality Control in TLD Measurement

    International Nuclear Information System (INIS)

    Bhuiyan, S.I.; Qronfla, M.M.; Abulfaraj, W.H.; Kinsara, A.A.; Taha, T.M.; Molla, N.I.; Elmohr, S.M.

    2008-01-01

    TLD technique characterized by high precision and reproducibility of dose measurement is presented by addressing pre-readout annealing, group sorting, dose evaluation, blind tests, internal dose quality audit and external quality control audits. Two hundred and forty TLD chips were annealed for 1 hour at 4000 degree C followed by 2 h at 1000 degree C. After exposure of 1 mGy from 90 Sr irradiator TLDs were subjected to pre-readout annealing at 1000 degree C, then readout, sorted into groups each with nearly equal sensitivity. Upon repeating the procedures, TLDs having response >3.5% from group mean were dropped to assuring group stability. Effect of pre-readout annealing has been studied. Series of repeated measurements were conducted to stabilize calibration procedures and DCF generation using SSDL level 137 Cs calibrator, dose master, ionization chambers. Performed internal dose quality audits, blind tests and validated by external QC tests with King Abdulaziz City of Science and Technology

  14. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  15. Design and Implementation of Accurate and Efficient Pocket Dosimeter

    International Nuclear Information System (INIS)

    Shehata, S.A.; Abdelkhalek, K.L.

    2005-01-01

    It is so important in the field of radiation therapy and radiation protection to have dosimeters to determine the absorbed dose, which is transferred to human body by ionizing radiation. In this paper the design and implementation of a wide-range pocket dosimeter (PKD-1) with high accuracy to measure personal equivalent dose and dose rate of gamma radiation will be presented. This pocket dosimeter is micro controller-based and powered from 9 V rechargeable battery. The overall power consumption is significantly reduced by smart software and hardware design allowing longer time intervals between recharging. The integrated alphanumerical LCD displays not only of the accumulated dose and current dose rate, but also displays alarm messages such as low battery. For reasons of power saving the LCD is activated on demand by pressing the push button or automatically when an alarm occurs. Audible and visual alarms have been added to PKD-1 in order that they cannot be accidentally overlooked or ignored. PKD-1 can be connected to any PC through its serial port (RS232) and User Interface software has been developed for easy displaying and recording of radiation readings over any time period

  16. Environmental radiation measurements using TLD in and around AERE, Dhaka

    International Nuclear Information System (INIS)

    Mollah, A.S.; Husain, S.R.; Rahman, M.M.

    1986-01-01

    The external background radiation level in and around the Atomic Energy Research Establishment (AERE) in Dhaka has been measured. The measurements were performed using lithium fluoride (LiF) thermoluminescence dosemeters (TLD-100) at 32 locations, all one metre above the ground. The annual average dose rate measured in the AERE environs was 1.74+-0.23 mGy.y -1 in air, based on analysis of thermoluminescence dosemeter data collected from 1982 to 1984. (author)

  17. Meeting regulatory standards with BeO ceramic TLD

    International Nuclear Information System (INIS)

    Gammage, R.B.; Christian, D.J.

    1978-01-01

    Measurements of exposures below 1 mR are possible with BeO ceramic TLD by signal recording that discriminates against an interfering pyroelectric incandescence. Performance under environmental monitoring conditions is considered in light of current regulatory criteria. Factors such as reproducibility and batch uniformity are satisfactory. An anomalous energy dependence causes an over-response that will probably require use of an energy compensation shield

  18. Long-term TLD measurements of environmental background radiation in the New York City Area

    International Nuclear Information System (INIS)

    Maiello, M.

    1994-11-01

    The results of month-long TLD measurements at seven locations within 150 km of New York City are reported for 12 years at a few locations and for up to 18 years at others. At some locations, multiple dosimeters were deployed to acquire concurrent indoor and outdoor measurements. The sites were varied and include an urban high-rise residence, three suburban backyards, a rural hillside, and the wooded outskirts of a nuclear power plant (nonoperational). Long-term mean dose rates in air ranged from 50.8 to 123.1 nGy h -1 (5.8 to 14.1 μR h -1 ) across the area. The typical seasonal dose rate in air variations are presented for two of the sites and are briefly discussed in terms of soil conditions. The data indicate that it is possible to achieve monthly variations from the long-term mean as high as 20 to 40%. One of these locations was monitored for indoor (2 floors) and outdoor air dose rates. This allowed for a time series comparison to be performed illustrating the changing contribution of terrestrial radiation to the total dose rate relative to the steady building material-derived radioactivity. This site also permitted the calculation of indoor/outdoor ratios for two floors. Another suburban location yielded an indoor/outdoor ratio using ground floor dose-rate-in-air measurements. Also presented are mean annual dose rates in air showing a long-term decrease at some locations. A statistical Kendall test was performed to quantify the magnitude of the decrease. A definitive explanation of this trend requires further study

  19. Performance testing of extremity dosimeters, Study 2

    International Nuclear Information System (INIS)

    Harty, R.; Reece, W.D.; Hooker, C.D.

