WorldWideScience

Sample records for personal ozone monitor

  1. Accuracy and practicality of a portable ozone monitor for personal exposure estimates

    Science.gov (United States)

    Sagona, Jessica A.; Weisel, Clifford P.; Meng, Qingyu

    2018-02-01

    Accurate measurements of personal exposure to atmospheric pollutants such as ozone are important for understanding health risks. We tested a new personal ozone monitor (POM; 2B Technologies) for accuracy, precision, and ease of use. The POM's measurements were compared to simultaneous ozone measurements from a 2B Model 205 monitor and a ThermoScientific 49i monitor, and multiple POMs were placed side-by-side to check precision. Tests were undertaken in a controlled environmental facility, outdoors, and in a private residence. Additionally, ten volunteers wore a POM for five days and answered a questionnaire about its ease of use. The POM measured ozone accurately compared to the 49i ozone monitor, with average relative differences of less than 8%. In the controlled environment tests, the POM's ozone measurements did not change in the presence of additional atmospheric constituents with similar absorption lines to ozone, though there may have been a small decrease in precision and accuracy. Precision between POMs varied by environment (r2 = 0.98 outdoors; r2 = 0.3 to 0.9 in controlled lab conditions). Volunteers reported that the POM was reasonably comfortable to wear, although all reported that they felt that it was too noisy. Overall, the POM is a viable option for personal ozone monitoring.

  2. Commuters’ Personal Exposure to Ambient and Indoor Ozone in Athens, Greece

    Directory of Open Access Journals (Sweden)

    Krystallia K. Kalimeri

    2017-07-01

    Full Text Available This pilot study aimed to monitor the residential/office indoor, outdoor, and personal levels of ozone for people living, working, and commuting in Athens, Greece. Participants (16 persons of this study worked at the same place. Passive sampling analysis results did not indicate any limit exceedance (Directive 2008/50/EC: 120 µg/m3, World Health Organization (WHO Air Quality Guidelines 2005: 100 µg/m3. The highest “house-outdoor” concentration was noticed for participants living in the north suburbs of Athens, confirming the photochemical ozone formation at the northern parts of the basin during southwestern prevailing winds. The residential indoor to outdoor ratio (I/O was found to be significantly lower than unity, underlying the outdoor originality of the pollutant. The highest “office-indoor” concentration was observed in a ground-level building, characterized by the extensive use of photocopy machines and printers. Personal ozone levels were positively correlated only with indoor-office concentrations. A clear correlation of personal ozone levels to the time spent by the individuals during moving/staying outdoors was observed. On the other hand, no correlation was observed when focusing only on commuting time, due to the fact that transit time includes both on-foot and in-vehicle time periods, therefore activities associated with increased exposure levels, but also with pollutants removal by recirculating air filtering systems, respectively.

  3. Towards the retrieval of tropospheric ozone with the ozone monitoring instrument (OMI)

    NARCIS (Netherlands)

    Mielonen, T.; De Haan, J.F.; Van Peet, J.C.A.; Eremenko, M.; Veefkind, J.P.

    2015-01-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved

  4. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    NARCIS (Netherlands)

    Meijer, Y.J.; Swart, D.P.J.; Baier, F.; Bhartia, P.K.; Bodeker, G.E.; Casadio, S.; Chance, K.; Frate, Del F.; Erbertseder, T.; Felder, M.D.; Flynn, L.E.; Godin-Beekmann, S.; Hansen, G.; Hasekamp, O.P.; Kaifel, A.; Kelder, H.M.; Kerridge, B.J.; Lambert, J.-C.; Landgraf, J.; Latter, B.G.; Liu, X.; McDermid, I.S.; Pachepsky, Y.; Rozanov, V.; Siddans, R.; Tellmann, S.; A, van der R.J.; Oss, van R.F.; Weber, M.; Zehner, C.

    2006-01-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information

  5. Ozone Measurements Monitoring Using Data-Based Approach

    KAUST Repository

    Harrou, Fouzi; Kadri, Farid; Khadraoui, Sofiane; Sun, Ying

    2016-01-01

    The complexity of ozone (O3) formation mechanisms in the troposphere make the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combine the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modelling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association.

  6. Ozone Measurements Monitoring Using Data-Based Approach

    KAUST Repository

    Harrou, Fouzi

    2016-02-01

    The complexity of ozone (O3) formation mechanisms in the troposphere make the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combine the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modelling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association.

  7. In Brief: Monitoring ozone in Qatar

    Science.gov (United States)

    Showstack, Randy

    2008-12-01

    Qatar is establishing an ozone and pollution monitoring ground station in West Asia, following discussions between the government, the Qatar Foundation, and the United Nations Environment Programme, according to a 19 November announcement. The station will assist in understanding whether the ozone layer is actually recovering after being damaged by ozone-depleting chemicals. Qatar also announced plans to establish a global center of excellence for research and development of ozone and climate-friendly technology, equipment, and appliances. UNEP executive director Achim Steiner said the announcements by Qatar ``will help plug key data gaps relating to information gathering in West Asia and the Gulf to the benefit of the region and the world.''

  8. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  9. National Plan for Stratospheric Ozone Monitoring and Early Detection of Change, 1981-1986

    International Nuclear Information System (INIS)

    1982-02-01

    A transition from reliance on a ground-based, geographically-biased ozone observing network operated by cooperating nations to a combined satellite and ground-based monitoring program that will provide global coverage of the vertical distribution of stratospheric ozone, as well as total ozone overburden is discussed. The strategy, instrumentation, and monitoring products to be prepared during this transition period are also discussed. Global atmospheric monitoring for protection of the ultraviolet shielding properties of atmospheric ozone is considered. The operational satellite ozone vertical profile monitoring system to be flown on the NOAA Tiros N operational satellite series to carry on ozone measurements initiated on the NASA R D satellites is also considered

  10. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  11. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2011-11-01

    Full Text Available Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledge on phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone from UV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a neural network algorithm. An extended set of ozone sonde measurements at northern mid-latitudes for the years 2004–2008 has been considered as the training and test data set. The design of the algorithm is extensively discussed. Our retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.

  12. Monitoring the consequences of decreased ozone protection: The NSF ultraviolet radiation monitoring network

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The effects of decreased protection from ultraviolet radiation are as troubling as the continuing depletion of stratospheric ozone. Evidence exists to clearly link ozone depletion to changes in the antarctic marine environment. Results of two 1992 papers are summarized here. Enhanced exposure to mid-range UV radiation was found to be affecting marine ecosystems with a recorded 6-12 percent reduction in primary productivity directly related to the ozone layer depletion. In another experiment, a model was developed indicating that the ozone hole could reduce near-surface photosynthesis by as much as 12-15 percent. The NSF UV monitoring system in place for these and other experiments uses a spectroradiometer, making hourly, high-resolution measurements of the distribution of UV surface irradiance

  13. Thermoluminescence as a tool for monitoring ozone-stressed plants

    Energy Technology Data Exchange (ETDEWEB)

    Skotnica, J.; Gilbert, M.; Weingart, I.; Wilhelm, C

    2003-05-01

    Thermoluminescence parameters are more sensitive to ozone than fluorescence parameters (F{sub 0}, F{sub M}, F{sub v}/F{sub M}). - The effect of ozone (6 h, various concentrations from 0 to 350 ppb) on barley (Hordeum vulgare L., cv. Bomi) and tomato (Lycopersicon esculentum L., cv. Yellow Cherry) leaves was investigated in parallel by thermoluminescence (TL) and fluorescence (FL) methods. Several significant changes were found in TL glow curves measured after excitation by one single turnover flash at +2 deg. C in the temperature range from 2 to 170 deg. C immediately after ozone exposure. Contrary to TL, ozone induced only negligible changes in FL parameters F{sub 0}, F{sub M} and F{sub v}/F{sub M}. Measurements done 24 h after ozone exposure showed partial recovery of ozone-induced changes. The extent of recovery was not the same in different parts of TL curves. Fluorescence parameters were not significantly changed. The results demonstrate that TL parameters are more sensitive to ozone than conventially used FL parameters F{sub 0}, F{sub M} and F{sub v}/F{sub M}. Moreover, TL measurements seem to give information not only about the PSII electron transport, but also about the extent of oxidative damage and membrane lipid peroxidation. It is concluded, that TL can be a highly informative tool for monitoring the impact of ozone on plants.

  14. Surface Monitoring Data for PM2.5 and Ozone

    Data.gov (United States)

    Washington University St Louis — AIRNOW is an EPA program in collaboration with the States to gather and distribute hourly near-realtime data from several hundred continuous PM2.5 and ozone monitors.

  15. Ozone and atmospheric pollution at synoptic scale: the monitoring network Paes

    International Nuclear Information System (INIS)

    Gheusi, F.; Chevalier, A.; Delmas, R.; Athier, G.; Bouchou, P.; Cousin, J.M.; Meyerfeld, Y.; Laj, P.; Sellegri, K.; Ancellet, G.

    2007-01-01

    Ozone as an environmental concern extends beyond the questions usually covered by media - stratospheric ozone depletion and urban pollution peaks. Strong expositions to this pollutant are frequent even far from pollution sources, and the background tropospheric content of ozone has been growing fivefold over the last century. In response to this concern at the French national scale, formerly independent monitoring stations have been coordinated since 2004 in a structured network: Paes (French acronym for atmospheric pollution at synoptic scale). The data are put in free access online. (authors)

  16. Effective cloud fractions from the Ozone Monitoring Instrument: theoretical framework and validation

    NARCIS (Netherlands)

    Stammes, P.; Sneep, M.; Haan, de J.F.; Veefkind, J.P.; Wang, P.; Levelt, P.F.

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's EOS-Aura satellite is measuring ozone, NO2, and other trace gases with daily global coverage. To correct these trace gas retrievals for the presence of clouds, there are two OMI cloud products, based on different physical processes,

  17. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia

    Science.gov (United States)

    Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.

    2017-12-01

    Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more

  18. Application of ozonation for pharmaceuticals and personal care products removal from water.

    Science.gov (United States)

    Gomes, João; Costa, Raquel; Quinta-Ferreira, Rosa M; Martins, Rui C

    2017-05-15

    Due to the shortening on natural water resources, reclaimed wastewater will be an important water supply source. However, suitable technologies must be available to guaranty its proper detoxification with special concern for the emerging pharmaceutical and personal care products that are continuously reaching municipal wastewater treatment plants. While conventional biological systems are not suitable to remove these compounds, ozone, due to its interesting features involving molecular ozone oxidation and the possibility of generating unselective hydroxyl radicals, has a wider range of action on micropollutants removal and water disinfection. This paper aims to review the studies dealing with ozone based processes for water reuse by considering municipal wastewater reclamation as well as natural and drinking water treatment. A comparison with alternative technologies is given. The main drawback of ozonation is related with the low mineralization achieved that may lead to the production of reaction intermediates with toxic features. The use of hydrogen peroxide and light aided systems enhance ozone action over pollutants. Moreover, scientific community is focused on the development of solid catalysts able to improve the mineralization level achieved by ozone. Special interest is now being given to solar light catalytic ozonation systems with interesting results both for chemical and biological contaminants abatement. Nowadays the integration between ozonation and sand biofiltration seems to be the most interesting cost effective methodology for water treatment. However, further studies must be performed to optimize this system by understanding the biofiltration mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Ozone Monitoring Instrument: overview of 14 years in space

    Science.gov (United States)

    Levelt, Pieternel F.; Joiner, Joanna; Tamminen, Johanna; Pepijn Veefkind, J.; Bhartia, Pawan K.; Stein Zweers, Deborah C.; Duncan, Bryan N.; Streets, David G.; Eskes, Henk; van der A, Ronald; McLinden, Chris; Fioletov, Vitali; Carn, Simon; de Laat, Jos; DeLand, Matthew; Marchenko, Sergey; McPeters, Richard; Ziemke, Jerald; Fu, Dejian; Liu, Xiong; Pickering, Kenneth; Apituley, Arnoud; González Abad, Gonzalo; Arola, Antti; Boersma, Folkert; Miller, Christopher Chan; Chance, Kelly; de Graaf, Martin; Hakkarainen, Janne; Hassinen, Seppo; Ialongo, Iolanda; Kleipool, Quintus; Krotkov, Nickolay; Li, Can; Lamsal, Lok; Newman, Paul; Nowlan, Caroline; Suleiman, Raid; Gijsbert Tilstra, Lieuwe; Torres, Omar; Wang, Huiqun; Wargan, Krzysztof

    2018-04-01

    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  20. 50 years of monitoring of the ozone layer in the Czech Republic - results and challenges

    Science.gov (United States)

    Vanicek, Karel; Skrivankova, Pavla; Metelka, Ladislav; Stanek, Martin

    2010-05-01

    Long-term observations of total ozone (TOZ) and vertical ozone profiles, the basic parameters of the ozone layer, have been performed at the Solar and Ozone Observatory (SOO) Hradec Kralove and at the Aerological Department (AD) Praha of the Czech Hydrometeorological Institute (CHMI) since 1961 and 1992 respectively. The Dobson and Brewer spectrophotometers regularly calibrated towards the international references and electro-chemical ECC ozone sondes are used for the measurements. The observations contribute to the global GAW and NDACC ozone monitoring systems. Up to now analyses of the data give the basic findings given bellow and documented in the presentation. Some of them have important implication to the international ozone monitoring infrastructure, as well. - The decrease of TOZ by about 5-7 % in the winter-spring months towards the pre ozone-hole period have occurred since the mid eighties. This is in good agreement by the magnitude and time with depletion of the ozone layer due to chemical destruction of ozone in the NH mid-latitudes. - Significant depletion 3-5 % of TOZ has been identified also in the summer season since the early nineties. As this can not be attributed to the man-made chemical processes a change in the UT/LS dynamics over Central Europe is the most probable reason. - Aerological measurements taken at AD show that the summer reduction of TOZ very well coincides with a change of UT/LS temperature that persists for about two decades over the Czech territory. Therefore it has a long-term character that can be regarded as a climate shift in UT/LS and need to be further investigated. - 15 years of unique simultaneous Dobson/Brewer observations of TOZ performed at SOO show systematic seasonal deviations between both data sets that exceed instrumental accuracy of measurements. The differences are mostly caused by different wavelengths and their ozone absorption coefficients used by both instruments. As the Brewer observations are being

  1. The Ozone Monitoring Instrument: overview of 14 years in space

    Directory of Open Access Journals (Sweden)

    P. F. Levelt

    2018-04-01

    Full Text Available This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout and near real-time (NRT availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  2. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  3. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone...... pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships...

  4. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview

    NARCIS (Netherlands)

    Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, J.P.; Levelt, P.F.

    2007-01-01

    We present an overview of the theoretical and algorithmic aspects of the Ozone Monitoring Instrument (OMI) aerosol and surface UV algorithms. Aerosol properties are derived from two independent algorithms. The nearUV algorithm makes use of OMI observations in the 350-390 nm spectral region to

  5. Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring

    Science.gov (United States)

    Olds, W. J.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures

  6. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  7. Antarctic ozone loss in 1989-2010: evidence for ozone recovery?

    Science.gov (United States)

    Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.

    2012-04-01

    We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB) stations. All GB observations show minimum ozone in the late September-early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August-September, peaks by the end of September-early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33-50% in 1989-1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004) is lower (37-46%) and in the colder winters (e.g. 2003, and 2006) is higher (52-55%). Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI), the Global Ozone Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and the Aura Microwave Limb Sounder (MLS), where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September-November vortex average GB and TOMS/OMI ozone show about -4 to -5.6 DU (Dobson Unit) yr-1 in 1989-1996 and about +1 DU yr-1 in 1997-2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997-2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9-10 yr to get the first detectable ozone

  8. Monitoring of the ozone layer. Annual report 1997

    International Nuclear Information System (INIS)

    Braathen, Geir O.; Svenoee, Trond; Hansen, Georg H.; Dahlback, Arne

    1998-10-01

    The three stations in Oslo, Tromsoe and at Ny-Aalesund at Svalbard measure the total ozone levels and these show low monthly averages in 1997 compared to the long-term monthly averages. In Oslo the averages for January to April were 3-13 % below those from 1979 to 1989. Detailed measurements are presented. Analyses based on model calculations and measurements both in Norway and at other places are presented and show the low spring ozone values largely to be a result of chemical oxone decomposition. Particularly in 1997 the polar whirl lasted longer than usual. This lead to reduced ozone transport from the equator to the poles which normally is strongest in spring. At the same time the ozone was decomposed through natural processes where NO x is involved. The report concludes that the extremely low values registered are caused by a combination of chemical decomposition due to chlorofluorocarbons and halon and the particularly dynamic meteorological situation. A trend analysis for the period of 1979 to 1997 was carried out. The trend has been declining unevenly. In Oslo, Tromsoe and Ny-Aalesund the UV radiation from the sun is continually measured using GUV instrumentation. The measurements confirm that the main factors influencing the UV level are the height of the sun, the amount of clouds, the thickness of the ozone layer and the reflection properties at the earth surface. Monthly radiation doses are presented as well. Both at the Oslo and Tromsoe universities two ozone layer measuring instruments of the Dobson and Brewer types, are used. Instrumental comparisons are made. From the Bjoernoeya and the Gardermoen there are regularly lifted balloons which may reach a 35 km altitude carrying ozone probes. The ozone altitude distribution is registered. Similar measurements in the Antarctic show that the yearly ozone decomposition from September to November occurs at the heights of 14 to 24 km. Studies show there is extensive ozone decomposition in the Arctic as well

  9. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument

    NARCIS (Netherlands)

    Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, Kai; Levelt, P.F.

    2007-01-01

    We report the first daily observations of sulfur dioxide (SO2) emissions from copper smelters by a satellite-borne sensor - the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura spacecraft. Emissions from two Peruvian smelters (La Oroya and Ilo) were detected in up to 80% of OMI overpasses

  10. Application of validation data for assessing spatial interpolation methods for 8-h ozone or other sparsely monitored constituents

    International Nuclear Information System (INIS)

    Joseph, John; Sharif, Hatim O.; Sunil, Thankam; Alamgir, Hasanat

    2013-01-01

    The adverse health effects of high concentrations of ground-level ozone are well-known, but estimating exposure is difficult due to the sparseness of urban monitoring networks. This sparseness discourages the reservation of a portion of the monitoring stations for validation of interpolation techniques precisely when the risk of overfitting is greatest. In this study, we test a variety of simple spatial interpolation techniques for 8-h ozone with thousands of randomly selected subsets of data from two urban areas with monitoring stations sufficiently numerous to allow for true validation. Results indicate that ordinary kriging with only the range parameter calibrated in an exponential variogram is the generally superior method, and yields reliable confidence intervals. Sparse data sets may contain sufficient information for calibration of the range parameter even if the Moran I p-value is close to unity. R script is made available to apply the methodology to other sparsely monitored constituents. -- Highlights: •Spatial interpolation methods were tested for thousands of sparse ozone data sets. •A particular single-parameter ordinary kriging was found to be generally superior. •A Moran I p-value in the training set is not helpful in selecting the method. •The sum of the squares of the residuals is helpful in selecting the method. •R script is available for application to other sites and constituents. -- Spatial interpolation methods were compared for thousands of subsets of data for 8-h ozone using R script applicable to other constituents as well, and available from the authors

  11. The design of a wireless portable device for personalized ultraviolet monitoring

    Science.gov (United States)

    Amini, Navid; Matthews, Jerrid E.; Vahdatpour, Alireza; Sarrafzadeh, Majid

    2009-08-01

    The skin care product market is growing due to the threat of ultraviolet (UV) radiation caused by the destruction of the ozone layer, increasing demand for tanning, and the tendency to wear less clothing. Accordingly, there is a potential demand for a personalized UV monitoring system, which can play a fundamental role in skin cancer prevention by providing measurements of UV radiation intensities and corresponding recommendations. Furthermore, the need for such device becomes more vital since it has turned out that in some places (e.g., on snowy mountains) the UV exposure gets doubled, while individuals are unaware of this fact. This paper highlights the development and initial validation of a wireless and portable embedded system for personalized UV monitoring which is based on a novel software architecture, a high-end UV sensor, and conventional PDA (or a cell phone). In terms of short-term applications, by calculating the UV index, it informs the users about their maximum recommended sun exposure time by taking their skin type and sun protection factor (SPF) of the applied sunscreen into consideration. As for long-term applications, given that the damage caused by UV light is accumulated over days, it is able to keep a record of the amount of UV received over a certain course of time, from a single day to a month. Low energy consumption and high accuracy in estimating the UV index are salient features of this system.

  12. Ozone from fireworks: Chemical processes or measurement interference?

    Science.gov (United States)

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Research to connect the ozone monitor into irradiation system at Hanoi Irradiation Centre

    International Nuclear Information System (INIS)

    Le Van Huy; Pham Duy Duong; Nguyen Dinh Hung; Vu Quoc Dat

    2013-01-01

    Since 2006, in order to develop radiation technology, Vietnam Atomic Energy Institute has supported Hanoi Irradiation Centre a Project titled: Upgrading the irradiation facility. According to the Project, equipment have been replaced by a new one so that the facility could be suitable for treatment of products. The facility was designed and produced by the former Russia experts. Under normal operating conditions, we are protected by shielding, detection systems, and safety procedures. A system of interlocks prevents unauthorized entry into the radiation chamber when the source is exposed. However, interlocks system have not been warning and preventing ozone gas that can affect human health. So we are having an upgrade as connecting the ozone monitor into irradiation system at Hanoi Irradiation Centre. (author)

  14. Ozone Gardens for the Citizen Scientist

    Science.gov (United States)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  15. Application of validation data for assessing spatial interpolation methods for 8-h ozone or other sparsely monitored constituents.

    Science.gov (United States)

    Joseph, John; Sharif, Hatim O; Sunil, Thankam; Alamgir, Hasanat

    2013-07-01

    The adverse health effects of high concentrations of ground-level ozone are well-known, but estimating exposure is difficult due to the sparseness of urban monitoring networks. This sparseness discourages the reservation of a portion of the monitoring stations for validation of interpolation techniques precisely when the risk of overfitting is greatest. In this study, we test a variety of simple spatial interpolation techniques for 8-h ozone with thousands of randomly selected subsets of data from two urban areas with monitoring stations sufficiently numerous to allow for true validation. Results indicate that ordinary kriging with only the range parameter calibrated in an exponential variogram is the generally superior method, and yields reliable confidence intervals. Sparse data sets may contain sufficient information for calibration of the range parameter even if the Moran I p-value is close to unity. R script is made available to apply the methodology to other sparsely monitored constituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ozone measurements 2010. [EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hjellbrekke, Anne-Gunn; Solberg, Sverre; Fjaeraa, Ann Mari

    2012-07-01

    From the Introduction: Ozone is a natural constituent of the atmosphere and plays a vital role in many atmospheric processes. However, man-made emissions of volatile organic compounds and nitrogen oxides have increased the photochemical formation of ozone in the troposphere. Until the end of the 1960s the problem was basically believed to be one of the big cities and their immediate surroundings. In the 1970s, however, it was found that the problem of photochemical oxidant formation is much more widespread. The ongoing monitoring of ozone at rural sites throughout Europe shows that episodes of high concentrations of ground-level ozone occur over most parts of the continent every summer. During these episodes the ozone concentrations can reach values above ambient air quality standards over large regions and lead to adverse effects for human health and vegetation. Historical records of ozone measurements in Europe and North America indicate that in the last part of the nineteenth century the values were only about half of the average surface ozone concentrations measured in the same regions during the last 10-15 years (Bojkov, 1986; Volz and Kley, 1988).The formation of ozone is due to a large number of photochemical reactions taking place in the atmosphere and depends on the temperature, humidity and solar radiation as well as the primary emissions of nitrogen oxides and volatile organic compounds. Together with the non-linear relationships between the primary emissions and the ozone formation, these effects complicates the abatement strategies for ground-level ozone and makes photochemical models crucial in addition to the monitoring data. The 1999 Gothenburg Protocol is designed for a joint abatement of acidification, eutrophication and ground-level ozone. It has been estimated that once the Protocol is implemented, the number of days with excessive ozone levels will be halved and that the exposure of vegetation to excessive ozone levels will be 44% down on 1990

  17. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  18. Personal radiation monitoring with thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Miano, S.C.

    1987-01-01

    The technique of personal dosimetry used by SAPRA (Servico de Assessoria e Protecao Radiologica S/C Ltda., Brazil) is presented. Thermoluminescent monitors and CaSO 4 : Dy are used in pastilles united by teflon. Characteristics of the dosemeters are briefly reported. The system of thermoluminescent measurement, designed and constructed by SAPRA, and the system of personal monitoring are described. (M.A.C.) [pt

  19. Personal monitoring

    International Nuclear Information System (INIS)

    1995-01-01

    Sources of ionizing radiation have innumerable applications in the workplace. The potential exposures of the individual workers involved may need to be routinely monitored and records kept of their cumulative radiation doses. There are also occasions when it is necessary to retrospectively determine a dose which may have been received by a worker. This Module explains the basic terminology associated with personal monitoring and describes the principal types of dosimeters and other related techniques and their application in the workplace. The Manual will be of most benefit if it forms part of more comprehensive training or is supplemented by the advice of a qualified expert in radiation protection. Most of the dosimeters and techniques described in this Module can only be provided by qualified experts

  20. Aerosol optical thickness retrieval over land and water using Global Ozone Monitoring Experiment (GOME) data

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.; Leeuw, G. de

    2005-01-01

    An algorithm for the retrieval of the aerosol optical thickness over land and over water from Global Ozone Monitoring Experiment (GOME) data is presented. The cloud fraction in the GOME pixels is determined using the Fast Retrieval Scheme for Clouds From the Oxygen A Band (FRESCO) algorithm. Surface

  1. Passive monitoring techniques for evaluating atmospheric ozone and nitrogen exposure and deposition to California ecosystems

    Science.gov (United States)

    Mark E. Fenn; Andrzej Bytnerowicz; Susan L. Schilling

    2018-01-01

    Measuring the exposure of ecosystems to ecologically relevant pollutants is needed for evaluating ecosystem effects and to identify regions and resources at risk. In California, ozone (O3) and nitrogen (N) pollutants are of greatest concern for ecological effects. "Passive" monitoring methods have been developed to obtain spatially...

  2. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  3. Global Ozone Distribution relevant to Human Health: Metrics and present day levels from the Tropospheric Ozone Assessment Report (TOAR)

    Science.gov (United States)

    Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.

  4. Experimental monitoring of ozone production in a PET cyclotron facility

    International Nuclear Information System (INIS)

    Zanibellato, L.; Cicoria, G.; Pancaldi, D.; Boschi, S.; Mostacci, D.; Marengo, M.

    2010-01-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital 'S.Orsola-Malpighi' PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  5. Climate Prediction Center (CPC)Stratospheric Monitoring Ozone Blended Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 3-D global ozone mixing ratio (ppm) and total column ozone (DU) dataset analyzed from daily Solar Backscatter Ultraviolet Instrument(SBUV/2) and TIROS Operational...

  6. Guidelines for personal exposure monitoring of chemicals: Part III.

    Science.gov (United States)

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2018-01-25

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  7. Guidelines for personal exposure monitoring of chemicals: Part IV.

    Science.gov (United States)

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2018-03-27

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  8. Guidelines for personal exposure monitoring of chemicals: Part II.

    Science.gov (United States)

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2017-11-25

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  9. Guidelines for personal exposure monitoring of chemicals: Part I.

    Science.gov (United States)

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2017-09-28

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided later in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  10. Guidelines for personal exposure monitoring of chemicals: Part V.

    Science.gov (United States)

    Hashimoto, Haruo; Yamada, Kenichi; Hori, Hajime; Kumagai, Shinji; Murata, Masaru; Nagoya, Toshio; Nakahara, Hirohiko; Mochida, Nobuyuki

    2018-05-25

    This Document, "Guidelines for personal exposure monitoring of chemicals" ("this Guideline"), has been prepared by "The Committee for Personal Exposure Monitoring" ("the Committee") of the Expert Division of Occupational Hygiene & Ergonomics, Japan Society for Occupational Health. Considering the background of the growing importance of personal exposure monitoring in risk assessment and the need to prepare for the introduction of monitoring using personal samplers from an administrative perspective in recent years, the Committee was organized in November 2012. The Committee has prepared this Guideline as a "practical guideline" for personal exposure monitoring, so as to offer proposals and recommendations to the members of the Japan Society for Occupational Health and to society in general. The scope of this Guideline covers all chemical substances and all related workplaces regarded as targets for general assessment and the management of risk. It thus is not to be considered to comment on legal regulations and methodology. The main text provides the basic methods and concepts of personal exposure monitoring, while 31 "Appendices" are provided in this Guideline throughout the series; technical descriptions, statistical bases, and actual workplace examples are provided in these appendices, to assist better understanding. The personal exposure monitoring described as per this Guideline is equivalent to an "expert-centered basic method to reasonably proceed with the assessment and management of risk at workplaces." It is considered that practicing and expanding on this method will significantly contribute in reforming the overall framework of occupational hygiene management in Japan.

  11. PARAMETER EVALUATION AND MODEL VALIDATION OF OZONE EXPOSURE ASSESSMENT USING HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    Science.gov (United States)

    To examine factors influencing long-term ozone exposures by children living in urban communities, we analyzed longitudinal data on personal, indoor, and outdoor ozone concentrations as well as related housing and other questionnaire information collected in the one-year-long Harv...

  12. Residential ozone and lung function in the elderly

    DEFF Research Database (Denmark)

    Braeuner, Elvira V.; Karottki, Dorina Gabriela; Frederiksen, Marie

    2016-01-01

    elderly non-smokers. Indoor ozone was measured passively in homes, while urban background outdoor ozone was monitored continuously at a fixed monitoring station located on the roof of the 20-m high university H.C. Ørsteds campus building in a park area. Lung function was measured at baseline as well...

  13. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  14. Glass badge dosimetry system for large scale personal monitoring

    International Nuclear Information System (INIS)

    Norimichi Juto

    2002-01-01

    Glass Badge using silver activated phosphate glass dosemeter was specially developed for large scale personal monitoring. And dosimetry systems such as an automatic leader and a dose equipment calculation algorithm were developed at once to achieve reasonable personal monitoring. In large scale personal monitoring, both of precision for dosimetry and confidence for lot of personal data handling become very important. The silver activated phosphate glass dosemeter has basically excellent characteristics for dosimetry such as homogeneous and stable sensitivity, negligible fading and so on. Glass Badge was designed to measure 10 keV - 10 MeV range of photon. 300 keV - 3 MeV range of beta, and 0.025 eV - 15 MeV range of neutron by included SSNTD. And developed Glass Badge dosimetry system has not only these basic characteristics but also lot of features to keep good precision for dosimetry and data handling. In this presentation, features of Glass Badge dosimetry systems and examples for practical personal monitoring systems will be presented. (Author)

  15. Study: Ozone Layer's Future Linked Strongly to Changes in Climate

    Science.gov (United States)

    balloon to measure of the vertical profile of the ozone layer. NOAA scientists launch an ozonesonde via balloon to measure of the vertical profile of the ozone layer. NOAA releases ozonesondes at eight sites to continuously monitor stratospheric ozone. Download here. (Credit: NOAA) The ozone layer - the thin

  16. Quality control of thermoluminesce personal dose monitoring

    International Nuclear Information System (INIS)

    Shang Aiguo; He Wenchang; Zhao Fengtao

    2006-01-01

    In order to evaluate the influence factor to thermoluminesce personal dose monitoring result, the every question that can appear based on the fact was analyzed. The results show that the detector, annealing, measuring process can influence the monitoring result. It gives some measures to enhance monitoring quality. (authors)

  17. Radiological interference from personal articles in occupational radiation monitoring

    International Nuclear Information System (INIS)

    Krishnakumar, P.; Jayan, M.P; Pawar, V.J; Patil, S.L; Selvamani, N.; Vedram; Sureshkumar, M.K.; Chinnaesakki, S.

    2016-01-01

    This paper discusses the presence of radioactivity in some personal articles worn on sacred thread and the related difficulties faced by health physicists during occupational radiation monitoring in nuclear facilities. In an incident, the portal monitor installed at the exit gate of a nuclear facility indicated contamination on self of a radiation worker while passing through it. The worker was therefore, subjected to thorough check for external contamination by the plant health physicist, using a pan-cake contamination monitor. All the clothing of the person was also checked for contamination. On further detailed examination, a dark brownish personal article hanging on a sacred thread from his neck was found to be the source of contamination. This presentation aims at giving information to the health physics community on the possibility of such interferences during personal monitoring in nuclear facilities

  18. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  19. Ozone pollution and ozone biomonitoring in European cities. Part I: Ozone concentrations and cumulative exposure indices at urban and suburban sites

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    In the frame of a European research project on air quality in urban agglomerations, data on ozone concentrations from 23 automated urban and suburban monitoring stations in 11 cities from seven countries were analysed and evaluated. Daily and summer mean and maximum concentrations were computed...... based on hourly mean values, and cumulative ozone exposure indices (Accumulated exposure Over a Threshold of 40 ppb (AOT40), AOT20) were calculated. The diurnal profiles showed a characteristic pattern in most city centres, with minimum values in the early morning hours, a strong rise during the morning......, by contrast, maximum values were lower and diurnal variation was much smaller. Based on ozone concentrations as well as on cumulative exposure indices, a clear north-south gradient in ozone pollution, with increasing levels from northern and northwestern sites to central and southern European sites...

  20. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    International Nuclear Information System (INIS)

    Williams, David E; Henshaw, Geoff S; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A

    2013-01-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution. (paper)

  1. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  2. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    Science.gov (United States)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  3. Removal of pharmaceuticals in WWTP effluents by ozone and ...

    African Journals Online (AJOL)

    2013-02-12

    Feb 12, 2013 ... discharge of effluents by wastewater treatment plants (WWTPs) that are not ... The efficiency of ozone in removing pharmaceuticals and personal care ...... assessment and modeling of an ozonation step for full-scale munic-.