    1990-04-01

    The Health Physics Society Standards Committee (HPSSC) Working Group on Performance Testing of Extremity Dosimeters has issued a draft of a proposed standard for extremity dosimeters. The draft standard proposes methods to be used for testing dosimetry systems that determine occupational radiation dose to the extremities and the performance criterion used to determine compliance with the standard. Pacific Northwest Laboratory (PNL) has conducted two separate evaluations of the performance of extremity dosimeter processors to determine the appropriateness of the draft standard, as well as to obtain information regarding the performance of extremity dosimeters. Based on the information obtained during the facility visits and the results obtained from the performance testing, it was recommended that changes be made to ensure that the draft standard is appropriate for extremity dosimeters. The changes include: subdividing the mixture category and the beta particle category; eliminating the neutron category until appropriate flux-to-dose equivalent conversion factors are derived; and changing the tolerance level for the performance criterion to provide consistency with the performance criterion for whole body dosimeters, and to avoid making the draft standard overly difficult for processors of extremity dosimeters to pass. 20 refs., 10 figs., 6 tabs

  20. Indoor gamma radiation monitoring In Rawalpindi, Pakistan using TLD100

    International Nuclear Information System (INIS)

    Azam, Sana; Tufail, Muhammad; Sohail, Muhammad

    2008-01-01

    Full text: Natural radioactivity originates from extraterrestrial sources as well as from radioactive elements in earth's crust. The amount of radioactivity varies from place to place and with altitude. The aim of this study was to observe the indoor radiation level in Rawalpindi using TLD. For this purpose LiF:Mg:Ti (TLD100) chips were used. Chips were annealed and then calibrated using different sources and the calibration factor obtained by using Cs137 source was selected for dose estimation. Its value was 0.1403 μGy/TL response. Rawalpindi categorized into six regions. In each region, 5 cemented houses were selected and TLD 100 chips were placed at a distance of 0.5 m from ground the level. Chips were properly covered to protect them from ultraviolet light and moisture and were placed for three months. The average annual indoor dose rate for Rawalpindi was estimated to be 392.105μGy/yr and average dose to be 97.65μGy. Therefore, the effective dose for population of Rawalpindi from indoor gamma radiation was estimated to be 313.68μSv/yr using an indoor occupancy factor of 80%. (author)

  1. Centralized TLD service and record keeping in Canada

    International Nuclear Information System (INIS)

    Grogan, D.; Ashmore, J.P.; Bradley, R.P.

    1979-01-01

    A centralized automated TLD service operated by the Department of National Health and Welfare went into operation in May 1977 to monitor radiation workers throughout Canada. Twenty-thousand employees from a wide range of disciplines are enrolled and the number will be increased to fifty thousand by September l978. A prototype of the system, operational from September 1976 to May 1977 for three-thousand people, has already been described. A description of technical and operational highlights is presented as well as a description of problems experienced during the first full year of operation. Details of costs, conversion logistics, operational performance and technical problems are included. A comparison of the advantages and disadvantages of changing from film dosimetry to TLD in a nationwide context is detailed. The dose meter read-out unit is interfaced, through video terminals, with a time-sharing computer system programmed to provide direct access to the Canadian National Dose Registry. Details of this linkage are described, as are the computer programmes for routine processing of raw batch data. The centralized TLD service interactively linked with the National Dose Registry provides a comprehensive occupational monitoring programme invaluable for regulatory control. (author)

  2. BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam

    Science.gov (United States)

    Sharma, Kanika; Bahl, Shaila; Singh, Birendra; Kumar, Pratik; Lochab, S. P.; Pandey, Anant

    2018-04-01

    BaSO4:Eu nanophosphor is delicately optimized by varying the concentration of the impurity element and compared to the commercially available thermoluminescent dosimeter (TLD) LiF:Mg,Ti (TLD-100) and by extension also to CaSO4:Dy (TLD-900) so as to achieve its maximum thermoluminescence (TL) sensitivity. Further, the energy dependence property of this barite nanophosphor is also explored at length by exposing the phosphor with 1.25 MeV of Co-60, 0.662 MeV of Cs-137, 85 MeV and 65 MeV of Carbon ion beams. Various batches of the phosphor at hand (with impurity concentrations being 0.05, 0.10, 0.20, 0.50 and 1.00 mol%) are prepared by the chemical co-precipitation method out of which BaSO4:Eu with 0.20 mol% Eu exhibits the maximum TL sensitivity. Further, the optimized nanophosphor exhibits a whopping 28.52 times higher TL sensitivity than the commercially available TLD-100 and 1.426 times higher sensitivity than TLD-900, a noteworthy linear response curve for an exceptionally wide range of doses i.e. 10 Gy to 2 kGy and a simple glow curve structure. Furthermore, when the newly optimized nanophosphor is exposed with two different energies of gamma radiations, namely 1.25 MeV of Co-60 (dose range- 10-300 Gy) and 0.662 MeV of Cs-137 (dose range- 1-300 Gy), it is observed that the shape and structure of the glow curves remain remarkably similar for different energies of radiation while the TL response curve shows little to no variation. When exposed to different energies of carbon ion beam BaSO4:Eu displays energy independence at lower doses i.e. from 6.059 to 14.497 kGy. Finally, even though energy independence is lost at higher doses, the material shows high sensitivity to higher energy (85 MeV) of carbon beam compared to the lower energy (65 MeV of C6+) and saturation is apparent only after 121.199 kGy. Therefore the present nanophosphor displays potential as an energy independent TLD.