  4. Real-time personal exposure and health condition monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Isamu; Kanda, Hiroaki; Asai, Akio; Takeishi, Naoki; Ota, Yoshito [Hitachi Aloka Medical, Ltd., Measuring Systems Engineering Dept., Tokyo (Japan); Hanawa, Nobuhiro; Ueda, Hisao; Kusunoki, Tsuyoshi; Ishitsuka, Etsuo; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have proposed novel monitoring system for workers of nuclear facility. In these facilities, exposure management for workers is mainly used access control and personal exposure recordings. This system is currently only for reports management but is not confirmative for surveillance when work in progress. Therefore, JAEA and HAM integrate access control and personal exposure recordings and two real-time monitoring systems which are position sensing and vital sign monitor. Furthermore change personal exposure management to real-time management, this system integration prevents workers from risk of accidents, and makes possible take appropriate action quickly. This novel system is going to start for tentative operation, using position sensing and real-time personal dosimeter with database in Apr. 2012. (author)

  5. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    V. J. B. Flower

    2016-11-01

    Full Text Available Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2 by the Ozone Monitoring Instrument (OMI on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  6. Trend prognosis of regional ozone maxima in 1994 using various meteorologic data

    International Nuclear Information System (INIS)

    Loibl, W.

    1995-06-01

    The purpose of this study was to develop and test a statistical method for the short-term forecast of ozone concentrations. Austrian ozone monitoring data from April to September 1994 are used to develop the forecast model. It builds upon a multiple linear regression model developed earlier which uses the temperature of the forecast day, and the ozone maxima of the previous day as variables. In this study temperature difference between previous and forecast day, and wind velocity of the forecast day were additionally taken into account. Furthermore wind direction dependent regression models were developed using subsamples of the data set devided into 8 wind direction classes. Different regression function parameters have to be applied for each of the 40 selected ozone monitoring sites to allow forecasting of regional ozone maxima throughout Austria. It was found that regression models with temperature difference and wind velocity as additional variables did not improve the results. Wind direction dependent regression models only slightly improved the results for some wind directions at several monitoring sites. Best forecast results in general were achieved by using the base regression model with the temperature of the forecast day and the ozone maxima of the previous day as variables. Ozone forecast maps were calculated by spatial interpolation of the forecasted ozone maxima of the monitoring sites. Forecast accuracy is within ± 10 ppb on 70-80 % of the observed days. Errors higher than ± 10 ppb occur mainly on days with ozone maxima of 80 ppb and more. (author)

  7. Total column ozone retrieval using INSAT-3D sounder in the tropics ...

    Indian Academy of Sciences (India)

    important for ozone estimation and lower instrument noise results in better ozone ... the Indian Space Research Organisation (ISRO) ... tivity of the sounder ozone band corresponding to .... NOAA Climate Monitoring and Diagnostics Labo-.

  8. An investigation of high ozone episodes in the City of Johannesburg

    CSIR Research Space (South Africa)

    Padayachi, YR

    2014-10-01

    Full Text Available A study of ozone monitoring data in Johannesburg highlighted that the city is frequently affected by high ozone episodes. There is limited knowledge about the chemical and meteorological drivers of these high ozone episodes in Johannesburg...

  9. Automated personal dosimetry monitoring system for NPP

    International Nuclear Information System (INIS)

    Chanyshev, E.; Chechyotkin, N.; Kondratev, A.; Plyshevskaya, D.

    2006-01-01

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using thermoluminescent

  10. Privacy by design in personal health monitoring.

    Science.gov (United States)

    Nordgren, Anders

    2015-06-01

    The concept of privacy by design is becoming increasingly popular among regulators of information and communications technologies. This paper aims at analysing and discussing the ethical implications of this concept for personal health monitoring. I assume a privacy theory of restricted access and limited control. On the basis of this theory, I suggest a version of the concept of privacy by design that constitutes a middle road between what I call broad privacy by design and narrow privacy by design. The key feature of this approach is that it attempts to balance automated privacy protection and autonomously chosen privacy protection in a way that is context-sensitive. In personal health monitoring, this approach implies that in some contexts like medication assistance and monitoring of specific health parameters one single automatic option is legitimate, while in some other contexts, for example monitoring in which relatives are receivers of health-relevant information rather than health care professionals, a multi-choice approach stressing autonomy is warranted.

  11. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing.

    Science.gov (United States)

    Zhao, Hui; Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-03-29

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m³, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00-4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  12. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    Science.gov (United States)

    Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-01-01

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively. PMID:29596366

  13. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2018-03-01

    Full Text Available Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  14. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  15. Fine PM measurements: personal and indoor air monitoring.

    Science.gov (United States)

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  16. Trend prognosis of regional ozone maxima in 1994 using various meteorologic data: appendix

    International Nuclear Information System (INIS)

    Loibl, W.

    1995-06-01

    The purpose of this study was to develop and test a statistical method for the short-term forecast of ozone concentrations. Austrian ozone monitoring data from April to September 1994 are used to develop the forecast model. It builds upon a multiple linear regression model developed earlier which uses the temperature of the forecast day, and the ozone maxima of the previous day as variables. In this study temperature difference between previous and forecast day, and wind velocity of the forecast day were additionally taken into account. Furthermore wind direction dependent regression models were developed using subsamples of the data set devided into 8 wind direction classes. Different regression function parameters have to be applied for each of the 40 selected ozone monitoring sites to allow forecasting of regional ozone maxima throughout Austria. It was found that regression models with temperature difference and wind velocity as additional variables did not improve the results. Wind direction dependent regression models only slightly improved the results for some wind directions at several monitoring sites. Best forecast results in general were achieved by using the base regression model with the temperature of the forecast day and the ozone maxima of the previous day as variables. Ozone forecast maps were calculated by spatial interpolation of the forecasted ozone maxima of the monitoring sites. Forecast accuracy is within ± 10 ppb on 70-80 % of the observed days. Errors higher than ± 10 ppb occur mainly on days with ozone maxima of 80 ppb and more. (author)

  17. Table - Impacts of the Proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems

    Science.gov (United States)

    This table shows the impacts of the proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems, both with and without the Cross-State Air Pollution Rule.

  18. Fast Flow Cavity Enhanced Ozone Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Naturally occurring in the stratosphere, ozone plays a significant role in many atmospheric reactions, cloud formation, and is the key player in shielding harmful UV...

  19. Prediction of ozone pollution peaks in the Etang de Berre area; Prevision des pics de pollution par l'ozone dans la region de l'etang de Berre

    Energy Technology Data Exchange (ETDEWEB)

    Valfre, G.; Thieleke, R.; Leopold, A.; Mesbah, B.A. [AIRFOBEP, Association agreee de surveillance de la qualite de l' air, 13 - Martigues (France)

    1999-09-01

    Prediction of ozone pollution peaks is very useful in the procedure of people information, in particular sensitive persons, about photochemical pollution episodes occurrence. We have developed a technique to predict ozone pollution peaks in the Etang de Berre area, where air qualify monitoring is operated by the network AIRFOBEP (Association for air quality monitoring in the Etang de Berre and the west of Bouches-du-Rhone area). The technique indirectly models the regional photochemical pollution by the use of a set of linked binary logic tests. These tests are carried out on some relevant parameters. The selection of the most sensitive parameters for the prediction is done starting from: the background knowledge concerning the regional air pollution phenomena (experts experiences), the measurement data analysis. Characteristics of those parameters, like the time, the place of their measurement and their thresholds, are optimized with a simulation program, run on the five last years AIRFOBEP measurements data. Models elaborated with this technique have been tested during the 1998 summer. Results concerning both a D day and a (D+ 1) day prediction are good. They are consistent with the expected performances and with the five last years simulation results. (authors)

  20. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    Science.gov (United States)

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  1. Ozone air pollution in the Ukrainian Carpathian Mountains and Kiev region

    Science.gov (United States)

    Oleg Blum; Andrzej Bytnerowicz; William Manning; Ludmila Popovicheva

    1998-01-01

    Ambient concentrations of ozone (O3) were measured at five highland forest locations in the Ukrainian Carpathians and in two lowland locations in the Kiev region during August to September 1995 by using O3 passive samplers. The ozone passive samplers were calibrated against a Thermo Environmental Model 49 ozone monitor...

  2. The study of international and interstate transport of ozone in Yuma, Arizona

    Science.gov (United States)

    Li, Y.; Sonenberg, M.; Wood, J. L.; Pearson, C. R.; Colson, H.; Malloy, J. W.; Pace, M.; Mao, F.; Paul, J.; Busby, B. R.; Parkey, B.; Drago, L.; Franquist, T. S.

    2017-12-01

    In October 2015, EPA reduced the National Ambient Air Quality Standards (NAAQS) for ozone from 75 parts per billion (ppb) to 70 ppb. Meeting the new standard may be extremely challenging for some areas, including rural Yuma County in the State of Arizona. Yuma County faces unique air quality challenges, since it borders the Mexican states of Baja California and Sonora, and the State of California. The present study investigates the contribution of international and interstate transport of ozone and ozone precursors to episodes of elevated ozone concentrations in Yuma. The Arizona Department of Environmental Quality (ADEQ) merged HYSPLIT modeling outputs with two years of hourly ground ozone monitor data to investigate the potential area contributions to ozone concentrations in Yuma County. This analysis found that elevated ozone concentrations in Yuma in 2014 and 2015 frequently coincided with back-trajectories over both California and Mexico, typically favoring Mexico during the spring. In May 2017, ADEQ installed a new ozone monitor in San Luis Rio Colorado, Sonora, Mexico (Latitude: 32.4665, Longitude: -114.7688), which is 29 km south of ozone site in Yuma County. We will present the first simultaneous observations of ozone seasons in Sonora, Mexico, eastern California, and Yuma.

  3. Compact, Rugged and Low-Cost Atmospheric Ozone DIAL Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time, high-frequency measurements of atmospheric ozone are becoming increasingly important to understand the impact of ozone towards climate change, to monitor...

  4. Sensitivity analysis of ground level ozone in India using WRF-CMAQ models

    NARCIS (Netherlands)

    Sharma, Sumit; Chatani, Satoru; Mahtta, Richa; Goel, Anju; Kumar, Atul

    2016-01-01

    Ground level ozone is emerging as a pollutant of concern in India. Limited surface monitoring data reveals that ozone concentrations are well above the prescribed national standards. This study aims to simulate the regional and urban scale ozone concentrations in India using WRF-CMAQ models.

  5. Ozone-Depleting Gases in the Atmosphere: Results From 28 Years of Measurements by the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)

    Science.gov (United States)

    Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.

    2005-12-01

    Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that

  6. Elementary introduction for personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2004-01-01

    According to national laws and regulations, personnel who work with radiation must wear personal dosimeters and receive personal dose monitoring (PDM) provided by professional establishments, which are qualified for this purpose and certificated by the authorities. In this paper, the author gives a brief discussion concerning the Regulations & Purpose of PDM and the historical lessons in accident exposure without PDM. At last, it is pointed out that the PDM provided by the third-party commercial organizations is becoming the trend in this field. (author)

  7. Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments

    Science.gov (United States)

    van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.

    2018-02-01

    A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.

  8. Variability in tropical tropospheric ozone: analysis with GOME observations and a global model

    NARCIS (Netherlands)

    Valks, P.J.M.; Koelemeijer, R.B.A.; Weele, van M.; Velthoven, van P.F.J.; Fortuin, J.P.F.; Kelder, H.M.

    2003-01-01

    Tropical tropospheric ozone columns (TTOCs) have been determined with a convective-cloud-differential (CCD) method, using ozone column and cloud measurements from the Global Ozone Monitoring Experiment (GOME) instrument. GOME cloud top pressures, derived with the Fast Retrieval Scheme for Clouds

  9. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    Science.gov (United States)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  10. Generation and Reduction of NOx on Air-Fed Ozonizers

    Science.gov (United States)

    Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki

    A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.

  11. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics

    International Nuclear Information System (INIS)

    Kivimaeenpaeae, M.; Sellden, G.; Sutinen, S.

    2005-01-01

    Ozone induces characteristic symptoms in the chloroplasts of the needles of several coniferous species. Chloroplasts are (1) reduced in size and (2) the stroma is electron dense. Moreover (3) these chloroplast alterations are more pronounced in the outer mesophyll cell layers and in the upper side of the needle compared to the inner layers and lower side. The syndrome, including the three symptoms (1)-(3), is found in the green needles of Scots pine and Norway spruce not only in the experimental fumigations, but also in mature trees in the field, and has potential for diagnosis of ozone stress. For sound ozone diagnostics all three symptoms must be present in the samples studied. The symptoms in relation to needle anatomy and physiology is discussed, and recommendations for sampling and analysis are given. - Ozone-induced alterations in chloroplast structure of conifer needles are reviewed, and recommendations for field monitoring given

  12. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  13. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  14. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Science.gov (United States)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  15. Ground-level ozone in China: Distribution and effects on crop yields

    International Nuclear Information System (INIS)

    Wang Xiaoke; Manning, William; Feng Zongwei; Zhu Yongguan

    2007-01-01

    Rapid economic development and an increasing demand for food in China have drawn attention to the role of ozone at pollution levels on crop yields. Some assessments of ozone effects on crop yields have been carried out in China. Determination of ozone distribution by geographical location and resulting crop loss estimations have been made by Chinese investigators and others from abroad. It is evident that surface level ozone levels in China exceed critical levels for occurrence of crop losses. Current levels of information from ozone dose/response studies are limited. Given the size of China, existing ozone monitoring sites are too few to provide enough data to scale ozone distribution to a national level. There are large uncertainties in the database for ozone effects on crop loss and for ozone distribution. Considerable research needs to be done to allow accurate estimation of crop losses caused by ozone in China. - More research is needed to reliably estimate ozone caused crop losses in China

  16. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1992-06-01

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  17. The task of official personal monitoring in Germany using electronic dosimetry systems

    International Nuclear Information System (INIS)

    Huebner, Stephan; Wahl, Wolfgang; Busch, Frank; Martini, Ekkehard

    2008-01-01

    Full text: Since the establishment of the first German personal monitoring services as competent measuring bodies in the year 1952, official personal dosimetry is carried out using passive dosimeters such as film batches, RPL- and TL-dosimeters solely. On the other hand, electronic dosimeters are in use in some big institutions like Nuclear Power Plants, hospitals or industrial units for operational purposes. In most cases, these dosimeters are regulated by competent authorities. For more than 20 years electronic dosimeters proved their worth of being appropriate personal dosimeters. Since 2001 concepts to implement electronic personal dosimeters into the official individual monitoring of occupational exposed workers were developed in different research projects. The EU market of personal dosimetry changes to an open and competitive one, the number of outside workers, especially during the outages of Nuclear Power Plants increases, the landscape of customers is getting more and more heterogeneous. Being able to face these tasks of a sustainable personal monitoring requires the introduction of modern electronic dosimeters into to the official monitoring. Doing so, the needed prompt exchange of dose-data between different monitoring services as well as between the customers and the related monitoring service can be warranted. In cooperation with the industry, competent authorities and a research centre a method for official dosimetry using electronic dosimetry systems was developed, realised and tested successfully by the three big monitoring services of Germany. These investigations are supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. For this purpose a network between customers and monitoring services was built up in order to monitor people, who work in different places related to different measuring bodies in only one period of surveillance. (author)

  18. Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns

    NARCIS (Netherlands)

    Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Hudman, R.C.; Froidevaux, L.; Livesey, N.J.; Levelt, P.F.; Thompson, A.M.; Tarasick, D.W.; Stübi, R.; Andersen, S.B.; Yela, M.; König-Langlo, G.; Schmidlin, F.J.; Witte, J.C.

    2008-01-01

    Retrievals from the Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) on EOS-Aura were included in the Goddard Earth Observing System version 4 (GEOS-4) ozone data assimilation system. The distribution and daily to seasonal evolution of ozone in the stratosphere and troposphere

  19. Sampling Ozone Exposure of Canadian Forests at Different Scales: Some Case Studies

    Directory of Open Access Journals (Sweden)

    R.M. Cox

    2001-01-01

    Full Text Available The use of passive samplers in extensive monitoring, such as that used in national forest health monitoring plots, indicates that these devices are able to determine both spatial and temporal differences in ozone exposure of the plots. This allows for categorisation of the plots and the potential for cause-effect analysis of certain forest health responses. Forest exposure along a gradient of air pollution deposition demonstrates large variation in accumulated exposures. The efficacy of using passive samplers for in situ monitoring of forest canopy exposure was also demonstrated. The sampler data produced weak relationships with ozone values from the nearest �continuous� monitor, even though data from colocated samplers showed strong relationships. This spatial variation and the apparent effect of elevation on ozone exposure demonstrate the importance of topography and tree canopy characteristics in plant exposure on a regional scale. In addition, passive sampling may identify the effects of local pollutant gases, such as NO, which may scavenge ozone locally only to increase the production of this secondary pollutant downwind, as atmospheric reactions redress the equilibrium between concentrations of this precursor and those of the generated ozone. The use of passive samplers at the stand level is able to resolve vertical profiles within the stand and edge effects that are important in exposure of understorey and ground flora. Recent case studies using passive samplers to determine forest exposure to ozone indicate a great potential for the development of spatial models on a regional, landscape, and stand level scale.

  20. Impacts of increasing ozone on Indian plants

    International Nuclear Information System (INIS)

    Oksanen, E.; Pandey, V.; Pandey, A.K.; Keski-Saari, S.; Kontunen-Soppela, S.; Sharma, C.

    2013-01-01

    Increasing anthropogenic and biogenic emissions of precursor compounds have led to high tropospheric ozone concentrations in India particularly in Indo-Gangetic Plains, which is the most fertile and cultivated area of this rapidly developing country. Current ozone risk models, based on European and North American data, provide inaccurate estimations for crop losses in India. During the past decade, several ozone experiments have been conducted with the most important Indian crop species (e.g. wheat, rice, mustard, mung bean). Experimental work started in natural field conditions around Varanasi area in early 2000's, and the use of open top chambers and EDU (ethylene diurea) applications has now facilitated more advanced studies e.g. for intra-species sensitivity screening and mechanisms of tolerance. In this review, we identify and discuss the most important gaps of knowledge and future needs of action, e.g. more systematic nationwide monitoring for precursor and ozone formation over Indian region. -- Tropospheric ozone is an increasing threat to food production in India

  1. Development of personal dose monitoring system using wireless data transmission device

    International Nuclear Information System (INIS)

    Inui, Daisuke; Nakashima, Sadao

    2008-01-01

    Radiation workers working in radiation controlled area in nuclear power plants etc., are required to carry a dosimeters by regulation law. The workers are controlled daily on personal exposure dose by reading out the exposure dose information of the dosimeters with an area access control gate installed at the entrance of the radiation controlled area. This type of personal dose monitoring system has a problem that each worker can get his personal dose data only at the entrance of the radiation controlled area several times a day. We developed a system to get the real-time acquisition of personal dose data especially for workers working in a high dose area. This system is generally composed of a dosimeter with a wireless attachment, relay station, and monitor. Some relay stations set in main work places in the radiation controlled area can collect real-time personal dose data of each dosimeter carried by workers at the work place with the relay stations, and transmit it to the monitor to get personal dose data of individual workers. A wireless communication system between dosimeters and relay stations is applied to collect efficiently all personal dose data in the work place. (author)

  2. SUMO: Solar Ultraviolet Monitor and Ozone Nanosatellite

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Godin-Beekman, S.; Rogers, D. J.; Bove, P.; Lagage, P. O.; DeWitte, S.

    2014-12-01

    SUMO is an innovative proof-of-concept nanosatellite aiming to measure on the same platform the different components of the Earth radiation budget (ERB), the solar energy input and the energy reemitted at the top of the Earth atmosphere, with a particular focus on the far UV (FUV) part of the spectrum and on the ozone layer. The FUV is the only wavelength band with energy absorbed in the high atmosphere (stratosphere), in the ozone (Herzberg continuum, 200-220 nm) and oxygen bands, and its high variability is most probably at the origin of a climate influence (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and tropopause). A simultaneous observation of incoming FUV and ozone production would bring an invaluable information on this process of solar-climate forcing. Space instruments have already measured the different components of the ERB but this is the first time that all instruments will operate on the same platform. This characteristic by itself guarantees original scientific results. SUMO is a 3.6 kg, 3W, 10x10x30 cm3 nanosatellite ("3U"), with a "1U" payload of definition has been completed (platform and payload AIT are possible in 24 months). SUMO is proposed for the nanosatellite program of Polytechnic School and CNES (following QB50) for a flight in 2018. Follow-up is 2 fold: on one part more complete measurements using SUMO miniaturized instruments on a larger satellite; on the other part, increase of the coverage in local time and latitude using a constellation of SUMO nanosatellites around the Earth to further geolocalize the Sun influence on our planet. Nanosatellites, with cost and risk limited, are also excellent platforms to evaluate technologies for future missions, e.g. nanotechnology ZnO protection barriers to limit contamination from solar panels in the UV and reduce reflection losses in the visible, or MgZnO solar blind detectors (R

  3. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  4. Satellite Ozone Analysis Center (SOAC)

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Knox, J.B.; Korver, J.A.

    1976-08-01

    Many questions have been raised during the 1970's regarding the possible modification of the ozonosphere by aircraft operating in the stratosphere. Concern also has been expressed over the manner in which the ozonosphere may change in the future as a result of fluorocarbon releases. There are also other ways by which the ozonosphere may be significantly altered, both anthropogenic and natural. Very basic questions have been raised, bearing upon the amount of ozone which would be destroyed by the NO/sub x/ produced in atmospheric nuclear explosions. Studies of the available satellite data have suggested that the worldwide increase of ozone during the past decade, which was observed over land stations, may have been biased by a poor distribution of stations and/or a shift of the planetary wave. Additional satellite data will be required to resolve this issue. Proposals are presented for monitoring of the Earth's ozone variability from the present time into the 1980's to establish a baseline upon which regional, as well as global, ozone trends can be measured

  5. Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Molinos-Senante, M., E-mail: maria.molinos@uv.es [Department of Mathematics for Economy, Universitat de Valencia, Campus dels Tarongers, 46022 Valencia (Spain); Reif, R., E-mail: rreif@icra.cat [Laboratory of Chemical and Environmental Engineering (LEQUIA), Universitat de Girona, Facultat Ciències, Campus Montilivi, 17071 Girona (Spain); Chemical Engineering Department, Universidade de Santiago de Compostela, Rua Lope Gomez de Marzoa s/n, 15782 Santiago de Compostela (Spain); Garrido-Baserba, M., E-mail: mgarrido@icra.cat [Catalan Institute for Water Research, Scientific and Technological Park, H2O Building, Emili Grahit 101, 17003 Girona (Spain); Laboratory of Chemical and Environmental Engineering (LEQUIA), Universitat de Girona, Facultat Ciències, Campus Montilivi, 17071 Girona (Spain); Hernández-Sancho, F., E-mail: francesc.hernandez@uv.es [Department of Applied Economics II, Universitat de Valencia, Campus dels Tarongers, 46022 Valencia (Spain); Omil, F., E-mail: francisco.omil@usc.es [Chemical Engineering Department, Universidade de Santiago de Compostela, Rua Lope Gomez de Marzoa s/n, 15782 Santiago de Compostela (Spain); Poch, M., E-mail: manel@lequia.udg.edu [Catalan Institute for Water Research, Scientific and Technological Park, H2O Building, Emili Grahit 101, 17003 Girona (Spain); Laboratory of Chemical and Environmental Engineering (LEQUIA), Universitat de Girona, Facultat Ciències, Campus Montilivi, 17071 Girona (Spain); Sala-Garrido, R., E-mail: ramon.sala@uv.es [Department of Mathematics for Economy, Universitat de Valencia, Campus dels Tarongers, 46022 Valencia (Spain)

    2013-09-01

    Continuous release of pharmaceutical and personal care products (PPCPs) present in effluents from wastewater treatment plants (WWTPs) is nowadays leading to the adoption of specific measures within the framework of the Directive 2000/60/EC (Water Framework Directive). The ozonation process, normally employed for drinking water production, has also proven its potential to eliminate PPCPs from secondary effluents in spite of their low concentrations. However, there is a significant drawback related with the costs associated with its implementation. This lack of studies is especially pronounced regarding the economic valuation of the environmental benefits associated to avoid the discharge of these pollutants into water bodies. For the first time the shadow prices of 5 PPCPs which are ethynilestradiol, sulfamethoxazole, diclofenac, tonalide and galaxolide from treated effluent using a pilot-scale ozonation reactor have been estimated. From non-sensitive areas their values are − 73.73; − 34.95; − 42.20; − 10.98; and − 8.67 respectively and expressed in €/kg. They represent a proxy to the economic value of the environmental benefits arisen from undischarged pollutants. This paper contributes to value the environmental benefits of implementing post-treatment processes aimed to achieve the quality standards required by the Priority Substances Directive. - Highlights: • Environmental Benefit Analysis of PPCPs • PPCPs' removal depends on their functional group and molecular structures. • Shadow prices as a proxy of the environmental benefits from ozonation process • HHCB and AHTN have the lowest shadow prices. • The greatest environmental benefit is associated with the removal of DCF.

  6. Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation

    International Nuclear Information System (INIS)

    Molinos-Senante, M.; Reif, R.; Garrido-Baserba, M.; Hernández-Sancho, F.; Omil, F.; Poch, M.; Sala-Garrido, R.

    2013-01-01

    Continuous release of pharmaceutical and personal care products (PPCPs) present in effluents from wastewater treatment plants (WWTPs) is nowadays leading to the adoption of specific measures within the framework of the Directive 2000/60/EC (Water Framework Directive). The ozonation process, normally employed for drinking water production, has also proven its potential to eliminate PPCPs from secondary effluents in spite of their low concentrations. However, there is a significant drawback related with the costs associated with its implementation. This lack of studies is especially pronounced regarding the economic valuation of the environmental benefits associated to avoid the discharge of these pollutants into water bodies. For the first time the shadow prices of 5 PPCPs which are ethynilestradiol, sulfamethoxazole, diclofenac, tonalide and galaxolide from treated effluent using a pilot-scale ozonation reactor have been estimated. From non-sensitive areas their values are − 73.73; − 34.95; − 42.20; − 10.98; and − 8.67 respectively and expressed in €/kg. They represent a proxy to the economic value of the environmental benefits arisen from undischarged pollutants. This paper contributes to value the environmental benefits of implementing post-treatment processes aimed to achieve the quality standards required by the Priority Substances Directive. - Highlights: • Environmental Benefit Analysis of PPCPs • PPCPs' removal depends on their functional group and molecular structures. • Shadow prices as a proxy of the environmental benefits from ozonation process • HHCB and AHTN have the lowest shadow prices. • The greatest environmental benefit is associated with the removal of DCF

  7. Godiva, a European Project for Ozone and Trace Gas Measurements from GOME

    Science.gov (United States)

    Goede, A. P. H.; Tanzi, C. P.; Aben, I.; Burrows, J. P.; Weber, M.; Perner, D.; Monks, P. S.; Llewellyn-Jones, D.; Corlett, G. K.; Arlander, D. W.; Platt, U.; Wagner, T.; Pfeilsticker, K.; Taalas, P.; Kelder, H.; Piters, A.

    GODIVA (GOME Data Interpretation, Validation and Application) is a European Commission project aimed at the improvement of GOME (Global Ozone Monitoring Experiment) data products. Existing data products include global ozone, NO2 columns and (ir)radiances. Advanced data products include O3 profiles, BrO, HCHO and OCIO columns. These data are validated by ground-based and balloon borne instruments. Calibration issues are investigated by in-flight monitoring using several complementary calibration sources, as well as an on-ground replica of the GOME instrument. The results will lead to specification of operational processing of the EUMETSAT ozone Satellite Application Facility as well as implementation of the improved and new GOME data products in the NILU database for use in the European THESEO (Third European Stratospheric Experiment on Ozone) campaign of 1999

  8. When will the Antarctic Ozone Hole Recover?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  9. Personal radiation monitoring and assessment of doses received by radiation workers (1996)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1996-12-01

    Since late 1986, all persons monitored by the Australian Radiation Laboratory have been registered on a data base which maintains records of the doses received by each individual wearer. At present, the Service regularly monitors approximately 30,000 persons, which is roughly 90 percent of those monitored in Australia, and maintains dose histories of over 75,000 people. The skin dose for occupationally exposed workers can be measured by using one of the five types of monitor issued by the Service: Thermoluminescent Dosemeter (TLD monitor), Finger TLD 3, Neutron Monitor, Special TLD and Environmental monitor. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 5 figs

  10. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and (1)H NMR techniques.

    Science.gov (United States)

    Rodríguez, Francisco J; Schlenger, Patrick; García-Valverde, María

    2016-01-15

    The main objective of this work is to conduct a comprehensive structural characterization of humic substances using the following experimental techniques: FTIR, 1H NMR and several UV–Vis parameters (Specific UV Absorbance at 254 nm or SUVA254, SUVA280, A400, the absorbance ratios A210/254, A250/365, A254/203, A254/436, A265/465, A270/400, A280/350, A465/665, the Absorbance Slope Index (ASI), the spectral slopes S275–295, S350–400 and the slope ratio SR). These UV–Vis parameters have also been correlated with key properties of humic substances such as aromaticity, molecular weight (MW) and trihalomethane formation potential (THMFP). An additional objective of this work is also to evaluate the usefulness of these techniques to monitor structural changes in humic substances produced by the ozonation treatment. Four humic substances were studied in this work: three of them were provided by the International Humic Substances Society (Suwannee River Fulvic Acid Standard: SRFA, Suwannee River Humic Acid Standard: SRHA and Nordic Reservoir Fulvic Acid Reference: NLFA) and the other one was a terrestrial humic acid widely used as a surrogate for aquatic humic substances in various studies (Aldrich Humic Acid: AHA). The UV–Vis parameters showing the best correlations with aromaticity in this study were SUVA254, SUVA280, A280/A350 ratio and A250/A364 ratio. The best correlations with molecular weight were for SUVA254, SUVA280 and A280/A350 ratio. Finally, in the case of the THMFP it was STHMFP-per mol HS the parameter showing good correlations with most of the UV–Vis parameters studied (especially with A280/A350 ratio, A265/A465 ratio and A270/A400 ratio) whereas STHMFP-per mg C showed poor correlations in most cases. On the whole, the UV–Vis parameter showing the best results was A280/A350 ratio as it showed excellent correlations for the three properties studied (aromaticity, MW and THMFP). A decrease in aromaticity following ozonation of humic substances can

  11. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  12. Ground-level ozone: Our new environmental policy

    International Nuclear Information System (INIS)

    Schiff, H.

    1991-01-01

    The environmental problem of ground level ozone is discussed, and the Canadian strategy for dealing with it is explained. Ozone in the troposphere can cause serious health problems in susceptible persons, and is estimated to cause up to $70 million in crop damage per year. The Canadian Council of Ministers of the Environment (CCME) Plan calls for less than 82 ppB by volume of ozone in any one-hour period in all areas of Canada by 2005. Three areas of Canada regularly exceed this value: the Lower Frazer valley in British Columbia, Saint John in New Brunswick, and the Windsor-Quebec corridor along the lower Great Lakes and the St. Lawrence River. Ozone is formed by a photochemical reaction of ammonia gases, nitrogen oxides, hydrogen sulfide or sulfur dioxide. Historically, ozone control has concentrated on controlling hydrocarbon emissions, but to little effect. In most locations close to large cities, ozone production is nitrogen oxide-limited, and the most recent models predict that the best strategy for ozone reduction requires the simultaneous reduction of both hydrocarbons and nitrogen oxides. The CCME Management Plan suggests that the 82 ppB ozone target will require a reduction of 40-50% in nitrogen oxide emissions. The Windsor end of the Windsor-Quebec corridor is dominated by transport of ozone and precursors from the USA, particularly Detroit and Cleveland, so Canadian controls alone are unlikely to solve the problem. For the rest of the corridor, nitrogen oxide control is likely to be most effective in urban areas. 1 fig

  13. 1979-1999 satellite total ozone column measurements over West Africa

    Directory of Open Access Journals (Sweden)

    P. Di Carlo

    2000-06-01

    Full Text Available Total Ozone Mapping Spectrometer (TOMS instruments have been flown on NASA/GSFC satellites for over 20 years. They provide near real-time ozone data for Atmospheric Science Research. As part of preliminary efforts aimed to develop a Lidar station in Nigeria for monitoring the atmospheric ozone and aerosol levels, the monthly mean TOMS total column ozone measurements between 1979 to 1999 have been analysed. The trends of the total column ozone showed a spatial and temporal variation with signs of the Quasi Biennial Oscillation (QBO during the 20-year study period. The values of the TOMS total ozone column, over Nigeria (4-14°N is within the range of 230-280 Dobson Units, this is consistent with total ozone column data, measured since April 1993 with a Dobson Spectrophotometer at Lagos (3°21¢E, 6°33¢N, Nigeria.