  3. A passive radon dosimeter based on the combination of a track etch detector and activated charcoal

    CERN Document Server

    Deynse, A V; Poffijn, A

    1999-01-01

    The aim of this work is to test a combination of a Makrofol track detector with a new type of charcoal (Carboxen-564) to design a personal radon dosimeter. The intention is to use this dosimeter as a personal radon dosimeter to measure the monthly radon exposure in workplaces, especially when the occupancy is not exactly known. The proposed combination was exposed to low and high concentrations of radon in a large range of relative humidity (RH). For the optimal layer thickness, a charcoal bed of 2.2 mm, a specific track density of 5.1 tracks cm sup - sup 2 /kBq h m sup - sup 3 was obtained. For a monthly working exposure (170 h) at an average radon concentration of 100 Bq/m sup 3 , this means 87 tracks/cm sup 2 or 10 times the background of the Makrofol detector, with a statistical uncertainty of 15%.

  4. Self-shielding factors for TLD-600 and TLD-100 in an isotropic flux of thermal neutrons

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Dubi, A.; Ben Shahar, B.

    1976-01-01

    The applications of lithium fluoride thermoluminescent dosemeters in mixed n-γ environments, and the dependence of LiF-TL on linear energy transfer are both topics of current interest. Monte Carlo calculations have therefore been carried out to determine the thermal neutron absorption probability (and consequently the self-shielding factor) for an isotropic flux of neutrons impinging on different sized cylindrical samples of LiF TLD-100 and TLD-600. The calculations were performed for cylinders of radius up to 10 cm and heights of 0.1 to 1.5 cm. The Monte Carlo results were found to be significantly different from the analytic calculations for infinitely long cylinders, but, as expected, converged to the same value for (r/h) << 1. (U.K.)

  5. Developmental roles of the BMP1/TLD metalloproteinases.

    Science.gov (United States)

    Ge, Gaoxiang; Greenspan, Daniel S

    2006-03-01

    The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF

  6. In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.

    Science.gov (United States)

    Gardner, Edward A; Sumanaweera, Thilaka S; Blanck, Oliver; Iwamura, Alyson K; Steel, James P; Dieterich, Sonja; Maguire, Patrick

    2012-05-10

    In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X-rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20-35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets.

  7. 128 slice computed tomography dose profile measurement using thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Salehhon, N; Hashim, S; Karim, M K A; Ang, W C; Musa, Y; Bahruddin, N A

    2017-01-01

    The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDI air ) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDI air increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDI air values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDI air value (13.585 mGy). The p -value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner. (paper)

  8. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Bera, P.; Vatnitsky, S.

    2002-01-01

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  9. Feasibility study of a photoconductor based dosimeter for quality assurance in radiotherapy

    Science.gov (United States)

    Lee, Y. K.; Kim, S. W.; Kim, J. N.; Kang, Y. N.; Kim, J. Y.; Lee, D. S.; Kim, K. T.; Han, M. J.; Ahn, K. J.; Park, S. K.

    2017-09-01

    With the recent market entries of new types of linear accelerators (LINACs) with a multi leaf collimator (MLC) mounted on them, high-precision radiosurgery applying a LINAC to measure high-dose radiation on the target region has been gaining popularity. Systematic and accurate quality assurance (QA) is of vital important for high-precision radiosurgery because of its increased risk of side effects including life-threatening ones such as overexposure of healthy tissues to high-dose radiation beams concentrated on small areas. Therefore, accurate dose and dose-distribution measurements are crucial in the treatment procedure. The accurate measurement of the properties of beams concentrated on small areas requires high-precision dosimeters capable of high-resolution output and dose mapping as well as accurate dosimetry in penumbra regions. In general, the properties of beams concentrated on small areas are measured using thermos luminescent dosimeters (TLD), diode detectors, ion chambers, diamond detectors, or films, and many papers have presented the advantages and disadvantages of each of these detectors for dosimetry. In this study, a solid-state photoconductor dosimeter was developed, and its clinical usability was tested by comparing its relative dosimetric performance with that of a conventional ion chamber. As materials best-suited for radiation dosimeters, four candidates namely lead (II) iodide (PbI2), lead (II) oxide (PbO), mercury (II) iodide (HgI2), and HgI2/ titanium dioxide (TiO2) composite, the performances of which were proved in previous studies, were used. The electrical properties of each candidate material were examined using the sedimentation method, one of the particle-in-binder (PIB) methods, and unit-cell-type prototypes were fabricated. The unit-cell samples thus prepared were cut into specimens of area 1 × 1 cm2 with 400-μ m thickness. The electrical properties of each sample, such as sensitivity, dark current, output current, rising time

  10. Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    International Nuclear Information System (INIS)

    Hickman, D.P.; Wysong, A.R.; Heinrichs, D.P.; Wong, C.T.; Merritt, M.J.; Topper, J.D.; Gressmann, F.A.; Madden, D.J.

    2011-01-01

    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE

  11. Determination of exposure rates from natural background radiation in Khartoum using LiF:Mg,Cu,P (GR-200) and CaSo4: Mn TLD chips

    International Nuclear Information System (INIS)

    Suliman, I.I.; Khangi, F.A.; Shaddad, I.A.; Suliman, I.A.; El Amin, O.I.

    2002-01-01

    The exposure rates from natural background radiation - including terrestrial gamma radiation and the ionizing component of cosmic rays - were measured for the first time in the city of khartoum using two types of TLD materials: LiF:Mg,Cu,P (GR-200) and CaSo 4 :Mn TLD chips. Measurements were performed at two sites simultaneously, one site was selected on land in the vicinity of the Sudan Atomic Energy Commission, for the purposes of the measurement of the total exposure rate outdoors, while the other site was located on a buoy anchored in the Blue Nile, and was selected to measure the exposure rate due to the ionizing component of cosmic rays. The investigations were conducted for periods of between 5 and 28 days. Calibration was performed on a selected number of dosimeters to determine the exposure rates at each site. The exposure rates from the ionizing component of cosmic rays in Khartoum were found to be respectively 33 nGy.h -1 and 30 nGy.h -1 , in the measurements performed within the scope of this work using GR-200 and CaSo 4 :Mn dosimeters, while the total values for exposure on land were found to be 45 nGy.h -1 and 42 nGy.h -1 respectively. These values compare reasonably well with other national averages reported in the UNSCEAR publication. The comparison of the results for the two dosimetric materials demonstrates both the sensitivity and suitability of GR-200 for the purposes of environmental monitoring (orig.)

  12. Ten years experience with a large computerized TLD-personnel monitoring system

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1986-01-01

    It is now ten years since our Institute for Radiation Protection has fully replaced its filmdosimetry service by a computerized automated TLD system. Presently more than 13000 radiation workers are monthly monitored by three automated TLD readers linked to the computer center. The paper describes system hardware and software and experience gained in long-term routine operation. In particular the introduction of the new ICRU quantities for personnel dosimetry in the existing TLD system is discussed. (Author)

  13. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  14. The shelf life of dyed polymethylmethacrylate dosimeters

    International Nuclear Information System (INIS)

    Bett, R.; Watts, M.F.; Plested, M.E.

    2002-01-01

    The long-term stability of the radiation response of Harwell Red 4034 and Amber 3042 Perspex Dosimeters has been monitored for more than 15 years, and the resulting data used in the justification of their shelf-life specifications

  15. An improved dosimeter having constant flow pump

    International Nuclear Information System (INIS)

    Baker, W.B.

    1980-01-01

    A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)

  16. Floating Gate CMOS Dosimeter With Frequency Output

    Science.gov (United States)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  17. Analysis on the evaluation of dose of the team reader TLD SOLARO, post-adjustment of the heating resistance marks

    International Nuclear Information System (INIS)

    Morales C, M.

    2000-09-01

    This report describes the process carried out in the area of personal dosimetry as for different evaluations carried out in the team reader TLD SOLARO it marks, which evaluates chips of LiF and cards containing two pellets of LiF-700, to determine if after having carried out an adjustment in the heating system the dose evaluations they continue being acceptable, that is to say, the evaluated doses stay inside the error margin allowed for the case of external individual monitoring

  18. The LLNL CR-39 personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1987-01-01

    We developed a personnel neutron dosimetry system based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This CR-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. 3 refs., 4 figs

  19. Perfection of the individual photographic emulsion dosimeter

    International Nuclear Information System (INIS)

    Soudain, G.

    1960-01-01

    A photographic dosimeter making possible the measurement of γ radiation doses of from 10 mr up to 800 r by means of 3 emulsion bands of varying sensitivity stuck to the same support is described. The dosimeter has also a zone for marking and a test film insensitive to radiation. This requires a photometric measurement by diffuse reflection an d makes it possible to measure doses with an accuracy of 20 per cent. (author) [fr

  20. Study of a method based on TLD detectors for in-phantom dosimetry in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. [Dept. of Physics of the Univ., Via Celoria 16, 20133 Milan (Italy); INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy); Klamert, V. [Dept. of Nuclear Eng. of Polytechnic, CESNEF, Via Ponzio 34/3, 20133 Milan (Italy); Agosteo, S. [INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy); Dept. of Nuclear Eng. of Polytechnic, CESNEF, Via Ponzio 34/3, 20133 Milan (Italy); Birattari, C.; Gay, S. [Dept. of Physics of the Univ., Via Celoria 16, 20133 Milan (Italy); INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy); Rosi, G. [FIS-ION, ENEA, Casaccia, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Scolari, L. [Dept. of Physics of the Univ., Via Celoria 16, 20133 Milan (Italy); INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy)