  14. Determinants of personal exposure to ozone in school children. Results from a panel study in Greece.

    Science.gov (United States)

    Dimakopoulou, Konstantina; Grivas, Georgios; Samoli, Evangelia; Rodopoulou, Sophia; Spyratos, Dionisis; Papakosta, Despoina; Karakatsani, Anna; Chaloulakou, Archontoula; Katsouyanni, Klea

    2017-04-01

    In the wider framework of the RESPOZE (ReSPiratory effects of OZone Exposure in Greek children) panel study, we investigated possible determinants of O 3 exposure of school children, measured with personal passive samplers, in Athens and Thessaloniki, Greece. Personal exposure to O 3 was measured for five weeks spread along the academic year 2013-14, in 186 school children in Athens and Thessaloniki, Greece. At the same time, at-school outdoor measurements were performed and ambient levels of 8-h daily maximum O 3 from fixed sites were collected. We also collected information on lifestyle and housing characteristics through an extended general questionnaire (GQ) and each participant completed daily time activity diaries (TADs) during the study period. Mean outdoor concentrations were higher during the warmer months, in the suburbs of the cities and in Athens. Personal exposure concentrations were significantly lower compared to outdoor. Daily levels of at-school outdoor and ambient levels of O 3 from fixed sites were significant determinants of personal exposure to O 3 . For a 10μg/m 3 increase in at-school outdoor O 3 concentrations and PM 10 measurements a 20.9% (95% CI: 13%, 28%) increase in personal exposure to O 3 was found. For a half an hour more spent in transportation an average increase of 7% (95% CI: 0.3%, 14.6%) in personal exposure to O 3 was observed. Among other possible determinants, time spent in transportation (TAD variable) and duration of open windows were the ones associated with personal O 3 exposure levels. Our results support the use of outdoor and ambient measurements from fixed sites in epidemiological studies as a proxy of personal exposure to O 3 , but this has to be calibrated taking into account personal measurements and time-activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Influence of turbidity and clouds on satellite total ozone data over Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J.L. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain); Anton, M. [Granada Univ. (Spain). Dept. de Fisica Aplicada; Loyola, D. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Hernandez, E. [Madrid Univ. Complutense (Spain). Dept. Fisica de la Tierra II

    2010-07-01

    This article focuses on the comparison of the total ozone column data from three satellite instruments; Total Ozone Mapping Spectrometers (TOMS) on board the Earth Probe (EP), Ozone Monitoring Instrument (OMI) on board AURA and Global Ozone Monitoring Experiment (GOME) on board ERS/2, with ground-based measurement recorded by a well calibrated Brewer spectrophotometer located in Madrid during the period 1996-2008. A cluster classification based on solar radiation (global, direct and diffuse), cloudiness and aerosol index allow selecting hazy, cloudy, very cloudy and clear days. Thus, the differences between Brewer and satellite total ozone data for each cluster have been analyzed. The accuracy of EP-TOMS total ozone data is affected by moderate cloudiness, showing a mean absolute bias error (MABE) of 2.0%. In addition, the turbidity also has a significant influence on EP-TOMS total ozone data with a MABE {proportional_to}1.6%. Those data are in contrast with clear days with MABE {proportional_to}1.2%. The total ozone data derived from the OMI instrument show clear bias at clear and hazy days with small uncertainties ({proportional_to}0.8%). Finally, the total ozone observations obtained with the GOME instrument show a very smooth dependence with respect to clouds and turbidity, showing a robust retrieval algorithm over these conditions. (orig.)

  16. Real-time personal dose monitoring and management system

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Cheng Chang; Yang Huating; Liu Zhengshan; Deng Changming; Li Mei

    2000-01-01

    This paper mainly describes a real-time personal dose monitoring and management system. The system is composed of three parts that include SDM-98 semiconductor detector personal dosimeters, Data Readers and a Management System Software. It can be used for personal dose monitoring and management and other controlling actions in a radioactive controlled area. Adopting semiconductor detector and microcontroller, SDM-98 Personal Dosimeter is used to measure personal accumulated dose equivalent and dose rate caused by X-ray and Gamma ray. The results can be read directly on LCD. All the data stored in dosimeter can be transmitted into a data reader by infrared optical link. The alarm threshold can be adjusted successively in whole range of dose or dose rate. The Data Reader is an intelligent interface between the dosimeter and master computer. The data received from dosimeter will be sent to a master computer through RS-232 serial interface. According to the master computer's order, the Data Reader can turn on the dosimeter's power at entrance and shutdown it at exit. The Management System Software which written by Visual BASIC 5.0 runs on MS Win95. All the measuring data from dosimeters can be analyzed and treated according to requirements and stored in database. Therefore, some figures and tables relative to dose or rate can be shown on screen or printed out. (author)

  17. Temperature, ozone, and mortality in urban and non-urban counties in the northeastern United States.

    Science.gov (United States)

    Madrigano, Jaime; Jack, Darby; Anderson, G Brooke; Bell, Michelle L; Kinney, Patrick L

    2015-01-07

    Most health effects studies of ozone and temperature have been performed in urban areas, due to the available monitoring data. We used observed and interpolated data to examine temperature, ozone, and mortality in 91 urban and non-urban counties. Ozone measurements were extracted from the Environmental Protection Agency's Air Quality System. Meteorological data were supplied by the National Center for Atmospheric Research. Observed data were spatially interpolated to county centroids. Daily internal-cause mortality counts were obtained from the National Center for Health Statistics (1988-1999). A two-stage Bayesian hierarchical model was used to estimate each county's increase in mortality risk from temperature and ozone. We examined county-level associations according to population density and compared urban (≥1,000 persons/mile(2)) to non-urban (PI: 0.08, 0.83) in urban counties, while this same increase in ozone was associated with a 0.73% increase (95% PI: 0.19, 1.26) in non-urban counties. An increase in temperature from 70°F to 90°F (21.2°C 32.2°C) was associated with a 8.88% increase in mortality (95% PI: 7.38, 10.41) in urban counties and a 8.08% increase (95% PI: 6.16, 10.05) in non-urban counties. County characteristics, such as population density, percentage of families living in poverty, and percentage of elderly residents, partially explained the variation in county-level associations. While most prior studies of ozone and temperature have been performed in urban areas, the impacts in non-urban areas are significant, and, for ozone, potentially greater. The health risks of increasing temperature and air pollution brought on by climate change are not limited to urban areas.

  18. How conservative is routine personal dosimetry monitoring in diagnostic radiology?

    International Nuclear Information System (INIS)

    Boetticher, H. von; Lachmund, J.; Hoffmann, W.

    2007-01-01

    Purpose: Dose values obtained by official personal radiation exposure monitoring are often considered equivalent to the effective dose of a person. This paper provides estimates of the extent of deviation between the two dose concepts under various conditions. Materials and Methods: Doses for patients and personnel were measured using thermoluminescence dosimeters for five different geometries at three work settings in a radiology department. Patients and personnel were simulated with anthropomorphic phantoms. Different types of protective clothing as well as permanent protection shields were considered in the calculations. Results: Dose values obtained by official personal dose monitoring are conservative only for specific radiation protection situations. With state-of-the-art personal protective equipment (wrap-around style lead apron with thyroid shield), the ratio between effective dose and personal dose varies between 0.6 and 1.25. Without thyroid protection the official personal dose systematically underestimates the effective dose: for protective clothing with 0.5 mm lead equivalent without thyroid shielding, the effective dose exceeds the personal dose by factors between 1.7 and 3.1. If protective clothing with lead equivalent 0.35 mm is used, this factor varies between 1.1 and 1.82. (orig.)

  19. Ozone-mist spray sterilization for pest control in agricultural management

    Science.gov (United States)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  20. Relationship between surface, free tropospheric and total column ozone in 2 contrasting areas in South-Africa

    CSIR Research Space (South Africa)

    Combrink, J

    1995-04-01

    Full Text Available Measurements of surface ozone in two contrasting areas of South Africa are compared with free tropospheric and Total Ozone Mapping Spectrometer (TOMS) total column ozone data. Cape Point is representative of a background monitoring station which...

  1. Monitoring ambient ozone with a passive measurement technique method, field results and strategy

    NARCIS (Netherlands)

    Scheeren, BA; Adema, EH

    1996-01-01

    A low-cost, accurate and sensitive passive measurement method for ozone has been developed and tested. The method is based on the reaction of ozone with indigo carmine which results in colourless reaction products which are detected spectrophotometrically after exposure. Coated glass filters are

  2. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Profile Science Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi-NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  3. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Total Column Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  4. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    Science.gov (United States)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  5. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products.

    Science.gov (United States)

    Alexopoulos, A; Plessas, S; Kourkoutas, Y; Stefanis, C; Vavias, S; Voidarou, C; Mantzourani, I; Bezirtzoglou, E

    2017-04-04

    Ozone was used to control spoilage microorganisms during the manufacturing of dairy products. Ozone stream was applied onto the surface of freshly filled yoghurt cups just before storage for curd development in order to prevent cross contamination from spoilage airborne microorganisms. Accordingly, brine solution was bubbled with ozone for various periods of time and used for ripening of white (feta type) cheese. Both products were subjected to a continuous monitoring of microbial load and also tested for their sensorial properties. In ozonated yoghurt samples there was a reduction in mould counts of approximately 0.6Logcfu/g (25.1%) by the end of the monitoring period in relation to the control samples. In white cheese ripened with ozonated brine (1.3mg/L O 3 , NaCl 5%) it seems that ozone treatment during the two months of observation reduced some of the mould load but without offering any advantages over the use of traditional brine (NaCl 7%). However, some sensorial alterations were observed, probably due to the organic load in the brine which deactivates ozone in early stages of application. It is concluded that, if the factors of time and concentration of ozone are configured properly, ozonation could be a promising approach safeguarding the production of some dairy products. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Detecting the Recovery of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2004-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  7. Ground-level ozone pollution and its health impacts in China

    Science.gov (United States)

    Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin

    2018-01-01

    In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.

  8. Comparison of two personal ultraviolet index monitors for sun awareness in South Africa

    Directory of Open Access Journals (Sweden)

    Caradee Y. Wright

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is known to have both adverse and beneficial consequences for human health. Sunburn and skin cancer are probably the most well-known acute and chronic adverse health impacts. These themes have recently been discussed in the media for the general public; consequently interest in sun protection is growing. The promotion of the use of practical personal strategies to reduce adverse health risks, such as healthy sun behaviour, sun protection mechanisms and solar ultraviolet radiation awareness tools, is increasing. One such tool is the personal UV index (UVI monitor, promoted commercially as a viable tool for sun awareness; however, such instruments have not been scientifically evaluated in a South African context. Here, two different types of personal UVI monitors, commercially available in South Africa, were compared with a research-grade UVB biometer for a continuous 7-h period on 02 March 2012 in Pretoria. One of the two personal UVI monitors showed reasonable agreement with the UVB biometer, whereas the other monitor overestimated UVI by up to 4 UVI units. When comparing two identical products manufactured by the same company, one monitor overestimated UVI twofold, suggesting inter-instrument variability may be a concern. Commercially available, personal UVI monitors should be used with caution as a public health tool for sun awareness in South Africa.

  9. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality

    Science.gov (United States)

    Taylan, Osman

    2017-02-01

    High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.

  10. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    Science.gov (United States)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  11. Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation.

    Science.gov (United States)

    Molinos-Senante, M; Reif, R; Garrido-Baserba, M; Hernández-Sancho, F; Omil, F; Poch, M; Sala-Garrido, R

    2013-09-01

    Continuous release of pharmaceutical and personal care products (PPCPs) present in effluents from wastewater treatment plants (WWTPs) is nowadays leading to the adoption of specific measures within the framework of the Directive 2000/60/EC (Water Framework Directive). The ozonation process, normally employed for drinking water production, has also proven its potential to eliminate PPCPs from secondary effluents in spite of their low concentrations. However, there is a significant drawback related with the costs associated with its implementation. This lack of studies is especially pronounced regarding the economic valuation of the environmental benefits associated to avoid the discharge of these pollutants into water bodies. For the first time the shadow prices of 5 PPCPs which are ethynilestradiol, sulfamethoxazole, diclofenac, tonalide and galaxolide from treated effluent using a pilot-scale ozonation reactor have been estimated. From non-sensitive areas their values are -73.73; -34.95; -42.20; -10.98; and -8.67 respectively and expressed in €/kg. They represent a proxy to the economic value of the environmental benefits arisen from undischarged pollutants. This paper contributes to value the environmental benefits of implementing post-treatment processes aimed to achieve the quality standards required by the Priority Substances Directive. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  13. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.

    2016-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  14. Interpretation of ozone vertical profiles and their variations in the Northern hemisphere on the basis of GOME satellite data. Final report; Interpretation von Ozon-Vertikalprofilen und deren Variationen in der noerdlichen Hemisphaere unter Benutzung von GOME Satellitendaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eichmann, K.U.; Bramstedt, K.; Weber, M.; Rozanov, V.; Debeek, R.; Hoogen, R.; Burrows, J.P.

    2000-07-04

    Semiglobal ozone vertical profiles based on GOME measurements were established and evaluated systematically. GOME (Global Ozone Monitoring Experiment), carried by the ERS-2 satellite, is the first European passive optical sensor for long-term monitoring of ozone, other trace elements, and aerosols. Especially the vertical distribution of ozone in the Arctic region was measured and interpreted with a view to enhanced ozone degradation in the Arctic winter and spring seasons. Apart from the regional variations, also the time variations of the profiles are to provide further information on the dynamics and chemical processes in the polar vortex. The retrieval algorithm used for assessing the ozone vertical profiles, FURM (FUll Retrieval Method), is based on the GOMETRAN radiation transport model developed at Bremen university especially for evaluation of the GOME data. The GOME ozone profiles were validated with ozone probes and other satellite experiments. [German] Ziel des Projektes war eine systematische Bestimmung und Auswertung von semiglobalen Ozonvertikalprofilen aus den Messdaten von GOME. Das auf dem Satelliten ERS-2 fliegende Spektrometer GOME (Global Ozone Monitoring Experiment) ist der erste europaeische, passive, optische Sensor, der fuer Langzeitmessungen von Ozon, anderen Spurenstoffen und Aerosolen konzipiert wurde. Im Projekt wurde insbesondere die vertikale Verteilung von Ozon in der Arktis bestimmt und interpretiert hinsichtlich des verstaerkten Ozonabbaus im arktischen Winter und Fruehjahr. Neben der raeumlichen Variation sollen auch die zeitlichen Ablaeufe und Veraenderungen der Profile weitere Erkenntnise hinsichtlich der Dynamik und der chemischen Prozesse im Polarwirbel liefern. Der Retrievalalgorithmus zur Bestimmung des Ozonhoehenprofils, FURM (Full Retrieval Method) genannt, basiert auf dem Strahlungstransportmodell GOMETRAN, das an der Universitaet Bremen speziell fuer die Auswertung der Daten des GOME Instrumentes entwickelt wurde

  15. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

    Science.gov (United States)

    Ahmadi, Mahdi; John, Kuruvilla

    2015-12-01

    Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone

  16. Occupational radiation exposure in Germany: many monitored persons = high exposure?

    International Nuclear Information System (INIS)

    Nitschke, J.

    1996-01-01

    Natural radiation affects the entire population in Germany, and most of Germany's inhabitants are exposed to medical radiation in their lifetime. Occupational radiation exposure, however, is a kind of exposure affecting only a limited and well-defined group of the population, and this radiation exposure has been recorded and monitored as precisely as technically possible ever since the radiation protection laws made occupational radiation exposure monitoring a mandatory obligation. Official personal dosimetry applying passive dosemeters in fact does not offer direct protection against the effects of ionizing radiation, as dosemeter read-out and dose calculation is a post-exposure process. But it nevertheless is a rewarding monitoring duty under radiation protection law, as is shown by the radiation exposure statistics accumulated over decades: in spite of the number of monitored persons having been increasing over the years, the total exposure did not, due to the corresponding improvements in occupational radiation protection. (orig.) [de

  17. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon

    NARCIS (Netherlands)

    Hernandez Leal, L.; Temmink, B.G.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100–1600 µgL-1) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%):

  18. Personal exposure versus monitoring station data for respirable particles

    Energy Technology Data Exchange (ETDEWEB)

    Sega, K; Fugas, M

    1982-01-01

    Personal exposure to respirable particles of 12 subjects working at the same location, but living in various parts of Zagreb, was monitored for 7 consecutive days and compared with simultaneously obtained data from the outdoor network station nearest to subject's home. Although personal exposure is related to the outdoor pollution, other sources play a considerable role. Indoor exposure takes, on the average, more than 80% of the total time. The ratio between average personal exposure and respirable particle levels in the outdoor air decreases with the increased outdoor concentration (r = -0.93), indicating that this relationship might serve as a basis for a rough estimate of possible personal exposure.

  19. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization

    International Nuclear Information System (INIS)

    Lee, I-S.; Tsai, S.-W.

    2008-01-01

    The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 deg. C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 x 10 -4 cm 3 s -1 with detection limit of 58.8 μg m -3 h -1 . Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r = 0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone

  20. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A

    2003-09-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture.

  1. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    International Nuclear Information System (INIS)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A.

    2003-01-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture

  2. Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2012-07-01

    Full Text Available Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI and Aura Microwave Limb Sounder (MLS are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979–2010 long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30–40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  3. Studies on calibration and validation of data provided by the Global Ozone Monitoring Experiment GOME on ERS-2 (CAVEAT). Final report; Studie zur Kalibrierung und Validation von Daten des Global Ozone Monitoring Experiments GOME auf ERS-2 (CAVEAT). Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, J.P.; Kuenzi, K.; Ladstaetter-Weissenmayer, A.; Langer, J. [Bremen Univ. (Germany). Inst. fuer Umweltphysik; Neuber, R.; Eisinger, M. [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Potsdam (Germany)

    2000-04-01

    The Global Ozone Monitoring Experiment (GOME) was launched on 21 April 1995 as one of six scientific instruments on board the second European remote sensing satellite (ERS-2) of the ESA. The investigations presented here aimed at assessing and improving the accuracy of the GOME measurements of sun-standardized and absolute radiation density and the derived data products. For this purpose, the GOME data were compared with measurements pf terrestrial, airborne and satellite-borne systems. For scientific reasons, the measurements will focus on the medium and high latitudes of both hemispheres, although equatorial regions were investigated as well. In the first stage, operational data products of GOME were validated, i.e. radiation measurements (spectra, level1 product) and trace gas column densities (level2 product). [German] Am 21. April 1995 wurde das Global Ozone Monitoring Experiment (GOME) als eines von insgesamt sechs wissenschaftlichen Instrumenten an Bord des zweiten europaeischen Fernerkundungssatelliten (ERS-2) der ESA ins All gebracht. Das Ziel dieses Vorhabens ist es, die Genauigkeit der von GOME durchgefuehrten Messungen von sonnennormierter und absoluter Strahlungsdichte sowie der aus ihnen abgeleiteten Datenprodukte zu bewerten und zu verbessern. Dazu sollten die GOME-Daten mit Messungen von boden-, flugzeug- und satellitengestuetzten Systemen verglichen werden. Aus wissenschaftlichen Gruenden wird der Schwerpunkt auf Messungen bei mittleren und hohen Breitengraden in beiden Hemisphaeren liegen. Jedoch wurden im Laufe des Projektzeitraumes auch Regionen in Aequatornaehe untersucht. Im ersten Schritt sollen operationelle Datenprodukte von GOME validiert werden. Dieses sind Strahlungsmessungen (Spektren, Level1-Produkt) und Spurengas-Saeulendichten (Level2-Produkt). (orig.)

  4. Personalized USB Biosensor Module for Effective ECG Monitoring.

    Science.gov (United States)

    Sladojević, Srdjan; Arsenović, Marko; Lončar-Turukalo, Tatjana; Sladojević, Miroslava; Ćulibrk, Dubravko

    2016-01-01

    The burden of chronic disease and associated disability present a major threat to financial sustainability of healthcare delivery systems. The need for cost-effective early diagnosis and disease prevention is evident driving the development of personalized home health solutions. The proposed solution presents an easy to use ECG monitoring system. The core hardware component is a biosensor dongle with sensing probes at one end, and micro USB interface at the other end, offering reliable and unobtrusive sensing, preprocessing and storage. An additional component is a smart phone, providing both the biosensor's power supply and an intuitive user application for the real-time data reading. The system usage is simplified, with innovative solutions offering plug and play functionality avoiding additional driver installation. Personalized needs could be met with different sensor combinations enabling adequate monitoring in chronic disease, during physical activity and in the rehabilitation process.

  5. Modifiers of short-term effects of ozone on mortality in eastern Massachusetts - A case-crossover analysis at individual level

    Directory of Open Access Journals (Sweden)

    Schwartz Joel

    2010-01-01

    Full Text Available Abstract Background Substantial epidemiological studies demonstrate associations between exposure to ambient ozone and mortality. A few studies simply examine the modification of this ozone effect by individual characteristics and socioeconomic status, but socioeconomic status was usually coded at the city level. Methods This study used a case-crossover design to examine whether impacts of ozone on mortality were modified by socioeconomic status coded at the tract or characteristics at an individual level in eastern Massachusetts, US for a period May-September, 1995-2002, with a total of 157,197 non-accident deaths aging 35 years or older. We used moving averages of maximal 8-hour concentrations of ozone monitored at 8 stationary stations as personal exposure. Results A 10 ppb increase in the four-day moving average of maximal 8-hour ozone was associated with 1.68% (95% confidence interval (CI: 0.51%, 2.87%, 1.96% (95% CI: -1.83%, 5.90%, 8.28% (95% CI: 0.66%, 16.48%, 0.44% (95% CI: -1.45%, 2.37%, -0.83% (95% CI: -2.94%, 1.32%, -1.09% (95% CI: -4.27%, 2.19% and 6.5% (95% CI: 1.74%, 11.49% changes in all natural deaths, respiratory disorders, diabetes, cardiovascular diseases, heart diseases, acute myocardial infarction and stroke, respectively. We did not find any evidence that the associations were significantly modified by socioeconomic status or individual characteristics although small differences of estimates across subpopulations were demonstrated. Conclusions Exposure to ozone was associated with specific cause mortality in Eastern Massachusetts during May-September, 1995-2002. There was no evidence that effects of ozone on mortality were significantly modified by socioeconomic status and individual characteristics.

  6. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  7. Intercomparison of personal radiation monitoring services in the Asia/Pacific region

    International Nuclear Information System (INIS)

    Young, J.G.; Hargrave, N.J.

    1994-01-01

    The Australian Radiation Laboratory conducted an international intercomparison of personal radiation monitoring services in the Asia/Pacific region during 1991. Twenty nine organizations from sixteen countries took part in the study, with the People's Republic of China having eleven participants. Dosemeters incorporating thermoluminescent phosphors and conventional film were submitted for evaluation. Both types were irradiated at normal incidence on a phantom with 137 Cs gamma rays, X rays and beta radiation from a 90 Sr/ 90 Y source. Participants were requested to assess their dosemeters in terms of the new operational quantities of the ICRU for personal radiation monitoring, in particular the personal dose equivalents H p (0.07) and H p (10). (author)

  8. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Science.gov (United States)

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  9. Ozone pollution: rising concentrations despite French and EU efforts

    International Nuclear Information System (INIS)

    Ba, M.; Elichegaray, Ch.

    2003-11-01

    Ozone is the main indicator of photochemical pollution which is caused by a complex combination of primary pollutants formed by chemical reactions in the troposphere, in the presence of sunlight. These primary pollutants, otherwise known as precursors of ozone (nitrogen oxides, volatile organic compounds and carbon monoxide), are emitted both by natural sources and human activities. In urban areas, during the summer months, ozone is often the main cause of deterioration in air quality. Directive 2002/3/EC relating to ozone in ambient air entered into force on 9 September 2003, superseding the first ozone Directive (92/72/CE) of 21 September 1992. In the last 10 years, monitoring of ozone pollution has considerably progressed in France (the number of analysers has increased tenfold). Emissions of the ozone precursors fell significantly (-27%) between 1990 and 2000 in France as a result of combined efforts in all sectors of activity. However, between 1994 and 2002, ozone levels remained above the information threshold for the protection of human health and vegetation on average more than 100 days a year in rural areas and over 40 days a year in urban and peri-urban areas. Efforts undertaken both in France and other European countries aim to improve the situation and ensure compliance with the requirements of Directive 2002/3/EC. (author)

  10. Application of ozone micro-nano-bubbles to groundwater remediation.

    Science.gov (United States)

    Hu, Liming; Xia, Zhiran

    2018-01-15

    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  12. Personal dosimetry and area monitoring for neutrons and radon in workplaces

    International Nuclear Information System (INIS)

    Tommasino, L.

    2001-01-01

    The first successful applications of damage track detectors in radiation protection have been made in the early 1970s in personal dosimetry of neutrons, radon and its progenies. Most of the scientists actively engaged in the solution of the complex problem of personal neutron dosimetry by damage track detectors-SSNTD, have attempted to develop individual radon monitoring for exposure in mines by using the same SSNTDs. In late 1970s and the early 1980s, new radon monitoring devices based on SSNTDs have been developed to measure radon in soil, mainly for applications in uranium prospecting or more generally in earth sciences. Most of the radon monitors, developed since then for completely different applications in mind, have been used later for large scale survey of indoor radon. With the current implementation within Europe of the European Union Directive 96/29, applications of damage track detectors will increase drastically, specially for the assessment of the exposure of the workers to natural sources of radiation. In this case, the early work on personal neutron/radon dosimetry, is highly valuable to tackle these new problems of individual monitoring

  13. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  14. Spatio-temporal observations of the tertiary ozone maximum

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2009-07-01

    Full Text Available We present spatio-temporal distributions of the tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  15. Distribution ozone concentration in Klang Valley using GIS approaches

    Science.gov (United States)

    Sulaiman, A.; Rahman, A. A. Ab; Maulud, K. N. Abdul; Latif, M. T.; Ahmad, F.; Wahid, M. A. Abdul; Ibrahim, M. A.; Halim, N. D. Abdul

    2017-05-01

    Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10-9) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed.

  16. Distribution ozone concentration in Klang Valley using GIS approaches

    International Nuclear Information System (INIS)

    Sulaiman, A; Ab Rahman, A A; Abdul Maulud, K N; Abdul Wahid, M A; Ibrahim, M A; Latif, M T; Abdul Halim, N D; Ahmad, F

    2017-01-01

    Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10 -9 ) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed. (paper)

  17. A preliminary comparison between TOVS and GOME level 2 ozone data

    Science.gov (United States)

    Rathman, William; Monks, Paul S.; Llewellyn-Jones, David; Burrows, John P.

    1997-09-01

    A preliminary comparison between total column ozone concentration values derived from TIROS Operational Vertical Sounder (TOVS) and Global Ozone Monitoring Experiment (GOME) has been carried out. Two comparisons of ozone datasets have been made: a) TOVS ozone analysis maps vs. GOME level 2 data; b) TOVS data located at Northern Hemisphere Ground Ozone Stations (NHGOS) vs. GOME data. Both analyses consistently showed an offset in the value of the total column ozone between the datasets [for analyses a) 35 Dobson Units (DU); and for analyses b) 10 DU], despite a good correlation between the spatial and temporal features of the datasets. A noticeably poor correlation in the latitudinal bands 10°/20° North and 10°/20° South was observed—the reasons for which are discussed. The smallest region which was statistically representative of the ozone value correlation dataset of TOVS data at NHGOS and GOME level-2 data was determined to be a region that was enclosed by effective radius of 0.75 arc-degrees (83.5km).

  18. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    A. Gaudel

    2018-05-01

    Full Text Available 'The Tropospheric Ozone Assessment Report' (TOAR is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB between 60°N–60°S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited

  19. A New ENSO Index Derived from Satellite Measurements of Column Ozone

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.

    2010-01-01

    Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.

  20. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  1. Application of ubiquitous computing in personal health monitoring systems.

    Science.gov (United States)

    Kunze, C; Grossmann, U; Stork, W; Müller-Glaser, K D

    2002-01-01

    A possibility to significantly reduce the costs of public health systems is to increasingly use information technology. The Laboratory for Information Processing Technology (ITIV) at the University of Karlsruhe is developing a personal health monitoring system, which should improve health care and at the same time reduce costs by combining micro-technological smart sensors with personalized, mobile computing systems. In this paper we present how ubiquitous computing theory can be applied in the health-care domain.

  2. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    Science.gov (United States)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; hide

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  3. The Role of Personality in a Regular Cognitive Monitoring Program.

    Science.gov (United States)

    Sadeq, Nasreen A; Valdes, Elise G; Harrison Bush, Aryn L; Andel, Ross

    2018-02-20

    This study examines the role of personality in cognitive performance, adherence, and satisfaction with regular cognitive self-monitoring. One hundred fifty-seven cognitively healthy older adults, age 55+, completed the 44-item Big-Five Inventory and were subsequently engaged in online monthly cognitive monitoring using the Cogstate Brief Battery for up to 35 months (M=14 mo, SD=7 mo). The test measures speed and accuracy in reaction time, visual learning, and working memory tasks. Neuroticism, although not related to cognitive performance overall (P>0.05), was related to a greater increase in accuracy (estimate=0.07, P=0.04) and speed (estimate=-0.09, P=0.03) on One Card Learning. Greater conscientiousness was related to faster overall speed on Detection (estimate=-1.62, P=0.02) and a significant rate of improvement in speed on One Card Learning (estimate=-0.10, Pconscientiousness were observed. Participants volunteering for regular cognitive monitoring may be quite uniform in terms of personality traits, with personality traits playing a relatively minor role in adherence and satisfaction. The more neurotic may exhibit better accuracy and improve in speed with time, whereas the more conscientious may perform faster overall and improve in speed on some tasks, but the effects appear small.

  4. Extreme value analysis for evaluating ozone control strategies.

    Science.gov (United States)

    Reich, Brian; Cooley, Daniel; Foley, Kristen; Napelenok, Sergey; Shaby, Benjamin

    2013-06-01

    Tropospheric ozone is one of six criteria pollutants regulated by the US EPA, and has been linked to respiratory and cardiovascular endpoints and adverse effects on vegetation and ecosystems. Regional photochemical models have been developed to study the impacts of emission reductions on ozone levels. The standard approach is to run the deterministic model under new emission levels and attribute the change in ozone concentration to the emission control strategy. However, running the deterministic model requires substantial computing time, and this approach does not provide a measure of uncertainty for the change in ozone levels. Recently, a reduced form model (RFM) has been proposed to approximate the complex model as a simple function of a few relevant inputs. In this paper, we develop a new statistical approach to make full use of the RFM to study the effects of various control strategies on the probability and magnitude of extreme ozone events. We fuse the model output with monitoring data to calibrate the RFM by modeling the conditional distribution of monitoring data given the RFM using a combination of flexible semiparametric quantile regression for the center of the distribution where data are abundant and a parametric extreme value distribution for the tail where data are sparse. Selected parameters in the conditional distribution are allowed to vary by the RFM value and the spatial location. Also, due to the simplicity of the RFM, we are able to embed the RFM in our Bayesian hierarchical framework to obtain a full posterior for the model input parameters, and propagate this uncertainty to the estimation of the effects of the control strategies. We use the new framework to evaluate three potential control strategies, and find that reducing mobile-source emissions has a larger impact than reducing point-source emissions or a combination of several emission sources.

  5. Evaluation of passive methods for measuring ozone in the European Alps

    Energy Technology Data Exchange (ETDEWEB)

    Hangartner, M. [Inst. of Applied Ergonomics and Hygiene, Zurich (Switzerland); Kirchner, M. [GSF Research Centre for Environment and Human Health, Neuherberg (Germany); Werner, H. [Munich Univ. (Germany). Inst. for Bioclimatology and Environmental Research

    1995-12-31

    Under the leadership of the GSF research centre, various research groups were invited to make their ozone and nitrogen oxide collection systems available for comparative testing. It was considered valuable to include not only well developed systems but also methods still under development. For the main comparative test 11 working groups with differing methods took part. Essentially the goal was to evaluate of the integrating ozone measuring methods as compared to continual ozone monitoring methods under field conditions. For this the various collection systems at 6 alpine continual measuring stations in Italy and Bavaria characterising different location types, were compared over 22 weeks

  6. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    Science.gov (United States)

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  7. Personal monitoring in complex geometry of photon exposures

    International Nuclear Information System (INIS)

    Cunha, P.G.; Drexler, G.

    1996-01-01

    The ratio (effective dose, E) / (personal dose equivalent, Hp(10) ) was calculated for some scenarios set in broad parallel photon beams. Worker's irradiation condition are shown in which the number and locations of the individual monitor have to be carefully determined in order to avoid that the value of effective dose is underestimated

  8. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  9. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    Science.gov (United States)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASAs Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASAs EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

  10. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    Science.gov (United States)

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  11. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health

    Directory of Open Access Journals (Sweden)

    Zoë L. Fleming

    2018-02-01

    Full Text Available This study quantifies the present-day global and regional distributions (2010–2014 and trends (2000–2014 for five ozone metrics relevant for short-term and long-term human exposure. These metrics, calculated by the Tropospheric Ozone Assessment Report, are: 4th highest daily maximum 8-hour ozone (4MDA8; number of days with MDA8 > 70 ppb (NDGT70, SOMO35 (annual Sum of Ozone Means Over 35 ppb and two seasonally averaged metrics (3MMDA1; AVGMDA8. These metrics were explored at ozone monitoring sites worldwide, which were classified as urban or non-urban based on population and nighttime lights data. Present-day distributions of 4MDA8 and NDGT70, determined predominantly by peak values, are similar with highest levels in western North America, southern Europe and East Asia. For the other three metrics, distributions are similar with North–South gradients more prominent across Europe and Japan. Between 2000 and 2014, significant negative trends in 4MDA8 and NDGT70 occur at most US and some European sites. In contrast, significant positive trends are found at many sites in South Korea and Hong Kong, with mixed trends across Japan. The other three metrics have similar, negative trends for many non-urban North American and some European and Japanese sites, and positive trends across much of East Asia. Globally, metrics at many sites exhibit non-significant trends. At 59% of all sites there is a common direction and significance in the trend across all five metrics, whilst 4MDA8 and NDGT70 have a common trend at ~80% of all sites. Sensitivity analysis shows AVGMDA8 trends differ with averaging period (warm season or annual. Trends are unchanged at many sites when a 1995–2014 period is used; although fewer sites exhibit non-significant trends. Over the longer period 1970–2014, most Japanese sites exhibit positive 4MDA8/SOMO35 trends. Insufficient data exist to characterize ozone trends for the rest of Asia and other world regions.

  12. Ozone in the atmosphere. Basic principles, natural and human impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Peter [Technical Univ. Munich (Germany). Immission Research; Dameris, Martin [German Aerospace Center (DLR), Oberpfaffenhofen-Wessling (Germany). Inst. of Atmospheric Physics

    2014-09-01

    climate changes. For many years he has been an active contributor to the WMO scientific ozone depletion assessments, which have been used to monitor the depletion and recovery of the ozone layer in accordance with the Montreal Protocol.

  13. Ozone in the atmosphere. Basic principles, natural and human impacts

    International Nuclear Information System (INIS)

    Fabian, Peter; Dameris, Martin

    2014-01-01

    climate changes. For many years he has been an active contributor to the WMO scientific ozone depletion assessments, which have been used to monitor the depletion and recovery of the ozone layer in accordance with the Montreal Protocol.

  14. Detection of Changes in Ground-Level Ozone Concentrations via Entropy

    Directory of Open Access Journals (Sweden)

    Yuehua Wu

    2015-04-01

    Full Text Available Ground-level ozone concentration is a key indicator of air quality. Theremay exist sudden changes in ozone concentration data over a long time horizon, which may be caused by the implementation of government regulations and policies, such as establishing exhaust emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, we propose a methodology for detecting changes in ground-level ozone concentrations, which consists of three major steps: data transformation, simultaneous autoregressive modelling and change-point detection on the estimated entropy. To show the effectiveness of the proposed methodology, the methodology is applied to detect changes in ground-level ozone concentration data collected in the Toronto region of Canada between June and September for the years from 1988 to 2009. The proposed methodology is also applicable to other climate data.

  15. Efficiency of ozone production by pulsed positive corona discharge in synthetic air

    Energy Technology Data Exchange (ETDEWEB)

    Simek, Milan [Institute of Plasma Physics, Department of Pulsed Plasma Systems, Academy of Sciences of the Czech Republic, Prague (Czech Republic)]. E-mail: simek@ipp.cas.cz; Clupek, Martin [Institute of Plasma Physics, Department of Pulsed Plasma Systems, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2002-06-07

    We have studied the efficiency of ozone production by pulsed positive corona discharge in coaxial wire-cylinder geometry at atmospheric pressure. A corona discharge was generated by short ({approx}150 ns) high voltage pulses applied between a silver coated copper wire anode and stainless steel cylinder cathode in synthetic air. A pyrex probe and Teflon tube was used for collecting discharge products and an ozone concentration was monitored outside of the discharge chamber by a non-dispersive UV absorption technique. The production of ozone was investigated as a function of energy density (10{sup -4}-3x10{sup -1} Wh l{sup -1}) delivered to the discharge volume by combining the discharge frequency (0.1-10 Hz) and airflow rate (1-32 l min{sup -1}). From ozone concentration measurements we have evaluated the ozone production, yield and production energy cost. The ozone production yield and cost vary in the range of 15-55 g kWh{sup -1} and 35-110 eV/molecule. (author)

  16. Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)

    Science.gov (United States)

    Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat

    2018-05-01

    Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.

  17. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  18. Localizing the HL7 Personal Health Monitoring Record for Danish Telemedicine

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2014-01-01

    Telemedicine holds a promise of lowering cost in health care and improving the life quality of chronic ill patients by allowing monitoring in the home. The Personal Health Monitoring Record (PHMR) is an international HL7 standard data format for encoding measurements made by devices in the home...

  19. Using Google Location History to track personal exposure to air pollution

    Science.gov (United States)

    Marais, E. A.; Wiedinmyer, C.

    2017-12-01

    Big data is increasingly used in air pollution research to monitor air quality and develop mitigation strategies. Google Location History provides an archive of geolocation and time information from mobile devices that can be used to track personal exposure to air pollution. Here we demonstrate the utility of Google Location History for assessing true exposure of individuals to air pollution hazardous to human health in an increasingly mobile world. We use the GEOS-Chem chemical transport model at coarse resolution (2° × 2.5°; latitude × longitude) to calculate and sample surface concentrations of fine particle mass (PM2.5) and ozone concentrations at the same time and location of each of six volunteers for 2 years (June 2015 to May 2017) and compare this to annual mean PM2.5 and ozone estimated at their postal addresses. The latter is synonymous with Global Burden of Disease studies that use a static population distribution map. We find that mobile PM2.5 is higher than static PM2.5 for most (five out of six) volunteers and can lead to a 10% increase in the risk for ischemic heart disease and stroke mortality. The difference may be more if instead a high resolution CTM or an abundant air quality monitoring network is used. There is tremendous potential to exploit geolocation and time data from mobile devices for cohort health studies and to determine best practices for limiting personal exposure to air pollution.

  20. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  1. Ozonation of acid yellow 17 dye in a semi-batch bubble column

    International Nuclear Information System (INIS)

    Lackey, Laura W.; Mines, Richard O.; McCreanor, Philip T.

    2006-01-01

    A semi-batch bubble column was used to evaluate the effect of ozonation on the removal of acid yellow 17 dye from water. Results indicate that ozonation is very effective at removing acid yellow 17 dye from synthetic textile wastewater. The ozone consumed to apparent dye removal ratio ranged from 2 to 15,000 mg ozone per mg of dye decolorized and was dependent on both ozonation time and apparent dye concentration. The biodegradability of the dye wastewater was evaluated by monitoring changes in 5-day biochemical oxygen demand (BOD 5 ) with respect to chemical oxygen demand (COD). Results indicate that the wastewater biodegradability increased with an increase in ozonation time. Film theory was used to kinetically model the gas-liquid reactions occurring in the reactor. Modeling results indicated that during the first 10-15 min of ozonation, the system could be characterized by a fast, pseudo-first-order regime. With continued ozonation, system kinetics transitioned through a moderate then to a slow regime. Successful modeling of this period required use of a kinetic equation corresponding to a more inclusive condition. Model results are presented

  2. Trends of Ozone in Switzerland since 1992 (TROZOS)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O{sub X} (sum O{sub 3} of and NO{sub 2}) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative

  3. Trends of Ozone in Switzerland since 1992 (TROZOS)

    International Nuclear Information System (INIS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O X (sum O 3 of and NO 2 ) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative trends of ozone

  4. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  5. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    Science.gov (United States)

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  6. Individual differences in error monitoring in healthy adults: psychological symptoms and antisocial personality characteristics.

    Science.gov (United States)

    Chang, Wen-Pin; Davies, Patricia L; Gavin, William J

    2010-10-01

    Recent studies have investigated the relationship between psychological symptoms and personality traits and error monitoring measured by error-related negativity (ERN) and error positivity (Pe) event-related potential (ERP) components, yet there remains a paucity of studies examining the collective simultaneous effects of psychological symptoms and personality traits on error monitoring. This present study, therefore, examined whether measures of hyperactivity-impulsivity, depression, anxiety and antisocial personality characteristics could collectively account for significant interindividual variability of both ERN and Pe amplitudes, in 29 healthy adults with no known disorders, ages 18-30 years. The bivariate zero-order correlation analyses found that only the anxiety measure was significantly related to both ERN and Pe amplitudes. However, multiple regression analyses that included all four characteristic measures while controlling for number of segments in the ERP average revealed that both depression and antisocial personality characteristics were significant predictors for the ERN amplitudes whereas antisocial personality was the only significant predictor for the Pe amplitude. These findings suggest that psychological symptoms and personality traits are associated with individual variations in error monitoring in healthy adults, and future studies should consider these variables when comparing group difference in error monitoring between adults with and without disabilities. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  8. PHOTOCHEMICAL AIR POLLUTION IN THE NORTH OF PORTUGAL: A HIGH TROPOSHERIC OZONE EPISODE

    Science.gov (United States)

    Monteiro, A.; Carvalho, A.; Tchepel, O.; Ferreira, J.; Martins, H.; Miranda, A.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J. A.

    2009-12-01

    Very high concentrations of ozone are continuously measured at the monitoring station at Lamas d’Olo, located at the North of Portugal,. A particular high photochemical episode occurred between 11 and 13 of July 2005, registering ozone hourly maximum values above 350 µg.m-3. This ozone-rich episode is investigated in this paper, in order to identify its origin and formation. Besides the analysis of both meteorological and air quality monitoring datasets, a numerical modelling approach, based on MM5-CAMx system, was used to simulate the dispersion and transport (horizontal and vertical) of the photochemical pollutants and its precursors. A cross spectrum analysis of the meteorological and air quality time series was performed, in the frequency domain, to establish the relationships between ozone data measured at Lamas d’Olo with air quality data from neighbourhood stations and meteorological parameters. Results point out different behaviour/contribution between the analysed sites. Moreover, different contributions of the u and v wind component on the ozone concentration fluctuations were found suggesting the presence a mountain breeze circulation and a north synoptic transport. The preliminary modelling results pointed out that the vertical transport of pollutants are responsible for the measured high concentrations, combined with particular meteorological conditions, related to the planetary boundary layer (PBL) development. The pollutants transported and existent at high vertical levels are captured/trapped when the PBL height reaches its daily maximum, and extremely high ozone ground level concentrations are consequently measured.

  9. Individual monitoring of external exposure in terms of personal dose equivalent, Hp(d)

    International Nuclear Information System (INIS)

    Fantuzzi, E.

    2001-01-01

    The institute for Radiation Protection of ENEA - Bologna has organised a one day-workshop on the subject: Individual monitoring of external exposure in terms of personal dose equivalent, H p (d). The aim of the workshop was the discussion of the new implications and modifications to be expected in the routine individual monitoring of external radiation, due to the issue of the Decree 241/00 (G.U. 31/8/2000) in charge since 01/01/2001. The decree set up in Italian law the standards contained in the European Directive EURATOM 96/29-Basic Standards for the Protection of Health of Workers and the General Public against Dangers arising from Ionizing Radiation. Among others, the definition of the operational quantities for external radiation for personal and environmental monitoring, H p (d) e H * (d) respectively as defined by ICRU (International Commission for Radiation Units and Measurements), requires to update the methods of measurements and calibration of the personal dosemeters and environmental monitors. This report collects the papers presented at the workshop dealing with the Personal Dose Equivalent, H p (d), the conversion coefficients, H p (d)/K a e H p (d)/ , obtained through Monte Carlo calculations published by ICRU and ICRP (International Commission for Radiation Protection), the new calibration procedures and the practical implication in the routine of individual monitoring in terms of H p (d). Eventually, in the last chapter, the answers to Frequently Asked Questions (FAQ) are briefly reported [it

  10. Ozone and ozone injury on plants in and around Beijing, China

    International Nuclear Information System (INIS)

    Wan, Wuxing; Manning, W.J.; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Zhang, Qianqian

    2014-01-01

    Ozone (O 3 ) levels were assessed for the first time with passive samplers at 10 sites in and around Beijing in summer 2012. Average O 3 concentrations were higher at locations around Beijing than in the city center. Levels varied with site locations and ranged from 22.5 to 48.1 ppb and were highest at three locations. Hourly O 3 concentrations exceeded 40 ppb for 128 h and 80 ppb for 17 h from 2 to 9 in August at one site, where it had a real-time O 3 analyzer. Extensive foliar O 3 injury was found on 19 species of native and cultivated trees, shrubs, and herbs at 6 of the 10 study sites and the other 2 sites without passive sampler. This is the first report of O 3 foliar injury in and around Beijing. Our results warrant an extensive program of O 3 monitoring and foliar O 3 injury assessment in and around Beijing. - Highlights: • Plants have been threatened by high O 3 concentration in and around Beijing, China. • 19 plant species are reported as obvious ambient O 3 injury symptoms in Beijing. • The O 3 injury symptoms occur more often where ambient O 3 concentration is higher. • The results warrant more extensive and long-term study of ambient O 3 in China. - First report of ozone incidence and ozone injury on plants in and around Beijing, China

  11. Cardiopulmonary Mortalities and Chronic Obstructive Pulmonary Disease Attributed to Ozone Air Pollution

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2013-07-01

    Full Text Available Background & Aims of the Study: Ozone is a summer pollutant which can cause respiratory complications, eye burning sensation and failure of immune defense against infectious diseases. Ahvaz city (southwestern Iran is one of the seven polluted Iranian metropolises. In this study we examined the health impacts of ozone pollution in Ahvaz city during years 2010 and 2011. Materials & Methods: The health effects of ozone pollution in Ahvaz estimated by determining mortality and morbidity, and incidence of diseases attributed to the ozone, i.e., cardiopulmonary mortalities and chronic obstructive pulmonary disease (COPD using Air Quality Model. Ozone data were taken from Ahvaz Department of Environment (ADoE. Conversion between volumetric and gravimetric units (correction of temperature and pressure, coding, processing (averaging and filtering were implemented. Results: Sum of accumulative cases of mortalities attributed to ozone was 358 cases in 2010 and 276 cases in 2011. Cardiovascular and respiratory mortality attributed to ozone were 118 and 31 persons, respectively; which revealed a considerable reduction compared to those values in 2010. Number of cases for hospital admissions due to COPD was 35 in 2011, while it was 45 cases in 2010. The concentration of ozone in 2011 was lower than that of 2010 and this is why both mortalities and morbidities of 2011 attributed to ozone pollutant had decreased when compared to those values of 2010. Conclusions: Mortality and morbidity attributed to ozone concentrations in 2011 were lower than those of 2010. The most important reason was less concentration in ground level ozone of 2011 than that of 2010 in Ahvaz city air.

  12. Ozone and ultraviolet radiation. Observations and research in the Netherlands and Belgium

    International Nuclear Information System (INIS)

    1997-01-01

    An overview of recent scientific research in Belgium and the Netherlands on the title subject is given. After an overall introduction on ozone and ultraviolet radiation in chapter 1 attention is paid to observations and monitoring of ozone and UV-radiation in chapter 2 and recent research projects in the Netherlands and Belgium with respect to those quantities in chapter 3. In chapter 4 the biological effects of UV-radiation are described, while in chapter 5 the international policy to protect the ozone layer is discussed as well as the effects of such policy on the UV burden and public health. 10 refs

  13. Surface ozone in China: present-day distribution and long-term changes

    Science.gov (United States)

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements

  14. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  15. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  16. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    Golota, V.I.; Manuilenko, O.V.; Taran, G.V.; Dotsenko, Yu.V.; Pismenetskii, A.S.; Zamuriev, A.A.; Benitskaja, V.A.

    2011-01-01

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  17. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA

    International Nuclear Information System (INIS)

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-01-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. -- Highlights: •Three years of passive ozone sampler data over 49,000 km 2 were analyzed spatially. •Spatial and temporal ozone patterns were mapped across the Sierra Nevada, CA. •Sub-regions of consistently high, low and variable ozone exposure were identified. •The 1700–2400 m elevation band delineated a distinct break in ozone concentration. •This approach has utility for prioritizing management across vulnerable landscapes. -- A passive ozone sampler network in combination with spatial analysis techniques was used to characterize landscape-scale ozone patterns and dynamics, identifying regions of consistently high and low ozone exposure for forest management prioritization

  18. How to most effectively expand the global surface ozone observing network

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2016-02-01

    Full Text Available Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere–biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean. Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12–17 % show significant gaps. Antarctica is surprisingly well observed (78 %. Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics are significantly under-observed. The current network is unlikely to see the impact of the El Niño–Southern Oscillation (ENSO but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new

  19. How to most effectively expand the global surface ozone observing network

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close

  20. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  1. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  2. Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Cohen, R. C.

    2009-12-01

    We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent

  3. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies

    Science.gov (United States)

    Wieser, G.; Emberson, L. D.

    It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.

  4. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  5. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  6. Evaluation of The Surface Ozone Concentrations In Greater Cairo Area With Emphasis On Helwan, Egypt

    International Nuclear Information System (INIS)

    Ramadan, A.; Kandil, A.T.; Abd Elmaged, S.M.; Mubarak, I.

    2011-01-01

    Various biogenic and anthropogenic sources emit huge quantities of surface ozone. The main purpose of this study is to evaluate the surface ozone levels present at Helwan area in order to improve the knowledge and understanding troposphere processes. Surface Ozone has been measured at 2 sites at Helwan; these sites cover the most populated area in Helwan. Ozone concentration is continuously monitored by UV absorption photometry using the equipment O 3 41 M UV Photometric Ozone Analyzer. The daily maximum values of the ozone concentration in the greater Cairo area have approached but did not exceeded the critical levels during the year 2008. Higher ozone concentrations at Helwan are mainly due to the transport of ozone from regions further to the north of greater Cairo and to a lesser extent of ozone locally generated by photochemical smog process. The summer season has the largest diurnal variation, with the tendency of the daily ozone maxima occur in the late afternoon. The night time concentration of ozone was significantly higher at Helwan because there are no fast acting sinks, destroying ozone since the average night time concentration of ozone is maintained at 40 ppb at the site. No correlation between the diurnal total suspended particulate (TSP) matter and the diurnal cumulative ozone concentration was observed during the Khamasin period

  7. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    Science.gov (United States)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  8. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  9. Investigating a high ozone episode in a rural mountain site

    International Nuclear Information System (INIS)

    Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; Friese, E.; Elbern, H.

    2012-01-01

    A very high ozone episode with observed hourly values above 350 μg m −3 occurred in July 2005 at the Lamas d’Olo air quality monitoring station, located in a mountainous area in the north of Portugal. Aiming to identify the origin and formation of this ozone-rich episode, a statistical analysis and a modelling approach were applied. A cross-spectrum analysis in the frequency domain and a synoptic analysis of the meteorological and air quality time series were performed. In order to go further in this analysis, a numerical modelling approach was applied. The results indicate that the transport of ozone and its precursors is the main responsible for the high ozone concentrations. Together with the local mountain breeze and subsidence conditions, the sea-breeze circulation transporting pollutants from the coastal urban and industrialized areas that reach the site during late afternoon turn out to be the driving forces for the ozone peaks. - Highlights: ► A very high ozone episode occurred in a rural mountain site of Portugal in 2004. ► Data cross-spectrum analysis in the frequency domain was performed. ► A numerical modelling approach was also applied. ► The sea-breeze circulation transported pollutants from the urban and industrialized coast. ► The mountain breeze and subsidence conditions were also driving forces for ozone peaks. - The sea-breeze transporting pollutants from the coast, the mountain breeze and subsidence conditions, were the driving forces for the ozone episode occurred in a rural mountain site.

  10. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  11. [Health impact of ozone in 13 Italian cities].

    Science.gov (United States)

    Mitis, Francesco; Iavarone, Ivano; Martuzzi, Marco

    2007-01-01

    to estimate the health impact of ozone in 13 Italian cities over 200,000 inhabitants and to produce basic elements to permit the reproducibility of the study in other urban locations. the following data have been used: population data (2001), health data (2001 or from scientific literature), environmental data (2002-2004), from urban background monitoring station and concentration/response risk coefficients derived from recent metanalyses. The indicators SOMO35 and SOMO0 have been used as a proxi of the average exposure to calcolate attributable deaths (and years of life lost) and several causes of morbility for ozone concentrations over 70 microg/m3. acute mortality for all causes and for cardiovascular mortality, respiratory-related hospital admissions in elderly, asthma exacerbation in children and adults, minor restricted activity days, lower respiratory symptoms in children. over 500 (1900) deaths, the 0.6% (2.1%) of total mortality, equivalent to about 6000 (22,000) years of life lost are attributable to ozone levels over 70 microg/m3 in the 13 Italian cities under study. Larger figures, in the order of thousands, are attributable to less severe morbidity outcomes. The health impact of ozone in Italian towns is relevant in terms of acute mortality and morbidity, although less severe than PM10 impact. Background ozone levels are increasing. Abatement strategies for ozone concentrations should consider the whole summer and not only "peak" days and look at policies limiting the concentration of precursors produced by traffic sources. Relevant health benefits can be obtained also under levels proposed as guidelines in the present environmental regulations.

  12. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  13. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis

    Science.gov (United States)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2018-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies. PMID:29527096

  14. Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning

    Science.gov (United States)

    Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.

    2017-12-01

    High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.

  15. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  16. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media

    International Nuclear Information System (INIS)

    Silva, Alessandra C.; Pic, Jean Stephane; Sant'Anna, Geraldo L.; Dezotti, Marcia

    2009-01-01

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L -1 , NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation.

  17. A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation

    Directory of Open Access Journals (Sweden)

    R. Dragani

    2016-07-01

    Full Text Available This paper presents a comparative assessment of ultraviolet nadir-backscatter and infrared limb-emission ozone profile assimilation. The Meteorological Operational Satellite A (MetOp-A Global Ozone Monitoring Experiment 2 (GOME-2 nadir and the ENVISAT Michelson Interferometer for Passive Atmospheric Sounding (MIPAS limb profiles, generated by the ozone consortium of the European Space Agency Climate Change Initiative (ESA O3-CCI, were individually added to a reference set of ozone observations and assimilated in the European Centre for Medium-Range Weather Forecasts (ECMWF data assimilation system (DAS. The two sets of resulting analyses were compared with that from a control experiment, only constrained by the reference dataset, and independent, unassimilated observations. Comparisons with independent observations show that both datasets improve the stratospheric ozone distribution. The changes inferred by the limb-based observations are more localized and, in places, more important than those implied by the nadir profiles, albeit they have a much lower number of observations. A small degradation (up to 0.25 mg kg−1 for GOME-2 and 0.5 mg kg−1 for MIPAS in the mass mixing ratio is found in the tropics between 20 and 30 hPa. In the lowermost troposphere below its vertical coverage, the limb data are found to be able to modify the ozone distribution with changes as large as 60 %. Comparisons of the ozone analyses with sonde data show that at those levels the assimilation of GOME-2 leads to about 1 Dobson Unit (DU smaller root mean square error (RMSE than that of MIPAS. However, the assimilation of MIPAS can still improve the quality of the ozone analyses and – with a reduction in the RMSE of up to about 2 DU – outperform the control experiment thanks to its synergistic assimilation with total-column ozone data within the DAS. High vertical resolution ozone profile observations are essential to accurately monitor and

  18. Tropospheric Column Ozone Response to ENSO in GEOS-5 Assimilation of OMI and MLS Ozone Data

    Science.gov (United States)

    Olsen, Mark A.; Wargan, Krzysztof; Pawson, Steven

    2016-01-01

    We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone observations to investigate the magnitude and spatial distribution of the El Nino Southern Oscillation (ENSO) influence on tropospheric column ozone (TCO) into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Nino 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Nino 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9- year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Nino influence on tropospheric ozone in the middle latitudes.

  19. Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data

    Directory of Open Access Journals (Sweden)

    M. A. Olsen

    2016-06-01

    Full Text Available We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS ozone observations to investigate the magnitude and spatial distribution of the El Niño Southern Oscillation (ENSO influence on tropospheric column ozone (TCO into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Niño 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Niño 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9-year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Niño influence on tropospheric ozone in the middle latitudes.

  20. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  1. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    Science.gov (United States)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  2. Contribution of various microenvironments to the daily personal exposure to ultrafine particles: Personal monitoring coupled with GPS tracking

    Science.gov (United States)

    Bekö, Gabriel; Kjeldsen, Birthe Uldahl; Olsen, Yulia; Schipperijn, Jasper; Wierzbicka, Aneta; Karottki, Dorina Gabriela; Toftum, Jørn; Loft, Steffen; Clausen, Geo

    2015-06-01

    Exposure to ultrafine particles (UFP) may have adverse health effects. Central monitoring stations do not represent the personal exposure to UFP accurately. Few studies have previously focused on personal exposure to UFP. Sixty non-smoking residents living in Copenhagen, Denmark were asked to carry a backpack equipped with a portable monitor, continuously recording particle number concentrations (PN), in order to measure the real-time individual exposure over a period of ˜48 h. A GPS logger was carried along with the particle monitor and allowed us to estimate the contribution of UFP exposure occurring in various microenvironments (residence, during active and passive transport, other indoor and outdoor environments) to the total daily exposure. On average, the fractional contribution of each microenvironment to the daily integrated personal exposure roughly corresponded to the fractions of the day the subjects spent in each microenvironment. The home environment accounted for 50% of the daily personal exposure. Indoor environments other than home or vehicles contributed with ˜40%. The highest median UFP concentration was obtained during passive transport (vehicles). However, being in transit or outdoors contributed 5% or less to the daily exposure. Additionally, the subjects recorded in a diary the periods when they were at home. With this approach, 66% of the total daily exposure was attributable to the home environment. The subjects spent 28% more time at home according to the diary, compared to the GPS. These results may indicate limitations of using diaries, but also possible inaccuracy and miss-classification in the GPS data.

  3. The current situation of personal dose monitoring in Chinese medicine radiation and undamaged detection

    International Nuclear Information System (INIS)

    Zhang Liangan; Zhang Wenyi; Yuan Shuyu; Song Shijun; Chang Hexin; Sun Kai

    1993-01-01

    The situation of personal dose monitoring in γ(X) external exposure in China is mainly outlined. Thermoluminescent dosimetry (TLD) was adopted for personal dose measurement of the radiation workers. The computer software and data base for the work have been developed and applied. National intercomparison of TLD, monitoring control of personal dose monitoring in field, and technical training were carried out for quality control. In China, the dominant occupational exposures is X-ray diagnosis and it increases year by year, the highest values is about 22.6%. The highest values of annual collective dose and annual average of individual dose (AAID) are 272.8 man·Sv and 3.21 mSv respectively. This work shows that the fraction of the population receiving high dose is decreased with time rapidly. The situation for whole occupational exposures is also described. (3 tabs.)

  4. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  5. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Chetri, Ravi K.

    2018-01-01

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different...... ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting...... a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic...

  6. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  7. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  8. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.J. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain)]. E-mail: mjose@ceam.es; Calatayud, V. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain); Sanchez-Pena, G. [Servicio de Proteccion de los Montes contra Agentes Nocivos, Direccion General para la Biodiversidad, Ministerio de Medio Ambiente, Gran Via de San Francisco, 4, E-28005, Madrid (Spain)

    2007-02-15

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude.

  9. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    International Nuclear Information System (INIS)

    Sanz, M.J.; Calatayud, V.; Sanchez-Pena, G.

    2007-01-01

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude

  10. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring...

  11. Observation of stratospheric ozone with NIES lidar system in Tsukuba, Japan

    International Nuclear Information System (INIS)

    Nakane, H.; Hayashida, S.; Sasano, Y.; Sugimoto, N.; Matsui, I.; Minato, A.

    1992-01-01

    Lidars are expected to play important roles in an international monitoring network of the stratosphere such as the Network for the Detection of Stratospheric Change (NDSC). The National Institute for Environmental Studies (NIES) in Tsukuba constructed an ozone lidar system in March 1988 and started observation in August 1988. The lidar system has a 2-m telescope and injection locked XeCl and XeF excimer lasers which can measure ozone profiles (15-45 km) and temperature profiles (30-80 km). From December 1991, lidar observations have been carried out in which the second Stokes line of the stimulated Raman scattering of a KrF laser has been used. Ozone profiles obtained with the NIES lidar system are compared with the data provided by the SAGE II satellite sensor. Results showed good agreement for the individual and the zonal mean profiles. Variations of ozone with various time scales at each altitude can be studied using the data obtained with the NIES ozone lidar system. Seasonal variations are easily found at 20 km, 30 km, and 35 km, which are qualitatively understood as a result of dynamical and photochemical effects. Systematic errors of ozone profiles due to the Pinatubo stratospheric aerosols have been detected using multi-wavelength observation

  12. A personal computer based console monitor for a TRIGA reactor

    International Nuclear Information System (INIS)

    Rieke, Phillip E.; Hood, William E.; Razvi, Junaid

    1990-01-01

    Numerous improvements have been made to the Mark F facility to provide a minimum reactor down time, giving a high reactor availability. A program was undertaken to enhance the monitoring capabilities of the instrumentation and control system on this reactor. To that end, a personal computer based console monitoring system has been developed, installed in the control room and is operational to provide real-time monitoring and display of a variety of reactor operating parameters. This system is based on commercially available hardware and an applications software package developed internally at the GA facility. It has (a) assisted the operator in controlling reactor parameters to maintain the high degree of power stability required during extended runs with thermionic devices in-core, and (b) provided data trending and archiving capabilities on all monitored channels to allow a post-mortem analysis to be performed on any of the monitored parameters

  13. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  14. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    Science.gov (United States)

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental

  15. Person × Environment Interactions on Adolescent Delinquency: Sensation Seeking, Peer Deviance and Parental Monitoring.

    Science.gov (United States)

    Mann, Frank D; Kretsch, Natalie; Tackett, Jennifer L; Harden, K Paige; Tucker-Drob, Elliot M

    2015-04-01

    Sensation seeking is a personality trait that is robustly correlated with delinquent behavior in adolescence. The current study tested specific contextual factors hypothesized to facilitate, exacerbate or attenuate this risk factor for adolescent delinquency. Individual differences in sensation seeking, peer deviance, parental monitoring and self-reported delinquent behavior were assessed in a sample of 470 adolescents. Peer deviance partially mediated the effects of sensation seeking and parental monitoring on adolescent delinquency. We also found evidence for a three-way interaction between sensation seeking, peer deviance and parental monitoring, such that the highest rates of delinquency occurred from the concurrence of high sensation seeking, high peer deviance, and low levels of parental monitoring. Results highlight the importance of considering peer- and family-level processes when evaluating personality risk and problematic adolescent behavior.

  16. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  17. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  18. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  19. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  20. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Zhong Shiyuan; Esperanza, Annie; Brown, Timothy J.; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  1. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  2. Variations of Ground-level Ozone Concentration in Malaysia: A Case Study in West Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hashim Nur Izzah Mohamad

    2017-01-01

    Full Text Available Hourly ground ozone concentration, measured from the monitoring stations in the West Coast of Peninsular Malaysia for the period of 10 years (2003-2012 were used to analyse the ozone characteristic in Nilai, Melaka and Petaling Jaya. The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and vegetation. The mean concentration of ozone at the studied areas had not exceeded the recommended value of Malaysia Ambient Air Quality Guideline (MAAQG for 8-hour average (0.06 ppm, however some of the measurements exceeded the hourly permitted concentration by MAAQG that is 0.1 ppm. Higher concentration of ozone can be observed during the daytime since ozone needs sunlight for the photochemical reactions. The diurnal cycle of ozone concentration has a mid-day peak (14:00-15:00 and lower night-time concentrations. The ozone concentration slowly rises after the sun rises (08:00, reaching a maximum during daytime and then decreases until the next morning.

  3. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    Science.gov (United States)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  4. An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

    Science.gov (United States)

    Hocke, Klemens; Schranz, Franziska; Maillard Barras, Eliane; Moreira, Lorena; Kämpfer, Niklaus

    2017-03-01

    Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s-1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.

  5. The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2016-01-01

    We use the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine(Br(sub y)) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br(sub y) are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASAs Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Br(sub y) source from VSLS.

  6. On-line monitoring of ozonation through estimation of Ct value and AOC formation with UV/Vis spectrometry

    NARCIS (Netherlands)

    Ross, P.S.; Van der Helm, A.W.C.; Van den Broeke, J.; Rietveld, L.C.

    2012-01-01

    The application of ozone in water treatment serves many purposes, such as disinfection, degradation of organic micro-pollutants and oxidation of taste, odour and colour producing compounds. A commonly used method to determine the disinfection capacity of ozonation is calculating the exposure of

  7. The total ozone and UV solar radiation over Stara Zagora, Bulgaria

    Science.gov (United States)

    Mendeva, B. D.; Gogosheva, Ts. N.; Petkov, B. H.; Krastev, D. G.

    The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25'N, 25° 37'E), Bulgaria are presented. During the period 1999-2003 the TOC data show seasonal variations, typical for the middle latitudes - maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them. A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant ( r = -0.62 ± 0.18) at 98% confidence level. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = -2.7%. The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.

  8. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  9. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  10. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  11. Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings

    Science.gov (United States)

    Bandoro, Justin; Solomon, Susan; Santer, Benjamin D.; Kinnison, Douglas E.; Mills, Michael J.

    2018-01-01

    the upper- or lower-stratospheric SWOOSH data, irrespective of the signal detection method used. In the WACCM simulations of future climate change, the GHG signal is statistically identifiable between 2020 and 2030. Our findings demonstrate the importance of continued stratospheric ozone monitoring to improve estimates of the contributions of ODS and GHG forcing to global changes in stratospheric ozone.

  12. Automatic data acquisition system of environmental radiation monitor with a personal computer

    International Nuclear Information System (INIS)

    Ohkubo, Tohru; Nakamura, Takashi.

    1984-05-01

    The automatic data acquisition system of environmental radiation monitor was developed in a low price by using a PET personal computer. The count pulses from eight monitors settled at four site boundaries were transmitted to a radiation control room by a signal transmission device and analyzed by the computer via 12 channel scaler and PET-CAMAC Interface for graphic display and printing. (author)

  13. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  14. Personalized Health Monitoring System for Managing Well-Being in Rural Areas.

    Science.gov (United States)

    Nedungadi, Prema; Jayakumar, Akshay; Raman, Raghu

    2017-12-14

    Rural India lacks easy access to health practitioners and medical centers, depending instead on community health workers. In these areas, common ailments that are easy to manage with medicines, often lead to medical escalations and even fatalities due to lack of awareness and delayed diagnosis. The introduction of wearable health devices has made it easier to monitor health conditions and to connect doctors and patients in urban areas. However, existing initiatives have not succeeded in providing adequate health monitoring to rural and low-literate patients, as current methods are expensive, require consistent connectivity and expect literate users. Our design considerations address these concerns by providing low-cost medical devices connected to a low-cost health platform, along with personalized guidance based on patient physiological parameters in local languages, and alerts to medical practitioners in case of emergencies. This patient-centric integrated healthcare system is designed to manage the overall health of villagers with real-time health monitoring of patients, to offer guidance on preventive care, and to increase health awareness and self-monitoring at an affordable price. This personalized health monitoring system addresses the health-related needs in remote and rural areas by (1) empowering health workers in monitoring of basic health conditions for rural patients in order to prevent escalations, (2) personalized feedback regarding nutrition, exercise, diet, preventive Ayurveda care and yoga postures based on vital parameters and (3) reporting of patient data to the patient's health center with emergency alerts to doctor and patient. The system supports community health workers in the diagnostic procedure, management, and reporting of rural patients, and functions well even with only intermittent access to Internet.

  15. The Recent System of the Personal Monitoring in the Czech Republic

    International Nuclear Information System (INIS)

    Petrova, K.