    2004-07-01

    A method has been developed, based on thermoluminescent dosemeters (TLD), aimed at measuring the absorbed dose in tissue-equivalent phantoms exposed to thermal or epithermal neutrons, separating the contributions of various secondary radiation generated by neutrons. The proposed method takes advantage of the very low sensitivity of CaF{sub 2}:Tm (TLD-300) to low energy neutrons and to the different responses to thermal neutrons of LiF:Mg,Ti dosemeters with different {sup 6}Li percentage (TLD-100, TLD-700, TLD-600). The comparison of the results with those obtained by means of gel dosemeters and activation foils has confirmed the reliability of the method. The experimental modalities allowing reliable results have been studied. The glow curves of TLD-300 after gamma or neutron irradiation have been compared; moreover, both internal irradiation effect and energy dependence have been investigated. For TLD-600, TLD-100 and TLD-700, the suitable fluence limits have been determined in order to avoid radiation damage and loss of linearity. (authors)

  1. Dose determination algorithms for a nearly tissue equivalent multi-element thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Moscovitch, M.; Chamberlain, J.; Velbeck, K.J.

    1988-01-01

    In a continuing effort to develop dosimetric systems that will enable reliable interpretation of dosimeter readings in terms of the absorbed dose or dose-equivalent, a new multi-element TL dosimeter assembly for Beta and Gamma dose monitoring has been designed. The radiation-sensitive volumes are four LiF-TLD elements, each covered by its own unique filter. For media-matching, care has been taken to employ nearly tissue equivalent filters of thicknesses of 1000 mg/cm 2 and 300 mg/cm 2 for deep dose and dose to the lens-of-the-eye measurements respectively. Only one metal filter (Cu) is employed to provide low energy photon discrimination. A Thin TL element (0.09 mm thick) is located behind an open window designed to improve the energy under-response to low energy beta rays and to provide closer estimate of the shallow dose equivalent. The deep and shallow dose equivalents are derived from the correlation of the response of the various TL elements to the above quantities through computations based on previously defined relationships obtained from experimental results. The theoretical formalization for the dose calculation algorithms is described in detail, and provides a useful methodology which can be applied to different tissue-equivalent dosimeter assemblies. Experimental data has been obtained by performing irradiation according to the specifications established by DOELAP, using 27 types of pure and mixed radiation fields including Cs-137 gamma rays, low energy photons down to 20 keV, Sr/Y-90, Uranium, and Tl-204 beta particles

  2. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  3. Polymer gel dosimeter based on itaconic acid

    International Nuclear Information System (INIS)

    Mattea, Facundo; Chacón, David

    2015-01-01

    A new polymeric dosimeter based on itaconic acid and N, N’-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158 cGy/min, 226 cGy min and 298 cGy/min with doses up to 1000 Gy. The dosimeters presented a linear response in the dose range 75–1000 Gy, sensitivities of 0.037 1/Gy at 298 cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. - Highlights: • A novel polymer gel dosimeters based on itaconic acid is presented and characterized. • The typical linear trend of the dose behavior in a specific dose range was found. • Different gel structures were formed when oxygen and an antioxidant were present. • Absorbed dose is univocally correlated with optic absorbance and Raman spectroscopy. • Itaconic acid appears as a reliable radiation dosimeter that may be further improved.

  4. Comparative study of some new EPR dosimeters

    International Nuclear Information System (INIS)

    Alzimami, K.S.; Maghraby, Ahmed M.; Bradley, D.A.

    2014-01-01

    Investigations have been made of four new radiation dosimetry EPR candidates from the same family of materials: sulfamic acid, sulfanillic acid, homotaurine, and taurine. Mass energy attenuation coefficients, mass stopping power values and the time dependence of the radiation induced radicals are compared. Also investigated are the microwave saturation behavior and the effect of applied modulation amplitude on both peak-to-peak line width (W PP ) and peak-to-peak signal height (H PP ). The dosimeters are characterized by simple spectra and stable radiation-induced radicals over reasonable durations, especially in taurine dosimeters. Sulfamic acid dosimeters possessed the highest sensitivity followed by taurine and homotaurine and sulfanillic. - Highlights: ► Several EPR dosimeters were suggested based on SO 3 − radical. ► Taurine, homotaurine, sulfanilic, and sulfamic acid all possess simple EPR spectra. ► Dosimeters were compared to each other in terms of the dosimetric point of view. ► Energy dependence curves of the selected dosimeters were compared to eachother

  5. Early development and characterization of a DNA-based radiation dosimeter

    Science.gov (United States)

    Avarmaa, Kirsten A.

    It is the priority of first responders to minimize damage to persons and infrastructure in the case of a nuclear emergency due to an accident or deliberate terrorist attack -- if this emergency includes a radioactive hazard, first responders require a simple-to-use, accurate and complete dosimeter for radiation protection purposes in order to minimize the health risk to these individuals and the general population at large. This work consists of the early evaluation of the design and performance of a biologically relevant dosimeter which uses DNA material that can respond to the radiation of any particle type. The construct consists of fluorescently tagged strands of DNA. The signalling components of this dosimeter are also investigated for their sensitivity to radiation damage and light exposure. The dual-labelled dosimeter that is evaluated in this work gave a measurable response to gamma radiation at dose levels of 10 Gy for the given detector design and experimental setup. Further testing outside of this work confirmed this finding and indicated a working range of 100 mGy to 10 Gy using a custom-built fluorimeter as part of a larger CRTI initiative. Characterization of the chromatic components of the dosimeter showed that photobleaching is not expected to have an effect on dosimeter performance, but that radiation can damage the non-DNA signalling components at higher dose levels, although this damage is minimal at lower doses over the expected operating ranges. This work therefore describes the early steps in the quantification of the behaviour of the DNA dosimeter as a potential biologically-based device to measure radiation dose.

  6. DNA adducts as molecular dosimeters

    International Nuclear Information System (INIS)

    Lucier, G.W.

    1990-01-01

    There is compelling evidence that DNA adducts play an important role in the actions of many pulmonary carcinogens. During the last ten years sensitive methods (antibodies and 32 P-postlabeling) have been developed that permit detection of DNA adducts in tissues of animals or humans exposed to low levels of some genotoxic carcinogens. This capability has led to approaches designed to more reliably estimate the shape of the dose-response curve in the low dose region for a few carcinogens. Moreover, dosimetry comparisions can, in some cases, be made between animals and humans which help in judging the adequacy of animal models for human risk assessments. There are several points that need to be considered in the evaluation of DNA adducts as a molecular dosimeter. For example, DNA adduct formation is only one of many events that are needed for tumor development and some potent carcinogens do not form DNA adducts; i.e., TCDD. Other issues that need to be considered are DNA adduct heterogeneity, DNA repair, relationship of DNA adducts to somatic mutation and cell specificity in DNA adduct formation and persistence. Molecular epidemiology studies often require quantitation of adducts in cells such as lymphocytes which may or may not be reliable surrogates for adduct concentrations in target issues. In summary, accurate quantitation of low levels of DNA adducts may provide data useful in species to species extrapolation of risk including the development of more meaningful human monitoring programs

  7. Dosimetric characteristics of a TLD dosemeter with extremities

    International Nuclear Information System (INIS)

    Molina P, D.; Diaz B, E.; Lien V, R.

    1999-01-01

    It was designed a TLD dosemeter for the monitoring of the extremities. This one consists in a metallic ring with a circular orifice where is arranged a T L detector of LiF: Mg,Ti (Model JR1152C) 5 x 5 x 0.8 mm 3 covered by a polyethylene fine layer. In this work were studied the dosimetric properties of the dosemeter for its application in the dosimetry of extremities for photonic radiation. the results obtained allow conclude that the designed dosemeter can be used for the extremities monitoring. (Author)

  8. Redox-Phen solution: A water equivalent dosimeter for UVA, UVB and X-rays radiation

    Science.gov (United States)

    Marini, A.; Ciribolla, C.; Lazzeri, L.; d'Errico, F.

    2018-06-01

    Polysulphone films are the only type of UV passive dosimeters that are widely adopted for research and personal monitoring. Even though many studies concentrated on the development and characterization of these films, they still present some shortcomings. The more important limitations of them are that they can measure only UVB radiations and that they change color at 330 nm, requiring special equipment to read them. To overcome these limitations we developed an aqueous dosimeter that is sensitive to UVA, UVB and X-rays named Redox-Phen solution. This dosimeter is inexpensive and water equivalent, being made of more than 99 wt% of water. It changes color in the visible region upon irradiation, thus it can be measured via simple optical method, and an evaluation of the exposition can be made also by naked eyes.

  9. Provision of dosimeters by official monitoring services for eye lens dose estimation

    International Nuclear Information System (INIS)

    Engelhardt, J.; Martini, E.

    2013-01-01

    Recent epidemiological studies are implying that the radio sensitivity of the eye lens is much higher than supposed in the past. International recommendations and standards demand to lower down the annual limit of the eye lens organ dose to 20 mSv. Since about 10 years German monitoring services offer partial-body dosimeters fixed on the head or on glasses for monitoring the eye lens dose. These dosimeters are optimized to measure the (surface) personal dose equivalent H p (0,07) from 0,5 mSv up to 10 Sv, which clearly overestimate the organ dose of the eye lens. With special features like different calibrations partial-body dosimeters should be applicable for legal dosimetry to avoid the development of special H p (3) dosimeters. Accepting the right way for wearing these dosimeters it is important to get the right results. Practical experiences are shown with measuring results and the difficulties of rounding the exact measuring values to discrete dose steps. Closing this article we point to still missing legal basis and open questions regarding to type testing procedures. (orig.)

  10. Aerated Systems of the Type RH-RCl-Ethanol-Thymolsulphonphthalein Stable Low-Level Chemical Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Dvornik, I.; Zec, U.; Anic, A.; Ranogajec, F. [Institute Ruder Boskovic, Zagreb, Yugoslavia (Croatia)