    2001-01-01

    Full text: The paper is intended to provide with the overview of the recent situation concerned to the management of the personal monitoring in the Czech Republic in the context of the harmonisation process of legislation within the European Union. New legislation concerning the radiation protection, which is effective in the Czech Republic from 1997 year, arises already from the ICRP 60 and IAEA BSS and includes all new basic principles for protection of radiation workers which are established and recommended. The recent Czech legislation does not recognise the term 'outside worker' and there are no special demands for their protection. However the harmonisation of the Czech legislation with EU Directives takes in consideration also the Council Directive 90/641/EURATOM on radiation protection of outside workers. In the frame of the process of harmonisation the new terms will be implemented into the Czech Atomic Law and new radiation passports will be tested in the practice. The personal dosimetric service is identified as the practice very significant from the radiation protection point of view and shall be licensed by the State Office for Nuclear Safety (SONS). The licence application shall include the methodology of effective dose evaluation, the description of quality assurance (QA) and quality control (QC) of the service, the system of customer communication and dose recording and reporting. The results of intercomparisons are demanded. The attention is paid also to the appropriate qualification of workers performing the service. Recently three dosimetric services are approved by SONS for external monitoring (film, TLD, electronic), four services for internal monitoring (whole-body counter, thyroid and bio samples measurement), one for monitoring in uranium mines and one for dose calculation of air crew. In accordance with legislation demands, the licensee (or dosimetric service monitoring the licensee's workers) is obliged to report the personal and

  16. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Smokers' Views on Personal Carbon Monoxide Monitors, Associated Apps, and Their Use: An Interview and Think-Aloud Study.

    Science.gov (United States)

    Herbeć, Aleksandra; Perski, Olga; Shahab, Lion; West, Robert

    2018-02-07

    Smartphone-based personal carbon monoxide (CO) monitors and associated apps, or "CO Smartphone Systems" (CSSs) for short, could enable smokers to independently monitor their smoking and quitting. This study explored views and preferences regarding CSSs and their use among 16 adult, UK-based smokers. First, semi-structured interviews explored participants' expectations of CSSs. Secondly, a think-aloud study identified participants' reactions to a personal CO monitor and to existing or prototype apps. Framework Analysis identified five themes: (1) General views, needs, and motivation to use CSSs; (2) Views on the personal CO monitor; (3) Practicalities of CSS use; (4) Desired features in associated apps; and (5) Factors affecting preferences for CSSs and their use. Participants had high expectations of CSSs and their potential to increase motivation. Priority app features included: easy CO testing journeys, relevant and motivating feedback, and recording of contextual data. Appearance and usability of the personal CO monitor, and accuracy and relevance of CO testing were considered important for engagement. Participants differed in their motivation to use and preferences for CSSs features and use, which might have non-trivial impact on evaluation efforts. Personal CO monitors and associated apps may be attractive tools for smokers, but making CSSs easy to use and evaluating these among different groups of smokers may be challenging.

  18. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  19. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Science.gov (United States)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  20. WS-010: EPR-First Responders: Personal monitoring techniques and protective clothing

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this working session is that the participant can apply their knowledge in relation to the personal monitoring techniques and protective clothing. They have to know the use of the radiation measurement instrumentation available in each region

  1. Effects of ozone on the various digital print technologies: Photographs and documents

    Energy Technology Data Exchange (ETDEWEB)

    Burge, D; Gordeladze, N; Bigourdan, J-L; Nishimura, D, E-mail: dmbpph@rit.ed [Image Permanence Institute at Rochester Institute of Technology, 70 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2010-06-01

    The harmful effects of ozone on inkjet photographs have been well documented. This project expands on that research by performing ozone tests on a greater variety of digital prints including colour electrophotographic and dye sublimation. The sensitivities of these materials are compared to traditionally printed materials (black-and-white electrophotographic, colour photographic and offset lithographic) to determine if the digital prints require special care practices. In general, the digital prints were more sensitive to ozone than traditional prints. Dye inkjet prints were more sensitive to fade than pigment inkjet, though pigment was not immune. The dye sublimation, colour electrophotographic (dry and liquid toner), and traditional print systems were relatively resistant to ozone. Text-based documents were evaluated in addition to photographic images, since little work has been done to determine if the type of object (image or text) has an impact on its sensitivity to ozone. The results showed that documents can be more resistant to ozone than photographs even when created using the same printer and inks. It is recommended that cultural heritage institutions not expose their porous-coated, dye-based inkjet photos to open air for extended periods of time. Other inkjet prints should be monitored for early signs of change.

  2. Effects of ozone on the various digital print technologies: Photographs and documents

    International Nuclear Information System (INIS)

    Burge, D; Gordeladze, N; Bigourdan, J-L; Nishimura, D

    2010-01-01

    The harmful effects of ozone on inkjet photographs have been well documented. This project expands on that research by performing ozone tests on a greater variety of digital prints including colour electrophotographic and dye sublimation. The sensitivities of these materials are compared to traditionally printed materials (black-and-white electrophotographic, colour photographic and offset lithographic) to determine if the digital prints require special care practices. In general, the digital prints were more sensitive to ozone than traditional prints. Dye inkjet prints were more sensitive to fade than pigment inkjet, though pigment was not immune. The dye sublimation, colour electrophotographic (dry and liquid toner), and traditional print systems were relatively resistant to ozone. Text-based documents were evaluated in addition to photographic images, since little work has been done to determine if the type of object (image or text) has an impact on its sensitivity to ozone. The results showed that documents can be more resistant to ozone than photographs even when created using the same printer and inks. It is recommended that cultural heritage institutions not expose their porous-coated, dye-based inkjet photos to open air for extended periods of time. Other inkjet prints should be monitored for early signs of change.

  3. Long-term Measurements of Summer-time Ozone at the Walnut Grove Tower - Understanding Trends in the Boundary Layer

    Science.gov (United States)

    Mahmud, A.; Di, P.; Mims, D.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2015-12-01

    The California Air Resources Board (CARB) has been monitoring boundary layer ozone at the Walnut Grove Tower (WGT) since 1996 for investigating regional transport and vertical profile. Walnut Grove is located between Sacramento and Stockton, CA in the Sacramento - San Joaquin Delta. Sampling inlets are positioned at 30-ft, 400-ft, 800-ft, 1200-ft and 1600-ft levels of the 2000-ft tower, which is one of the tallest monitoring towers in the Western US. Ozone, ambient temperature, wind speed, and wind direction are simultaneously measured at each level, and reported as hourly averages. The current study included analyses of available ozone and corresponding meteorological data for the months of June - September from 1996 - 2014 with objectives to: 1) explore trends and inter-annual variability of ozone, 2) examine any correlations between ozone and meteorological parameters, 3) understand interactions of ozone measured at various levels, and 4) assess how well a regulatory state-of-the-science air quality model such as the Community Multi-scale Air Quality Model (CMAQ) captures observation. Daily 1-hr maximum ozone has been consistently decreasing during the 1996 - 2014 period at a rate of ~1 ppb per year. This indicates that CARB's measures to control ambient ozone have been effective over the past years. Evolution of the vertical profile throughout the day shows that ozone is fairly homogeneously mixed between 1 - 5 pm, when mixing height typically reaches the maximum. Ozone at 30-ft shows the greatest variability because of its proximity to the ground and emissions sources - rises faster during morning hours (7 - 10 am) and declines more rapidly during evening hours (7 - 10 pm) compared to other levels. Air masses reaching the tower are predominantly southwesterly (247 - 257 deg.) at the bottom, and southwesterly to slightly northwesterly (254 - 302 deg.) at top levels. Daily 1-hr maximum ozone was negatively correlated with wind speed (i.e. ozone was high under

  4. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    Science.gov (United States)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; hide

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  5. Transport aloft drives peak ozone in the Mojave Desert

    Science.gov (United States)

    VanCuren, Richard

    2015-05-01

    Transport of anthropogenic pollution eastward out of the Los Angeles megacity region in California has been periodically observed to reach the Colorado River and the Colorado Plateau region beyond. In the 1980s, anthropogenic halocarbon tracers measured in and near the Las Angeles urban area and at a mountain-top site near the Colorado River, 400 km downwind, were shown to have a correlated seven-day cycle explainable by transport from the urban area with a time lag of 1-2 days. Recent short term springtime intensive studies using aircraft observations and regional modeling of long range transport of ozone from the Southern California megacity region showed frequent and persistent ozone impacts at surface sites across the Colorado Plateau and Southern Rocky Mountain region, at distances up to 1500 km, also with time lags of 1-2 days. However, the timing of ozone peaks at low altitude monitoring sites within the Mojave Desert, at distances from 100 to 400 km from the South Coast and San Joaquin Valley ozone source regions, does not show the expected time-lag behavior seen in the larger transport studies. This discrepancy is explained by recognizing ozone transport across the Mojave Desert to occur in a persistent layer of polluted air in the lower free troposphere with a base level at approximately 1 km MSL. This layer impacts elevated downwind sites directly, but only influences low altitude surface ozone maxima through deep afternoon mixing. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), from long-range transport from Asia, and stratospheric down-mixing. Recognition of the role of afternoon mixing during spring and summer over the Mojave explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, and resolves an apparent paradox in the timing of ozone peaks due to

  6. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters

    International Nuclear Information System (INIS)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jeremie; Zhang, Jianshun Jensen; Fisk, William J.

    2009-01-01

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  7. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    Full Text Available Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs and greenhouse gases (GHGs vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates and ozone no longer being influenced by ODSs (full ozone recovery. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively. In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH and by ~2055 in the Southern Hemisphere (SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the

  8. Lower tropospheric ozone over India and its linkage to the South Asian monsoon

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan

    2018-03-01

    Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006-2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990-2010. OMI observed lower tropospheric ozone over India averaged for 2006-2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r = 0.55-0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990-2010 estimate a mean annual trend of 0

  9. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    Science.gov (United States)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  10. Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2017-10-01

    Full Text Available In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling.

  11. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    Science.gov (United States)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  12. A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere

    Science.gov (United States)

    Eluszkiewicz, Janusz; Allen, Mark

    1993-01-01

    The global measurements of temperature, ozone, water vapor, and nitrogen dioxide acquired by the Limb Infrared Monitor of the Stratosphere (LIMS), supplemented by a precomputed distribution of chlorine monoxide, are used to test the balance between odd oxygen production and loss in the upper stratosphere and lower mesosphere. An efficient photochemical equilibrium model, whose validity is ascertained by comparison with the results from a fully time-dependent one-dimensional model at selected latitudes, is used in the calculations. The computed ozone abundances are systematically lower than observations for May 1-7, 1979, which suggests, contrary to the conclusions of other recent studies, a real problem in model simulations of stratospheric ozone.

  13. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    Science.gov (United States)

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  14. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  15. Smokers’ Views on Personal Carbon Monoxide Monitors, Associated Apps, and Their Use: An Interview and Think-Aloud Study

    Directory of Open Access Journals (Sweden)

    Aleksandra Herbeć

    2018-02-01

    Full Text Available Smartphone-based personal carbon monoxide (CO monitors and associated apps, or “CO Smartphone Systems” (CSSs for short, could enable smokers to independently monitor their smoking and quitting. This study explored views and preferences regarding CSSs and their use among 16 adult, UK-based smokers. First, semi-structured interviews explored participants’ expectations of CSSs. Secondly, a think-aloud study identified participants’ reactions to a personal CO monitor and to existing or prototype apps. Framework Analysis identified five themes: (1 General views, needs, and motivation to use CSSs; (2 Views on the personal CO monitor; (3 Practicalities of CSS use; (4 Desired features in associated apps; and (5 Factors affecting preferences for CSSs and their use. Participants had high expectations of CSSs and their potential to increase motivation. Priority app features included: easy CO testing journeys, relevant and motivating feedback, and recording of contextual data. Appearance and usability of the personal CO monitor, and accuracy and relevance of CO testing were considered important for engagement. Participants differed in their motivation to use and preferences for CSSs features and use, which might have non-trivial impact on evaluation efforts. Personal CO monitors and associated apps may be attractive tools for smokers, but making CSSs easy to use and evaluating these among different groups of smokers may be challenging.

  16. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  17. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    International Nuclear Information System (INIS)

    Anderson, P.D.; Houpis, J.L.J.

    1991-01-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution

  18. OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and...

  19. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  20. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  1. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma

    International Nuclear Information System (INIS)

    Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik

    2004-01-01

    In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.

  2. Surface ozone pollution in Poland - observations and modelling support for a two-year assessment 2012-2013

    Science.gov (United States)

    Struzewska, Joanna; Kaminski, Jacek W.; Durka, Pawel

    2015-04-01

    The concentrations of near-surface ozone in terms of long term objectives and target values are exceeded at many monitoring sites in Poland. At the request of the Chief Inspectorate of Environmental Protection, an assessment of ozone impact on human health and ecosystems in Poland was undertaken, based on the GEM-AQ model calculations for the period 2012-2013. GEM-AQ (Kaminski et al., 2008) is a comprehensive chemical weather model where air quality processes (chemistry and aerosols) are implemented on-line in the operational weather prediction model developed at Environment Canada (Cote et al., 1998). For this project the model was run in a self-nesting mode with the target grid centered over Poland with the resolution of 5 km. The EMEP emission inventory was refined based on GIS information. Modelling results were evaluated against ozone and NO2 measurements from available monitoring stations in Poland using the DeltaTool developed in the scope of FAIRMODE. We will present exposure levels to high ozone concentrations in terms of number of days with exceeded target values as well as indices AOT40 and SOMO35. Differences between exposure diagnostics in 2012 and 2013 will be discussed.

  3. Effects of age, socioeconomic status, and menstrual cycle on pulmonary response to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Seal, E. Jr.; McDonnell, W.F.; House, D.E. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-03-01

    The purpose of this study was to investigate the effects of age, socioeconomic status, and menstrual cycle phase on the pulmonary response to ozone exposure. Three hundred seventy-two healthy white and black young adults, between the ages of 18 and 35 y, were exposed only once to 0.0, 0.12, 0.18, 0.24, 0.30, or 0.40 ppm ozone for 2.3 h. Prior to and after exposure, pulmonary function tests were obtained. Prior to exposure, each subject completed a personal and family-history questionnaire. The response to this questionnaire were used to investigate age, socioeconomic status, and menstrual cycle phase effects on pulmonary responsiveness to ozone. We concluded that the ages of subjects, within the age range studied, had an effect on responsiveness (i.e., decrements in forced expiratory volume in 1 s decreased as the subjects` ages decreased). Socioeconomic status, as reflected by education of fathers, also appeared to affect forced expiratory volume in 1-s responsiveness to ozone, with the middle socioeconomic group being the most responsive. The phase of menstrual cycle did not have an impact on individual responsiveness to ozone. 14 refs., 4 figs.

  4. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Science.gov (United States)

    Hoang, Anh T.; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D.

    2018-01-01

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection. PMID:29671797

  5. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Directory of Open Access Journals (Sweden)

    Takahiro Fujioka

    2018-04-01

    Full Text Available A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection.

  6. Monitoring of activity of the persons and vehicles at the exit from the NPP Bohunice

    International Nuclear Information System (INIS)

    Dobis, L.; Kaizer, J.; Svitek, J.

    1998-01-01

    In this paper the technical description of the monitoring of activity of the persons and vehicles at the exit from the NPP Bohunice as well as the results of monitoring during last six months are described

  7. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  8. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  9. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  10. Tropospheric Ozone Source Attribution in Southern California during Summer 2014 Based on Lidar Measurements and Model Simulations

    Science.gov (United States)

    Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2016-01-01

    In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.

  11. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  12. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  13. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  14. Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System

    Directory of Open Access Journals (Sweden)

    Ashraf A. Tahat

    2009-01-01

    Full Text Available A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.

  15. Mobile messaging services-based personal electrocardiogram monitoring system.

    Science.gov (United States)

    Tahat, Ashraf A

    2009-01-01

    A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.

  16. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  17. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    Science.gov (United States)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  18. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Palli, Domenico, E-mail: d.palli@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Sera, Francesco, E-mail: f.sera@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Giovannelli, Lisa, E-mail: lisag@pharm.unifi.i [Department of Pharmacology, University of Florence, Viale G.Pieraccini 6, 50139 Florence (Italy); Masala, Giovanna, E-mail: g.masala@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Grechi, Daniele [Regional Environmental Protection Agency of Tuscany (ARPAT), Via Porpora 22, 50144 Florence (Italy); Bendinelli, Benedetta, E-mail: b.bendinelli@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Caini, Saverio, E-mail: s.caini@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Dolara, Piero, E-mail: piero.dolara@unifi.i [Department of Pharmacology, University of Florence, Viale G.Pieraccini 6, 50139 Florence (Italy); Saieva, Calogero, E-mail: c.saieva@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy)

    2009-05-15

    In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system. Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows. Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas. - Ozone concentrations over the 60-90 days before blood drawing correlated with DNA damage in circulating lymphocytes of adults living in the metropolitan area of Florence, Italy.

  19. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy

    International Nuclear Information System (INIS)

    Palli, Domenico; Sera, Francesco; Giovannelli, Lisa; Masala, Giovanna; Grechi, Daniele; Bendinelli, Benedetta; Caini, Saverio; Dolara, Piero; Saieva, Calogero

    2009-01-01

    In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system. Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows. Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas. - Ozone concentrations over the 60-90 days before blood drawing correlated with DNA damage in circulating lymphocytes of adults living in the metropolitan area of Florence, Italy.

  20. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  1. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    Science.gov (United States)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  2. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Science.gov (United States)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  3. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    Science.gov (United States)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  4. Air pollution by ozone in Europe in summer 2003 - Overview of exceedances of EC ozone threshold values during the summer season April-August 2003 and comparisons with previous years

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, J.; Cernikovsky, L.; Leeuw, F. de; Kurfuerst, P.; Aalst, R. van (eds.)

    2003-07-01

    In the period 1995-2003 of reporting tinder the old ozone directive, there has been little or no change in the reported exceedances of ozone threshold values. This is not unexpected as reductions in the EU emissions of nitrogen oxides and nonmethane volatile organic compounds, the main ozone precursors, have so far been limited - about 30 % between 1990 and 2000. 2010 under the national emission teilings directive. While peak ozone concentrations seem to go down, ozone concentration statistics relevant to the target values set in the new ozone directive show little or no reduction in the period 1996-2000. Very few stations actually show a significant downward trend for these stabstics. The threshold for warning the population continues to be exceeded on a few occasions Bach year, while the threshold for informing the population is exceeded at riost stations in most countries (outside northern Europe and Ireland) each year, generally more so in warm summers. These exceedances are likely to retur in years with temperatures above the long-term average until there is a substantially larger decrease in precursor emissions. A further reduction of about 30 % is foreseen towards Under current legislation and with the rate of turnover of the vehicle fleet, furtber reductions will gradually occur towards 2010, and further reductions may be necessary to achieve the target values of the new ozone directive. Note that, due to the uncertainties caused by year-to-year meteorological variations and the changes in the monitoring station configuration, these conclusions are tentative. (au)

  5. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    Science.gov (United States)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  6. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  7. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  8. Treatment of Egyptian Maghara coal by plasma ozone synthesized by silent discharge

    CERN Document Server

    Salem, M A; Garamoon, A A; Hassouba, M A

    2003-01-01

    A sample of pyrite rich bituminous coal collected from the main coal seam of Maghara mine, northern sinai, was treated by ozone plasma. The latter was synthesized using silent discharge method (10 kv a.c. and 50 hz). The room temperature Moessbauer spectra of untreated coal sample was easily fitted to two doublet, whose parameters matched those of pyrite (FeS sub 2) and sulfate (FeSO sub 4.H sub 2 O) in addition to hematite. After treatment by ozone plasma, a doublet ascribed to pyrite was observed. The extent of pyrite oxidation to jarosite (Fe sub 2 (SO sub 4) sub 3. nH sub 2 O) was monitored by their relative spectral areas, the incomplete oxidation of pyrite may be attributed to the presence of calcium sulfate layer which acts a screen of ozone.

  9. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    Science.gov (United States)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  10. Tropospheric ozone over a tropical Atlantic station in the Northern Hemisphere: Paramaribo, Surinam (6°N, 55°W)

    NARCIS (Netherlands)

    Peters, W.; Krol, M. C.; Fortuin, J. P. F.; Kelder, H. M.; Thompson, A. M.; Becker, C. R.; Lelieveld, J.; Crutzen, P. J.

    2004-01-01

    We present an analysis of 2.5 yr of weekly ozone soundings conducted at a new monitoring station in Paramaribo, Surinam (6°N, 55°W). This is currently one of only three ozone sounding stations in the Northern Hemisphere (NH) tropics, and the only one in the equatorial Atlantic region. Paramaribo is

  11. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  12. A study of the NRPB fast neutron personal monitoring service

    International Nuclear Information System (INIS)

    Bartlett, D.T.; Knight, A.; Marshall, T.O.

    1975-10-01

    The NRPB Fast Neutron Personal Monitoring Service has been reviewed and modifications have been, or are being, introduced to improve the accuracy and reliability of the nuclear emulsion dosemeter employed by the Service. This report presents the conclusions of the study. Experimental results of the investigations undertaken in the course of this study, together with full details of the dosemeter and Service, are appended. (author)

  13. Use of a heated graphite scrubber as a means of reducing interferences in UV-absorbance measurements of atmospheric ozone

    Directory of Open Access Journals (Sweden)

    A. A. Turnipseed

    2017-06-01

    Full Text Available A new solid-phase scrubber for use in conventional ozone (O3 photometers was investigated as a means of reducing interferences from other UV-absorbing species and water vapor. It was found that when heated to 100–130 °C, a tubular graphite scrubber efficiently removed up to 500 ppb ozone and ozone monitors using the heated graphite scrubber were found to be less susceptible to interferences from water vapor, mercury vapor, and aromatic volatile organic compounds (VOCs compared to conventional metal oxide scrubbers. Ambient measurements from a graphite scrubber-equipped photometer and a co-located Federal equivalent method (FEM ozone analyzer showed excellent agreement over 38 days of measurements and indicated no loss in the scrubber's ability to remove ozone when operated at 130 °C. The use of a heated graphite scrubber was found to reduce the interference from mercury vapor to ≤ 3 % of that obtained using a packed-bed Hopcalite scrubber. For a series of substituted aromatic compounds (ranging in volatility and absorption cross section at 253.7 nm, the graphite scrubber was observed to consistently exhibit reduced levels of interference, typically by factors of 2.5 to 20 less than with Hopcalite. Conventional solid-phase scrubbers also exhibited complex VOC adsorption and desorption characteristics that were dependent upon the relative humidity (RH, volatility of the VOC, and the available surface area of the scrubber. This complex behavior involving humidity is avoided by use of a heated graphite scrubber. These results suggest that heated graphite scrubbers could be substituted in most ozone photometers as a means of reducing interferences from other UV-absorbing species found in the atmosphere. This could be particularly important in ozone monitoring for compliance with the United States (U.S. Clean Air Act or for use in VOC-rich environments such as in smog chambers and monitoring indoor air quality.

  14. Estimates of Free-tropospheric NO2 Abundance from the Aura Ozone Monitoring Instrument (OMI) Using Cloud Slicing Technique

    Science.gov (United States)

    Choi, S.; Joiner, J.; Krotkov, N. A.; Choi, Y.; Duncan, B. N.; Celarier, E. A.; Bucsela, E. J.; Vasilkov, A. P.; Strahan, S. E.; Veefkind, J. P.; Cohen, R. C.; Weinheimer, A. J.; Pickering, K. E.

    2013-12-01

    Total column measurements of NO2 from space-based sensors are of interest to the atmospheric chemistry and air quality communities; the relatively short lifetime of near-surface NO2 produces satellite-observed hot-spots near pollution sources including power plants and urban areas. However, estimates of NO2 concentrations in the free-troposphere, where lifetimes are longer and the radiative impact through ozone formation is larger, are severely lacking. Such information is critical to evaluate chemistry-climate and air quality models that are used for prediction of the evolution of tropospheric ozone and its impact of climate and air quality. Here, we retrieve free-tropospheric NO2 volume mixing ratio (VMR) using the cloud slicing technique. We use cloud optical centroid pressures (OCPs) as well as collocated above-cloud vertical NO2 columns (defined as the NO2 column from top of the atmosphere to the cloud OCP) from the Ozone Monitoring Instrument (OMI). The above-cloud NO2 vertical columns used in our study are retrieved independent of a priori NO2 profile information. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud optical centroid pressure is proportional to the NO2 volume mixing ratio (VMR) for a given pressure (altitude) range. We retrieve NO2 volume mixing ratios and compare the obtained NO2 VMRs with in-situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is good when proper data screening is applied. In addition, the OMI cloud slicing reports a high NO2 VMR where the aircraft reported lightning NOx during the Deep Convection Clouds and Chemistry (DC3) campaign in 2012. We also provide a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the

  15. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  16. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Evora Univ. (PT). Goephysics Centre of Evora (CGE); Lopez, M.; Banon, M. [Agenica Estatal de Meteorologia (AEMET), Madrid (Spain); Costa, M.J.; Silva, A.M. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Evora Univ. (Portugal). Dept. of Physics; Serrano, A. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Bortoli, D. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75 . In addition, the relative differences remain lower than 2% at 85 . These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7{+-}1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80 . Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes. (orig.)

  17. Observing lowermost tropospheric ozone pollution with a new multispectral synergic approach of IASI infrared and GOME-2 ultraviolet satellite measurements

    Science.gov (United States)

    Cuesta, Juan; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Coman, Adriana; Gaubert, Benjamin; Beekmann, Matthias; Liu, Xiong; Cai, Zhaonan; Von Clarmann, Thomas; Spurr, Robert; Flaud, Jean-Marie

    2014-05-01

    Tropospheric ozone is currently one of the air pollutants posing greatest threats to human health and ecosystems. Monitoring ozone pollution at the regional, continental and global scale is a crucial societal issue. Only spaceborne remote sensing is capable of observing tropospheric ozone at such scales. The spatio-temporal coverage of new satellite-based instruments, such as IASI or GOME-2, offer a great potential for monitoring air quality by synergism with regional chemistry-transport models, for both inter-validation and full data assimilation. However, current spaceborne observations using single-band either UV or IR measurements show limited sensitivity to ozone in the atmospheric boundary layer, which is the major concern for air quality. Very recently, we have developed an innovative multispectral approach, so-called IASI+GOME-2, which combines IASI and GOME-2 observations, respectively in the IR and UV. This unique multispectral approach has allowed the observation of ozone plumes in the lowermost troposphere (LMT, below 3 km of altitude) over Europe, for the first time from space. Our first analyses are focused on typical ozone pollution events during the summer of 2009 over Europe. During these events, LMT ozone plumes at different regions are produced photo-chemically in the boundary layer, transported upwards to the free troposphere and also downwards from the stratosphere. We have analysed them using IASI+GOME-2 observations, in comparison with single-band methods (IASI, GOME-2 and OMI). Only IASI+GOME-2 depicts ozone plumes located below 3 km of altitude (both over land and ocean). Indeed, the multispectral sensitivity in the LMT is greater by 40% and it peaks at 2 to 2.5 km of altitude over land, thus at least 0.8 to 1 km below that for all single-band methods. Over Europe during the summer of 2009, IASI+GOME-2 shows 1% mean bias and 21% precision for direct comparisons with ozonesondes and also good agreement with CHIMERE model simulations

  18. Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura

    Directory of Open Access Journals (Sweden)

    M. E. Koukouli

    2012-09-01

    Full Text Available The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011, Ozone Monitoring Experiment [OMI] (since 2004 and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002 total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3 data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3 data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.

  19. Joint hierarchical Gaussian process model with application to personalized prediction in medical monitoring.

    Science.gov (United States)

    Duan, Leo L; Wang, Xia; Clancy, John P; Szczesniak, Rhonda D

    2018-01-01

    A two-level Gaussian process (GP) joint model is proposed to improve personalized prediction of medical monitoring data. The proposed model is applied to jointly analyze multiple longitudinal biomedical outcomes, including continuous measurements and binary outcomes, to achieve better prediction in disease progression. At the population level of the hierarchy, two independent GPs are used to capture the nonlinear trends in both the continuous biomedical marker and the binary outcome, respectively; at the individual level, a third GP, which is shared by the longitudinal measurement model and the longitudinal binary model, induces the correlation between these two model components and strengthens information borrowing across individuals. The proposed model is particularly advantageous in personalized prediction. It is applied to the motivating clinical data on cystic fibrosis disease progression, for which lung function measurements and onset of acute respiratory events are monitored jointly throughout each patient's clinical course. The results from both the simulation studies and the cystic fibrosis data application suggest that the inclusion of the shared individual-level GPs under the joint model framework leads to important improvements in personalized disease progression prediction.

  20. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China.

    Science.gov (United States)

    Cheng, Linjun; Wang, Shuai; Gong, Zhengyu; Li, Hong; Yang, Qi; Wang, Yeyao

    2018-05-01

    Owing to the vast territory of China and strong regional characteristic of ozone pollution, it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China. Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function (REOF) analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations (O 3 -8hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6±14.6 and 133.9±25.8μg/m 3 , respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population. Copyright © 2017. Published by Elsevier B.V.

  1. Investigations into regional ozone concentrations in the Bakken-Williston Basin using ARTEMIS, a mobile measurment platform.

    Science.gov (United States)

    Donohoue, D.; Jumes, D.; Jaglowski, J.

    2017-12-01

    During a campaign launched in August 2015, concentrations of ozone, nitrogen oxides, and weather conditions were measured throughout the Bakken-Williston Basin. The data was collected using a new in-situ monitoring system ARTEMIS (Atmospheric Research Trailer for Environmental Monitoring and Interactive Science). ARTEMIS is a self-sustaining trailer equipped with a solar panel and four 80 Ah batteries, which can power an instrumental suite. It provided a temporary sampling station which could be erected in five minutes. During this campaign we collected data for one hour at sites throughout North Dakota and Montana. Preliminary results from this data suggests that near active mining or methane flaring regions ozone concentrations appear to be elevated from the background.

  2. Assessment of personal exposure to ozone in asthmatic children residing in Mexico City Evaluación de la exposición personal a ozono en niños asmáticos de la Ciudad de México

    Directory of Open Access Journals (Sweden)

    Matiana Ramírez-Aguilar

    2008-02-01

    Full Text Available OBJECTIVE: A study was conducted to evaluate personal ozone exposure (O3p among asthmatic children residing in Mexico City. MATERIAL AND METHODS: A total of 158 chil-dren were recruited from December 1998 to April 2000. On average, three O3p measurements were obtained per child using passive badges. Time-activity patterns were recorded in a diary. Daily ambient ozone measurements (O3a were obtained from the fixed station, according to children’s residence. Levels of O3a and ozone, weighted by time spent in different micro-environments (O3w, were used as independent variables in order to model O3p concentrations using a mixed-effects model. RESULTS: Mean O3p was 7.8 ppb. The main variables in the model were: time spent indoors, distance between residence and fixed station, follow-up group, and two interaction terms (overall R²=0.50, pOBJETIVO: Realizamos este estudio para evaluar la exposición personal a ozono (O3p en niños asmáticos de la Ciudad de México. MATERIAL Y MÉTODOS: Se incluyeron 158 niños entre diciembre de 1998 y abril de 2000. En promedio se obtuvieron tres mediciones por niño, utilizando filtros pasivos para medir O3p. Se caracterizaron los patrones de actividad y las concentraciones ambientales diarias de ozono (O3a se obtuvieron de estaciones fijas cercanas a la residencia del niño. Los niveles promedio de O3a y las concentraciones ponderadas por el tiempo en diferentes microambientes (O3w fueron usados como variables independientes para modelar las concentraciones de O3p, utilizando modelos de efectos mixtos. RESULTADOS: La media de O3p fue 7.8 ppb. Las principales variables en el modelo fueron: tiempo en exteriores, distancia, periodo de seguimiento y dos términos de interacción (R²=0.50, p<0.05. CONCLUSIONES: Las concentraciones de O3w pueden usarse como "proxi" de O3p, tomando en cuenta patrones de actividad y lugar de residencia.

  3. Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors

    Science.gov (United States)

    Sadighi, Kira; Coffey, Evan; Polidori, Andrea; Feenstra, Brandon; Lv, Qin; Henze, Daven K.; Hannigan, Michael

    2018-03-01

    Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone (O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the collocation calibration method. Field validation of sensor O3 measurements to minute-resolution reference observations resulted in R2 and root mean squared errors (RMSEs) of 0.95-0.97 and 4.4-5.9 ppbv, respectively. Using the deployment data, ozone concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone than they would assume based on current regulatory monitoring.

  4. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  5. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  6. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    Science.gov (United States)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  7. Personal dosimetric monitoring in Ukraine: current status and further development

    International Nuclear Information System (INIS)

    Chumak, V. V.; Musijachenkom, A. V.; Boguslavskaya, A. I.

    2003-01-01

    Presently Ukraine has mixed system for dosimetric monitoring. Nuclear power plants and some major nuclear facilities have their own dosimetry services, which are responsible for regular dosimetric monitoring of workers. Rest of occupationally exposed persons is monitored by dosimetry laboratories affiliated to the territorial authorities for sanitary and epidemiology supervision. In 2002-2003 Ukrainian Ministry of Health performed survey of the status of dosimetric monitoring and inventory of critical groups requiring such monitoring. Dosimetry services in Ukraine cover about 38,000 occupationally exposed workers, including 9,100 medical professionals, 16,400 employees of 5 nuclear power plants and ca.12,400 workers dealing with other sources of occupational exposure (industry, research). Territorial dosimetry services operate in 13 of 24 regions of Ukraine, using DTU-01 manual TLD readers produced with one exception in 1988-1990. The coverage of critical groups by dosimetric monitoring is variable and ranges from 38% to 100% depending on the region. Personnel of nuclear power plants (about 16,400 workers) is monitored by their own dosimetry services achieving absolute coverage of the main staff and temporary workers. Current inadequate status of dosimetric monitoring infrastructure in Ukraine demands an urgent elaboration of the united state system for monitoring and recording of individual doses. The proposed plan would allows to bring dosimetry infrastructure in Ukraine to the modern state which would be compatible with existing and future European and international radiation protection networks. Unitary structure of Ukraine, strong administrative command and good communications between regions of the country are positive factors in favour of efficient implementation of the proposed plan. Deficiencies are associated with limited funding of this effort. (authors)

  8. The Effect of Ozone Oxydans in Plastic of Polyethylene used for The Storage of Apple Manalagi (malus Sylvestris M)

    International Nuclear Information System (INIS)

    Isyuniarto; Agus-Purwadi

    2007-01-01

    The effect of ozone oxydans in plastic of polyethylene used for the storage of apple Manalagi (malus sylvestris M) have been done. Firstly, apple selected according to form and size then packed into storage of plastic polyethylene 3 and 5 mm in thickness and ozonization process is done from 0, 20, 40 and 60 seconds. The sample is monitored every 7, 14 and 21 days. Parameter perceived is texture of fruit, colour, smell and panelist option to this research. The result is thickly of plastic 3 mm and ozonization time 60 seconds. (author)

  9. Global and Seasonal Distributions of CHOCHO and HCHO Observed by the Ozone Monitoring Instrument on EOS Aura

    Science.gov (United States)

    Kurosu, T. P.; Fu, T.; Volkamer, R.; Millet, D. B.; Chance, K.