    1967-03-15

    The characteristic of dosimeters described in this paper is concerned with the very sensitive colorimetric method of dose evaluation giving a fair sensitivity with low G(HC1). In addition, the systems are thermally stable and simple to manufacture. With photocolorimetric or spectrophotometric evaluation of about 100 rad the dosimetric: error can be as low as 1 rad, or lower. The examined technique of visual colorimetric evaluation at the same dose level gives the combined error of 10-20 rad, and up to {+-} 5 or 10% at 500 rad. Owing to the practically unlimited shelf life of dosimeters and visual colorimeters, and to the very low production costs of both devices, such chemical dosimeters could be of special interest for massive use as personal gamma dosimeters for wide populations, or as dosimeters for gamma and fast neutron dosimetric topography of nuclear accidents. With tetrachloroethylene and iso-octane G(HC1) has been found constant (8.4) for temperatures of between -10 and +35 Degree-Sign C and for dose-rates of between 80 and 80 000 rad/h. The upper dose limit of colorimetric evaluation is about 2000 rad. With other components G(HC1) can be lower and the range extends to higher doses. The colorimetric properties of the systems RH-ethanol-thymolsulphonphthalein, as well as some of the most interesting features of the production procedure, are described. The radiation chemical aspects are discussed briefly. (author)

  11. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    Science.gov (United States)

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  12. Blood proteins as carcinogen dosimeters

    International Nuclear Information System (INIS)

    Tannenbaum, S.R.; Skipper, P.L.

    1986-01-01

    The problem of quantifying exposure to genotoxins in a given individual represents a formidable challenge. In this paper methods which rely on the covalent binding of carcinogens and their metabolites to blood proteins are described. That carcinogens interact with proteins as well as with DNA has been established, although whether protein-carcinogen adducts can result in genetic damage has not been established. It has been shown, however, that the amount of a protein carcinogen adduct formed may be used as a quantitative measure of exposure to a carcinogen. Such a measure presumably is reflective of the absorption, metabolism, and excretion of the compound in an exposed individual. Protein adduction may reflect exposure in a time-frame of weeks to months. Thus, protein adduct measurement is a form of human chemical dosimetry. Hemoglobin and albumin are promising candidates for such dosimeters. Hemoglobin has a lifetime of about 120 days in humans; thus, circulating levels of carcinogen-modified hemoglobin will reflect the level of carcinogen exposure during a period of nearly four months. It also possesses some metabolic competence, particularly, the ability to oxidize aromatic hydroxylamines to nitroso compounds which react quite efficiently with sulfhydryl groups. Albumin has a half-life of 20 to 25 days in man. This protein does not possess metabolic capacity other than, perhaps, some esterase activity. In contrast to hemoglobin, though, it is not protected by the erythrocyte membrane and might be the target for a greater number of carcinogens. It is present and is synthesized in the same cells in which the reactive metabolic intermediates of carcinogens are mostly formed - the hepatocytes. Also, albumin has a number of high-affinity binding sites for a broad spectrum of xenobiotics and endobiotics. 25 refs., 1 tab

  13. Influences of scattering radiation in a TLD irradiation room, 2

    International Nuclear Information System (INIS)

    Suzuki, Osamu; Suwa, Shigeo

    1985-01-01

    The influence of scattering radiation (SR) on radiation dose rate (DR) in a TLD irradiation room was assessed. A single SD from a standard TLD apparatus, i.e., an acrylic or aluminum table, was examined. The maximum DR was attained at approximately 80 cm from the radiation source. Energy spectra of SR ranged up to the energy of direct radiation beam. Circular SD at one m from the radiation source, which contributed to DR to the direct radiation beam, was almost homogeneous. SD was large near the irradiation table, and the influence of SD on DR became smaller with SD being vertically farther from the apparatus. The influence of SD on RD to the direct radiation beam became less with an increase in gamma ray energy. At one m from the radiation source, 6 - 7 % of SD contributed to DR to the direct radiation beam for 0.662 MeV of gamma ray. This figure was one half of that with NaI (Tl) scintillation detector. (Namekawa, K.)

  14. Influence of TLD position on the estimate of fetal dose

    International Nuclear Information System (INIS)

    Majola, J.; Jamieson, T.J.

    1995-11-01

    This report examines the adequacy of the practice of using a single dosimeter worn at the front of the body as an estimate of the dose received by nuclear medicine technologies. In order to investigate this, a group of approximately 50 technologists at 9 different hospitals were double-badged, i.e. provided with front and back dosimeters, and the ratio of front to back dose computed. Both aggregate data and hospital-specific data are presented and accompanied by several forms of statistical analysis. Apparent trends and possible explanations are discussed. Recommendations are provided for additional studies relating to the badging of nuclear medicine technologists. (author). 125 refs., 15 tabs., 13 figs

  15. Influence of TLD position on the estimate of fetal dose

    Energy Technology Data Exchange (ETDEWEB)

    Majola, J; Jamieson, T J [Science Applications International Corp., Ottawa, ON (Canada)

    1995-11-01

    This report examines the adequacy of the practice of using a single dosimeter worn at the front of the body as an estimate of the dose received by nuclear medicine technologies. In order to investigate this, a group of approximately 50 technologists at 9 different hospitals were double-badged, i.e. provided with front and back dosimeters, and the ratio of front to back dose computed. Both aggregate data and hospital-specific data are presented and accompanied by several forms of statistical analysis. Apparent trends and possible explanations are discussed. Recommendations are provided for additional studies relating to the badging of nuclear medicine technologists. (author). 125 refs., 15 tabs., 13 figs.