    2006-12-01

    Over the two years since its launch in July 2004, the Ozone Monitoring Instrument (OMI) on EOS Aura has demonstrated the capability to routinely monitor the volatile organic compounds (VOCs) formaldehyde (HCHO) and glyoxal (CHOCHO). OMI's daily global coverage and spatial resolution as high as 13x24 km provides a unique data set of these molecules for the study of air quality from space. We present the first study of global seasonal distributions of CHOCHO from space, derived from a year of OMI observations. CHOCHO distributions are compared to simultaneous retrievals of HCHO from OMI, providing a first indication of seasonally resolved ratios of these VOCs on a global scale. Satellite retrievals are compared to global simulations of HCHO and CHOCHO, based on current knowledge of sources and sinks, using the GEOS-Chem global chemistry and transport model. Formaldehyde is both directly emitted and also produced from the oxidation of many VOCs, notably biogenic isoprene, and is removed by photolysis and oxidation. Precursors of glyoxal include isoprene, monoterpenes, and aromatics from anthropogenic, biogenic, and biomass burning emissions; it is removed by photolysis, oxidation by OH, dry/wet deposition, and aerosol uptake. As a case study, satellite observations will also be compared to ground-based measurements taken during the Pearl River Delta 2006 field campaign near Guangzhou, China, where high glyoxal concentrations are frequently observed from space.

  10. Assessing the risk of foliar injury from ozone on vegetation in parks in the U.S. National Park Service's Vital Signs Network

    International Nuclear Information System (INIS)

    Kohut, Robert

    2007-01-01

    The risk of ozone injury to plants was assessed in support of the National Park Service's Vital Signs Monitoring Network program. The assessment examined bioindicator species, evaluated levels of ozone exposure, and investigated soil moisture conditions during periods of exposure for a 5-year period in each park. The assessment assigned each park a risk rating of high, moderate, or low. For the 244 parks for which assessments were conducted, the risk of foliar injury was high in 65 parks, moderate in 46 parks, and low in 131 parks. Among the well-known parks with a high risk of ozone injury are Gettysburg, Valley Forge, Delaware Water Gap, Cape Cod, Fire Island, Antietam, Harpers Ferry, Manassas, Wolf Trap Farm Park, Mammoth Cave, Shiloh, Sleeping Bear Dunes, Great Smoky Mountains, Joshua Tree, Sequoia and Kings Canyon, and Yosemite. - An assessment of the risk of foliar ozone injury on plants was conducted for 269 parks in support of the U.S. National Park Service's Vital Signs Monitoring Network Program

  11. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  12. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  13. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    Science.gov (United States)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the

  14. Tropospheric Ozone: a Menace for Crops and Natural Vegetation in Greece

    Directory of Open Access Journals (Sweden)

    Costas Saitanis

    Full Text Available Based on instrumental monitoring (AOT40s and phytodetection (with Bel-W3 and KK6/5 tobacco cultivars data we evaluated ambient ozone phytotoxicity in Greece. In the greater region of Mesogia-Attica, during the summer of 2000, the year before the new airport Eleftherios Venizelos (March 2001 began operating in this region, the AOT40s (ppb*h were 16,325 over 110 days at Spata; 18,646 over 113 days at Markopoulo; 8,093 over 22 days at Artemis and 16,679 over 121 days in Athens. The Bel- W3 and KK6/5 plants were extensively injured at all places with the greatest injury occurring at Artemis. During the same summer, ozone was also monitored in three rural areas of Corinth, at the Astronomical Observatory of Krionerion, Bogdani Hill and Kiato; The highest average daily AOT40 (192 ppb*h was observed in Krionerio, and it was almost equal to that occurred in Athens (193 ppb*h. Bel-W3 and KK6/5 plants placed at 11 rural areas in Corinth showed extended injury. The following year (2001, high injury was observed on other sets of bioindicator plants exposed in a network of 28 locations throughout the greater area of Volos and Pelion Mountain. Symptoms were more severe at Mortias, Xinovrisi, Tsagarada, Makrinitsa and Chania. The AOT40 (May-July was 11,391 and 10,351 ppb*hours for 2001 and 2002 respectively. Severe ozone-like symptoms have also been observed on field-cultivated grape vines, onion and watermelon plants. Synoptically, our investigations suggest that ozone occurs in the Greek mainland at levels that are potentially phytotoxic for sensitive crop species and for sensitive natural vegetation species including forest trees.

  15. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  16. Proceedings of the specialist meeting on personal dosimetry and area monitoring suitable for radon and daughter products

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The programme of work of the OECD Nuclear Energy Agency includes topics relating to radiation and environmental protection matters in mining and milling operations. A first Specialist Meeting on Personal Dosimetry and Area Monitoring suitable for Radon and Daughter Products was organised in October 1976 at Elliot Lake, Canada. The proceedings were published by NEA some months later. Following an enquiry among interested persons, NEA decided to organise a new meeting on the same subject in Paris from 20th to 22nd November 1978. The meeting dealt with questions relating to personal dosimetry techniques, the monitoring of the atmosphere in mines and their neighbourhood, as well as in buildings

  17. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    Science.gov (United States)

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  18. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    Science.gov (United States)

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  19. Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis

    International Nuclear Information System (INIS)

    Song Shuang; Xia Min; He Zhiqiao; Ying Haiping; Lue Bosheng; Chen Jianmeng

    2007-01-01

    p-Nitrotoluene (PNT) is a nitroaromatic compound that is hazardous to humans and is a suspected hormone disrupter. The degradation of PNT in aqueous solution by ozonation (O 3 ) combined with sonolysis (US) was investigated in laboratory-scale experiments in which pH, initial concentration of PNT, O 3 dose and temperature were varied. The degradation of PNT followed pseudo-first-order kinetics, and degradation products were monitored during the process. The maximum degradation was observed at pH 10.0. As the initial concentration of PNT decreased, the degradation rate increased. Both temperature and ozone dose had a positive effect on the degradation of PNT. Of the total organic carbon (TOC) reduction, 8, 68, and 85% were observed with US, O 3 , and a combination of US and O 3 after reaction for 90 min, respectively, proving that ozonation combined with sonolysis for removal of TOC is more efficient than ozonation alone or ultrasonic irradiation alone. Major by-products, including p-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-(oxomethylene) cyclohexa-2,5-dien-1-one, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry

  20. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  1. Study of ozone gas formed in the industrial radiation process with cobalt-60 and its impact on the environment

    International Nuclear Information System (INIS)

    Uzueli, Daniel Henrique

    2013-01-01

    The radiation processing is present in various products such as foods, medical disposable, electrical cables, gems, among others. This process aims to improve the properties, sterilize or sanitize irradiated products. In industrial irradiators facilities, electromagnetic radiation (gamma and X-rays) or electrons before they interact with the products in processing, there are a layer of air. To interact with this air layer, it causes radiolytic effects on the molecules present in the ambient atmosphere, and the main interaction are with the oxygen molecules that have their bonds broken, separating them into two highly reactive atoms that recombine with the other molecule of oxygen to form ozone gas. In this work it was studied the formation, decay and dispersion of ozone in industrial gamma irradiators facilities that use cobalt-60 as a source of radiation. The monitoring of ozone concentration was performed by optical absorption method in a commercial monitor. (author)

  2. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  3. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  4. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  5. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring

    Directory of Open Access Journals (Sweden)

    Sanjiv Sharma

    2017-04-01

    Full Text Available The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective.We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases. Keywords: Microneedles, Minimally invasive sensors, Continuous glucose monitoring (CGM, Continuous lactate monitoring (CLM, Interstitial therapeutic drug monitoring (iTDM

  6. Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    J. W. Greenslade

    2017-09-01

    Full Text Available Stratosphere-to-troposphere transport (STT provides an important natural source of ozone to the upper troposphere, but the characteristics of STT events in the Southern Hemisphere extratropics and their contribution to the regional tropospheric ozone budget remain poorly constrained. Here, we develop a quantitative method to identify STT events from ozonesonde profiles. Using this method we estimate the seasonality of STT events and quantify the ozone transported across the tropopause over Davis (69° S, 2006–2013, Macquarie Island (54° S, 2004–2013, and Melbourne (38° S, 2004–2013. STT seasonality is determined by two distinct methods: a Fourier bandpass filter of the vertical ozone profile and an analysis of the Brunt–Väisälä frequency. Using a bandpass filter on 7–9 years of ozone profiles from each site provides clear detection of STT events, with maximum occurrences during summer and minimum during winter for all three sites. The majority of tropospheric ozone enhancements owing to STT events occur within 2.5 and 3 km of the tropopause at Davis and Macquarie Island respectively. Events are more spread out at Melbourne, occurring frequently up to 6 km from the tropopause. The mean fraction of total tropospheric ozone attributed to STT during STT events is  ∼ 1. 0–3. 5 % at each site; however, during individual events, over 10 % of tropospheric ozone may be directly transported from the stratosphere. The cause of STTs is determined to be largely due to synoptic low-pressure frontal systems, determined using coincident ERA-Interim reanalysis meteorological data. Ozone enhancements can also be caused by biomass burning plumes transported from Africa and South America, which are apparent during austral winter and spring and are determined using satellite measurements of CO. To provide regional context for the ozonesonde observations, we use the GEOS-Chem chemical transport model, which is too coarsely

  7. First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model

    Science.gov (United States)

    Liu, Xiong; Chance, Kelly; Sioris, Christopher E.; Kurosu, Thomas P.; Spurr, Robert J. D.; Martin, Randall V.; Fu, Tzung-May; Logan, Jennifer A.; Jacob, Daniel J.; Palmer, Paul I.; hide

    2006-01-01

    We present the first directly retrieved global distribution of tropospheric column ozone from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements during December 1996 to November 1997. The retrievals clearly show signals due to convection, biomass burning, stratospheric influence, pollution, and transport. They are capable of capturing the spatiotemporal evolution of tropospheric column ozone in response to regional or short time-scale events such as the 1997-1998 El Nino event and a 10-20 DU change within a few days. The global distribution of tropospheric column ozone displays the well-known wave-1 pattern in the tropics, nearly zonal bands of enhanced tropospheric column ozone of 36-48 DU at 20degS-30degS during the austral spring and at 25degN-45degN during the boreal spring and summer, low tropospheric column ozone of 33 DU at some northern high-latitudes during the spring. Simulation from a chemical transport model corroborates most of the above structures, with small biases of <+/-5 DU and consistent seasonal cycles in most regions, especially in the southern hemisphere. However, significant positive biases of 5-20 DU occur in some northern tropical and subtropical regions such as the Middle East during summer. Comparison of GOME with monthly-averaged Measurement of Ozone and Water Vapor by Airbus in-service Aircraft (MOZAIC) tropospheric column ozone for these regions usually shows good consistency within 1 a standard deviations and retrieval uncertainties. Some biases can be accounted for by inadequate sensitivity to lower tropospheric ozone, the different spatiotemporal sampling and the spatiotemporal variations in tropospheric column ozone.

  8. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  9. Energy Use and Power Levels in New Monitors and Personal Computers; TOPICAL

    International Nuclear Information System (INIS)

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.

    2002-01-01

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC

  10. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  11. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity

    Energy Technology Data Exchange (ETDEWEB)

    Punzi, Marisa, E-mail: marisa.punzi@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Nilsson, Filip [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Anbalagan, Anbarasan [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Britt-Marie [School of Education and Environment, Kristianstad University, SE-291 88 Kristianstad (Sweden); Jönsson, Karin [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Mattiasson, Bo; Jonstrup, Maria [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2015-07-15

    Highlights: • COD and UV absorbance were effectively reduced. • The treated effluents were non-toxic to Artemia salina and Vibrio fischeri. • The real textile wastewater was mutagenic. • Mutagenicity persisted after bio treatment and even more after a short ozonation. • Higher ozone doses completely remove mutagenicity. - Abstract: A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy.

  12. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  13. Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management.

    Science.gov (United States)

    Vashist, Sandeep Kumar; Schneider, E Marion; Luong, John H T

    2014-08-18

    Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management.

  14. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  15. Associations Between Personality Traits and Adherence to Antidepressants Assessed Through Self-Report, Electronic Monitoring, and Pharmacy Dispensing Data: A Pilot Study.

    Science.gov (United States)

    Wouters, Hans; Amin, Darya F H; Taxis, Katja; Heerdink, Eibert R; Egberts, Antoine C G; Gardarsdottir, Helga

    2016-10-01

    Treatment with antidepressants is often compromised by substantial nonadherence. To understand nonadherence, specific medication-related behaviors and beliefs have been studied, but less is known about broader and temporally stable personality "traits." Furthermore, adherence has often been assessed by a single method. Hence, we investigated associations between the Big Five personality traits and adherence assessed by self-report, electronic drug use monitoring, and dispensing data. Using the Big Five Inventory, we assessed the personality traits "openness," "conscientiousness," "extraversion," "agreeableness," and "neuroticism" of patients treated with antidepressants who were invited through community pharmacies. Self-reported adherence was assessed with the Medication Adherence Rating Scale (score >24), electronic monitoring with medication event monitoring system (MEMS) devices (therapy days missed ≤ 10% and personality traits, the third and fourth quartiles of "conscientiousness" were associated with better self-reported adherence (odds ratio, 3.63; 95% confidence interval, 1.34-9.86 and odds ratio, 2.97; 95% confidence interval, 1.09-8.08; P ≤ 0.05). No relationships were found between personality traits and adherence assessed through electronic drug use monitoring or dispensing data. We therefore conclude that adherence to antidepressant therapy seems to be largely unrelated to personality traits.

  16. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    Science.gov (United States)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend

  17. Spectropolarimetric Measurements of Scattered Sunlight in the Huggins Bands: Retrieval of Tropospheric Ozone Profiles

    Science.gov (United States)

    Fu, D.; Sander, S. P.; Stutz, J.; Pongetti, T. J.; Yung, Y. L.; Wong, M.; Natraj, V.; Li, K.; Shia, R.

    2009-12-01

    Ozone concentrations in the troposphere have increased over the past century as a result of anthropogenic emissions of NOx and volatile organic compounds. In addition to being harmful to human health and plant life, ozone is an important greenhouse gas, especially in the middle and upper troposphere. Therefore, accurate monitoring of tropospheric ozone vertical distributions is crucial for a better understanding of air quality and climate change. Simulations of vector radiative transfer in the near ultraviolet region have shown that tropospheric ozone profiles can be retrieved using polarization measurements. However, to date there has been no experimental test of this method. A new compact, portable spectropolarimeter has been built for atmospheric remote sensing. The first comprehensive description of the configuration and performance of this instrument for ground-based operation is provided and sample atmospheric scattered sunlight spectra are shown. Using optimal estimation retrieval theory we study the information content of polarization spectra in the Huggins band and uncertainties in the retrieval associated with the measurement parameters, such as aerosol scattering.

  18. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  19. Ozone-surface reactions in five homes: surface reaction probabilities, aldehyde yields, and trends.

    Science.gov (United States)

    Wang, H; Morrison, G

    2010-06-01

    Field experiments were conducted in five homes during three seasons (summer 2005, summer 2006 and winter 2007) to quantify ozone-initiated secondary aldehyde yields, surface reaction probabilities, and trends any temporal over a 1.5-year interval. Surfaces examined include living room carpets, bedroom carpets, kitchen floors, kitchen counters, and living room walls. Reaction probabilities for all surfaces for all seasons ranged from 9.4 x 10(-8) to 1.0 x 10(-4). There were no significant temporal trends in reaction probabilities for any surfaces from summer 2005 to summer 2006, nor over the entire 1.5-year period, indicating that it may take significantly longer than this period for surfaces to exhibit any 'ozone aging' or lowering of ozone-surface reactivity. However, all surfaces in three houses exhibited a significant decrease in reaction probabilities from summer 2006 to winter 2007. The total yield of aldehydes for the summer of 2005 were nearly identical to that for summer of 2006, but were significantly higher than for winter 2007. We also observed that older carpets were consistently less reactive than in newer carpets, but that countertops remained consistently reactive, probably because of occupant activities such as cooking and cleaning. Ozone reactions taking place at indoor surfaces significantly influence personal exposure to ozone and volatile reaction products. These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive coatings in the form of cooking, cleaning, and skin-oil residues. When considering exposure to ozone and its reaction products and in the absence of dramatic changes in occupancy, activities or furnishings, indoor surface reactivity is expected to change very slowly.

  20. Vascular and lung function related to ultrafine and fine particles exposure assessed by personal and indoor monitoring: a cross-sectional study

    DEFF Research Database (Denmark)

    Olsen, Yulia; Karottki, Dorina Gabriela; Jensen, Ditte Marie

    2014-01-01

    -related effects. Methods: Associations between vascular and lung function, inflammation markers and exposure in terms of particle number concentration (PNC; d = 10-300 nm) were studied in a cross-sectional design with personal and home indoor monitoring in the Western Copenhagen Area, Denmark. During 48-h, PNC...... and PM2.5 were monitored in living rooms of 60 homes with 81 non-smoking subjects (30-75 years old), 59 of whom carried personal monitors both when at home and away from home. We measured lung function in terms of the FEV1/FVC ratio, microvascular function (MVF) and pulse amplitude by digital artery...... tonometry, blood pressure and biomarkers of inflammation including C-reactive protein, and leukocyte counts with subdivision in neutrophils, eosinophils, monocytes, and lymphocytes in blood. Results: PNC from personal and stationary home monitoring showed weak correlation (r = 0.15, p = 0.24). Personal UFP...

  1. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban areas

    International Nuclear Information System (INIS)

    Nicholson, J.P.; Weston, K.J.

    2001-01-01

    Urban ozone concentrations are determined by the balance between ozone destruction, chemical production and supply through advection and turbulent down-mixing from higher levels. At high latitudes, low levels of solar insolation and high horizontal advection speeds reduce the photochemical production and the spatial ozone concentration patterns are largely determined by the reaction of ozone with nitric oxide and dry deposition to the surface. A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides (NO x ) concentrations in the boundary-layer within and immediately around an urban area. The short-time-scale photochemical processes of ozone and NO x , as well as emissions and deposition to the ground, are simulated. The model has a horizontal resolution of 1x1km and high resolution in the vertical. It has been applied over a 100x100km domain containing the city of Edinburgh (at latitude 56 o N) to simulate the city-scale processes of pollutants. Results are presented, using averaged wind-flow frequencies and appropriate stability conditions, to show the extent of the depletion of ozone by city emissions. The long-term average spatial patterns in the surface ozone and NO x concentrations over the model domain are reproduced quantitatively. The model shows the average surface ozone concentrations in the urban area to be lower than the surrounding rural areas by typically 50% and that the areas experiencing a 20% ozone depletion are generally restricted to within the urban area. The depletion of the ozone concentration to less than 50% of the rural surface values extends only 20m vertically above the urban area. A series of monitoring sites for ozone, nitric oxide and nitrogen dioxide on a north-south transect through the city - from an urban, through a semi-rural, to a remote rural location - allows the comparison of modelled with observed data for the mean diurnal cycle of ozone

  2. Impact of ozone on Mediterranean forests: A review

    International Nuclear Information System (INIS)

    Paoletti, E.

    2006-01-01

    Ozone impact on Mediterranean forests remains largely under-investigated, despite strong photochemical activity and harmful effects on crops. As representative of O 3 impacts on Mediterranean vegetation, this paper reviews the current knowledge about O 3 and forests in Italy. The intermediate position between Africa and European mid-latitudes creates a complex patchwork of climate and vegetation. Available data from air quality monitoring stations and passive samplers suggest O 3 levels regularly exceed the critical level (CL) for forests. In contrast, relationships between O 3 exposure and effects (crown transparency, radial growth and foliar visible symptoms) often fail. Despite limitations in the study design or underestimation of the CL can also affect this discrepancy, the effects of site factors and plant ecology suggest Mediterranean forest vegetation is adapted to face oxidative stress, including O 3 . Implications for risk assessment (flux-based CL, level III, non-stomatal deposition) are discussed. - Why Mediterranean forests are more ozone tolerant than mesophilic vegetation is explored

  3. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  4. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  5. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2018-01-01

    Full Text Available Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1 will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  6. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    Science.gov (United States)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  7. Comparison between assimilated and non-assimilated experiments of the MACCii global reanalysis near surface ozone

    Science.gov (United States)

    Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos

    2014-05-01

    In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.

  8. Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest: Progress and an experimental approach

    International Nuclear Information System (INIS)

    Manning, William J.

    2005-01-01

    Much has been written about the effects of ambient ozone on tree growth. Cause and effect has been established with seedlings in chambers. Results from multi-year studies with older tree seedlings, in open-top chambers, have been inconclusive, due to chamber effects. Extrapolation of results from chambers to trees in the forest is not possible. Predictive models for forest tree growth reductions caused by ozone have been developed, but not verified. Dendrochronological methods have been used to establish correlations between radial growth reductions in forest trees and ambient ozone exposure. The protective chemical ethylenediurea (EDU) has been used to protect tree seedlings from ozone injury. An experimental approach is advocated here that utilizes forest trees selected for sensitivity and non-sensitivity to ozone, dendrochronological methods, the protective chemical EDU, and monitoring data for ambient ozone, stomatal conductance, soil moisture potential, air temperature, PAR, etc. in long-term investigations to establish cause and effect relationships. - Progress is reviewed and an experimental approach is proposed to demonstrate a cause and effect relationship for ambient ozone and forest tree growth

  9. Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

    Directory of Open Access Journals (Sweden)

    Torun Murat

    2014-03-01

    Full Text Available Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.

  10. Copernicus stratospheric ozone service, 2009–2012: validation, system intercomparison and roles of input data sets

    Directory of Open Access Journals (Sweden)

    K. Lefever

    2015-03-01

    Full Text Available This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART; the Belgian Assimilation System for Chemical ObsErvations (BASCOE; the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA; and the Data Assimilation Model based on Transport Model version 3 (TM3DAM. The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.

  11. The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data

    Science.gov (United States)

    Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric

    2015-01-01

    Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.

  12. Effect of Soil Filtration and Ozonation in the Change of Baseline Toxicity in Wastewater Spiked with Organic Micro-pollutants

    KAUST Repository

    Gan, Alexander

    2012-07-01

    Bioassays for baseline toxicity, which measure toxicants’ non-specific effects, have been shown in previous studies to effectively correlate with the increased presence of pharmaceuticals, personal care products, endocrine-disrupting compounds, and other synthetic organics in treated sewage effluent. This study investigated how the baseline toxicity of anthropogenic compounds-spiked wastewater changed during the treatment of biofiltration and ozone oxidation, as measured by the bioluminescence inhibition of the Vibrio fischeri bacterium. The water quality parameters of dissolved organic carbon, seven common anions, and fluorescence spectroscopy were used to corroborate and collate with the toxicity results. Water quality was evaluated on two bench-scale soil filtration columns, which were configured for pre-ozonation and post-ozonation. Both systems’ soil aerobically removed similar amounts of dissolved organic carbon, and the reduction ranged between 57.7% and 62.1% for the post-ozonation and pre-ozonation systems, respectively. Biological removal of DOC, protein-like, humic-like, and soluble microbial product-like material was highest in the first 28.5 cm of each 114 cm-long system. While bioluminescence inhibition showed that ozonation was effective at lowering baseline toxicity, this study’s bioassay procedure was a very poor indicator of soil filtration treatment; both system’s effluents were significantly more toxic than their non-ozonated influents.

  13. ROCOZ-A (improved rocket launched ozone sensor) for middle atmosphere ozone measurements

    International Nuclear Information System (INIS)

    Lee, H.S.; Parsons, C.L.

    1987-01-01

    An improved interference filter based ultraviolet photometer (ROCOZ-A) for measuring stratospheric ozone is discussed. The payload is launched aboard a Super-Loki to a typical apogee of 70 km. The instrument measures the solar ultraviolet irradiance as it descends on a parachute. The total cumulative ozone is then calculated based on the Beer-Lambert law. The cumulative ozone precision measured in this way is 2.0% to 2.5% over an altitude range of 20 and 55 km. Results of the intercomparison with the SBUV overpass data and ROCOZ-A data are also discussed

  14. Comparison of GOME total ozone data with ground data from the Spanish Brewer spectroradiometers

    Directory of Open Access Journals (Sweden)

    M. Antón

    2008-03-01

    Full Text Available This paper compares total ozone measurements from five Brewer spectroradiometers located at the Iberian Peninsula with satellite observations given by the GOME (Global Ozone Monitoring Experiment sensor. The analyzed period covers simultaneous ozone values from July 1995 until December 2004. The regression analysis shows an excellent agreement between Brewer-GOME values in the five locations; the coefficient of correlation is always higher than 0.92 and the root mean square error is about 3%. Moreover, the comparison shows that the satellite retrieval accuracy is within the uncertainty of current ground-based instruments. In addition, the effects of several variables, such as cloudiness, solar zenith angle (SZA, effective temperature and total ozone values in Brewer-GOME differences are analyzed. The results indicate that clouds induce a minor dependence of GOME values on the SZA. For example, during heavy cloudy conditions in Madrid station, GOME observations overestimate ground-based Brewer data for low AMF (low SZA values by 2% while for high AMF (high SZA values the satellite underestimates ground-based ozone values by 1%. Moreover, the dependence of Brewer-GOME differences with respect to SZA for cloud-free conditions may be due to the variability of effective temperature. This fact could indicate that the effective temperature estimated by GOME does not fully reflect the actual atmospheric temperature variability. Finally, GOME ozone observations slightly underestimate the highest values measured by the Brewer spectrophotometers and overestimates the lowest ground-based measurements.

  15. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with

  16. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  17. Tropospheric ozone. Formation, properties, effects. Expert opinion; Ozon in der Troposphaere. Bildung, Eigenschaften, Wirkungen. Gutachten

    Energy Technology Data Exchange (ETDEWEB)

    Elstner, E.F. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Phytopathologie

    1996-06-01

    The formation and dispersion of tropospheric ozone are discussed only marginally in this expert opinion; the key interest is in the effects of ground level ozone on plants, animals, and humans. The expert opinion is based on an analysis of the available scientific publications. (orig./MG) [Deutsch] Das Gutachten nimmt nur am Rande die Problematik der Bildung und Ausbreitung von troposphaerischen Ozon auf; Im Mittelpunkt steht die Auseinandersetzung mit den Wirkungen des bodennahen Ozons auf Pflanze, Tier und Mensch. Das Gutachten basiert auf einer Analyse der zugaenglichen wissenschaftlichen Arbeiten. (orig./MG)

  18. Ozone killing action against bacterial and fungal species; microbiological testing of a domestic ozone generator.

    Science.gov (United States)

    Dyas, A; Boughton, B J; Das, B C

    1983-10-01

    The action of ozone generated from a small domestic device was examined with a view to using it in clinical isolation units accommodating immunosuppressed patients. Over a six-hour period in an average size room the device did not generate sufficient ozone to suppress bacterial and fungal growth. A useful bactericidal action, against a variety of human pathogens was achieved with ozone concentrations between 0.3 to 0.9 ppm. Bactericidal ozone concentrations are close to the limit permitted for human exposure however and further experiments are indicated.

  19. Professional exposure of medical workers: radiation levels, radiation risk and personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2005-01-01

    The application of radiation in the field of medicine is the most active area. Due to the rapid and strong development of intervention radiology at present near 20 years, particularly, the medical workers become a popularize group which most rapid increasing and also receiving the must high of professional exposure dose. Because, inter alias, radiation protection management nag training have not fully follow up, the aware of radioactive protection and appropriate approach have tot fully meet the development and need, the professional exposure dose received by medical workers, especially those being engaged in intervention radiology, are more higher, as well as have not yet fully receiving the complete personal dose monitoring, the medical workers become the population group which should be paid the most attention to. The writer would advice in this paper that all medical workers who being received a professional radiation exposure should pay more attention to the safety and healthy they by is strengthening radiation protection and receiving complete personal dose monitoring. (authors)

  20. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  1. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  2. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  3. METHODS OF STATISTICAL MONITORING OF PROFESSIONAL ORIENTATION WORK OF SOCIAL EDUCATORS IN PERSONAL LEARNING ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Oleksandr M. Korniiets

    2012-12-01

    Full Text Available The article deals with the application of social services WEB 2.0 for personal learning environment creation that is used for professional orientation work of social educator. The feedback is must be in personal learning environment for the effective professional orientation work. This feedback can be organized through statistical monitoring. The typical solution for organizing personal learning environment with built-in statistical surveys and statistical data processing is considered in the article. The possibilities of the statistical data collection and processing services on the example of Google Analytics are investigated.

  4. Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Vashist

    2014-08-01

    Full Text Available Smartphone-based devices and applications (SBDAs with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare. Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management.

  5. Novel Use of a Noninvasive Hemodynamic Monitor in a Personalized, Active Learning Simulation

    Science.gov (United States)

    Zoller, Jonathan K.; He, Jianghua; Ballew, Angela T.; Orr, Walter N.; Flynn, Brigid C.

    2017-01-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical…

  6. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment.

    Science.gov (United States)

    Todea, Ana Maria; Beckmann, Stefanie; Kaminski, Heinz; Bard, Delphine; Bau, Sébastien; Clavaguera, Simon; Dahmann, Dirk; Dozol, Hélène; Dziurowitz, Nico; Elihn, Karine; Fierz, Martin; Lidén, Göran; Meyer-Plath, Asmus; Monz, Christian; Neumann, Volker; Pelzer, Johannes; Simonow, Barbara Katrin; Thali, Patrick; Tuinman, Ilse; van der Vleuten, Arjan; Vroomen, Huub; Asbach, Christof

    2017-12-15

    Personal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by coincidence, also nearly proportional to the alveolar lung-deposited surface area (LDSA), the metric reported by all three instruments. In addition, the miniDiSC/DiSCmini and the NanoTracer report particle number concentration and mean particle size. In view of their use for personal exposure studies, the comparability of these personal monitors was assessed in two measurement campaigns. Altogether 29 different polydisperse test aerosols were generated during the two campaigns, covering a large range of particle sizes, morphologies and concentrations. The data provided by the personal monitors were compared with those obtained from reference instruments: a scanning mobility particle sizer (SMPS) for LDSA and mean particle size and a ultrafine particle counter (UCPC) for number concentration. The results indicated that the LDSA concentrations and the mean particle sizes provided by all investigated instruments in this study were in the order of ±30% of the reference value obtained from the SMPS when the particle sizes of the test aerosols generated were within 20-400nm and the instruments were properly calibrated. Particle size, morphology and concentration did not have a major effect within the aforementioned limits. The comparability of the number concentrations was found to be slightly worse and in the range of ±50% of the reference value obtained from the UCPC. In addition, a minor effect of the particle morphology on the number concentration measurements was observed. The presence of particles >400nm can drastically bias the measurement results of all instruments and all metrics determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of Ozone Retrievals from the Pandora Spectrometer System and Dobson Spectrophotometer in Boulder, Colorado

    Science.gov (United States)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-01-01

    A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  8. Degradation of 4-chlorophenol by ozonation, γ radiation as well as ozonation combined with γ radiation

    International Nuclear Information System (INIS)

    Hu, J.; Wang, J.L.

    2005-01-01

    The radiolysis of aqueous 4-chlorophenol (4-CP) by gamma radiation in the presence of air and ozone was investigated. The 4-CP degradation, release of chloride ion, UV absorption spectrum, total organic carbon (TOC) and adsorbable organic halogens (AOX) was measured. Under the conditions of synergistic effect of ozone and radiation a complete degradation of 100 mg/L 4-CP was obtained at a dose of 6 kGy, without ozone the 4-chlorophenol was completely decomposed at 15 kGy. The total organic carbon (TOC) was reduced by 26% when ionizing radiation (at 15 kGy) combined with ozonation, and by 17% without ozone, respectively. Analysis of intermediate products resulting from synergistic effect of ozone and radiation of 4-CP was performed by using the GC/MS method. Some primary influencing factors such as irradiation time and initial 4-CP concentration were also discussed. The results showed that the degradation of 4-chlorophenol could described by first-order reaction kinetic model. There is potential for combination of irradiation with ozonation, which can remarkably reduce the irradiation dose increase the degradation efficiency of 4-CP.

  9. Sterilization of Microorganisms by Ozone and Ultrasound

    Science.gov (United States)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  10. Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment

    International Nuclear Information System (INIS)

    Munoz, Ivan; Rodriguez, Antonio; Rosal, Roberto; Fernandez-Alba, Amadeo R.

    2009-01-01

    Life Cycle Assessment has been used to compare different scenarios involving wastewater reuse, with special focus on toxicity-related impact categories. The study is based on bench-scale experiments applying ozone and ozone in combination with hydrogen peroxide to a wastewater effluent from a Spanish sewage treatment plant. Two alternative characterisation models have been used to account for toxicity of chemical substances, namely USES-LCA and EDIP97. Four alternative scenarios have been assessed: wastewater discharge plus desalination supply, wastewater reuse without tertiary treatment, wastewater reuse after applying a tertiary treatment consisting on ozonation, and wastewater reuse after applying ozonation in combination with hydrogen peroxide. The results highlight the importance of including wastewater pollutants in LCA of wastewater systems assessing toxicity, since the contribution of wastewater pollutants to the overall toxicity scores in this case study can be above 90%. Key pollutants here are not only heavy metals and other priority pollutants, but also non-regulated pollutants such as pharmaceuticals and personal care products. Wastewater reuse after applying any of the tertiary treatments considered appears as the best choice from an ecotoxicity perspective. As for human toxicity, differences between scenarios are smaller, and taking into account the experimental and modelling uncertainty, the benefits of tertiary treatment are not so clear. From a global warming potential perspective, tertiary treatments involve a potential 85% reduction of greenhouse gas emissions when compared with desalination

  11. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M; Rummukainen, M; Kivi, R; Turunen, T; Karhu, J [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P [Finnish Meteorological Inst., Helsinki (Finland)

    1997-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  12. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M.; Rummukainen, M.; Kivi, R.; Turunen, T.; Karhu, J. [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  13. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  14. Tropospheric Enhancement of Ozone over the UAE

    Science.gov (United States)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  15. Monitoring of Persons at the Exit from Bohunice NPP

    International Nuclear Information System (INIS)

    Kaizer, J.; Svitek, J.

    2001-01-01

    Full text: IAEA defines the principal requirement 'defence in depth' as a multilayer system in its authorised document - International Basic Safety Standards for Protection against Ionising Radiation, Safety Series No. 115. The principle of the multilayer system is: a failure at one zone is compensated or corrected at subsequent zones. The main argument why Bohunice NPP modernised its monitoring system at the exit from NPP was the implementation of the principle 'defence in depth'. Several instruments PM7 (Eberline) equipped with the plastic scintillation detectors had been bought because of the modernisation. The instruments had to be integrated into overall security system NPP without any restriction to the number of passing people. The supplier had to modify the basic instrument operation. NPP required a 'dynamic' monitoring version, this means the operation without stopping of a person within the instrument. After the modification the value of the RDA (Reliable Detectable Activity) of the instruments PM7 was within the interval 9.25-10.4 kBq for 137 Cs (dotted source in the middle of the instrument). RDA for the mix of activation products was 2-3 times lower. In conclusion of our paper the results of the monitoring are presented within tree years as well as a discussion about these results. Maximum values of contaminations measured were very low (several kBq) that represented very low risk from potential exposure. (author)

  16. Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels

    International Nuclear Information System (INIS)

    Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened. (authors)

  17. Efficiency Improvement Opportunities for Personal Computer Monitors. Implications for Market Transformation Programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-29

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that display efficiency will likely improve by over 40% by 2015 compared to today’s technology. We evaluate the cost effectiveness of a key technology which further improves efficiency beyond this level by at least 20% and find that its adoption is cost effective. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus (USB) powered liquid crystal display (LCD) monitors and find that the current technology available and deployed in USB powered monitors has the potential to deeply reduce energy consumption by as much as 50%. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to capture global energy saving potential from PC monitors which we estimate to be 9.2 terawatt-hours [TWh] per year in 2015.

  18. Ecosystem-scale trade-offs between impacts of ozone and reactive nitrogen

    Science.gov (United States)

    Rowe, Ed; Hayes, Felicity; Sawicka, Kasia; Mills, Gina; Jones, Laurence; Moldan, Filip; Sereina, Bassin; van Dijk, Netty; Evans, Chris

    2015-04-01

    Nitrogen (N) deposition stimulates plant productivity in many terrestrial ecosystems. This is clearly beneficial for production agriculture and forestry, but increased litterfall and decreased ground-level light availability reduce the suitability of habitats for many biota (Jones et al., 2014). This mechanism (Hautier et al., 2009), together with the acidifying effects of N (Stevens et al., 2010), has caused considerable biodiversity loss at global scale. Ozone, by contrast, has the effect of reducing plant production, and a simple assessment would suggest that this might mitigate the effects of N pollution. We explored the interactions between ozone and nitrogen at mechanistic level using a version of the MADOC model (Rowe et al., 2014) modified to include effects of ozone. The model was tested against data from long-term monitoring and experimental sites with a focus on nitrogen and/or ozone effects. Effects on biodiversity were assessed by coupling the MADOC model to the MultiMOVE plant species model. We used this model-chain to explore trade-offs and synergies between the impacts of nitrogen and ozone on biodiversity and ecosystem biogeochemistry. In a review of the effects of ozone on ecosystem processes, two consistent effects were found: decreased net primary production due to damage to photosynthetic mechanisms; and an increase in litter nitrogen apparently caused by interference of ozone with the retranslocation process (Mills, in prep.). Insufficient evidence was found to justify inclusion of posited interactive mechanisms such as increased ozone susceptibility with greater nitrogen supply. However, the MADOC model illustrated emergent ozone-nitrogen interactions at ecosystem scale, for example an increase in N leaching due to decreased plant demand and greater litter N content. Empirical evidence for interactive effects of nitrogen and ozone at ecosystem scale is severely lacking, but simulated results were consistent with soil and soil solution

  19. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    International Nuclear Information System (INIS)

    Hubner, S.

    2014-08-01

    The personal monitoring service named Auswertungsstelle is part of the Helmholtz Zentrum Munchen, a non-profit-making research center in Germany. As one of the four monitoring services in Germany, we have been a reliable partner in radiation protection for more than 60 years. With about 1.9 million dose assessments per year, we are the largest monitoring service in Europe. For dozens of years, our main dosimeter used in whole-body dosimetry has been a film dosimeter. Although its dosimetric properties are still up to date, film dosimetry won.t be a sustainable technique for the use in monitoring services. Therefore, a project with the objective of investigating alternative dosimetric materials and methods was launched in the late 1990 at the Helmholtz Zentrum Munchen. Based on this research work, the use of Be O as an OSL dosimeter was studied by the radiation physics group of the Tu Dresden, by order and on account of the Auswertungsstelle at the Helmholtz Zentrum Munchen. It was shown, that ceramic Be O features promising dosimetric properties, making Be O detectors particularly suitable for being used in all applications in whole-body dosimetry measuring photons. Ceramic Be O material has an excellent resistance to environmental influences. The Be O chips are almost tissue equivalent. Therefore, these detectors show low photon energy dependence. A new personal dosimetry system based on the OSL dosimetry of Be O was developed. Applying this system, the Auswertungsstelle offers OSL-dosimeters for official monitoring of the Personal Dose Equivalent Hp(10) since 2011. This OSL-System is accredited according to DIN IEC 62387 and we obtained the corresponding type approval by the Ptb, the national metrology institute in Germany. Sophisticated logistics was developed and installed. High degree of automation was achieved by robots for dosimeter assembly and machines for packing, labelling and unpacking of the dosimeters. To become a sustainable dosimetry system not only

  20. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    Energy Technology Data Exchange (ETDEWEB)

    Hubner, S., E-mail: stephan.huebner@helmholtz-muenchen.de [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-80219, Munich (Georgia)

    2014-08-15

    The personal monitoring service named Auswertungsstelle is part of the Helmholtz Zentrum Munchen, a non-profit-making research center in Germany. As one of the four monitoring services in Germany, we have been a reliable partner in radiation protection for more than 60 years. With about 1.9 million dose assessments per year, we are the largest monitoring service in Europe. For dozens of years, our main dosimeter used in whole-body dosimetry has been a film dosimeter. Although its dosimetric properties are still up to date, film dosimetry won.t be a sustainable technique for the use in monitoring services. Therefore, a project with the objective of investigating alternative dosimetric materials and methods was launched in the late 1990 at the Helmholtz Zentrum Munchen. Based on this research work, the use of Be O as an OSL dosimeter was studied by the radiation physics group of the Tu Dresden, by order and on account of the Auswertungsstelle at the Helmholtz Zentrum Munchen. It was shown, that ceramic Be O features promising dosimetric properties, making Be O detectors particularly suitable for being used in all applications in whole-body dosimetry measuring photons. Ceramic Be O material has an excellent resistance to environmental influences. The Be O chips are almost tissue equivalent. Therefore, these detectors show low photon energy dependence. A new personal dosimetry system based on the OSL dosimetry of Be O was developed. Applying this system, the Auswertungsstelle offers OSL-dosimeters for official monitoring of the Personal Dose Equivalent Hp(10) since 2011. This OSL-System is accredited according to DIN IEC 62387 and we obtained the corresponding type approval by the Ptb, the national metrology institute in Germany. Sophisticated logistics was developed and installed. High degree of automation was achieved by robots for dosimeter assembly and machines for packing, labelling and unpacking of the dosimeters. To become a sustainable dosimetry system not only

  1. The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica

    Science.gov (United States)

    Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander

    2016-04-01

    At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is

  2. The holes in the ozone scare

    Energy Technology Data Exchange (ETDEWEB)

    Maduro, R.; Schauerhamer, R.

    1992-05-01

    For the authors, the ozone hole is more politic than scientific, and is caused by anthropogenic CFC, the ozone concentration reduction measured in the antarctic stratosphere is a natural phenomena: ozone destruction by chlorides and bromides coming from volcanos and oceans. The ozone hole was discovered in 1956 and not in 1985. For the greenhouse effect, the CO[sub 2] part is very small in comparison with the atmospheric water vapour part. (A.B.). refs., figs., tabs.

  3. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    Science.gov (United States)

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  4. Statistics of official personal dosimetry and monitoring activities of the period 1994-1995

    International Nuclear Information System (INIS)

    Boerner, E.; Wittmann, A.; Wahl, W.

    1998-01-01

    The measuring laboratory of the GSF in Neuherberg is the largest of the six official supervisory laboratories in Germany. It distributes the officially approved personal dosemeters and is responsible for personal dosimetry monitoring of about 140,000 persons in the German federal states of Bavaria, Hesse, Schleswig-Holstein, and, since 1989, Baden-Wuerttmeberg. Dosemeter readouts are recorded here in a database together with personal data and data describing activities, so that the information collected can be used as a source of reference for establishing general surveys of occupational exposure to external irradiation with ionizing radiation. The report first describes the dosemeter designs and the methods applied by the GSF lab for quality assurance, then explains results of the statistical evaluation of the recent data from 1994-1995, and concludes with explaining tendencies shown by long-term curves of the collective and average annual doses recorded in the years from 1986 until 1995. (orig./CB) [de

  5. Assessing the risk of foliar injury from ozone on vegetation in parks in the U.S. National Park Service's Vital Signs Network

    Energy Technology Data Exchange (ETDEWEB)

    Kohut, Robert [Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853 (United States)], E-mail: rjk9@cornell.edu

    2007-10-15

    The risk of ozone injury to plants was assessed in support of the National Park Service's Vital Signs Monitoring Network program. The assessment examined bioindicator species, evaluated levels of ozone exposure, and investigated soil moisture conditions during periods of exposure for a 5-year period in each park. The assessment assigned each park a risk rating of high, moderate, or low. For the 244 parks for which assessments were conducted, the risk of foliar injury was high in 65 parks, moderate in 46 parks, and low in 131 parks. Among the well-known parks with a high risk of ozone injury are Gettysburg, Valley Forge, Delaware Water Gap, Cape Cod, Fire Island, Antietam, Harpers Ferry, Manassas, Wolf Trap Farm Park, Mammoth Cave, Shiloh, Sleeping Bear Dunes, Great Smoky Mountains, Joshua Tree, Sequoia and Kings Canyon, and Yosemite. - An assessment of the risk of foliar ozone injury on plants was conducted for 269 parks in support of the U.S. National Park Service's Vital Signs Monitoring Network Program.

  6. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications.

    Science.gov (United States)

    Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A

    2012-02-01

    An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  8. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    Science.gov (United States)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  9. Ozone injury to celery. [Apium graveolens

    Energy Technology Data Exchange (ETDEWEB)

    Rich, S.

    1966-10-01

    Ozone is the principal air pollutant damaging crops in Connecticut. Ozone injury in Connecticut has been found on a number of crops including tobacco, tomatoes, potatoes, spinach, alfalfa, and cereals. This is the first report of ozone damage to celery (Apium graveolens var. dulce) in Connecticut, and perhaps in the United States. On July 7, 1966, celery plants with badly damaged older leaves were found in a commercial garden near Shelton, Connecticut. The injured leaves showed chlorotic and necrotic interveinal areas on their upper surfaces. These areas were slightly depressed. Cross sections of the lesions revealed that the palisade cells were most severely injured. Spinach and carrots growing near the celery showed typical symptoms of ozone damage. To substantiate the diagnosis, young celery plants were exposed to 0.2 ppm of ozone in a well-lighted plastic chamber for 1 to 3 hours. Five days later, these plants developed symptoms indentical to those found on celery in the field. Ozone damage appeared on many crops in southern Connecticut early in July. This injury probably occurred on June 27, when a high concentration of ozone (0.1 ppm) was present in the New Haven area.

  10. Influence of stratospheric airmasses on tropospheric vertical O3 columns based on GOME (Global Ozone Monitoring Experiment measurements and backtrajectory calculation over the Pacific

    Directory of Open Access Journals (Sweden)

    A. Ladstätter-Weißenmayer

    2004-01-01

    Full Text Available Satellite based GOME (Global Ozone Measuring experiment data are used to characterize the amount of tropospheric ozone over the tropical Pacific. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM. In the tropical Pacific a significant seasonal variation is detected. Tropospheric excess ozone is enhanced during the biomass burning season from September to November due to outflow from the continents. In September 1999 GOME data reveal an episode of increased excess ozone columns over Tahiti (18.0° S; 149.0° W (Eastern Pacific compared to Am. Samoa (14.23° S; 170.56° W and Fiji (18.13° S; 178.40° E, both situated in the Western Pacific. Backtrajectory calculations show that none of the airmasses arriving over the three locations experienced anthropogenic pollution (e. g. biomass burning. Consequently other sources of ozone have to be considered. One possible process leading to an increase of tropospheric ozone is stratosphere-troposphere-exchange. An analysis of the potential vorticity along trajectories arriving above each of the locations reveals that airmasses at Tahiti are subject to enhanced stratospheric influence, compared to Am. Samoa and Fiji. As a result this study shows clear incidents of transport of airmasses from the stratosphere into the troposphere.

  11. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.

    Science.gov (United States)

    Hoeger, Stefan J; Dietrich, Daniel R; Hitzfeld, Bettina C

    2002-01-01

    Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms. PMID:12417484

  12. Urban Ozone Concentration Forecasting with Artificial Neural Network in Corsica

    Directory of Open Access Journals (Sweden)

    Tamas Wani

    2014-03-01

    Full Text Available Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air quality in Corsica (France, needs to develop a short-term prediction model to lead its mission of information towards the public. Various deterministic models exist for local forecasting, but need important computing resources, a good knowledge of atmospheric processes and can be inaccurate because of local climatical or geographical particularities, as observed in Corsica, a mountainous island located in the Mediterranean Sea. As a result, we focus in this study on statistical models, and particularly Artificial Neural Networks (ANNs that have shown good results in the prediction of ozone concentration one hour ahead with data measured locally. The purpose of this study is to build a predictor realizing predictions of ozone 24 hours ahead in Corsica in order to be able to anticipate pollution peaks formation and to take appropriate preventive measures. Specific meteorological conditions are known to lead to particular pollution event in Corsica (e.g. Saharan dust events. Therefore, an ANN model will be used with pollutant and meteorological data for operational forecasting. Index of agreement of this model was calculated with a one year test dataset and reached 0.88.

  13. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    Directory of Open Access Journals (Sweden)

    Nathan J. Downs

    2017-11-01

    Full Text Available Exposure to natural sunlight, specifically solar ultraviolet (UV radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall, or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations, to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones. The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies.

  14. Vertical Distribution of Ozone and Nitric Acid Vapor on the Mammoth Mountain, Eastern Sierra Nevada, California

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2002-01-01

    Full Text Available In August and September 1999 and 2000, concentrations of ozone (O3 and nitric acid vapor (HNO3 were monitored at an elevation gradient (2184–3325 m on the Mammoth Mountain, eastern Sierra Nevada, California. Passive samplers were used for monitoring exposure to tropospheric O3 and HNO3 vapor. The 2-week average O3 concentrations ranged between 45 and 72 ppb, while HNO3 concentrations ranged between 0.06 and 0.52 μg/m3. Similar ranges of O3 and HNO3 were determined for 2 years of the study. No clear effects of elevation on concentrations of the two pollutants were detected. Concentrations of HNO3 were low and at the background levels expected for the eastern Sierra Nevada, while the measured concentrations of O3 were elevated. High concentrations of ozone in the study area were confirmed with an active UV absorption O3 monitor placed at the Mammoth Mountain Peak (September 5–14, 2000, average 24-h concentration of 56 ppb.

  15. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment

    NARCIS (Netherlands)

    Todea, A.M.; Beckmann, S.; Kaminski, H.; Bard, D.; Bau, S.; Clavaguera, S.; Dahmann, D.; Dozol, H.; Dziurowitz, N.; Elihn, K.; Fierz, M.; Lidén, G.; Meyer-Plath, A.; Monz, C.; Neumann, V.; Pelzer, J.; Simonow, B.K.; Thali, P.; Tuinman, I.; Vleuten, A. van der; Vroomen, H.; Asbach, C.

    2017-01-01

    Personal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by

  16. Regional and global modeling estimates of policy relevant background ozone over the United States

    Science.gov (United States)

    Emery, Christopher; Jung, Jaegun; Downey, Nicole; Johnson, Jeremiah; Jimenez, Michele; Yarwood, Greg; Morris, Ralph

    2012-02-01

    Policy Relevant Background (PRB) ozone, as defined by the US Environmental Protection Agency (EPA), refers to ozone concentrations that would occur in the absence of all North American anthropogenic emissions. PRB enters into the calculation of health risk benefits, and as the US ozone standard approaches background levels, PRB is increasingly important in determining the feasibility and cost of compliance. As PRB is a hypothetical construct, modeling is a necessary tool. Since 2006 EPA has relied on global modeling to establish PRB for their regulatory analyses. Recent assessments with higher resolution global models exhibit improved agreement with remote observations and modest upward shifts in PRB estimates. This paper shifts the paradigm to a regional model (CAMx) run at 12 km resolution, for which North American boundary conditions were provided by a low-resolution version of the GEOS-Chem global model. We conducted a comprehensive model inter-comparison, from which we elucidate differences in predictive performance against ozone observations and differences in temporal and spatial background variability over the US. In general, CAMx performed better in replicating observations at remote monitoring sites, and performance remained better at higher concentrations. While spring and summer mean PRB predicted by GEOS-Chem ranged 20-45 ppb, CAMx predicted PRB ranged 25-50 ppb and reached well over 60 ppb in the west due to event-oriented phenomena such as stratospheric intrusion and wildfires. CAMx showed a higher correlation between modeled PRB and total observed ozone, which is significant for health risk assessments. A case study during April 2006 suggests that stratospheric exchange of ozone is underestimated in both models on an event basis. We conclude that wildfires, lightning NO x and stratospheric intrusions contribute a significant level of uncertainty in estimating PRB, and that PRB will require careful consideration in the ozone standard setting process.

  17. Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign

    Directory of Open Access Journals (Sweden)

    J. Song

    2010-04-01

    Full Text Available The sensitivity of ozone production to precursor emissions was investigated under five different meteorological conditions in the Mexico City Metropolitan Area (MCMA during the MCMA-2006/MILAGRO field campaign using the gridded photochemical model CAMx driven by observation-nudged WRF meteorology. Precursor emissions were constrained by the comprehensive data from the field campaign and the routine ambient air quality monitoring network. Simulated plume mixing and transport were examined by comparing with measurements from the G-1 aircraft during the campaign. The observed concentrations of ozone precursors and ozone were reasonably well reproduced by the model. The effects of reducing precursor emissions on urban ozone production were performed for three representative emission control scenarios. A 50% reduction in VOC emissions led to 7 to 22 ppb decrease in daily maximum ozone concentrations, while a 50% reduction in NOx emissions leads to 4 to 21 ppb increase, and 50% reductions in both NOx and VOC emission decrease the daily maximum ozone concentrations up to 10 ppb. These results along with a chemical indicator analysis using the chemical production ratios of H2O2 to HNO3 demonstrate that the MCMA urban core region is VOC-limited for all meteorological episodes, which is consistent with the results from MCMA-2003 field campaign; however the degree of the VOC-sensitivity is higher during MCMA-2006 due to lower VOCs, lower VOC reactivity and moderately higher NOx emissions. Ozone formation in the surrounding mountain/rural area is mostly NOx-limited, but can be VOC-limited, and the range of the NOx-limited or VOC-limited areas depends on meteorology.

  18. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO2, NOx/NO2, PM10, lead, benzene, CO and ozone. PM10 samplers are under installation and the installation will be completed during 2002...

  19. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    Science.gov (United States)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  20. Who Got All of My Personal Data? Enabling Users to Monitor the Proliferation of Shared Personally Identifiable Information

    OpenAIRE

    Labitzke , Sebastian

    2011-01-01

    Part 4: Privacy and Transparency in the Age of Cloud Computing; International audience; The risk involved when users publish information, which becomes available to an unintentional broad audience via online social networks is evident. It is especially difficult for users of social networks to determine who will get the information before it is shared. Moreover, it is impossible to monitor data flows or to control the access to personal data after sharing the information. In contrast to enter...

  1. An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupendra Pratap, E-mail: bpsingh0783@gmail.com; Kumar, Amit; Singh, Deepak; Punia, Monika; Kumar, Krishan; Jain, Vinod Kumar

    2014-06-30

    Highlights: • First quantitative report of ozone level and UV radiation emission from photocopier. • Ozone production is directly proportional with intensity of photocopy operation. • Ozone level from ground floor is significantly higher than basement photocopier. • Ozone production and UV radiation studied has less correlation during photocopy. • Health hazard issue has been evaluated for effect of UV radiation in terms of SED. - Abstract: This study investigates the levels of ozone concentration along with an ultraviolet (UV) and visible spectral radiation at eight photocopy centers in an academic institute, Delhi. Sampling was done in two types of locations, i.e., basement photocopy centers (BPC) and ground floor photocopy centers (GPC) for 8 h. Measurements of levels of ozone, UV and visible radiation were done by ozone analyzer, UV radiometer and Field spectra instrument, respectively. Results show that the hourly mean concentration of ozone was observed to be in the range of 1.8–10.0 ppb and 5.3–45.8 ppb for BPC and GPC, respectively. In terms UV radiations, energy lies between 5.0 × 10{sup −3} and 7.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet A (UVA), 1.0 × 10{sup −3} and 2.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet B (UVB) and 6.0 × 10{sup −3} and 8.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet C (UVC). Correlation between the UV radiations and ozone production observed was statistically insignificant. To know the health hazard occurred to the workers, the standard erythema dose (SED) value was calculated for emitting UV radiation. The SED was estimated to be in the range of 0.02–0.04 and 0.02–0.32 for direct and indirect methods which is less than the guideline prescribed by Commission Internationale del’ Eclairage (CIE). In nutshell, person involved in photocopy operation for their livelihood must be trained and should have knowledge for the long term gradual build up health problems due to ozone and UV production from

  2. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Science.gov (United States)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  3. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2008-03-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  4. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  5. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  6. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M.; Serrano, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Loyola, D.; Zimmer, W. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Lopez, M.; Banon, M. [Agencia Estatal de Meteorologia (AEMet), Madrid (Spain); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere. (orig.)

  7. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  8. Case study of stratospheric ozone affecting ground-level oxidant concentrations

    International Nuclear Information System (INIS)

    Lamb, R.G.

    1977-01-01

    During the predawn hours of 19 November 1972, the air pollution monitoring station at Santa Rosa, Calif., recorded five consecutive hours of oxidant concentrations in excess of the present National Ambient Air Quality Standard. The highest of the hourly averages was 0.23 ppm. From a detailed analysis of the meteorological conditions surrounding this incident, it is shown that the ozone responsible for the anomalous concentrations originated in the stratosphere and not from anthropogenic sources

  9. Remote measurement of ozone in Tuxtla Gutierrez, Chiapas, Mexico, using the DOAS technique

    International Nuclear Information System (INIS)

    Garcia, C.; Najera, H.; Camas, J.

    2012-01-01

    A brief description of a remote pollutants monitoring system based on passive differential optical absorption spectroscopy, which detects atmospheric trace gases. This system was placed in the campus facilities of the UNICACH, monitoring a linear extension approximately 2.9 km. We determined the concentration of ozone in the area of interest, also evaluating the influence of climatic conditions with the results obtained at the end were compared with a detection system used by the SEMAVIH, dependence government, observing a good correlation between them. (Author)

  10. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  11. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  12. Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends

    Directory of Open Access Journals (Sweden)

    A. E. Bourassa

    2018-01-01

    Full Text Available A small long-term drift in the Optical Spectrograph and Infrared Imager System (OSIRIS stratospheric ozone product, manifested mostly since 2012, is quantified and attributed to a changing bias in the limb pointing knowledge of the instrument. A correction to this pointing drift using a predictable shape in the measured limb radiance profile is implemented and applied within the OSIRIS retrieval algorithm. This new data product, version 5.10, displays substantially better both long- and short-term agreement with Microwave Limb Sounder (MLS ozone throughout the stratosphere due to the pointing correction. Previously reported stratospheric ozone trends over the time period 1984–2013, which were derived by merging the altitude–number density ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE II satellite instrument (1984–2005 and from OSIRIS (2002–2013, are recalculated using the new OSIRIS version 5.10 product and extended to 2017. These results still show statistically significant positive trends throughout the upper stratosphere since 1997, but at weaker levels that are more closely in line with estimates from other data records.

  13. Effect of Pulse Width on Oxygen-fed Ozonizer

    Science.gov (United States)

    Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.

  14. First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column

    Science.gov (United States)

    Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene

    2018-03-01

    Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.

  15. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  16. A novel paradigm for telemedicine using the personal bio-monitor.

    Science.gov (United States)

    Bhatikar, Sanjay R; Mahajan, Roop L; DeGroff, Curt

    2002-01-01

    The foray of solid-state technology in the medical field has yielded an arsenal of sophisticated healthcare tools. Personal, portable computing power coupled with the information superhighway open up the possibility of sophisticated healthcare management that will impact the medical field just as much. The full synergistic potential of three interwoven technologies: (1) compact electronics, (2) World Wide Web, and (3) Artificial Intelligence is yet to be realized. The system presented in this paper integrates these technologies synergistically, providing a new paradigm for healthcare. Our idea is to deploy internet-enabled, intelligent, handheld personal computers for medical diagnosis. The salient features of the 'Personal Bio-Monitor' we envisage are: (1) Utilization of the peripheral signals of the body which may be acquired non-invasively and with ease, for diagnosis of medical conditions; (2) An Artificial Neural Network (ANN) based approach for diagnosis; (3) Configuration of the diagnostic device as a handheld for personal use; (4) Internet connectivity, following the emerging bluetooth protocol, for prompt conveyance of information to a patient's health care provider via the World Wide Web. The proposal is substantiated with an intelligent handheld device developed by the investigators for pediatric cardiac auscultation. This device performed accurate diagnoses of cardiac abnormalities in pediatrics using an artificial neural network to process heart sounds acquired by a low-frequency microphone and transmitted its diagnosis to a desktop PC via infrared. The idea of the personal biomonitor presented here has the potential to streamline healthcare by optimizing two valuable resources: physicians' time and sophisticated equipment time. We show that the elements of such a system are in place, with our prototype. Our novel contribution is the synergistic integration of compact electronics' technology, artificial neural network methodology and the wireless web

  17. Contribution of long-range transport to the ozone levels recorded in the Northeast of Portugal

    Science.gov (United States)

    Gama, C.; Nunes, T.; Marques, M. C.; Ferreira, F.

    2009-04-01

    In the past four years (2004-2007), measurements carried out at Lamas de Olo, the only air quality monitoring background station in the Northeast of Portugal, showed high ozone concentrations (97,7±29,7 g.m-3). This remote site, located in the middle of Alvão Natural Park, in Portugal, 1086 m asl, plays a significant role on the total amount of exceedances registered in the national air quality network. The analysis of the data recorded at this monitoring station revealed an annual cycle of ozone concentrations similar to the ones observed in other background sites of the Northern Hemisphere (Monks, 2000; Vingarzan and Taylor, 2003). This common feature comprises a distinct maximum during spring (peaking during the month of April). Nevertheless it is during the summer that the hourly concentrations are higher, due to the typical atmospheric and meteorological conditions that promote photochemical pollution episodes. Photochemical pollution episodes can be related with production of ozone in a local scale or in a global scale due to the transportation of polluted air masses. For this reason analysing these events is crucial to fully understand the behaviour of ozone in the Northeast of Portugal, in order to adopt the correct long-term policies. With the purpose of studying the influence of long-range transport on the ozone levels recorded at Lamas de Olo, a cluster analysis was performed on 96-hour back trajectories air masses. Different trajectory clusters represent air masses with different source regions of atmospheric pollutants and the influence of these regions on the atmospheric composition at the arrival point (receptor) of the trajectories can therefore be assessed (EMPA, 2008). The back trajectories were simulated 4 times per day, using HYSPLIT model. A "bottom-up" cluster methodology was used to group trajectories into clusters according to their characteristics, for several time periods with similar ozone levels and/or distributions. Ozone average

  18. Efficiency improvement opportunities for personal computer monitors. Implications for market transformation programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-08-15

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that PC monitor efficiency will likely improve by over 40 % by 2015 with saving potential of 4.5 TWh per year in 2015, compared to today's technology. We discuss various energy-efficiency improvement options and evaluate the cost-effectiveness of three of them, at least one of which improves efficiency by at least 20 % cost effectively beyond the ongoing market trends. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus-powered liquid crystal display monitors and find that the current technology available and deployed in them has the potential to deeply and cost effectively reduce energy consumption by as much as 50 %. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy saving potential from PC monitors which we estimate to be 9.2 TWh per year in 2015.

  19. Ozone retrievals from MAGEAQ GEO TIR+VIS for air quality

    Science.gov (United States)

    Quesada-Ruiz, Samuel; Attié, Jean-Luc; Lahoz, William A.; Abida, Rachid; El-Amraoui, Laaziz; Ricaud, Philippe; Zbinden, Regina; Spurr, Robert; da Silva, Arlindo M.

    2016-04-01

    Nowadays, air quality monitoring is based on the use of ground-based stations (GBS) or satellite measurements. GBS provide accurate measurements of pollutant concentrations, especially in the planetary boundary layer (PBL), but usually the spatial coverage is sparse. Polar-orbiting satellites provide good spatial resolution but low temporal coverage -this is insufficient for tracking pollutants exhibiting a diurnal cycle (Lahoz et al., 2012). However, pollutant concentrations can be measured by instruments placed on board a geostationary satellite, which can provide sufficiently high temporal and spatial resolutions (e.g. Hache et al., 2014). In this work, we investigate the potentiality of a possible future geostationary instrument, MAGEAQ (Monitoring the Atmosphere from Geostationary orbit for European Air Quality), for retrieving ozone measurements over Europe. In particular, MAGEAQ can provide 1-hour temporal sampling at 10x10km pixel resolution for measurements in both visible (VIS) and thermal infrared (TIR) bands -thus, we will be able to measure during the day and at night. MAGEAQ synthetic radiance observations are obtained through radiative transfer (RT) simulations using the VLIDORT discrete ordinate RT model (Spurr, 2006) based on output from the GEOS-5 Nature Run (Gelaro et al., 2015) providing optical information, plus a suitable instrument model. Ozone is retrieved from these synthetic measurements using the optimal estimation inversion scheme of Levenberg-Marquardt. Finally, we examine an application of the air quality concept based on these ozone retrievals during the heatwave event of July 2006 over Europe. REFERENCES Gelaro, R., Putman, W. M., Pawson, S., Draper, C., Molod, A., Norris, P. M., Ott, L., Privé, N., Reale, O., Achuthavarier, D., Bosilovich, M., Buchard, V., Chao, W., Coy, L., Cullather, R., da Silva, A., Darmenov, A., Errico, R. M., Fuentes, M., Kim, M-J., Koster, R., McCarty, W., Nattala, J., Partyka, G., Schubert, S., Vernieres, G

  20. Information content of ozone retrieval algorithms

    Science.gov (United States)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  1. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  2. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  3. Efficacy of gaseous ozone to counteract postharvest table grape sour rot.

    Science.gov (United States)

    Pinto, L; Caputo, L; Quintieri, L; de Candia, S; Baruzzi, F

    2017-09-01

    This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m -3 ) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study of the superficial ozone concentrations in the atmosphere of Comunidad de Madrid using passive samplers

    Directory of Open Access Journals (Sweden)

    D. Galán Madruga

    2001-06-01

    Full Text Available The ozone is a secondary atmospheric pollutant which is generated for photochemical reactions of volatil organic compounds (VOC’s and nitrogen oxides (NOx. In Spain the ozone is a big problem as a consequence of the solar radiation to reach high levels. Exposure over a period of time to elevated ozone concentrations can cause damage in the public health and alterations in the vegetation.The aim of this study is to carry out the development and validation of a measurement method to let asses the superficial ozone levels in the Comunidad de Madrid, by identifing the zones more significants, where to measure with UV photometric monitors (automatics methods this pollutant and where the health and the vegetation can be affected. To such effect, passive samplers are used, which have glass fiber filters coated with a solution of sodium nitrite, potassium carbonate, glycerol and water. The nitrite ion in the presence of ozone is oxidized to nitrato ion, which it is extrated with ultrapure water and analyzed for ion chromatography, by seen proportional to the concentration existing in the sampling point.The results of validation from field tests indicate a excellent correlation between the passive and the automatic method.The higher superficial ozone concentrations are placed in rural zones, distanced of emission focus of primary pollutants (nitrogen oxides and volatil organic compounds... principally in direction soutwest and northwest of the Comunidad of Madrid.

  5. Bayesian maximum entropy integration of ozone observations and model predictions: an application for attainment demonstration in North Carolina.

    Science.gov (United States)

    de Nazelle, Audrey; Arunachalam, Saravanan; Serre, Marc L

    2010-08-01

    States in the USA are required to demonstrate future compliance of criteria air pollutant standards by using both air quality monitors and model outputs. In the case of ozone, the demonstration tests aim at relying heavily on measured values, due to their perceived objectivity and enforceable quality. Weight given to numerical models is diminished by integrating them in the calculations only in a relative sense. For unmonitored locations, the EPA has suggested the use of a spatial interpolation technique to assign current values. We demonstrate that this approach may lead to erroneous assignments of nonattainment and may make it difficult for States to establish future compliance. We propose a method that combines different sources of information to map air pollution, using the Bayesian Maximum Entropy (BME) Framework. The approach gives precedence to measured values and integrates modeled data as a function of model performance. We demonstrate this approach in North Carolina, using the State's ozone monitoring network in combination with outputs from the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. We show that the BME data integration approach, compared to a spatial interpolation of measured data, improves the accuracy and the precision of ozone estimations across the state.