  16. Personnel neutron dosimetry using TLD elements at PNC

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu

    1985-01-01

    The evaluation method of neutron dose equivalent was studied on the basis of the albedo type neutron dosimetory to design the personnel dosimeter. The dosimeter was composed of three 6 Li 2 10 B 4 O 7 (Cu) TL elements and one 7 Li 2 11 B 4 O 7 (Cu) element. The equations for assessing thermal, epithermal and fast neutron dose equivalents were derived by 252 Cf, 241 Am-Be and PuO 2 neutron sources. The minimum detectable amount of 6 Li 2 10 B 4 O 7 (Cu) element to thermal neutron was 0.02 m rem. The neutron dose equivalent and the gamma one were evaluated separately within about 20 % error in the mixed radiation field. (author)

  17. The use of TLD-700H dosemeters in the assessment of external doses at the former Semipalatinsk nuclear test site.

    Science.gov (United States)

    Hill, P; Dederichs, H; Pillath, J; Schlecht, W; Hille, R; Artemev, O; Ptitskaya, L; Akhmetov, M

    2002-01-01

    The joint projects performed since 1995 by the Jülich Research Centre in co-operation with the Kazakh National Nuclear Centre in the area of the former nuclear test site near Semipalatinsk, in eastern Kazakhstan, have assessed the current dose rate of the population at and around the test site, as well as determining retrospectively the dose rate of persons affected by the atmospheric tests. Measurements of the population by personal dosemeters depend on reliably wearing these dosemeters over prolonged periods of time, and of a sufficient dosemeter return. In the past, such measurements have been particularly successful whenever short wearing times were possible. This requires high sensitivity of the dosemeters. The suitability of the highly sensitive TLD material of the BICRON TLD 700H type for such personal dosimetry measurements was investigated. It was tested in practical field application at the Semipalatinsk nuclear test site in September 2000. Initial results are available from individual doses received by a group of geologists and a group of herdsmen at the test site. For the first time, the individual dose was measured directly in these population groups. Detection limits below 1 microSv permit informative measurements for wearing times of less than two weeks. Most individual doses did not arise significantly out of local fluctuations of natural background. A conservative assessment from the aspect of practical health physics yielded a mean personal dose of 0.55 microSv per day for the herdsmen, whereas the geologists received a mean personal dose of 0.45 microSv per day. For an annual exposure period of typically, about three months, the radiation dose received by the persons investigated, in addition to the natural radiation exposure, is thus well below the international limit value of 1 mSv x a(-1) for the population dose.

  18. Response of TLD-100"T"M microtubes to two RQR3 quality radiation beams

    International Nuclear Information System (INIS)

    Nunes, M.G.; Villani, D.; Almeida, S.B.; Vivolo, V.; Yoriyaz, H.; Louis, G.M.J.

    2016-01-01

    The present work compares the response of TLD-100"T"M microcubes to two RQR 3 diagnostic radiology reference quality radiation beams, defined by IEC-61267 norm, aiming to evaluate the detectability of TLD-100"T"M energy dependence reported in literature within the same reference quality radiation range. TLD-100"T"M microcubes reproducibility is assessed through the response of a second set of TLD-100"T"M microcubes, evaluated in a second thermoluminescence reader, to the RQR 3 diagnostic radiology reference quality radiation beam implemented at the Laboratorio de Calibracao de Instrumentos of IPEN, Sao Paulo, SP, Brazil. The dependence of TLD-100"T"M microcubes TL response was not detectable in these conditions and the reproducibility of the measurements is 90,2%. (author)

  19. Assessment of CaSO4:Dy and LiF:Mg,Ti thermoluminescent dosimeters performance in the dosimetry of clinical electron beams

    International Nuclear Information System (INIS)

    Nunes, Maira Goes

    2008-01-01

    The assessment of the performance of CaS0 4 :Dy thermoluminescent detectors produced by IPEN in the dosimetry of clinical electron beams aims to propose an alternative to the LiF:Mg,Ti commercial dosimeters (TLD-100) largely applied in radiation therapy. The two types of thermoluminescent dosimeters were characterised with the use of PMMA, RMI-457 type solid water and water phantoms in radiation fields of 4, 6, 9, 12 and 16 MeV electrons of nominal energies in which the dose-response curves were obtained and the surface and depth doses were determined. The thermoluminescent response dependency with the electron nominal energies and the applied phantom were studied. The CaS0 4 :Dy presented the same behaviour than the LiF:Mg,Ti in such a way that its application as an alternative to the TLD-100 pellets in the radiation therapy dosimetry of electron beams is viable and presents the significantly higher sensitivity to the electron radiation as its main advantage. (author)

  20. An automatic evaluation system for NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At CERN, neutron personal monitoring for over 4000 collaborators is performed with Kodak NTA films, which have been shown to be the most suitable neutron dosimeter in the radiation environment around high-energy accelerators. To overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with sup 2 sup 3 sup 8 Pu-Be source neutrons, which results in densely ionised recoil tracks, as well as on the extension of the method to higher energy neutrons causing sparse and fragmentary tracks. The application of the method in routine personal monitoring is discussed. $9 overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with /sup 238/Pu-Be source $9 discussed. (10 refs).