  6. Observations of ozone formation in power plant plumes and implications for ozone control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; Kuster, W.C.; Goldan, P.D.; Huebler, G.; Meagher, J.F.; Fehsenfeld, F.C. [NOAA, Boulder, CO (USA). Aeronomy Lab.

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural US coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NOx (NO plus NO{sub 2}) concentration, which is determined by plant NOx emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modular ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NOx and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NOx emission rates and geographic locations in current and future US ozone control strategies could substantially enhance the efficacy of NOx reductions from these sources. 18 refs., 4 figs.

  7. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  8. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  9. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  10. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    H. Vömel

    2010-04-01

    Full Text Available Laboratory measurements of the Electrochemical Concentration Cell (ECC ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations in the upper tropical troposphere, and may frequently lead to operator dependent uncertainties. Based on these laboratory measurements an improved cell current to partial pressure conversion is proposed, which removes operator dependent variability in the background reading and possible artifacts in this measurement. Data from the Central Equatorial Pacific Experiment (CEPEX have been reprocessed using the improved background treatment based on these laboratory measurements. In the reprocessed data set near-zero ozone events no longer occur. At Samoa, Fiji, Tahiti, and San Cristóbal, nearly all near-zero ozone concentrations occur in soundings with larger background currents. To a large extent, these events are no longer observed in the reprocessed data set using the improved background treatment.

  11. Expected Performance of Ozone Climate Data Records from Ozone Mapping and Profiler Suite Limb Profiler

    Science.gov (United States)

    Xu, P. Q.; Rault, D. F.; Pawson, S.; Wargan, K.; Bhartia, P. K.

    2012-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) was launched on board of the Soumi NPP space platform in late October 2011. It provides ozone-profiling capability with high-vertical resolution from 60 Ian to cloud top. In this study, an end-to-end Observing System Simulation Experiment (OSSE) of OMPS/LP ozone is discussed. The OSSE was developed at NASA's Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System (GEOS-5) data assimilation system. The "truth" for this OSSE is built by assimilating MLS profiles and OMI ozone columns, which is known to produce realistic three-dimensional ozone fields in the stratosphere and upper troposphere. OMPS/LP radiances were computed at tangent points computed by an appropriate orbital model. The OMPS/LP forward RT model, Instrument Models (IMs) and EDR retrieval model were introduced and pseudo-observations derived. The resultant synthetic OMPS/LP observations were evaluated against the "truth" and subsequently these observations were assimilated into GEOS-5. Comparison of this assimilated dataset with the "truth" enables comparisons of the likely uncertainties in 3-D analyses of OMPS/LP data. This study demonstrated the assimilation capabilities of OMPS/LP ozone in GEOS-5, with the monthly, zonal mean (O-A) smaller than 0.02ppmv at all levels, the nns(O-A) close to O.lppmv from 100hPa to 0.2hPa; and the mean(O-B) around the 0.02ppmv for all levels. The monthly zonal mean analysis generally agrees to within 2% of the truth, with larger differences of 2-4% (0.1-0.2ppmv) around 10hPa close to North Pole and in the tropical tropopause region, where the difference is above 20% due to the very low ozone concentrations. These OSSEs demonstrated that, within a single data assimilation system and the assumption that assimilated MLS observations provide a true rendition of the stratosphere, the OMPS/LP ozone data are likely to produce accurate analyses through much of the stratosphere

  12. Atmospheric ozone measurement with an inexpensive and fully automated porous tube collector-colorimeter.

    Science.gov (United States)

    Li, Jianzhong; Li, Qingyang; Dyke, Jason V; Dasgupta, Purnendu K

    2008-01-15

    The bleaching action of ozone on indigo and related compounds is well known. We describe sensitive automated instrumentation for measuring ambient ozone. Air is sampled around a porous polypropylene tube filled with a solution of indigotrisulfonate. Light transmission through the tube is measured. Light transmission increases as O(3) diffuses through the membrane and bleaches the indigo. Evaporation of the solution, a function of the RH and the air temperature, can, however cause major errors. We solve this problem by adding an O(3)-inert dye that absorbs at a different wavelength. Here we provide a new algorithm for this correction and show that this very inexpensive instrument package (controlled by a BASIC Stamp Microcontroller with an on-board data logger, total parts cost US$ 300) provides data highly comparable to commercial ozone monitors over an extended period. The instrument displays an LOD of 1.2ppbv and a linear span up to 300ppbv for a sampling time of 1min. For a sampling time of 5min, the respective values are 0.24ppbv and 100ppbv O(3).

  13. Features of ozone intraannual variability in polar regions based on ozone sounding data obtained at the Resolute and Amundsen-Scott stations

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Sitnov, S.A. (AN SSSR, Institut Fiziki Atmosfery, Moscow (USSR))

    1991-04-01

    Ozone sounding data obtained at the Resolute and Amundsen-Scott stations are used to analyze ozone intraannual variability in Southern and Northern polar regions. For the Arctic, in particular, features associated with winter stratospheric warmings, stratospheric-tropospheric exchange, and the isolated evolution of surface ozone are noted. Correlative connections between ozone and temperature making it possible to concretize ozone variability mechanisms are analyzed. 31 refs.

  14. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  15. Importance of energetic solar protons in ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, J A.E.; Scourfield, M W.J. [Natal Univ., Durban (South Africa). Space Physics Research Inst.

    1991-07-11

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by {approx} 9% over {approx} 20% of the total area between the South Pole and latitude 70{sup o}S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author).

  16. Importance of energetic solar protons in ozone depletion

    International Nuclear Information System (INIS)

    Stephenson, J.A.E.; Scourfield, M.W.J.

    1991-01-01

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by ∼ 9% over ∼ 20% of the total area between the South Pole and latitude 70 o S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author)

  17. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    Science.gov (United States)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  18. Indoor, outdoor, and personal exposure monitoring of particulate air pollution: the Baltimore elderly epidemiology-exposure pilot study

    Science.gov (United States)

    Williams, Ron; Creason, John; Zweidinger, Roy; Watts, Randall; Sheldon, Linda; Shy, Carl

    A 17-day pilot study investigating potential PM exposures of an elderly population was conducted near Baltimore, Maryland. Collection of residential indoor, residential outdoor, and ambient monitoring data associated with the subjects living at a common retirement facility was integrated with results from a paired epidemiological pilot study. This integration was used to investigate the potential pathophysiological health effects resulting from daily changes in estimated PM exposures with results reported elsewhere. Objectives of the exposure study were to determine the feasibility of performing PM exposure assessment upon an elderly population and establishing relationships between the various exposure measures including personal monitoring. PM 2.5 was determined to be the dominant outdoor size fraction (0.83 PM 2.5/PM 10 mass ratio by dichot monitoring). Individual 24-h PM 1.5 personal exposures ranged from 12 to 58 μg m -3. Comparison of data from matched sampling dates resulted in mean daily PM 1.5 personal, PM 2.5 outdoor, and PM 1.5 indoor concentrations of 34, 17, and 17 μg m -3, respectively. Activity patterns of the study population indicated a generally sedentary population spending a mean of 96% of each day indoors. Future studies would benefit from the use of a consistent sampling methodology across a larger number of PM measurement sites relevant to the elderly subjects, as well as a larger personal PM exposure study population to more successfully collect data needed in matched epidemiological-exposure studies.

  19. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  20. Ozone disintegration kinetics in the reactor for tyres decomposition

    International Nuclear Information System (INIS)

    Golota, V.I.; Manujlenko, O.V.; Taran, G.V.; Pis'menetskij, A.S.; Zamuriev, A.A.

    2010-01-01

    The results of theoretical and experimental research of ozone disintegration kinetics in the chemical reactor which is developed for decomposition of tyres in the ozone-air environment are presented. Analytical expression for dependence of ozone concentration in the reactor from time and from parameters of the task, such as volume speed of ozone-air mixture feed on a reactor input, concentration of ozone on the input to the reactor, volume speed of output of the used mixture, reactor size, and square of its internal surface is obtained. It is shown that at the same speed of ozone-air mixture pro rolling through the reactor, with growth of ozone concentration on the input, value of stationary concentration in the reactor grows, remaining always less than concentration on the input. It is also shown that at the same ozone concentration on the input, with growth of speed of ozone-air mixture pro rolling through the reactor, value of stationary ozone concentration in the reactor also grows, remaining always less than ozone concentration on the input. The ozone disintegration kinetics in the reactor in a wide range of speed of ozone-air mixture pro rolling through the reactor (0.15, 0.30, 0.45, 0.60 m3/hour) and various ozone concentration on the input (5, 10, 15, 20 g/m3) is experimentally studied. It is shown that experimental results with good accuracy coincide with the theoretical. Direct experiment showed the essential influence of the internal surface of the reactor on the ozone disintegration kinetics.

  1. Unraveling the complex local-scale flows influencing ozone patterns in the southern Great Lakes of North America

    Directory of Open Access Journals (Sweden)

    I. Levy

    2010-11-01

    Full Text Available This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data, and simulation results from a high resolution (2.5 km regional air-quality model, AURAMS.

    Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Model results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. While an ozone reservoir layer is predicted by the AURAMS model over Lake Erie at night, the land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes and land during the day, though they do cause elevated ozone levels in the lake-breeze air in some locations.

    The model also predicts a mean vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake.

    Oscillations in ground-level ozone mixing ratios were observed on several nights and at several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min. Several possible mechanisms for these oscillations are discussed, but a

  2. Health Effects of Ozone Pollution

    Science.gov (United States)

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  3. Effects of ozone on crops in north-west Pakistan

    International Nuclear Information System (INIS)

    Ahmad, Muhammad Nauman; Büker, Patrick; Khalid, Sofia; Van Den Berg, Leon; Shah, Hamid Ullah; Wahid, Abdul; Emberson, Lisa; Power, Sally A.; Ashmore, Mike

    2013-01-01

    Although ozone is well-documented to reduce crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects in other parts of south Asia. We surveyed crops close to the city of Peshawar, in north-west Pakistan, for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found on potato, onion and cotton when mean monthly ozone concentrations exceeded 45 ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60 ppb significantly reduce the growth of a major Pakistani onion variety. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations measured in April–May in Peshawar, and used in the fumigation experiment, are comparable to those that have been modelled to occur over many parts of south Asia, where ozone may be a significant threat to sensitive crops. -- Highlights: ► Visible ozone injury to onion, cotton and potato was identified in north-west Pakistan. ► The symptoms on onion were reproduced by exposure to elevated ozone. ► Elevated ozone levels also significantly reduced onion growth. ► Levels of aphid infestation on spinach were lower under elevated ozone. ► These effects were observed at ozone levels that have been modelled to occur widely across south Asia. -- Ozone concentrations in NW Pakistan have adverse effects on sensitive crop species

  4. Personal radiation monitoring

    International Nuclear Information System (INIS)

    Julius, H.W.

    1976-01-01

    This report reviews the context of a primary university course in individual radiation monitoring. A brief account of the regulations and permissible doses is given. The principles and design of film dosemeters, thermoluminescent dosemeters and the whole-body counting technique are treated

  5. Adrenal-derived stress hormones modulate ozone-induced ...

    Science.gov (United States)

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  6. Solar dynamics influence on the atmospheric ozone

    International Nuclear Information System (INIS)

    Gogosheva, T.; Grigorieva, V.; Mendeva, B.; Krastev, D.; Petkov, B.

    2007-01-01

    A response of the atmospheric ozone to the solar dynamics has been studied using the total ozone content data, taken from the satellite experiments GOME on ERS-2 and TOMS-EP together with data obtained from the ground-based spectrophotometer Photon operating in Stara Zagora, Bulgaria during the period 1999-2005. We also use data from surface ozone observations performed in Sofia, Bulgaria. The solar activity was characterized by the sunspot daily numbers W, the solar radio flux at 10.7 cm (F10.7) and the MgII wing-to-core ratio solar index. The impact of the solar activity on the total ozone has been investigated analysing the ozone response to sharp changes of these parameters. Some of the examined cases showed a positive correlation between the ozone and the solar parameters, however, a negative correlation in other cases was found. There were some cases when the sharp increases of the solar activity did not provoke any ozone changes. The solar radiation changes during an eclipse can be considered a particular case of the solar dynamics as this event causes a sharp change of irradiance within a comparatively short time interval. The results of both - the total and surface ozone measurements carried out during the eclipses on 11 August 1999, 31 May 2003 and 29 March 2006 are presented. It was found that the atmospheric ozone behavior shows strong response to the fast solar radiation changes which take place during solar eclipse. (authors)

  7. Personal neutron monitoring using TLD albedo combined with etched tracks detector

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N.; Momose, T. [Japan Nuclear Cycle Development Institute, Ibarakiken (Japan)

    2002-07-01

    The albedo dosimetry has been carried out in personal neutron monitoring in the MOX fuel plant of JNC Tokai Works, however, it has shortcomings mainly due to the inherently poor energy response. This paper describes our efforts to overcome these difficulties in practical use of albedo dosemeters. The following four subjects are presented: (1) the neutron energy response functions of albedo TLD obtained from the mono-energetic neutron irradiation experiments and the Monte-Carlo calculations, (2) the location- dependent correction factors calculated from the response functions and neutron energy spectra measured in the workplaces, (3) the results of the international personal neutron dosimetry intercomparison program, and (4) the operational comparison program of TLD albedo and etched tracks detector worn by workers engaged in the fabrication process of the MOX fuel plant. Finally, the characteristics of the combination neutron dosemeter using TLD albedo and solid state etched track detector are summarized.

  8. Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources

    Directory of Open Access Journals (Sweden)

    P. S. Kim

    2013-09-01

    Full Text Available We present a global data set of free tropospheric ozone–CO correlations with 2° × 2.5° spatial resolution from the Ozone Monitoring Instrument (OMI and Atmospheric Infrared Sounder (AIRS satellite instruments for each season of 2008. OMI and AIRS have near-daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO correlations are highly statistically significant (positive or negative in most regions of the world, and are less noisy than previous satellite-based studies that used sparser data. Comparison with ozone–CO correlations and regression slopes (dO3/dCO from MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft aircraft profiles shows good general agreement. We interpret the observed ozone–CO correlations with the GEOS (Goddard Earth Observing System-Chem chemical transport model to infer constraints on ozone sources. Driving GEOS-Chem with different meteorological fields generally shows consistent ozone–CO correlation patterns, except in some tropical regions where the correlations are strongly sensitive to model transport error associated with deep convection. GEOS-Chem reproduces the general structure of the observed ozone–CO correlations and regression slopes, although there are some large regional discrepancies. We examine the model sensitivity of dO3/dCO to different ozone sources (combustion, biosphere, stratosphere, and lightning NOx by correlating the ozone change from that source to CO from the standard simulation. The model reproduces the observed positive dO3/dCO in the extratropical Northern Hemisphere in spring–summer, driven by combustion sources. Stratospheric influence there is also associated with a positive dO3/dCO because of the interweaving of stratospheric downwelling with continental outflow. The well-known ozone maximum over the tropical South Atlantic is

  9. Ozone fumigation under dark/light conditions of Norway Spruce (Picea Abies) and Scots Pine (Pinus Sylvestris)

    Science.gov (United States)

    Canaval, Eva; Jud, Werner; Hansel, Armin

    2015-04-01

    Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) represent dominating tree species in the northern hemisphere. Thus, the understanding of their ozone sensitivity in the light of the expected increasing ozone levels in the future is of great importance. In our experiments we investigated the emissions of volatile organic compounds (VOCs) of 3-4 year old Norway Spruce and Scots Pine seedlings under ozone fumigation (50-150 ppbv) and dark/light conditions. For the experiments the plants were placed in a setup with inert materials including a glass cuvette equipped with a turbulent air inlet and sensors for monitoring a large range of meteorological parameters. Typical conditions were 20-25°C and a relative humidity of 70-90 % for both plant species. A fast gas exchange rate was used to minimize reactions of ozone in the gas phase. A Switchable-Reagent-Ion-Time-of-Flight-MS (SRI-ToF-MS) was used to analyze the VOCs at the cuvette outlet in real-time during changing ozone and light levels. The use of H3O+ and NO+ as reagent ions allows the separation of certain isomers (e.g. aldehydes and ketones) due to different reaction pathways depending on the functional groups of the molecules. Within the Picea abies experiments the ozone loss, defined as the difference of the ozone concentration between cuvette inlet and outlet, remained nearly constant at the transition from dark to light. This indicates that a major part of the supplied ozone is depleted non-stomatally. In contrast the ozone loss increased by 50 % at the transition from dark to light conditions within Pinus sylvestris experiments. In this case the stomata represent the dominant loss channel. Since maximally 0.1% of the ozone loss could be explained by gas phase reactions with monoterpenes and sesquiterpenes, we suggest that ozone reactions on the surface of Picea abies represent the major sink in this case and lead to an light-independent ozone loss. This is supported by the fact that we detected

  10. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  11. Granular activated carbon assisted ozonation of cephalexin antibiotic

    International Nuclear Information System (INIS)

    Akhtar, J.; Amin, N.S.; Imran, M.

    2016-01-01

    This study investigates removal of cephalexin using ozonation in the presence of granular activated carbon. Initial experiments were carried out about adsorption of cephalexin onto granular activated carbon, effect of catalytic ozonation, and biodegradability of cephalexin solution. The effect of ozonation on pH, ozone utilization efficiency and decomposition byproducts, was observed. Response surface methodology was adopted to optimize three operating parameters pH of solution, ozone supply and cephalexin concentration. GAC assisted ozonation, was found to be effective in decomposing COD (chemical oxygen demand) and cephalexin from solution. Optimum values of variables were pH from 7-8, ozone supply 30 mg/L and 100 mg/L of cephalexin solution. The complete removal of cephalexin and 60% COD removal was achieved at these optimum input values. (author)

  12. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2017-12-01

    Full Text Available We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem with the second-generation Regional Acid Deposition Model (RADM2 chemical mechanism: the Emissions Database for Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP, the Intercontinental Chemical Transport Experiment phase B (INTEX-B and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS. Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30–16:30 IST – Indian Standard Time – UTC +5:30, are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10–30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP, central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  13. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Science.gov (United States)

    Sharma, Amit; Ojha, Narendra; Pozzer, Andrea; Mar, Kathleen A.; Beig, Gufran; Lelieveld, Jos; Gunthe, Sachin S.

    2017-12-01

    We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30-16:30 IST - Indian Standard Time - UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10-30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  14. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  15. Breeding of ozone resistant rice: Relevance, approaches and challenges

    International Nuclear Information System (INIS)

    Frei, Michael

    2015-01-01

    Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. - Highlights: • Tropospheric ozone affects millions of hectares of rice land. • Ozone affects rice yield and quality. • Breeding approaches to adapt rice to high ozone are discussed. • Challenges in the breeding of ozone resistant rice are discussed. - This review summarizes the effects of tropospheric ozone on rice and outlines approaches and challenges in the breeding of adapted varieties

  16. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    Science.gov (United States)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  17. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    Science.gov (United States)

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  18. Mobile personal health records for pregnancy monitoring functionalities: Analysis and potential.

    Science.gov (United States)

    Bachiri, Mariam; Idri, Ali; Fernández-Alemán, José Luis; Toval, Ambrosio

    2016-10-01

    Personal Health Records (PHRs) are a rapidly growing area of health information technology. PHR users are able to manage their own health data and communicate with doctors in order to improve healthcare quality and efficiency. Mobile PHR (mPHR) applications for mobile devices have obtained an interesting market quota since the appearance of more powerful mobile devices. These devices allow users to gain access to applications that used to be available only for personal computers. This paper analyzes the functionalities of mobile PHRs that are specific to pregnancy monitoring. A well-known Systematic Literature Review (SLR) protocol was used in the analysis process. A questionnaire was developed for this task, based on the rigorous study of scientific literature concerning pregnancy and applications available on the market, with 9 data items and 35 quality assessments. The data items contain calendars, pregnancy information, health habits, counters, diaries, mobile features, security, backup, configuration and architectural design. A total of 33 mPHRs for pregnancy monitoring, available for iOS and Android, were selected from Apple App store and Google Play store, respectively. The results show that none of the mPHRs selected met 100% of the functionalities analyzed in this paper. The highest score achieved was 77%, while the lowest was 17%. In this paper, these features are discussed and possible paths for future development of similar applications are proposed, which may lead to a more efficient use of smartphone capabilities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Psycho-social aspects of personal health monitoring: a descriptive literature review.

    Science.gov (United States)

    Muehlan, Holger; Schmidt, Silke

    2013-01-01

    We aimed at providing a short review on already published studies addressing psycho-social issues of personal health monitoring (PHM). Both core questions addressed within this review are: What is the impact of PHM on intended psycho-social and health-related outcomes? And which psycho-social issues affected by or related to PHM have already been investigated? This descriptive review based on a literature search using various databases (Psycinfo, Psyndex, Pubmed, SSCI). Resulting 428 abstracts were coded regarding their psycho-social content. Inspection of results was carried out along the relevance of the papers regarding psycho-social issues. Research in PHM focuses on telemonitoring and smart home applications: Tele-monitoring studies are directed to outcome-related questions, smart home studies to feasibility issues. Despite of technological matters, comparability of both systems in psycho-social issues is lacking. Tele-monitoring has been proven for impact on patient groups with chronic diseases, yet smart home still lacks evidence in health-related and psycho-social matters. Smart home applications have been investigated with respect to attitudes, perceptions and concerns of end-users, telemonitoring regarding acceptance and adherence.

  20. Video-documentation: 'The Pannonic ozon project'

    International Nuclear Information System (INIS)

    Loibl, W.; Cabela, E.; Mayer, H. F.; Schmidt, M.

    1998-07-01

    Goal of the project was the production of a video film as documentation of the Pannonian Ozone Project- POP. The main part of the video describes the POP-model consisting of the modules meteorology, emissions and chemistry, developed during the POP-project. The model considers the European emission patterns of ozone precursors and the actual wind fields. It calculates ozone build up and depletion within air parcels due to emission and weather situation along trajectory routes. Actual ozone concentrations are calculated during model runs simulating the photochemical processes within air parcels moving along 4 day trajectories before reaching the Vienna region. The model computations were validated during extensive ground and aircraft-based measurements of ozone precursors and ozone concentration within the POP study area. Scenario computations were used to determine how much ozone can be reduced in north-eastern Austria by emissions control measures. The video lasts 12:20 minutes and consists of computer animations and life video scenes, presenting the ozone problem in general, the POP model and the model results. The video was produced in co-operation by the Austrian Research Center Seibersdorf - Department of Environmental Planning (ARCS) and Joanneum Research - Institute of Informationsystems (JR). ARCS was responsible for idea, concept, storyboard and text while JR was responsible for computer animation and general video production. The speaker text was written with scientific advice by the POP - project partners: Institute of Meteorology and Physics, University of Agricultural Sciences- Vienna, Environment Agency Austria - Air Quality Department, Austrian Research Center Seibersdorf- Environmental Planning Department/System Research Division. The film was produced as German and English version. (author)

  1. Multi sensor reanalysis of total ozone

    Directory of Open Access Journals (Sweden)

    R. J. van der A

    2010-11-01

    Full Text Available A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR, has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instruments TOMS (on the satellites Nimbus-7 and Earth Probe, SBUV (Nimbus-7, NOAA-9, NOAA-11 and NOAA-16, GOME (ERS-2, SCIAMACHY (Envisat, OMI (EOS-Aura, and GOME-2 (Metop-A have been used in the MSR. As first step a bias correction scheme is applied to all satellite observations, based on independent ground-based total ozone data from the World Ozone and Ultraviolet Data Center. The correction is a function of solar zenith angle, viewing angle, time (trend, and effective ozone temperature. As second step data assimilation was applied to create a global dataset of total ozone analyses. The data assimilation method is a sub-optimal implementation of the Kalman filter technique, and is based on a chemical transport model driven by ECMWF meteorological fields. The chemical transport model provides a detailed description of (stratospheric transport and uses parameterisations for gas-phase and ozone hole chemistry. The MSR dataset results from a 30-year data assimilation run with the 14 corrected satellite datasets as input, and is available on a grid of 1× 1 1/2° with a sample frequency of 6 h for the complete time period (1978–2008. The Observation-minus-Analysis (OmA statistics show that the bias of the MSR analyses is less than 1% with an RMS standard deviation of about 2% as compared to the corrected satellite observations used.

  2. Global distribution of total ozone and lower stratospheric temperature variations

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2003-01-01

    Full Text Available This study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS and Solar Backscatter Ultraviolet (SBUV instruments, and on US National Center for Environmental Prediction (NCEP reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum, from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO, up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO, up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO.

  3. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  4. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    Science.gov (United States)

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  5. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    Science.gov (United States)

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  6. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.

    2014-01-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  7. Reduction of date microbial load with ozone

    Science.gov (United States)

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  8. Ozone sensitivity of plants in natural communities

    Energy Technology Data Exchange (ETDEWEB)

    Treshow, M; Stewart, D

    1973-07-01

    Field fumigation studies conducted in grassland, oak, aspen, and conifer, communities established the injury threshold of prevalent plant species to ozone. Several important species, including Bromus tectorum, Quercus gambelii, and Populus tremuloides, were injured by a single 2-hours exposure to 15 pphM ozone. Over half the perennial forbs and woody species studied were visibly injured at concentrations of 30 pphM ozone or less. It is postulated that lower concentrations at prolonged or repeated exposures to ozone may impair growth and affect community vigor and stability. Continued exposure of natural plant communities to ozone is expected to initiate major shifts in the plant composition of communities. 10 references, 4 figures, 1 table.

  9. Design and construction of a personal radiation monitor

    International Nuclear Information System (INIS)

    Oliveira, A.H. de.

    1979-01-01

    The design and construction of a personal radiation monitor is dealt with. It provides a direct and reliable reading of the received dose, and sounds an alarm in the event of an excessive dose rate. A detailed analysis of its design, construction and caracteristics is given, as well a comparison with usual dosimeters. The apparatus is based on large-scale integrated electronics, it is reliable, easy to read, and can be used in the same manner as a film-badge. Contrariwise to both the film-badge and the termoluminescent dosimeters, it allows a direct reading. Also, it is not susceptible to false readings due to mechanical shocks, which is the weak point of the pocket ionization chamber. The dosimeter described herein is equipped with a special corrective shield that gives the correct dose reading, regardless of the photon energy. It is also highly immune to neutron interference. (Author) [pt

  10. 40 CFR 52.2235 - Control strategy: Ozone.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Ozone. 52.2235 Section 52.2235 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Ozone. (a) Determination—EPA is determining that, as of August 8, 1995, the Nashville ozone...

  11. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    OpenAIRE

    Butler, J.J.; Park, H.; Barnes, P.Y.; Early, E.A.; Eijk-Olij, C. van; Zoutman, A.E.; Buller-Leeuwen, S. van; Groote Schaarsberg, J.

    2002-01-01

    The measurement and long-term monitoring of global total ozone by ultraviolet albedo measuring satellite instruments require accurate and precise determination of the Bi-directional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in the pre-launch calibration of those instruments. To assess the ability of laboratories to provide accurate Ultra Violet (UV) diffuse BRDF measurements, a BRDF measurement comparison was initiated by the NASA Total Ozone Mapping Spectrom...

  12. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area

    Science.gov (United States)

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-03-01

    Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.

  13. A Model-Driven Framework to Develop Personalized Health Monitoring

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-07-01

    Full Text Available Both distributed healthcare systems and the Internet of Things (IoT are currently hot topics. The latter is a new computing paradigm to enable advanced capabilities in engineering various applications, including those for healthcare. For such systems, the core social requirement is the privacy/security of the patient information along with the technical requirements (e.g., energy consumption and capabilities for adaptability and personalization. Typically, the functionality of the systems is predefined by the patient’s data collected using sensor networks along with medical instrumentation; then, the data is transferred through the Internet for treatment and decision-making. Therefore, systems creation is indeed challenging. In this paper, we propose a model-driven framework to develop the IoT-based prototype and its reference architecture for personalized health monitoring (PHM applications. The framework contains a multi-layered structure with feature-based modeling and feature model transformations at the top and the application software generation at the bottom. We have validated the framework using available tools and developed an experimental PHM to test some aspects of the functionality of the reference architecture in real time. The main contribution of the paper is the development of the model-driven computational framework with emphasis on the synergistic effect of security and energy issues.

  14. Geophysical validation of SCIAMACHY Limb Ozone Profiles

    Directory of Open Access Journals (Sweden)

    E. J. Brinksma

    2006-01-01

    Full Text Available We discuss the quality of the two available SCIAMACHY limb ozone profile products. They were retrieved with the University of Bremen IFE's algorithm version 1.61 (hereafter IFE, and the official ESA offline algorithm (hereafter OL versions 2.4 and 2.5. The ozone profiles were compared to a suite of correlative measurements from ground-based lidar and microwave, sondes, SAGE II and SAGE III (Stratospheric Aerosol and Gas Experiment. To correct for the expected Envisat pointing errors, which have not been corrected implicitly in either of the algorithms, we applied a constant altitude shift of -1.5 km to the SCIAMACHY ozone profiles. The IFE ozone profile data between 16 and 40 km are biased low by 3-6%. The average difference profiles have a typical standard deviation of 10% between 20 and 35 km. We show that more than 20% of the SCIAMACHY official ESA offline (OL ozone profiles version 2.4 and 2.5 have unrealistic ozone values, most of these are north of 15° S. The remaining OL profiles compare well to correlative instruments above 24 km. Between 20 and 24 km, they underestimate ozone by 15±5%.

  15. Multiannual tropical tropospheric ozone columns and the case of the 2015 el Niño event

    Science.gov (United States)

    Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.

    2016-04-01

    Stratospheric ozone is well known for protecting the surface from harmful ultraviolet solar radiation whereas ozone in the troposphere plays a more complex role. In the lower troposphere ozone can be extremely harmful for human health as it can oxidize biological tissues and causes respiratory problems. Several studies have shown that the tropospheric ozone burden (300±30Tg (IPCC, 2007)) increases by 1-7% per decade in the tropics (Beig and Singh, 2007; Cooper et al., 2014) which makes the need to monitor it on a global scale crucial. Remote sensing from satellites has been proven to be very useful in providing consistent information of tropospheric ozone concentrations over large areas. Tropical tropospheric ozone columns can be retrieved with the Convective Cloud Differential (CCD) technique (Ziemke et al. 1998) using retrieved total ozone columns and cloud parameters from space-borne observations. We have developed a CCD-IUP algorithm which was applied to GOME/ ERS-2 (1995-2003), SCIAMACHY/ Envisat (2002-2012), and GOME-2/ MetOpA (2007-2012) weighting function DOAS (Coldewey-Egbers et al., 2005, Weber et al., 2005) total ozone data. A unique long-term record of monthly averaged tropical tropospheric ozone columns (20°S - 20°N) was created starting in 1996. This dataset has been extensively validated by comparisons with SHADOZ (Thompson et al., 2003) ozonesonde data and limb-nadir Matching (Ebojie et al. 2014) tropospheric ozone data. The comparison shows good agreement with respect to range, inter-annual variation, and variance. Biases where found to be within 5DU and the RMS errors less than 10 DU. This 17-years dataset has been harmonized into one consistent time series, taking into account the three instruments' difference in ground pixel size. The harmonised dataset is used to determine tropical tropospheric ozone trends and climatological values. The 2015 el Niño event has been characterised as one of the top three strongest el Niños since 1950. El Ni

  16. Ozone therapy and restorative dentistry: a literature review ...

    African Journals Online (AJOL)

    This approach is being further reinforced with the emergence of ozone therapy in the management of tooth decay. Ozone therapy is the treatment of the tooth with a mixture of oxygen and ozone. The aim of this review was to provide a comprehensive literature on ozone therapy and on the different areas of restorative dental ...

  17. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  18. Neural networks for the dimensionality reduction of GOME measurement vector in the estimation of ozone profiles

    International Nuclear Information System (INIS)

    Del Frate, F.; Iapaolo, M.; Casadio, S.; Godin-Beekmann, S.; Petitdidier, M.

    2005-01-01

    Dimensionality reduction can be of crucial importance in the application of inversion schemes to atmospheric remote sensing data. In this study the problem of dimensionality reduction in the retrieval of ozone concentration profiles from the radiance measurements provided by the instrument Global Ozone Monitoring Experiment (GOME) on board of ESA satellite ERS-2 is considered. By means of radiative transfer modelling, neural networks and pruning algorithms, a complete procedure has been designed to extract the GOME spectral ranges most crucial for the inversion. The quality of the resulting retrieval algorithm has been evaluated by comparing its performance to that yielded by other schemes and co-located profiles obtained with lidar measurements

  19. Effect of ozone on leaf cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, E S; Thomson, W W; Mudd, J B

    1973-01-01

    The objective of this study was to determine the effects of ozone on membrane lipids and on the electron-density patterns of cell membranes in electron micrographs. Analysis of fatty acids from tobacco leaves fumigated with ozone indicated that there was no significant difference between the ozone-treated and the control plants in the relative amounts of the fatty acids. This suggests that if the primary site of ozone action is unsaturated lipids in membranes then the amounts of affected unsaturated fatty acids are too small to be detected by gas chromatography. In support of this, characteristic electron-microscopic images of membranes are observed in cells of fumigated leaves. However, measurements of the length and width of the chloroplasts and the determination of axial ratios indicated that the ozone treatment resulted in a shrinkage of the chloroplasts. In contrast, mitochondrial changes are apparently explained in terms of ozone-induced swelling. 33 references, 3 figures, 1 table.

  20. Studies on the developmental toxicity of ozone: postnatal effects. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Kavlock, R J; Meyer, E; Grabowski, C T

    1980-01-01

    Pregnant rats were exposed to either 0, 1.0, or 1.5 ppm ozone during either mid gestation (Days 9-12) or late gestation (Days 17-20). The dams were allowed to deliver and the early morphological and behavioral development of their pups was monitored. Both exposure regimens transiently reduced neonatal growth rates. The late gestation exposure regimen produced retardations in early reflex development and in open field behavior. Finally, several males from this exposure regimen remained permanently stunted in growth.